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a b s t r a c t 

Understanding the effects of water absorption on the geometry of a paper sheet is important for inkjet 

printing applications, since internal moisture content differences may cause unacceptable out-of-plane 

deformations. The present work focuses on moisture-induced deformations due to a moisture content 

that is uniform over the thickness of the sheet. Large enough in-plane differences will cause the sheet 

to buckle, leading to a wavy pattern at the edges of the sheet. Two approaches are utilized to study 

this for levels of moisture content up to and including the threshold for buckling. An analytical approach, 

based on geometrically nonlinear plate theory (von Kármán theory), and a numerical one, using commer- 

cially available finite element software, are presented. As a first reference problem an isotropic circular 

plate, wetted uniformly at its center, is solved both analytically and numerically for the in-plane stress 

distribution, the buckling threshold, and the resulting buckling mode. Secondly, the same is done for an 

orthotropic rectangular plate, wetted at its edges. Here, in the analytical approach a Rayleigh–Ritz analy- 

sis is employed to approximate the buckling threshold. The latter is also calculated by numerical means. 

The results show that the methods provide results consistent with each other. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Because of its large-scale, worldwide application in printing, pa-

per and its moisture-induced out-of-plane deformations are exten-

sively researched. The phenomena most described in literature are

curling, cockling and fluting, see Fig. 1 . Leppänen (2007) gives an

overview of the literature on this topic. These phenomena mainly

result from a through-thickness moisture gradient ( Lipponen et al.,

2008 ). The present article focuses on a different type of deforma-

tion, induced by an in-plane moisture content gradient. We con-

sider a sheet of paper of which the edges differ from the center

with regard to moisture content. This occurs for example when a

stack of paper is exposed to a change in ambient humidity. Because

of slow diffusion ( Marin Zapata, 2010 ) the edges have a higher

moisture content than the center, while a single sheet in the stack

has a near-uniform through-thickness moisture content. The gradi-

ent of moisture content in the in-plane direction causes the edges

to expand, while restricted by the dryer center. When the stresses

become large enough, the edges will buckle and form a wavy pat-

tern. The various deformations paper undergoes are depicted in

Fig. 1 . Apart from the location of the deformation, waviness may

appear to be similar to fluting, but these phenomena are funda-
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entally different; fluting is caused by a through-thickness mois-

ure gradient, the deformation that results is a linear response to

his. Waviness is a result of an in-plane moisture gradient, and the

on-linear out-of-plane deformation only occurs after buckling. 

Whereas the first three phenomena in Fig. 1 (a)–(c) have been

tudied extensively, the last one (d) has not been. However, it

s definitely relevant, since in the post-buckling regime the de-

ections steeply increase with increasing moisture content gra-

ients, resulting in distortions large enough to cause issues in

rinting. 

Classically, buckling is known as a sudden off-line flexure of

 beam or a rod under external compression forces ( Euler buck-

ing ). However, in the buckling phenomenon we study here, no

xternal forces are present and the buckling is caused by inter-

al stresses. Comparable kinds of buckling are thermal buckling

 Gossard et al., 1952; Giannopoulos et al., 2007; Ma and Wang,

003 ), and magneto-elastic buckling ( Moon and Pao, 1968; van de

en, 1978 ). In all these cases out-of-plane flexure occurs when

he internal stresses induced by thermal or electromagnetic fields

re large enough. There is a critical magnitude of the gradients in

hese fields, called the buckling value , at which the sheet, in this

ontext commonly referred to as the plate, starts to deflect. Above

his threshold we say that the plate is in a post-buckled state. The

erm plate, rather than sheet, is more suited for this context, since

n buckling the bending stiffness, no matter how small, becomes

elevant. 

http://dx.doi.org/10.1016/j.ijsolstr.2017.08.038
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijsolstr.2017.08.038&domain=pdf
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(a) Curling (b) Cockling

(c) Fluting (d) Waviness

Fig. 1. Schematic representation of the various deformations. 
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As described in textbooks on the subject matter ( Goldmann and

ichel, 2001 , Ch. 6), ( Niskanen, 2012 , Ch. 2), the physical proper-

ies of paper are difficult to model, because of its complex micro-

cale structure. Paper mainly consists of a network of slender wood

bres. Since the thickness of paper sheets is much smaller than

he length of the fibres, the network is planar and almost two-

imensional. Due to the manufacturing process the fibres are ori-

nted more in the running direction of the paper machine, com-

only referred to as the machine direction (MD), than in the cross

irection (CD). This fibre orientation causes differences in physical

roperties of paper between these two directions: paper is an or-

hotropic material. One of these differences of great importance to

his research is the swelling of paper fibres due to water absorp-

ion. At macro-scale paper expands five times more in CD, than in

D. 

We consider a single homogeneous sheet of paper, exposed to

 uniform rise of moisture content in one part of it, while the

emainder maintains its initial moisture content. Apart from this,

o external influences are at play. Though diffusion of the mois-

ure content is slow in the case under consideration ( Marin Zap-

ta, 2010 ), it does play a role in reality ( Chester and Anand, 2011 ).

e assume that paper exhibits elastic behavior, which, according

o Niskanen (2012 , Ch. 9), is valid since we consider a one-time

etting with no extreme values for the moisture content. Also, be-

ause of its thin shape, with a length-to-thickness ratio of O(10 3 ) ,

e approximate it as being two-dimensional, meaning we apply

hin-plate theory. Since the deflections of the wavy pattern ob-

erved in reality are large, i.e. larger than the thickness of the pa-

er, we employ von Kármán theory for thin plates having large de-

ormations. As opposed to linear Kirchhoff theory , this formulation

dmits a geometric nonlinearity, though maintaining constitutive

inearity. 

