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Abstract

We present two new results about exact learning by quantum computers. First, we show
how to exactly learn a k-Fourier-sparse n-bit Boolean function from O(k1.5(logk)2) uniform

quantum examples for that function. This improves over the bound of Θ̃(kn) uniformly ran-
dom classical examples (Haviv and Regev, CCC’15). Our main tool is an improvement of
Chang’s lemma for the special case of sparse functions. Second, we show that if a concept class
C can be exactly learned using Q quantum membership queries, then it can also be learned us-

ing O
(
Q2

logQ log |C|
)
classical membership queries. This improves the previous-best simulation

result (Servedio and Gortler, SICOMP’04) by a logQ-factor.

1 Introduction

1.1 Quantum learning theory

Both quantum computing and machine learning are hot topics at the moment, and their inter-
section has been receiving growing attention in recent years as well. On the one hand there are
particular approaches that use quantum algorithms like Grover search [Gro96] and the Harrow-
Hassidim-Lloyd linear-systems solver [HHL09] to speed up learning algorithms for specific ma-
chine learning tasks (see [Wit14, SSP15, AAD+15, BWP+17, DB17] for recent surveys of this
line of work). On the other hand there have been a number of more general results about the
sample and/or time complexity of learning various concept classes using a quantum computer
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(see [AW17] for a survey). This paper presents two new results in the latter line of work. In both
cases the goal is to exactly learn an unknown target function with high probability; for the first
result our access to the target function is through quantum examples for the function, and for the
second result our access is through membership queries to the function.

1.2 Exact learning of sparse functions from uniform quantum examples

Let us first explain the setting of distribution-dependent learning from examples. Let C be a class
of functions, a.k.a. concept class. For concreteness assume they are ±1-valued functions on a do-
main of size N ; if N = 2n, then the domain may be identified with {0,1}n. Suppose c ∈ C is an
unknown function (the target function or concept) that we want to learn. A learning algorithm is
given examples of the form (x,c(x)), where x is distributed according to some probability distribu-
tionD on [N ]. An (ε,δ)-learner for C w.r.t.D is an algorithm that, for every possible target concept
c ∈ C, produces a hypothesis h : [N ]→ {−1,1} such that with probability at least 1 − δ (over the
randomness of the learner and the examples for the target concept c), h’s generalization error is at
most ε:

Pr
x∼D

[c(x) , h(x)] ≤ ε.

In other words, fromD-distributed examples the learner has to construct a hypothesis that mostly
agrees with the target concept under the same D.

In the early days of quantum computing, Bshouty and Jackson [BJ99] generalized this learn-
ing setting by allowing coherent quantum examples. A quantum example for concept c w.r.t.
distribution D, is the following (⌈logN⌉+1)-qubit state:

∑

x∈[N ]

√
D(x)|x,c(x)〉.

Clearly such a quantum example is at least as useful as a classical example, because measuring
this state yields a pair (x,c(x)) where x ∼D. Bshouty and Jackson gave examples of concept classes
that can be learned more efficiently from quantum examples than from classical random exam-
ples under specific D. In particular, they showed that the concept class of DNF-formulas can
be learned in polynomial time from quantum examples under the uniform distribution, some-
thing we do not know how to do classically (the best classical upper bound is quasi-polynomial
time [Ver90]). The key to this improvement is the ability to obtain, from a uniformquantum exam-
ple, a sample S ∼ ĉ(S)2 distributed according to the squared Fourier coefficients of c.1 This Fourier
sampling, originally due to Bernstein and Vazirani [BV97], is very powerful. For example, if C is
the class of F2-linear functions on {0,1}n, then the unknown target concept c is a character func-
tion χS(x) = (−1)x·S ; its only non-zero Fourier coefficient is ĉ(S) hence one Fourier sample gives
us the unknown S with certainty. In contrast, learning linear functions from classical uniform
examples requires Θ(n) examples. Another example where Fourier sampling is proven powerful
is in learning the class of ℓ-juntas on n bits.2 Atıcı and Servedio [AS09] showed that (logn)-juntas
can be exactly learned under the uniform distribution in time polynomial in n. Classically it is
a long-standing open question if a similar result holds when the learner is given uniform clas-
sical examples (the best known algorithm runs in quasi-polynomial time [MOS04]). These cases

1Parseval’s identity implies
∑
S∈{0,1}n f̂ (S)2 = 1, so this is indeed a probability distribution.

2We say f : {0,1}n → {−1,1} is an ℓ-junta if there exists a set S ⊆ [n] of size |S | ≤ ℓ such that f depends only on the
variables whose indices are in S .
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(and others surveyed in [AW17]) show that uniform quantum examples (and in particular Fourier
sampling) can be more useful than classical examples.3

In this paper we consider the concept class of n-bit Boolean functions that are k-sparse in the
Fourier domain: ĉ(S) , 0 for at most k different S’s. This is a natural generalization of the above-
mentioned case of learning linear functions, which corresponds to k = 1. It also generalizes the
case of learning ℓ-juntas on n bits, which are functions of sparsity k = 2ℓ. Variants of the class
of k-Fourier-sparse functions have been well-studied in the area of sparse recovery, where the goal
is to recover a k-sparse vector x ∈ RN given a low-dimensional linear sketch Ax for a so-called
“measurement matrix” matrix A ∈ Rm×N . See [HIKP12, IK14] for some upper bounds on the size
of the measurement matrix that suffice for sparse recovery. Closer to the setting of this paper,
there has also been extensive work on learning the concept class of n-bit real-valued functions
that are k-sparse in the Fourier domain. In this direction Cheraghchi et al. [CGV13] showed that
O(nk(logk)3) uniform examples suffice to learn this concept class, improving upon the works of
Bourgain [Bou14], Rudelson and Vershynin [RV08] and Candés and Tao [CT06].

In this paper we focus on exactly learning the target concept from uniform examples, with
high success probability. So D(x) = 1/2n for all x, ε = 0, and δ = 1/3. Haviv and Regev [HR16]
showed that for classical learners O(nk logk) uniform examples suffice to learn k-Fourier-sparse
functions, and Ω(nk) uniform examples are necessary. In Section 3 we study the number of uni-
form quantum examples needed to learn k-Fourier-sparse Boolean functions, and show that it
is upper bounded by O(k1.5(logk)2). For k ≪ n2 this quantum bound is much better than the
number of uniform examples used in the classical case. Proving the upper bound combines the
fact that a uniform quantum example allows us to Fourier-sample the target concept, with some
Fourier analysis of k-Fourier-sparse functions. In particular, we significantly strengthen “Chang’s
lemma.” This lemma upper bounds the dimension of the span of the large-weight part of the
Fourier support of a Boolean function, and our Theorem 7 improves this bound almost quadrat-
ically for the special case of k-Fourier-sparse functions. Our learner has two phases. In the first
phase, using Chang’s lemma, we show that the span of the Fourier support of the target function
can be learned from O(k(logk)2) Fourier samples. In the second phase, we reduce the number of
variables to the dimension r of the Fourier support, and then invoke the classical learner of Ha-
viv and Regev to learn the target function from O(rk logk) classical examples. Since it is known
that r = O(

√
k logk) [San15], the two phases together imply that O(k1.5(logk)2) uniform quantum

examples suffice to exactly learn the target with high probability.

