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We study the k-server problem in the resource augmentation setting, i.e., when the performance of the online

algorithm with k servers is compared to the offline optimal solution with h ≤ k servers. The problem is very

poorly understood beyond uniform metrics. For this special case, the classic k-server algorithms are roughly

(1 + 1/ϵ )-competitive when k = (1 + ϵ )h, for any ϵ > 0. Surprisingly, however, no o(h)-competitive algorithm

is known even for HSTs of depth 2 and even when k/h is arbitrarily large.

We obtain several new results for the problem. First, we show that the known k-server algorithms do

not work even on very simple metrics. In particular, the Double Coverage algorithm has competitive ratio

Ω(h) irrespective of the value of k , even for depth-2 HSTs. Similarly, the Work Function Algorithm, which

is believed to be optimal for all metric spaces when k = h, has competitive ratio Ω(h) on depth-3 HSTs even

if k = 2h. Our main result is a new algorithm that is O (1)-competitive for constant depth trees, whenever

k = (1 + ϵ )h for any ϵ > 0. Finally, we give a general lower bound that any deterministic online algorithm has

competitive ratio at least 2.4 even for depth-2 HSTs and when k/h is arbitrarily large. This gives a surprising

qualitative separation between uniform metrics and depth-2 HSTs for the (h,k )-server problem.
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1 INTRODUCTION

The classic k-server problem, introduced by Manasse et al. (1990), is a broad generalization of
various online problems and is defined as follows. There are k servers that reside on some points
of a given metric space. At each step, a request arrives at some point of the metric space and must
be served by moving some server to that point. The goal is to minimize the total distance traveled
by the servers.

In this article, we study the resource augmentation setting of the problem, also known as the
“weak adversary” model (Koutsoupias 1999), where the online algorithm has k servers, but its per-
formance is compared to a “weak” offline optimum with h ≤ k servers. We will refer to this as
the (h,k )-server problem. Our motivation is twofold. Typically, the resource augmentation set-
ting gives a much more refined view of the problem and allows one to bypass overly pessimistic
worst case bounds; see, e.g., Kalyanasundaram and Pruhs (2000). Second, as we discuss below, the
(h,k )-server problem is much less understood than the k-server problem and seems much more
intriguing.

1.1 Previous Work

The k-server problem has been extensively studied; here, we will focus only on deterministic al-
gorithms. It is well-known that no algorithm can be better than k-competitive for any metric
space on more than k points (Manasse et al. 1990). In their breakthrough result, Koutsoupias and
Papadimitriou (1995) showed that the Work Function Algorithm (WFA) is (2k − 1)-competitive
in any metric space. For special metrics such as uniform metrics,1 the line, and trees, tight k-
competitive algorithms are known (cf. Borodin and El-Yaniv (1998)). It is widely believed that a
k-competitive algorithm exists for every metric space (the celebrated k-server conjecture), and
it is also plausible that the WFA achieves this guarantee. Qualitatively, this means that general
metrics are believed to be no harder than the simplest possible case of uniform metrics.

The (h, k )-server problem. Much less is known for the (h,k )-server problem. In their seminal

paper, Sleator and Tarjan (1985) gave several k
k−h+1 -competitive algorithms for uniform metrics

and also showed that this is the best possible ratio. This bound was later extended to the weighted
star metric (weighted paging) (Young 1994). Note that this guarantee equals k for k = h (the usual
k-server setting), and tends to 1 as k/h approaches infinity. In particular, for k = 2h, this is smaller
than 2.

It might seem natural to conjecture that, analogously to the k-server case, general metrics
are no harder than the uniform metrics, and hence that k/(k − h + 1) is the right bound for the
(h,k )-server problem in all metrics. However, surprisingly, Bar-Noy and Schieber (cf. Borodin and
El-Yaniv (1998), p. 175) showed this to be false: In the line metric, for h = 2, no deterministic algo-
rithm can be better than 2-competitive, regardless of the value of k . This is the best known lower
bound for the general (h,k )-server problem.

However, the best known upper bound is 2h, even when k/h → ∞. In particular, Koutsoupias
(1999) showed that the WFA with k servers is (about) 2h-competitive against an offline optimum
with h servers. Note that one way to achieve a guarantee of 2h − 1 is simply to disable the k − h
extra online servers and use WFA with h servers only. The interesting thing about the result of
Koutsoupias (1999) is that the online algorithm does not know h and is 2h-competitive simultane-
ously for every h ≤ k . But, even if we ignore this issue of whether the online algorithm knows h
or not, no guarantee better than h is known, even for very special metrics such as depth-2 HSTs
or the line, and even when k/h → ∞.

1The k-server problem in uniform metrics is equivalent to the paging problem.
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1.2 Our Results

Motivated by the huge gap between the known lower and upper bounds even for very simple
metrics, we consider bounded-depth trees and HSTs (defined formally in Section 1.3).

We first show very strong lower bounds on all the previously known algorithms (beyond
uniform metrics), specifically the Double Coverage (DC) algorithm of Chrobak et al. (1991) and
Chrobak and Larmore (1991) and the WFA. This is perhaps surprising, because, for the k-server
problem, DC attains the optimal competitive ratio in trees and WFA is believed to attain the opti-
mal competitive ratio in all metrics.

Theorem 1.1. The competitive ratio of DC in depth-2 HSTs is Ω(h), even when k/h → ∞.

For the WFA, we present the following lower bound.

Theorem 1.2. The competitive ratio of the WFA is at least h + 1/3 in a depth-3 HST for k = 2h.

This lower bound can be extended to the line metric. Note that for the line it is known that the
WFA is h-competitive for k = h (Bartal and Koutsoupias 2004), while our lower bound for k = 2h
is strictly larger than h. In other words, our result shows that there exist instances for which the
WFA performs strictly worse with 2h servers than using h servers! A similar fact was recently
observed for the Double Coverage (DC) algorithm in Bansal et al. (2018), where it was shown that

its competitive ratio is
k (h+1)

k+1 , which equals h for k = h and tends to h + 1 as k grows. Interestingly,
our lower bound matches the upper bound (h + 1)OPTh − OPTk implied by results of Bartal and
Koutsoupias (2004) and Koutsoupias (1999) for the WFA in the line. We describe the details in
Appendix B.

Our main result is the first o(h)-competitive algorithm for depth-d trees.

Theorem 1.3. There is an algorithm that is Od (1)-competitive on any depth-d tree, whenever k =

δh for δ > 1. More precisely, its competitive ratio is O (d · 2d ) for δ ∈ [2d ,+∞), and O (d · ( δ 1/d

δ 1/d−1
)d )

for δ ∈ (1, 2d ). If δ is very small, i.e., δ = 1 + ϵ for 0 < ϵ ≤ 1, then the latter bound becomes O (d ·
(2d/ϵ )d ).

Note that the competitive ratio of our algorithm when k � h is O (1) for d = O (1), and o(h)
for any d = o(logh). The algorithm is designed to overcome the drawbacks of DC and WFA, and
can be viewed as a more aggressive and cost-sensitive version of DC. It moves the servers more
aggressively at non-uniform speeds towards the region of the current request, giving a higher
speed to a server located in a region containing many servers. It does not require the knowledge
of h, and is simultaneously competitive against all h strictly smaller than k .

Finally, we give an improved lower bound. Bar-Noy and Schieber (cf. Borodin and El-Yaniv
(1998), p. 175) showed that there is no better than 2-competitive algorithm for the (h,k )-server
problem in the line. Our next result shows that the competitive ratio of the (h,k )-server problem
is least 2.4.

Theorem 1.4. There is no 2.4-competitive deterministic algorithm for trees of depth 2, even when

k/h → ∞, provided that h is larger than some constant independent of k .

This shows that depth-2 trees are qualitatively quite different from depth-1 trees (same as
weighted star graphs), which allow a ratio k/(k − h + 1). We have not tried to optimize the con-
stant 2.4 above, but computer experiments suggest that the bound can be improved to about 2.88.
Table 1 summarizes the best known competitive ratios for the (h,k )-server problem for all metrics
considered in the literature, including our contribution.

Recent Developments. Since the initial announcement of this work (Bansal et al. 2017), Coester
et al. (2017) have studied another variant of the k-server problem, called the infinite server problem.
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Table 1. Overview of the Best Known Competitive Ratios for the (h,k ) Server Problem
on Certain Metric Spaces, for Various Values of h and k

k Depth-1 trees Depth-d trees Line General
h h (DC, WFA) h (DC) h (DC, WFA) 2h − 1 (WFA)

(1 + ϵ ) · h 1+ϵ
ϵ+ 1

h

(DC) O (d · (2d/ϵ )d ) (h + 1) · 1
1+ 1

(1+ϵ )h

(DC) 2h (WFA)

2h 2 · h
h+1 ≤ 2 (DC) O (d · (2d )d ) (h + 1) · 1

1+ 1
2h

(DC) 2h (WFA)

→ ∞ → 1 (DC) O (d · 2d ) h + 1 (DC) 2h (WFA)

The algorithms achieving the best known competitive ratio are indicated in the parentheses. The competitive

ratios obtained in this work are shown in red.

They show a surprising tight connection between this problem and the (h,k )-server problem. Us-
ing this connection, they show a lower bound of 3.146 for the competitive ratio of any deterministic
algorithm for the (h,k )-server problem in the line (for sufficiently large h), even if k/h → ∞.

1.3 Notation and Preliminaries

In the (h,k )-setting, we define the competitive ratio as follows. An online algorithm ALG is R-
competitive in metric M , if there exists a constant α such that ALGk (I ) ≤ R ·OPTh (I ) + α holds
for any finite request sequence I of points in M . Here, ALGk (I ) denotes the cost of ALG serving
I with k servers and OPTh (I ) denotes the optimal cost to serve I with h servers. An excellent
reference on competitive analysis is Borodin and El-Yaniv (1998).

A depth-d tree is an edge-weighted rooted tree with each leaf at depth exactly d . In the (h,k )-
server problem in a depth-d tree, weights of edges are interpreted as distances and the requests
arrive only at leaves. The distance between two leaves is defined as the distance in the underlying
tree. A depth-d HST is a depth-d tree with the additional property that the distances decrease
geometrically away from the root (see, e.g., Bartal (1996)). We will first present our algorithm for
general depth-d trees (without the HST requirement), and later show how to (easily) extend it to
arbitrary trees with bounded diameter, where requests are also allowed in the internal nodes.

DC Algorithm for Trees. Our algorithm can be viewed as a non-uniform version of the DC
algorithm for trees (Chrobak et al. 1991; Chrobak and Larmore 1991), which works as follows.
When a request arrives at a vertexv of the tree, all the servers adjacent tov move towards it along
the edges at the same speed until one eventually arrives atv . Here, a server s is adjacent to a point
x if there is no other server on the (unique) path from s to x . If multiple servers are located at a
single point, then only one of them is chosen arbitrarily.

