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1. Introduction

The Minimum Description Length (MDL) Principle1–4

is a theory of inductive inference that can be applied
to general problems in statistics, machine learning

and pattern recognition. Broadly speaking, it states

that the best explanation for a given set of data is

provided by the shortest description of that data.

In 2007, one of us published the book The Minimum

Description Length Principle (Ref. 4 referred to as

G07 from now on), giving a detailed account of

most works in the MDL area that had been done

until then. During the last 10 years, several new

practical MDL methods have been designed, and

there have been exciting theoretical developments

as well. It therefore seemed time to present an

up-to-date combined introduction and review.

Why read this overview?
While the MDL idea has been shown to be very
powerful in theory, and there have been a fair
number of successful practical implementations,
massive deployment has been hindered by two
issues: ¯rst, in order to apply MDL, one needs to
have basic knowledge of both statistics and infor-
mation theory. To remedy this situation, here we
present, for the ¯rst time, the MDL Principle
without resorting to information theory: all the
material can be understood without any knowledge
of data compression, which should make it a much
easier read for statisticians and machine learning
researchers novel to MDL. A second issue is that
many classical MDL procedures are either compu-
tationally highly intensive (for example, MDL var-
iable selection as in Example 4 below) and hence
less suited for our big data age, or they seem to
require somewhat arbitrary restrictions of parame-
ter spaces (e.g., NML with v � 1 as in Sec. 2). Yet,
over the last 10 years, there have been exciting
developments — some of them very recent — which
mostly resolve these issues. Incorporating these
developments, MDL can be seen as a powerful ex-
tension of both penalized likelihood and Bayesian
approaches, in which penalization functions and
prior distributions are replaced by more general
luckiness functions, average-case methodology is
replaced by a more robust worst-case approach, and
in which methods classically viewed as highly dis-
tinct, such as AIC versus BIC and cross-validation
versus Bayes can, to some extent, be viewed from a

uni¯ed perspective; as such, this paper should also
be of interest to researchers working on the foun-
dations of statistics and machine learning.

History of the ¯eld, recent advances and
overview of this paper
MDL was introduced in 1978 by Jorma Rissanen in
his paper Modeling by the Shortest Data
Description. The paper coined the term MDL and
introduced and analyzed the two-part code for
parametric models. The two-part code is the sim-
plest instance of a universal code or, equivalently,
universal probability distribution, the cornerstone
concept of MDL theory. MDL theory was greatly
extended in the 1980s, when Rissanen published a
sequence of ground-breaking papers at a remarkable
pace, several of which introduced new types of
universal distributions. It came to full blossom in
the 1990s, with further major contributions from,
primarily, Jorma Rissanen, Andrew Barron and Bin
Yu, culminating in their overview paper3 and the
collection5 with additional chapters by other es-
sential contributors such as Kenji Yamanishi. The
book G07 provides a more exhaustive treatment of
this early work, including discussion of important
precursors/alternatives to MDL such as MML,6

\ideal", Kolmogorov complexity-based MDL7 and
Solomono®'s theory of induction.8 Universal dis-
tributions are still central to MDL. We introduce
them in a concise yet self-contained way, including
substantial underlying motivation, in Sec. 2, incor-
porating the extensions to and new insights into
these basic building blocks that have been gathered
over the last 10 years. These include more general
formulations of arguably the most fundamental
universal code, the Normalized Maximum Likelihood
(NML) Distribution, including faster ways to calcu-
late it as well. We devote a separate section to new
universal codes, with quite pleasant properties for
practical use, most notably the switch distribution
(Sec. 3.1), which can be used for model selection
combining almost the best of AIC and BIC; and the
Reverse Information Projection (RIPr)-universal
code (Sec. 3.3) specially geared to hypothesis testing
with composite null hypotheses, leading to several
advantages over classical Neyman–Pearson tests. In
Sec. 4 we review recent developments on fast calcu-
lation of NML-type distributions for model selection
for graphical models (Bayesian networks and the
like), leading to methods which appear to be more
robust in practice than the standard Bayesian ones.
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Recent extensions of MDL theory and practical
implementations to latent variable and irregular
models are treated in Sec. 5. Then, in Sec. 6 we re-
view developments relating to consistency and con-
vergence properties of MDL methods. First, while
originally MDL estimation was formulated solely in
terms of discretized estimators (re°ecting the fact
that coding always requires discretization), it has
gradually become clear that a much larger class
of estimators (including maximum likelihood for
\simple" models, and, in some circumstances, the
Lasso — see Example 4) can be viewed from an
MDL perspective, and this becomes clearest if one
investigates asymptotic convergence theorems re-
lating to MDL. Second, it was found that MDL
(and Bayes), without modi¯cation, can behave sub-
optimally under misspeci¯cation, i.e., when all
models under consideration are wrong, but some are
useful — see Sec. 6.3. Third, very recently, it was
shown how some of the surprising phenomena un-
derlying the deep learning revolution in machine
learning can be explained from an MDL-related
perspective; we brie°y review these developments in
Sec. 6.4. Finally, we note that G07 presented many
explicit open problems, most of which have been
resolved — we mention throughout the text when-
ever a new development solved an old open prob-
lem, deferring some of the most technical issues to
the Appendix.

Notational preliminaries
We shall mainly be concerned with statistical
models (families of probability distributions) of
the form M ¼ fp� : � 2 �g parametrized by some
set � which is usually but not always a subset
of Euclidean space; and families of models
fM� : � 2 �g, where each M� ¼ fp� : � 2 ��g is a

statistical model, used to model the data zn :¼
ðz1; . . . ; znÞ with each zi 2 Z, for some outcome
space Z. Each p� represents a probability density
function (pdf) or probability mass function, de¯ned
on sequences of arbitrary length. With slight abuse
of notation we also denote the corresponding
probability distribution by p� (rather than the
more common P�). In the simple case that the data
are i.i.d. according to each p� under consideration,
we have p�ðznÞ ¼

Qn
i¼1 p�ðziÞ.

We denote the maximum likelihood (ML) esti-

mator given the model M ¼ fp� : � 2 �g by �̂ML,
whenever it exists and is unique; the ML estimator

relative to model M� is denoted by �̂MLj�. We shall,

purely for simplicity, generally assume its existence
and uniqueness, although nearly all results can be

generalized to the case where it does not. We use ��

to denote more general estimators, and �̂v to denote
what we call the MDL estimator with luckiness
function v, see (5).

2. The Fundamental Concept:
Universal Modeling

MDL is best explained by starting with one of its
prime applications, model comparison — we will
generalize to prediction and estimation later, in
Secs. 2.3 and 2.4. Assume then that we are given a
¯nite or countably in¯nite collection of statistical
models M1;M2; . . . ; each consisting of a set of
probability distributions. The fundamental idea of
MDL is to associate each M� with a single distri-
bution �p�, often called a universal distribution rel-
ative to M�. We call the minus-log-likelihood
�log �p�ðZnÞ the code length of data Zn under the
universal code �p�. This terminology, and how MDL
is related to coding (lossless compression of data), is
brie°y reviewed in Secs. 2.3 and 2.4; but a crucial
observation at this point is that the main MDL
ideas can be understood abstractly, without re-
sorting to the code length interpretation. We also
equip the model indices � :¼ f1; 2; . . . ; �maxg (where
we allow j�j ¼ �max ¼ 1) with a distribution, say
�; if the number of models to be compared is small
(e.g., bounded independently of n or at most a small
polynomial in n), we can take � to be uniform dis-
tribution — for large (exponential in n) and in¯nite
�, see Sec. 2.3 and Example 4. We then take, as our
best explanation of the given data zn, the model
M� minimizing

�log�ð�Þ � log �p�ðznÞ; ð1Þ
or, equivalently, we maximize �ð�Þ�p�ðznÞ; when � is
uniform this simply amounts to picking the �
maximizing �p�ðznÞ. (1) will later be generalized to �
that are not distributions but rather more general
\luckiness functions" — see Sec. 2.3.

(1) The Bayesian universal distribution
The reader may recognize this as being formally
equivalent to the standard Bayesian way of model
selection, the Bayes factor method9 as long as the �
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are de¯ned as Bayesian marginal distributions, i.e.,
for each �, we set �p� ¼ pbayes

w�
, where

pbayes
w�

ðznÞ :¼
Z

p�ðznÞw�ð�Þd�; ð2Þ

for some prior probability density w� on the param-
eters in ��, which has to be supplied by the user.
When w� is clear from the context, we shall write
�pbayes� rather than pbayes

w�
. Using Bayesian marginal

distributions �pbayes is indeed one possible way to
instantiate MDL model selection, but it is not the
only way: MDL can also be based on other dis-
tributions such as �pNML ¼ pNML

v (depending on a
function v), �p preq ¼ ppreq

��
(depending on an esti-

mator ��) and others; in general we add a bar to such
distributions if the \parameter" w; v or �� is clear
from the context. Before we continue with these
other instantiations of �p� we proceed with an
example.

Example 1 (Bernoulli). Let M¼fp� : �2 ½0;1�g
represent the Bernoulli model, extended to n
outcomes by independence. We then have for each
zn 2 f0; 1gn that p�ðznÞ ¼ �n1ð1� �Þn0 , where n1 ¼Pn

i¼1 zi and n0 ¼ n� n1. Most standard prior
distributions one encounters in the literature are
beta priors, for which wð�Þ / ��ð1� �Þ�, so that
pbayes
w ðznÞ / R �n1þ�ð1� �Þn0þ�d�. Note that pbayesw

is not itself an element of the Bernoulli model. One
could use pbayes

w to compare the Bernoulli model,
via (1), to, for example, a ¯rst-order Markov model,
with Bayesian marginal likelihoods de¯ned analo-
gously. We shall say a lot more about the choice of
prior below.

Example 2 (Gauss and general improper
priors). A second example is the Gaussian location
family Mgauss with ¯xed variance (say 1), in which
Z ¼ R, and p�ðznÞ / expðPn

i¼1 ðzi � �Þ2=2Þ. A stan-
dard prior for such a model is the uniform prior,
wð�Þ ¼ 1, which is improper (it does not integrate,
hence does not de¯ne a probability distribution).
Improper priors cannot be directly used in (2), and
hence they cannot be directly used for model
comparison as in (1) either. Still, we can use them
in an indirect manner, as long as we are guaranteed
that, for all M� under consideration, after some
initial number of m observations, the Bayesian
posterior w�ð�jzmÞ is proper. We can then replace

pbayes
w�

ðznÞ in (2) by pbayes
w�

ðzmþ1; . . . ; znjzmÞ :¼R
p�ðzmþ1; . . . ; znÞw�ð�jzmÞd�. We extend all these

conditional universal distributions to distributions
on Z n by de¯ning pbayesw�

ðz1; . . . ; znÞ :¼ pbayes
w�

ðzmþ1;

. . . ; znjzmÞp0ðzmÞ for some distribution p0 on Zm

that is taken to be the same for all models M�

under consideration. We can now use (1) again for
model selection based on pbayes

w�
ðz1; . . . ; znÞ, where

we note that the choice of p0 plays no role in the
minimization, which is equivalent to minimizing
�log�ð�Þ � log pbayes

w�
ðzmþ1; . . . ; znjzmÞ.

Now comes the crux of the story, which makes
MDL, in the end, quite di®erent fromBayes: de¯ning
the �p� as in (2) is just one particular way to de¯ne an
MDL universal distribution— but it is by no means
the only one. There are several other ways, and some
of them are sometimes preferable to the Bayesian
choice. Here we list the most important ones.

(2) NML or Shtarkov10 distribution, and
MDL estimators
This is perhaps the most fundamental universal
distribution, leading also to the de¯nition of an
MDL estimator. In its general form, the NML dis-
tribution and \MDL estimators" depend on a
function v : � ! R

þ
0 . The de¯nition is then given by

pNML
v ðznÞ :¼ max�2� p�ðznÞvð�ÞR

max�2� p�ðznÞvð�Þdzn

¼ðif v constantÞ p�̂MLðznÞðznÞR
p�̂MLðznÞðznÞdzn

; ð3Þ

which is de¯ned whenever the normalizing integral
is ¯nite. The logarithm of this integral is called the
model complexity and is thus given by

compðM; vÞ :¼ log

Z
max
�2�

ðp�ðznÞvð�ÞÞdzn

¼ðif v constantÞ
log

Z
p�̂MLðznÞðznÞdzn: ð4Þ

Here the integral is replaced by a sum for discrete
data, and max is replaced by sup if necessary. This
means that any function v : � ! R

þ
0 such that (4) is

¯nite is allowed; we call any such v a luckiness func-
tion, a terminologywe explain later.Note that v is not
necessarily a probability density — it does not have
to be integrable. For any luckiness function v, we
de¯ne the MDL estimator based on v as

�̂v :¼ argmax
�2�

p�ðznÞvð�Þ
¼ argmin

�2�
f�log p� � ½�log vð�Þ�g: ð5Þ

P. Gr€unwald & T. Roos
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The v-MDL estimator is a penalized ML esti-
mator, which coincides with the Bayes MAP esti-
mator based on prior v whenever v is a probability
density. Although this has only become clear grad-
ually over the last 10 years, estimators of form (5)
are the prime way of using MDL for estimation;
there is, however, a second, \improper" way for
estimating distributions within MDL though, see
Sec.2.4. In practice, we will choose v that are su±-
ciently smooth so that, if the number of parameters
is small relative to n, �̂v will usually be almost in-
distinguishable from the ML estimator �̂ML. COMP

indeed measures something one could call a
\complexity" — this is easiest to see if v ¼ 1, for
then, if M contains just a single distribution, we
must have compðM; vÞ ¼ 0, and the more dis-
tributions we add to M, the larger compðM; vÞ
gets — this is explored further in Sec. 2.2.

