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Abstract
We present a new theory of hypothesis testing. The main concept is the s-value, a

notion of evidence which, unlike p-values, allows for effortlessly combining evidence from
several tests, even in the common scenario where the decision to perform a new test
depends on the previous test outcome: safe tests based on s-values generally preserve
Type-I error guarantees under such ‘optional continuation’. s-values exist for completely
general testing problems with composite null and alternatives. Their prime interpretation
is in terms of gambling or investing, each s-value corresponding to a particular investment.
Surprisingly, optimal “GROW” s-values, which lead to fastest capital growth, are fully
characterized by the joint information projection (JIPr) between the set of all Bayes
marginal distributions on H0 and H1. Thus, optimal s-values also have an interpretation
as Bayes factors, with priors given by the JIPr. We illustrate the theory using two classical
testing scenarios: the one-sample t-test and the 2 × 2-contingency table. In the t-test
setting, GROW s-values correspond to adopting the right Haar prior on the variance,
like in Jeffreys’ Bayesian t-test. However, unlike Jeffreys’, the default safe t-test puts a
discrete 2-point prior on the effect size, leading to better behaviour in terms of statistical
power. Sharing Fisherian, Neymanian and Jeffreys-Bayesian interpretations, s-values and
safe tests may provide a methodology acceptable to adherents of all three schools.

1 Introduction and Overview

We present a new theory of hypothesis testing. We wish to test the veracity of a null hypothesis
H0, often in contrast with some alternative hypothesis H1, where both H0 and H1 represent
sets of distributions on some given sample space. Our theory is based on s-test statistics.
These are simply nonnegative random variables that satisfy the inequality:

for all P ∈ H0: EP [S] ≤ 1. (1)

Even though they are random variables, we often refer to s-test statistics as s-values, emphasiz-
ing that they are to be viewed as an alternative to, and in many cases an improvement of, the
classical p-value, noting that large s-values correspond to evidence against the null: for given
s-value S and 0 ≤ α ≤ 1, we define tα(S), called the safe test corresponding to S with signif-
icance level α, as the function from R+

0 to {accept0,reject0} satisfying tα(S) = reject0

(i.e. ‘H0 is rejected’) iff S ≥ 1/α.
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Motivation p-values and standard null hypothesis testing have come under intense scrutiny
in recent years (Wasserstein et al., 2016, Benjamin et al., 2018); s-values and safe tests offer
several advantages. Most importantly, in contrast to p-values, s-values behave excellently
under optional continuation, the highly common practice in which the decision to perform
additional tests partly depends on the outcome of previous tests. A second reason is their
enhanced interpretability, and a third is their flexibility: s-values based on Fisherian, Neyman-
Pearsonian and Bayes-Jeffreys’ testing philosophies all can be accommodated for. These three
types of s-values can be freely combined, while preserving Type I error guarantees; at the
same time, they keep a clear (monetary) interpretation even if one dismisses ‘significance’
altogether, as recently advocated by Amrhein et al. (2019).

Contribution For simple (singleton) H0, s-values are closely related to test martingales,
which have been studied before (see e.g. (Shafer et al., 2011)). Here, we develop the theory of
s-values for completely general composite H0, for which hitherto next to nothing was known.
We first (Theorem 1, Part 1 and 2) show that nontrivial s-values exist for generalH0 andH1, as
long as H0 6= H1. Our second contribution is to propose a general design criterion, the GROW
criterion, for s-values that are in some sense optimal. While there are several GROW s-values
for the same H0 and H1, the most straightforward one is the default GROW s-value, which can
be defined as long as H1 shares all parameters with H0 except a single parameter of interest.
We next (Theorem 1, Part 3) show that GROW s-values have a surprising representation in
terms of KL divergence between two special Bayes marginals which form a so-called Joint
Information Projection (JIPr) (see also Figure 1). This allows us to compute such optimal
s-values numerically by convex optimization. We then, in Section 4, give some examples,
showing that for 1-sided tests with exponential families against simpleH0, Johnson’s (Johnson,
2013b,a) uniformly most powerful Bayes factors coincide with the default GROW s-values;
we also provide ‘quick and dirty’ (non-GROW) s-values for general multivariate exponential
family H0. Next, we show that Jeffreys’ Bayesian t-tests, as well as the many other Bayes
factors based on the right Haar prior suggested by Berger and collaborators (Berger et al.,
1998, Dass and Berger, 2003, Bayarri et al., 2012) constitute s-values. However, Jeffreys’
standard Bayesian t-test, while an s-value, is not default GROW, and we present a default
GROW version of it that has significantly better properties in terms of statistical power. We
also show how to calculate the default GROW s-value for the 2x2 contingency table (which
behaves better under optional continuation than either standard frequentist tests (such as
Fisher’s exact test) or standard Bayes factors (such as Gunel-Dickey (Jamil et al., 2016, Gunel
and Dickey, 1974)). Preliminary experiments (Section 5) suggest that with default GROW
s-values, if data comes from H1 rather than H0, one needs less data to find out than with
standard Bayes factor tests, but a bit more data than with standard frequentist tests, although
in the t-test setting the effective amount of data needed is about the same as with the standard
frequentist t-test because one is allowed to do optional stopping. Having thus provided default
s-values for what are perhaps the two most commonly encountered testing scenarios, we end —
after providing an overview of related work in Section 6 — with a discussion that clarifies how
safe testing could provide a unification of Fisher’s, Neyman’s and Jeffreys’ ideas on testing.

In the remainder of this introduction, we elaborate our contributions further in the context
of the three main interpretations of s-values:

2



1. First Interpretation: Gambling The first and foremost interpretation of s-values is in
terms of money, or, more precisely, Kelly (1956) gambling : imagine a ticket (contract, gamble,
investment) that one can buy for 1$, and that, after realization of the data, pays S$; one may
buy several and positive fractional amounts of tickets. (1) says that, if the null hypothesis is
true, then one expects not to gain any money by buying such tickets: for any r ∈ R+, upon
buying r tickets one expects to end up with rE[S] ≤ r$. Therefore, if the observed value of
S is large, say 20, one would have gained a lot of money after all, indicating that something
might be wrong about the null.

2. Second Interpretation: Conservative p-Value, Type I Error Probability Recall
that a p-value is a random variable p such that for all 0 ≤ α ≤ 1, all P ∈ H0,

P (p ≤ α) = α. (2)

A conservative p-value is a random variable for which (2) holds with ‘=’ replaced by ‘≤’.
There is a close connection between (small) p- and (large) s-values. Indeed:

Proposition 1. For any given s-value S, define p[s] := 1/S. Then p[s] is a conservative p-
value. As a consequence, for every s-value, any 0 ≤ α ≤ 1, the corresponding safe test tα(S)
has Type-I error guarantee α, i.e. for all P ∈ H0,

P (tα(S) = reject0) ≤ α. (3)

Proof. (of Proposition 1) Markov’s inequality gives P (S ≥ α−1) ≤ αEP [S] ≤ α. The result
is now immediate.

While s-values are thus conservative p-values, standard p-values satisfying (2) are by no
means s-values; if S is an s-value and p is a standard p-value, and they are calculated on
the same data, then we will usually observe p � 1/S so S gives less evidence against the
null; Example 1 and Section 6 will give some idea of the ratio between 1/S and p in various
practical settings.

Combining 1. and 2.: Optional Continuation, GROW Proposition 2 below shows
that multiplying s-values S(1), S(2), . . . for tests based on respective samples Z(1), Z(2), . . .
(with each Z(j) being the vector of outcomes for the j-th test), gives rise to new s-values, even
if the decision whether or not to perform the test resulting in S(j) was based on the value
of earlier test outcomes S(j−1), S(j−2), . . .. As a result (Prop. 2), the Type I-Error Guarantee
(3) remains valid even under this ‘optional continuation’ of testing. An informal ‘proof’ is
immediate from our gambling interpretation: if we start by investing $1 in S(1) and, after
observing S(1), reinvest all our new capital $S(1) into +S(2), then after observing S(2) our new
capital will obviously be $S(1) · S(2), and so on. If, under the null, we do not expect to gain
any money for any of the individual gambles S(j), then, intuitively, we should not expect to
gain any money under whichever strategy we employ for deciding whether or not to reinvest
(just as you would not expect to gain any money in a casino irrespective of your rule for
stopping and going home). We do not claim any novelty for Proposition 2 — it is implicit in
earlier works such as Shafer et al. (2011). The real novelty is that nontrivial s-values exist
for general composite H0 (Theorem 1, Part 1), that there exists a generically useful means
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for constructing them following the GROW criterion, and that (Theorem 1, Part 2 and 3)
the GROW s-value can be characterized in terms of a JIPr (joint information projection),
graphically depicted in Figure 1.

