
Journal of Computational and Applied Mathematics 310 (2017) 44–58

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Infotaxis in a turbulent 3D channel flow
A.W. Eggels a,∗, R.P.J. Kunnen b, B. Koren a, A.S. Tijsseling a

a Centre for Analysis, Scientific Computing and Applications, Department of Mathematics and Computer Science, Eindhoven University
of Technology, The Netherlands
b Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology, The Netherlands

a r t i c l e i n f o

Article history:
Received 31 January 2016
Received in revised form 22 April 2016

Keywords:
Infotaxis
CFD
Mixing
Search algorithm

a b s t r a c t

In this paper, the infotaxis-based search algorithm is tested in several simulated turbulent
channel flows. The algorithm is adapted to detect plumes of high concentration instead
of independent particles. Direct numerical simulation is used to test this adapted search
algorithm by detection of high concentration levels in turbulent channel flows with a
Schmidt number Sc of 1.0 and Reynolds numbers Re of 5600 and 28000.

For the direct numerical simulation with the adapted algorithm, there is a positive
relation between the initial distances to the source and the running time, which holds for
Re = 5600 but which is not observed at Re = 28000. This is caused by the low Schmidt
number and the high velocity, which leads the searcher to the source very fast after the
first detection of a high concentration level.

The search algorithm is also tested in reverse to detect whether a fluid is well-mixed.
The time required for a detection of a too high or low concentration and the number of
detections are used as measures for success. By applying the algorithm to some prescribed
concentration distributions in two dimensions, it is found that themethod is very sensitive
to the threshold values for the mixing indicators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

There must be a reason why insects in a garden follow a zigzag pattern most of the time. By turbulent mixing, regions
of high concentrations of odour disconnect into random patches of odour, which makes gradient searching an ineffective
strategy to find the source, i.e., the flowers. Hence, another strategy is needed, which should incorporate the availability of
only sparse and partial information. One strategy available is called infotaxis. This strategy locally maximises the expected
gain in information. This gain can be measured by means of an entropy function. Using information which the searcher
receives during its search, a probability distribution can be computed which is based on the information available.

The infotaxis strategy search algorithm has been proposed by Vergassola et al. [1] and it was tested by experimental
data on mixing flows. Moraud and Martinez [2] assessed the performance of infotaxis by combining robotic experiments
and simulations. They concluded that the biomimetic characteristic of infotaxis (i.e., the zigzag pattern) is conserved when
a robot is searching in a real environment. Barbieri et al. [3] presented a continuous-space version in both two and three
dimensions which was analysed both analytically and numerically. Masson et al. [4] and later Karpas and Schneidman [5]
extended infotaxis to group behaviour, where each individual tries to maximise its own information, but is also able to use
information from others.
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The infotaxis algorithm can be applied more broadly, for example to find oil in water when an oil pipeline on the bottom
of the ocean is leaking, or when air around an industrial zone is polluted with some chemical. While these situations vary in
dimensions, substances involved and other conditions, the general idea of searching the source by using only the information
of small patches of some material (measurable in concentration) stays the same.

First, in Section 2, the infotaxis algorithm will be explained. Afterwards, we explain the setup of the simulated flow in
Section 3. We have a channel flow which is governed by the Navier–Stokes equations and solved by a direct numerical
simulation. This is done for two turbulent flows with Reynolds numbers 5600 and 28000. This flow is periodic in the
streamwise and spanwise direction, and bounded by plates in the normal direction. The setup of the algorithm is given
in Section 4 and the results are presented in Section 5. The source of substance is continuous and the flow of the emitted
concentration is calculated by an upwind discretisation, while the searcher is bounded to move on a computational grid.

Furthermore, in Section 6, the infotaxis algorithm is used to find an inverse result: whether a fluid is well-mixed or not.
Too high or too low concentrations might indicate a source or sink, which is absent in a well-mixed fluid.

The conclusion is in Section 7 and recommendations for further research are in Section 8.

2. Infotaxis

Infotaxis is a search algorithm to find a source of some detectable substance, which can vary from odour traces to oil and
from poisonous gases to pollen which cause hay fever. All these examples have one thing in common: they diffuse in the
carrier fluid and their traces are sparse and whimsical. Conventional search algorithms often use gradients: the source will
often be found if the searcher moves towards the direction with the highest concentration of detectable substance. This will
not work here because the traces are sparse. This is where infotaxis comes into play.

The infotaxis algorithm is not based on gradients, but on the expected gain of information. This information consists of a
calculated probability density of the presence of a source at certain positions in the search area. By making use of properties
of the carrier fluid and the detectable substance, one can estimate the probability that the substance is detected at a certain
position in space. By waiting some time at one position, the searcher tries to detect the substance. These detections are
called hits. Both when substance is and is not registered, this gives new information for the probability density. From this
density, it is decided which of the following two options is executed: the searcher moves to a neighbouring position or stays
at the same position, according to which of the two options is expected to givemore information. This procedure is repeated
until the source is found.