Now suppose we have a collection of models M�

indexed by ¯nite � and we have speci¯ed luckiness
functions v� on �� for each � 2 �, and we pick a
uniform distribution � on �. As can be seen from the
above, if we base our model choice on NML, we pick
the model minimizing

�log p�̂v� ðznÞðz
nÞ � log v�ð�̂v�ðznÞÞ

þ compðM�; v�Þ; ð6Þ
over �, where compðM�; v�Þ is given by

compðM�; v�Þ ¼ log

Z
max
�2��

ðp�ðznÞv�ð�ÞÞdzn

¼ log

Z
p�̂v� ðznÞðz

nÞv�ð�̂v�ðznÞÞdzn:
ð7Þ

Thus, by (6), MDL incorporates a trade-o® between
goodness of ¯t and model complexity as measured
by comp. Although the n-fold integral inside comp
looks daunting Suzuki and Yamanishi11 show that
in many cases (e.g., normal, Weibull–Laplace
models) it can be evaluated explicitly with appro-
priate choice of v.

Originally, the NML distribution was de¯ned by
Shtarkov10 for the special case with v � 1, leading
to the rightmost de¯nition in (3), and hence the
term NML (in the modern version, perhaps
\normalized penalized ML" would be more apt).
This is also the version that Rissanen12 advocated
as embodying the purest form of the MDL Principle.
However, the integral in (3) is ill-de¯ned for just

about every parametric model de¯ned on un-
bounded outcome spaces (such as N;R or Rþ), in-
cluding the simple normal location family. Using
nonuniform v allows one to deal with such cases in a
principled manner after all, see Sec. 2.5. For ¯nite
outcome spaces though, v � 1 usually \works",
and (3) is well de¯ned, as we illustrate for the
Bernoulli model (see Sec. 4 for more examples).

Example 3 (Continuation of Example 1).
For the Bernoulli model, �̂mlðznÞ ¼ n1=n and
compðM; vÞ as in (7) with v � 1 can be rewritten

as log
Pn

n1¼0
n
n1

� �
ðn1=nÞn1ðn0=nÞn0 , which, as we

shall see in Sec. 2.2, is within a constant of
ð1=2Þ logn. As reviewed in that sub-section, the
resulting pnml

v is asymptotically (essentially) indis-
tinguishable from pbayes

wJ where the latter is

equipped with Je®reys' prior, de¯ned as wJð�Þ /ffiffiffiffiffiffiffiffiffiffiffijIð�Þjp ¼ ��1=2ð1� �Þ�1=2, with Ið�Þ being the
Fisher information at �.

(3) The two-part (sub-)distribution1

Here one ¯rst discretizes � to some countable sub-
set �

::
which one equips with a probability mass

function w; in contrast to the v above, this function
must sum to 1. One then considers

pnml
w ðznÞ :¼ max

�
::2�:: p�::ðznÞwð�

::ÞR
max

�
::2�:: p�::ðznÞwð�

::Þdzn
; ð8Þ

which is just a special case of (3). But sinceZ
max
�
::2�::

p
�
::ðznÞwð�::Þdzn �

Z X
�
::2�::

p
�
::ðznÞwð�::Þdzn

¼
X
�2�::

wð�Þ
Z

p�ðznÞdzn
� �

¼ 1; ð9Þ
we can approximate pnmlw by the sub-distribution
p2�p
w ðznÞ :¼ max

�
::2�::p�::ðznÞwð�

::Þ. This \distribution"
adds or integrates to something smaller than 1. This
can be incorporated into the general story by
imagining that p2�p

w puts its remaining mass on a
special outcome, say \¦", which in reality will never
occur (while sub-distributions are thus \allowed",
measures that add up to something larger than 1
have no place in MDL). The two-part distribution
p2�p
w is historically the oldest universal distribution.

The fact that it can be considered a special case of
NML has only become fully clear very recently13; in
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that same paper, an even more general formulation
of (3) is given that has all Bayesian, two-part and
NML distributions as special cases. Despite its age,
the two-part code is still important in practice, as
we explain in Sec. 2.3.

(4) The prequential plug-in distribution14,15

Here, one ¯rst takes any reasonable estimator �� for
the given model M. One then de¯nes

ppreq
��

ðznÞ :¼
Yn
i¼1

p ��ðzi�1Þðzijzi�1Þ; ð10Þ

where for i.i.d. models, the probability inside the
product simpli¯es to p ��ðz i�1ÞðziÞ. For the normal
location family, one could simply use the ML esti-
mator: ��ðzmÞ :¼ �̂MLðzmÞ ¼

Pm
j¼1 zj=m. With dis-

crete data though, the ML estimator should be
avoided, since then one of the factors in (10) could
easily become 0, making the product 0, so that the
model for which ppreq

��
is de¯ned can never \win"

the model selection contest even if most other fac-
tors in the product (10) are close to 1. Instead, one
can use a slightly \smoothed" ML estimate (a nat-
ural choice for �� is to take an MDL estimator
for some v as in (5), but this is not required). For
example, in the Bernoulli model, one might
take ��ðzmÞ ¼ ðm1 þ ð1=2ÞÞ=ðmþ 1Þ, where m1 ¼Pm

i¼1 zi. With this particular choice, ppreq
��

turns out

to coincide exactly with pbayes
wJ

with Je®reys' prior

wJ. Such a precise correspondence between �p preq

and �p bayes is a special property of the Bernoulli and
multinomial models though; with other models, the
two distributions can usually be made to behave
similarly, but not identically. The rationale for
using �ppreq is described in Sec. 2.4. In Sec. 3.2.1 we
will say a bit more about hybrids between pre-
quential plug-in and Bayes (the °attened leader
distribution) and between prequential and NML
(sequential NML).

Except for the just mentioned \hybrids", these
¯rst four universal distributions were all brought
into MDL theory by Rissanen; they are extensively
treated by G07, in which one chapter is devoted to
each, and to which we refer for details. The fol-
lowing two are much more recent.

(5) The switch distribution �pSWITCH (Ref. 16)
In a particular type of nested model selection,
this universal distribution behaves arguably better
than the other ones. It will be treated in detail in
Sec. 3.1.

(6) Universal distributions �pRIPR based on the
Reverse Information Projection
These universal distributions17 lead to improved
error bounds and optional stopping behavior in
hypothesis testing and allow one to forge a con-
nection with group-invariant Bayes factor methods;
see Sec. 3.3.

2.1. Motivation

We ¯rst give a very high-level motivation that
avoids direct use of data compression arguments.
For readers interested in data compression, Sec. 2.3
does make a high-level connection, but for more
extensive material we refer to G07. We do, in
Sec. 2.4, give a more detailed motivation in predic-
tive terms, and, in Sec. 6, we shall review mathe-
matical results indicating that MDL methods are
typically consistent and enjoy fast rates of conver-
gence, providing an additional motivation in itself.

Consider then models M�, where for simplicity
we assume discrete data, and let �̂MLj� be the
maximum likelihood estimator within M�. De¯ne
\the ¯t of the model to the data" in the standard
way, as F�ðznÞ :¼ p�̂MLj�ðznÞðznÞ, the likelihood

assigned to the data by the best-¯tting distribution
within the model. Now if we enlarge the model M�,
i.e., by adding several distributions to it, F�ðznÞ can
only increase; and if we make M� big enough such
that for each zn, it contains a distribution p with
pðznÞ ¼ 1, we can even have F�ðznÞ ¼ 1 on all data.
If we simply picked the � maximizing F�ðznÞ, we
would be prone to severe over¯tting. For example,
if models are nested, then, except for very
special data, we would automatically pick the
largest one.

As we have seen, a central MDL idea is to instead
associate each model M� with a single correspond-
ing distribution �p�, i.e., we set F�ðznÞ :¼ �p�ðznÞ.
Then the total probability mass on all potential
outcomes zn cannot be larger than 1, which makes it
impossible to assign overly high ¯t F�ðznÞ to overly
many data sequences: no matter what distribution
�p� we chose, we must now have

P
znF�ðznÞ ¼ 1, so a

good ¯t on some zn necessarily implies a worse ¯t
on others, and we will not select a model simply
because it accidentally contained some distribution
that ¯tted our data very well — thus, measuring
¯t by a distribution �p� instead of F� inherently
prevents over¯tting. This argument to measure ¯t
relative to a model with a single �p is similar to
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Bayesian Occam's Razor arguments18 used to mo-
tivate the Bayes factor; the crucial di®erence is that
we do not restrict ourselves to �p� of the form (2);
inspecting the \Bayesian" Occam argument, there
is, indeed, nothing in there which forces us to use
distributions of Bayesian form.

The next step is thus to decide which �p are best
associated with a given M. To this end, we de¯ne
the ¯tness ratio for data zn as

FRð�p; znÞ :¼ �pðznÞ
max
�2�

p�ðznÞvð�Þ
; ð11Þ

where v : � ! R
þ
0 is a nonnegative function. To get

a feeling for (11), it is best to ¯rst focus on the case
with vð�Þ � 1; it then reduces to

FRð�p; znÞ ¼ �pðznÞ
p�̂MLðznÞðznÞ

: ð12Þ

We next postulate that a good choice for �p relative
to the given model is one in which FRð�p;nÞ tends to
be as large as possible. The rationale is that, over-
¯tting having already been taken care of by picking
some �p that is a probability measure (integrates
to 1), it makes sense to take a �p whose ¯t to data (as
measured in terms of likelihood) is proportional to
the ¯t to data of the best-¯tting distribution in M:
whenever some distribution in the model M ¯ts the
data zn well, the likelihood �pðznÞ should be high as
well. One way to make \FR tends to be large"
precise is by requiring it to be as large as possible in
the worst-case, i.e., we want to pick the �p achieving

max
�p

min
zn2Z n

FRð�p; znÞ; ð13Þ

where the maximum is over all probability
distributions over samples of length n. It turns out
that this maximin problem has a solution if and
only if the complexity (4) is ¯nite; and if it is ¯ne,
the unique solution is given by setting �p ¼ �pNML,
with �pNML given by (3). The NML distribution thus
has a special status as the most robust choice of
universal �p — even though �p is itself a probability
distribution, it meaningfully assesses ¯t in the
worst-case over all possible distributions, and its
interpretation does not require one to assume that
the model M is \true" in any sense. The nicest
sub-case is the one with vð�Þ � 1, since then all
distributions within the model M are treated on
exactly the same footing; no data or distribution is
intrinsically preferred over any other one.

Unfortunately, for most popular models with in¯-
nite Z, when taking vð�Þ � 1, (13) usually has no
solution since the integral

R
p�̂MLðznÞðznÞdzn diverges

for such models, making the complexity (4) in¯nite.
For all su±ciently \regular" models (curved expo-
nential families, see below), this problem can in-
variably be solved by restricting � to a bounded
subset of its own interior — one can show that the
complexity (4) is ¯nite with v � 1, and thus (13) has
a solution given by (3) if �̂ml is restricted to a suit-
ably bounded set. Yet, restricting � to a bounded
subset of itself is not satisfactory, since it is unclear
where exactly to put the boundaries. It is more
natural to introduce a nonuniform v, which can
invariably be chosen so that the complexity (4) is
¯nite and thus (13) has a solution — more on
choosing v at the end of Sec. 2.4.

A few remarks concerning this high-level moti-
vation of MDL procedures are in order.

(1) It is clear that, by requiring FR to add to 1, we
will be less prone to over¯tting than by setting
it simply to p�̂MLðznÞðznÞ; whether the require-
ment to add (at most) to 1, making FR essen-
tially a probability density function, is a clever
way to avoid over¯tting (leading to good results
in practice) is not clear yet. For this, we need
additional arguments, which we very brie°y
review. First, the sum-to-1 requirement is the
only choice for which the procedure can be
interpreted as selecting the model which mini-
mizes code length of the data (the original in-
terpretation of MDL); second, it is the only
choice which has a predictive interpretation,
which we review in Sec. 2.4 below; third, it is the
only choice under which time-tested Bayesian
methods ¯t into the picture; and fourth, with
this choice we get desirable frequentist statisti-
cal properties such as consistency and conver-
gence rates, see Sec. 6.

(2) The motivation above only applies to the NML
universal distributions. How about the other
¯ve types? Originally, in the pure MDL ap-
proach mainly due to Rissanen, the NML was
viewed as the optimal choice per se; other �p
should be used only for pragmatic reasons, such
as them being easier to calculate. One would
then design them so as to be as close as possible
to the NML distributions in terms of the ¯tness
ratio they achieve. In the following sub-section
we show that all six of them satisfy the same
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MDL/BIC asymptotics, meaning that their ¯t-
ness ratio is never smaller than a constant factor
of the NML one, either again in the worst-case
over all zn or in some weaker expectation sense.
Thus, they are all \kind of ok" in a rather weak
sense, and in practice one would simply revert
to the one that is closest to NML and still usable
in practice; with the Bayesian �p bayes, as we shall
see, one can even get arbitrarily close to NML as
n gets larger. This classical story notwith-
standing, it has become more and more appar-
ent that in practice one sometimes wants or
needs properties of model selection methods
that are not guaranteed by NML — such as
near-optimal predictions of future data or
strong frequentist Type-I error guarantees. This
translates itself into universal codes �p switch and
�pripr that, for some special sequences, achieve
much higher ¯tness ratio than �pnml, while for all
sequences having only very slightly smaller ¯t-
ness ratio. This more recent and pragmatic way
of MDL is brie°y reviewed in Secs. 3.1 and 3.3.
This raises the question how we should de¯ne a
universal distribution: what choices for �p� are
still \universal" (and de¯ne an MDL method)
and what choices are not? Informally, every
distribution �p� that for no zn 2 Z n has
�p�ðznÞ � �pnml� ðznÞ is \universal" relative to
M�. For parametric models such as exponential
families, the \�" is partially formalized by
requiring that at the very least, they should
satisfy (14) below (G07 is much more precise
on this).