In its simplest form, for non-overlapping H0 and H1, the GROW (growth-rate optimal in
worst-case) criterion tells us to pick, among all s-values relative to H0, the one that maximizes
expected capital growth rate under H1 in the worst case, i.e. the s-value S∗ that achieves

max
S:S is an s-value

min
P∈H1

EP [logS] .

We give five reasons for using the logarithm in Section 3.1. Briefly when we keep using s-values
with additional data batches as explained in Section 2 below, then optimizing for logS ensures
that our capital grows at the fastest rate. Thus: restricting test statistics to s-values means
that we do not expect to gain money under H0; and among all such s-values, the GROW
s-value is the one under which our money grows fastest (we get evidence against H0 fastest)
under H1.

3. Third Interpretation: Bayes Factors For convenience, from now on we write the
models H0 and H1 as

H0 = {Pθ : θ ∈ Θ0} ; H1 = {Pθ : θ ∈ Θ1},

where for θ ∈ Θ0 ∪ Θ1, the Pθ are all probability distributions on the same sample, all have
probability densities or mass functions, denoted as pθ, and we assume the parameterization is
1-to-1 (see Appendix A for more details). Suppose that Z represents the available data; in all
our applications, Z = (Y1, . . . , YN ) is a vector of N outcomes, where N may be a fixed sample
size n but can also be a random stopping time. In the Bayes factor approach to testing, one
associates both Hj with a prior Wj , which is simply a probability distribution on Θj , and a
Bayes marginal probability distribution PWj , with density (or mass) function given by

pWj
(Z) :=

∫
Θj

pθ(Z)dWj(θ). (4)

The Bayes factor is then given as:

BF :=
pW1

(Z)

pW0
(Z)

. (5)

WheneverH0 = {P0} is simple, i.e., a singleton, then the Bayes factor is also an s-test statistic,
since in that case, we must have that W0 is degenerate, putting all mass on 0, and pW0

= p0,
and then for all P ∈ H0, i.e. for P0, we have

EP [BF] :=

∫
p0(z) · pW1

(z)

p0(z)
dz = 1. (6)

For such s-values that are really simple-H0-based Bayes factors, Proposition 1 reduced to the
well-known universal bound for likelihood ratios that has been rediscovered many times (see
Royall (2000) for an overview). If we act as ‘strict’ Bayesians, we may think of the simple
H0 test really as a test between two simple hypotheses, H′1 = {PW1} and H0. In this strict
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PW ∗0

P ∗W1

P(Θ1)

P(Θ(δ))P(Θ0)

Figure 1: The Joint Information Projection (JIPr), with notation from Section 3. Θ0 ⊂ Θ1

represent two nested models, Θ(δ) is a restricted subset of Θ1 that does not overlap with Θ0.
P(Θ) = {PW : W ∈ W(Θ)}, and W(Θ) is the set of all priors over Θ, so P(Θ) is the set of all
Bayes marginals with priors on Θ. Theorem 1 says that the GROW s-value S∗Θ1(δ) between Θ0

and Θ1(δ) is given by S∗Θ1(δ) = PW ∗1 /PW ∗0 , the Bayes factor between the two Bayes marginals
that minimize KL divergence D(PW1‖PW0)}.

Bayesian view, H0 is really a singleton, and then the Bayes factor (5) is an s-value — in fact
it is then not just any s-value, it is even equal to the GROW s-value for H0 relative to H′1.
However, almost all priors used in practice are adopted, at least to some extent, for pragmatic
reasons, and thus, as pragmaticists, robust Bayesians or frequentists, we may want to adopt
the s-value that is GROW relative to some subset Θ′1 of Θ1 or more generally, a nonsingleton
subset W ′1 of the set of all priors W(Θ1) over Θ1. In Section 3.1 we describe an appealing
default choice for picking Θ′1. Our main result Theorem 1 expresses that, irrespective of how
we define Θ′1 or W ′1, the resulting GROW s-value is still a Bayes factor, but in many (not all)
cases it is based on priors quite unlike anything that’s used in practice.

When H0 is itself composite, most Bayes factors B = pW1/pW0 will not be s-values any
more, since for B to be an s-value we require (6) to hold for all Pθ, θ ∈ Θ0, whereas in general it
only holds for P = PW0 . However, Theorem 1 again expresses that, under regularity conditions,
the GROW s-value for this problem is still a Bayes factor; remarkably, it is the Bayes factor
between the Bayes marginals (P ∗W1

, P ∗W0
) that form the joint information projection (JIPr), i.e.

that are, among all Bayes marginals indexed by W(Θ0) and W ′1, the closest in KL divergence
(Figure 1). Finding the JIPr pair is thus a convex optimization problem, so that it will tend
to be computationally feasible.

Again, the priors (W ∗0 ,W
∗
1 ) are often unlike anything that’s used in practice (Section 4.3

gives 2×2 tables as an example), but there does exists a highly important special case in which
standard Bayes factors for composite H0 are s-values after all: the Bayes factors for testing
with nuisance parameters satisfying a group invariance as proposed by Berger et al. (1998),
Dass and Berger (2003) give s-values. For the special case of the Jeffreys’ Bayesian t-test,
we formally show in our second main result, Theorem 3, that it is an s-value — though not
the default one — and in Theorem 3 we show how to modify the Bayesian t-test so that the
resulting Bayes factor is default GROW (and will have better statistical power). Having given
an initial overview, we now present the main contributions of this paper: we first formalize
optional continuation, then consider the GROW S-value and our characterization of it, then
give several examples, and we end by outlining how all this could give rise to a general theory
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of safe(r) testing — but for concreteness we start with a simple example:

Example 1. [Gaussian Location Family] Let H0 express that the Yi are i.i.d. ∼ N(0, 1).
According to H1, the Yi are i.i.d. ∼ N(µ, 1) for some µ ∈ Θ1 = R. We perform a first test on
initial sample Z(1) = (Y1, . . . , Yn). Standard Bayes factor tests in this scenario equip Θ1 with
a prior W that is a scale mixture of normals with mean 0, such as a Cauchy centered at 0, or
simply a normal N(0, ρ2). For simplicity we focus (for now) on the latter case with ρ = 1, so
that the prior has density w(µ) ∝ exp(−µ2/2). The Bayes factor is given by

S(1) :=
pW (Z)

p0(Z)
=

∫
µ∈R pµ(Z)w(µ)dµ

p0(Z)
, (7)

where pµ(Z) = pµ(Y1, . . . , Yn) ∝ exp(−
∑n

i=1(Yi − µ)2/2); by (6) we know that S(1) is an
s-value. By straightforward calculation:

logS = −1

2
log(n+ 1) +

1

2
(n+ 1) · µ̆2

n,

where µ̆n = (
∑

i=1 Yi)/(n + 1) is the Bayes MAP estimator, which only differs from the ML
estimator by O(1/n2): µ̆n− µ̂n = µ̂n/(n(n+ 1)). If we were to reject Θ0 when S ≥ 20 (giving,
by Proposition 1 a Type-I error guarantee of 0.05), we would thus reject if

|µ̆n| ≥
√

5.99 + log(n+ 1)

n+ 1
, i.e. |µ̂n| �

√
(log n)/n,

where we used 2 log 20 ≈ 5.99. Contrast this with the standard Neyman-Pearson (NP) test,
which would reject (α ≤ 0.05) if |µ̂n| ≥ 1.96/

√
n. The default GROW s-value for this problem

that we describe in Section 4.1 would reach S∗ ≥ 20 if |µ̂n| ≥ µ̃n with µ̃n = cn/
√
n where

cn > 0 is increasing and converges exponentially fast to
√

2 log 40 ≈ 2.72. Thus, while the
NP test itself defines an s-value that scores infinitely bad on our GROW optimality criterion
(Example 3), the optimal GROW S∗ is qualitatively more similar to a standard NP test than
a standard Bayes factor approach. For general 1-dimensional exponential families, the default
GROW S∗ coincides with a 2-sided version of Johnson’s (Johnson, 2013b,a) uniformly most
powerful Bayes test, which uses a discrete prior W within H1: for the normal location family,
W ({µ̃n}) = W ({−µ̃n}) = 1/2 with µ̃n as above. Since the prior depends on n, we obtain a
local (in time) Bayes factor by which we mean that for different n, the Bayes marginal PW
represents a different distribution (some statisticians would perhaps not really view this as
‘Bayesian’).