Work Function Algorithm. Consider a request sequence σ = r1, r2, . . . , rm . For each i =
1, . . . ,m, let wi (A) denote the optimal cost to serve requests r1, r2, . . . , ri and end up in the con-
figuration A, which is specified by the set of locations of the servers. The function wi is called
work function. The Work Function Algorithm (WFA) decides its moves depending on the values
of the work function. Specifically, if the algorithm is in a configuration A and a request ri � A ar-
rives, it moves to a configuration X such that ri ∈ X and wi (X ) + d (A,X ) is minimized. For more
background on the WFA, see Borodin and El-Yaniv (1998).

1.4 Organization

In Section 2, we describe the lower bound for the DC in depth-2 HSTs. The shortcomings of the
DC might help the reader to understand the motivation behind the design of our algorithm for
depth-d trees, which we describe in Section 3. Its extension to the bounded-diameter trees can be
found in Appendix A.2. In Section 4, we describe the general lower bound (Theorem 1.4) and the

ACM Transactions on Algorithms, Vol. 15, No. 2, Article 28. Publication date: February 2019.
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Fig. 1. Move of DC during Step i . Servers s1, . . . , si−1 are moving towards u by distance ϵ and si is moving
down the edge (r ,u) by the same distance. While si is in the interior of (r ,u), no server q from some other
branch is adjacent to v , because the unique path between v and q passes through si .

lower bound for the WFA (Theorem 1.2) for depth-3 HSTs. The extension of Theorem 1.2 to the
line is discussed in Appendix B.

2 LOWER BOUND FOR THE DC ALGORITHM ON DEPTH-2 HSTS

We now show a lower bound of Ω(h) on the competitive ratio of the DC algorithm.
LetT be a depth-2 HST with k + 1 subtrees and edge lengths chosen as follows. Edges from the

root r to its children have length 1 − ϵ , and edges from the leaves to their parents length ϵ for some
ϵ � 1. Let Tu be a subtree rooted at an internal node u � r . A branch Bu is defined as Tu together
with the edge e connecting Tu to the root. We call Bu empty if there is no online server in Tu nor
in the interior of e . Since T contains k + 1 branches, at least one of them is always empty.

The idea behind the lower bound is quite simple. The adversary moves all its h servers to the
leaves of an empty branch Bu , and keeps requesting those leaves until DC brings h servers to Tu .
Then, another branch has to become empty, and the adversary moves all its servers there, starting
a new phase. The adversary can execute an arbitrary number of such phases.

The key observation is that DC is “too slow” when bringing new servers toTu , and incurs a cost
of order Ω(h2) during each phase, while the adversary only pays O (h).

Theorem 1.1. The competitive ratio of DC in depth-2 HSTs is Ω(h), even when k/h → ∞.

Proof. We describe a phase, which can be repeated arbitrarily many times. The adversary
places all its h servers at different leaves of an empty branch Bu and does not move until the
end of the phase. At each time during the phase, a request arrives at such a leaf, which is occupied
by some offline server, but contains no online servers. The phase ends at the moment when the
hth server of DC arrives to Tu .

Let ALG denote the cost of the DC algorithm and ADV the cost of the adversary during the
phase. Clearly, ADV = 2h in each phase: The adversary moves its h servers to Tu and does not
incur any additional cost until the end of the phase. However, we claim that ALG = Ω(h2), no
matter where exactly the DC servers are located when the phase starts. To see that, let us call Step
i the part of the phase when DC has exactly i − 1 servers in Tu . Clearly, Step 1 consists of only a
single request, which causes DC to bring one server to the requested leaf. So, the cost of DC for Step
1 is at least 1. To bound the cost in the subsequent steps, we make the following observation. �

Observation 2.1. At the moment when a new server s enters the subtree Tu , no other DC servers

are located along the edge e = (r ,u).

This follows from the construction of DC, which moves only servers adjacent to the request. At
the moment when s enters the edge e , no other server above s can be inside e; see Figure 1.

We now focus on Step i for 2 ≤ i ≤ h. There are already i − 1 servers inTu , and let si be the next
one, which is to arrive to Tu .

ACM Transactions on Algorithms, Vol. 15, No. 2, Article 28. Publication date: February 2019.



28:6 N. Bansal et al.

Fig. 2. A request at v , and Phase 2 of Algorithm 1. Note that k−q equals 6 in the visualised case. Speed is
noted next to each server moving.

Crucially, si moves if and only if all the servers of DC in the subtree Tu move from the leaves
towards u, like in Figure 1: When the request arrives at v , si moves by ϵ and the servers inside
Tu pay together (i − 1)ϵ . However, such a moment does not occur, until all servers s1, . . . , si−1 are
again at leaves, i.e., they incur an additional cost (i − 1)ϵ . To sum up, while si moves by ϵ , the
servers inside Tu incur cost 2(i − 1)ϵ .

When Step i starts, the distance of si from u is at least 1 − ϵ , and therefore si moves by distance
ϵ at least � 1−ϵ

ϵ
	 times, before it enters Tu . So, during Step i , DC pays at least⌊

1 − ϵ
ϵ

⌋
(2(i − 1)ϵ + ϵ ) ≥ 1 − 2ϵ

ϵ
· ϵ (2(i − 1) + 1) = (1 − 2ϵ ) (2i − 1).

By summing over all steps i = 1, . . . ,h and choosing ϵ ≤ 1/4, we get

ALG ≥ 1 +

h∑
i=2

(1 − 2ϵ ) (2i − 1) ≥
h∑

i=1

(1 − 2ϵ ) (2i − 1) = (1 − 2ϵ )h2 ≥ h2

2
.

To conclude the proof, we note that ALG/ADV ≥ (h2/2)/(2h) = h/4 = Ω(h) for all phases. �

3 ALGORITHM FOR DEPTH-d TREES

In this section, we prove Theorem 1.3.
Recall that a depth-d tree is a rooted tree, and we allow the requests to appear only at the leaves.

However, to simplify the algorithm description, we will allow the online servers to reside at any
node or at any location on an edge (similar to that in DC). To serve a request at a leaf v , the
algorithm moves all the adjacent servers towards v , where the speed of each server coming from
a different branch of the tree depends on the number of the online servers “behind” it.

To describe the algorithm formally, we state the following definitions. LetT be a depth-d tree. For
a point x ∈ T (either a node or a location on some edge), we defineTx as the subtree consisting of
all points below x including x itself, and we denote kx the number of the online servers insideTx . If
s is a server located at a point x , then we denoteTs = Tx and ks = kx . We also denoteT −x = Tx \ {x },
and k−x the corresponding number of the algorithm’s servers in T −x .

3.1 Algorithm Description

Suppose that a request arrives at a leaf v ; let A be the set of algorithm’s servers adjacent to v . The
algorithm proceeds in two phases, depending on whether there is a server along the path fromv to
the root r or not. We set speeds as described in Algorithm 1 below and move the servers towards
v either until the phase ends or the set A changes. This defines the elementary moves (where A
stays unchanged). Note that if there are some servers in the path between v and the root r , only
the lowest of them belongs to A. Figure 2 shows the progress of Phase 2.

ACM Transactions on Algorithms, Vol. 15, No. 2, Article 28. Publication date: February 2019.
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ALGORITHM 1: Serving request at leaf v .

Phase 1: While there is no server along the path r −v
For each s ∈ A: move s at speed ks/k

Phase 2: While no server reached v ; Server q ∈ A moves down along the path r −v
For server q: move it at speed 1

For each s ∈ A \ {q}: move it at speed ks/k
−
q

We note two properties, the first of which follows directly from the design of Algorithm 1.

Observation 3.1. No edge e ∈ T contains more than one server of Algorithm 1 in its interior.

Note that during both phases, the various servers move at non-uniform speeds, depending on
their respective ks . The following observations about these speeds will be useful.

Observation 3.2. During Phase 1, the total speed of servers is 1. This follows as
∑

s ∈A ks = k .

Analogously, during Phase 2, the total speed of servers inside T −q is 1, if there are any. This follows as∑
s ∈A\{q } ks = k

−
q .

The intuition behind the algorithm is the following. Recall that the problem with DC is that it
moves its servers too slowly towards an active region when requests start arriving there. In con-
trast, we change the speeds of the servers adjacent to v to make the algorithm more aggressive.
From each region, an adjacent server moves at speed proportional to the number of the online
servers in that region. This way, if a region has many servers and not many requests appear there
(we call such regions excessive), servers move quickly from there to a more active region. More-
over, in Phase 2, server q is viewed as a helper coming to aid the servers inside T −q . The second
main idea is to keep the total speed of the helper proportional to the total speed of the servers
insideT −q . This prevents the algorithm from becoming overly aggressive and keeps the cost of the

moving helpers comparable to the cost incurred within T −q .

3.2 Analysis

We will analyze the algorithm based on a suitable potential function Φ(t ). Let ALG(t ) and OPT(t )
denote the cost of the algorithm and of the adversary, respectively, for serving the request at time
t . Let Δt Φ = Φ(t ) − Φ(t − 1) denote the change of the potential at time t . We will ensure that Φ is
non-negative and bounded from above by a function of h,k,d , and length of the longest edge in
T . Therefore, to show R-competitiveness, it suffices to show that the following holds at each time
t : ALG(t ) + Δt Φ ≤ R · OPT(t ).

To show this, we split the analysis into two parts: First, we let the adversary move a server
(if necessary) to serve the request. Then, we consider the move of the algorithm. Let ΔOPT

t Φ and

ΔALG
t Φ denote the changes in Φ due to the move of the adversary and the algorithm, respectively.

Clearly, Δt Φ = ΔOPT
t Φ + ΔALG

t Φ, and thus it suffices to show the following two inequalities:

ΔOPT
t Φ ≤ R ·OPT (t ), (1)

ALG (t ) + ΔALG
t Φ ≤ 0. (2)

3.2.1 Potential Function. Before we define the potential, we need to formalize the notion of
excess and deficiency in the subtrees ofT . Let d (a,b) denote the distance of points a and b. For e =
(u,v ) ∈ T , wherev is the node closer to the root, we define ke := ku +

1
d (u,v )

∑
s ∈e d (s,v ). Note that

this is the number of online servers inTu , plus the possible single server in e counted fractionally,
proportionally to its position along e . For an edge e , let �(e ) denote its level with the convention
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that the edges from leaf to their parents have level 1, and the edges from root to its children have
level d . For � = 1, . . . ,d , let β� be some geometrically increasing constants that will be defined
later. For any point x ∈ T , similarly to kx and k−x , we denote by hx and h−x the number of servers
of the adversary in Tx and T −x , respectively. For an edge e , we define the excess Ee of e and the
deficiency De of e as follows:

Ee = max{ke − �β�(e ) · hu 	, 0} · d (u,v ) De = max{�β�(e ) · hu 	 − ke , 0} · d (u,v ).