(3) Third, we have not yet said how one should
choose the \luckiness function" v — and one
needs to make a choice to apply MDL in prac-
tice. The interpretation of v is closely tied to the
predictive interpretation of MDL, and hence we
postpone this issue to the end of Sec. 2.4.

(4) Fourth, the motivation so far is incomplete —

we still need to explain why and how to incor-
porate the distribution � on model index �. This
is done in Sec. 2.3 below.

2.2. Asymptotic expansions

Now let �p be de¯ned relative to a single parametric
model M. It turns out that all universal codes we
mentioned have in common that, for \su±ciently
regular" k-dimensional parametric models, the

log-likelihood for given data zn satis¯es the follow-
ing celebrated asymptotics, often called the MDL or
BIC expansion: for all \su±ciently regular" data
sequences z1; z2; . . ., there exists a constant C 2 R

independent of n such that for all n,

�log �pðznÞ � � log p�̂MLðznÞðznÞ þ
k

2
lognþ C:

ð14Þ
For �pnml and �p bayes, this holds for any choice of
luckiness function v and prior w that is continuous
and strictly positive on the parameter space �. For
�p 2�p
w , this holds for clever choices of the discretiza-

tion �
::

and the probability mass function w; for
ppreq

��
, this holds in a weaker expectation sense (see

Sec. 3.2.1), as long as �� is a suitably smoothed
version of the ML estimator. Essentially,
\su±ciently regular" parametric models are all ex-
ponential families (such as Bernoulli, multinomial,
normal, gamma, beta, Poisson, etc.) and curved
exponential families; corresponding results also hold
for regression with (generalized) linear models.
\Su±ciently regular data" are all sequences for
which there is an INECCSI subset �0 of the pa-
rameter space � such that, for all large n, the ML
estimator of the sequence lies within �0. Here
INECCSI stands for a set whose Interior is Non-
Empty and whose Closure is a Compact Subset of
the Interior of �. Essentially, this is any bounded
subset of the same dimensionality as � that does
not touch the boundaries of � itself; in the Bernoulli
example, it would be any set of the form ½�; 1� �� for
� > 0. For all universal distributions considered
except �p preq, as long as appropriate priors/
estimators/luckiness functions are used, (14) will
hold uniformly for all sequences in any INECCSI
subset �0, but the constant C may grow larger if we
replace �0 by a strictly larger INECCSI subset � 0

0

with �0 (� 0
0(�. (for �ppreq see Sec. 3.2.1). For the

¯rst four universal distributions, the inequality is
actually equality up to a constant — (14) also holds
with � replaced by �, for a di®erent constant.
For the switch distribution �p switch, however, the
left-hand side will be signi¯cantly smaller for a small
but important subset of possible data sequences.
Finally, since (14) thus also holds with �p ¼ �pNML

and � replaced by �, exponentiating (14), we see
that, if one restricts the minimum in (13) to all such
\su±ciently regular" zn, FRð�puðznÞÞ is guaranteed
to be within a constant (independent of n) factor
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1930001-8

In
t. 

J.
 M

at
h.

 I
nd

. 2
01

9.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
E

N
T

E
R

 W
IS

K
U

N
D

E
 E

N
 I

N
FO

R
M

A
T

IC
A

 (
C

W
I)

 B
IB

L
IO

T
H

E
E

K
 o

n 
03

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



of the optimal FRð�pNML; znÞ, for u 2 fbayes;
2� p;preq; switch;riprg.
The NML/COMP expansion and the
Je®reys (Fisher information) integral
For the case that the model M ¼ fp� : � 2 �g is a
k-dimensional exponential family and �p is the NML
or Bayes distribution, we can be signi¯cantly more
precise and evaluate the constant C in (14) up to
oð1Þ: we get, under some weak additional regularity
conditions on M and v,

compðM;vÞ � �logpNML
v ðznÞ � ½� logp�̂vðznÞðznÞ

� logvð�̂vðznÞÞ� ¼ � logpNML
v ðznÞ

þ logp�̂mlðznÞðznÞ � vð�̂MLðznÞÞ

¼ k

2
log

n

2�
þ
Z
�

vð�Þ �
ffiffiffiffiffiffiffiffiffiffiffi
jIð�Þj

p
d�þ oð1Þ;

ð15Þ
where k is the dimension of the model, jIð�Þj is the
determinant of the k	 k Fisher information matrix
at parameter �, the integral is over the parameter
space � and the remainder term oð1Þ vanishes as
the sample size grows unbounded. This was ¯rst
shown (essentially) by Rissanen,12 for the case that
� is restricted to an INECCSI subset of the full
parameter space (so that �pNML with v � 1 is de-
¯ned), and v � 1. For this uniform v case, Myung
et al.19 gave a di®erential geometric interpretation
of the Fisher information term, relating it to an
intrinsic \volume" of the parameter space. The
general result for nonuniform v, and without
INECCSI restrictions, was very recently shown in a
breakthrough paper by Suzuki and Yamanishi,11

solving Open Problem 6 from G07.
Analogously to �pnml (in fact much easier math-

ematically), we can expand �p bayes using a classical
Laplace approximation; under the same conditions
as before, with now the additional restriction that
there exists an arbitrary INECCSI subset �0 of �
such that for all large n, the data have ML esti-
mator within �0, we ¯nd that

�log pbayes
w ðznÞ ¼ �log p�̂MLðznÞðznÞ þ

k

2
log

n

2�

þ 1

2
log jIð�̂MLðznÞÞj

� logwð�̂MLðznÞÞ þ oð1Þ: ð16Þ
From (15) and (16) we see that, if the general-
ized Je®reys integral

R
vð�Þ � ffiffiffiffiffiffiffiffiffiffiffijIð�Þjp

d� is ¯nite

(see the Appendix), then there is a special choice of
prior w, the generalized Je®reys' prior, with
wð�Þ ¼ vð�Þ ffiffiffiffiffiffiffiffiffiffiffijIð�Þjp

=
R
vð�Þ ffiffiffiffiffiffiffiffiffiffiffijIð�Þjp

d�, under which
�log �pNMLðznÞ and �log �p bayesðznÞ do not just
coincide up to Oð1Þ, but become asymptotically
indistinguishable. If v � 1, this w coincides with the
well-known Je®reys' prior wJ popular in Bayesian
inference; the special case of this prior for the
Bernoulli model was encountered in Example 1.
Thus, the Bayesian universal distribution with the
(generalized) Je®reys' prior can be a very good
alternative of pnmlv .

2.3. Unifying model selection and
estimation

Suppose we are given a countable collection of
models fM� : � 2 �g. Recall that the basic idea
above was to associate each individual model M�

with a single distribution �p�. It seems reasonable to
do the same at the level of \meta-parameters" �: we
set M :¼ f�p� : � 2 �g and in complete analogy
to (3), we de¯ne the meta-universal distribution

pNML
� ðznÞ :¼

max
�2�

�p�ðznÞ�ð�ÞR
zn

max
�2�

�p�ðznÞ�ð�Þdzn
ð17Þ

for some nonnegative weight function � on �. It
then makes sense to postulate that the best sub-
model M� for the given data zn is given by the �
achieving the maximum in (17). Note that for de-
termining this maximum, the denominator in (17)
plays no role.

Let us assume that all �p� have already been
de¯ned. Then we can use any � such that the
overarching pNML

� in (17) exists. We can now for-
mulate a general MDL Principle for model selec-
tion: we start with a (potentially huge) set of
candidate distributions Mfull. We next carve up
Mfull into interesting sub-models M� with � 2 �,
so that

S
�2�M� ¼ Mfull. We then associate each

M� with a universal distribution �p�, and we equip
M as de¯ned above with luckiness function � [note
that Mfull, a countable union of (usually) un-
countable sets, consists of all distributions under
consideration, while M is a countable set]. We then
base the selection of a sub-model M� on (17). What
we earlier called the \general MDL Principle" un-
derneath (1) was the special case in whichP

�ð�Þ ¼ 1, i.e., � is a probability mass function.
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Via (9) we see that for any such probability mass
function �, the denominator in (17) is well-de¯ned,
hence � is a valid luckiness function.

Now consider the special case in which every �p� is
chosen to be an NML distribution pnml

v� for some
luckiness functions v�. We take some function � 0 :
� ! R

þ
0 (which we will relate to the � above later

on) and we set, for � 2 ��, vfullð�; �Þ :¼ � 0ð�Þv�ð�Þ.
We can use pNML

vfull for parameter estimation on the
joint parameters ð�; �Þ just as we did earlier for
parametric models, by using the MDL estimatordð�; ��Þvfull picking the ð�; ��Þ minimizing, over

� 2 �; �� 2 ��,

�log p��ðznÞ �log vfullð�; ��Þ þcompðMfull; vfullÞ
¼ �log p��ðznÞ � log v�ð�Þ � log� 0ð�Þ
þ compðMfull; vfullÞ; ð18Þ

where again compðMfull; vfullÞ plays no role in the
minimization. This MDL estimator really combines
model selection (estimation of �) and parametric
estimation (estimation of ��). If we now de¯ne

�ð�Þ :¼ � 0ð�Þ= expðcompðM�; v�ÞÞ, we ¯nd that

pNML
� de¯ned relative to model M as in (17) is

equal to pnml
vfull de¯ned relative to the full union of

models Mfull, and the � achieving the maximum
in (17) coincides with the � minimizing (18). This
indicates that model selection and estimation is re-
ally the same thing with MDL: if we are given a
single parametric model M� with luckiness v�, we

pick the � minimizing the ¯rst two terms in (18) for
¯xed �; if we are interested in both � and �, we
minimize over all terms; and if we are only inter-
ested in �, we pick the � achieving the maximum
in (17), which, by construction, will give us the
same � as the joint minimization over (18).

Two-part versus one-part codes: The role of
data compression
In the oldest (1978) version of MDL, only two-part
codes on countable sets were used: the minimum
over � 2 �� was taken over a discretized grid �

::
�

and v� was a probability mass function over
this grid; then for all �, compðM�; v�Þ � 0 and
compðM; vÞ � 0 [see (9)] and they were both ap-
proximated by 0. From the Kraft inequality20 we see
where the name \two-part code" comes from: this
inequality says that for every probability mass
function � on a countable set A, there exists a
lossless code such that for all a 2 A, the number of

bits needed to encode a, is given by �log�ðaÞ. Thus
the resulting method can be interpreted as picking
the ð�::; �::Þ minimizing the two-stage code length
of the data, where ¯rst the parameters ð�; �Þ are
encoded using � log�ð�Þ � log v�ð�Þ bits, and
then zn is encoded \with the help of �", using
�log p��ðznÞ bits [in fact, the encoding of ð�; �Þ itself
has two sub-stages here so we really have a two-part
code where the ¯rst part itself has two parts as well].

The discretization involved in using a probability
mass function/code for continuous-valued � makes
things (unnecessarily, as was gradually discovered
over the last 30 years) very complicated in general.
Also, if one combines the choice of � with the choice
of �, the approximation of compðM�; v�Þ as 0
introduces some sub-optimalities. Thus, one would
like to code the data in a way that avoids these two
issues. It turns out that this can be achieved by
replacing two-part by one-part codes for the data,
namely, to use codes with length �log pNML

v ðznÞ:
assuming for simplicity that data are discrete, the
same Kraft inequality implies that there must also
be a code, directly de¯ned on zn, which achieves
code length for each zn given by �log �pNMLðznÞ.
Thus, even though for general luckiness functions v
this code length cannot be decomposed into two
sub-code lengths, it remains a valid code length and
the name MDL for the resulting procedure remains,
we feel, justi¯ed. In the past, it was sometimes
thought by some MDL fans that two-part codes on
countable sets would somehow lead to inherently
better estimates �̂w than estimators �̂v for general
luckiness functions as in (5). However, after 30 years
it turned out there is nothing either conceptually or
mathematically that indicates the need for two-part
codes and countable sets: for any luckiness function
v, the resulting procedure has a code length inter-
pretation, and Gr€unwald and Mehta13 show that all
consistency and convergence results that hold for
two-part estimators also hold for general MDL
estimators (Sec. 6.1) — thus invalidating the con-
jecture in Open Problem 13 of G07 that postulated
a special status for luckiness functions v that are
probability mass functions on countable sets. For
the luckiness function � on the discrete structure �,
however, it is quite reasonable to choose a proba-
bility mass function: no probability mass is wasted
[since the denominator in (17) plays no role in
choosing �], and designing � by thinking about the
code lengths �log�ð�Þ comes very naturally, as the
following example illustrates.

P. Gr€unwald & T. Roos
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Example 4 (Variable selection: L1-versus
L0-penalties). Suppose that each data point Zi ¼
ðXi;YiÞ where Yi denotes the variable to be
predicted and Xi ¼ ðXi1; . . . ;XimÞ 2 Rm is a vector
of covariates or \features" that may or may not help
for predicting Yi. We consider a linear model
M ¼ fp� : � 2 Rmg, decomposed into sub-models
M� expressing,

Yi ¼
Xm
j¼1

�j�jXij þ �i;

where �1; �2; . . . represent zero-mean i.i.d. Nð0; �2Þ
denotes the normally distributed noise and � ¼
ð�1; . . . ; �mÞ 2 f0; 1gm is a binary vector indicating
which variables are helpful for predicting the Zi.
Thus, if � has k zero components, then M� is
e®ectively an (m� k)-dimensional model. Our task
is to learn, from the data, the vector � 
 indicating
which variables are truly relevant, and/or such that
predictions of new Y given new X based onM� 
 are
as good as possible.