Since r ≥ logk, the second phase of our learner is always at least as expensive as the first phase.
It might be possible to improve the upper bound to O(k ·polylog(k)) quantum examples, but that
would require additional ideas to improve phase 2. We also prove a (non-matching) lower bound
of Ω(k logk) uniform quantum examples, using techniques from quantum information theory.

1.3 Exact learning from quantummembership queries

Our second result is in a model of active learning. The learner still wants to exactly learn an
unknown target concept c : [N ] → {−1,1} from a known concept class C, but now the learner

3This is not the case in Valiant’s PAC-learningmodel [Val84] of distribution-independent learning. There we require
the same learner to be an (ε,δ)-learner for C w.r.t. every possible distributionD. One can show in this model (and also in
the broader model of agnostic learning) that the quantum and classical sample complexities are equal up to a constant
factor [AW18].
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can choose which points of the truth-table of the target it sees, rather than those points being
chosen randomly. More precisely, the learner can query c(x) for any x of its choice. This is called
a membership query.4 Quantum algorithms have the following query operation available:

Oc : |x,b〉 7→ |x,b · c(x)〉,

where b ∈ {−1,1}. For some concept classes, quantum membership queries can be much more
useful than classical. Consider again the class C of F2-linear functions on {0,1}n. Using one query
to a uniform superposition over all x and doing a Hadamard transform, we can Fourier-sample
and hence learn the target concept exactly. In contrast, Θ(n) classical membership queries are
necessary and sufficient for classical learners. As another example, consider the concept class
C = {δi | i ∈ [N ]} of the N point functions, where δi(x) = 1 iff i = x. Elements from this class can be
learned using O(

√
N ) quantum membership queries by Grover’s algorithm, while every classical

algorithm needs to makeΩ(N ) membership queries.

For a given concept class C of ±1-valued function on [N ], letD(C) denote the minimal number
of classical membership queries needed for learners that can exactly identify every c ∈ C with
success probability 1 (such learners are deterministic without loss of generality). Let R(C) and
Q(C) denote the minimal number of classical and quantum membership queries, respectively,
needed for learners that can exactly identify every c ∈ C with error probability ≤ 1/3.5 Servedio
and Gortler [SG04] showed that these quantum and classical measures cannot be too far apart.
First, using an information-theoretic argument they showed

Q(C) ≥Ω

(
log |C|
logN

)
.

Intuitively, this holds because a learner recovers roughly log |C| bits of information, while every
quantum membership query can give at most O(logN ) bits of information. Note that this is tight
for the class of linear functions, where the left- and right-hand sides are both constant. Second,
using the so-called hybrid method they showed

Q(C) ≥Ω(1/
√
γ(C)),

for some combinatorial parameter γ(C) that we will not define here (but which is 1/N for the
class C of point functions, hence this inequality is tight for that C). They also noted the following
upper bound:

D(C) =O
(
log |C|
γ(C)

)
.

Combining these three inequalities yields the following relation between D(C) and Q(C)

D(C) ≤O(Q(C)2 log |C|) ≤O(Q(C)3 logN ). (1)

This shows that, up to a logN-factor, quantum and classical membership query complexities of
exact learning are polynomially close. While each of the three inequalities that together imply (1)
can be individually tight (for different C), this does not imply (1) itself is tight.

4Think of the set {x | c(x) = 1} corresponding to the target concept: a membership query asks whether x is a member
of this set or not.

5We can identify each concept with a string c ∈ {−1,1}N , and hence C ⊆ {−1,1}N . The goal is to learn the unknown
c ∈ C with high probability using few queries to the corresponding N -bit string. This setting is also sometimes called
“oracle identification” in the literature; see [AW17, Section 4.1] for more references.
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Note that Eq. (1) upper bounds the membership query complexity of deterministic classical
learners. We are not aware of a stronger upper bound on bounded-error classical learners. How-
ever, in Section 4 we tighten that bound further by a logQ(C)-factor:

R(C) ≤O
(
Q(C)2

logQ(C) log |C|)
)
≤O

(
Q(C)3

logQ(C) logN
)
.

Note that this inequality is tight both for the class of linear functions and for the class of point
functions.

Our proof combines the quantum adversary method [Amb02, BSS03, ŠS05] with an entropic
argument to show that we can always find a query whose outcome (no matter whether it’s 0 or 1)

will shrink the concept class by a factor ≤ 1 − logQ(C)
Q(C)2 . While our improvement over the earlier

bounds is not very large, we feel our usage of entropy to save a log-factor is new and may have
applications elsewhere.

2 Preliminaries

Notation. Let [n] = {1, . . . ,n}. For an n-dimensional vector space, the standard basis vectors are
{ei ∈ {0,1}n | i ∈ [n]}, where ei is the vector with a 1 in the ith coordinate and 0s elsewhere. For
x ∈ {0,1}n and i ∈ [n], let xi be the input obtained by flipping the ith bit in x.

For a Boolean function f : {0,1}n → {−1,1} and B ∈ F
n×n
2 , define f ◦ B : {0,1}n → {−1,1} as

(f ◦B)(x) := f (Bx), where the matrix-vector product Bx is over F2. Throughout this paper, the rank
of a matrix B ∈ Fn×n

2 will be taken over F2. Let B1, . . . ,Bn be the columns of B.

Fourier analysis on the Boolean cube. We introduce the basics of Fourier analysis here, refer-
ring to [O’D14, Wol08] for more. Define the inner product between functions f ,g : {0,1}n→R as

〈f ,g〉 =Ex∈{0,1}n[f (x) · g(x)],
where the expectation is uniform over all x ∈ {0,1}n. For S ∈ {0,1}n, the character function corre-
sponding to S is given by χS(x) := (−1)S ·x, where the dot product S · x is

∑n
i=1Sixi . Observe that

the set of functions {χS}S∈{0,1}n forms an orthonormal basis for the space of real-valued functions
over the Boolean cube. Hence every f : {0,1}n→R can be written uniquely as

f (x) =
∑

S∈{0,1}n
f̂ (S)(−1)S ·x for all x ∈ {0,1}n,

where f̂ (S) = 〈f ,χS〉 = Ex[f (x)χS(x)] is called a Fourier coefficient of f . For i ∈ [n], we write f̂ (ei)

as f̂ (i) for notational convenience. Parseval’s identity states that
∑
S∈{0,1}n f̂ (S)

2 = Ex[f (x)
2]. If f

has domain {−1,1}, then Parseval gives
∑
S∈{0,1}n f̂ (S)

2 = 1, so {f̂ (S)2}S∈{0,1}n forms a probability

distribution. The Fourier weight of function f on S ⊆ {0,1}n is defined as
∑
S∈S f̂ (S)

2.

For f : {0,1}n → R, the Fourier support of f is supp(f̂ ) = {S : f̂ (S) , 0}. The Fourier sparsity

of f is |supp(f̂ )|. The Fourier span of f , denoted Fspan(f ), is the span of supp(f̂ ). The Fourier
dimension of f , denoted Fdim(f ), is the dimension of the Fourier span. We say f is k-Fourier-

sparse if |supp(f̂ )| ≤ k.