Niskanen (2012 , Ch. 9) notes that, analogous to linear thermoe-

asticity, the deformations in a hygrothermoelastic body can be

onsidered as the superposition of an elastic part, obeying Hooke’s

aw, and a part resulting from moisture-induced expansion of pa-

er. Extensive literature on thermal stresses in plates exists. A col-

ection of articles compiled by Hetnarski (2013) offers an overview

f the topics related to thermal stresses. This covers a range of sub-

ects applicable to the current work, including thermal buckling of

lates, stresses in anisotropic plates and large deflection theory of

lates. The boundary conditions, however, are generally taken to be

imply supported or clamped, which simplifies calculations. Plates
ith freely movable boundaries, required for the modeling of wavi-

ess in paper, have been researched less. A theoretical framework

or the mechanics involved is presented by Efrati et al. (2009) .

avy edges of plant leaves due to growth ( Liang and Mahade-

an, 2009 ), as well as torn plastic ( Audoly and Boudaoud, 2003 )

nd glass blowing ( Sharon and Efrati, 2010 ) can be described using

he same mechanical theory. Klein et al. (2007) perform experi-

ents using circular sheets of a shrinking gel, resulting in an out-

f-plane deformation and, in the post-buckling regime, wrinkling.

n the context of tissue growth Dervaux et al. (2009) briefly con-

ider wavy edges of paper sheets for comparison. Mead (2003) an-

lyzes an isotropic rectangular plate with free boundaries, sub-

ected to a non-uniform temperature distribution. The author uses

 variational method to determine the stresses and applies a

ayleigh–Ritz analysis to determine the buckling threshold and the

esulting modes. 

A first step towards gaining knowledge of the waviness phe-

omenon is to study the behavior of the plate up to the onset

f buckling, which is the aim of the current work. The buckling

hreshold is of great importance to this research, since large out-

f-plane deformations only occur after the onset of buckling. More-

ver, the buckling threshold itself is an important parameter in in-

ustrial application of this research, since printing on sheets with

arge out-of-plane deformations should be avoided. 

In the present work we study two reference problems. First, in

ection 2 we describe the von Kármán equations used to model

arge deformations of thin plates. In Section 3 , we consider an

sotropic circular plate, subjected to an increase of moisture con-

ent in its center. This problem is tackled using direct methods, by

olving the von Kármán equations in polar coordinates, which al-

ows for a parameter study. The second reference problem, which

s discussed in Section 4 , concerns an orthotropic rectangular plate

xposed to a rise of moisture content along its edges. The approach

utlined by Mead (2003) is generalized to orthotropic von Kármán

quations and applied to obtain the stresses through variational

ethods. A Rayleigh–Ritz analysis is applied to approximate the

uckling threshold. 

The analytical solutions of both reference problems are com-

ared with those obtained through numerical computation, with

he commercially available software Marc Mentat ( Marc, 2014 ).

e describe the numerical method in Section 5 , its results and

he comparison with the analytical solutions are discussed in

ection 6 . 

. Von Kármán equations 

Consider a thin rectangular plate of thickness 2 h , with h / L � 1,

here L is some characteristic length for the in-plane dimensions

f the plate. We describe the plate by the Cartesian coordinates

, y, z , with x and y the in-plane coordinates and z the coordinate

erpendicular to the midplane, z = 0 . The deformation pattern con-

ains both in-plane and out-of-plane deformations. Let u = u (x, y )

nd v = v (x, y ) represent the midplane displacements in x - and y -

irection respectively, and w = w (x, y ) the deflection of the mid-

lane in the z -direction. Thus, the total deformation is obtained

y superimposing the strains due to stretching and bending of the

idplane. For small strains and moderate rotations, the Cartesian

omponents of the deformation tensor are described by the von

ármán strains ( Ventsel and Krauthammer, 2001 , Ch. 7.4): 

 xx = 

∂u 

∂x 
+ 

1 

2 

(
∂w 

∂x 

)
2 − z 

∂ 2 w 

∂x 2 
, (1a) 

 xy = 

1 

2 

(
∂u 

∂y 
+ 

∂v 
∂x 

+ 

∂w 

∂x 

∂w 

∂y 

)
− z 

∂ 2 w 

∂ x∂ y 
, (1b) 
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ε yy = 

∂v 
∂y 

+ 

1 

2 

(
∂w 

∂y 

)
2 − z 

∂ 2 w 

∂y 2 
. (1c)

We consider paper to be an orthotropic medium with fibre ori-

entation running parallel to the x -axis, yielding three mutually or-

thogonal planes of symmetry in the directions of the Cartesian

axes. The total strains in the paper are modeled as a superposi-

tion of elastic (Hooke) and hygrothermal deformations, formulated

as follows ( Lekhnitskii, 1957 ): [ 

ε xx 

ε yy 

ε xy 

] 

= 

⎡ 

⎣ 

1 
E x 

− νyx 

E y 
0 

− νxy 

E x 
1 
E y 

0 

0 0 

1 
2 G xy 

⎤ 

⎦ 

[ 

σxx 

σyy 

σxy 

] 

+ 

[ 

ε h xx 

ε h yy 

0 

] 

. (2)

Here, E x , E y denote the Young’s moduli in their respective direc-

tions, νxy , νyx the Poisson ratios, while G xy is the shear modu-

lus. The stresses corresponding to the von Kármán strains (1) are

given by σ xx , σ yy , σ xy . Due to symmetry of the elasticity ten-

sor, νxy /E x = νyx /E y . The moisture-induced strains are given by

ε h xx (x, y ) = βx H(x, y ) and ε h yy (x, y ) = βy H(x, y ) . The z -independent

change in moisture content is H ( x, y ). It is defined as the mass

percentage water in the material. The β i ’s, i = x, y, denote the co-

efficients of hygro-expansivity, quantifying the relative growth in

the respective directions per percent increase of moisture content. 

The in-plane stresses σ ij , i, j ∈ ( x, y ), satisfying the equilib-

rium equations, are given in terms of the Airy stress function as

( Ventsel and Krauthammer, 2001 , Ch. 7.4) 

σxx = 

∂ 2 ϕ 

∂y 2 
, σxy = − ∂ 2 ϕ 

∂ x∂ y 
, σyy = 

∂ 2 ϕ 

∂x 2 
. (3)

To describe the post-buckling state, and to determine the critical

buckling value, we need von Kármán’s large-deflection equations,

which couple the in-plane stress function ϕ with the out-of-plane

deflection w . For these equations, we refer to Lekhnitskii (1957 ,

eq. (7.88)), where they are given for orthotropic plates, however

without hygrothermal (or thermal) effects. To incorporate the lat-

ter, we have to use (2) , after which a derivation analogous to the

one in Lekhnitskii (1957) leads us to the following two von Kármán

equations: 

βx 
∂ 2 H 

∂y 2 
+ βy 

∂ 2 H 

∂x 2 
+ 

1 

E y 

∂ 4 ϕ 

∂x 4 
+ 

(
1 

G xy 
− 2 

νxy 

E x 

)
∂ 4 ϕ 

∂ x 2 ∂ y 2 
+ 

1 

E x 

∂ 4 ϕ 

∂y 4 

= 

(
∂ 2 w 

∂ x∂ y 

)
2 − ∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 
, (4)

and 

2 h 

3 

3 

(
E x 

1 − νxy νyx 

∂ 4 w 

∂x 4 
+ 2 

(
νyx E x 

1 − νxy νyx 
+ 2 G xy 

)
∂ 4 w 

∂ x 2 ∂ y 2 

+ 

E y 

1 − νxy νyx 

∂ 4 w 

∂y 4 

)