The properties of the carrier fluid and the detectable substance are represented in the expected rate function R(r|r0),
which is the expected rate of hits per unit of time at position r = (x, y, z) given the (unknown) source position r0 =

(x0, y0, z0). The choice of R(r|r0) is not crucial for the algorithm to succeed. Most often, R(r|r0) is derived from a simple
analytical model [1–8]. In this case, it is assumed that the substance satisfies the advection–diffusion equation with a source
term, as given in the following equation for unidirectional flow

0 = V∇xC(r|r0) + D1C(r|r0) −
1
τ
C(r|r0) + Sδ(r, r0), (1)

in which V is the crossectional average velocity in the x-direction, C the concentration of the substance, D the isotropic
diffusion coefficient, τ the lifetime of the substance once emitted, S the emission rate of the source and δ the Kronecker
delta. This equation does not contain time, hence it can be seen as the time-dependent advection–diffusion equation which
has converged to a steady state after some time, with the initial condition of zero concentration everywhere. The convection
is only in the x-direction for reasons of convenience. In 3D, the solution of Eq. (1) is [6]:

C(r|r0) =
S

4πD |r − r0|
exp


−(x0 − x)V

2D


exp


−

|r − r0|
λ


, λ =


Dτ

1 +
V2τ
4D

, (2)

and the expected rate of encounters is given by

R(r|r0) =
aS

|r − r0|
exp


−(x0 − x)V

2D


exp


−

|r − r0|
λ


, (3)

in which a represents the radius (and size) of the searcher. Eqs. (2) and (3) hold when the mean velocity V is in the
positive x-direction. To make use of this expected rate of encounters, a probability distribution P(t, r0) is used, which
gives the probability at time t that the source can be found at place r0. When starting the algorithm, the probability is
equal everywhere in the search space. It is assumed that the detections of individual hits are independent, and hence
the detections follow a Poisson process. This is not necessary though for the infotaxis algorithm, infotaxis also works for
correlated detections. In this way, the probability at each position r0 might be updated after a time δt using the rate of
encounters R(r|r0) given the position of the searcher r and the number of hits η detected by

P(t + δt, r0) = P(t, r0) (R(r|r0))η eδtR(r|r0)/Zt , (4)
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inwhich Zt is a normalising constant. Hence, r is not a direct, but an indirect argument of P . Also, when the searcher arrives at
a location where no source is present, then the probability of that location is set to 0. Furthermore, this position is excluded
from the entropy calculations which are explained next.

From this local probability function only, it is not clear at first sight inwhich direction the searcher shouldmove.Wewant
a function which maps the whole probability function to one scalar which is easier to interpret. The goal is to maximise the
expected gain of information and therefore, Shannon’s entropy is used:

ES = −


P(x) log(P(x)) dx, (5)

in which the integral encloses the whole search area. This is an entropy which becomes 0 when the probability density
becomes a delta function, i.e., when the source is found with certainty. Also, the entropy decreases when more information
is available. This will be the main step in the search algorithm: for each neighbouring position of the searcher, the decrease
in entropy is calculated by

1ES(r → rj) = P(t, rj)(−ES) + (1 − P(t, rj))


∞
k=1

ρk(rj)1ESk


. (6)

The first term on the right-hand side represents the probability that the source is found, which would reduce the entropy
to 0. The second term represents the probability that the source is not found, but k hits are registered, which also decreases
the entropy. In practice, the infinite sum will be truncated at a certain number kmax. In our case, we alter the definition of a
hit (Section 4.1.2), which leads to only having zero hits or one hit. The function ρk represents the probability that k hits are
registered, which is calculated by the Poisson law:

ρk = hke−h/k!, h(rj) = 1t


P(t, r0)R(rj|r0) dr0 (7)

for independent detections. It has to be kept in mind that in this case, to calculate ρk, it is known that P(t, rj) = 0, because
the source was not found.

The searcher then chooses the neighbouring position with the largest decrease in entropy, or stays at the same position
if this is the better option.

3. Setup of the flow

We now want to apply the infotaxis algorithm to two flows given by the numerical solution of the time-dependent
Navier–Stokes equations in a channel geometry, with a passive scalar released by a point source. This gives a situation in
which no particles, but a concentration above a certain threshold will be detected.

Therefore, we will explain in this section the setup and the discretisation of the two flows. In these cases, the equations,
constants, parameters and variables are dimensionless.

3.1. Parameters

The algorithm will be executed for two setups which have different Reynolds numbers Re. Re = 5600 for the first setup
and 28000 for the second setup. The source will release its substance in a fully developed turbulent flow, with a strength
S = Smax = 1.0 · 10−7. To do so, the velocity field will be simulated until the flow is fully developed at some time Tdev. This
Tdev will be given in Sections 3.4.1 and 3.6.1. The dimensionless dimensions of the channel are X × Y × Z = 2π × 1×π and
the grid has size nx × ny × nz = 64 × 64 × 32 resp. 64 × 128 × 32, in which x is the streamwise, y the normal and z the
spanwise direction. The grid has a uniform spacing in x and z, while in the y-direction the grid points yi, i = 0, . . . , ny/2 are
given by

yj =
sinh(γ j/ny)
2 sinh(γ /2)

, γ = 6.5. (8)

The linear pressure drop is in the x-direction with a given mass flow ρYZU with density ρ of 1 and average velocity in the
x-directionU = 1.0 resp. 5.0. The spatial discretisation is fourth-order and the time step is1t = 1.25·10−3 resp. 5.00·10−4.

In this way, the first situation is the same as in [9] and these reference data for the characteristics of the flow are available.