We now state a number of known structural results about Fourier coefficients and dimension.
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Theorem 1 ([San15]) The Fourier dimension of a k-Fourier-sparse f : {0,1}n→ {−1,1} isO(
√
k logk).6

Lemma 1 ([GOS+11, Theorem 12]) Let k ≥ 2. The Fourier coefficients of a k-Fourier-sparse Boolean
function f : {0,1}n→ {−1,1} are integer multiples of 21−⌊logk⌋.

Definition 1 Let f : {0,1}n→ {−1,1} and suppose B ∈ Fn×n
2 is invertible. Define fB as

fB(x) = f ((B
−1)Tx).

Lemma 2 Let f : {0,1}n→ R and suppose B ∈ Fn×n
2 is invertible. Then the Fourier coefficients of fB are

f̂B(Q) = f̂ (BQ) for all Q ∈ {0,1}n.

Proof. Write out the Fourier expansion of fB:

fB(x) = f ((B
−1)Tx) =

∑

S∈{0,1}n
f̂ (S)(−1)S ·((B−1)Tx) =

∑

S∈{0,1}n
f̂ (S)(−1)(B−1S)·x =

∑

Q∈{0,1}n
f̂ (BQ)(−1)Q·x,

where the third equality used 〈S, (B−1)Tx〉 = 〈B−1S,x〉 and the last used the substitution S = BQ. �

An easy consequence is the next lemma:

Lemma 3 Let f : {0,1}n → {−1,1}, and B ∈ Fn×n
2 be an invertible matrix such that the first r columns

of B are a basis of the Fourier span of f , and f̂ (B1), . . . , f̂ (Br) are non-zero. Then

1. The Fourier span of f̂B is spanned by {e1, . . . , er }, i.e., fB has only r influential variables.

2. For every i ∈ [r], f̂B(i) , 0.

Here is the well-known fact, already mentioned in the introduction, that one can Fourier-
sample from uniform quantum examples:

Lemma 4 Let f : {0,1}n → {−1,1}. There exists a procedure that uses one uniform quantum ex-
ample and satisfies the following: with probability 1/2 it outputs an S drawn from the distribution

{f̂ (S)2}S∈{0,1}n , otherwise it rejects.

Proof. Using a uniform quantum example 1√
2n

∑
x |x,f (x)〉, one can obtain 1√

2n

∑
x f (x)|x〉 with

probability 1/2: unitarily replace f (x) ∈ {−1,1} by (1− f (x))/2 ∈ {0,1}, apply the Hadamard trans-
form to the last qubit and measure it. With probability 1/2 we obtain the outcome 0, in which
case our procedure rejects. Otherwise the remaining state is 1√

2n

∑
x f (x)|x〉. Apply Hadamard

transforms to all n qubits to obtain
∑
S f̂ (S)|S〉. Measuring this quantum state gives an S with

probability f̂ (S)2. �

Information theory. We refer to [CT91] for a comprehensive introduction to classical informa-
tion theory, and here just remind the reader of the basic definitions. A random variable A with
probabilities Pr[A = a] = pa has entropy H(A) := −∑apa log(pa). For a pair of (possibly correlated)

6Note that this theorem is optimal up to the logarithmic factor for the addressing function Addm : {0,1}logm+m →
{−1,1} defined as Addm(x,y) = 1− 2yx for all x ∈ {0,1}logm and y ∈ {0,1}m, i.e., the output of Addm(x,y) is determined
by the value yx , where x is treated as the binary representation of a number in {0, . . . ,m−1}. For the Addm function, the
Fourier dimension is m and the Fourier sparsity is m2.
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random variables A,B, the conditional entropy of A given B, is H(A | B) := H(A,B) −H(B). This
equals Eb∼B[H(A | B = b)]. The mutual information between A and B is I(A : B) := H(A) +H(B) −
H(A,B) =H(A)−H(A | B). The binary entropyH(p) is the entropy of a bit with distribution (p,1−p).
If ρ is a density matrix (i.e., a trace-1 positive semi-definite matrix), then its singular values form
a probability distribution P, and the von Neumann entropy of ρ is S(ρ) :=H(P). We refer to [NC00,
Part III] for a more extensive introduction to quantum information theory.

3 Exact learning of k-Fourier-sparse functions

In this section we consider exactly learning the concept class C of k-Fourier-sparse Boolean func-
tions:

C = {f : {0,1}n→ {−1,1} : |supp(f̂ )| ≤ k}.

The goal is to exactly learn c ∈ C given uniform examples from c of the form (x,c(x)) where x is
drawn from the uniform distribution on {0,1}n. Haviv and Regev [HR16] considered learning this
concept class and showed the following results.

Theorem 2 (Corollary 3.6 of [HR16]) For every n > 0 and k ≤ 2n, the number of uniform examples
that suffice to learn C with probability 1− 2−Ω(n logk) is O(nk logk).

Theorem 3 (Theorem 3.7 of [HR16]) For every n > 0 and k ≤ 2n, the number of uniform examples
necessary to learn C with constant success probability is Ω(k(n− logk)).

Our main results in this section are about the number of uniform quantum examples that
are necessary and sufficient to exactly learn the class C of k-Fourier-sparse functions. A uniform
quantum example for a concept c ∈ C is the quantum state

1√
2n

∑

x∈{0,1}n
|x,c(x)〉.

We prove the following two theorems here.

Theorem 4 For every n > 0 and k ≤ 2n, the number of uniform quantum examples that suffice to learn C
with probability ≥ 2/3 is O(k1.5(logk)2).

In the theorem below we prove the following (non-matching) lower bound on the number of
uniform quantum examples necessary to learn C.

Theorem 5 For every n > 0, constant c ∈ (0,1) and k ≤ 2cn, the number of uniform quantum examples
necessary to learn C with constant success probability is Ω(k logk).

3.1 Upper bound on learning k-Fourier-sparse Boolean functions

We split our quantum learning algorithm into two phases. Suppose c ∈ C is the unknown con-
cept, with Fourier dimension r. In the first phase the learner uses samples from the distribution
{̂c(S)2}S∈{0,1}n to learn the Fourier span of c. In the second phase the learner uses uniform classical
examples to learn c exactly, knowing its Fourier span. Phase 1 uses O(k(logk)2) uniform quantum
examples (for Fourier-sampling) and phase 2 uses O(rk logk) uniform classical examples. Note
that since r ≥ logk, phase 2 of our learner is always at least as expensive as phase 1.

7



Theorem 6 Let k,r > 0. There exists a quantum learner that exactly learns (with high probability) an
unknown k-Fourier-sparse c : {0,1}n→ {−1,1} with Fourier dimension upper bounded by some known r,
from O(rk logk) uniform quantum examples.

The learner may not know the exact Fourier dimension r in advance, but Theorem 1 gives an
upper bound r =O(

√
k logk), so our Theorem 4 follows immediately from Theorem 6.

3.1.1 Phase 1: Learning the Fourier span

A crucial ingredient that we use in phase 1 of our quantum learning algorithm is an improvement
of Chang’s lemma [Cha02, IMR14] for k-Fourier-sparse Boolean functions. The original lemma
upper bounds the dimension of the span of the “large” Fourier coefficients as follows.