= 2 h 

(
∂ 2 ϕ 

∂x 2 
∂ 2 w 

∂y 2 
+ 

∂ 2 ϕ 

∂y 2 
∂ 2 w 

∂x 2 
− 2 

∂ 2 ϕ 

∂ x∂ y 

∂ 2 w 

∂ x∂ y 

)
. (5)

For the determination of the buckling value, we first need to

know the pre-buckled state, i.e. the state in which the plate does

not deflect, but deforms in its plane only. The only unknown is

then the Airy stress function ϕ( x, y ), governed by the bi-harmonic

equation that follows from (4) with w (x, y ) = 0 , 

βx 
∂ 2 H 

∂y 2 
+ βy 

∂ 2 H 

∂x 2 
+ 

1 

E y 

∂ 4 ϕ 

∂x 4 
+ 

(
1 

G xy 
− 2 

νxy 

E x 

)
∂ 4 ϕ 

∂ x 2 ∂ y 2 
+ 

1 

E x 

∂ 4 ϕ 

∂y 4 
= 0 . 

(6)

To obtain the buckling value, we first solve (6) under the ap-

propriate boundary conditions (to be discussed further on) yield-

ing ϕ as a function of H . Substituting this ϕ into (5) , we obtain
 homogeneous equation for w . Since for a free plate the bound-

ry conditions are uniform, the trivial initial state w ≡ 0 is always

 solution for this problem. Only when the derivatives of H are of

 critical threshold magnitude, non-zero solutions for w are possi-

le. This critical threshold is the buckling value. It should be noted

ere that in our applications we always assume a piece-wise uni-

orm H , i.e. either H(x, y ) = 0 , or H(x, y ) = χ, for some value χ .

his means the derivatives of H are not defined at the disconti-

uities, but since we will use the variational formulation to ob-

ain solutions in the following, this will not pose a problem. For

oads beyond the buckling load, the plate is in the post-buckling

tate, in which the deflections of the plate become dominant. To

escribe this state, we need the full coupled set (4) and (5) . We

se the finite element software Marc Mentat ( Marc, 2014 ) to solve

his problem numerically. 

In the sequel we prefer to work with a dimensionless version of

he von Kármán equations. To this end, we introduce the following

imensionless coordinates and variables: 

ˆ 
 = 

x 

L 
, ˆ y = 

y 

L 
, ˆ H = 

H 

χ
, ˆ w = 

w 

W 

, ˆ ϕ = 

ϕ 

	
, ˆ ε h xx (yy ) = 

ε h 
xx (yy )

ε 0 
(7)

here, with χ the maximum of H ( x, y ), 

 = 

√ 

ε 0 L, 	 = ε 0 E x L 
2 , ε 0 = βx χ. (8)

ubstituting these dimensionless quantities into the von Kármán

quations (4) and (5) we obtain, upon omitting the hats: 

∂ 2 H 

∂y 2 
+ β

∂ 2 H 

∂x 2 
+ 

˜ E 
∂ 4 ϕ 

∂x 4 
+ 2 γ 2 ∂ 4 ϕ 

∂ x 2 ∂ y 2 
+ 

∂ 4 ϕ 

∂y 4 
= 

(
∂ 2 w 

∂ x∂ y 

)
2 

− ∂ 2 w 

∂x 2 
∂ 2 w 

∂y 2 
, (9)

nd 

∂ 4 w 

∂x 4 
+ 2�

∂ 4 w 

∂ x 2 ∂ y 2 
+ 

1 

˜ E 

∂ 4 w 

∂y 4 
= μ

(
∂ 2 ϕ 

∂x 2 
∂ 2 w 

∂y 2 
+ 

∂ 2 ϕ 

∂y 2 
∂ 2 w 

∂x 2 

−2 

∂ 2 ϕ 

∂ x∂ y 

∂ 2 w 

∂ x∂ y 

)
, (10)

ith 

= 

βy 

βx 
, ˜ E = 

E x 

E y 
, γ = 

√ 

E x 

2 G xy 
− νxy , (11)

nd 

= νyx + 2 

(1 − νxy νyx ) G xy 

E x 
, μ = 3(1 − νxy νyx ) βx χ

L 2 

h 

2 
. (12)

ince ε 0 = βx χ is a measure for the in-plane strains induced by

he wetting of the paper, the dimensionless parameter ε0 is small.

f ε 0 = O(h 2 /L 2 ) � 1 , then μ = O(1) . Notice that as this parameter

s characteristic for wetting, it determines the onset of buckling of

he paper. Hence, the critical value of μ represents the buckling

alue we are looking for. 

. Circular plate 

As a first reference problem, we consider an isotropic circular

late of thickness 2 h and radius R , with radial coordinate r . The

dge of the plate at r = R is free. An inner circle with radius a lo-

ated at the center, is uniformly moistened, while the remainder of

he plate maintains its initial moisture content. This input parame-

er a is in general an unknown, which is to be determined through

 diffusion-deformation study, see e.g. Chester and Anand (2011) .

he slow diffusion of moisture in paper ( Marin Zapata, 2010 ) justi-

es the choice to regard this parameter as a constant in this study.
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e non-dimensionalize the radii by dividing by R and drop the

ats. The problem is axisymmetric. Hence, 

(x, y ) = H(r) = 

{
χ, 0 ≤ r < a, 

0 , a < r ≤ 1 . 
(13) 

We start with the in-plane problem governed by the bi-

armonic equation for the stress function (6) . In this case, ϕ = ϕ(r)

nd it can be replaced by an alternative stress function ψ(r) =
 

′ (r) , for which the formulas for the two remaining stresses be-

ome 

rr = 

ψ(r) 

r 
, σθθ = ψ 

′ (r) . (14) 

his stress function is the solution of the axisymmetric version of

6) . For the dimensionless version we will use here (9) with w = 0

nd 

˜ E = γ = 1 , reading: 

 

′′ (r) + 

ψ 

′ (r) 

r 
− ψ(r) 

r 2 
= −βH 

′ (r) = 0 , for r 	 = a, (15) 

hich is the in-plane part of the von Kármán equations in po-

ar coordinates. Since the moisture content is piece-wise constant,

 

′ (r) = 0 for every r except r = a . Hence, the effect of the discon-

inuous moisture content turns up only in the jump conditions at

 = a . 