In light of the above, a straightforward way to
use MDL here is to pick the � minimizing

�log pnml
v� ðynjxnÞ � log�ð�Þ; ð19Þ

where we refer to Fig. 14.2 in G07 for an explana-
tion why we can condition on xn here. v� in (19) is
an appropriately chosen luckiness function and � is
really a probability mass function, such that
L�ð�Þ :¼ �log�ð�Þ can be interpreted as the num-
ber of bits needed to encode � using a particular
code. In terms of coding, a natural choice for such a
code would be to ¯rst encode the number of nonzero
components k� in � using a uniform code (that
assigns equal code length to all possibilities). Since
0 � k� � m, there are mþ 1 possibilities, so this
takes log2ðmþ 1Þ bits. In a second stage, one
encodes the location of these components. There are�
m
k�

�
possibilities here, so this takes log2

�
m
k�

�
bits

using a uniform code. All in all, one needs

logðmþ 1Þ þ log
m
k�

� �
ð20Þ

\nits" (bits re-expressed in terms of natural loga-
rithm log) to encode �. Then (20) can be written as
�log�ð�Þ, with �ð�Þ ¼ 1=

�ðmþ 1Þ � �m
k�

��
, which,

as predicted by the Kraft inequality, sums to 1 over
� 2 f0; 1gm.

As to the left part of the code length (19), if the
variance �2 is known, a natural luckiness function

v� to use is a (m� k�)-dimensional Gaussian with
mean 0 and variance �2� for some (usually diago-
nal) covariance matrix ��. This gives (see Chap. 12
of G07)

�log pnml
v� ðynjxnÞ ¼ 1

2�2

Xn
i¼1

yi �
Xm
j¼1

�̂MLjj�jxi

 !
2

þ n

2
log 2��2 þ 1

2
log jXTX

þ ��1j þ 1

2
log j�j; ð21Þ

where X ¼ ðX1; . . . ;XnÞ and j � j stands for deter-
minant. We thus end up ¯nding the � minimizing
the sum of (21) and (20). If, as here, the noise is
normal with ¯xed variance, then for this choice of
luckiness function, pnml

v� ðynjxnÞ actually coincides
with pbayes

w�
ðynjxnÞ for a particular prior w�, thus

one has a Bayesian interpretation as well (Bartlett
et al.21 show that such a precise correspondence
between NML and Bayes only holds in quite special
cases, see the Appendix). If the variance �2 is un-
known, one can treat it as a nuisance parameter and
equip it with the improper Haar prior, leading to a
modi¯cation of the formula above; see Example 6.
Even if the noise is not known to be normally dis-
tributed, one can often still use the above method—

pretending the noise to be normally distributed and
accepting that one is misspeci¯ed — by varying the
learning rate, as brie°y explored in Sec. 6.3.

Note that the code/prior we used here induces
sparsity: if there exists a � with mostly zero
components that already ¯ts the data quite well,
we will tend to select it, since, for k � n, log

�
n
k

�
increases approximately linearly in k. That does not
mean that we necessarily believe that the \truth" is
sparse — it just expresses that we hope that we can
already make reasonably good predictions with a
small number of features.

An alternative, and very popular, approach to
this problem is the celebrated Lasso,22 in which
we consider only the full model M ¼ Mð1;1;...;1Þ and
we pick the � 2 Rm minimizing

1

2�2

Xn
i¼1

yi �
Xm
j¼1

�j�jxi

 !
2

þ 	

2�2

Xm
j¼1

j�jj ð22Þ

for some regularization parameter 	 > 0 [the factor
�2 plays no role in the minimization; it is incorpo-
rated only to facilitate comparison with (21)]. It is
known this will tend to select � with many zero
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components, thus also inducing sparsity, and it can
be implemented computationally much more e±-
ciently than the two-part approach sketched above,
e®ectively replacing L0-penalties by L1-penalties.
With our \modern" view of MDL, this can be
thought of as a form of MDL too, where we simply
impose the luckiness function vð�Þ ¼ expð�ð	=�2Þ	Pm

j¼1 j�jjÞ and use the estimator �̂v given by (5).

The luckiness function v depends on 	; the optimal
choice of 	 is then once again related to the optimal
learning rate; see Sec. 6.3. Finally, we note that
there exists a third MDL approach one can use here:
one starts out with an NML approach similar
to (19) but then performs a continuous relaxation of
the resulting optimization problem; the resulting
\relaxed" NML criterion is then once again tracta-
ble and similar to an L1-optimization problem such
as (22); this approach has been described by
Miyaguchi and Yamanishi23 who extend the idea to
group Lasso and other settings.

2.4. Log-loss prediction and universal
distributions

Now consider the simple case again with a ¯nite set
of models fM� : � 2 �g where � is small compared
to n and we use the uniform prior �, picking the �
maximizing �p�. It was the fundamental insight of
Rissanen14 and Dawid15 that such model choice by
maximizing �p�ðznÞ for a single distribution �p� can
be motivated in a di®erent way as well— in essence,
it selects the model with the best predictive per-
formance on unseen data. This approach shows that
MDL is quite similar in spirit to cross-validation,
the main di®erence with leave-one-out cross-vali-
dation being that the cross in cross-validation is
replaced by a forward and that the loss function
used to measure prediction error is restricted to be
the logarithmic score, also commonly known as log-
loss (which, however, is often used in cross-valida-
tion as well).

Formally, the log-loss of predicting a single out-
come z 2 Z with a distribution p is de¯ned as
�log pðzÞ: the larger the probability density,
the smaller the loss. If one predicts a sequence of
n outcomes zn ¼ ðz1; . . . ; znÞ with n predictions
p1; p2; . . . ; pn, then the cumulative log-loss is de¯ned
as the sum of the individual losses:

Pn
i¼1 � log piðziÞ.

Now, if we adopt a probabilistic world view
and represent our beliefs about zn by a probability
distribution �p, then the obvious way to make

sequential predictions is to set pi :¼ �pðZi ¼ �jzi�1Þ,
so that �log piðziÞ ¼ �log �pðzijzi�1Þ. For arbitrary
probability distributions, we have, by the formula
for conditional probability: for all zn 2 Z n,
pðznÞ ¼Qn

i¼1 pðzijzi�1Þ. Taking logarithms givesXn
i¼1

� log �pðzijzi�1Þ ¼ �log �pðznÞ: ð23Þ

In other words, for every possible sequence, the
cumulative log-loss obtained by sequentially pre-
dicting zi based on the previously observed data zi�1

is equal to the minus-log-likelihood.
Conversely, if we are given an arbitrary sequen-

tial prediction strategy �s which when input with a
sequence zi�1 of arbitrary length i� 1 outputs a
prediction for the next outcome zi in the form of a
probability distribution �szi�1 on Z, we can de¯ne
�pðzijzi�1Þ :¼ �szi�1ðziÞ and then further de¯ne
�pðznÞ :¼Qn

i¼1 �pðzijzi�1Þ. A simple calculation
shows that we must have

R
zn2Z n �pðznÞdzn ¼ 1, so we

have constructed a probability distribution �p which
once again satis¯es (23). The fundamental insight
here is that, when the log-loss is used, every prob-
ability distribution de¯nes a sequential prediction
strategy and — perhaps more surprisingly — vice
versa, every sequential prediction strategy de¯nes a
probability distribution, such that on all sequences of
outcomes, the minus-log-likelihood is equal to the
cumulative loss.

Example 5 Consider again the Bernoulli model
M ¼ fp� : � 2 ½0; 1�g. Each element p� 2 M de¯nes
a prediction strategy which, no matter what
happened in the past, predicts that the probability
that the next outcome Zi ¼ 1 is equal to �. It incurs
cumulative loss, on sequence zn with n1 ones
and n0 ¼ n� n1 zeros, given by n1ð�log �Þþ
n0ð�logð1� �ÞÞ. The Bayesian universal distribu-
tion pbayeswJ

with Je®reys' prior that we considered in
Example 1 satis¯es, as was already mentioned,
pbayes
wJ

ðZmþ1 ¼ 1jzmÞ ¼ ðm1 þ ð1=2ÞÞ=ðmþ 1Þ, so it
\learns" the probability of 1 based on past data and
does not treat the data as i.i.d. any more. The
asymptotic expansion (16) then shows that its
cumulative loss is of order

�log p�̂MLðznÞðznÞ þ
1

2
lognþOð1Þ

¼ �n1 logðn1=nÞ � n0 logðn0=nÞ
þ 1

2
lognþOð1Þ:

P. Gr€unwald & T. Roos
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We may now ask: given a parametric model M,
what distribution (i.e., prediction strategy) in M
leads to the best predictions of data z1; . . . ; zn? For
simplicity we will assume that data are i.i.d.
according to all p� 2 M. We have to distinguish
between the best sequential prediction strategy with
hindsight and the best prediction strategy that can
be formulated before actually seeing the data. The
former is given by the p� 2 M achieving

min
�2�

Xn
i¼1

� log p�ðzijzi�1Þ ¼ min
�2�

� log p�ðznÞ

¼ �log p�̂MLðznÞðznÞ;
i.e., the best predictions with hindsight are given by
the ML distribution �̂MLðznÞ. However, �̂MLðznÞ is
only knowable after seeing all the data zn, whereas
in reality, we have, at each time i, to make a pre-
diction �pðZijzi�1Þ relying only on the previously
seen data zi�1. We might thus aim for a prediction
strategy (distribution) �p which will tend to have a
small regret (additional prediction error)

REGð�p; znÞ ¼
Xn
i¼1

� log �pðzijzi�1Þ

� min
�2�

Xn
i¼1

� log p�ðzijzi�1Þ
" #

¼ �log �pðznÞ þ log p�̂MLðznÞðznÞ: ð24Þ

But what does \tend" mean here? One strict way to
implement the idea is to require (24) to be small in
the worst case — one looks for the distribution �p
achieving

min
�p

max
zn2Z n

REGð�p; znÞ; ð25Þ

where the minimum is over all probability dis-
tributions on Z n. But comparing (24) and (25)
with (13), using that �log is strictly decreasing, we
see that the �p achieving (25) is just the NML dis-
tribution with v � 1, which was already our
\favorite" distribution to use in MDL model com-
parison any way! And, just like before, if (25) has
no solution, we may add a �log v luckiness term
to (24) so as to regularize the problem, and then the
optimal prediction strategy will be given by pNML

v .
We also see that with v � 1, compðM; vÞ is equal to
the minimax regret (25); and with nonuniform v,
compðMÞ will become equal to the minimax luck-
iness regret, i.e., (24) with a �log v term added.

We now also see where the idea to use the pre-
quential plug-in distribution �ppreq instead of �pnml

comes from: if calculating pnml
v is too di±cult, or if

the horizon n (which is needed to calculate pnml
v ) is

unknown, we might simply pick any estimator ��
which we think is \reasonable" and replace our
prediction pnml

v ðZijzi�1Þ by p ��ðz i�1ÞðZiÞ — if the es-
timator was chosen cleverly, we can expect the
resulting cumulative regret to be small. Reconsi-
dering (14), we see that all the universal distribu-
tions, viewed as prediction strategies, with the right
choice of luckiness functions, priors and/or esti-
mates, can be made to achieve a logarithmic (in n)
worst-case regret — since the cumulative log-loss
achieved by the best predictor in hindsight usually
grows linearly in n, a logarithmic regret is quite
satisfactory. Returning to our Bernoulli example,

we see that the cumulative log-loss obtained by �̂ML,
the best with hindsight, is equal to nHðn1=nÞ ¼
nHð�̂MLðznÞÞ, where Hð�Þ is the binary entropy,
Hð�Þ :¼ �� log �� ð1� �Þ logð1� �Þ. Note that, in

line with the above discussion, nHð�̂MLÞ is linear in
n unless �̂ML tends to 0 or 1, but the regret of �p bayes

with Je®reys' prior is logarithmic in n.
We thus get a novel interpretation of MDL: it

associates each model M� with a sequential pre-
diction strategy �p� that is designed to achieve
small regret compared to the hindsight-optimal
prediction strategy within M�; it then picks the
model for which the corresponding prediction
strategy achieves the smallest cumulative loss on
the data.

Related works
Dawid (see Ref. 15 and many subsequent works)
suggests to use this prequential model choice
also with respect to loss functions other than the
logarithmic loss; minimax-optimal cumulative
prediction strategies without making stochastic
assumptions about the data, with log-loss but
(mainly) with other loss functions, are one of the
main topics in machine learning theory; see for ex-
ample Ref. 24; but there they are generally not used
for model comparison or selection.

Why the logarithmic score?
Why does it make sense to minimize cumulative log-
loss? Outside of the MDL world, the log-loss is often
used for two reasons: ¯rst, it is (essentially) the only
local proper scoring rule.25 Second, it has an inter-
pretation in terms of money: for every sequential
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prediction strategy, there is a corresponding
\sequential investment" strategy such that the
smaller the cumulative log-loss, the larger the
monetary gains made with this strategy (\Kelly
Gambling"17,20).