Lemma 5 (Chang’s lemma) Let α ∈ (0,1) and ρ > 0. For every f : {0,1}n → {−1,1} that satisfies
f̂ (0n) = 1− 2α, we have

dim(span{S : |f̂ (S)| ≥ ρα}) ≤ 2log(1/α)

ρ2
. (2)

Let us consider Chang’s lemma for k-Fourier-sparse Boolean functions. In particular, consider

the case ρα = 1/k. In that case, since all elements of the Fourier support satisfy |f̂ (S)| ≥ 1/k by
Lemma 1, the left-hand side of Eq. (2) equals the Fourier dimension r of f . Chang’s lemma gives

r ≤ 2α2k2 logk.

We now improve this upper bound on r nearly quadratically:

Theorem 7 Let α ∈ (0,1) and k ≥ 2. For every k-Fourier-sparse f : {0,1}n → {−1,1} that satisfies
f̂ (0n) = 1− 2α and Fdim(f ) = r, we have

r ≤ 2αk logk.

Before we prove this theorem we illustrate the improvement over Lemma 5. Consider a
Boolean function f which satisfies α = 1/k3/4. Then, Chang’s lemma (with ρ = 1/k1/4) upper

bounds the Fourier dimension of f as r ≤O(
√
k logk), which already follows from Theorem 1. Our

Theorem 7 gives the much better upper bound r ≤O(k1/4 logk) in this case.

Proof. [Proof of Theorem 7] We first define the following notation. For U ⊆ [r], let f (U ) be the

function obtained by fixing the variables {xi }i∈U in f to xi = (1+sign(f̂ (i)))/2 for all i ∈U . Note that
fixing variables cannot increase Fourier sparsity. For i, j ∈ [r], define f (i) = f ({i}) and f (ij) = f ({i,j}).
In this proof, for an invertible matrix B ∈ Fn×n

2 , we will often treat its columns as a basis for the

space F
n
2 . Recall fB(x) = f ((B−1)Tx) from Definition 1. We let f

(i)
B be the function obtained by

fixing xi = (1+ sign(f̂ (i)))/2 in the function fB.

The core idea in the proof of the theorem is the following structural lemma, which says that
there is a particular xi that we can fix in the function fB without decreasing the Fourier dimension
very much.

8



Lemma 6 For every k-Fourier-sparse Boolean function f : {0,1}n → {−1,1} with Fdim(f ) = r, there

exists an invertible matrix B ∈ Fn×n
2 and an index i ∈ [r] such that Fdim(f

(i)
B ) ≥ r − logk and f̂B(j) , 0

for all j ∈ [r].

We defer the proof of the lemma to later and first conclude the proof of the theorem assuming the
lemma. Consider the matrix B defined in Lemma 6. Using Lemma 3 it follows that fB has only r

influential variables, so we can write fB : {0,1}r → {−1,1}, where f̂B(j) , 0 for every j ∈ [r]. Also,
f̂B(0

r) = f̂ (0n) = 1 − 2α. For convenience, we abuse notation and abbreviate f = fB. It remains

to show that for every f : {0,1}r → {−1,1} with f̂ (j) , 0 for all j ∈ [r], we have 2α = 1 − f̂ (0r) ≥
r/(k logk). We prove this by induction on r.

Base case. Let r = 1. Then k = 2 (since r ≥ logk and k ≥ 2 by assumption). Note that the only

Boolean functions with Fourier dimension 1 and |supp(f̂ )| ≤ 2 are {χj ,−χj}. In both these cases

1−f̂ (0r) = 1 and r/(k logk) = 1/2 (although the Fourier sparsity of χj is 1, we are implicitly working
with a concept class of 2-sparse Boolean functions, hence k = 2).

Induction hypothesis. Suppose that for all p ∈ {1, . . . , r−1} and k-Fourier-sparse Boolean function
g : {0,1}p→ {−1,1} with Fdim(g) = p and ĝ(j) , 0 for all j ∈ [p], we have 1− ĝ(0p) ≥ p/(k logk).

Induction step. Let i ∈ [r] be the index from Lemma 6. Note that f (i) is still k-Fourier sparse

and f̂ (i)(0r−1) = 1− 2α + |f̂ (i)|. Since |f̂ (i)| ≥ 1/k (by Lemma 1), we have

f̂ (i)(0r−1) ≥ 1− 2α +1/k.

Since r − logk ≤ Fdim(f (i)) ≤ r − 1, we can use the induction hypothesis on the function f (i) to
conclude that

2α ≥ 1− f̂ (i)(0r−1) + 1

k
≥ r − logk

k logk
+
1

k
=

r

k logk
.

This concludes the proof of the induction step and the theorem. We now prove Lemma 6.

Proof. [Proof of Lemma 6] In order to construct B as in the lemma statement, we first make the
following observation.

Observation 1 For every Boolean function f : Fn
2 → {−1,1} with Fdim(f ) = r, there exists an invert-

ible B ∈ Fn×n
2 such that:

1. The Fourier coefficient f̂B(1) is non-zero.

2. There exists a t ∈ [r] such that, for all j ∈ {2, . . . , t}, we have Fdim(f
(j)
B ) ≤ r − t.

3. The Fourier span of f
(1)
B is spanned by {et+1, . . . , er }.

4. For ℓ ∈ {t +1, . . . , r}, the Fourier coefficients f̂
(1)
B (ℓ) are non-zero.

We defer the proof of this observation to the end. We proceed to prove the lemma assuming
the observation. Note that Property 3 gives the following simple corollary:
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Corollary 1 f
(1)
B is a function of xt+1, . . . ,xr and independent of x2, . . . ,xt (and hence f

(1)
B = f

(i1)
B = f

(1i)
B

for every i ∈ {2, . . . , t}).

We now show that not only f
(1)
B , but all the functions f

(2)
B , . . . , f

(t)
B are independent of x2, . . . ,xt .

Claim 1 For all i ∈ {2, . . . , t}, f (i)B is a function of {x1,xt+1, . . . ,xr } and independent of x2, . . . ,xt .

Proof. Without loss of generality, let i = 2. By Observation 1 (property 4), the character functions

χt+1, . . . ,χr are present in the Fourier expansion of f
(1)
B . We have f

(21)
B = f

(1)
B by Corollary 1. Hence,

for every ℓ ∈ {t+1, . . . , r}, at least one of the characters χℓ or χ1χℓ is present in the Fourier expansion

of f
(2)
B . Let yℓ be χℓ or χ1χℓ (depending on which character function is present in the Fourier ex-

pansion of f
(2)
B ). Note that the r−t character functions yt+1, . . . ,yr are linearly independent. By Ob-

servation 1 (Property 2), we have Fdim(f
(2)
B ) ≤ r − t, which implies Fspan(f

(2)
B ) ⊆ span{yt+1, . . . ,yr }

and f
(2)
B is independent of {x2, . . . ,xt}. The same argument shows that for every i,k ∈ {2, . . . , t}, f (i)B

is independent of xk . �

Claim 2 There exists an assignment of (x1,xt+1, . . . ,xr ) to (a1,at+1 . . . ,ar ) in fB such that the resulting
function depends on all variables x2, . . . ,xt .