3.2. Simulation of the flow

The flow is simulated with the method proposed by Verstappen and Veldman [10]. The goal of their approach is to
discretise the Navier–Stokes equations in such a way, that the difference operators have the same symmetry properties
as their differential counterparts. This means that the convective operator should be skew-symmetric and the diffusive
operator symmetric and positive-definite. In this way, the given discretisation is stable on any grid, and conserves the total
mass, momentum and kinetic energy (when no physical dissipation occurs).
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3.3. Modelling and simulation of the scalar

3.3.1. Modelling of the point source
The point source is modelled by several smaller point sources to improve the numerical stability. Suppose the total

strength of the sources combined is given by an integer N . Then the central point source is taken 4 times stronger than
its direct neighbours, and these are twice as strong as the indirect neighbours. Considered as a cube of 27 blocks, the corners
have no point source, the blocks in the middle of an edge have relative strength 1, the blocks in the middle of the outside
planes have relative strength 2 and the block in the centre has relative strength 8. Adding these relative strengths adds up
to 52, hence N = 52. The absolute strengths can then be calculated as the relative strength divided by N and multiplied
by S. The values are based on quadratic decay, and the source in the centre has no distance to the centre, hence its value is
undetermined and can be chosen freely.

3.3.2. Numerical integration of the scalar equation
We use the non-dimensionalised advection–diffusion equation:

∂C
∂t

+ u · ∇C =
1
Pe

∇
2C, (9)

in which C is the concentration of the scalar and Pe the Péclet number given by Pe = Re · Sc with Sc the Schmidt number
which is the ratio of kinematic viscosity ν to mass diffusivity D.

When Pe > 2, then a central difference scheme causes oscillations, as described by Versteeg and Malalasekera [11]. This
can be overcome by calculating the fluxes locally by an upwind discretisation scheme, for example as given in [12]. Here,
the flux at the right boundary of a grid cell at position (i, j, k) with velocity (u, v, w) is calculated in the following way:

if ui,j,k ≥ 0 then f =


1

Pe(xi+1/2 − xi−1/2)


Ci+1,j,k − Ci,j,k


− ui,j,kCi,j,k


(yj − yj−1)(zk − zk−1),

else f =


1

Pe(xi+1/2 − xi−1/2)


Ci+1,j,k − Ci,j,k


− ui,j,kCi+1,j,k


(yj − yj−1)(zk − zk−1).

For the upper and top boundary, the calculation is analogous, for the left, lower and bottom boundary, the flux has a
minus sign. Time integration is performed by calculating the fluxes F using the previous velocities (F n

= f (un)) and
Cn+1
i,j,k = Cn

i,j,k + 1tF n
i,j,k.

Boundary conditions are taken as follows: at y = ymin = 0 and y = ymax = 1, vi,0,k and vi,ny,k = 0, hence Neumann
boundary conditions reduce to Ci,0,k = Ci,1,k and Ci,ny+1,k = Ci,ny,k. At z = zmin = 0, the flux through the wall should be
equal to zero, hence

if wi,j,0 ≥ 0 then Ci,j,0 = Ci,j,1
−1

Pe(z1/2 − z−1/2)


−1
Pe(z1/2−z−1/2)

− wi,j,0

 ,

= Ci,j,1
1

1 + Pe(z1/2 − z−1/2)wi,j,0
,

else Ci,j,0 = (1 − Pe(z1/2 − z−1/2)wi,j,0)Ci,j,1.

Similar for z = zmax = π :

if wi,j,nz ≥ 0 then Ci,j,nz+1 = Ci,j,nz

1 + Pe(znz+1/2 − znz−1/2)wi,j,nz


,

else Ci,j,nz+1 = Ci,j,nz
1

Pe(z1/2 − z−1/2)


1
Pe(z1/2−z−1/2)

− wi,j,nz

 ,

= Ci,j,nz
1

1 − Pe(z1/2 − z−1/2)wi,j,nz
.

For x = xmin = 0, the boundary condition is similar to z = zmin = 0. For x = xmax = 2π , Cnx+1,j,k = 0.

3.4. Mean values for Re = 5600

3.4.1. Flow
The steadying time of Tdev = 1500δt as proposed in [10] turned out to be a good choice. The equations are made dimen-

sionless by the channel width and the average streamwise velocity. Also, for the situations with Tmax = 1500δt , another
1500 time units have been simulated and averaged, to get rid of transient effects. These averages have been compared to
data publicly available from [9]. The agreement between the two results is good, except for the spanwise root mean square
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Fig. 1. Estimation of the turbulent diffusion coefficient ΓT for Re = 5600—the values are only valid when positive; the y-axis has been adapted for this
purpose.

velocity fluctuations. This is probably a remnant of the applied initial condition leading to a slight up/down asymmetry. The
initial conditions, chosen to increase the generation of turbulence, appear to give a very small flux upward of 0.002 in the
spanwise direction, compared to π in the streamwise direction.

3.4.2. Scalar
The scalar will not be released continuously, but periodically, to avoid one plume being detected (almost) everywhere.

This is done to make a situation where chemotaxis would not work. Because of the low Schmidt number, the plumes will
not break into complex structures. This periodic release of a scalar will also decrease the number of hits, which will make
the search more difficult. The source function for the scalar is given by

S(t) = Smax max {0, sin (π t)} . (10)

3.4.3. Diffusion
In order to find the turbulent diffusion for the scalar, we use the gradient-diffusion hypothesis as described in [13], which

states that the turbulent scalar diffusivity ΓT (x, t) can be approximated by

⟨v′C ′
⟩ = −ΓT

∂⟨C⟩

∂y
, (11)

for a mean flow which is only a function of the wall-normal coordinate y. It is not crucial to know the exact value of the
turbulent diffusion for the infotaxis algorithm to work properly if the error is not too large, as is pointed out in [14]. On the
other hand, a good estimate will not reduce the performance of infotaxis.