2 Optional Continuation

Consider a sequence of random variables Z(kmax) ≡ Z(1), . . . , Z(kmax) where each Z(j) is itself
a sample, Z(1) = (Y1, . . . , Yn1), Z(2) = (Yn1+1, . . . , Yn2), Z(3) = (Yn2+1, . . . , Yn3) and kmax is
an arbitrarily large number. For example, Z(1), Z(2), . . . may represent a sequence of clinical
trials or physical experiments, each Z(j) being the vector of all outcomes in trial j. We
observe a first sample, Z(1), and measure our first S-value S(1) based on Z(1), i.e. we can write
S(1) = s(1)(Z(1)) for some function s(1) : Yn1 → R+

0 . Then, if either the value of S(1) or,
more generally of the underlying data Z(1), or of side-information V(1) is such that we (or
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some other research group) would like to perform a second trial, a second data sample Z(2) is
generated or made available, and a second test is performed, i.e. an s-value S(2) = s(2)(Z(2))
based on data Z(2) is measured. Here the definition of S(2) may be equal to S(1) (i.e. we may
have n1 = n2 and s(1) = s(2)) but our ‘optional continuation’ result still holds if this is not the
case. We will require however that Z(2) is independent of Z(1).

After observing S(2), depending again on the value of S(2), Z(2) or U(2), a decision is made
either to continue to a third test, or to stop testing for the phenomenon under consideration.
In this way we go on until either we decide to stop or until kmax tests have been performed.
The decision whether or not to continue after k tests is encoded as the function B(k+1) which
takes values in {stop,continue}, where B(k+1) = stop means that the kth test was the final
one to be performed. We allow any deterministic rule or random process for deciding whether
to stop or continue that may depend, in arbitrary, random and unknown ways, on all data
and side information observed in the past, but it is not allowed to depend on the future. We
can formalize this jointly with our independence assumptions as follows, where we abbreviate
V (k) = (V(1), . . . , V(k)):

Assumption A There exist random vectors (U(1), Z(1)), . . . , (U(kmax), Z(kmax)) on the do-
main such that the joint distribution P underlying (U(1), Z(1)), . . . , (U(kmax), Z(kmax)) has a
marginal on Z(1), . . . , Z(kmax) that coincides with Pθ for some θ ∈ Θ0 and satisfies, for all
k ∈ {1, . . . , kmax},

(1) Z(1), . . . , Z(kmax) are independent.

(2) There exist fns b1, . . . , bkmax with B(k) = bk(U
(k))

(3) for 1 ≤ k < kmax : B(k) = stop⇒ B(k+1) = stop

(4) for 1 ≤ k < kmax : U(k) ⊥ Z(k), . . . , Z(kmax) | U (k−1), Z(k−1) (8)

The requirement that P is compatible with Θ0 is needed because we are interested in showing
properties of optional continuation under the null. Here U(1), . . . , U(k) represent all data that is
involved in the decision whether or not to continue to a next sample. In standard cases, we have
U(1) ≡ 0 (no information about the past in the beginning) and U(k) = (Z(k−1), V(k−1), B(k−1))
‘carries along’ the past data, side-information V(k−1) (which may itself be sampled from an
unknown distribution) and the previous continuation decision B(k−1). The need for the final
requirement in (8) is clear: if it would not hold, we would allow a continuation rule that can
peek ahead into the future such as ‘continue to the k+ 1st trial if S(k+1) > 20, i.e. if this trial
will provide a lot of evidence’.

The following proposition gives the prime motivation for the use of s-values: the fact that
the product of s-values remains an s-value, even if the decision to observe additional data and
record a new s-value depends on previous outcomes.

Proposition 2. [Optional Continuation] Suppose that P satisfies Assumption A. Let
S(0) := 1 and let, for k = 1, . . . , kmax, S(k) = sk(Z(k)) be a function of Z(k) that is an S-
value, i.e. EZ∼P [S(k)] ≤ 1. Let S(K) :=

∏K
k=0 S(k), and let Kstop := K− 1 where K ≥ 1 is the

smallest number for which B(K) = stop. Then

1. For all k ≥ 1, S(k) is an s-value.
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2. S(Kstop) is an s-value.

As a corollary, under all P0 ∈ H0, for every 0 ≤ α ≤ 1,

P0(tα(S(Kstop)) = reject0) ( = P0(S(Kstop) ≥ α−1) ) ≤ α, (9)

i.e. Type I-error guarantees are preserved under optional continuation, even for the most
aggressive continuation rule which continues until the first K is reached such that either∏K
k=1 S(k) ≥ α−1 or K = kmax.

Proposition 2 verifies the claim we made in the introduction: no matter what optional
continuation rule (definition of B(k)) we use, as long as the resulting process satisfies (8), our
Type-I error guarantee will still hold for the combined (multiplied) test outcome. Informally,
we may say that s-values are safe for Type-I errors under optional continuation. A formal
proof is in Appendix B, but an implicit proof has already been given in the beginning of this
paper: the statement is equivalent to ‘no matter what your role is for stopping and going
home, you cannot expect to win in a real casino’.

As Example 2 below shows, it will be useful to generalize Proposition 2 to a setting in
which the definition of the S-value S(k) that is applied to sample Z(k) may itself depend on
U(k) and hence on data from the past Z(k−1) or side information from the past V (k−1): by (8)
we may have U (k) = Z(k−1) but not, e.g. U (k) = Z(k). The following proposition shows that
the result of multiplying until stopping, S(Kstop), is still an S-value as long as, for almost all
possible instantiations u of U (k), S(k) is still an S-value conditioned on v:

Proposition 3. We call a test statistic S(k) = s(k)(Z(k), U
(k)) that can be written as a function

of Z(k) and U (k) and that satisfies

E[S(k) | U (k)] ≤ 1 (10)

an s-value for Z(k) conditional on U (k). We have: Proposition 2 still holds if we replace ‘S(k)

is an s-value’ by ‘S(k) is an s-value conditional on U (k)’.

Various further extensions are possible. For example, in practice, when the decision
whether to perform a new experiment or not is made, the value of kmax may of course be
unknown or even undefined. While this is of no great concern, since the result above is valid
for arbitrarily large kmax, we can still generalize the result to unbounded kmax, as long as
kmax <∞ with probability 1 by recasting the setting in a measure-theoretic framework. Tech-
nically, S(1), S(1) · S(2),

∏3
k=1 S(k), . . . then becomes a nonnegative supermartingale and the

optional continuation result follows trivially from Doob’s celebrated optional stopping theo-
rem. Once we take this stance, various further generalizations of Proposition 3 are possible;
for example, the size Nj −Nj−1 of sample Z(j) may itself be dependent on past outcomes and
side information as summarized in U (j); we omit further details.

Example 2. (Ex. 1, Cont.) Now let us take the standard Bayesian s-value (7) based on a
normal prior and suppose we have observed data Z(1) = Y1, . . . , Yn, leading to S(1) = 18 —
promising enough for us to ask our boss for more money to provide some further experiments.
Happily our boss grants the extra funding and we perform a new trial leading to data Z(2) =
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(Yn+1, . . . , Yn2). If we want to stick to the Bayesian paradigm, we can now use the following
conditional s-value:

S(2) :=
pW (·|Z(1))(Z(2))

p0(Z(2))
,

where W (· | Z(1)) is the Bayes posterior for µ based on data Z(1). To see that S(2) is a a
conditional s-value given V(1) = Z(1), note that EZ(2)∼P0 [S(2) | Z(1)] = 1, independently of the
value of Z(1), by a calculation analogous to (6). Yet a simple calculation using Bayes’ theorem
shows that multiplying S(1) and S(2) (which gives a new s-value by Proposition 2), satisfies

S(1) · S(2) =
pW (Z(1)) · pW (·|Z(1))(Z(2))

p0(Z(2))
=
pW (Y1, . . . , Yn2)

p0(Y1, . . . , Yn2)
,

which is exactly what one would get by Bayesian updating, showing that, for simple H0,
combining s-values by multiplication can be done consistently with Bayesian updating.