7

Proof. Before proving the claim we first make the following observation. Let us consider an
assignment of (x1,xt+1, . . . ,xr ) = z in fB and assume that the resulting function fB,z is independent

of xi for some i ∈ {2, . . . , t}. Let us assign xi = (1 + sign(f̂B(i)))/2 in fB,z and call the resulting func-

tion f
(i)
B,z. Firstly, f

(i)
B,z = fB,z since fB,z was independent of xi . Secondly, observe that fB,z = f

(i)
B,z

could have alternatively been obtained by first fixing xi = (1 + sign(f̂ (i)))/2 in fB and then fixing

(x1,xt+1 . . . ,xr ) = z. In this case, by Claim 1, after fixing xi in fB, f
(i)
B is independent of x2, . . . ,xt

and after fixing (x1,xt+1, . . . ,xr ) = z, fB,z is a constant. This in particular shows that if there exists a
z such that fB,z is independent of xi for some i ∈ {2, . . . , t}, then fB,z is also independent of x2, . . . ,xt .

Towards a contradiction, suppose that for every assignment of (x1,xt+1, . . . ,xr ) = z to fB, the
resulting function fB,z is independent of xi , for some i ∈ {2, . . . , t}. Then by the argument in the
previous paragraph, for every assignment z, fB,z is also independent of xk for every k ∈ {2, . . . , t}.
This, however, contradicts the fact that x2, . . . ,xt had non-zero influence on fB (since B was cho-

sen such that f̂B(j) , 0 for every j ∈ [r] in Lemma 6). This implies the existence of an assign-
ment (x1,xt+1, . . . ,xr ) = (a1,at+1 . . . ,ar ), such that the resulting function depends on all the vari-
ables x2, . . . ,xt . �

We now argue that the assignment in Claim 2 results in a function which resembles the AND
function on x2, . . . ,xt , and hence has Fourier sparsity 2t−1.

Claim 3 Consider the assignment (x1,xt+1, . . . ,xr ) = (a1,at+1 . . . ,ar ) in fB as in Claim 2, then the result-
ing function g equals (up to possible negations of input and output bits) the (t − 1)-bit AND function.

Proof. By Claim 2, g depends on all the variables x2, . . . ,xt . This dependence is such that if

any one of the variables {xi : i ∈ {2, . . . , t}} is set to xi = (1 + sign(f̂B(i)))/2, then by Claim 1 the
resulting function g (i) is independent of x2, . . . ,xt . Hence, g (i) is some constant bi ∈ {−1,1} for every
i ∈ {2, . . . , t}. Note that these bis are all the same bit b, because first fixing xi (which collapses g to

7Observe that in this assignment, we have x1 = (1 − sign(f̂ (1)))/2. Otherwise, by assigning x1 = (1 + sign(f̂ (1)))/2 in

fB, we would obtain the function f
(1)
B which we know is independent of {x2, . . . ,xt } by Corollary 1.
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the constant bi) and then xj gives the same function as first fixing xj (which collapses g to bj ) and

then xi . Additionally, by assigning xi = (1 − sign(f̂B(i)))/2 for every i ∈ {2, . . . , t} in g , the resulting
function must evaluate to 1 − b because g is non-constant (it depends on x2, . . . ,xt). Therefore g
equals (up to possible negations of input and output bits) the (t − 1)-bit AND function. �

We now conclude the proof of Lemma 6. Let f : {0,1}n → {−1,1} be such that Fdim(f ) = r.
Let B be as defined in Observation 1. Consider the assignment of (xt+1, . . . ,xr ) = (at+1, . . . ,ar ) to fB
as in Claim 3, and call the resulting function f ′B. From Claim 3, observe that by setting x1 = a1
in f ′B, the resulting function is g(x2, . . . ,xt) and by setting x1 = 1− a1 in f ′B, the resulting function is
a constant. Hence f ′B can be written as

f ′B(x1, . . . ,xt ,at+1, . . . ,ar ) =
1− (−1)x1+a1

2
ba1,at+1,...,ar +

1+ (−1)x1+a1
2

g(x2, . . . ,xt), (3)

where ba1,at+1,...,ar ∈ {−1,1} (note that it is independent of x2, . . . ,xt by Corollary 1). Since g essen-
tially equals the (t − 1)-bit AND function (by Claim 3), g has Fourier sparsity 2t−1 and ĝ(0t−1) =
1 − 2−t+2. Hence the Fourier sparsity of f ′B in Eq. (3) equals 2t. Since f ′B was a restriction of fB,

the Fourier sparsity of f ′B is at most k, hence t ≤ logk. This implies Fdim(f
(1)
B ) = r − t ≥ r − logk,

concluding the proof. �

It remains to prove Observation 1, which we do now.

Proof. [Proof of Observation 1] Let D ∈ Fn×n
2 be an invertible matrix that maximizes Fdim(f

(1)
D )

subject to the constraint f̂D(1) , 0. Suppose Fdim(f
(1)
D ) = r − t. Let d1, . . . ,dr−t be a basis of

Fspan(f
(1)
D ) such that f̂

(1)
D (di ) , 0 for all i ∈ [r − t]. We now construct an invertible C ∈ F

n×n
2

whose first r columns form a basis for Fspan(fD), as follows: let c1 = e1, and for i ∈ [r − t], fix
ct+i = di . Next, assign vectors c2, . . . , ct arbitrarily from Fspan(fD), ensuring that c2, . . . , ct are lin-
early independent from {c1, ct+1, . . . , cr}. We then extend to a basis {c1, . . . , cn} arbitrarily. Define C
as C = [c1, . . . , cn] (where the cis are column vectors). Finally, define our desired matrix B as the
product B =DC. We now verify the properties of B.

Property 1: Using Lemma 3 we have

f̂DC (1) = f̂D(Ce1) = f̂D(c1) = f̂D(1) , 0,

where the third equality used c1 = e1, and f̂D(1) , 0 follows from the definition of D.

We next prove the following fact, which we use to verify the remaining three properties.

Fact 1 Let C,D be invertible matrices as defined above. For every i ∈ [t], let (f
(i)
D )C be the function

obtained after applying the invertible transformation C to f
(i)
D and (fDC)

(i) be the function obtained

after fixing xi to (1 + sign(f̂DC(i)))/2 in fDC . Then (fDC)
(i) = (f

(i)
D )C .

Property 2: Fact 1 implies that Fdim((fDC)
(i)) = Fdim((f

(i)
D )C). SinceC is invertible, Fdim((f

(i)
D )C) =

Fdim(f
(i)
D ). From the choice of D, observe that for all i ∈ {2, . . . , t},

Fdim(f
(i)
B ) = Fdim(f

(i)
DC) = Fdim((f

(i)
D )C) = Fdim(f

(i)
D ) ≤ Fdim(f

(1)
D ) = r − t,
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where the inequality follows by definition of D.

Property 3: Note that Fspan(f
(1)
D ) is contained in span{d1, . . . ,dr−t} by construction. By making

the invertible transformation by C, observe that Fspan((f
(1)
D )C) ⊆ span{et+1, . . . , er } (since for all

i ∈ [r − t], we defined ct+i = di). Property 3 follows because (f
(1)
D )C = f

(1)
DC = f

(1)
B by Fact 1.