Note that these compareke tohu with respect to the excess threshold β�(e ) . We call an edge excessive,
if Ee > 0; otherwise, we call it deficient. Let us state a few basic properties of these two terms.

Observation 3.3. Let e be an edge containing an algorithm’s server s in its interior. If e is exces-

sive, then it cannot become deficient unless s moves upwards completely outside of the interior of e .

Similarly, if e is deficient, then it cannot become excessive unless s leaves interior of e completely.

Note that no other server can pass through e while s still resides there and the contribution of
s to ke is a nonzero value strictly smaller than 1, while �β�hu 	 is an integer.

Observation 3.4. Let e be an edge and s be an algorithm’s server in its interior moving by a

distance x . Then either De or Ee changes exactly by x .

This is because ke changes by x/d (u,v ), and therefore the change of De (respectively, Ee ) is x .

Observation 3.5. If an adversary server passes through the edge e , then change in De (respec-

tively, Ee ) will be at most �β�(e )� · d (u,v ).

To see this, note that �β�(e )hu 	 ≤ �β�(e ) (hu − 1)	 + �β�(e )�.
We now fix the excess thresholds. We first define β depending on δ = k/h as

β = 2 if δ ≥ 2d , and β = δ 1/d for δ ≤ 2d .

For convenience in the calculations, we denote γ :=
β

β−1 . Note that, for all possible δ > 1, our

choices satisfy 1 < β ≤ 2, γ ≥ 2, and

β ≤ δ 1/d . (3)

For each � = 1, . . . ,d , we define the excess threshold for all edges in the level � as β� := β�−1.
Now, we can define the potential. Let

Φ :=
∑
e ∈T

(
αD
�(e )De + α

E
�(e )Ee

)
,

where the coefficients αD
�

and αE
�

are as follows:

αD
� := 2� − 1, for � = 1, . . . ,d,

αE
d := γ

(
1 +

1

β
αD

d

)
,

αE
� :=

d−1∑
i=�

γ i−�+1

(
2 +

1

β
αD

i

)
+ γd−�αE

d for � = 1, . . . ,d − 1.

Note that αD
�
> αD

�−1
and αE

�
< αE

�−1
for all 1 < � ≤ d . The latter follows as the multipliers γ i−�+1

and γd−� decrease with increasing � and moreover the summation in the first term of αE
�

has fewer
terms as � increases.

To prove the desired competitive ratio for Algorithm 1, the idea will be to show that the good

moves (when a server enters a region with deficiency, or leaves a region with excess) contribute
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more than the bad moves (when a server enters a region with excess or leaves a region that is
already deficient).

As the dynamics of the servers can be decomposed into elementary moves, it suffices to only
analyze these. We will assume that no servers of A are located at a node. This is without loss of
generality, as only the moving servers can cause a change in the potential, and each server appears
at a node just for an infinitesimal moment during its motion. Note that this assumption implies that
each edge e containing a server s ∈ A is either excessive or deficient, i.e., either Ee > 0 or De > 0.

The following two lemmas give some properties of the deficient and excessive subtrees, which
will be used later in the proof of Theorem 1.3.

Lemma 3.6 (Excess in Phase 1). Consider a moment during Phase 1 and assume that no server

of A resides at a node. For the set E = {s ∈ A | s ∈ e,Ee > 0} of servers that are located in excessive

edges, and for D = A \ E, the following holds:∑
s ∈D

ks ≤
1

β
k and

∑
s ∈E

ks ≥
1

γ
k .

Proof. During Phase 1, each server of the algorithm resides inTs for some s ∈ E ∪ D; therefore
k =

∑
s ∈E ks +

∑
s ∈D ks . For each s ∈ D, let �(s ) be the level of the edge e containing s . We have

that ks ≤ �β�(s ) · hs 	, otherwise Ee would be positive. Therefore, we have∑
s ∈D

ks ≤
∑
s ∈D

�β�(s )hs 	 ≤
∑
s ∈D

βd · hs ≤ βd · h = βd−1k

δ
≤ βd−1 k

βd
=

1

β
k,

where the last inequality comes from Equation (3).
To prove the second inequality, observe that∑

s ∈E

ks = k −
∑
s ∈D

ks ≥ k − 1

β
k =

(
1 − 1

β

)
k =

1

γ
k . �

Lemma 3.7 (Excess in Phase 2). Consider a moment during Phase 2 and assume that no server

of A resides at a node. Let � be the level of the edge containing q and A′ = A \ {q}. For the set E =
{s ∈ A′ | s ∈ e,Ee > 0} of servers that are located in excessive edges, and for D = A′ \ E, the following

holds. If k−q ≥ �β�h−q 	, then we have

∑
s ∈D

ks ≤
1

β
k−q and

∑
s ∈E

ks ≥
1

γ
k−q .

The proof of this lemma is quite similar to the previous one and it is deferred to Appendix A.1.

3.2.2 Proof of Theorem 1.3. We now show the main technical result, which directly implies
Theorem 1.3.

Theorem 3.8. The competitive ratio of Algorithm 1 in depth-d trees is O (d · γd ).

This implies Theorem 1.3 as follows. If δ ≥ 2d , then we have β = 2 and γ = 2, and we get the
competitive ratio O (d · 2d ). For 1 < δ < 2d , we have β = δ 1/d and therefore the competitive ratio

is O (d · ( δ 1/d

δ 1/d−1
)d ). In particular, if δ = (1 + ϵ ) for some 0 < ϵ ≤ 1, then we have β = (1 + ϵ )1/d ≥

1 + ϵ
2d

. This implies that γ =
β

β−1 ≤
β

ϵ/(2d ) =
β2d

ϵ
. Using Equation (3), we get that

γd ≤ βd ·
(

2d

ϵ

)d

≤ δ ·
(

2d

ϵ

)d

= O ��
(

2d

ϵ

)d�� .
Thus, we get the ratio O (d · ( 2d

ϵ
)d ).
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We now prove Theorem 3.8.

Proof of Theorem 3.8. As Φ is non-negative and bounded from above by a function of h,k,d ,
and the length of the longest edge in T , it suffices to show the inequalities Equations (1) and (2).

We start with Equation (1), which is straightforward. By Observation 3.5, the move of a sin-
gle adversary’s server through an edge e of length xe changes De or Ee in the potential by at
most �β�(e )�xe . As the adversary incurs cost xe during this move, we need to show the following
inequalities:

�β��xe · αD
� ≤ R · xe , for all 1 ≤ � ≤ d,

�β��xe · αE
� ≤ R · xe , for all 1 ≤ � ≤ d .

As we show in Lemma 3.11 below, �β��αD
�

and �β��αE
�

are of order O (d · γd ). Therefore, setting

R = Θ(d · γd ) will satisfy Equation (1).
We now consider Equation (2), which is much more challenging to show. Let us denote AE the

set of edges containing some server from A in their interior. We call an elementary step a part of
the motion of the algorithm during which A and AE remain unchanged, and all the servers of A
are located in the interior of the edges of T . Lemmas 3.9 and 3.10 below show that Equation (2)
holds during an elementary step, and the theorem would follow by summing Equation (2) over all
the elementary steps. �

Lemma 3.9. During an elementary step in Phase 1 of Algorithm 1, the inequality Equation (2) holds.

Proof. Without loss of generality, let us assume that the elementary step lasted exactly 1 unit
of time. This makes the distance traveled by each server equals to its speed, and makes calculations
cleaner.

Let ALG denote the cost incurred by the algorithm during this step. Note that ALG = 1, since
by Observation 3.2, the total speed of the servers in A, is 1.

To estimate the change of the potential ΔΦ, we decompose A into two sets, called D and E. D is
the set of the servers of A residing in deficient edges, and E are the servers residing in excessive
edges. Next, we evaluate ΔΦ due to the movement of the servers from each class separately.

The movement of servers of E is good, i.e., decreases the excess in their edges, while the move-
ment of servers of D increases the deficiency. By taking the largest possible αD (which is αD

d
) and

the smallest possible αE (which is αE
d

) coefficient in the estimation, we can bound the change of
the potential due to the move of the servers of A as

ΔΦ ≤ αD
d

∑
s ∈D

ks

k
− αE

d

∑
s ∈E

ks

k
≤ 1

β
αD

d −
1

γ
αE

d ,

where the last inequality holds due to the Lemma 3.6. We get that

ALG + ΔΦ ≤ 1 +
1

β
αD

d −
1

γ
αE

d = 1 +
1

β
αD

d −
1

γ
· γ

(
1 +

1

β
αD

d

)
= 0. �

Lemma 3.10. During an elementary step in Phase 2 of Algorithm 1, the inequality Equation (2)

holds.

Proof. Similarly to the proof of the preceding lemma, we denote by ALG the cost incurred by
the algorithm and we assume (without loss of generality) that the duration of the elementary step
is exactly 1 time unit, so that the speed of each server equals the distance it travels. As the speed
of the server q is 1, it also moves by distance 1. We denote by � the level of the edge containing q.
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We first consider the case � = 1. Here, q is the only server that moves, thus ALG = 1. Let e =
(u,v ) be the edge containing q, where v is the requested leaf. The adversary has already a server
atv , which implies that e is deficient. Thus, the movement of q decreases the deficiency of e . Since
αD

1 = 1, we have that ALG + ΔΦ = 1 − 1 = 0 and Equation (2) holds.
We now focus on the case � > 1. By Observation 3.2, the servers in T −q (if any) move in total by∑

s ∈A\{q }
ks

k−q
= 1, and therefore ALG ≤ 2. To estimate the change of the potential, we consider two

cases.

(1) When k−q ≥ �β�h−q 	. Here the movement of q increases the excess in the edge containing

q. Let us denote E (respectively, D) the servers of A \ {q} residing in the excessive (respec-
tively, deficient) edges. By taking the largest possible αD (which is αD

�−1
) and the smallest

possible αE (which is αE
�−1

) coefficient in the estimation, we can upper bound the change
of the potential due to the move of the servers in T −q as

αD
�−1

∑
s ∈D

ks

k−q
− αE

�−1

∑
s ∈E

ks

k−q
≤ 1

β
αD
�−1 −

1

γ
αE
�−1,

where the above inequality holds due to the Lemma 3.7. As the movement ofq itself causes
an increase of Φ by αE

�
, we have

ALG + ΔΦ ≤ 2 +
1

β
αD
�−1 −

1

γ
αE
�−1 + α

E
� .

To see that this is non-positive, recall that αE
�
=

∑d−1
i=� γ

i−�+1 (2 + 1
β
αD

i ) + γd−�αE
d

.

Therefore,

1

γ
αE
�−1 =

1

γ

d−1∑
i=�−1

γ i−�+2

(
2 +

1

β
αD

i

)
+

1

γ
γd−�+1αE

d

=

(
2 +

1

β
αD
�−1

)
+

d−1∑
i=�

γ i−�+1

(
2 +

1

β
αD

i

)
+ γd−�αE

d

= 2 +
1

β
αD
�−1 + α

E
� .