The calculated values for ΓT are given in Fig. 1, from which it is visible that the turbulent diffusion coefficient is lower
than expected. This is for a continuous point source of strength S = 1.0 · 10−7 at position (5, 28, 12) with Sc = 0.57. This
continuous source is chosen to avoid the effects from the periodic source. The source position y28 in the grid corresponds to
y = 0.3163. This is not the position where the turbulent diffusion coefficient is at its maximum. The peak at around y = 0.2
is an effect of the initial condition which averages out in time.

3.5. Implications

This result gives that, with a Schmidt number smaller than 1, almost no turbulent diffusion occurs. In this case, it is
possible that other search strategies are more efficient, but we are interested in the case of sparse traces. Because of the
numerical method, it is not feasible to increase the Schmidt number to large values, such as, e.g., 1000. To enlarge the
diffusion a little bit, we change the Schmidt number from 0.57 to 1.0, which gives a Péclet number Pe of 5600. A solution
for this could be a change in the function which calculates the expected number of hits. For this, the Gaussian plume model
will be used in Section 4. Also, the registration of hits will be adapted.

3.6. Mean values for Re = 28 000

When the Reynolds number is increased, the characteristics of the flow will change. The corresponding characteristics
of the flow and the scalar will be shown in this subsection.
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Fig. 2. Estimation of the turbulent diffusion coefficient ΓT for Re = 28 000—again, the values are only valid when positive and the y-axis has been adapted
accordingly.

3.6.1. Flow
The averaging time is now Tdev = 2000δt and the average velocity has increased by a factor 5. This results in a flow with

larger velocity gradients at the walls, which should increase the intensity of turbulence. For this Reynolds number and the
corresponding Reynolds number based on the wall shear velocity Reτ of 630, calculated at the gridpoint at y = 0.0131, no
reference data is available.

3.6.2. Scalar
The source function for the scalar is now given by

S(t) = Smax max {0, sin (5π t)} . (12)

3.6.3. Diffusion
In the same way as before, ΓT is calculated. The calculated values for ΓT are given in Fig. 2, from which it is visible that

the turbulent diffusion coefficient is again very low. This is for the periodic point source given in the previous subsection, of
strength S = 1.0 · 10−7 at position (5, 56, 14) with Sc = 1.0.

4. Setup of the algorithm

The infotaxis algorithm, and in particular the expected rate function, was based on the fact that the flow followed the
advection–diffusion equationwith a source term. This has to be adapted to a rate functionwhich incorporates the behaviour
of the turbulent channel flow. As a basis for this, we choose the Gaussian plume model. In the Gaussian plume model, the
concentration profile is given by

C(r|r0) = C(x, y, z, x0, y0, z0) =
S

2πUσyσz
exp


−(y − y0)2

2σ 2
y

+
−(z − z0)2

2σ 2
z


, (13)

with S the strength of the source, U the average velocity in the x-direction and σy and σz to be determined. These two
parameters also contain the x-dependence of the model. For this, we choose the following expression:

σy = min


v′2 (x − x0)
U

, αDy


, (14)

and analogous for σz , in which α is a shape parameter and Dy the diameter of the channel in the y-direction. Also, when
(x − x0) < 0, then C = 0.

To calculate R(r|r0), C(r|r0) needs to be multiplied by a2 and by Q , which is a scaling parameter which includes also the
strength of the source and the threshold value of the concentration, hence

R(r|r0) =


a2Q

2πUσyσz
exp


−(y − y0)2

2σ 2
y

+
−(z − z0)2

2σ 2
z


, (x − x0) > 0,

0, (x − x0) ≤ 0.

(15)

This gives the unfortunate result of R(r0|r0) = 0, but fortunately this value will never be assigned in the simulation.
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(a) Scalar field, log10-scale.

(b) Expected rate of encounters for α = 0.2.

Fig. 3. Comparison of measured data with expected rate of encounters for several values of α at z14 for T = 1600 and Re = 5600. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

4.1. Parameters

The Reynolds number is 5600 resp. 28 000 and the Schmidt number is 1.0, which leads to Pe = 5600 and Pe = 28 000,
respectively. The source of the scalar is set in the grid points (5, 28, 14) and (5, 56, 14), respectively. The searcher always
starts at a random position L in the grid bounded by L ∈ {[15, 35] × [1, 9] × [8, 24]}.

The experiments are executed one after the other, and the searcher starts for Re = 5600 at Tdev = 1500 and for
Re = 28 000 at Tdev = 2000 in a flow that is developed. The parameters for the search algorithm are as follows: the waiting
timeW is equal to δt , i.e., to 800 and 2000 time steps 1t , respectively.

The diameter 2a of the searcher is 2π/64, such that it equals the grid size in the x- and z-direction. For the y-direction,
the algorithm is adapted such that it also looks at neighbouring cells if necessary, which gives a different y-grid with 10
grid points in the y-direction. Hence, there are two y-grids: one for the flow simulation and one for the algorithm. Q is
determined to be 4. The mean velocity in the flow direction V equals 1.0 resp. 5.0. The threshold value of the searcher for
the concentration is calculated to be 10−10.1

≈ 7.9 · 10−11 and 10−10.75
≈ 1.7 · 10−11, respectively, in Section 4.1.2.

We will calculate the parameters for the search algorithm beforehand, using the characteristics of the flow. Of course, it
is better if these parameters are estimated during the execution of the algorithm, but to test whether the algorithm works
properly, we estimate them beforehand. Here, the same holds as for the estimation of the diffusion coefficient: it is not
crucial for the infotaxis algorithm to work to have the correct value, as long as the error is not too large.