Property 4: Using Fact 1, for every ℓ ∈ {t +1, . . . , r}, we have

̂(fB)(1)(ℓ) =
̂(fDC)(1)(ℓ) =

̂
(f

(1)
D )C (ℓ) = f̂

(1)
D (cℓ).

Since cℓ = dℓ−t , we have f̂
(1)
D (cℓ) = f̂

(1)
D (dℓ−t) and f̂

(1)
D (d1), . . . , f̂

(1)
D (dr−t) , 0 by definition of di , hence

the property follows.

Proof. [Proof of Fact 1] Let fD = g . We want to show that (g (i))C = (gC )
(i). For simplicity fix i = 1;

the same proof works for every i ∈ [t]. Then,

(g (1))(x) =
∑

S∈{0}×{0,1}n−1
(ĝ(S) + ĝ(S ⊕ e1))χS(x).

On transforming g (1) using the basis C we have:

(g (1))C(x) =
∑

S∈{0}×{0,1}n−1
(ĝ(CS) + ĝ(C(S ⊕ e1))χS(x). (4)

Consider the function gC . The Fourier expansion of gC is gC (y) =
∑
S∈{0,1}n ĝ(CS)χS (y) and the

Fourier expansion of the (gC)
(1) can be written as

g
(1)
C (y) =

∑

S∈{0}×{0,1}n−1
(ĝ(CS) + ĝ(CS ⊕Ce1))χS(y). (5)

Using Eq. (4), (5), we conclude that (g (1))C = (gC )
(1), concluding the proof of the fact. �

This concludes the proof of the observation. �

This concludes the proof of the theorem. �

Now that we have a better understanding of the Fourier dimension of k-Fourier-sparse Boolean
functions, we would like to understand how many Fourier samples suffice to obtain the Fourier
span of f (in fact this will be our quantum learning algorithm for phase 1). Since the ≤ k squared
non-zero Fourier coefficients of a k-Fourier-sparse function are each at least 1/k2, it is easy to see
that after O(k2 logk) Fourier samples we are likely to have seen every element in the Fourier sup-
port, and hence know the full Fourier support as well. We will improve on this easy bound below.
The main idea is to show that if the span of the Fourier samples seen at a certain point has some
dimension r ′ < r, then there is significant Fourier weight on elements outside of this span, so after
a few more Fourier samples we will have grown the span. We now state this formally and prove
the lemma.
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Lemma 7 Let n > 0 and 1 ≤ k ≤ 2n. For every k-Fourier-sparse f : {0,1}n→ {−1,1} with Fourier span V
and Fourier dimension r, the following holds: for every r ′ > 0 and S ⊂ V satisfying dim(span(S )) = r ′,
we have ∑

S∈span(S)
f̂ (S)2 ≤ 1− r − r ′

k logk
.

Proof. Let B ∈ F
r×r
2 be an invertible matrix such that the first r ′ columns of B form a basis

for span(S ). By Lemma 3, fB depends only on r bits, so we write fB : {0,1}r → {−1,1}. Let W =
span{e1, . . . , er ′ } ⊆ {0,1}r . Then

∑

S∈span(S)
f̂ (S)2 =

∑

S∈W
f̂B(S)

2. (6)

Let us decompose fB as follows: fB(x1, . . . ,xr ) = g(x1, . . . ,xr ′ ) + g
′(x1, . . . ,xr ), where

g(y) =
∑

T∈{0,1}r′
f̂B(T ,0

r−r ′ )χT (y,0
r−r ′ ) for every y ∈ {0,1}r ′ , (7)

and
g ′(x) =

∑

S<W
f̂B(S)χS(x) for every x ∈ {0,1}r .

Now by Parseval’s identity we have

Ey∈{0,1}r′ [g(y)
2] =

∑

T∈{0,1}r′
ĝ(T )2 =

∑

S∈W
f̂B(S)

2, (8)

where the second equality used Eq. (7). Combining Eq. (8) with an averaging argument, there
exists an assignment of a = (a1, . . . ,ar ′ ) ∈ {0,1}r

′
to (y1, . . . ,yr ′ ) such that

g(a1, . . . ,ar ′ )
2 ≥

∑

S∈W
f̂B(S)

2, (9)

Consider the function h defined as

h(z1, . . . , zr−r ′ ) = fB(a1, . . . ,ar ′ , z1, . . . , zr−r ′ ) for every z1, . . . , zr−r ′ ∈ {0,1}. (10)

Note that h has Fourier sparsity at most the Fourier sparsity of fB, hence at most k. Also, the
Fourier dimension of h is at most r − r ′. Finally note that

ĥ(0r−r
′
) = Ez∈{0,1}r−r′ [h(z)]

= Ez∈{0,1}r−r′ [fB(a,z)] (by Eq. (10))

= Ez∈{0,1}r−r′
[ ∑

S1∈{0,1}r′

∑

S2∈{0,1}r−r′
f̂B(S1,S2)χS1(a)χS2(z)

]
(Fourier expansion of fB)

=
∑

S1∈{0,1}r′
f̂B(S1,0

r−r ′ )χS1(a,0
r−r ′ ) (using Ez∈{0,1}r−r′χS(z) = δS,0r−r′ )

= g(a1, . . . ,ar ′ ) (by definition of g in Eq. (7))

≥
( ∑

S∈W
f̂B(S)

2
)1/2

. (by Eq. (9))
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Using Theorem 7 for the function h, it follows that ĥ(0r−r
′
) ≤ 1 − (r − r ′)/(k logk), which in

particular implies ∑

S∈span(S)
f̂ (S)2 =

∑

S∈W
f̂B(S)

2 ≤ ĥ(0r−r ′ )2 ≤ 1− r − r ′
k logk

,

where the first equality used Eq. (6). �

Theorem 8 For every k-Fourier-sparse Boolean function f : {−1,1}n → {−1,1} with Fourier dimen-
sion r, its Fourier span can be learned using an expected number of O(k logk logr) quantum examples.

Proof. We only use the quantum examples for Fourier sampling; an expected number of two
quantum examples suffices to get one Fourier sample. At any point of time let S be the set of
samples we have received. Let the dimension of the span of S be r ′. Now if we receive a new
sample S such that S < span(S ), then the dimension of the samples we have seen increases by 1.
By Lemma 7 ∑

S<span(S)
f̂ (S)2 ≥ r − r ′

k logk
.

So the expected number of samples to increase the dimension by 1 is ≤ k logk
r−r ′ . Accordingly, the

expected number of Fourier samples needed to learn the whole Fourier span of f is at most

r∑

i=1

k logk

i
≤O(k logk logr),

where the final inequality used
∑r
i=1

1
i =O(logr). �

3.1.2 Phase 2: Learning the function completely

In the above phase 1, the quantum learner obtains the Fourier span of c, which we will denote
by T . Using this, the learner can restrict to the following concept class

C′ = {c : {0,1}n→ {−1,1} | c is k-Fourier-sparse with Fourier span T }

Let dim(T ) = r. Let B ∈ Fn×n
2 be an invertible matrix whose first r columns of B form a basis for T .