(2) When k−q < �β�h−q 	. This case is much simpler. All the movement inside ofT −q might con-
tribute to the increase of deficiency at level at most � − 1. However, q then causes a de-
crease of deficiency at level �, and we have ALG + ΔΦ ≤ 2 + αD

�−1
− αD

�
. This is less or

equal to 0, as αD
�
≥ αD

�−1
+ 2. �

Lemma 3.11. For each 1 ≤ � ≤ d , both �β��αD
�

and �β��αE
�

are of order O (d · γd ).

Proof. We have defined αD
�
= 2� − 1, and therefore

�β��αD
� ≤ 2 · β� (2� − 1) ≤ 2 · βd (2d − 1) = O (d · γd ),

since we have chosen 1 < β ≤ 2 and γ ≥ 2 for any possible δ .
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Now, we focus on αE
�

. Note that αE
d
= γ (1 + 1

β
αD

d
), which is O (d · γ ), as β > 1 and αD

d
= O (d ).

For αE
�

, we have

αE
� =

d−1∑
i=�

γ i−�+1

(
2 +

1

β
αD

i

)
+ γd−�αE

d ≤
(
2 +

1

β
αD

d−1

) d−1∑
i=�

γ i−�+1 + γd−�αE
d

=

(
2 +

1

β
αD

d−1

) d−�∑
j=1

γ j + γd−�αE
d =

(
2 +

1

β
αD

d−1

)
γ · (γd−� − 1)

γ − 1
+ γd−�αE

d

≤ β

(
2 +

1

β
αD

d−1

)
γd−� + γd−�αE

d = γ
d−� (2β + 2d − 3 + αE

d ) = O (γd−�+1 · d ),

where we used that
γ

γ−1 = β , 1 < β ≤ 2 and αE
d
= O (γ · d ). Therefore, as β� ≤ γ �−1, we have

�β��αE
�
= O (γdd ), and this concludes the proof. �

4 LOWER BOUNDS

In this section, we prove Theorems 1.4 and 1.2. We first show a general lower bound on the com-
petitive ratio of any algorithm for depth-2 HSTs. Then, we give lower bound on the competitive
ratio of WFA. Similarly to the previous section, given a tree T and a point x ∈ T (either a node or
a location on some edge), we define Tx as the subtree consisting of all points below x including x
itself. If u is a parent of a leaf, then we call Tu an elementary subtree.

4.1 General Lower Bound for Depth-2 HSTs

We now give a lower bound on the competitive ratio of any deterministic online algorithm on
depth-2 HSTs. In particular, we show that for sufficiently large h, any deterministic online algo-
rithm has competitive ratio at least 2.4.

The metric space is a depth-2 HST T with the following properties: T contains at least k + 1
elementary subtrees and each one of them has at leasth leaves. To ease our calculations, we assume
that edges of the lower level have length ϵ � 1 and edges of the upper level have length 1 − ϵ . So,
the distance between leaves of different elementary subtrees is 2.

Theorem 1.4 (Restated). For sufficiently largeh, even when k/h → ∞, there is no 2.4-competitive

deterministic online algorithm, even for depth-2 HSTs.

Proof. Without loss of generality both the online and offline algorithms are “lazy,” i.e., they
move a server only for serving a request (this is a folklore k-server property; see, e.g., Borodin and
El-Yaniv (1998)). Since requests only appear at leaves of T , all the offline and online servers are
always located at the leaves. We say that a server is inside an elementary subtreeTu , if it is located
at some leaf of Tu . If there are no online servers at the leaves of Tu , then we say that Tu is empty.
Observe that at any given time there exists at least one empty elementary subtree.

Let A be an online algorithm. The adversarial strategy consists of arbitrarily many iterations
of a phase. During a phase, some offline servers are moved to an empty elementary subtree Tu

and requests are made there until the cost incurred by A is sufficiently large. At this point the
phase ends and a new phase may start in another empty subtree. Let ALG and ADV denote the
cost ofA and the adversary, respectively, during a phase. We will ensure that for all phases ALG ≥
2.4 · ADV. This implies the lower bound on the competitive ratio of A.

We describe a phase of the adversarial strategy. The adversary moves some � ≤ h servers to the
empty elementary subtreeTu and makes requests at leaves ofTu untilA bringsm servers there. In
particular, each request appears at a leaf ofTu that is not occupied by a server ofA. We denote by
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s (i ) the cost thatA has to incur for serving requests insideTu until it moves its ith server there (this
does not include the cost of moving the server from outsideTu ). Clearly, s (1) = 0 and s (i ) ≤ s (i + 1)
for all i > 0. The choice of � and m depends on the values s (i ) for 2 ≤ i ≤ h. We will now show
that for any values of s (i )’s, the adversary can choose � andm such that ALG ≥ 2.4 · ADV.

First, if there exists an i such that s (i ) ≥ 3i , we set � =m = i . Intuitively, the algorithm is too
slow in bringing its servers to Tu in this case. Both A and the adversary incur a cost of 2i to
move i servers to Tu . However, A pays a cost of s (i ) for serving requests inside Tu , while the
adversary can serve all those requests at zero cost (all requests can be located at leaves occupied
by offline servers). Overall, the cost ofA is 2i + s (i ) ≥ 5i , while the offline cost is 2i . Thus, we get
that ALG ≥ 2.5 · ADV.

Similarly, if s (i ) ≤ (10i − 24)/7 for some i , we choose � = 1 andm = i . Roughly speaking, in that
case the algorithm is too “aggressive” in bringing its first i servers, thus incurring a large movement
cost. Here, the adversary only moves one server toTu . Each request is issued at an empty leaf ofTu .
ThereforeA pays for each request inTu and the same holds for the single server of the adversary.
So, ALG = 2i + s (i ) and ADV = 2 + s (i ). By our assumption on s (i ), this gives

ALG − 2.4 · ADV = 2i + s (i ) − 4.8 − 2.4 · s (i ) = 2i − 4.8 − 1.4 · s (i ) ≥ 0.

We can thus restrict our attention to the case that s (i ) ∈ ( 10i−24
7 , 3i ), for all 2 ≤ i ≤ h. Now, we

want to upper bound the offline cost, for 1 < � < h andm = h. Clearly, the cost of moving � offline
servers intoTu is 2�, and for the time thatA has less than � servers inTu , the cost of moving offline
servers within Tu is zero. It remains to count the offline cost during the time that A has at least �
servers inside Tu .

For the part of the request sequence when A has � ≤ j < h servers in Tu , it incurs a cost s (j +
1) − s (j ). Since the problem restricted to an elementary subtree is equivalent to the paging problem,
using the lower bound result of Sleator and Tarjan (1985) for paging,2 we get that the adversary

incurs a cost of at most (s (j + 1) − s (j )) · j−�+1
j
+ 2ϵj ≤ (s (j + 1) − s (j )) · h−�

h−1 + 2ϵj. Also, there are

h − � requests where A brings new servers. Clearly, those requests cost to the adversary at most
(h − �)2ϵ . Thus, the cost of the adversary inside Tu is at most

h−1∑
j=�

(
(s (j + 1) − s (j )) · h − �

h − 1
+ 2ϵj

)
+ (h − �)2ϵ = h − �

h − 1
(s (h) − s (�)) + 2ϵ

h−1∑
j=�

j + (h − �)2ϵ .

For any value of h, we can take ϵ small enough, such that the terms involving ϵ tend to zero. Thus,

the upper bound on the offline cost is arbitrarily close to 2� + (s (h) − s (�)) · h−�
h−1 , where the first

term is the cost of moving � servers to Tu . Let us denote c = s (h)/h. Note that assuming h is large
enough, c ∈ (1, 3). We get that

ALG

ADV
≥ 2h + s (h)

2� + (s (h) − s (�)) · h−�
h−1

≥ 2h + ch

2� + (ch − 10�−24
7 ) · h−�

h−1

=
2h + ch

2� + h · (c − 10�−24
7h

) · h−�
h−1

. (4)

We now show that for every value of c ∈ (1, 3), there is an � = �βh	, where β ∈ (0, 1) is a constant
depending on c , such that this ratio is at least 2.4. First, as h is large enough, the right-hand side

2Sleator and Tarjan (1985) show that an adversary with h servers can create a request sequence against an online algorithm

with k servers such that the cost of the adversary is at most k−h+1
k

ALG + (k − h + 1) · D , where D is the distance between

two leaves.
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Fig. 3. The tree where the lower bound for WFA is applied: All requests arrive at leaves of L1,L2,R1 and R2.

of Equation (4) is arbitrarily close to

2h + ch

2� + h · (c − 10�/7h) · (1 − �/h)
=

2h + ch

2� + h(c − c�/h − 10�/(7h) + 10�2/(7h2))

≥ 2h + ch

2βh + h(c − c (βh − 1)/h − 10(βh − 1)/(7h) + 10β2h2/(7h2))

=
2 + c

2β + c − cβ + c/h − 10β/7 + 10/(7h) + 10β2/7
→ 2 + c

(10/7) · β2 + (4/7 − c )β + c
.

We choose β := (c − 4/7)/(20/7). Note that, as c ∈ (1, 3), we have that β < 1, and hence � < h. The
expression above then evaluates to (2 + c )/(c − (c − 4

7 )2/ 40
7 ). By standard calculus, this expression

is minimized at c = (2
√

221 − 14)/7, where it attains a value higher than 2.419. �

4.2 Lower Bound for WFA on Depth-3 HSTs

We give an Ω(h) lower bound on the competitive ratio of the Work Function Algorithm (WFA) in
the (h,k )-setting. More precisely, we show a lower bound of h + 1/3 for k = 2h. We first present
the lower bound for a depth-3 HST. In Appendix B, we show how the construction can be adapted
to work for the line. We also show that this exactly matches the upper bound of (h + 1) · OPTh −
OPTk implied by results of Bartal and Koutsoupias (2004) and Koutsoupias (1999) for the line.

The basic idea behind the lower bound is to trick the WFA to use only h servers for servicing
requests in an “active region” for a long time before it moves its extra available online servers.
Moreover, we make sure that during the time the WFA uses h servers in that region, it incurs
an Ω(h) times higher cost than the adversary. Finally, when the WFA brings its extra servers,
the adversary moves all its servers to some different region and starts making requests there. So,
eventually, WFA is unable to use its additional servers in a useful way to improve its performance.

Theorem 1.2 (Restated). The competitive ratio of the WFA in a depth-3 HST for k = 2h is at least

h + 1/3.