Within the MDL ¯eld however, the use of the
log-loss comes from the Kraft inequality, which di-
rectly relates it to lossless data compression. As we
already saw before Example 4, for any sequential
prediction strategy, i.e., every distribution p on
sequences of length n, there is a lossless code C such
that, for all sequences of length n,

�log2pðznÞ ¼No: of bits needed to code zn using C:

Conversely, for any code C, there is a corresponding
distribution p such that the above holds (see
Chap. 3 of G07 for a very extensive explanation).
Thus, the original MDL idea to \take the model
that compresses the data most" is ¯rst made more
formal by replacing it by \associate each model with
a code that compresses well whenever some distri-
bution in this model compresses well", and this
turns out to be equivalent to \associate each model
M� with a distribution �p� that assigns high likeli-
hood whenever some distribution in the model
assigns high likelihood".

MDL prediction and \improper" estimation.
As is clear from the prequential interpretation of
MDL given above, once a universal distribution �p
has been ¯xed, one can use it to predict Zi given zi�1

by �pðZijzi�1Þ. At least for i.i.d. data, we can esti-
mate the underlying \true" distribution p
 based
on such predictions directly, by simply interpreting
�pðZijzi�1Þ as an estimate of p
! This is di®erent
from the previous form of MDL estimation de-
scribed in Sec. 2.3, which was based on MDL
(penalized ML) estimators �̂v. Note that this
standard MDL estimator is \in-model" or proper
(to use machine learning terminology26), whereas
�pðZijzi�1Þ is out-model or improper: in general,
there may be no p 2 M such that �pð�jzi�1Þ ¼ p.
For example, with Bayes universal distributions,
pbayes
wZi jz i�1

will be a mixture of distributions inM rather

than a single element; see G07 for more discussion.

2.5. The luckiness function

The choice of a luckiness function is somewhat akin
to the choice of a prior in Bayesian statistics, yet —
as explained at length in Chap. 17 of G07 — there

are very important di®erences, both technically
(luckiness functions are not always integrable) and
philosophically. Basically, a luckiness function just
determines for what type of data one will be \lucky"
[vð�̂vðznÞÞ large] and get small cumulative regret
based on small samples (and presumably, good
model selection results as well), and for what data
one will be less lucky and get good results only when
the dataset grows much larger — v may thus be
chosen for purely pragmatic reasons. For example,
as in Example 4 (see the italicized text there), if one
assigns a large value �ð�Þ to some model M� within
a large collection of models fM� : � 2 �g where �
is sparse, one may do this because one hopes that
this sub-model will already lead to reasonable pre-
dictions of future data, even though one feels that,
at the same time, when more data becomes avail-
able, a model M� 0 with a much larger number of
nonzero parameters may at some point almost cer-
tainly become better (Example 4). Such an inter-
pretation is not possible with a Bayesian prior �,
where a large value of �ð�Þ indicates a strong belief
that M� is true, or at least, that predictions based
on acting as if it will be true will be optimal — a
Bayesian with high prior on � considers M� likely
rather than just useful — a distinction worked out
in detail by Gr€unwald.27 Nevertheless, just like a
Bayesian prior, the luckiness function has to be
chosen by the user/statistician, and often contains a
subjective element. Still, in contrast to Bayesian
priors, since we invariably take a worst-case log-loss
stance in MDL, there often is a uniquely preferable
choice of luckiness function v for parametric models
M. First, if compðM; vÞ < 1 with uniform v and
no clear prior knowledge or preference is available,
then uniform v is usually preferable over other v,
since it achieves the worst-case optimal prediction
performance. Second, if compðM�; vÞ ¼ 1 with
uniform v for some � 2 � we can often still set the
¯rst few, say m, outcomes aside and pick a luckiness
function v�ð�Þ :¼ p�ðz1; . . . ; zmÞ for � 2 ��. The
corresponding estimator (for ¯xed �) �̂v� based on
the data zmþ1; . . . ; zn as given by (5) will then be
equal to the ML estimator based on the full
data, �̂v�ðznmþ1Þ ¼ �̂MLj�ðznÞ, and by choosing m
large enough, one can often get that compðM�; v�Þ
is ¯nite after all for all � 2 � and one may then
compare models by picking the � maximizing
pnml
v� ðzmþ1; . . . ; znÞ. Thus, the luckiness function is

now determined by the ¯rst few \start-up" data
points, and one uses NML based on the remaining
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data points with an estimator that coincides with
the ML estimator based on the full data. G07 argues
why this data-driven luckiness function is the best
default choice available; note that it is analogous to
our use of improper Bayes priors as described in
Example 2.

3. Novel Universal Distributions

3.1. The switch distribution and the

AIC–BIC dilemma

The AIC–BIC dilemma (see for example Ref. 28 and
the many citations therein) is a classic conundrum
in the area of statistical model selection: if one
compares a ¯nite number of models, the two stan-
dard benchmark methods, with (di®erent) asymp-
totic justi¯cations, are AIC and BIC. Suppose one
¯rst selects a model using AIC or BIC. One then
predicts a future data point based on, e.g., maxi-
mum likelihood estimation, or by adopting the
Bayes/MDL predictive distribution, within the
chosen model. If one compares a ¯nite number of
models, then AIC tends to select the one which is
optimal for prediction (compared to BIC, the pre-
dictions converge faster, by a factor of order logn,
to the optimal ones). On the other hand, BIC is
consistent: with probability 1, it selects the smallest
model containing the true distribution, for all large
n; the probability that AIC selects an overly large
model does not go to 0 for large n. Both the
predictive-optimality and the consistency property
are desirable, but, like AIC and BIC, common
methods all fail on one of the two. For example,
MDL, with each of the four classical distributions,
and Bayes factor model selection will behave like
BIC for large n and be consistent but prediction-sub-
optimal; for any ¯xed k, leave-k-out and k-fold cross-
validation will tend to behave like AIC and have the
reverse behavior. Yang28 shows that, in general, this
dilemma cannot be solved: every consistent method
has to be slightly prediction-sub-optimal in some
situations; he also shows that prediction by model
averaging cannot solve this dilemma either.

Nevertheless, as ¯rst shown by van Erven et al.16

(who thereby solved Open Problems 8 and 17 of
G17), one can design universal distributions that
\almost" get the best of both worlds: basing MDL
model selection on them using (1) one gets a crite-
rion which is strongly consistent while at the same
time losing only an exceedingly small-order log logn

factor in terms of prediction quality compared to
the AIC-type methods. Although it can be applied
to arbitrarily large model collections, the idea of
this so-called switch distribution �p switch is best
explained by considering the simplest case with just
two nested models M0 � M1: one starts with two
standard universal distributions (say, Bayesian
or luckiness-NML) �p0 for M0 and �p1 for M1. For
every i > 0, �p1 de¯nes a conditional distribution
�p1ðzi; . . . ; znjzi�1Þ. One now picks a \prior" distri-
bution � on the integers [typically one that
decreases polynomially, e.g., �ðiÞ ¼ 1=ðiðiþ 1ÞÞ],
and one de¯nes a new universal distribution for M1

by

�p switchðznÞ :¼
Xn
i¼1

�ðiÞ�p1ðzi; . . . ; znjzi�1Þ � �p0ðzi�1Þ:

This distribution is best understood from the pre-
quential interpretation of MDL (Sec. 2.4). It will
satisfy

Xn
i¼1

� log �p switchðzijzi�1Þ ¼ �log �p switchðznÞ

¼ �log
Xn
i¼1

�ðiÞ�p1ðzi; . . . ; znjzi�1Þ�p0ðzi�1Þ

� min
i2f1;...;ng

� log�ðiÞ�p1ðzi; . . . ; znjzi�1Þ � �p0ðzi�1Þ

� min
i

� log �p1ðzi; . . . ; znjzi�1Þ � �p0ðzi�1Þ
þ 2 logn:

In other words, the cumulative log-loss achieved by
�p switch is \almost" (within an order logn term) as
small as that of the strategy that ¯rst predicts by �p0
and then switches from �p0 to �p1 at the switching
point i that is optimal with hindsight. By clever
choice of the prior �, one can get the extra term
down to order log logn. In cases where the data are
actually sampled from a distribution in M1 that is
\close" (de¯ned suitably) to M0, the predictions
based on �p switch will, with high probability, be
substantially better than those based on �p1 — a
dramatic example (that makes very clear why this
happens) is given in the ¯rst ¯gure of Ref. 29. If the
data come from a distribution that is \far" from
M0, they will tend to be worse than those based on
�p1 by a negligible amount. Working out the math
shows that associating M1 with �p switch and M0

with �p0 indeed gives a strongly consistent model
selection criterion that is almost [to within an
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Oðlog lognÞ factor] prediction-optimal, thus almost
solving the AIC–BIC dilemma. van Erven et al.29

describe in great detail why the standard NML or
Bayesian universal model �p1 does not lead to the
optimal cumulative log-loss if the data come from a
distribution close to, but not in, M0.

In case the number of models on the list is larger
than two or even in¯nite, one has to associate each
model with a separate switch distribution. The
technique for doing so is described by van Erven
et al.29 who also give an e±cient implementation
and prove consistency and prediction-optimality of
the switch distribution in a weak, cumulative sense
for both ¯nite and in¯nite numbers of models. van
der Pas and Gr€unwald30 mathematically show the
\almost" prediction-optimality for a ¯nite number
of models.

3.2. Hybrids between NML Bayes and

prequential plug-in

A Problem for NML: Unknown horizon
Bayesian universal distributions with ¯xed priors
have the property that the probability assigned to
any initial sequence zn 0 , where n 0 < n, is indepen-
dent of the total length of the sequence. For other
universal models, such as NML, this is not always
the case. Take for example the Bernoulli model
extended to sequences by independence: For se-
quence length n ¼ 2, the normalizing term in
the NML equals 1þ ð1=2Þ2 þ ð1=2Þ2 þ 1 ¼ 5=2. For
sequence length n ¼ 3, the normalizing term equals
2þ 6	 ð1=3Þð2=3Þ2 ¼ 78=27. For n ¼ 2, the NML
probability of the sequence 00 is 1=ð5=2Þ ¼ 0:4.
However, for the sequence length n ¼ 3, the prob-
ability of the initial sequence 00 is obtained as the
sum of the probabilities of the sequences 000 and
001, which becomes 1=ð78=27Þ þ ð4=27Þ=ð78=27Þ �
0:397 < 0:4. As shown by Ref. 21 (see also Ref. 31),
there do exist cases in which NML is, like Bayes,
horizon-independent, but these are very rare — see
the Appendix.

The above discrepancy between the initial se-
quence probabilities for di®erent sequence lengths
may be a problem in situations where we need to
obtain predictions without necessarily knowing the
total length of the sequence, or the horizon. Another
related issue is that even if the total sequence length
was given, it can be computationally expensive to
obtain marginal and conditional probabilities along

the initial sequences. One possible solution would be
to restrict to Bayesian universal distributions.
However, while these solve the horizon issue, they
are (a) still often computationally ine±cient and
(b) they lack NML-style worst-case regret inter-
pretations. This has spurned research into universal
codes that can be calculated without knowing the
horizon in advance and that behave better as
regards to (a) or (b), which we now review.

3.2.1. Prequential plug-in and the ðk=2Þ logn
formula

The most straightforward way to deal with issue (a)
is to use the prequential �p preq which, by construc-
tion, is horizon-independent. However, for the pre-
quential �p preq (10) the BIC asymptotics (14) only
hold in expectation if the data are sampled from one
of the distributions in the modelM. This makes the
result much weaker than for the other ¯ve universal
distributions considered, for which the asymptotics
hold for every individual sequence in some large set,
i.e., without making any stochastic assumptions at
all. One might thus wonder what happens for gen-
eral data. Extending the earlier works by Takeuchi
and Barron32 and Kotłowski et al.33 shows that, if
data are sampled from a distribution p, and p~� is
the distribution in M that is closest in Kullback–
Leibler (KL) divergence to p, then (14) holds in
expectation, with a correction term involving the
variances of both distributions; for one-dimensional
models, we get

varpðZÞ
varp~�

ðZÞ �
1

2
logn; ð26Þ

a formula that can be extended to multidimensional
models and individual sequence settings. Solving
Open Problem 2 from G07, Gr€unwald and
Kotłowski34 show that, essentially, there exists no
\in-model" estimator that can achieve the standard
asymptotics in general; a correction such as (26) is
always needed, whatever estimator one tries. Here
an \in-model" estimator (or \proper" estimator, see
end of Sec. 2.4) is an estimator that always outputs
a distribution inside the model M; the ML and
Bayes MAP estimators are in-model, but the Bayes
predictive distribution is not in-model, since it is a
mixture distribution over all distributions in M.

Solving Open Problem 3 from G07, Kotłowski
et al.33 also provide a new universal distribution, in

P. Gr€unwald & T. Roos
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which for any given estimator ��, ppreq
��

ðZiþ1jziÞ ¼
p ��ðz iÞðZiþ1Þ is turned into a slightly \°attened"
version ppreq


��
ðZiþ1jziÞ, which is not in M any more

(it is not an in-model estimator), but it does achieve
the standard ðk=2Þ logn asymptotics without cor-
rection. For example, in case of the normal location
family with ¯xed variance �2, it coincides with a
Bayesian predictive distribution based on a stan-
dard conjugate prior, which in this case is a normal
with mean �
 (the Bayes MAP estimate) but vari-
ance �2 þOð1=nÞ. More generally, ppreq


��
ðZiþ1jziÞ

becomes a hybrid between the estimator �� and a
Bayes predictive distribution, but it has the ad-
vantage over the latter that it can be calculated
without performing an integral over the parameter
space. It thus provides an alternative to the NML
distribution that is horizon-free and that is often
faster to compute than �p bayes.