Consider cB = c◦(B−1)T for c ∈ C′. By Lemma 3 it follows that cB depends on only its first r bits, and
we can write cB : {0,1}r → {−1,1}. Hence the learner can apply the transformation c 7→ c ◦ (B−1)T
for every c ∈ C′ and restrict to the concept class

C′r = {c′ : {0,1}r → {−1,1} | c′ = c ◦ (B−1)T for some c ∈ C′ and invertible B}.

We now conclude phase 2 of the algorithm by invoking the classical upper bound of Haviv-Regev
(Theorem 2) which says that O(rk logk) uniform classical examples of the form (z,c′(z)) ∈ {0,1}r+1
suffice to learn C′r . Although we assume our learning algorithm has access to uniform examples
of the form (x,c(x)) for x ∈ {0,1}n, the quantum learner knows B and hence can obtain a uniform
example (z,c′(z)) for c′ by letting z be the first r bits of BTx and c′(z) = c(x).
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3.2 Lower bound on learning k-Fourier-sparse Boolean functions

In this section we show that Ω(k logk) uniform quantum examples are necessary to learn the
concept class of k-Fourier-sparse Boolean functions.

Theorem 9 For every n, constant c ∈ (0,1) and k ≤ 2cn, the number of uniform quantum exam-
ples necessary to learn the class of k-Fourier-sparse Boolean functions, with success probability ≥ 2/3,
is Ω(k logk).

Proof. Assume for simplicity that k is a power of 2, so logk is an integer. We prove the lower
bound for the following concept class, which was also used for the classical lower bound of Haviv
and Regev [HR16]: let V be the set of distinct subspaces in {0,1}n with dimension n− logk and

C = {cV : {0,1}n→ {−1,1} | cV (x) = −1 iff x ∈ V , where V ∈ V}.
Note that |C| = |V |, and each cV ∈ C evaluates to 1 on a (1− 1/k)-fraction of its domain.

We prove the lower bound for C using a three-step information-theoretic technique. A similar
approach was used in proving classical and quantum PAC learning lower bounds in [AW18]. Let
A be a random variable that is uniformly distributed over C. Suppose A = cV , and let B = B1 . . .BT
be T copies of the quantum example |ψV 〉 = 1√

2n

∑
x∈{0,1}n |x,cV (x)〉 for cV . The random variable B

is a function of the random variable A. The following upper and lower bounds on I(A : B) are
similar to [AW18, proof of Theorem 12] and we omit the details of the first two steps here.

1. I(A : B) ≥Ω(log |V |) because B allows one to recover A with high probability.

2. I(A : B) ≤ T · I(A : B1) using a chain rule for mutual information.

3. I(A : B1) ≤O(n/k).

Proof (of 3). Since AB is a classical-quantum state, we have

I(A : B1) = S(A) + S(B1)− S(AB1) = S(B1),

where the first equality is by definition and the second equality uses S(A) = log |V | since A is
uniformly distributed over C, and S(AB1) = log |V | since the matrix

σ =
1

|V |
∑

V∈V
|V 〉〈V | ⊗ |ψV 〉〈ψV |

is block-diagonal with |V | rank-1 blocks on the diagonal. It thus suffices to bound the entropy
of the (vector of singular values of the) reduced state of B1, which is

ρ =
1

|V |
∑

V∈V
|ψV 〉〈ψV |.

Let σ0 ≥ σ1 ≥ · · · ≥ σ2n+1−1 ≥ 0 be the singular values of ρ. Since ρ is densitymatrix, these form
a probability distribution. Now observe that σ0 ≥ 1 − 1/k since the inner product between
1√
2n

∑
x∈{0,1}n |x,1〉 and every |ψV 〉 is 1 − 1/k. Let N ∈ {0,1, . . . ,2n+1 − 1} be a random variable

with probabilities σ0,σ1, . . . ,σ2n+1−1, and Z an indicator for the event “N , 0.” Note that Z = 0
with probability σ0 ≥ 1 − 1/k, and H(N | Z = 0) = 0. By a similar argument as in [AW18,
Theorem 15], we have

S(ρ) =H(N) =H(N,Z) =H(Z) +H(N | Z)

=H(σ0) +σ0 ·H(N | Z = 0) + (1−σ0) ·H(N | Z = 1) ≤H
(
1

k

)
+
n+1

k
≤O

(
n+ logk

k

)
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using H(α) ≤O(α log(1/α)).

Combining these three steps implies T =Ω(k(log |V |)/n). It remains to lower bound |V |.

Claim 4 The number of distinct d-dimensional subspaces of Fn
2 is at least 2Ω((n−d)d) .

Proof. We can specify a d-dimensional subspace by giving d linearly independent vectors in it.
The number of distinct sequences of d linearly independent vectors is exactly (2n − 1)(2n − 2)(2n −
4) · · ·(2n − 2d−1), because once we have the first t linearly independent vectors, with span St, then
there are 2n − 2t vectors that do not lie in St.

However, we are double-counting certain subspaces in the argument above, since there will
be multiple sequences of vectors yielding the same subspace. The number of sequences yielding a
fixed d-dimensional subspace can be counted in a similar manner as above and we get (2d−1)(2d−
2)(2d − 4) · · ·(2d − 2d−1). So the total number of subspaces is

(2n − 1)(2n − 2) · · ·(2n − 2d−1)
(2d − 1)(2d − 2) · · ·(2d − 2d−1)

≥ (2n − 2d−1)d
(2d − 1)d

≥ 2Ω((n−d)d) .

�

Combining this claim (with d = n− logk) and T =Ω(k(log |V |)/n) gives T =Ω(k logk). �

4 Quantum vs classical membership queries

In this section we assume we can access the target function using membership queries rather than
examples. Our goal is to simulate quantum exact learners for a concept class C by classical exact
learners, without using many more membership queries. A key tool here will be the (“nonnega-
tive” or “positive-weights”) adversary method. This was introduced by Ambainis [Amb02]; here
we will use the formulation of Barnum et al. [BSS03], which is called the “spectral adversary” in
the survey [ŠS05].

Let C ⊆ {0,1}N be a set of strings. If N = 2n then we may view such a string c ∈ C as (the truth-
table of) an n-bit Boolean function, but in this section we do not need the additional structure
of functions on the Boolean cube and may consider any positive integer N . Suppose we want
to identify an unknown c ∈ C with success probability at least 2/3 (i.e., we want to compute the
identity function on C). The required number of quantum queries to c can be lower bounded as
follows. Let Γ be a |C| × |C| matrix with real, nonnegative entries and 0s on the diagonal (called an
“adversary matrix”). Let Di denote the |C|× |C| 0/1-matrix whose (c,c′)-entry is [ci , c

′
i].

8 Then it is
known that at least (a constant factor times) ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ quantum queries are needed,
where ‖ · ‖ denotes operator norm (largest singular value) and ‘◦’ denotes entrywise product of
matrices. Let

ADV(C) = max
Γ≥0

‖ Γ ‖
maxi∈[N ] ‖ Γ ◦Di ‖

denote the best-possible lower bound on Q(C) that can be achieved this way.

The key to our classical simulation is the next lemma. It shows that ifQ(C) (and hence ADV(C))
is small, then there is a query that splits the concept class in a “mildly balanced” way.