Proof. Let T be a depth-3 HST. We assume that the lengths of the edges in a root-to-leaf path

are 1−ϵ
2 ,

ϵ−ϵ ′

2 ,
ϵ ′

2 , for ϵ ′ � ϵ � 1. So, the diameter ofT is 1 and the diameter of depth-2 subtrees is

ϵ . We also assume that N = 1
ϵ

is an integer such that N � 3h3. Let L and R be two subtrees of depth
2. Inside each one of them, we focus on 2 elementary subtrees L1,L2 and R1,R2, respectively (see
Figure 3), each one containing exactly h leaves. All requests appear at leaves of those elementary
subtrees. Initially, all servers are at leaves of L. Thus, both the WFA and the adversary always have
their servers at leaves. This way, we say that some servers of the WFA (or the adversary) are inside
a subtree, meaning that they are located at some leaves of that subtree.

The adversarial strategy consists of arbitrary many iterations of a phase. At the beginning of the
phase, all online and offline servers are in the same subtree, either L or R. At the end of the phase,
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all servers have moved to the other subtree (R or L, respectively), so a new phase may start. Before
describing the phase, we give the basic strategy, which is repeated many times. For any elementary
subtree T with leaves t1, . . . , th , any 1 ≤ � ≤ h and any c > 0, we define strategy S (T , �, c ).

Strategy S (T , �, c ):

(1) While the WFA has i < � servers inT : Request points t1, . . . , t� in an adversarial way (i.e.,
each time request a point where the WFA does not have a server).

(2) If � ≥ 2 and the WFA has i ≥ � servers inT , then: While optimal cost to serve all requests
using � − 1 servers (starting at t1, . . . , t�−1) is smaller than c , request points t1, . . . , t� in a
round-robin way.

Note that the second part might not be executed at all, depending on the values of � and c .
We now describe a left-to-right phase, i.e., a phase that starts with all servers at L and ends with

all servers at R. A right-to-left phase is completely symmetric, i.e., we replace R by L and Ri by Li .
Recall that N = 1

ϵ
.

Left-to-right phase:

Step 1: For � = 1 to h: Apply strategy S (R1, �, 2)

Step 2: For i = 1 to N + 1:

For � = 1 to h: Apply strategy S (R2, �, 2ϵ )

For � = 1 to h: Apply strategy S (R1, �, 2ϵ )

Intuitively, the WFA starts with no server at R and at the end of Step 1, it has h servers there
(more precisely, in R1). During Step 2, the WFA moves all its servers to R, as we show later.

Let ALG and ADV be the online and offline cost, respectively. We now state two basic lemmas
for evaluating ALG and ADV during each step. Proofs of those lemmas, require a characterization
of work function values, which comes later on. Here, we just give the intuition behind the proofs.

Lemma 4.1. During Step 1, ALG ≥ h2 − ϵ ′ · (h − 1)h and ADV = h.

Intuitively, we will exploit the fact that the WFA moves its servers too slowly towards R. In
particular, we show (Lemma 4.21) that whenever the WFA has i < h servers in R, it incurs a cost
of at least (2 − 2ϵ ′) · i inside R before it moves its (i + 1)th server there. This way, we get that the

cost of the algorithm is at least h +
∑h−1

i=1 (2 − 2ϵ ′) · i = h2 − ϵ ′ · (h − 1)h. However, the adversary
moves its h servers by distance 1 (from L to R1) and then it serves all requests at zero cost.

Lemma 4.2. During Step 2, ALG ≥ 2h2 + h − 3ϵh3 − 2 ϵ ′

ϵ
· (h − 1) · h and ADV = (2 + 2ϵ )h.

Roughly speaking, to prove this lemma, we make sure that for almost the whole Step 2, the WFA
has h servers in R and they incur a cost h times higher than the adversary. The additional servers
move to R almost at the end of the phase. The cost of the adversary is easy to calculate. There are
N + 1 = 1/ϵ + 1 iterations, where in each one of them the adversary moves its h servers from R1

to R2 and then back to R1, incurring a cost of 2ϵ · h.
The theorem follows from Lemmata 4.1 and 4.2. Summing up for the whole phase, the offline

cost is (3 + 2ϵ ) · h and the online cost is at least 3h2 + h − 3ϵh3 − ϵ ′

ϵ
2(h − 1)h − ϵ ′(h − 1)h. We get

that

ALG

ADV
≥

3h2 + h − 3ϵh3 − ϵ ′

ϵ
2(h − 1)h − ϵ ′(h − 1)h

(3 + 2ϵ )h
→ 3h2 + h

3h
= h +

1

3
. �
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Work Function Values. We now give a detailed characterization of how the work function evolves
during left-to-right phases. For right-to-left phases the structure is completely symmetric.

Basic Properties: We state some standard properties of work functions that we use extensively
in the rest of this section. Proofs of those properties can be found, e.g., in Borodin and El-Yaniv
(1998). First, for any two configurations X ,Y at distance d (X ,Y ) the work function w satisfies

w (X ) ≤ w (Y ) + d (X ,Y ).

Also, let w and w ′ be the work function before and after a request r , respectively. For a con-
figuration X such that r ∈ X , we have that w ′(X ) = w (X ). Last, let C and C ′ be the config-
urations of the WFA before and after serving r , respectively. The work function w ′ satisfies
w ′(C ) −w ′(C ′) = d (C,C ′).

Notation: Let (Li ,Rk−i ) denote a configuration that has i servers at L and (k − i ) servers at R.
Let w (Li ,Rk−i ) be the minimum work function value of a configuration (Li ,Rk−i ). If we need to
make precise how many servers are in each elementary subtree, then we denote by (Li , r1, r2) a
configuration that has i servers at L, r1 servers atR1 and r2 servers atR2. Same as before,w (Li , r1, r2)
denotes the minimum work function value of those configurations.

Definition: For two configurations X and Y , we say that X supports Y , if w (Y ) = w (X ) + d (X ,Y ).
The set of configurations that are not supported by any other configuration is called the support

of work function w . The following observation will be useful later in our proofs.

Initialization: For convenience, we assume that at the beginning of the phase the minimum
work function value of a configuration is zero. Note that this is without loss of generality: If
m = minX w (X ) when the phase starts, then we just subtract m from the work function values
of all configurations. We require the invariant that at the beginning of the (left-to-right) phase, for
0 ≤ i ≤ k :

w (Lk−i ,Ri ) = i .

This is clearly true for the beginning of the first phase, as all servers are initially at L. We are going
to make sure, that the symmetric condition (i.e.,w (Li ,Rk−i ) =m + i) holds at the end of the phase,
so a right-to-left phase may start.

We now state two auxiliary lemmata that would be helpful later.

Lemma 4.3. Consider a left-to-right phase. At any time after the end of strategy S (R1, �, 2), for

1 ≤ � ≤ h, we have that w (Lk−�+1,R�−1) = w (Lk−�,R� ) + 1.

At a high-level, the reason that this lemma holds is that any schedule S that uses no more than
� − 1 servers in R1, incurs a cost of at least 2 during the execution of S (R1, �, 2). Thus, by moving
an �th server to R1 (cost 1), and serving all requests of S (R1, �, 2) at zero cost, we obtain a schedule
that is cheaper than S by at least 1. The formal proof is deferred to the end of this section.

Lemma 4.4. Consider a left-to-right phase. At any time after the end of strategy S (R1, �, 2), for

1 ≤ � ≤ h, we have that w (Lk−i ,Ri ) = w (Lk−�,R� ) + (� − i ) for any 0 < i < �.

Proof. We use backwards induction on i . Note that the base case i = � − 1 is true due to
Lemma 4.3. Let t be any time after the end of strategy S (R1, �, 2) with work function w .

Induction Step: Assume that the lemma is true for some i < �. We show that the lemma holds for
i − 1. Clearly, time t is after the end of S (R1, i, 2). From Lemma 4.3, we have that

w (Lk−i+1,Ri−1) = w (Lk−i ,Ri ) + 1. (5)
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From the inductive hypothesis, we have that

w (Lk−i ,Ri ) = w (Lk−�,R� ) + (� − i ). (6)

By Equations (5) and (6), we get that

w (Lk−i+1,Ri−1) = w (Lk−i ,Ri ) + 1 = w (Lk−�,R� ) + � − (i − 1). �

First Step: We now focus on the first step of the phase. Using the two lemmata above, we can
characterize the structure of the work function at the end of the execution of S (R1, �, 2), for 1 ≤
� ≤ h.

Lemma 4.5. Consider a left-to-right phase. When strategy S (R1, �, 2) ends, for any 1 ≤ � ≤ h, the

following two things hold:

(1) For all 0 ≤ i < �, w (Lk−i ,Ri ) = w (Lk−�,R� ) + (� − i ),
(2) For all � < i ≤ k , w (Lk−i ,Ri ) = w (Lk−�,R� ) + (i − �).

In other words, having � servers in R is the lowest state, and all other states are tight with respect

to it.

Proof. For i < �, the lemma follows from Lemma 4.4. We focus on i ≥ �: Until the end of
S (R1, �, 2) there are � ≤ i points in R requested, sow (Lk−i ,Ri ) does not change. Since at the begin-
ning w (Lk−i ,Ri ) = i , we have that for all i ≥ � + 1,

w (Lk−i ,Ri ) −w (Lk−�,R� ) = i − �. �

This characterization of work function values is sufficient to give us the lower bound on the
cost of the WFA during Step 1. The reader might prefer to move to Lemma 4.21, which estimates
the cost of the WFA during the time interval that it has i < h servers in R, and implies Lemma 4.1.

Second step: By Lemma 4.5, at the beginning of the second step, the work function values satisfy

w (L2h−i ,Ri ) = w (Lh ,Rh ) + (h − i ), for 0 ≤ i < h, (7)

w (L2h−i ,Ri ) = w (Lh ,Rh ) + (i − h), for h < i ≤ 2h. (8)

We note that Equation (7) holds for the entire second step, due to Lemma 4.4.
Characterizing the structure of the work function during second step is more complicated.

Note that Step 2 consists of N + 1 iterations, where in each iteration strategies S (R2, �, 2ϵ ) and
S (R1, �, 2ϵ ) are applied. The following auxiliary lemma will be helpful in our arguments about the
evolution of the work function during step 2.

Lemma 4.6. For any 0 ≤ i < h, the optimal schedule to serve c consecutive iterations of Step 2

using h + i servers in R, starting from a configuration (Lh−i ,h, i ) and ending up in a configuration

(Lh−i ,h − i ′, i + i ′), for 0 ≤ i ′ ≤ h − i , has cost at least c · 2ϵ (h − i ) + ϵ · i ′.

Proof. Consider a schedule S serving c consecutive iterations of Step 2 using h + i servers in
R, starting from a configuration (Lh−i ,h, i ). For j = 1, . . . , c , let (Lh−i ,h − aj−1, i + aj−1) be the con-

figuration of S at the beginning of jth iteration. Let also (Lh−i , i + bj ,h − bj ) be the configuration
of S at the end of the execution of S (R2,h, 2ϵ ) during jth iteration. At the end of jth iteration, S is
in configuration (Lh−i ,h − aj , i + aj ) and the (j + 1)th iteration starts. Note that 0 ≤ aj ,bj ≤ h − i ,
for all 1 ≤ j ≤ c . Clearly, a0 = 0, since we assume that S starts at a configuration (Lh−i ,h, i ).