4.1.1. Calculation of


v′2 and


w′2

To calculate this, we simulate the flow a short time, starting at Tdev. Then,


v′2 is integrated from y = 0 to y = 1 by
means of a Riemann sum and analogously for


w′2 from z = 0 to z = π . This gives for Re = 5600:


v′2 = 0.0472 and

w′2 = 0.0539, while for Re = 28 000:


v′2 = 0.1264 and


w′2 = 0.1878.

4.1.2. Estimation of the shape parameter α and hit registration level
These are estimated by comparing figures of the simulation with figures with prescribed values for α. For clarity, we will

show the figures for Re = 5600 and α = 0.2 at z14, which is the plane with grid coordinate z = 14, in Fig. 3. The other
figures can be found in [15]. The green–yellow figure indicates simulated values,while the rainbowcolours indicate expected
values. Because of the very small values, we plotted the 10 log-values of the concentration and expected rate of encounters.
For Re = 5600, we choose α = 0.2 and register a hit if in more than half of the staying time a signal is registered. For
Re = 28 000, we choose α = 0.01 and register a hit if in more than 35% of the staying time a signal is registered.

5. Results of infotaxis in a 3D turbulent flow

In this section, we will give the results of applying the infotaxis algorithm for Re = 5600 and Re = 28 000. These results
consist of the trajectory of one of the simulated searches, an estimated relation between distance and search time and an
estimated relation between time and success.
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(a) Search trajectory for Re = 5600—the search starts at (32, 3, 11) and
finishes at (6, 4, 14) after 362 time steps and 15 hits. The hits are indicated
with asterisks.

(b) Corresponding entropy for the trajectory in (a).

Fig. 4. Search trajectory and corresponding entropy for Re = 5600. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

5.1. Trajectories

In Figs. 4 and 5, some of the simulated search trajectories are depicted. The colour indicates time, with dark blue at the
beginning evolving to red at the end. It is observed in Fig. 4(a) thatwhen finding the first two hits, the algorithm increases the
z-position of the searcher, which results in (almost) no further hits. Hence, the searcher returns and continues its search at
a lower z-coordinate (with more success). The trajectory depicted in Fig. 5(a) first searches with constant x-coordinate until
a hit occurs and continues in a straight line to the source. The trajectory depicted in Fig. 5(c) fails. The first hit occurs quite
fast, but the entropy decreases too fast, which results in very slow moving from (13, 3, 13) onwards and a failure because
the entropy becomes less than the threshold value and does not see the source as the position with the highest probability.
In this case, the algorithm expects the source to be at (10, 3, 14). This is not equal to the place where the searcher is, and this
is possible. In this case, the searcher did not register any hits for a long time, and the result basically says that the searcher
had already passed the source (which is actually not the case).

5.2. Relation between distance and search time

The algorithm has been executed 50 times for Re = 5600, with 46 successes for 50 arbitrary starting positions in the
domain [15, 35] × [1, 9] × [8, 24]. Furthermore, 25 simulations with starting positions uniformly distributed in [30, 50] ×

[1, 9] × [8, 24] have been performed, with 17 successes. Failures occurred because simulations took too long, because the
entropy became almost zero before finding the source or because the position with highest probability was not located at
the source. The results have been combined in Fig. 6. The exponential fit has a lower residual sum of squares and seems to
better incorporate the behaviour for large starting distances. This should be further explored in the case of a higher Reynolds
number. We do not claim a linear or exponential relation, but we give the fits as an illustration. Moreover, in closed geome-
tries such as a channel, the fluctuations of the search time (not its mean value) could dominate the search. This has been
studied in [7].

For Re = 28 000 the algorithm has also been executed 50 times, with 47 successes for 50 arbitrary starting positions in
the domain [10, 50] × [1, 9] × [8, 24]. Failures again occurred because simulations took too long or the entropy became
numerically zero before finding the source. The results are visualised in Fig. 7.
The fits both relate to unexpected behaviour: for the linear fit, the search time would decrease for larger starting distances.
However, the confidence interval for the regression parameter a does not exclude a positive coefficient. The exponential fit
would lead to a very large negative search time for small distances, e.g., 0.5. Hence, we will reject the fits and assume there
is in this case no direct relation between starting distances and search times.

5.3. Relation between search time and success

The search time starts immediately and not when the first hit is detected. Also, the entropy decreases very fast once a
hit is detected. Because the search time starts before registering the first hit, the entropy will only decrease slowly in time
until the first hit is detected. Therefore, when we would look at a certain moment in time, some runs might have already
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(a) The search starts at (36, 6, 12) and finishes at (5, 4, 15) after 584 time
steps and 33 hits.

(b) Corresponding entropy for the trajectory in (a).

(c) The search starts at (41, 5, 14) and finishes wrongly at (8, 3, 14) after
479 time steps and 17 hits.

(d) Corresponding entropy for the trajectory in (c).

Fig. 5. Simulated search trajectories for Re = 28 000 in (a) and (c)—the first search succeeds, while the second one fails based on entropy. The hits are
indicated with asterisks.

Fig. 6. Relation between starting distance and search time for Re = 5600—the linear fit is given by y = a+bxwith a = 63.0 and b = 50.3. The exponential
fit is given by y = a + b exp(cx) with a = 132.6, b = 14.3 and c = 0.54.
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Fig. 7. Relation between starting distance and search time for Re = 28 000—the linear fit is given by y = a + bx with a = 267.2 and b = −11.1. The
exponential fit is given by y = a + b exp(cx) with a = 232, b = −1.35 · 106 and c = −9.5.

succeeded, while other runs might still not have detected a single hit. Then, averaging the entropy over multiple runs does
not distinguish between several runs with some hits, and a few which have not registered a hit yet.