8The bracket-notation [P] denotes the truth-value of proposition P.
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Lemma 8 Let C ⊆ {0,1}N be a concept class and ADV(C) = maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ be the
nonnegative adversary bound for the exact learning problem corresponding to C. Let µ be a distribution
on C such that maxc∈C µ(c) ≤ 5/6. Then there exists an i ∈ [N ] such that

min(µ(Ci = 0),µ(Ci = 1)) ≥ 1

36ADV(C)2 .

Proof. Define unit vector v ∈ R|C|+ by vc =
√
µ(c), and adversary matrix

Γ = vv∗ −diag(µ),

where diag(µ) is the diagonal matrix that has the entries of µ on its diagonal. This Γ is a nonneg-
ative matrix with 0 diagonal (and hence a valid adversary matrix for the exact learning problem),
and ‖ Γ ‖ ≥ ‖ vv∗ ‖−‖ diag(µ) ‖ ≥ 1−5/6 = 1/6. Abbreviate A = ADV(C). By definition of A, we have
for this particular Γ

A ≥ ‖ Γ ‖
maxi ‖ Γ ◦Di ‖

≥ 1

6maxi ‖ Γ ◦Di ‖
,

hence there exists an i ∈ [N ] such that ‖ Γ ◦Di ‖ ≥ 1
6A . We can write v =

(
v0
v1

)
where the entries

of v0 are the ones corresponding to Cs where Ci = 0, and the entries of v1 are the ones where
Ci = 1. Then

Γ =

(
v0v

∗
0 v0v

∗
1

v1v
∗
0 v1v

∗
1

)
−diag(µ) and Γ ◦Di =

(
0 v0v

∗
1

v1v
∗
0 0

)
.

It is easy to see that ‖ Γ ◦Di ‖ = ‖ v0 ‖ · ‖ v1 ‖. Hence

1

36A2
≤ ‖ Γ ◦Di ‖2 = ‖ v0 ‖2‖ v1 ‖2 = µ(Ci = 0)µ(Ci = 1) ≤min(µ(Ci = 0),µ(Ci = 1)),

where the last inequality used max(µ(Ci = 0),µ(Ci = 1)) ≤ 1. �

Note that if we query the index i given by this lemma and remove from C the strings that are
inconsistent with the query outcome, then we reduce the size of C by a factor ≤ 1−Ω(1/ADV(C)2).
Repeating this O(ADV(C)2 log |C|) times would reduce the size of C to 1, completing the learning
task. However, we will see below that analyzing the same approach in terms of entropy gives a
somewhat better upper bound on the number of queries.

Theorem 10 Let C ⊆ {0,1}N be a concept class and ADV(C) = maxΓ≥0 ‖ Γ ‖/maxi∈[N ] ‖ Γ ◦Di ‖ be the
nonnegative adversary bound for the exact learning problem corresponding to C. Then there exists a

classical learner for C using O
(

ADV(C)2
logADV(C) log |C|

)
membership queries that identifies the target concept

with probability ≥ 2/3.

Proof. Fix an arbitrary distribution µ on C. We will construct a deterministic classical learner
for C with success probability ≥ 2/3 under µ. Since we can do this for every µ, the “Yao princi-
ple” [Yao77] then implies the existence of a randomized learner that has success probability ≥ 2/3
for every c ∈ C.

Consider the following algorithm, whose input is an N-bit random variable C ∼ µ:
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1. Choose an i that maximizes H(Ci ) and query that i.9

2. Update C and µ by restricting to the concepts that are consistent with the query outcome.

3. Goto 1.

The queried indices are themselves random variables, and we denote them by I1, I2, . . .. We can
think of t steps of this algorithm as generating a binary tree of depth t, where the different paths
correspond to the different queries made and their binary outcomes.

Let Pt be the probability that, after t queries, our algorithm has reduced µ to a distribution
that has weight ≥ 5/6 on one particular c:

Pt =
∑

i1,...,it∈[N ], b∈{0,1}t
Pr[I1 = i1, . . . , It = it ,Ci1 . . .Cit = b] ·

[
∃c ∈ C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6

]
.

Because restricting µ to a subset C′ ⊆ C cannot decrease probabilities of individual c ∈ C′, this
probability Pt is non-decreasing in t. Because N queries give us the target concept completely, we
have PN = 1. Let T be the smallest integer t for which Pt ≥ 5/6. We will run our algorithm for T
queries, and then output the c with highest probability under the restricted version of µ we now
have. With µ-probability at least 5/6, that c will have probability at least 5/6 (under µ conditioned
on the query-results). The overall error probability under µ is therefore ≤ 1/6+1/6 = 1/3.

It remains to upper bound T . To this end, define the following “energy function” in terms of
conditional entropy:

Et =H(C | CI1 , . . . ,CIt ) =
∑

i1,...,it∈[N ], b∈{0,1}t
Pr[I1 = i1, . . . , It = it ,Ci1 . . .Cit = b] ·H(C | Ci1 . . .Cit = b).

Because conditioning on a random variable cannot increase entropy, Et is non-increasing in t. We
will show below that as long as Pt < 5/6, the energy shrinks significantly with each new query.

Let Ci1 . . .Cit = b be such that there is no c ∈ C s.t. µ(c | Ci1 . . .Cit = b) ≥ 5/6 (note that this
event happens in our algorithm with µ-probability 1 − Pt). Let µ′ be µ restricted to the class C′
of concepts c where ci1 . . . cit = b. The nonnegative adversary bound for this restricted concept
class is A′ = ADV(C′) ≤ ADV(C) = A. Applying Lemma 8 to µ′, there is an it+1 ∈ [N ] with p :=
min(µ′(Cit+1 = 0),µ′(Cit+1 = 1)) ≥ 1

36A′2
≥ 1

36A2 . Note that H(p) ≥Ω(log(A)/A2). Hence

H(C | Ci1 . . .Cit = b)−H(C | Ci1 . . .Cit = b,Cit+1) =H(Cit+1 | Ci1 . . .Cit = b) ≥Ω(log(A)/A2).

This implies Et −Et+1 ≥ (1−Pt) ·Ω(log(A)/A2). In particular, as long as Pt < 5/6, the (t + 1)st query
shrinks Et by at least 1

6Ω(log(A)/A2) = Ω(log(A)/A2). Since E0 = H(C) ≤ log |C| and Et cannot

shrink below 0, there can be at most O

(
A2

logA
log |C|

)
queries before Pt grows to ≥ 5/6. �

Since ADV(C) lower bounds Q(C), Theorem 10 implies the bound R(C) ≤ O
(
Q(C)2

logQ(C) log |C|)
)

claimed in our introduction. Note that this bound is tight up to a constant factor for the class of
N-bit point functions, where A =Θ(

√
N ), |C| =N , and R(C) =Θ(N ) classical queries are necessary

and sufficient.

9Querying this i will give a fairly “balanced” reduction of the size of C irrespective of the outcome of the query. If
there are several maximizing is, then choose the smallest i to make the algorithm deterministic.
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5 Future work

Neither of our two results is tight. As directions for future work, let us state two conjectures, one
for each model:

• k-Fourier-sparse functions can be learned fromO(k ·polylog(k)) uniform quantum examples.

• For all concept classes C of Boolean-valued functions on a domain of size N we have:
R(C) =O(Q(C)2 +Q(C) logN ).
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