We now calculate the minimum cost of S depending on the values of aj and bj . Consider the
jth iteration. During executions of S (R2, �, 2ϵ ) there are h − bj − (i + aj−1)) servers that move from
R1 to R2, incurring a movement cost of ϵ (h − bj − i − aj−1). The cost of serving requests in R2 is
at least 2ϵ · bj , which is incurred during executions of S (R2, �, 2ϵ ) for h − bj < � ≤ h. Similarly, the
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movement cost for moving servers from R2 to R1 is ϵ (h − aj − i − bj ) and the cost incurred inside
R1 is at least 2ϵaj . We get that the total cost of S is at least

ϵ ·
c∑

j=1

(h − bj − i − aj−1) + (h − aj − i − bj ) + 2aj + 2bj = ϵ ·
c∑

j=1

2h − 2i + aj − aj−1

= c · 2ϵ (h − i ) + ϵ ·
c∑

j=1

aj − aj−1 = c · 2ϵ (h − i ) + ϵ · ac .

By setting i ′ = ac , the lemma follows. �

Note that a possible schedule for serving an iteration using h + i servers in R starting from a
configuration (Lh−i ,h, i ) is to move h − i servers from R1 to R2 (cost ϵ (h − i )), serve all strategies
S (R2, �, 2ϵ ) at zero cost, and then move theh − i servers back to R1 (cost ϵ (h − i )). Thus, there exists
a schedule for serving c iterations with cost c · 2ϵ (h − i ) that ends up in a configuration (Lh−i ,h, i ).
By combining this with Lemma 4.6, we get the following corollary.

Corollary 4.7. The optimal schedule to serve c consecutive iterations of Step 2 using h + i servers

in R, starting from a configuration (Lh−i ,h, i ) has cost c · 2ϵ (h − i ), and it ends up in a configuration

(Lh−i ,h, i ).

The following definition is going to be helpful for characterizing the changes in the work func-
tion during various iterations of Step 2.

Definition 4.8. An iteration of Step 2 is called good if the following conditions hold:

(i) During the whole iteration, for all 0 ≤ i < h and 0 < j ≤ h − i , there is no configuration
C ∈ (Lh−i ,Rh+i ), which is supported by a configuration C ′ ∈ (Lh−i−j ,Rh+i+j ).

(ii) At the beginning of the iteration, for all 0 ≤ i < h, we have that w (Lh−i ,Rh+i ) =
w (Lh−i ,h, i ) and for all 0 < i ′ ≤ h − i ,

w (Lh−i ,h − i ′, i + i ′) = w (Lh−i ,h, i ) + i ′ · ϵ . (9)

Let us get some intuition behind this definition. The first condition implies that during good
iterations the work function values of configurations (Lh−i ,Rh+i ) are not affected by configura-
tions (Lh−j ,Rh+j ) for j � i . This makes it easier to argue about w (Lh−i ,Rh+i ). Moreover, by basic
properties, it implies that the WFA does not move servers from L to R (see Observation 4.9 below).
Since the WFA has h servers in R when Step 2 starts, our goal is to show that there are too many
consecutive good iterations in the beginning of Step 2. This implies that for the largest part of Step
2, the WFA has h servers in R. Then, it suffices to get a lower bound on the cost of the WFA during
those iterations. The second condition implies that at the beginning of a good phase, any optimal
schedule for configurations (Lh−i ,Rh+i ) is at a configuration (Lh−i ,h, i ).

We now state some basic observations that follow from the definition of a good iteration and
will be useful in our analysis.

Observation 4.9. During a good iteration the WFA does not move any server from L to R.

To see why this is true, consider any time during the iteration when the WFA moves from a
configuration C to C ′, such that C ∈ (Lh−i ,Rh+i ), for some 0 ≤ i < h. By basic properties of work
functions,C is supported byC ′. Since the iteration is good,C is not supported by any configuration
(Lh−i−j ,Rh+i+j ), i.e., C ′ � (Lh−i−j ,Rh+i+j ). Thus, the WFA does not move a server from L to R.

The following observation comes immediately from Corollary 4.7 and the definition of a good
iteration.
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Observation 4.10. Consider a good iteration and let w,w ′ be the work function at the beginning

and at the end of the iteration, respectively. Then, for all 0 ≤ i ≤ h, we have that

w ′(Lh−i ,Rh+i ) −w (Lh−i ,Rh+i ) = 2ϵ (h − i ).

Moreover, using Lemma 4.6 for c = 1, we get the following observation.

Observation 4.11. At the end of a good iteration, Equation (9) holds.

The next lemma gives us a sufficient condition for an iteration to be good.

Lemma 4.12. Consider an iteration of Step 2 with initial work functionw . Ifw satisfies Equation (9)

and for all 0 ≤ i < h and 0 < j ≤ h − i ,

w (Lh−i ,Rh+i ) + 3ϵ · h < w (Lh−i−j ,Rh+i+j ) + j,

then the iteration is good.

Proof. Let t be any time during the iteration with work function w ′. For any configuration
C ∈ (Lh−i ,Rh+i ), a possible schedule to serve all requests until time t and end up inC is to simulate
the optimal schedule ending up in any configuration (Lh−i ,Rh+i ), and then moving at most i ≤ h
servers within R. The cost of this schedule is at most

w ′(Lh−i ,Rh+i ) + ϵh ≤ w (Lh−i ,Rh+i ) + 2ϵ (h − i ) + ϵh ≤ w (Lh−i ,Rh+i ) + 3ϵh, (10)

where the first inequality holds due to Corollary 4.7. Since the right-hand side of Equation (10) is
smaller than w (Lh−i−j ,Rh+i+j ) + j ≤ w ′(Lh−i−j ,Rh+i+j ) + j, we get that there is no configuration
C ∈ (Lh−i ,Rh+i ), which is supported by a configuration (Lh−i−j ,Rh+i+j ) and thus the iteration is
good. �

Counting Good Iterations. We now count the number of consecutive good iterations in the be-
ginning of Step 2. For all 0 ≤ i < h and 0 < j ≤ h − i , let Di, j = w (Lh−i ,Rh+i ) −w (Lh−i−j ,Rh+i+j ).
The next lemma estimates the change in Di, j after a good iteration.

Lemma 4.13. Consider a good iteration and let w,w ′ be the work function at the beginning and at

the end of the iteration. Then, for all 0 ≤ i < h and 0 < j ≤ h − i , we have that

D ′i, j = w
′(Lh−i ,Rh+i ) −w ′(Lh−i−j ,Rh+i+j ) = w (Lh−i ,Rh+i ) −w (Lh−i−j ,Rh+i+j ) + 2ϵj = Di, j + 2ϵj .

Proof. By Observation 4.10, we have that

w ′(Lh−i ,Rh+i ) −w ′(Lh−i−j ,Rh+i+j ) = w (Lh−i ,Rh+i ) + 2ϵ (h − i ) −w (Lh−i−j ,Rh+i+j ) − 2ϵ (h − i − j )

= w (Lh−i ,Rh+i ) −w (Lh−i−j ,Rh+i+j ) + 2ϵj . �

Now, we are ready to estimate the number of consecutive good iterations after Step 2 starts.

Lemma 4.14. The first �N − 3h
2 � iterations of Step 2 are good.

Proof. By Observation 4.11, we have that at the end of a good iteration, Equation (9) holds.
Thus, by Lemma 4.12, if at the end of the current iteration Di, j < j − 3ϵh for all 0 ≤ i < h, 0 < j ≤
h − i , then the next iteration is good.

At the beginning of Step 2, Di, j = −j, due to Equation (8). From Lemma 4.13, we have that after
each good iteration,Di, j increases by 2ϵj. Thus, all iterations will be good, as long asDi, j < j − 3ϵh.
Since (⌈

N − 3h

2

⌉
− 1

)
· 2ϵj <

(
N − 3h

2

)
· 2ϵj = 2j − 3jϵh ≤ 2j − 3ϵh,
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we get that at the beginning of the (�N − 3h
2 �)th iteration of Step 2, Di, j < −j + 2j − 3ϵh = j − 3ϵh.

Thus, the first �N − 3h
2 � iterations of Step 2 are good. �

We get the following corollary.

Corollary 4.15. After �N − 3h
2 � iterations of Step 2, WFA still has h servers in R.

This holds due to the fact that at the beginning of Step 2, the WFA has h servers in R, and from
Observation 4.9, we know that the WFA does not move a server from L to R during good iterations.

Work Function Values for Good Iterations. Now, we proceed to the characterization of the work
function during good iterations. Since we want to estimate the cost of the WFA during iterations
when it has h servers at R, we focus on configurations (Lh ,Rh ). Specifically, we need the corre-
sponding versions of Lemmata 4.3, 4.4, and 4.5. Recall that, by definition of a good iteration, the
local changes in the values of w (Lh ,Rh ), define the work function values of all configurations
(Lh ,Rh ).

We begin with the corresponding versions of Lemmata 4.3 and 4.4 for good iterations of Step 2.

Lemma 4.16. Consider a good iteration of Step 2. Let t1 be the time when S (R2, �, 2ϵ ) ends, for

1 ≤ � ≤ h and t2 the time when S (R2,h, 2ϵ ) ends. At any time t ∈ [t1, t2], we have thatw (Lh ,h − � +
1, � − 1) = w (Lh ,h − �, �) + ϵ .

Proof. The proof is same as proof of Lemma 4.3 with replacing (Lk−i ,Ri ) by (Lh ,h − i, i ), scaling
distances by ϵ and noting that by Equation (9), any optimal schedule for configurations (Lh ,Rh )
starts the iteration from a configuration (Lh ,h, 0). �

Lemma 4.17. Consider a good iteration of Step 2. Let t1 be the time when S (R2, �, 2ϵ ) ends, for 1 ≤
� ≤ h and t2 the time when S (R2,h, 2ϵ ) ends. At any time t ∈ [t1, t2], we have that, for any 1 ≤ i < �,
w (Lh ,h − i, i ) = w (Lh ,h − �, �) + ϵ (� − i ).

The proof of this lemma is same as the proof of Lemma 4.4, i.e., by backwards induction on i .
We just need to replace (Lk−i ,Ri ) by (Lh ,h − i, i ) and scale all distances by ϵ .

The next two lemmata are the analogues of Lemma 4.5 for good iterations of Step 2, and they
characterize the structure of the work function at the end of S (R2, �, 2ϵ ) and S (R1, �, 2ϵ ), for 1 ≤
� ≤ h.

Lemma 4.18. Consider a good iteration during Step 2. At the moment when the execution of

S (R2, �, 2ϵ ) ends, for 1 ≤ � ≤ h, the following two things hold:

(1) For all 0 ≤ i < �, w (Lh ,h − i, i ) = w (Lh ,h − �, �) + ϵ (� − i ),
(2) For all � < i ≤ h, w (Lh ,h − i, i ) = w (Lh ,h − �, �) + ϵ (i − �).