However, it might also be the case that it is not us who get the additional funding but some
research group at a different location. If the question is, say, whether a medication works, the
null hypothesis would still be that µ = 0 but, if it works, its effectiveness might be slightly
different due to slight differences in population. In that case, the research group might decide
to use a different test statistic S′(2) which is again a Bayes factor, but now with the original
prior W on µ re-used rather than replaced by W (· | Z(1)). Even though this would not be
standard Bayesian, S(1) ·S′(2) would still be a valid s-value, and Type-I error guarantees would
still be preserved — and the same would hold even if the new research group would use an
entirely different prior on Θ1.

Optional Stopping vs. Optional Continuation In this paper, our claim that s-values are
safe under optional continuation refers to the fact (Proposition 2 and 3) that under Assumption
A, products of s-values calculated on subsequent batches Z(1), Z(2), . . . remain s-values, can
still be interpreted in monetary terms (as the capital obtained so far in sequential gambling),
and still satisfy Type-I error guarantees. We now contrast this with the behaviour of s-values
under optional stopping. Suppose that Y1, Y2, . . . are i.i.d. according to all θ ∈ Θ0∪Θ1. Define
an s-process to be a sequence of s-values S[1], S[2], S[3], . . . where for each i, S[i] : R → R+

0 is
an s-value that is a function of the first i outcomes (note the difference in notation: S[i], the
s-value we use for a sample of i outcomes, vs S(k), an s-value to be used on the k-th sample).
Then, optional stopping (in its common interpretation) would refer to stopping at N set to the
first i at which we are sufficiently happy with the result, and reporting the s-value S[N ]. For
example, we may set N to be the smallest N such that either S[N ] > 20 or we run out of money
to perform new experiments. In general such an ‘s-process’ does not have a clear monetary
interpretation, and consequently it does not lead to preservation of Type-I error probabilities
under optional stopping. For example, using the type of s-values of Example 3, we can easily
construct a sequence of s-values that satisfies, for P ∈ H0, P (supi>0 S[i] > 20) = 1. Thus,
in general the claim ‘s-processes can handle optional stopping’ does not hold. However, there
do exist important special cases of s-processes which fare better with optional stopping. In
such s-processes subsequent s-values S[i] and S[i+1] have to be interrelated in a particular
manner. These s-processes are the so-called test martingales. To define these, we note first
that we can group the same data Y1, Y2, . . . into batches in various ways; we now assume a
grouping Z ′(1) = Y1, Z

′
(2) = Y2, . . . with accompanying information U ′(1), U

′
(2), . . .. The following
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definition of test martingale generalizes that of Shafer et al. (2011), who considered the case
with U ′(i) = Y ′i−1; to make the definition concrete, assume that U ′(i) is defined in this way for
now.

An s-process S[1], S[2], S[3], . . . is called a test martingale if, with the grouping above, there
exists a sequence of conditional s-values S′(1), S

′
(2), . . . (i.e. each S

′
(i) satisfies (10) with U re-

placed by U ′) such that we can write, for each n > 0, S[n] = S′(n) =
∏n
i=1 S

′
(i).

In terms of our gambling interpretation, general (conditional) s-values S(1), S(2), . . . applied
to samples Z(1),+Z(2), Z(3), . . . of sizes n1, n2 − n1, n3 − n2, . . . can be understood as pay-offs
of bets that are not profitable under the null. S(K) then represents the accumulated capital
after K gambles with reinvestment, starting with 1$. Test martingales S[1], S[2], . . . can be
interpreted in the setting where there is one bet per outcome Z ′(1) = Y1, Z

′
(2) = Y2, . . . (rather

than one bet per batch Z(1) = (Y1, . . . , Yn1), Z(2) = (Yn1+1, . . . , Yn1+n2), . . .), each bet is not
profitable under the null, and S[i] = S′(i) is the capital after i gambles with reinvestment,
starting with 1$. Thus, if a statistician, at each time i, measures evidence by an s-value S[i]

that is part of a test martingale (S[1], S[2], . . .), then Type-I error guarantees are preserved
under optional stopping after all:

Corollary 1. [of Proposition 3] Suppose S[1], S[2], . . . constitute a test martingale. Suppose
that Assumption A holds for Z ′(i) = Yi and random variables U ′(i) and B′(i). Then (9) holds
with S′(Kstop) = S[Kstop], so that Type-I error guarantees are preserved under optional stopping
based on B′(1), B

′
(2), . . ..

Technically, under Assumption A, products of (conditional) s-values define nonnegative
supermartingales; Proposition 2 and 3 are just versions of Doob’s optional stopping theorem,
which implies that the stopped process S(Kstop) is itself an s-value and satisfies a Type-I error
guarantee. This ‘optional stopping at the level of batches Z(j)’ is what we call optional contin-
uation in this paper. When a sequence of s-values (S[1], S[2], . . .) itself can be understood as a
sequence of products of (conditional) s-values for batch size one, then it forms a nonnegative
supermartingale that we call a test martingale; we can then stop at any time i = 1, 2, . . . and
the stopped process S′(i) = S[i] is itself an s-value and satisfies a Type-I error guarantee — this
optional stopping at the level of size-1 batches is what in this paper we simply call ‘optional
stopping’ for short.

An example of s-processes that are test martingales (and hence Type-I error guarantees are
preserved under optional stopping) is given by the case with H0 simple, W1 an arbitrary prior
on Θ1, and for all k, S[k] = pW (Y k)/p0(Y k) given by the Bayes factor (5); Example 2 describes
the special case with Θ representing normal distributions. For these s-values, Assumption A
and (10) are satisfied, and by Proposition 3 we can do optional stopping if B′k can be written
as a function of Y k−1. Thus (as is in fact well-known), for simple H0, Bayes factors with fixed
priors that do not depend on n behave well under optional stopping. On the other hand, if
we take an s-process (S[1], S[2], . . .) where S[i] is a Bayes factor with a prior dependent on i,
then Type-I error guarantees are not preserved under optional stopping. In Section 5.2 we will
consider the case where we fix once and for all a prior that is based on optimizing capital growth
for some given n, but we then use that prior in an s-process (S[1], S[2], . . .); we can then do
optional stopping at time i, and Type I error guarantees will be preserved, even if i 6= n. The
situation is much more complicated for composite H0: even if we set S[n] = pW1(Y n)/pW0(Y n)
for fixed priors W1 and W0, independent of n, the resulting s-process is not a test martingale
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and does not preserve Type-I error guarantees under optional stopping; for example, the s-
values we encounter for composite H0 for 2× 2 tables in Section 5.1 do not satisfy (10) with
the grouping Z ′(1) = Y1, Z

′
(2) = Y2, . . .. In the t-test setting though, we can get s-processes

that are test martingales, even though there H0 is composite — but for this test martingale
we cannot take U ′(i) = Y(i−1), and we can only deal with slightly restricted forms of optional
stopping. The upshot of all this is that for composite H0, it is substantially harder to construct
an s-process that handles optional stopping (which can be in the middle of an experiment)
than an s-value that handles optional continuation (which is in between experiments).

3 Main Result

From here onwards we letW(Θ) be the set of all probability distributions (i.e., ‘proper priors’)
on Θ, for any Θ ⊂ Θ0∪Θ1. Notably, this includes, for each θ ∈ Θ, the degenerate distribution
W which puts all mass on θ.

3.1 What is a good S-Value? The GROW Criterion

We start with an example that tells us how not to design s-values.

Example 3. [Strict Neyman-Pearson s-Values: valid but useless] In strict Neyman-
Pearson testing (Berger, 2003), one rejects the null hypothesis if the p-value p satisfies p ≤ α
for the a priori chosen significance level α, but then one only reports reject0 rather than
the p-value itself. This can be seen as a safe test based on a special s-value Snp: when p is a
p-value determined by data Z, we define Snp = 0 if p > α and Snp = 1/α otherwise. For any
P0 ∈ H0 we then have EZ∼P0 [Snp] = P0(p ≤ α)α−1 ≤ 1, so that Snp is an s-value, and the
safe test tα(Snp) obviously rejects iff p ≤ α. However, with this s-value, there is a positive
probability α of losing all one’s capital. The s-value Snp leading to the Neyman-Pearson test,
i.e. the maximum power test–now thus corresponds to an irresponsible gamble that has a
positive probability, of losing all one’s power for future experiments. This also illustrates that
the s-value property (1) is a minimal requirement for being useful under optional continuation;
in practice, one also wants guarantees that one cannot completely lose one’s capital.