Solving this equation in the regions 0 ≤ r < a and a < r ≤ 1, and

ccounting for the continuity of the displacement and the stress

rr across r = a, we find by standard calculations, for the dimen-

ionless stress function ψ = 

ˆ ψ = ψ/ �, � = χβER, 

(r) = 

⎧ ⎨ 

⎩ 

−1 

2 

(1 − a 2 ) r , 0 ≤ r < a, 

−1 

2 

(
1 

r 
− r 

)
, a < r ≤ 1 . 

(16) 

he stresses are found using (14) (now in dimensional form): 

rr (r) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(a 2 − R 

2 ) Eβχ

2 R 

2 
, 0 ≤ r < a, 

a 2 Eβχ

2 R 

2 

(
1 − R 

2 

r 2 

)
, a < r ≤ R, 

(17) 

θθ (r) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

(a 2 − R 

2 ) Eβχ

2 R 

2 
, 0 ≤ r < a, 

a 2 Eβχ

2 R 

2 

(
1 + 

R 

2 

r 2 

)
, a < r ≤ R. 

(18) 

e note that the stresses are uniform in the inner part. Next we

onsider the out-of-plane part of the von Kármán equations (10) in

erms of the stress function we just obtained and in a reduced ax-

symmetric version, reading 

2 w (r) = μ
(
ψ(r) w 

′′ (r) + ψ 

′ (r) w 

′ (r) 
)
, (19) 

here now μ = 3(1 − ν2 ) βχR 2 /h 2 . We are looking for the mini-

al value of μ, or more directly for the moisture content χ , for

hich (19) , under free-boundary conditions, has a non-zero solu-

ion for w . This minimum value, μ0 or χ0 is the buckling thresh-

ld. 

We introduce W ( r ) := w 

′ ( r ) and integrate (19) to obtain 

 

′′ (r) + 

W 

′ (r) 

r 
− W (r) 

r 2 
= μ

ψ(r) 

r 
W (r) . (20) 

e call W (r) = W 1 (r) for 0 ≤ r < a and W (r) = W 2 (r) for a < r ≤ 1. 

First, for 0 ≤ r < a , we have 

 

′′ 
1 (r) + 

W 

′ 
1 (r) 

r 
+ 

(
A 

2 − 1 

r 2 

)
W 1 (r) = 0 , (21) 

ith 

 

2 = 

1 

(1 − a 2 ) μ. (22) 

2 
e note that A is real-valued, since all parameters attain positive

alues, and a < 1. In (21) we recognize Bessel’s equation, the solu-

ions of which are superpositions of Bessel functions: 

 1 (r) = C 1 J 1 (Ar) + 

˜ C 1 Y 1 (Ar) . (23) 

ere, J ν and Y ν are Bessel functions of the first and second kind,

espectively, of degree ν ( Abramowitz and Stegun, 1972 ). Since W 1 

ust be finite at the center of the circle, ˜ C 1 = 0 . 

For a < r ≤ 1, (20) becomes 

 

′′ 
2 (r) + 

W 

′ 
2 (r) 

r 
+ 

(
B 

2 − C 2 

r 2 

)
W 2 (r) = 0 , (24) 

ith 

 

2 = −1 

2 

μa 2 , C 2 = 1 − 1 

2 

μa 2 . (25) 

he general solution of (24) is 

 2 = C 2 J C (Br) + C 3 Y C (Br) . (26) 

his solution is also valid with complex values for B and C . The

olution to (20) is now given by (23) and (26) as 

 (r) = 

{
C 1 J 1 (Ar) , 0 ≤ r < a, 

C 2 J C (Br) + C 3 Y C (Br) , a < r ≤ 1 . 
(27) 

he continuity and boundary conditions are: 

• Continuity of W at r = a : 

W 1 (a ) = W 2 (a ) . 

• Continuity of the bending moment at r = a : 

W 

′ 
1 (a ) + νW 1 (a ) = W 

′ 
2 (a ) + νW 2 (a ) . 

• Zero bending moment at the edge r = 1 : 

W 

′ 
2 (1) + νW 2 (1) = 0 . 

These conditions result in a homogeneous system of equations

or the coefficient vector C = { C 1 , C 2 , C 3 } T : 

 C = 0 , (28) 

ith 

 = 

⎡ 

⎣ 

J 1 (Aa ) −J C (Ba ) −Y C (Ba ) 

A 
B 

(
J 0 (Aa ) − J 2 (Aa ) 

)
J C+1 (Ba ) − J C−1 (Ba ) Y C+1 (Ba ) − Y C−1 (Ba ) 

0 C 32 C 33 

⎤ 

⎦ ,

ith 

 32 = 

B 

2 

(
J C−1 (B ) − J C+1 (B ) 

)
+ νJ C (B ) , 

nd 

 33 = 

B 

2 

(
Y C−1 (B ) − Y C+1 (B ) 

)
+ νY C (B ) . 

This system has a nontrivial solution if and only if the determi-

ant of C is zero. We are interested in the smallest value for χ for

hich a nontrivial solution exists, this smallest eigenvalue is the

uckling threshold χ0 . 

In Section 6 , we shall present numerical results obtained

hrough this method, and compare these with the values calcu-

ated using Marc Mentat. 

. Rectangular plate 

.1. The in-plane stress function 

As a second example, we consider a rectangular plate with

ength a , 0 ≤ x ≤ a , width b , 0 ≤ y ≤ b , and thickness 2 h, −h ≤ z ≤
 . We introduce the dimensionless in-plane coordinate system
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(ξ , η) = (x/a, y/b) such that the surface of the plate occupies the

space G = { ξ , η| 0 ≤ ξ ≤ 1 , 0 ≤ η ≤ 1 } . Here, we choose the charac-

teristic length L = 

√ 

ab . A region G 1 is exposed to a uniform rise

in moisture content χ , while the remainder of the plate, G 2 , main-

tains its initial moisture content. We define H(ξ , η) := I (ξ ,η) ∈G 1 , the

identity function representing the wet region. We recall that H has

been normalized in (7) . Taking w = 0 in (9) we then obtain here

the following bi-harmonic equation for the dimensionless stress

function ϕ( ξ , η) as 

˜ E 

(
b 

a 

)2 
∂ 4 ϕ 

∂ξ 4 
+ 2 γ 2 ∂ 4 ϕ 

∂ ξ 2 ∂ η2 
+ 

(
a 

b 

)2 ∂ 4 ϕ 

∂η4 
= −

(
b 

a 

∂ 2 H 

∂ξ 2 
+ 

a 

b 
β

∂ 2 H 

∂η2 

)
(29)

We note that the derivatives of t are not defined at the disconti-

nuities, but since we will use the variational formulation of (29) in

the following, we will obtain the relevant terms through partial in-

tegration. 