Proof. For 0 ≤ i < �, the lemma follows from Lemma 4.17. For i ≥ �, the proof is the same as
the proof of Lemma 4.5 by replacing w (Lk−i ,Ri ) by w (Lh ,h − i, i ) and using the fact that at the
beginning of the iteration w (Lh ,h − i, i ) = w (Lh ,h, 0) + ϵ · i . �

Lemma 4.19. Consider a good iteration during Step 2. At the moment when an execution of

S (R1, �, 2ϵ ) ends, for 1 ≤ � ≤ h, the following two things hold:

(1) For all 0 ≤ i < �, w (Lh , i,h − i ) = w (Lh , �,h − �) + ϵ (� − i ),
(2) For all � ≤ i ≤ h, w (Lh , i,h − i ) = w (Lh , �,h − �) + ϵ (i − �).

Proof. The proof is completely symmetric to the proof of Lemma 4.18. Note that, due
to Lemma 4.18, after S (R2,h, 2ϵ ) ends, i.e., at the beginning of S (R1, 1, 2ϵ ), we have that
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w (Lh ,Rh ) = w (Lh , 0,h) and w (Lh ,h − i, i ) = w (Lh , 0,h) + ϵ (h − i ), or equivalently,

w (Lh , i,h − i ) = w (Lh , 0,h) + ϵ · i . (11)

Note that Equation (11) is symmetric tow (Lh ,h − i, i ) = w (Lh ,h, 0) + ϵ · i , which we used in proof
of Lemma 4.18, so we can apply the symmetric proof. �

End of the phase: We now show that at the end of the phase the work function has the desired
structure and that the WFA has all its 2h servers in R, so a new right-to-left phase may start.

Lemma 4.20. After N iterations of Step 2, w (Lh−i ,Rh+i ) = w (L0,R2h ) + (h − i ) = 3h − i , for all

1 ≤ i ≤ h − 1.

Proof. By basic properties of work functions,w (Lh−i ,Rh+i ) ≤ w (L0,R2h ) + (h − i ). Assume for
contradiction that there exists some i such that w (Lh−i ,Rh+i ) < w (L0,R2h ) + (h − i ). If there are
many such i’s, then we prove the contradiction for the largest one, and then we can repeat. This
assumption implies that for any j > i , we have that

w (Lh−j ,Rh+j ) + (j − i ) = w (L0,R2h ) + (h − j ) + (j − i )

= w (L0,R2h ) + (h − i ) > w (Lh−i ,Rh+i ).

Thus, the configurationC that defines the value of w (Lh−i ,Rh+i ) is not supported by any configu-
ration (Lh−j ,Rh+j ) for j > i . Let S be the schedule that defines the value ofw (Lh−i ,Rh+i ) =W (C ).
Since C is not supported by any configuration (Lh−j ,Rh+j ) for j > i , S uses exactly h + i servers
in R. We now evaluate the cost of S. Moving h + i servers from L to R costs h + i . Serving
Step 1 using h + i servers in R costs 0. By Corollary 4.7, the optimal way to serve N itera-
tions of Step 2 using h + i servers in R has cost 2N · ϵ (h − i ) = 2(h − i ). Overall, we get that
w (Lh−i ,Rh+i ) = h + i + 2(h − i ) = 3h − i .

However, we have that w (L0,R2h ) = 2h for the whole phase. Thus,

w (Lh−i ,Rh+i ) = 3h − i = w (L0,R2h ) + (h − i ),
contradiction. �

By setting i ′ = h − i , Lemma 4.20 gives us that

w (Li′,R2h−i′ ) = w (L0,R2h ) + i ′, for 1 ≤ i ′ ≤ h. (12)

Moreover, by setting i ′ = 2h − i in Equation (7), we get that for h < i ′ ≤ 2h,

w (Li′,R2h−i′ ) = w (Lh ,Rh ) + i ′ − h = w (L0,R2h ) + h + i ′ − h = w (L0,R2h ) + i ′, (13)

where the first equality holds due to Equation (12). From Equations (12) and (13), we get that after
N iterations of Step 2,

w (Li′,R2h−i′ ) = w (L0,R2h ) + i ′, for all 1 ≤ i ′ ≤ 2h. (14)

Note that w (L0,R2h ) does not change during the whole phase, since exactly 2h points of R are
requested. Thus, Equation (14) holds at the end of the phase and then a new right-to-left phase
may start, satisfying the assumption about the initial work function. Last, to see that at the end
of the phase the WFA has all its 2h servers in R, assume that after N iterations of Step 2, it is in

some configuration (Li′,R2h−i′ ) for some 0 ≤ i ′ ≤ (h − 1). Since Equation (14) holds at the end of
the phase, during the next iteration, the WFA moves to the configuration (L0,R2h ).

Bounding Costs. We now bound the online and offline costs. We begin with Step 1.

Lemma 4.21. During the time when the WFA uses � < h servers in R, it incurs a cost of at least

(2 − 2ϵ ′) · �.
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Proof. By construction of the phase, when the execution of S (R1, � + 1, 2) starts, the WFA has
� servers in R. We evaluate the cost of the WFA during the part of S (R1, � + 1, 2) when it has �
servers in R. Let t be the time when the WFA moves its (� + 1)th server to R. Let w and w ′ be the
work functions at the beginning of S (R1, � + 1, 2) and at time t , respectively. We have that

w ′(Lk−�−1,R�+1) = w (Lk−�−1,R�+1) = w (Lk−�,R� ) + 1, (15)

where the first equality comes from the fact that there are exactly � + 1 points of R requested since
the beginning of the phase and the second by Lemma 4.5. LetC be the configuration of the WFA at
time t ′ − 1. At time t , the WFA moves a server by a distance of 1, thus by basic properties of work
functions, we have thatw ′(C ) = w ′(Lk−�−1,R�+1) + 1. This combined with Equation (15) gives that

w ′(C ) = w (Lk−�,R� ) + 2. (16)

Let X ∈ (Lk−�,R� ) be a configuration such that (i) w ′(X ) = w ′(Lk−�,R� ) and (ii) X ,C have their
k − � servers of L at the same points3. Note that X ,C ∈ (Lk−�, �, 0), since R1 is the only subtree of
R where requests have been issued. Since both X andC have � servers in R1, and only � + 1 leaves
of R1 have been requested, we get that X and C can differ in at most one point. In other words,
d (X ,C ) ≤ ϵ ′. By basic properties of work functions, we get that

w ′(C ) ≤ w ′(X ) + d (X ,C ) ≤ w ′(Lk−�,R� ) + ϵ ′. (17)

From Equations (16) and (17), we get that

w ′(Lk−�,R� ) −w (Lk−�,R� ) ≥ w ′(C ) − ϵ ′ − (w ′(C ) − 2) = 2 − ϵ ′. (18)

Let S� be the optimal schedule to serve all requests from the beginning of S (R2, � + 1, 2ϵ ) until
time t , using � servers starting at t1, . . . , t� . From Equation (18), we have that cost(S� ) ≥ 2 − ϵ ′.
All requests are located in � + 1 leaves of an elementary subtree (which is equivalent to the paging
problem) in an adversarial way. It is well known (see, e.g., Borodin and El-Yaniv (1998)) that the
competitive ratio of any online algorithm for the paging problem for such a sequence is at least �,
i.e., it has cost at least cost (S� ) − � · ϵ ′, where � · ϵ ′ is the allowed additive term. This implies that
the cost incurred by the WFA is at least

� · cost(S� ) − � · ϵ ′ ≥ �(2 − ϵ ′) − � · ϵ ′ = (2 − 2ϵ ′) · �. �

Lemma 4.1. (restated) During Step 1, ALG ≥ h2 − ϵ ′ · h(h − 1) and ADV= h.

Proof. Clearly, ADV= h; the adversary moves h servers by distance 1 and then serves all re-

quests at zero cost. By Lemma 4.21, we get that WFA incurs a cost of at least
∑h−1

�=1 (2 − 2ϵ ′) · �
inside R. Moreover, it pays a movement cost of h to move its h servers from L to R. Overall,

we get that the online cost during Step 1 is (2 − 2ϵ ′)
∑h−1

�=1 � + h = 2
∑h−1

�=1 � + h − 2ϵ ′
∑h−1

�=1 � =

h2 − ϵ ′ · h(h − 1). �

We now focus on Step 2. We charge the WFA only for the first �N − 3h
2 � iterations (when it uses

h servers in R, due to Corollary 4.15), plus the movement cost of the extra servers from L to R.

Lemma 4.22. Consider a good iteration (see Definition 4.8) of Step 2 such that the WFA uses only h
servers in R. During the time interval that WFA serves requests in subtree R1 or R2 using � servers, it

incurs a cost of at least 2(ϵ − ϵ ′)�.

Proof. The proof is similar to the proof of Lemma 4.21, with the following modifications. We
scale distances by ϵ , since now the servers move from R1 to R2 (distance ϵ) instead of moving

3Such a configuration always exists, since there are no requests at L, hence the locations of the servers in L does not affect

the work function values.
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from L to R1 (distance 1). We charge the WFA for serving requests in R2 using � servers during
executions of S (R2, � + 1, 2ϵ ), using Lemma 4.18 (instead of Lemma 4.5) and replacing (Lk−i ,Ri )
by (Lh ,h − i, i ). Similarly, we charge the WFA for serving requests in R1 using � servers during
executions of S (R1, � + 1, 2ϵ ) using Lemma 4.19. �

Lemma 4.23. Consider a good iteration of Step 2 such that the WFA uses only h servers in R to serve

the requests. The cost of the WFA in such an iteration is at least 2ϵ · h2 − 2ϵ ′ · (h − 1) · h.

Proof. From Lemma 4.22, we get that the cumulative cost for all executions of S in R2 is∑h−1
�=1 2(ϵ − ϵ ′)� + ϵ · h, where the last ϵ · h term counts the cost of moving h servers from R1 to

R2. Similarly, the WFA incurs the same cumulative cost during executions of S in R1. We get that
the total cost of the WFA during the iteration is at least

2 · ��
h−1∑
�=1

2 (ϵ − ϵ ′) � + ϵ · h�� = 2ϵ · h + 4

h−1∑
�=1

ϵ · � − 4

h−1∑
�=1

ϵ ′ · �,

2ϵ (h + (h − 1) h) − 2ϵ ′ · (h − 1) · h = 2ϵ · h2 − 2ϵ ′ · (h − 1) · h. �

Lemma 4.2 (Restated). During Step 2, ALG ≥ 2h2 + h − 3ϵh3 − 2 ϵ ′

ϵ
· (h − 1) · h and ADV = (2 +

ϵ )h.

Proof. The second step consists of N + 1 = 1/ϵ + 1 iterations, where in each one of them the
adversary incurs a cost of 2ϵ · h. Thus, the offline cost is (2 + 2ϵ )h.