In the Neyman-Pearson paradigm, one measures the quality of a test at a given significance
level α by its power in the worst-case over all Pθ, θ ∈ Θ1. If Θ0 is nested in Θ1, one first
restricts Θ1 to a subset Θ′1 ⊂ Θ1 with Θ0 ∩Θ′1 = ∅ of ‘relevant’ or ‘sufficiently different from
Θ0’ hypotheses (for example, in the t-test Θ′1 might index all distributions with effect size
δ larger than some ‘minimum clinically relevant effect size’ δ; see Section 4.2). If one wants
to perform the most ‘sensitive’ test, one takes the largest Θ′1 for which at the given sample
size a specific power can be obtained; we will develop analogous versions of all these options
below; for now let us assume that we have identified such a Θ′1 that is separated from Θ0. The
standard NP test would now pick, for a given level α, the test which maximizes power over
Θ′1. The example above shows that this corresponds to an s-value with disastrous behaviour
under optional continuation. However, we now show how to develop a notion of ‘good’ s-value
analogous to Neyman-Pearson optimality by replacing ‘power’ (probability of correct decision
under Θ′1) with expected capital growth rate under Θ′1, which then can be linked to Bayesian
approaches as well.
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Taking, like NP, a worst-case approach, we aim for an s-value with large EZ∼Pθ [f(S)]
under any θ ∈ Θ′1. Here f : R+ → R is some increasing function. At first sight it may
seem best to pick f the identity, but this will sometimes lead to adoption of an S-value such
that Pθ(S = 0) > 0 for some θ ∈ Θ′1; we have seen in the example above that that is a
very bad idea. A similar objection applies to any polynomial f , but it does not apply to the
logarithm, which is the single natural choice for f : by the law of large numbers, a sequence
of s-values S1, S2, . . . based on i.i.d. Z(1), Z(2), . . . with, for all j, EZ(i)∼P [logSj ] ≥ L, will a.s.
satisfy S〈m〉 :=

∏m
j=1 Sj = exp(mL+ o(m)), i.e. s will grow exponentially, and L(log2 e) lower

bounds the doubling rate (Cover and Thomas, 1991). Such exponential growth rates can only
be given for the logarithm, which is a second reason for choosing it. A third reason is that
it automatically gives s-values an interpretation within the MDL framework (Section 7.3); a
fourth is that such growth-rate optimal s can be linked to power calculations after all, with
an especially strong link in the one-dimensional case (Section 4.1), and a fifth reason is that
some existing Bayesian procedures can also be reinterpreted in terms of growth rate.

We thus seek to find s-values S∗ that achieve, for some Θ′1 ⊂ Θ1 \Θ0:

inf
θ∈Θ′1

EZ∼Pθ [logS∗] = sup
S∈S(Θ0)

inf
θ∈Θ′1

EZ∼Pθ [logS] =: gr(Θ′1), (11)

where S(Θ0) is the set of all S-values that can be defined on Z for Θ0. We call this special S∗,
if it exists and is essentially unique, the GROW (Growth-Rate-Optimal-in-Worst-case) s-value
relative to Θ′1, and denote it by S∗Θ′1 (see Appendix C for the meaning of ‘essentially unique’).

If we feel Bayesian about H1, we may be willing to adopt a prior W1 on Θ1, and instead of
restricting to Θ′1, we may instead want to consider the growth rate under the prior W1. More
generally, as robust Bayesians or imprecise probabilists (Berger, 1985, Grünwald and Dawid,
2004, Walley, 1991) we may consider a whole ‘credal set’ of priors W ′1 ⊂ W(Θ1) and again
consider what happens in the worst-case over this set, and being interested in the GROW
s-value that achieves

inf
W∈W ′1

EZ∼PW [logS∗] = sup
S∈S(Θ0)

inf
W∈W ′1

EZ∼PW [logS]. (12)

Again, if an s-value achieving (12) exists and is essentially unique, then we denote it by S∗W ′1 . If
W ′1 =W({θ1}) is a single prior that puts all mass on a singleton θ1, we write S∗θ1 . Linearity of
expectation further implies that (12) and (11) coincide if W ′1 =W(Θ′1); thus (12)) generalizes
(11.

All s-values in the examples below, except for the ‘quick and dirty’ ones of Section 4.4, are
of this ‘maximin’ form. They will be defined relative to sets W ′1 with in one case (Section 4.2)
W ′ representing a set of prior distributions on Θ1, and in other cases (Section 4.1–4.3) W ′1 =
W(Θ′1) for a ‘default’ choice of a subset of Θ1.

3.2 The JIPr is GROW

We now present our main result, illustrated in Figure 1. We use D(P‖Q) to denote the
relative entropy or Kullback-Leibler (KL) Divergence between distributions P and Q (Cover
and Thomas, 1991). We call an S-value trivial if it is always ≤ 1, irrespective of the data,
i.e. no evidence against H0 can be obtained. The first part of the theorem below implies that
nontrivial S-values essentially always exist as long as Θ0 6= Θ1. The second part — really
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implied by the third but stated separately for convenience — characterizes when such s-values
take the form of a likelihood ratio/Bayes factor. The third says that GROW s-values for
a whole set of distributions Θ′1 can be found, surprisingly, by a KL minimization problem
— a characterization that is both intuitively pleasing and practically useful, since, by joint
convexity of KL divergence (Van Erven and Harremoës, 2014), it means that the GROW
s-value can be found by convex optimization.

Theorem 1. 1. Let W1 ∈ W(Θ1) such that infW0∈W(Θ0)D(PW1‖PW0) <∞ and such that
for all θ ∈ Θ0, Pθ is absolutely continuous relative to PW1. Then the GROW s-value
S∗W1

exists, is essentially unique, and satisfies

EZ∼PW1
[logS∗W1

] = sup
S∈S(Θ0)

EZ∼PW1
[logS] = inf

W0∈W(Θ0)
D(PW1‖PW0)

2. Let W1 be as above and suppose further that the inf/min is achieved by some W ◦0 , i.e.
infW0∈W(Θ0)D(PW1‖PW0) = D(PW1‖PW ◦0 ). Then the minimum is achieved uniquely by
this W ◦0 and the GROW S-value takes a simple form: S∗W1

= pW1(Z)/pW ◦0 (Z).

3. Now let Θ′1 ⊂ Θ1 and let W ′1 be a convex subset of W(Θ′1) such that for all θ ∈ Θ0, all
W1 ∈ W ′1, Pθ is absolutely continuous relative to PW1. Suppose that
minW1∈W ′1 minW0∈W0 D(PW1‖PW0) = D(P ∗W1

‖P ∗W0
) <∞ is achieved by some (W ∗1 ,W

∗
0 )

such that D(PW1‖PW ∗0 ) <∞ for all W1 ∈ W ′1. Then the minimum is achieved uniquely
by (W ∗1 ,W

∗
0 ), and the GROW S-value S∗W ′1 relative to W ′1 exists, is essentially unique,

and is given by

S∗W ′1
=
pW ∗1 (Z)

pW ∗0 (Z)
, (13)

and it satisfies

inf
W∈W ′1

EZ∼PW [logS∗W ′1
] = sup

S∈S(Θ0)
inf

W∈W ′1
EZ∼PW [logS] = D(PW ∗1 ‖PW ∗0 ). (14)

If W ′1 =W(Θ′1), then by linearity of expectation we further have S∗W ′1 = S∗Θ′1
.

The requirements that, for θ ∈ Θ0, the Pθ are absolutely continuous relative to the PW1 ,
and, in Part 3, that D(PW1‖PW ∗0 ) <∞ for allW1 ∈ W ′1 are quite mild — in any case they hold
in all specific examples considered below, specifically if Θ0 ⊂ Θ1 represent general multivariate
exponential families, see Section 4.4.

Following Li (1999), we call PW ◦ as in Part 2 of the theorem, the Reverse Information
Projection (RIPr) of PW1 on {PW : W ∈ W(Θ0)}. Extending this terminology we call
(PW ∗1 , PW ∗0 ) the joint information projection (JIPr) of {PW : W ∈ W ′1} and {PW : W ∈
W(Θ0)} onto each other.

The requirement, for the full JIPr characterization (14), that the minima are both achieved,
is sufficient but not always necessary: in the examples of Section 4.1 (1-dimensional) and 4.3
(2× 2 tables), it holds, but in those of Section 4.2 (t-test) it does not, yet still in Theorem 3
we show a close analogue of (14) for this case.
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Proof Sketch of Parts 2 and 3 We give short proofs of parts 2 and 3 under the (weak)
additional condition that we can exchange expectation and differentiation. To prove parts 2
and 3 without this condition, we need a nonstandard minimax theorem; and to prove part 1
(which does not rely on minima being achieved and which will be essential for Theorem 3) we
need a deep result from Barron and Li (Li, 1999); these extended proofs are in Appendix C.