Roos and Rissanen35 and Rissanen et al.36 de-
veloped other prequential, horizon-free universal
codes that are non-Bayesian, yet remain more
closely to NML in spirit than ppreq


��
. They work out

the details for discrete models including Bernoulli as
well as linear regression models. For Bernoulli
models, the resulting universal code coincides with
the so-called one-step lookahead model proposed
earlier by Takimoto and Warmuth.37 For linear
regression models the asymptotic consistency of the
resulting model selection criterion was studied by
Määttä et al.38 and Määttä and Roos.39 Relatedly,
Watanabe and Roos40 show that no horizon-
independent strategy can be asymptotically mini-
max in the multinomial case and propose simple
Bayesian universal models with a horizon-dependent
Dirichlet prior that achieve asymptotic minimaxity
and simplify earlier proposals. Among the proposed
priors is Dirð�; . . . ; �Þ with � ¼ 1=2� ln 2=2 lnn
which converges to the Je®reys' prior Dirð1=2; . . . ;
1=2Þ but has a mild dependency on the horizon n.

3.3. Hypothesis testing: Universal

distributions based on the reverse
information projection

Suppose we compare just two models, M0 and M1,
as explanations for data zn, a situation similar
to classical null hypothesis testing, the standard
method for evaluating new treatments in the

medical sciences and scienti¯c hypotheses in most
applied sciences such as psychology, biology and the
like: we can think ofM0 andM1 as two hypotheses,
where, usually, M0 represents the status quo
(\treatment not e®ective", \coin unbiased"). In
casea M0 ¼ fP0g represents a simple (singleton)
hypothesis, there is a strong additional motivation
for using MDL as a hypothesis testing method, and
in particular, for quantifying the evidence against
M0 in terms of

DðznÞ ¼ �log �p1ðznÞ � ½�log p0ðznÞ�;
the code length or cumulative-log-loss di®erence
(see Sec. 2.4) between encoding (or sequentially
predicting) the data with p0 and with �p1. This
additional motivation is given by the no hyper-
compression inequality (G07), a mathematical re-
sult stating that, no matter how �p1 is de¯ned, as
long as it is a probability distribution, we have for
all K > 0, and 0 � � � 1,

P0ðDðZnÞ � �KÞ � 2�K ;

i:e:; P0

p0ðZnÞ
�p1ðZnÞ � �

� �
� �:

ð27Þ

This expresses, in terms of sequential log-loss pre-
diction (compression), that, if P0 is true, then the
probability that one can predict data better, by K
or more loss units, by predictions based on �p1 rather
than p0, is exponentially small in K — and this
holds independently of the sequence length n. In
terms of more classical quantities, it states that, no
matter how we chose �p1, if P0 holds true then the
likelihood ratio is a p-value. In fact it is a conser-
vative p-value, giving usually somewhat less evi-
dence against M0 than a standard p-value, for
which the rightmost inequality in (27) is an equal-
ity. The inequality (27) goes in the right direction to
retain the cornerstone of classical Neyman–Pearson
testing: if one sets signi¯cance level � before seeing
the data and one chooses M1 whenever
DðZnÞ � �log�, i.e., p0ðZnÞ=�p1ðZnÞ � �, then the
probability, under the null P0, of making a false
decision is bounded by �. But the fact that the
rightmost inequality in (27) is usually strict has
pleasant practical repercussions: as explored by
Ref. 17, the Type-I error guarantees are retained
under optional continuation. This is the (common)

aIn this sub-section we view, for notational convenience, the elements of Mj as probability distributions P� with densities or mass
functions p�.
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practice to decide, on the basis of an initial sample
zn, whether or not to gather new data and do a
second test. One may for example decide to gather
new data if the result based on zn was hopeful yet
not conclusive. This is highly problematic for stan-
dard, strict p-value-based hypothesis testing, but
with MDL testing with a simpleM0, one can simply
multiply the likelihood ratios of the two (or more)
tests performed, or equivalently, add the code
length di®erences for each test performed. The
resulting code length di®erence/likelihood ratio will
still lead to valid Type-I error bounds.17

But, all this holds only for simple M0. Yet the
tests most used in practice, such as the t-test
and contingency table tests, all involve composite
M0 ¼ fP� : � 2 �0g. For composite M0, the no-
hypercompression inequality (27) usually only holds
for some P0 2 M0, but for Type-I error guarantees
and the like we would want to have it hold for all P�

with � 2 �0. That is, we would like to employ uni-
versal distributions �p1 and �p0 such that we have

For all � 2 �0 : P�ðDðZnÞ � �KÞ � 2�K;

i:e:; P�

�p0ðZnÞ
�p1ðZnÞ � �

� �
� �: ð28Þ

In general, this will not hold for standard choices
(NML, Bayes, prequential plug-in, etc.) of �p1 and
�p0. However, Gr€unwald et al.17 show that, for any
given (arbitrary) �p1, one can, under very mild con-
ditions, construct a �p0 such that (28) holds, thereby
solving Open Problems 9 and 19 of G07. This �p0 is
the Reverse Information Projection41,42 of �p1 onto
PbayesðM0Þ, where Pbayes is the set of densities �p0
for zn that can be written as Bayes marginal dis-
tributions �p bayes

0 ðznÞ ¼ R p�ðznÞw0ð�Þd� for some
prior w0 on �0 — for every prior w0, PbayesðM0Þ
contains a separate distribution on Zn. The RIPr is
de¯ned as the density achieving min�p02PbayesðM0Þ	
Dð�p1jj�p0Þ, where Dð�jj�Þ is the Kullback–Leibler di-
vergence. Thus, one constructs a �p0 with the desired
no-hypercompression property, and at the same
time, it will minimize KL divergence to �p1, which
implies that if data were sampled from �p1, it would
yield optimal log-loss predictions. This, in turn,
implies that the �p0 constructed this way will satisfy
the standard asymptotics (14) as long as the �p1 on
which it is based does. Based on the likelihood ratio
between �p1 and its RIPr �p0, one is also allowed to do
optional continuation while retaining Type-I Error
guarantees. Thus, even if one is an adherent of

classical, frequentist testing theory, there are strong
reasons for MDL-style testing based on the RIPr
universal distribution. Gr€unwald et al.17 further
extend the reasoning to give guidelines on how �p1
can be chosen to get further good frequentist
properties.

Example 6 (Right-Haar priors and the
Bayesian t-test). In a series of papers (highlights
include Refs. 43 and 44), Berger and collaborators
established Bayes factor testing methods for
composite M0 ¼ fP� : � 2 �0g where the only free
parameters in �0 are \nuisance" parameters that
are shared by �1 and are governed by a group
structure. A prime example is the unknown
variance in the t-test. Berger uses a special type of
improper prior, the so-called right-Haar prior,
which can be de¯ned for every such type of nuisance
parameter. While Bayes factors usually do not
combine well with improper priors, the Bayes
factors for group invariance parameters equipped
with the right-Haar prior behave remarkably well.
Gr€unwald et al.17 show that, even though the right-
Haar priors are usually improper, they can also be
understood from a purely MDL perspective: if �pbayes1
and �p bayes

0 are equipped with the right-Haar prior
on the nuisance parameters, and the prior on the
additional parameters in �p bayes

1 satis¯es some
additional requirements, then both �p bayes

1 and
�p bayes
0 can be interpreted as sequential prediction

strategies, and the log of the Bayes factor can be
interpreted as the code length/cumulative-log-loss
di®erence. Moreover, �p bayes

0 is (essentially) the RIPr
for �p bayes

1 and the no-hypercompression inequal-
ity (28) that is so desirable from a frequentist
perspective holds uniformly for all �0 2 �0.

Let us consider the one-sample Bayesian t-test as
an example. Here M0 ¼ fp0;� : � > 0g is the set of
all normal distributions with mean 0; the variance
�2 is a free parameter. M1 ¼ fp
;� : 
 2 R; � > 0g is
the set of all normal distributions with as free
parameters 
 and �. The question of interest is to
establish whether 
 ¼ 0 or not; � is an unknown
\nuisance" parameter — it determines the scale of
the data but is not itself of intrinsic interest. In the
Bayesian t-test one equips both M0 and M1 with
the improper right-Haar prior, wð�Þ ¼ 1=�. To
complete the de¯nition of �p bayes

1 , M1 is equipped
with a conditional prior density (given �) on the
e®ect size � :¼ 
=�. This second density has to be
symmetric around zero and proper (this is what we

P. Gr€unwald & T. Roos

1930001-18

In
t. 

J.
 M

at
h.

 I
nd

. 2
01

9.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
E

N
T

E
R

 W
IS

K
U

N
D

E
 E

N
 I

N
FO

R
M

A
T

IC
A

 (
C

W
I)

 B
IB

L
IO

T
H

E
E

K
 o

n 
03

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



called the \additional requirement on the prior on
�1", instantiated to the case where the nuisance
parameter is a variance). One now proceeds by
testing using the Bayes factor �p bayes

0 =�p bayes
1 . In this

special case, the procedure was already suggested by
Je®reys,45 and the right-Haar prior coincides with
Je®reys' prior on the variance. Berger et al. extend
the method to general group-invariant parameter
vectors such as the joint mean and variance in the
two-sample t-test, testing a Weibull against a log-
normal and many other scenarios.

4. Graphical Models

Graphical models are a framework for representing
multivariate probabilistic models in a way that
encompasses a wide range of well-known model
families, such as Markov chains, Markov random
¯elds and Bayesian networks; for a comprehensive
overview, see Ref. 46. A key property of a graphical
model is parsimony, which can mean, for instance, a
low-order Markov chain or more generally a sparse
dependency graph that encodes conditional inde-
pendence assumptions. Choosing the right level of
parsimony in graphical models is an ideal problem
for MDL model selection.

In Bayesian network model selection the pre-
vailing paradigm is, unsurprisingly, the Bayesian
one. Especially the works of Geiger and
Heckerman47 and Heckerman et al.48 have been
extremely in°uential. The main workhorse of this
approach is the so-called Bayesian Dirichlet (BD)
family of scores which is applicable in the discrete
case where the variables being modeled are cate-
gorical. Given a data sample, such scores assign a
goodness value to each model structure. Exhaustive
search for the highest scoring structure is possible
when the problem instance (characterized by the
number of random variables) is of limited size, but
heuristic search techniques such as variants of local
search or \hill-climbing" can be used for larger
problem.

Di®erent forms of the BD score imply di®erent
Dirichlet priors (di®erent hyper-parameters) for the
local multinomial distributions that comprise the
joint distribution. For example, in the commonly
used BDeu score, the priors are determined by a
single hyper-parameter, �. For a variable Xi with r
distinct values and parents Pai that can take q
possible combinations of values (con¯gurations),

the BDeu prior is Dirð�=rq; . . . ; �=rqÞ. One of the
main motivations for adopting this prior is that it
leads to likelihood equivalence, i.e., it assigns equal
scores to all network structures that encode the
same conditional independence assumptions. In
light of the fact that Bayesian model selection
embodies a particular form/variation of MDL, these
methods ¯t, at least to some extent, in the MDL
framework as well. However, there also exist more
\pure", non-Bayesian MDL methods for model se-
lection in Bayesian networks; we mention Refs. 49
and 50 as early representative examples. These
early methods are almost invariably based on the
two-part coding framework. More recently, several
studies have proposed new model selection criteria
that exploit the NML distribution. One approach is
a continuous relaxation of NML-type complexities
proposed by Miyaguchi et al.51 in which the model
selection problem takes on a tractable Lasso-type
L1-minimization form (see also Example 4). In other
approaches, NML [or usually, approximations (but
not relaxations) thereof] are used directly for
encoding parts of the model; we now describe these
latter approaches in a bit more detail.

4.1. Factorized NML and variants

Silander et al.52 propose the factorized NML
(fNML) score for Bayesian network model selection
which was designed to be decomposable meaning
that it can be expressed as a sum that includes a
term for each variable in the network. This property
facilitates e±cient search among the super-expo-
nential number of possible model structures; see,
e.g., Ref. 48. The fNML score factors the joint
likelihood not only in terms of the variables but also
in terms of distinct con¯gurations of the parent
con¯gurations. Each factor in the product is given
by a multinomial NML probability, for which a
linear-time algorithm by Kontkanen and
Myllymäki53 can be used.

A similar idea where a Bayesian network model
selection criterion is constructed by piecing together
multiple NML models under the multinomial model
was proposed recently by Silander et al.54 In the
proposed quotient NML (qNML) score, the local
scores corresponding to each variable in the network
are de¯ned as log-quotients of the form

log
NMLfullðXi [ PaiÞ

NMLfullðPaiÞ
;
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where NMLfull refers to an NML distribution de-
¯ned by using a fully connected network to model
the variableXi and its parents Pai in the numerator
and the same thing for the parent set Pai in the
denominator. Technically, this amounts to collaps-
ing the con¯gurations of the variables into distinct
values of a single categorical variable. Even though
the resulting categorical variable may have a
huge number of possible values, the linear time
algorithm53 or e±cient approximations (see the
next sub-section) can be used to implement the
computations. A notable property of the qNML
score is that, unlike the fNML score, it is likelihood-
equivalent (see above).