Let us now count the online cost during Step 2. By Corollary 4.15, there are at least �N − 3h
2 �

iterations such that the WFA has h servers in R. By Lemma 4.23, we get that during each one of
those iterations, the online cost is at least 2ϵ · h2 − 2ϵ ′ · (h − 1) · h. For the rest of Step 2, the WFA
incurs a cost of at least h, as it moves h servers from L to R. We get that overall, during Step 2, the
cost of WFA is at least(
N − 3h

2

)
· (2ϵ · h2 − 2ϵ ′ · (h − 1) · h) + h = 2Nϵ · h2 − 2Nϵ ′ · (h − 1) · h − 3ϵh3 + 3ϵ ′h2 (h − 1) + h

≥ 2h2 + h − 3ϵh3 − 2
ϵ ′

ϵ
· (h − 1) · h. �

Remaining Proofs. We now prove Lemma 4.3, whose proof was omitted earlier. First, we state an
observation that follows directly from the definition of the left-to-right phase.

Observation 4.24. Let t be any time during a left-to-right phase with work function w . If

w (Lk−i ,Ri ) = w (Lk−j ,R j ) + (j − i ) for some 0 ≤ i < j ≤ k , then for all j ′ such that i ≤ j ′ ≤ j, we

have that w (Lk−j′,R j′ ) = w (Lk−j ,R j ) + (j − j ′).

To see why this is true, note that by basic properties w (Lk−j′,R j′ ) ≤ w (Lk−j ,R j ) + (j − j ′).
Moreover, if strict inequality holds, we get that w (Lk−j′,R j′ ) + (j ′ − i ) < w (Lk−j ,R j ) + (j − j ′) +
(j ′ − i ) = w (Lk−j ,R j ) + (j − i ) = w (Lk−i ,Ri ). We get that w (Lk−i ,Ri ) −w (Lk−j′,R j′ ) > j ′ − i , a
contradiction.

Lemma 4.3 (Restated). Consider a left-to-right phase. At any time after the end of strategy

S (R1, �, 2), for 1 ≤ � ≤ h, we have that w (Lk−�+1,R�−1) = w (Lk−�,R� ) + 1.

Proof. We prove the lemma by induction. For the base case � = 1, the lemma is clearly true,
since any schedule serving requests uses at least one server atR. We prove the lemma for 2 ≤ � ≤ h,
assuming that it is true for all values 1, . . . , � − 1.
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Let t be any time after the end of strategy S (R1, �, 2), for 1 < � ≤ h with work function w .
By basic properties of work functions, w (Lk−�+1,R�−1) ≤ w (Lk−�,R� ) + 1. We will assume that
w (Lk−�+1,R�−1) < w (Lk−�,R� ) + 1 and obtain a contradiction. The lemma then follows.

Assume that w (Lk−�+1,R�−1) < w (Lk−�,R� ) + 1. Let S�−1 and S� be the schedules that define
the values ofw (Lk−�+1,R�−1) andw (Lk−�,R� ), respectively. LetC be a configuration (Lk−�+1,R�−1)
such that w (C ) = w (Lk−�+1,R�−1). By Observation 4.24, C is not supported by any configura-
tion (Lk−i ,Ri ), for i ≥ �. Also, by the inductive hypothesis, C is not supported by configurations
(Lk−i ,Ri ) for i < � − 1. We get thatC is in the support ofw . Without loss of generality S�−1 is lazy,
i.e., it moves a server only to serve a request (this is a standard property, explained in the proof of
Theorem 1.4). Thus, from the beginning of the phase until time t , S�−1 never moves a server from
R to L. We get that S�−1 uses exactly � − 1 servers in R. However, by construction of the phase, S�
has at least � servers in R during the execution of S (R1, �, 2).

We now compare the costs of S�−1 and S� . Before S (R1, �, 2) starts, the schedules are the same,
since there are exactly � − 1 points of R requested. During S (R1, �, 2),S� incurs a cost of 1 to move a
server from L to R and then serves all requests at zero cost, while S�−1 incurs a cost of at least 2 (by
construction of the strategy). When S (R1, �, 2) ends, the set of leaves of R1 occupied by servers of
S�−1 is a subset of the leaves occupied by servers of S� . Thus, the cost incurred by S� after the end
of S (R1, �, 2) is smaller or equal to the cost incurred byS�−1 during the same time interval. Overall,
we get that cost(S�−1) ≥ cost(S� ) + 1, i.e.,w (Lk−�+1,R�−1) ≥ w (Lk−�,R� ) + 1, a contradiction. �

5 CONCLUDING REMARKS

Several intriguing open questions remain, and we list some of them here.

• Is the dependence on d in Theorem 1.3 necessary? While Theorem 1.4 gives a separation
between depth-1 and depth-2 HSTs, it is unclear to us whether a lower bound that increases
substantially with depth is possible. Note that a lower bound of д(d ) for depth d , where
д(d ) → ∞ asd → ∞ (provided thath is large enough), would be very surprising. This would
imply that there is no O (1)-competitive algorithm for general metric spaces.

• Can we get an o(h)-competitive algorithm for other metric spaces? An interesting metric
is the line: Both DC and WFA have competitive ratio Ω(h) in the line, and we do not even
know any good candidate algorithm. Designing an algorithm with such a guarantee would
be very interesting.

A ALGORITHM

A.1 Proofs of Lemmas from Section 3

Proof of Lemma 3.7 The proof is quite similar to the proof of Lemma 3.6. Instead of using the
fact that δ ≥ βd = β · βd−1 = β · βd , we now crucially use the fact that β� = β · β�−1. However, now
we have to be more careful with the counting of the servers of the adversary.

For each s ∈ D, let �(s ) be the level of the edge e containing s . Similarly to the the proof of
Lemma 3.6, we have ks ≤ �β�(s ) · hs 	 ≤ β�−1 · hs for each server s ∈ D, since �(s ) ≤ � − 1. Re-
call that we assume that the adversary has already served the request. Let a be the server of
the adversary located at the requested point. Since no online servers reside in the path be-
tween q and the requested point, a does not belong to Ts for any s ∈ D ∪ E. Therefore, we have∑

s ∈D hs ≤
∑

s ∈(D∪E ) hs ≤ h−q − 1. We get that

∑
s ∈D

ks ≤
∑
s ∈D

β�−1 · hs ≤ β�−1 (h−q − 1). (19)
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To finish the proof of the first inequality, observe that our assumption that k−q ≥ �β�h−q 	 implies

k−q ≥ �β�h−q 	 ⇒ β�h
−
q ≤ k−q + 1⇔ h−q ≤

k−q + 1

β�
.

Therefore, from Equation (19), we have

∑
s ∈D

ks ≤ β�−1

(
h−q − 1

)
≤ β�−1

��
k−q + 1

β�
− 1�� = β�−1

β�
k−q +

1

β
− β�−1 ≤

1

β
k−q .

For the second inequality, note that 1
γ
= (1 − 1

β
). Since k−q =

∑
s ∈D ks +

∑
s ∈E ks , we have

∑
s ∈E

ks ≥ k−q −
1

β
k−q =

1

γ
k−q . �

A.2 Algorithm for Bounded-Diameter Trees

Since Algorithm 1 works for depth-d trees with arbitrary edge lengths, we can embed any
diameter-d tree into a depth-d tree with a very small distortion by adding fake paths of short
edges to all nodes.

More precisely, letT be a tree of diameter d with arbitrary edge lengths, and let α be the length
of the shortest edge of T (for any finite T such α exists). We fix ϵ > 0 a small constant. We create
an embedding T ′ of T as follows. We choose the root r arbitrarily, and to each node v ∈ T such
that the path from r to v contains � edges, we attach a path containing d − � edges of total length
ϵα/2. The leaf at the end of this path we denote v ′. We run Algorithm 1 in T ′ and each request
at v ∈ T , we translate to v ′ ∈ T ′. We maintain the correspondence between the servers in T and
the servers inT ′, and the same server, which is finally moved to v ′ by Algorithm 1, we also use to
serve the request v ∈ T .

For the optimal solutions on T and T ′, we have (1 + ϵ )OPT (T ) ≥ OPT (T ′), since any feasible
solution in T can be converted to a solution in T ′ with cost at most (1 + ϵ ) times higher. By The-
orem 3.8, we know that the cost of Algorithm 1 in T ′ is at most R ·OPT (T ′), for R = Θ(d · γd+1),
and therefore we have ALG (T ′) ≤ (1 + ϵ )R ·OPT (T ).

B LOWER BOUND FOR WFA ON THE LINE

The lower bound of Section 4.2 for the WFA can also be applied on the line. The lower bound
strategy is the same as the one described for depth-3 HSTs, we just need to replace subtrees by
line segments.

More precisely, the lower bound strategy is applied in an interval I of length 1. Let L and R
be the leftmost and rightmost regions of I, of length ϵ/2, for ϵ � 1. Similarly, L1,L2 and R1,R2

are smaller regions inside L and R, respectively. Again, the distance between L1 and L2 (R1 and
R2, respectively) is much larger than their length. In each of those regions, we focus on h points,
where the distance between two consecutive points is ϵ ′ � ϵ . Whenever the adversary moves to
such a region, it places its servers those h equally spaced points inside it. Similarly to the proof
of Theorem 1.2, we can get a lower bound h + 1/3 on the competitive ratio of the WFA on the
line when k = 2h (the changes affect only the dependence on terms involving ϵ and ϵ ′, which are
negligible).

Interestingly, the lower bound obtained by this construction for the line has a matching up-
per bound. As it was observed in Bansal et al. (2018), results from Bartal and Koutsoupias (2004)
and Koutsoupias (1999) imply that for the line the cost of WFA with k servers WFAk is at most
(h + 1)OPTh − OPTk + const , where OPTi is the optimal cost using i servers. Briefly, this upper
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bound holds for the following reason: In Koutsoupias (1999) it was shown that in general met-
rics, WFAk ≤ 2hOPTh − OPTk + const. However, if we restrict our attention to the line, using the
result of Bartal and Koutsoupias (2004), we can get that

WFAk ≤ (h + 1)OPTh − OPTk + const. (20)

See Bansal et al. (2018) for more details.
In Theorem 1.2, we showed a lower bound (h + 1/3)OPTh on WFAk . We now show that this

construction matches the upper bound of Equation (20). In particular, it suffices to show that (h +
1/3)OPTh goes arbitrary close to (h + 1)OPTh − OPTk , or equivalently,

2OPTh

3
→ OPTk . (21)

As we showed in the proof of Theorem 1.2, for every phase of the lower bound strategy, OPTh =

(3 + 2ϵ ) · h. Moreover it is clear that OPTk = 2h; during a phase the minimum work function value
using k = 2h servers increases by exactly 2h. We get that

2OPTh

3
=

2 · (3 + 2ϵ ) · h
3

= 2h
3 + 2ϵ

3
→ 2h = OPTk .
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