The edges of the plate are free, implying that at ξ = 0 , 1 , the

stresses σ xx and σ xy must be zero, and likewise at η = 0 , 1 , σxy =
σyy = 0 . Using (3) we see that these conditions are satisfied with

the following boundary conditions for ϕ( ξ , η): 

ϕ(0 , η) = 

∂ϕ 

∂ξ
(0 , η) = ϕ(1 , η) = 

∂ϕ 

∂ξ
(1 , η) = 0 , (30)

and 

ϕ(ξ , 0) = 

∂ϕ 

∂η
(ξ , 0) = ϕ(ξ , 1) = 

∂ϕ 

∂η
(ξ , 1) = 0 . (31)

Following Mead, we choose for ϕ( ξ , η) ( Mead, 2003 , eq.(A.3)): 

ϕ(ξ , η) = 

M ∑ 

m =1 

N ∑ 

n =1 

A mn f m 

(ξ ) f n (η) , (32)

with 

f i (ξ ) = cosh (λi ξ ) − cos (λi ξ ) − cosh (λi ) − cos (λi ) 

sinh (λi ) − sin (λi ) 

(
sinh (λi ξ ) 

− sin (λi ξ ) 
)
. (33)

These are the modes of a 1-D beam clamped at both edges. For

odd-numbered i these functions are symmetric around ξ = 1 / 2 ,

for even values of i they are antisymmetric. The functions satisfy

f i (0) = f i (1) = f ′ 
i 
(0) = 0 , while f ′ 

i 
(1) = 0 leads to the characteris-

tic equation for λi : 

cosh (λi ) cos (λi ) = 1 . (34)

Using these functions the boundary conditions for the stresses are

automatically satisfied. 

We note that for high i these eigenvalues behave as λi ≈ (2 i +
1) π/ 2 . To circumvent numerical problems for high values of i , we

use an adapted formulation for f i , ( Mead, 2003 , eq. (A.5)). 

After substitution of (32) into (29) , we obtain a set of M × N

linear equations for A mn by multiplying (29) with f r ( ξ ) f s ( η), for r =
1 , 2 , . . . , N and s = 1 , 2 , . . . , M, and integrating the obtained equa-

tions over the surface of the plate. Due to the orthogonality of f i 
this process yields 

C : A = R , (35)

where A is the M × N matrix of the coefficients A mn , and C a 4-

tensor of O(M 

2 N 

2 ) . Using 

∫ 1 

0 
f 2 k (x ) d x = 1 , ∀ k, we find that its el-

ements are given by 

C mnmn = 2 γ 2 

∫ 1 

0 

(
f ′ m 

(ξ ) 
)

2 d ξ

∫ 1 

0 

(
f ′ n (η) 

)
2 d η + λ4 

m ̃

 E 

(
b 

a 

)
2 + λ4 

n 

(
a 

b 

)
2

(36)
or diagonal elements and by 

 rsmn = 2 γ 2 

∫ 1 

0 

f ′ r (ξ ) f ′ m 

(ξ ) d ξ

∫ 1 

0 

f ′ s (η) f ′ n (η) d η, (37)

or off-diagonal terms. The right-hand side R is an M × N matrix,

f which the elements are given by 

 mn = −
∫ 1 

0 

∫ 1 

0 

(
a 

b 
f ′′ m 

(ξ ) f n (η) + β
b 

a 
f m 

(ξ ) f ′′ n (η) 

)
H(ξ , η) d ξd η. 

(38)

pon solving (35) , we obtain the A mn ’s and, from (32) , a repre-

entation for ϕ( ξ , η). This method will be applied in Section 6 to

pecific cases. 

.2. Rayleigh–Ritz method 

We proceed with a Rayleigh–Ritz method to obtain an approxi-

ation, more specifically an upper bound, for the buckling thresh-

ld. This method will be based on the second von Kármán equation

10) , which, rewritten in the coordinates ξ and η, becomes here (
b 

a 

)
2 ∂ 

4 w 

∂ξ 4 
+ 2�

∂ 4 w 

∂ ξ 2 ∂ η2 
+ 

1 

˜ E 

(
a 

b 

)
2 ∂ 

4 w 

∂η4 

= μ

(
∂ 2 ϕ 

∂ξ 2 

∂ 2 w 

∂η2 
+ 

∂ 2 ϕ 

∂η2 

∂ 2 w 

∂ξ 2 
− 2 

∂ 2 ϕ 

∂ ξ∂ η

∂ 2 w 

∂ ξ∂ η

)
. (39)

nto this equation the solution for ϕ obtained in the preceding sec-

ion is substituted. From this equation we derive expressions for

he potential or strain energy U b due to bending ( w ) and for the

train energy U ϕ due to the in-plane stresses ( ϕ). The Rayleigh–Ritz

rinciple then states that the buckling value is equal to the mini-

um of the quotient of U b and U ϕ over the set of all kinematically

dmissible displacements w . However, since this set needs to sat-

sfy kinematic boundary conditions only and since the edges of the

late are free (only dynamic boundary conditions), we have no re-

trictions with respect to boundary conditions when choosing an

dmissible deflection field w ( ξ , η). For w we choose the represen-

ation 

 (ξ , η) = 

I ∑ 

i =1 

J ∑ 

j=1 

W i j g i (ξ ) g j (η) . (40)

he functions g i need to be linearly independent and they should

e chosen such that they span all possible deflection patterns. 