For Part 2, consider any W ′0 ∈ W(Θ0) with W ′0 6= W ◦0 , W ◦0 as in the theorem statement.
Straightforward differentiation shows that the derivative (d/dα)D(PW1‖P(1−α)W ◦0 +αW ′0

) at α =
0 is given by f(α) := 1 − EZ∼PW ′0

[pW1(Z)/pW ◦0 (Z)]. Since (1 − α)W ◦0 + αW ′0 ∈ W(Θ0) for
all 0 ≤ α ≤ 1, the fact that W ◦0 achieves the minimum over W(Θ0) implies that f(0) ≥ 0,
but this implies that EZ∼PW ′0

[pW1(Z)/pW ◦0 (Z)] ≤ 1. Since this reasoning holds for all W ′0 ∈
W(Θ0), we get that pW1(Z)/pW ◦0 (Z) is an S-value. To see that it is GROW, note that,
for every S-value S = s(Z) relative to S(Θ0), we must have, with q(z) := s(z)pW ◦0 (z), that∫
q(z)dz = EZ∼PW◦0

[S] ≤ 1, so q is a sub-probability density, and by the information inequality
of information theory (Cover and Thomas, 1991), we have

EPW1
[logS] = EPW1

[
log

q(Z)

pW ◦0 (Z)

]
≤ EPW1

[
log

pW1(Z)

pW ◦0 (Z)

]
= EPW1

[logS∗W1
],

implying that S∗W1
is GROW. For Part 3, consider any W ′1 ∈ W ′1 with W ′1 6= W ∗1 , W ∗1 ,W ∗0 as

in the theorem statement. Straightforward differentiation and reasoning analogously to Part
2 above shows that the derivative (d/dα)D(P(1−α)W ∗1 +αW ′1

‖PW ∗0 ) at α = 0 is nonnegative iff
there is no α > 0 such that EP(1−α)W∗1 +αW ′1

[log pW ∗1 (Z)/pW ∗0 (Z)] ≤ EPW∗1
[log pW ∗1 (Z)/pW ∗0 (Z)].

Since this holds for all W ′1 ∈ W ′1, and since D(PW ∗1 ‖PW ∗0 ) = infW∈W ′1 D(PW ‖PW ∗0 ), it follows
that infW∈W ′1 EPW [logS∗W ′1

] = D(PW ∗1 ‖PW ∗0 ), which is already part of (14). Note that we also
have

inf
W∈W ′1

EZ∼PW [logS∗W ′1
] ≤ sup

S∈S(Θ0)
inf

W∈W ′1
EZ∼PW [logS]

≤ inf
W∈W ′1

sup
S∈S(Θ0)

EZ∼PW [logS] = inf
W∈W ′1

sup
S∈S(W(Θ0))

EZ∼PW [logS]

≤ inf
W∈W ′1

sup
S∈S({W ∗0 })

EZ∼PW [logS] ≤ sup
S∈S({W ∗0 })

EZ∼PW∗1
[logS].

where the first two and final inequalities are trivial, the third one follows from definition of
s-value and linearity of expectation, and the fourth one follows because, as is immediate from
the definition of s-value, for any set W0 of priors on Θ0, the set of s-values relative to any set
W ′ ⊂ W0 must be a superset of the set of s-values relative to W0.

It thus suffices if we can show that supS∈S({W ∗0 }) EZ∼PW∗1
[logS] ≤ D(PW ∗1 ‖PW ∗0 ). For this,

consider s-values S = s(Z) ∈ S({W ∗0 }) defined relative to the singleton hypothesis {W ∗0 }.
Since EZ∼PW∗0

[s(Z)] ≤ 1 we can write s(Z) = q(Z)/pW ∗0 (Z) for some sub-probability density
q, and

sup
S∈S({PW∗0 })

EPW∗1
[logS] = sup

q
EZ∼PW∗1

[
log

q(Z)

pW ∗0

]
(15)

= D(PW ∗1 ‖PW ∗0 ),

where the supremum is over all sub-probability densities on Z and the final equality is the
information (in)equality again (Cover and Thomas, 1991). The result follows.
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3.3 The Default GROW s-Value

To apply Theorem 1 to design s-values with good frequentist properties in the case that
Θ0 ( Θ1, we must choose a subset Θ′1 with Θ′1 ∩ Θ0 = ∅. Usually, we first carve up Θ1

into nested subsets Θ(ε). A convenient manner to do this is to pick a divergence measure
d : Θ1 × Θ0 → R+

0 with d(θ1‖θ0) = 0 ⇔ θ1 = θ0, and, defining d(θ) := infθ0∈Θ0 d(θ, θ0)
(examples below) so that

Θ(ε) := {θ ∈ Θ1 : d(θ) ≥ ε}. (16)

In many cases (even if H0 is composite; see Section 4.2 and 4.3), there is just a single scalar
parameter of interest δ ∈ ∆ ⊆ R, and we can (re-)parameterize the model such that Θ1 =
{(δ, γ) : δ ∈ ∆, γ ∈ Γ} and Θ0 = {(0, γ) : γ ∈ Γ} where parameter space Γ represents all
distribution in H0. In that case, we shall call the family of s-values {S∗Θ(δ), δ > 0} with
d((δ, γ)) = |δ|, the default GROW s-values. For this d, for δ > 0, we have

Θ(δ) = {(δ, γ) : |δ| ≥ δ, γ ∈ Γ},

which we call the default GROW set for δ. Similarly, we call S∗Θ(δ) the “default GROW s-value
for δ” and also, if gr(Θ(δ)) = L, “the default GROW s-value for growth rate L”. In general,
default s-values are not the only sensible s-values to use (Section 4.3), but, as we now show,
there is an important case in which they are.

4 Examples

4.1 Point null vs. one-parameter exponential family

Let {Pθ | θ ∈ Θ} with Θ ⊂ R represent a 1-parameter exponential family for sample space Y,
given in any diffeomorphic (e.g. canonical or mean-value) parameterization, such that 0 ∈ Θ,
and take Θ1 to be some interval (t′, t) for some −∞ ≤ t′ ≤ 0 < t ≤ ∞, such that t′, 0 and t are
contained in the interior of Θ. Let Θ0 = {0}. Both H0 = {P0} and H1 = {Pθ : θ ∈ Θ1} are
extended to outcomes in Z = (Y1, . . . , Yn) by the i.i.d. assumption. For notational simplicity
we set

D(θ‖0) := D(Pθ(Z)‖P0(Z)) = nD(Pθ(Y1)‖P0(Y1)). (17)

We consider the default GROW s-values S∗Θ(δ). Since H0 is simple, we can simply take θ to
be the parameter of interest, hence ∆ = Θ1 and Γ plays no role. This gives default GROW
sets Θ(δ) = {θ ∈ Θ1 : |θ| ≥ δ}.

One-Sided Test Here we set t′ = 0 so that Θ(δ) = {θ ∈ Θ1 : θ ≥ δ}. The default GROW
s-values take on a particularly simple form here: let W1 be a prior probability distribution on
Θ(δ). As shown in Appendix D, we have for any such W1 ∈ W(Θ(δ)), that

D(PW1‖P0) ≥ D(Pδ‖P0), (18)

i.e. the prior achieving the minimum on the left puts all mass on the single point δ achieving
the minimum among all points in Θ(δ). It follows that the infimum in Theorem 1, Part 3 is
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achieved by PW ∗1 = Pδ and PW ∗0 = P0, and the theorem gives us that

sup
S∈S({0})

inf
θ∈Θ(δ)

EZ∼Pθ [logS] = inf
θ∈Θ(δ)

EZ∼PθE[logS∗δ ]

= D(Pδ‖P0),

i.e. S∗Θ(δ) = S∗δ : default GROW s-values can be calculated as a likelihood ratio between two
point hypotheses, even though Θ(δ) is composite. Moreover, we now show that, for this 1-sided
testing case, S∗Θ(δ) coincides with the uniformly most powerful Bayes tests of Johnson (2013b),
giving further motivation for their use and an indication of how to choose δ. Note first that,
since Θ0 = {0} is a singleton, by Theorem 1, Part 2, we have that S∗W = pW (Z)/p0(Z), i.e.
for all W ∈ W(Θ1), the GROW s-value relative to {W} is given by the Bayes factor pW /p0.
Also recall the definition of the ‘safe test’ tα given underneath (1) in Section 1. The following
result is a direct consequence of (Johnson, 2013b, Lemma 1); we omit the proof.