Eggeling et al.55 apply similar ideas to a di®erent
model class, namely parsimonious Markov chains.
There too, the likelihood is decomposed into factors
depending on the con¯gurations of other variables,
and each part in the partitioning is modeled inde-
pendently using the multinomial NML formula. The
authors demonstrate that the fNML-style criterion
they propose leads to parsimonious models with
good predictive accuracy for a wide range of di®er-
ent scenarios, whereas the corresponding Bayesian
scores are sensitive to the choice of the prior hyper-
parameters, which is important in the application
where parsimonious Markov chains are used to
model DNA binding sites.56

In all these papers, both simulated and real-
world data experiments suggest that the MDL-
based criteria are quite robust with respect to the
parameters in the underlying data source. In par-
ticular, the commonly used Bayesian methods (such
as the BDeu criterion) that are being used as
benchmarks are much more sensitive and fail when
the assumed prior is a poor match to the data-
generating model, whereas the MDL methods are
invariably very close to the Bayesian methods with
the prior adapted to ¯t the data. This poses inter-
esting questions concerning the proper choice of
priors in the Bayesian paradigm.

In fact, the prevalence of the Bayesian paradigm
and the commonly used BD scores is challenged by
two recent observations: First, Silander et al.52 show
that the Dirichlet prior with hyper-parameters
ð1=2; . . . ; 1=2Þ, which is the invariant Je®reys' prior
for the multinomial model, but not likelihood-
equivalent when used in the BD score, is very close
to the fNML model and consequently, enjoys better
robustness properties than the BDeu score which is
the likelihood-equivalent BD score variant. Second,

Suzuki57 shows that the BDeu criterion is irregular,
i.e., prone to extreme over¯tting behavior in situa-
tions where a deterministic relationship between
one variable and a set of other variables holds in the
data sample. The MDL scores discussed above are
regular in this respect and their robustness proper-
ties seem to be better than those of the BD scores,
see Ref. 54.

4.2. Asymptotic expansions for
graphical models

Asymptotic results concerning MDL-based criteria
in graphical models are interesting for several rea-
sons. For one, they lead to e±cient scores that can
be evaluated for thousands of di®erent model
structures. Second, asymptotic expansions can lead
to insights about the relative complexity of di®erent
model structures.

Various asymptotic forms exist for the point-wise
and the expected regret depending on the model
class in question. For convenience we repeat the
classical expansion of the NML (as well as the
Bayesian marginal likelihood with Je®reys' prior)
regret/model complexity that applies for regular
model classes M ¼ fp� : � 2 �g for which
compðM; vÞ is ¯nite with uniform v (see Sec. 2.2
above):

compðM; vÞ ¼ k

2
log

n

2�
þ
Z
�

ffiffiffiffiffiffiffiffiffiffiffi
jIð�Þj

p
d�þ oð1Þ;

ð29Þ
where k is the dimension of the model, jIð�Þj is the
determinant of the Fisher information matrix at
parameter �, the integral is over the parameter
space � and the remainder term oð1Þ vanishes as
the sample size tends to in¯nity.

For discrete data scenarios, by far the most in-
teresting case is the multinomial model (extension
of the Bernoulli distribution to an i.i.d. sequence of
r-valued categorical random variables) since it is a
building block of a number of MDL-criteria such as
fNML and qNML (see above). There are many as-
ymptotic expansions for the NML regret under the
multinomial model. Probably the most useful is the
one proposed by Szpankowski and Weinberger58:

n log�þ ð�þ 2Þ logC� �
1

C�

� �
� 1

2
log C� þ

2

�

� �
;

ð30Þ
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where n is the sample size, � ¼ r
n and

C� ¼ 1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffi
1þ 4

�

q
. This simple formula is remark-

ably accurate over a wide range of ¯nite values of n
and r (see Ref. 54). Note that the leading term is
proportional to n (rather than logn as usual) be-
cause the formula is derived for the regime r ¼ �ðnÞ
where the alphabet size grows proportionally to the
sample size. If r grows slower than n or not at all,
the leading term tends to the classical form (29),

where the leading term is k
2 logn. In practice, the

approximation (30) is applicable for a wide range of
r=n ratios.

Roos,59 and Zou and Roos60 studied the second
term in the expansion (29), namely the Fisher in-
formation integral, under Markov chains and
Bayesian networks using Monte Carlo sampling
techniques. This approach reveals systematic dif-
ferences between the complexities of models even if
they have the same number of parameters.

5. Latent Variable and Irregular Models

Although thus far we have highlighted exponential
family and regression applications, NML and other
universal distributions can of course be used for
model selection and estimation in complete gener-
ality — and many practical applications are in fact
based on highly irregular models. Often, \classical"
two-part distributions (based on discretized mod-
els) are used, since NML distributions often pose
computational di±culties. However, Yamanishi and
collaborators have managed to come up with trac-
table approximations of NML-type distributions for
some of the most important irregular (i.e., non-
exponential family) models such as hierarchical la-
tent variable models,61 and the related Gaussian
mixture models.62,63 Suzuki et al.64 provide an NML
approach to nonnegative matrix factorization. Two-
part codes (and corresponding MDL estimators) for
mixture families that come close to achieving the
minimax regret were considered very recently by
Miyamoto et al.65

When it comes to asymptotic approximations for
code lengths/log-likelihoods based on NML and
other universal distributions — all approximations
so far (in Sec. 2.2) were derived essentially assuming
that the model under consideration is an exponen-
tial family. Extensions to curved exponential fami-
lies and generalized linear models are relatively
straightforward (see G07 for details). For more

irregular models, Watanabe has proposed the
widely applicable information criterion (WAIC)
and the widely applicable Bayesian information
criterion (WBIC), see Refs. 66 and 67, where the
latter can be viewed as an asymptotic expansion of
the log-likelihood based on a Bayesian universal
distribution. It coincides with BIC when applied to
regular models but is applicable even for singular
(irregular) models. The asymptotic form of WBIC is

WBICðMÞ ¼ � log p�0ðznÞ þ 	 logn

þOpð
ffiffiffiffiffiffiffiffiffiffi
logn

p
Þ; ð31Þ

where �0 is the parameter value minimizing the
Kullback–Leibler divergence from the model to the
true underlying distribution, and 	 > 0 is a rational
number called the real log-canonical threshold (see
Ref. 67), which can be interpreted as the e®ective
number of parameters (times two).

6. Frequentist Convergence of MDL

and Its Implications

Rissanen ¯rst formulated the MDL Principle as —
indeed — a Principle: one can simply start by
assuming, as an axiom, that modeling by data
compression (or, equivalently, sequential predictive
log-loss minimization) is the right thing to do. One
can also take a more conventional, frequentist ap-
proach, and check whether MDL procedures behave
desirably under standard frequentist assumptions.
We now review the results that show that, in gen-
eral, they do — thus providing a frequentist justi-
¯cation of MDL ideas: with some interesting
caveats, MDL model selection is typically consistent
(the smallest model containing the true distribution
is eventually chosen, with probability one) and
MDL prediction and estimation achieves good rates
of convergence (the Hellinger distance between the
estimated and the true density goes to zero, with
high probability, quite fast). In this section we re-
view the most important convergence results. In
particular, Sec. 6.1 shows that the link between
data compression and consistent estimation is in
fact very strong; and Sec. 6.4 shows that, by taking
MDL as a principle, one can get useful intuitions
about deep questions concerning deep learning; and
the intuitions can then, as a second step, be once
again validated by frequentist results.

Thus, let us assume, as is standard in frequentist
statistics, that data are drawn from a distribution in

Minimum description length revisited

1930001-21

In
t. 

J.
 M

at
h.

 I
nd

. 2
01

9.
11

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
E

N
T

E
R

 W
IS

K
U

N
D

E
 E

N
 I

N
FO

R
M

A
T

IC
A

 (
C

W
I)

 B
IB

L
IO

T
H

E
E

K
 o

n 
03

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



one of the models under M� under consideration.
We consider consistency and convergence properties
of the main MDL procedures in their main appli-
cations: model selection, prediction and estimation.

Model selection
For model selection between a ¯nite number of
models, all universal codes mentioned here are
consistent in wide generality; for example, this has
been explicitly proven if the data are i.i.d. and all
models on the list are exponential families, but
results for more complex models with dependent
data have also been known for a long time; see G07
for an overview of results. If the collection of models
is countably in¯nite, then results based on associ-
ating eachM� with �p bayes

� have also been known for
a long time; such results typically hold for \almost
all" (suitable de¯ned) distributions in all M�;
again, see G07 for a discussion of the (nontrivial)
\almost all" requirement. These countable-� con-
sistency results were extended to the switch distri-
bution by van Erven et al.29

Prediction and \improper" estimation
As to sequential prediction (Sec. 2.4), the rate
of convergence results are very easy to show (see
Chap. 15 of G07), but these typically only demon-
strate that the cumulative-log-loss prediction error
of sequentially predicting with a universal distri-
bution �p behaves well as n increases. Thus, since the
sum of prediction errors is small, say (for parametric
models) of order logn, for most t the individual
prediction error at the tth sample point must be of
order 1=t, since

Pn
t¼1 1=t� log t ¼ Oð1Þ. Still, it

remains an open question how to prove for indi-
vidual t what exactly the expected prediction error
is at that speci¯c n. Since one can view each pre-
diction as an \improper" estimate (end of Sec. 2.4),
the convergence rates of the resulting estimators,
which estimate the underlying distribution based on
a sample of size t as �pðZtþ1jztÞ, usually also behave
well in a cumulative sense, but again it is very hard
to say anything about individual t. The asymptotic
expansions (15) and (16) imply that, for ¯xed
parametric models M�, �p bayes

� and �p nml
� achieve

optimal cumulative prediction and estimation
errors. If, however, they are de¯ned relative to a full
model classM ¼ S�2�M� consisting of at least two
nested models, then they may fail to achieve opti-
mal rates by a logn factor. van Erven et al.29 show
that sequential prediction/estimation based on the
switch distribution achieves the minimax-optimal

cumulative prediction/estimation error rates even
in such cases. van der Pas and Gr€unwald30 show
that, if only two models are compared, then the
optimal obtainable rate for individual n for any
consistent procedure is achieved as well.

6.1. Frequentist convergence of MDL
estimation

Very strong results exist concerning the conver-
gence of MDL estimation based on an MDL esti-
mator �̂v as given by (5). A ¯rst, classical result was
already stated by the ground-breaking work,68

establishing that consistency and good convergence
rates can be obtained for the special case of a two-
part-code estimator �̂w based on a probability mass
function w, as long as w satis¯es

P
�2�::wð�Þ� < 1

for some � < 1 and w puts su±cient prior mass in a
KL neighborhood of the true �. These results were
greatly extended by Zhang69,70 and further, very
recently, by Gr€unwald and Mehta.13 The latter
consider �̂v for general v. LetM ¼ fP� : � 2 �g be a
statistical model and suppose data are i.i.d.  p
with p ¼ p� 
 2 M. They ¯nd that a su±cient con-
dition for consistency is that vð�
Þ < 1 and that
for some � < 1, the following generalized model
complexity

comp�ðM; vÞ :¼ compðM�; vÞ
¼ log

Z
pðznÞ1��

� ðp�̂vðznÞÞ�vð�̂vðznÞÞR
pðzÞ1��ðp�̂vðznÞðzÞÞ�dz

� �n dzn
ð32Þ

is bounded and oðnÞ, i.e., it grows slower than
linear (the slower it grows, the faster the MDL
estimator converges to the true distribution in
Hellinger distance). This condition strictly and
signi¯cantly weakens the Barron–Cover require-
ment. The result holds without any further condi-
tions; for example, M may be a countable union of
parametric models or even a huge nonparametric
model. Note that comp1ðM; vÞ is the model com-
plexity that we have encountered before in (7).
Ironically, for any � < 1, slow growth (oðnÞ) of

comp�ðMÞ is su±cient for consistency of �̂v, but

for � ¼ 1, which would be more fully in line with
the MDL ideas, it is not.
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6.2. From MDL to Lasso

As illustrated in Example 4, when used for high-
dimensional variable selection, the original MDL
approach would be to use a mixed two-part/one-
part code as in (1) with a �log�ð�Þ term to account
for the model index � 2 �. In such settings, there
may well be p > n variables of interest, each of
which may or may not be included in the model, so
that the minimization over � requires trying out
2p � 2n choices — which is practically infeasible.
For this reason, in practice people have strongly
preferred the Lasso and related methods based on
L1-penalties, which take linear rather than expo-
nential time in p (note that the classic MDL
essentially penalizes by an L0-penalty). However,
Barron and Luo,71 and Barron et al.72 showed that,
under some conditions on the true distribution
(such as Gaussian noise), the Lasso method can be
re-interpreted in terms of code length minimization
after all; see also Ref. 73, and, for further extensions,
Refs. 74 and 75. For a di®erent approach to unify
model selection with very high-dimensional models
with the luckiness NML, see Miyaguchi and
Yamanishi.23

Although some of the details may di®er, it seems
that most of these works are subsumed by the
aforementioned result of Gr€unwald and Mehta13

who show that general penalized estimators can be
re-interpreted as minimizing a one-part code length
as long as comp1ðM; vÞ is bounded, and can be
proven consistent under the (still quite weak) con-
dition that comp� as in (32) is bounded for some
� < 1. Thus, the connection between MDL and
general (including Lasso and other L1-penalties, but
also with entirely di®erent penalties) penalization
methods is substantially stronger than it seemed
before these developments took place.

Supervised machine learning
Importantly, all the works mentioned here except
Ref. 13 cannot show convergence under mis-
speci¯cation — for example, when applied to the
Lasso, they would require an assumption of normal
noise (corresponding to the squared error used in
the Lasso ¯t, which is equivalent to the log-loss
under a normal distribution for the noise). In
practice though, the Lasso (with the squared error)
is often used in cases in which one cannot
assume normally distributed errors. Reference 13
contains results that can still be used in such cases
[although the formula for comp�ðM; vÞ changes],

based on ideas which we sketch in the following
sub-section.