The out-of-plane part of the strain energy due to bending U b is

ound from (39) by multiplying the left-hand side of this equation

y w and then integrating it over the surface of the plate. After

ome integrations by part, in which the homogeneous boundary

onditions are used, this leads us to the expression for the strain

nergy due to bending (scaled, dimensionless), compare with Mead

2003 , eq. (7)); 

 b = 

∫ 1 

0 

∫ 1 

0 

((
b 

a 

)
2 

(
∂ 2 w 

∂ξ 2 

)
2 + 2�1 

∂ 2 w 

∂ξ 2 

∂ 2 w 

∂η2 

+ 

˜ E 

(
a 

b 

)
2 

(
∂ 2 w 

∂η2 

)
2 + 2�2 

(
∂ 2 w 

∂ ξ∂ η

)
2 

)
d ξd η, (41)

ith 

1 = νyx , �2 = 

G xy 

E x 
(1 − νxy νyx ) . (42)

n a more or less analogous way the work done by in-plane

tresses U ϕ is here obtained by multiplying the right-hand side of

39) by w , integrating over the surface of the plate and applying
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wo integrations by part, yielding 

 ϕ = 

∫ 1 

0 

∫ 1 

0 

(
∂ 2 ϕ 

∂η2 

(
∂w 

∂ξ

)
2 + 

∂ 2 ϕ 

∂ξ 2 

(
∂w 

∂η

)
2 −2 

∂ 2 ϕ 

∂ ξ∂ η

∂w 

∂ξ

∂w 

∂η

)
d ξd η.

(43) 

his energy is entirely due to the increase of moisture content and

an therefore also be called hygro-elastic energy . 

In a Rayleigh–Ritz procedure the buckling value for the mois-

ure content, represented here by the dimensionless parameter μ,

s found as the minimum of the Rayleigh quotient U b / U ϕ over the

hole set { W kl }. This means that the buckling value μ0 is found

y solving the eigensystem 

∂U b 

∂W kl 

− μ
∂U ϕ 

∂W kl 

= 0 , (44) 

or μ. In practice we restrict ourselves to a finite set of coefficients

 kl . 

After substitution of (42) we differentiate successively (41) and

43) with respect to W kl to obtain: 

∂U b 

∂W kl 

= 

I ∑ 

i =1 

J ∑ 

j=1 

W i j 

∫ 1 

0 

∫ 1 

0 

((
b 

a 

)
2 g ′′ k (ξ ) g ′′ i (ξ ) g l (η) g j (η) 

+ �1 

(
g ′′ k (ξ ) g i (ξ ) g l (η) g ′′ j (η) + g k (ξ ) g ′′ i (ξ ) g ′′ l (η) g j (η) 

)
+ 

1 

˜ E 

(
a 

b 

)
2 g k (ξ ) g i (ξ ) g ′′ l (η) g ′′ j (η) + 2�2 g 

′ 
k (ξ ) g ′ i (ξ ) g ′ l (η) g ′ j (η)

d ξd η. (45) 

nd 

∂U ϕ 

∂W kl 

= −
I ∑ 

i =1 

J ∑ 

j=1 

M ∑ 

m =1 

N ∑ 

n =1 

W i j A mn 

(
I 1 ,klmn − I 2 ,klmn − I 3 ,klmn + I 4 ,klmn 

)
, 

(46) 

ith 

 1 ,klmn = 

∫ 1 

0 

∫ 1 

0 

(
f m 

(ξ ) g ′ i (ξ ) g ′ k (ξ ) f ′′ n (η) g j (η) g l (η) 
)

d ξd η, (47a) 

 2 ,klmn = 

∫ 1 

0 

∫ 1 

0 

(
f ′ m 

(ξ ) g ′ i (ξ ) g k (ξ ) f ′ n (η) g j (η) g ′ l (η) 
)

d ξd η, (47b) 

 3 ,klmn = 

∫ 1 

0 

∫ 1 

0 

(
f ′ m 

(ξ ) g i (ξ ) g ′ k (ξ ) f ′ n (η) g ′ j (η) g l (η) 
)

d ξd η, (47c) 

 4 ,klmn = 

∫ 1 

0 

∫ 1 

0 

(
f ′′ m 

(ξ ) g i (ξ ) g k (ξ ) f n (η) g ′ j (η) g ′ l (η) 
)

d ξd η. (47d) 

. Numerical approach 

Besides the previous analytical solution approaches we also

onsider a numerical approach. For this Marc Mentat ( Marc, 2014 )

s used. It is especially suited to deal with nonlinear problems. The

ectangular plate is subdivided into rectangles by partitioning it

niformly. For the circular plate polar coordinates are used. The

adius and the angle are subdivided and edges of elements are lin-

arized. In the wetted region a finer grid will be used to better

apture the stress distribution. 

The simulations are performed using bilinear thick-shell ele-

ents. The thick-shell property of these elements indicates that

heir formulation is based on von Kármán theory, which makes

hem suitable for nonlinearities due to large deformations. 

The boundary conditions at the edges of the plate are not ex-

licitly imposed. By not restricting the boundaries in any way, the

ree edge boundary conditions are automatically satisfied. We do

eed to impose conditions to prevent rigid-body movement. Be-

ause the large deformations will occur near the edges, the center
s fixed in all directions. To induce displacement in the z -direction

e create an imperfection. We apply a small imperfection force to

he circular plate at the start of the simulation. This force is ap-

lied to all nodes in the outer circle to preserve axisymmetry and

o not produce any net moment. As for the rectangular plate, we

andomize the z -coordinates of the initial position to vary slightly

rom the reference position. Applying a uniform force as we do for

he circular plate would not break the symmetry and would not re-

ult in the wavy pattern observed in reality. During the simulation

he moisture content will be raised over time. At every time step

 static problem is solved using an iterative method, based on the

olution of the previous step. No inertia or vibration characteristics

re taken into account. Artificial damping is included to improve

onvergence of the nonlinear calculations. 

. Analytical and numerical results 

.1. Circular plate 

To compare various results from the two approaches for the cir-

ular plate, we will initially use the following values for the rele-

ant parameters: 

• R = 1 , 

• a = 0 . 1 , 

• E = 5 · 10 9 , 

• ν = 0 . 3 , 

• h = 0 . 01 (making the thickness of the plate 2 h = 0 . 02 ), 

• β = 0 . 001 , 

• χ = 1% . 

For these simulations an initial 1500 elements grid will be used,

he radial and tangential curves are subdivided into 30 and 50

ections respectively. Then, each element in the moistened part is

ubdivided into 3 elements in the radial direction, increasing the

otal number of elements to 1800. For these parameter values, the

wo in-plane stress components, given by (17) and (18) are shown

n Fig. 2 . 

We note that the radial stress is indeed continuous and it van-

shes at r = 1 , as imposed by the boundary conditions. Apart from

he difference near the center of the plate at r = 0 , these re-

ults are similar to those obtained analytically. The discrepancy is

aused by the boundary conditions imposed at the center, needed

o prevent rigid-body movements in the numerical simulation,

aving a very local effect only. 