Theorem 2 (Uniformly Most Powerful Local Bayes Test Johnson (2013b)). Consider
the setting above. Fix any 0 < α < 1 and assume that there is δ ∈ Θ1 with D(δ‖0) = − logα.
Then among the class of all safe tests based on local Bayes factors, i.e. {tα(S∗W ) : W ∈ W(Θ1)},
the Type-II error is uniformly minimized over Θ1 by setting W to a degenerate distribution
putting all mass on δ:

for all θ ∈ Θ1 : min
W∈W(Θ1)

Pθ (tα(S∗W ) = accept0) = Pθ

(
tα(S∗δ ) = accept0

)
,

and with the test tα(S∗δ ) = tα(S∗Θ(δ)), H0 will be rejected iff the ML estimator θ̂ satisfies θ̂ ≥ δ.

Theorem 2 shows that, if the default GROW s-value is to be used in a safe test with
given significance level α and one is further interested in maximizing power among all GROW
s-values, then one should use S∗δ with D(Pδ(Y1)‖P0(Y1)) = (− logα)/n since this will lead to
the uniformly most powerful GROW test.

Two-Sided Test Let us now consider a two-sided test, with Θ1 = (t′, t) with t′ < 0, still
focusing on the default GROW s-values based on Θ(δ) = {θ ∈ Θ1 : |θ| ≥ δ}. The normal
location family of Example 1 is a special case. While we found no explicit expression for
the default GROW s-value S∗Θ(δ), it is easy to come up with an s-value S◦Θ(δ) with worst-case
growth-rate almost as good as S∗Θ(δ), as follows:

S◦Θ(δ) :=
1

2
S∗δ +

1

2
S∗−δ =

1
2p−δ(Z) + 1

2pδ(Z)

p0(Z)
. (19)

We know from the 1-sided case that S∗δ (Z) = pδ(Z)/p0(Z) is an s-value, and, by symmetry,
the same holds for S∗−δ. By linearity of expectation, mixtures of s-values are s-values, so S◦Θ(δ)
must also be an s-value. In Appendix D we show that its worst-case growth rate cannot be
substantially smaller than that of the optimal S∗Θ(δ).

Example 4. Consider the normal location setting of Example 1 with Θ0 = {0} as before,
and µ ∈ Θ1, the mean, the parameter of interest. First take Θ1 = R+, i.e. a one-sided test.
Then S∗Θ(µ) = pµ(Z)/p0(Z) and has gr(Θ(µ)) = D(µ‖0) = (n/2)‖µ2‖. We now see that
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the uniformly most powerful default GROW s-value at sample size n is given by the µ̃n with
D(µ̃n‖0) = − logα, so that µ̃n =

√
2(− logα)/n. Thus (unsurprisingly), this GROW s value

is a likelihood ratio test between 0 and µ̃n at distance to 0 of order 1/
√
n, and we expect to

gain (at least) − logα in capital growth if data is sampled from µ ≥ µ̃n.
In the 2-sided case, with Θ1 = R, S∗Θ(µ) becomes ((1/2)pµ(Z)+(1/2)p−µ(Z))/p0(Z). Even

though we have no more guarantees that it is uniformly most powerful, we can still take the
µ such that gr(Θ(µ)) = − logα. This leads to the test we described in Example 1 with
threshold

√
cn/n→ 2.72/

√
n.

4.2 The Bayesian t-test and the default GROW t-test

Jeffreys (1961) proposed a Bayesian version of the t-test; see also (Rouder et al., 2009). We
start with the models H0 and H1 for data Y = (Y1, . . . , Yn) given as H0 = {P0,σ(Y ) | σ ∈
Γ};H1 = {Pδ,σ(Y ) | (δ, σ) ∈ Θ1}, where ∆ = R,Γ = R+, Θ1 := ∆× Γ and Θ0 = {(0, σ) : σ ∈
Γ}, and Pδ,σ has density

pδ,σ(y) =

exp

(
−n

2

[(
y
σ − δ

)2
+
( 1
n

∑n
i=1(yi−y)2

σ2

)])
(2πσ2)n/2

,

with y = 1
n

∑n
i=1 yi.

Jeffreys proposed to equip H1 with a Cauchy prior1 W c[δ] on the effect size δ, and both
H0 and H0 with the scale-invariant prior measure with density wH(σ) ∝ 1/σ on the variance.
Below we first show that, even though this prior is improper (whereas the priors appearing in
Theorem 1 are invariably proper), the resulting Bayes factor is an s-value. We then show that
it is in fact even the GROW s-value relative to all distributions in H1 compatible with W c[δ].
The reasoning extends to a variety of other priors W [δ], including standard choices (such as a
standard normal) and nonstandard choices (such as the two-point prior we will suggest further
below).

Almost Bayesian Case: prior on δ available We fix a (for now, arbitrary) For any
proper prior distribution W [δ] on δ and any proper prior distribution W [σ] on σ, we define

pW [δ],W [σ](y) =

∫
δ∈∆

∫
σ∈Γ

pδ,σ(y) dW [δ] dW [σ],

as the Bayes marginal density under the product prior W [δ] ×W [σ] In case that W [σ] puts
all its mass on a single σ, this reduces to:

pW [δ],σ(y) =

∫
δ∈∆

pδ,σ(y) dW [δ]. (20)

For convenience later on we set the sample space to be Yn = (R \ {0}) × Rn−1, assuming
beforehand that the first outcome will not be 0 - an outcome that has measure 0 under all
distributions in H0 and H1 anyway. Now we define V := (V1, . . . , Vn) with Vi = Yi/|Y1|. We
have that Y determines V , and (V, Y1) determines Y1 = (Y1, Y2, . . . , Yn). The distributions in

1See Appendix A for the notational conventions used in W c[δ], P [V ],S〈V 〉 and so on.
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H0∪H1 can thus alternatively be thought of as distributions on the pair (V, Y1). V is “Y with
the scale divided out”. It is well-known (and easy to check, see Appendix E) that under all
P ∈ H0, i.e. all P0,σ with σ > 0, V has the same distribution P ′0 with density p′0. Similarly,
one shows that under all PW [δ],σ with σ > 0, V has the same pdf p′W [δ] (which therefore does
not depend on the prior on σ). We now get that, for all σ > 0,

S∗W [δ]〈V 〉 :=
p′W [δ](V )

p′0(V )
(21)

satisfies EV∼P [S∗W [δ]〈V 〉] = 1 for all P ∈ H0, hence it is an s-value.
We now restrict to priors W [δ] that are symmetric around 0; this could, for example,

be a normal with mean 0, or a point prior putting mass 1/2 on some δ and 1/2 on −δ, or
the Cauchy prior mentioned earlier. Remarkably, for such symmetric priors, this ‘scale-free’
s-value coincides with the Bayes factor one gets if one uses, for σ, the prior wH(σ) = 1/σ
suggested by Jeffreys, and treats σ and δ as independent. That is, as shown in Appendix E,
we have ∫

σ p̄W [δ],σ(Y )wH(σ)dσ∫
σ p0,σ(Y )wH(σ)dσ

=
p′W [δ](V )

p′0(V )
= S∗W [δ]〈V 〉. (22)

Despite its improperness, wH induces a valid s-value when used in the Bayes factor. The
equivalence of this Bayes factor to S∗W [δ]〈V 〉 simply means that it manages to ignore the
‘nuisance’ part of the model and models the likelihood of the scale-free V instead. The reason
this is possible is that wH coincides with the right-Haar prior for this problem (Eaton, 1989,
Berger et al., 1998), about which we will say more below.

Amazingly, it turns out that the s-value (22) is GROW:

Theorem 3. Fix some prior W [δ] on δ that is symmetric around 0 and such that the (very
weak) tail requirement Eδ∼W [δ][log(1 + |δ|)] < ∞ holds. Let W ′1 be the set of all probability
distributions on δ × σ whose marginal on δ coincides with W [δ]. Let n > 1. For S∗W [δ]〈V 〉 as
defined by (22)) we have, in very close analogy to (14:

inf
W∈W ′1

EZ∼PW [logS∗W [δ]〈V 〉] = sup
S∈S(Θ0)

inf
W∈W ′1

EZ∼PW [logS] (23)

= inf
W∈W ′1

inf
W [σ]∈W(Γ)

D(PW ‖P0,W [σ]) (24)

<∞,

where the second infimum is over all priors on σ > 0. Thus S∗W [δ]〈V 〉 = S∗W1
: the Bayes factor

based on the right Haar prior, is not just an s-value, but even the GROW s-value relative to
the set of all priors on δ × σ that are compatible with W [δ].