Success is defined as the searcher being at a location from which it can reach the source within two steps. This can be
interpreted as ‘‘being nearby enough to see the source’’. To give an indication of the evolution of a run, we will show an
empirical distribution which indicates the probability that a run has succeeded after T time steps (P(T )). This probability
distribution is unknown, but we will estimate it with a 95%-confidence interval.

We start by assuming that the simulations are identical and independent, which makes them trials of an experiment.
Each trial has at each time step a probability of success P(T ), and can be indicated with success or failure. Hence, P(T ) is,
for a certain T , given by a binomial distribution. The estimate of P(T ), P̂(T ), is now for each T calculated by the number of
successes divided by the total number of experiments.

Combining all values of P̂(T ) will give an empirical distribution which we will model by a gamma distribution. This
distribution is often used in queueing theory to model the time required to perform some operation (in this case, to find the
source), and its cumulative distribution function is given by

F(x, k, θ) =
1

Γ (k)
γ

k,

x
θ


, (16)

in which k is the shape and θ the scale parameter, Γ (k) the gamma function evaluated at k and γ (k, x
θ
) the incomplete

gamma function. This cumulative distribution function can also be written as

F(x, k, θ) =

 x
t

0 tk−1e−tdt
∞

0 tk−1e−tdt
. (17)

For k = 1, the resulting distribution is an exponential distribution and for large k, the resulting distribution converges to a
normal distribution with µ = kθ and σ = θ

√
k. The larger θ , the more the distribution is spread out.

Now, we need to validate that the simulations are identical and independent. Because we added simulations with a
larger starting distance, the starting distances are not uniformly distributed in one box. We will take 48 simulations from
Re = 5600 such that the distribution over the starting distances is uniform. However, this still does not result in identical
simulations, because there is a relation between starting distance and running time. At the moment, we will neglect this
fact.

For Re = 5600, themaximum likelihood estimates for the parameters k and θ are given by k = 3.3126 and θ = 62.2247.
This gives an estimated distribution P̃(T ). Using these values of P̃(T ), we calculate the 95%-confidence intervals from the
binomial distribution. It is observed that the empirical cumulative distribution function for some times coincides with the
boundaries of the 95%-interval. This can be explained by the fact that the fit parameters also contain an error, which is
ignored in the calculations. For these parameters, the 95%-confidence intervals are given by [2.1807; 5.0319] for k and
[39.6200; 97.7262] for θ . In Fig. 8, the effects of the parameters on the gamma distribution are visualised. These figures give
the probability density functions for different combinations of k- and θ-values. It is seen that the 95%-confidence intervals
vary a lot. Therefore, the cumulative distribution functions for the combined values of k and θ , which amplify each other,
are depicted in Fig. 9. Now, it is clear why the empirical cumulative distribution function at some points coincides with the
boundaries of the 95%-confidence intervals for the binomial function given the estimate P̃(T ).
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(a) Spreading in k—The gamma density distribution is depicted with
θ = 62.2247, and for k both the estimated value and the values on the
boundary of the confidence interval.

(b) Spreading in θ—The gamma distribution is depicted with
k = 3.3126, and for θ both the estimated value and the values on the
boundary of the confidence interval.

(c) Spreading in distribution—The gamma distribution is depicted with
for both k and θ the estimated value and the values on the boundary of
the confidence interval, in such a way that they amplify each other’s
effects.

Fig. 8. Spreading in distribution for Re = 5600—for both k and θ , the 95%-confidence intervals are visualised using the probability density functions. They
are also combined, which gives an even larger spreading.

For Re = 28 000, the starting positions are uniformly distributed with no relation between starting distance and
simulation time, hence we will assume that they are identical and independent trials of one experiment, such that we are
allowed to use the binomial distribution for the 95%-confidence intervals.

The maximum likelihood estimates for the parameters k and θ are given by k = 4.6388 and θ = 49.5727. Also in
this case, the empirical cumulative distribution function sometimes coincides with the boundaries of the 95%-interval. The
95%-confidence intervals are now given by [3.1387; 6.8558] for k and [32.8143; 74.8898] for θ , and the parameters have a
similar effect as before. Therefore, the cumulative distribution functions for the combined values of k and θ which amplify
each other are depicted in Fig. 10.

6. Mixing

The infotaxis algorithm is based on the fact that only partial information is available to find a source in a given fluid based
on traces of evidence. These traces can be any chemical substance, as long as it diffuses in the base fluid. On the basis of this
partial information, it is possible to find the source of the tracers. In this mixing case, the source is no real source, but should
be interpreted as a region of higher concentration. This ‘‘source’’ will then increase the expected number of hits and thereby
give more information.
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Fig. 9. Relation between time and success for Re = 5600—The gamma distribution has been fit using 40 successful simulations and rescaled with a
factor 0.833 to include the failed runs. The fit parameters are k = 3.3126 and θ = 62.2247. The 95%-confidence intervals are calculated for the binomial
distributions based on P̃(t) and the 90%-confidence interval is calculated for the rescaled gamma distribution.

Fig. 10. Relation between time and success for Re = 28 000—The gamma distribution has been fit using 47 successful simulations and rescaled with a
factor 0.94 to include the failed runs. The fit parameters are k = 4.6388 and θ = 49.5727. The 95%-confidence intervals are calculated for the binomial
distributions based on P̃(t) and the 90%-confidence interval is calculated for the rescaled gamma distribution.