Also the displacement in the radial direction is calculated. The

omparison between the analytical solution and the numerical so-

ution for this quantity is made in Fig. 3 . An excellent agreement

s observed. Also the continuity condition at r = a is satisfied. 

.2. Parameters determining the buckling threshold 

Now that we have briefly verified that the numerical simulation

rovides results similar to the analytical solution for the circular

late reference problem in the pre-buckling situation, we move on

o the onset of buckling. As an illustrative example, the vertical

isplacement of a node at the edge of the plate resulting from the

umerical simulation is shown in Fig. 4 , using the parameter val-

es given in the previous section, but for increasing χ . The buck-

ing threshold χ0 is clearly discernible. 

In Fig. 5 we show the buckling mode, as obtained through nu-

erical simulation. 

The deflection pattern of the plate immediately after buckling

an be obtained through analytical methods, but we should disre-

ard the values on the vertical axis, since the analytical approach

oes not provide a unique solution for the magnitude of the dis-
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Fig. 2. Distributions of radial and tangential stress in radial direction, from the analytical method (in black) and from the numerical simulation (in red), for the parameter 

values given in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Distribution of the radial displacement in radial direction, obtained from the analytical method (in black) and from the numerical simulation (in red), for the 

parameter values given in the text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Vertical displacement of a node along the edge versus the moisture content 

for the parameter values given in the text. 

 

 

 

 

 

Fig. 5. The buckling mode, obtained through numerical simulation. 
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placement, due to nonlinearity. A good agreement in pattern is ob-

served in Fig. 6 .. 

Looking at the structure of system (28) , we see that the di-

mensionless buckling parameter χ0 depends on E, β and h only

through μ. Here, we have from (12) , with νxy = νyx = ν and L = R,

that μ = 3(1 − ν2 ) βχR 2 /h 2 , or, in dimensional parameters, 

χ0 = 

(
h 

R 

)
2 1 

3(1 − ν2 ) β
μ0 (a/R ) . (48)
We note that this expression is independent of Young’s modu-

us E and conclude that E has no influence on the buckling thresh-

ld χ0 . Physically this is evident as both the out-of-plane strain

ending energy and the in-plane hygrothermal energy are propor-

ional to E as can be seen from the corresponding expressions

41) and (43) for the rectangular plate. The effect of varying the

elevant parameters individually from the previously used values

hould give us a first glance at the influence of each of them on

he buckling threshold. The buckling threshold χ0 is proportional

o ( h / R ) 2 and inversely proportional to β and 1 − ν2 . The effect of

arying the relevant parameters from the values given in the pre-

ious section is shown in Fig. 7 . 
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Fig. 6. Comparison of the two methods in determining the deflection pattern of the plate immediately after buckling. On the horizontal axis r is varied between the center 

and the edge of the plate. 

Fig. 7. Buckling threshold according to analytical approach versus (a) half of the plate thickness, (b) radius of the wet circle, (c) radius of the plate and (d) Poisson’s ratio. 
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From physical considerations, we would expect that a plate that

s not wetted (a = 0) , or homogeneously wetted (a = R ) , will not

uckle for any value of the moisture content χ . These instances ap-

ear in Fig. 7 (b) as asymptotes. In Fig. 7 (c) the buckling threshold

onverges to a certain limit as R → ∞ , this has been verified. This

uggests that for large values of R the effect of increasing the rela-
i  
ive size of the dry part R / a and of decreasing the relative thickness

f the plate, h / R balance each other in (48) . 

.3. Comparison of the analytical and numerical results 

We explore the boundaries of the parameter values the numer-

cal and the analytical method can handle, staying in accordance
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Fig. 8. Buckling threshold versus half of the plate thickness, h , numerical (black dots) and analysis (blue line). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

(a) (b)

Fig. 9. Numerically (black dots) and analytically (blue line) computed buckling threshold for (a) low and (b) high values of wetted-circle radius. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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with one another. Fig. 8 shows the dependence on h for both

methods. In this and the other figures in this section, all the re-

maining parameter values are the same as in the beginning of this

chapter. We see a good agreement for h ≤ 0.02. The discrepancy for

larger values of h is inherent to the limited validity of the von

Kármán model: the thickness to radius ratio becomes more than

1/25, while we assumed that the thickness is negligible compared

to the in-plane dimensions. Ventsel and Krauthammer (2001 , Ch.

7.3) suggest that ratios below 0.05 should provide good results. The

model is suitable to model for a paper sheet, with a thickness-to-

width ratio of O(10 −3 ) . 

When the wetted part of the plate becomes either large or

small, this could cause problems in the numerical simulation. The

high buckling threshold χ0 causes a long running time and may

induce convergence problems. Moreover it could be difficult to

capture the behavior of the small region in the numerical simula-

tion. For small values of a extra attention is paid to this in setting

up the simulation, since the boundary conditions to prevent rigid-

body movements are imposed at the center. A comparison between

simulation and analysis for various values of a is made in Fig. 9 . 

The numerical results agree well with the analytical ones. The

dependence of the buckling threshold on R is shown in Fig. 10 . An
t

xcellent agreement is observed, even for small values of R down

o twice the moistened part of the plate (a = 0 . 1 ). 

Now that we have explored the behavior of the buckling thresh-

ld near the limits of the admissible parameter values, we will

onsider a range of parameter values comparable to the wetting

f paper. The parameter values considered are: 

• ν = 0 . 1 , 0.4, 

• R = 0 . 1 , 1, 

• R/a = 2 , 20, 

• R/h = 50 0 , 50 0 0. 

The material properties of the paper sheet in most paper wet-

ing situations will be inside this range of values. We compare

umerical simulation results to analytical results for these 16 in-

tances. The results are given in Table 1 . The results from the nu-

erical simulation agree well with the analytically obtained values

f the buckling threshold. We conclude, based on the results for

his reference problem, that the numerical simulation and the an-

lytical method agree well with each other in describing the wet-

ing of a paper sheet up to the onset of buckling. 