More generally, one of the major areas within
machine learning is supervised learning in which one
assumes that data ðX1;Y1Þ; ðX2;Y2Þ; . . . are i.i.d.
 P0, with Xi 2 X and Yi 2 Y, and one aims to use
the data to learn a predictor function f : X ! Y0
that has small expected loss or risk, de¯ned as
EðX;Y ÞP ½‘ðfðXÞ;Y Þ�, where ‘ : Y 	 Y0 ! R is some
loss function of interest and f is a member of some
\predictor model" F . For example, the statistical
notion of \regression with random design" corre-
sponds, in machine learning, to a supervised learn-
ing problem with Y ¼ Y0 ¼ R and ‘ðy 0; yÞ ¼
ðy 0 � yÞ2. Early MDL convergence results do not
cover this \supervised" situation: they are not
equipped to handle either random design or loss
functions beyond the log-loss. Some of the more
recent works mentioned above are able to handle
random design but not general loss functions (for
example, for Lasso-type applications they require
the noise to be normally distributed). Reference 13
seems to be the ¯rst that can fully handle supervised
learning scenarios: the convergence results can be
used with random design, and they can also be used
with large classes of loss functions including
squared error (without normality assumption) and
zero/one-loss. This is achieved by associating pre-
dictors f with densities pfðx; yÞ / expð�‘ðfðxÞ; yÞÞ,
so that the log-loss relative to density pf on data
ðx; yÞ becomes linearly related to the loss of f on
ðx; yÞ; the analysis then proceeds via analyzing
convergence of MDL for the densities fpf : f 2 Fg
as a misspeci¯ed probability model.

6.3. Misspeci¯cation

As beautifully explained by Rissanen,76 one of the
main original motivations for MDL-type methods is
that they have a clear interpretation independent of
whether any of the models under consideration is
\true" in the sense that it generates the data: one
chooses a model minimizing a code length, i.e., a
prediction error on unseen data, which is meaning-
ful and presumably might give something useful
irrespective of whether the model is true (Rissanen
even argues that the whole notion of a \true model"
is misguided). This model-free paradigm also leads
one to de¯ne the NML distribution as minimizing
prediction error in a stringent worst-case-over-all
data sense [Eq. (13)] rather than a stochastic sense.
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Nevertheless, it is of interest to see what happens if
one samples data from a distribution for which all
models under consideration are wrong, but some are
quite useful in the sense that they lead to pretty
good predictions. Doing this leads to rather un-
pleasant surprises: as ¯rst noted by Gr€unwald and
Langford,77 MDL (and Bayesian inference) can be-
come inconsistent: one can give examples of fM� :
� 2 �g with countably in¯nite � and a \true" data
generating distribution P0 such that, when data are
sampled i.i.d. from P0, MDL will tend to select a
sub-optimal model for all large n — while all sub-
models M� are wrong, one of them, M~� is optimal
in several intuitive respects (closest in KL diver-
gence to P0, leading to best predictions under a
number of loss functions), yet it will not be selected
for large n. While the models considered by
Gr€unwald and Langford77 were quite arti¯cial,
Gr€unwald and van Ommen78 showed that the same
can happen in a more natural linear regression set-
ting; moreover, they also showed that even if � is
¯nite, although then eventually MDL will select the
best sub-model, for even relatively large n it may
select arbitrarily bad sub-models. De Heide79 shows
that the problem also occurs with MDL and
Bayesian regression with some real-world datasets.

It turns out that the root of the problem is
related to the no-hypercompression property (27). If
the collection of modelsM ¼ S�2� M� contains the
density p0 of the \true" distribution P0, then
any distribution p 2 S�2� M� will satisfy no-
hypercompression relative to the true p0:

P0

p0ðZnÞ
pðZnÞ � �

� �
� �: ð33Þ

This property underlies the proof of all MDL con-
sistency and rate-of-convergence results, such as
those by Barron and Cover,68 Zhang,69

and Gr€unwald and Mehta.13 However, if the model
class M does not contain the true p0, then, in order
to prove consistency, one needs (33) to hold with
the P0 outside the brackets unchanged, but the p0
inside the brackets replaced by ~p, the distribution/
density in M that is closest to P0 in KL divergence
(why it should be KL is explained at length by
Gr€unwald and van Ommen78). Unfortunately
though, (33) does not necessarily hold with p0
replaced by ~p. If it does not, MDL (and Bayesian
methods, whose consistency relies on similar prop-
erties) may become inconsistent. Gr€unwald and van
Ommen78, based on earlier ideas in Refs. 80 and 81,

propose a solution that works for Bayesian universal
distributions: it replaces the likelihoods p�ðznÞ for
every p ¼ p� with p 2 M by the generalized likeli-
hood p�

�ðznÞ for some � > 0; usually � < 1 — this �
has the same mathematical function as the �
appearing in (32). It turns out that with such a
modi¯cation, if � is chosen small enough, a version
of the no-hypercompression inequality (33) holds
after all. References 78 and 81 also provide a
method for learning � from the data, the \Safe
Bayesian" algorithm (note that � cannot be learned
from the data by standard MDL or Bayesian
methods). The recent work of Gr€unwald and
Mehta13 suggests that the modi¯cation of like-
lihoods by exponentiating with � should work for
general MDL methods as well.

6.4. PAC-MDL bounds and deep
learning

One of the great mysteries of modern deep learning
methods in machine learning is the following82: deep
learning is based on neural network models which
can have many millions of parameters. Although
typically run on very large training samples zn, n is
usually still so small that the data can be ¯t per-
fectly, with zero error on the training set. Still, the
trained models often perform very well on future
test sets of data. How is this possible? At ¯rst sight
this contradicts the tenet, shared by MDL and just
about any other method of statistics, that good
generalization requires the models to be \small" or
\simple" [small compðMÞ in MDL analyses, small
VC dimension or small entropy numbers in statis-
tical learning analyses] relative to the sample size.
One of several explanations (which presumably all
form a piece of the puzzle) is that the local mini-
mum of the error function found by the training
method is often very broad — if one moves around
in parameter space near the minimum, the ¯t hardly
changes. Hochreiter and Schmidhuber83 already
observed that describing weights in sharp minima
requires high precision in order to not incur non-
trivial excess error on the data, whereas °at minima
can be described with substantially lower precision,
thus forging a connection to the MDL idea; in fact
related ideas already appear in Ref. 84. In these
papers, the MDL Principle is used in a manner that
is less direct than what was done thus far in this
paper: we (and, usually, Barron and Rissanen) di-
rectly hunt for the shortest description of the data.
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In contrast, the aforementioned authors simply note
that, no matter how a vector of parameters for a
model was obtained, if, with the obtained vector of
parameters, the data can be compressed substan-
tially, for example by coding ¯rst the parameters
and then the data with the help of the parameters,
then, if we believe the MDL Principle, with these
parameters the model (network) should generalize
well to future data. In modern practice, neural
networks are often trained with stochastic gradient
descent (SGD), and it has been empirically found
that networks that generalize well do tend to have
parameters lying in very °at minima.

While this use of the MDL Principle seems less
precise than what we reviewed earlier in this paper,
it can once again be given a frequentist justi¯cation,
and this justi¯cation is mathematically precise after
all: the so-called PAC-Bayesian generalization
bounds85 show that the generalization performance
of any classi¯er can be directly linked to a quantity
that gets smaller as soon as one needs (a) less bits to
describe the parameter and as soon as one needs (b)
less bits to describe the data given the parameters;
both the results and their proofs are very similar to
the MDL convergence results by Barron and
Cover,68 Zhang,69,70 and Gr€unwald and Mehta.13

Although in general, the formulation is not as
straightforward as a simple sum of the two de-
scription lengths (a) and (b), the connections be-
tween both the two-part code length and the
Bayesian code length are quite strong, as was al-
ready noticed by Blum and Langford.86 In particu-
lar, for discrete �, such PAC-Bayes bounds contain
a term �log�ð�Þ which can be interpreted as the
number of bits needed to encode � using the
codes based on some distribution �; for general,
uncountable �, this term gets replaced by a KL
divergence term that can still be related to a code
length via a so-called \bits back argument" pio-
neered by Hinton and van Camp.84 Dziugaite and
Roy,87 and Zhou et al.,82 inspired by earlier work by
Langford and Caruana,88 indeed show that, for
some real-world datasets, one can predict nontrivial
generalization using deep neural nets by looking at
the number of bits needed to describe the para-
meters and applying PAC-Bayesian bounds.

7. Concluding Remarks

Wehave given a self-contained introduction toMDL,
incorporating and highlighting recent developments.

Of necessity, we had to make a choice as to what to
cover in detail, and there are many things we
omitted. We would like to end with brie°y men-
tioning three additional developments. First,
there has always been the question about how
MDL relates to other complexity notions such
as those considered in the statistical learning
theory literature26: Vapnik–Chervonkis dimension,
entropy numbers, Rademacher complexity and so
on. A major step towards understanding the rela-
tion was made by Gr€unwald and Mehta13 who show
that for probability models with members of the
form p�ðzÞ / expð�� loss�ðzÞÞ, where loss is an
arbitrary bounded loss function, the NML com-
plexity can be precisely bounded in terms of the
Rademacher complexity de¯ned relative to loss.
Second, we should note that Rissanen's own views
and research agenda have steered in a direction
somewhat di®erent from the developments we de-
scribe: Rissanen89 published Information and
Complexity in Statistical Modeling, which proposes
foundations of statistics in which no underlying
\true model" is ever assumed to exist. As Rissanen
writes, \even such a well-meaning statement as \all
models are wrong, but some are useful", is mean-
ingless unless some model is `true'." Rissanen
expands MDL and NML ideas in the direction of the
Kolmogorov structure function, taking the idea of
distinguishable distributions underlying Ref. 19 as
the fundamental; while presumably compatible with
the developments we describe here, the emphasis of
this work is quite di®erent.

We end with a word about applications: since
2007, numerous applications of MDL and MDL-
like techniques have been described in the litera-
ture; as discussed in Sec. 6.2, highly popular
methods such as Lasso and Bayes factor methods
can often be seen as \MDL-like". Even as to spe-
ci¯c \pure" MDL applications (such as based on
NML and two-part codes), the number and scope
of applications are simply too large to give a suc-
cinct representative overview. However, there is
one particular area which we would like to mention
speci¯cally, since that area had hardly seen any
MDL applications before 2007 whereas nowadays
such applications are °ourishing: this is the ¯eld of
data mining. Some representative publications are
Refs. 90–92. Most of this work centers on the use
of two-part codes, but sometimes NML and
other sophisticated universal distributions/codes
are used as well.93
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Appendix A. When the Original (v�1)
NML is Unde¯ned:

Details, Open Problems

and Their Solutions

The original NML distribution �pnml with uniform v
relies on the existence of the Shtarkov integralR
zn2Z n p�̂MLðznÞðznÞdzn; its asymptotic expansion (15)
relies on the existence of the Je®reys integralR ffiffiffiffiffiffiffiffiffiffiffijIð�Þjp

d� being ¯nite, the latter being equivalent
to the requirement that Je®reys' prior is proper.
Both are quite strong requirements; for in¯nite
sample spaces Y, they \usually" — that is, in most
models one considers in practice, such as normal,
exponential, Poisson, etc. — do not hold; but once
one restricts the parameter space to an INECCSI
set, they generally do hold. This may lead one to
conjecture that the Shtarkov integral is ¯nite if and
only if the corresponding Je®reys integral is ¯nite.
Resolving this conjecture was posed as an open
problem by G07; Gr€unwald and Harremoës94 and
Bar-Lev et al.95 show that, in general, the conjec-
ture is wrong; though, for exponential families,
under a very mild additional condition, it
holds true.

From a more practical perspective, one would of
course like to know what universal distribution to
use if the standard MDL is unde¯ned. Several pro-
posals °oated around in the early 2000s; for an
overview, see Chap. 11 of G07. By now, the domi-
nant method has become to factor in a nonuniform
weight function v and calculate the luckiness NML
as in (11). This method was originally called lucki-
ness NML-2 by G07, which (among many other
methods) identi¯ed several \luckiness" versions of
NML that had been proposed by various authors;
luckiness NML-2 turned out both more practically
useable and mathematically analyzable than other
methods, and in this text we simply call it luckiness
NML. In particular, Suzuki and Yamanishi11

show that, for exponential family models, the
n-dimensional integral in the luckiness NML can be
replaced by a 2k-dimensional one, and in many
cases can be performed explicitly. As we indicated
in Sec. 2.5, one can sometimes set the ¯rst m
examples aside as start-up data to de¯ne a luckiness
function, leading to conditional NML. Again, G07
de¯ned di®erent forms of conditional NML, and
again, conditional NML-2 (directly based on lucki-
ness NML-2) turned out to be the most natural one:
Bartlett et al.21 show that for some important

classes of models, the NML distributions �pnml and
the Bayes marginal distributions �pbayes with im-
proper Je®reys' prior exactly, and not just asymp-
totically, coincide for each n. Moreover, for the
case of one-dimensional families, they completely
characterize the class of models for which this
holds: essentially, it holds for exponential
families that are also location or scale families, i.e.,
the normal and gamma distributions, and mono-
tone transformations thereof (such as, e.g., the
Rayleigh distributions); as well as for one curious
additional family. This correspondence between
objective Bayesian and conditional NML-2
approaches notwithstanding, Kojima and Komaki96

show that \conditional NML-3", which G07 con-
sidered the most intuitive version, but at the
same time, mathematically overly complicated for
practical use, can be given a practical implementa-
tion after all, thereby solving the Open Problem 7
of G07.
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