In industry, when producing all kinds of fluids, polymers, etc., it is often needed that the fluid in a container or tank is
well-mixed to get optimal production results. However, it is impossible to measure the concentration at all points in the
tank. Hence, also here the problem of partial information occurs. The decision whether the fluid is well-mixed, depends on
statistical indicators, for example the mean and variance of the concentration when measured at several points. But how to
decide which points in the tank will be used? This also depends on themethod of mixing, the characteristics of the chemical
and the base fluid. To avoid all of this, the infotaxis algorithm might be an option.

In short, this will lead to the following statement: When in such a tank, the infotaxis algorithm is applied to find a source,
and it finds a source, then, the fluid is not well-mixed. This can appear in several forms: there are patches with higher or
lower concentrations, or there are significant concentration gradients in the fluid, or both. Hence, for properly quantified
indicators, the infotaxis algorithm could give a decisive answer.

6.1. Algorithm

The success of this numerical experiment will depend on the chosen indicators and the setup of the algorithm. It will
be assumed that the total amount of chemical and the total volume of the contents of the tank are known. Hence, also
the average concentration of chemical is known. When there is a too large deviation from this concentration, this will be
recorded as a hit, independent of whether the deviation is positive or negative. To end the algorithm, several options are
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possible. When it takes too long to find a hit, when too many hits occur, when it takes too long to find a source, or when
a source is found, then the algorithm should end. A found source will here be interpreted as (almost) zero entropy: the
searcher knows almost for sure that a source is present at some place in the tank, or when the probability for a certain place
exceeds a certain value. Quantitatively, this gives the following indicators:
• Deviation indicator α: when C(x, y, z, t) ≥ (1 ± α)Smean, a hit occurs. This α differs from the shape parameter in the

adapted expected rate function. This does not cause problems, because we will give a different expected rate function
for the mixing case.

• First stopping time β: when no hit is recorded at time β , the fluid is well-mixed.
• First certainty indicator γ : when the entropy drops below γ , the fluid is not well-mixed.
• Second certainty indicator ζ : when the probability for one position exceeds ζ , the fluid is not well-mixed.
• Third certainty indicator µ: when more than µ percent of the time, a hit is recorded, the fluid is not well-mixed. This

indicator starts after time β .
• Second stopping time ξ : when at time ξ , none of the previous indicators gave a decisive answer, the fluid is assumed to

be well-mixed.

The values of these indicators should preferably be identified by the manager of the production line.
Also, there should be made an assumption on the behaviour of the fluid and the chemical to provide a function for the

expected number of hits. We will give a proof of principle with a simple problem statement. This will be done for an on
average non-moving fluid, in which diffusion occurs. This also includes a fluid which has been heavily moved such that
large concentration gradients occur and the turbulent, or real diffusion is much larger than the molecular diffusion. We
assume an ideal searcher, i.e. its presence does not induce additional stirring.

For the tests, a two-dimensional tank will be used. To calculate the expected rate function, a two-dimensional tank will
be used as well.

The governing equation is the diffusion equation, given by

∂C
∂t

= D


∂2C
∂x2

+
∂2C
∂y2


,

C(x, y, 0) = δ(x0, y0),
(18)

with zero concentration at the boundaries of the infinite domain, in which δ(x0, y0) is the Kronecker-delta function and D
the diffusion coefficient. In this equation, the Péclet number does not occur because there is no flow involved. The solution
of this equation is

C(x, y, t) =
1

4πDt
exp


−

(x − x0)2 + (y − y0)2

4Dt


. (19)

To derive the expected rate function, the concentration function ismultiplied by the cell size and divided by the total volume.
In this way, the Riemann sum over the positions for a certain source position will be a little smaller than 1, which is not
unusual, because in fact, no hits are expected for a well-mixed fluid. Also, looking at one position and summing over all
possible source positions, will give a value smaller than 1 as well. This gives the following expected rate function:

R(r|r0, t) = R(x, y, x0, y0, t) =
1x1y
4πΦDt

exp


−
(x − x0)2 + (y − y0)2

4Dt


, (20)

in which Φ is the fluid volume, t the time, r0 = (x0, y0) the source position and r = (x, y) the searcher position.

6.2. Testing

The tank will be represented by a box of size π times π , with 32× 32 grid points, uniformly divided over the given area.
The evolution of the concentration in time will be calculated through the RK4-method with a time step of 0.001, while the
discretisation of the space derivatives is central. The algorithm checks the concentration each time step and the turbulent
diffusion coefficient is set at 10−4. The indicators are set at α = 0.05, β = 60, γ = 10−4, ζ = 0.1, µ = 20% and ξ = 60.
The algorithm will be applied 100 times for starting positions uniform in [6, 26] × [6, 26].

The boundaries will now be assumed periodic for numerical purposes. Furthermore, it is assumed that the fluid has
been actively stirred, but has come to rest. For this situation, three cases will be investigated, which differ in their initial
concentration distribution. In the first case, there is a higher concentration in the centre than at the edges, in patched form.
In the second case, there are multiple deviations throughout space and in the third case, only at a few grid points, the
concentration is out of bounds.

6.2.1. One patch
The initial concentration profile is chosen as follows:

C(i, j) = 0.6 + 0.1π2 sin


i − 1

2


π

32


sin


j − 1

2


π

32


, i, j = 1, . . . , 32. (21)
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This gives an average concentration of 1.0003, and 932 of the 1024 positions will give a hit. Out of 100 trials, 99 times the
result is ‘‘not well-mixed’’ on the basis of the γ -indicator, after 1 time unit for 98 cases and after 2 time units for 1 case. In
the other case, the result is ‘‘not well-mixed’’ on the basis of the ζ -indicator, after 4 time units. This indicates that finding a
hit in this case (almost) automatically results in indicating an insufficiently mixed fluid.