R. de Böck et al. / International Journal of Solids and Structures 128 (2017) 296–308 305 

Fig. 10. Numerically (black dots) and analytically (blue line) computed buckling threshold versus plate radius. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 11. The moisture distributions used for (a) plate 1, with the moisture penetrating up to 1/4th in both directions, and (b) plate 2, 3 and 4, with the moisture penetrating 

up to 1/10th in both directions. 
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.4. Rectangular plate 

To compare the results for rectangular plates obtained by

umerical simulation with those obtained by the Rayleigh–Ritz

ethod, we consider the following four reference plates: 

• Plate 1: square 1 m × 1 m , isotropic plate with E = 10 9 Pa , h =
0 . 0 0 05 m and ν = 0 . 3 exposed to the moisture profile shown

in Fig. 11 (a), 

• Plate 2: 1 m × 1 . 5 m , same isotropic plate as plate 1, exposed

to the moisture profile shown in Fig. 11 (b), 
• Plate 3: 1 m × 1 . 5 m orthotropic plate with h = 0 . 0 0 05 m , E x =
8 · 10 9 Pa , G xy = E y = 2 · 10 9 Pa , νxy = 0 . 3 , νyx = 0 . 075 , βy =
5 βx , exposed to the moisture profile shown in Fig. 11 (b), 

• Plate 4: 0 . 2 m × 0 . 3 m orthotropic plate with otherwise the

same parameter values as plate 3, exposed to the moisture pro-

file shown in Fig. 11 (b). 

The numerical simulations are carried out using a 30 × 30 grid

or plate 1 and a 30 × 45 grid for the other plates. The in-plane

tress profiles of the pre-buckled plate 1 obtained by means of

oth methods are compared. As we can see in Figs. 12 , 13 and 14 ,

he stress profiles obtained by means of the analysis are similar to
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Fig. 12. Stress σ xx in plate 1 obtained by (a) numerical simulation and (b) analysis. 

Fig. 13. Stress σ yy in plate 1 obtained by (a) numerical simulation and (b) analysis. 
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(  
the results of the numerical simulation. This comparison is made

for the other three plates under consideration as well, also show-

ing this resemblance. However, the numerically obtained stresses

contain a discontinuity that cannot be described by the smooth

functions we use in the analytical solution. 

Next we use the Rayleigh–Ritz method to approximate the

buckling thresholds for the plates, and compare the results to

the values obtained in the numerical simulation. The Rayleigh–

Ritz method is applied by approximating the clamped beam func-

tions (33) with a Fourier series for efficiency purposes. We also

make use of the symmetry in the plates to improve the computa-

tional efficiency of the numerical simulation. As coordinate func-

tions for the deflection we use a Fourier cosine series, with the

terms symmetric with respect to 1/2. Trials are executed with var-
l  
ous amounts of terms. It shows that adding terms beyond 10 does

ot substantially change the results. 

The Rayleigh–Ritz method is well-suited to quickly obtain an

pper bound for the buckling threshold. Even a crude estimation

f the deflected shape will result in a good approximation of the

uckling threshold. Finding the buckling shape of the plate is a

ore time-consuming task with this approach. Table 2 gives the

uckling threshold for the four plates. 

In all four cases, the buckling threshold obtained using the

ayleigh–Ritz method is about 10% higher than the value from the

umerical simulation. 

Fig. 15 shows the buckling modes, corresponding to the three

owest critical moisture contents, i.e. the first three solutions to

44) , for plate 3. These results have been obtained with the ana-

ytical method. The FEM-model gives similar results. We see that
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Fig. 14. Stress σ xy in plate 1 obtained by (a) numerical simulation and (b) analysis. 

Fig. 15. The modes corresponding to the first three eigenvalues of plate 3, obtained through Rayleigh–Ritz analysis. 

Table 1 

Numerically (Marc Mentat) and analytically obtained buckling threshold 

for various relevant combinations of parameter values. 

ν R R / h R / a χ0 , Marc Mentat χ0 , Rayleigh–Ritz 

0.1 0.1 500 2 0.036 0.036 

20 1.5 1.5 

50 0 0 2 0.0021 0.0021 

20 0.015 0.015 

1 500 2 0.036 0.036 

20 1.5 1.5 

50 0 0 2 0.0 0 036 0.0 0 036 

20 0.016 0.015 

0.4 0.1 500 2 0.048 0.048 

20 1.8 1.8 

50 0 0 2 0.0 0 048 0.0 0 048 

20 0.019 0.018 

1 500 2 0.048 0.048 

20 1.9 1.8 

50 0 0 2 0.0 0 048 0.0 0 048 

20 0.019 0.018 

t  

p

7
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a  
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c  

Table 2 

Analytically and numerically computed buckling thresholds for the four plates. 

Plate βx χ , Rayleigh–Ritz βx χ , Marc Mentat 

1 8 . 1 × 10 −8 7 . 5 × 10 −8 

2 6 . 2 × 10 −8 5 . 6 × 10 −8 

3 2 . 8 × 10 −8 2 . 6 × 10 −8 

4 7 . 0 × 10 −7 6 . 4 × 10 −7 
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fl
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t  

h  

c  

t  

t  
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h
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R  
he higher the order of the modes, the more dominant the wavy

attern becomes. 

. Conclusions 

The shape of paper sheets is strongly influenced by non-

niform water absorption. In this study, we specifically looked

t in-plane moisture differences. When the differences in mois-

ure content become large enough, the sheet will buckle. In the

ase considered here, large out-of-plane deformations occur at the
dges, forming a wavy pattern and causing the paper to lose its

atness required for printing purposes. 

An isotropic circular plate with a moistened center has been

onsidered. A method to determine the stresses, the buckling

hreshold, and the buckling mode in terms of Bessel functions

as been presented. Numerical solutions of this problem are

onsistent with these analytical solutions, for various values of

he relevant parameters. Both solution methods show that of

he parameters considered, the buckling threshold is hardly in-

uenced by material properties, apart from the coefficient of

ygro-expansion. 

To approximate the buckling threshold of a rectangular or-

hotropic plate with moistened edges a variational method has

een presented. First the stress function has been determined

olving the variational form of the in-plane part of the von Kár-

án equations for the initial, flat configuration, and from this

he in-plane stresses have been found. A numerical method ap-

lied to this problem has shown to provide similar results for

hese stresses. Next this stress function has been incorporated in a

ayleigh–Ritz method to approximate the buckling threshold. The
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V  
buckling threshold has been calculated for four reference plates

by both methods. This showed that the numerical simulation is

consistent with the Rayleigh–Ritz method. Both buckling values

for all four cases are of the same order of magnitude, certainly

within the accuracy expected in industrial applications. Moreover,

the Rayleigh–Ritz values are all somewhat higher than the numer-

ical ones. This is to be expected, since, as discussed in Section 4.2 ,

the Rayleigh–Ritz method always gives an overestimate for the

buckling value. The analytical and numerical methods are consis-

tent with one another. 
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