6.2.2. Small deviations everywhere
The initial concentration profile is now as follows:

C(i, j) = 1.0 + 0.06 sin


i − 1

2


π

32


sin


j − 1

2


π

32


, i, j = 1, . . . , 32. (22)

This gives an average concentration of 1.0, and 128 of the 1024 positions will give a hit. Out of 100 trials, 84 times the
result is ‘‘well-mixed’’ on the basis of the β-indicator, 13 times the result is ‘‘not well-mixed’’ on the basis of the γ -indicator
and 3 times the result is ‘‘not well-mixed’’ on the basis of the ζ -indicator. Hence, for this series of experiments, 84% of the
experiments indicate well-mixed, while the fluid is not well-mixed. This could be caused by the fact that the deviations are
not random enough. Hence, the searcher might move in straight lines without experiencing a hit.

6.2.3. Large deviation at some spots
The initial concentration profile is given by:

C(i, j) =


1.06 (i, j) = (6, 6), (6, 27), (27, 6) or (27, 27),
1.0 else. (23)

This gives an average concentration of 1.0002, and 4 of the 1024 positions will give a hit. Now, 99 times the result is ‘‘well-
mixed’’ on the basis of the β-indicator, while in 1 case the result is ‘‘not well-mixed’’ on the basis of the γ -indicator after 3
time units.

6.2.4. Results
For case 1,which is clearly notwell-mixed, the algorithmworks as it should. For case 2, the algorithm indicates sometimes

a well-mixed and sometimes a not well-mixed fluid. In case 3, it is even harder to indicate the non-well-mixedness. An
indicator for the number of experiments and the combination of the experiments is needed to make the method work.

7. Conclusion

In this paper, the infotaxis-based search algorithm has been tested in one turbulent channel flow at different Reynolds
numbers. The algorithm is based on the trade-off between exploration and exploitation of partial information. Thiswill often
result in zigzag patterns (exploration) perpendicular to the flow direction followed by a trajectory in the flow direction to
the source (exploitation).

Weused adirect numerical simulation of theNavier–Stokes equations. In this simulated flow, a substance is released from
a periodic point source, leading to a continuous distribution of the scalar instead of detectable particles. Detections occur
when the concentration is above a certain threshold value. Because the Schmidt number in this simulation is Sc = 1.0, the
detections are not independent anymore. The algorithm has been adapted to detect plumes of high concentration instead
of independent detections. This includes the estimation of some extra parameters used in the search algorithm.

For a Reynolds number of 5600, the obtained success rate is 84% and an exponential relation between starting distances
and time steps has been derived. Also, a relation including confidence intervals between time and success rate has been
developed. For a Reynolds number of 28000, the success rate is 94% and there is no clear relation between starting distances
and time steps. This is caused by the low Schmidt number and the high velocity, which leads the searcher to the source very
fast after the first detection.

Finally, the search algorithmhas been tested in reverse to detectwhether a fluid iswell-mixed. Detections in combination
with time are then used as an indicator. By applying the algorithm to some prescribed concentration distributions in two
dimensions, it is found that the algorithm is very sensitive to the parameter values.

New in this paper compared to existing literature are the application of infotaxis on a 3D turbulent channel air flow,
which includes the adaptation of the algorithm to detect clouds, the calculation of the gamma distributions as an estimate
for the probability that a searcher has found the source after a certain time, and the suggestion to use infotaxis in reverse
for estimating the level of mixing.

8. Recommendations

The first recommendation would be to increase the number of experiments. The results obtained in this paper are based
on a limited number of experiments, increasing this number would lead to more reliable results, especially in the fits.
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Other recommendations would relate to the setup of the flow and the algorithm.

• Increase the Schmidt number. When the Schmidt number is of order 1, then momentum and substance are convected
at the same velocity. When the Schmidt number is large, e.g., of order 103, then substance diffuses much faster than
momentum and small regions of high concentration appear, which will occur in, e.g., water. This adaptation wouldmake
the detections of high concentration more independent and more realistic.

• Develop the estimationof parameters. In this paper, properties of both the flowand the scalar are estimatedbeforehand.
It would be better if the algorithm could estimate these during the run. These parameters would concern not only flow
velocity and root mean square deviations of this velocity, but also the source strength, diffusion coefficient and Schmidt
number.

• Develop a better rate function. When increasing the Schmidt number is not realistic, e.g., in air, where the Schmidt
number is of order 1, then the rate function could be optimised in two ways. In this paper, the rate function is estimated
with the chosen parameter α to include boundary effects. For large simulation areas, these boundary effects might be
neglected. Also, there may be better models for the spreading of the scalar than the adapted Gaussian plume model.

• Add randomness to the algorithm. Sometimes,when the entropy is low, the searcher gets jammed and stays at the same
position. When the algorithm would advise a random position if the searcher stays at the same position for some time,
this situationmight be broken through. It might also be interesting to add randomness in general, i.e., when determining
the next position of the searcher, a random change of position is made with probability p.

Furthermore, several recommendations are possible in the case of using infotaxis to find whether a fluid is well-mixed.

• Use real-life data to choose the parameters. At the moment, the values of the indicators should be identified by an
expert. The use of data can make the estimates for these values more reliable.

• Investigatemore testcases. In this paper, only three testcases have been investigated. Increasing this numbermight give
better insight into advantages and drawbacks of the method.

• Extend to threedimensions andmore complex flows. This extensionwill showwhether it is possible to use thismethod
in real-life situations.
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