Default GROW safe t-test: prior on δ not available What if we have no clear idea on
how to choose a marginal prior on δ? In that case, we can once again use the default GROW
s-value for parameter of interest δ, with, for δ > 0, GROW sets Θ(δ) = {δ : |δ| ≥ δ}. Let
Wδ be the prior that puts mass 1/2 on δ and 1/2 on −δ. The following theorem, with proof
similar to that of Theorem 3, shows that the Bayes factor based on the right Haar prior wH

and this prior is equal to the GROW s-value relative to Θ(δ).
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Theorem 4. Fix δ > 0. Fix a convex set of priors W1[∆] on δ so that for all W ∈ W1[∆],
W (|δ| < δ) = 0 and such that W1[∆] contains the prior Wδ. Let n > 1. For S∗Wδ

〈V 〉 as defined
by (22) (with Wδ in the role of W [δ]) we have that

inf
W [σ]∈W(Γ),W [δ]∈W1[∆]

EZ∼PW [δ],W [σ]
[logS∗Wδ

〈V 〉] = sup
S∈S(Θ0)

inf
W [δ]∈W1[δ]
W [σ]∈W(Γ)

EZ∼PW [δ],W [σ]
[logS] (25)

= inf
W [σ]∈W(Γ),W [δ]∈W1[δ]

D(PW [δ],W [σ]‖P0,W [σ])

<∞,

where PW [δ],W [σ] is the Bayes marginal based on the prior W under which δ and σ are inde-
pendent, with marginals W [δ] and W [σ], respectively.

Extension to General Group Invariant Bayes Factors In a series of papers (Berger
et al., 1998, Dass and Berger, 2003, Bayarri et al., 2012), Berger and collaborators developed a
theory of Bayes factors forH0 = {P0,γ : γ ∈ Γ} andH1 = {Pδ,γ : δ ∈ ∆, γ ∈ Γ} with a nuisance
parameter (vector) γ that appears in both models and that satisfies a group invariance; the
Bayesian t-test is the special case with γ = σ,Γ = R+ and with the scalar multiplication
group and δ an ‘effect size’. Other examples include regression based on mixtures of g-priors
(Liang et al., 2008) and the many examples given by e.g. Berger et al. (1998), Dass and Berger
(2003), such as testing a Weibull vs. the log-normal or an exponential vs. the log-normal. The
reasoning of the first part of this section straightforwardly generalizes to all such cases: under
some conditions on the prior on δ, the Bayes factor based on using the right Haar measure on
θ0 in both models gives rise to an s-value. We furthermore conjecture that in all such testing
problems, the resulting Bayes factor is even GROW relative to a suitably defined set W1; i.e.
that suitable analogues of Theorem 3 and Theorem 4 hold. The proof of these theorems seems
readily extendable to the general group invariant setting, with the exception of Lemma 2 in
Appendix F which uses particular properties of the variance of a normal; generalizing this
lemma is a major goal for future work.

4.3 Contingency Tables

Let Yn = {0, 1}n and let X = {a, b} represent two categories. We start with a multinomial
model G1 on X × Y, extended to n outcomes by independence. We want to test whether the
Yi are dependent on the Xi. To this end, we condition every distribution in G1 on a fixed,
given, X = x = (x1, . . . , xn), and we let H1 be the set of (conditional) distributions on Z
that thus result. We thus assume the design of X n to be set in advance, but N1, the number
of ones, to be random; alternative choices are possible and would lead to a different analysis.
Conditioned on X = x, the counts n, na = Na(x) and nb (see Table 1), the likelihood of an
individual sequence y | x with statistics Na0, Nb0, Nb0, Nb1 becomes:

pµ1|a,µ1|b(y | x) = pµ1|a,µ1|b(y | x, na, nb, n) (26)

= µNa1

1|a (1− µ1|a)
Na0 · µNb11|b (1− µ1|b)

Nb0

These densities define the alternative model H1 = {Pµ1|a,µ1|b : (µ1|a, µ1|b) ∈ Θ1} with Θ1 =

[0, 1]2. H0, the null model, simply has X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) independent,
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with Yi, . . . , Yn i.i.d. Ber(µ1) distributed, µ1 ∈ Θ0 := [0, 1], i.e. pµ1(y | x) = pµ1(y) = µN1
1 (1− µ1)N0 .

To testH0 againstH1, we numerically calculate the GROW s-value S∗Θ(ε) where Θ(ε) is defined

0 1 sum
a µa0 µa1 µa
b µb0 µb1 µb

sum µ0 µ1 1

0 1 sum
a Na0 Na1 na
b Nb0 Nb1 nb

sum N0 N1 n

Table 1: 2x2 contingency table: parameters and counts. µij is the (unconditional) probability
of observing category i and outcome j, and Nij is the corresponding count in the observed
sample.

via (16) for two different divergence measures detailed further below. In both cases, Θ(ε) will
be compact, so that by the joint lower-semicontinuity of the KL divergence (Posner, 1975),
minD(PW1‖PW0) is achieved by some unique (W ∗1 ,W

∗
2 ), and we can use Part 3 of Theorem 1

to infer that the GROW s-value is given by S∗W(Θ(ε)) = S∗Θ(ε) = pW ∗1 (Y | X)/pW ∗0 (Y ). Note
that the ‘priors’ W ∗1 and W ∗0 may depend on the observed xn, in particular on na and nb,
since we take these as given throughout. We can further employ Carathéodory’s theorem (see
Appendix F.1 for details) to give us that W ∗1 and W ∗0 must have finite support, which allows
us to find them reasonably efficiently by numerical optimization; we give an illustration in the
next section.

We now consider two definitions of Θ(ε). The first option is to think of µ1 as a ‘nuisance’
parameter: we want to test for independence, and are not interested in the precise value of µ1,
but rather in the ‘effect size’ δ := |µ1|a−µ1|b|. We can then, once again, use the default GROW
s-value for parameter of interest δ. To achieve this, we re-parameterize the model in a manner
that depends on x via na and nb. For given µ1|a and µ1|b, we set µ1 = (naµ1|a + nbµ1|b)/n,
and δ as above, and we define p′δ,µ1

(y|x) (the probability in the new parameterization) to
be equal to pmu1|a,µ1|b(y|x) as defined above. As long as x (and hence na and nb) remain
fixed, this re-parameterization is 1-to-1, and all distributions in the null model H0 correspond
to a p′δ,µ1

with δ = 0. In Figure 2 we show, for the case na = nb = 10, the sets Θ(δ) for
δ = {0.42, 0.46, 0.55, 0.67, 0.79}. For example, for δ = 0.42, Θ(δ) is given by the region on the
boundary, and outside of, the ‘beam’ defined by the two depicted lines closest to the diagonal.
We numerically determined the JIPr, i.e., the prior (PW ∗0 , PW ∗1 ) for each choice of δ. This prior
has finite support, the support points are depicted by the dots; in line with intuition, we find
that the support points for priors on the set Θ(δ) are always on the line(s) of points closest to
the null model. The second option for defining Θ(ε) is to take the original parameterization,
and have d in (16)) be the KL divergence. This choice is motivated in Appendix G. Then Θ(ε)
is the set of (µ1|a, µ1|b with

inf
µ′1∈[0,1]

D(Pµ1|a,µ1|b‖Pµ′1)

n
=
D(Pµ1|a,µ1|b‖Pµ1)

n
≥ ε.

Note that the scaling by 1/n is just for convenience — since Pµ|. are defined as distributions of
samples of length n, the KL grows with n and our scaling ensures that, for given µ1|a, µ1|b and
n1a, n1,b, the set Θ(ε) does not change if we multiply n1a and n1b by the same fixed positive
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Figure 2: The Beam: Graphical depiction of the default GROW Θ(δ).
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Figure 3: The Lemon: Graphical depiction of the KL-divergence based GROW Θ(ε).

integer. Note also that the distributions Pµ1|a,µ1|b and Pµ1 are again conditional on the given
x (and hence na and nb), and µ1 = (naµ1|a + nbµ1|b)/n as before. We can now numerically
determine Θ(ε) for various values of ε; this is done in Figure 3, where, for example, the set
Θ(ε) for ε ∈ {log 10, log 20, . . . , log 400} is given by all points on and outside of the innermostly
depicted ‘lemon’. Again, we can calculate the corresponding JIPr; the support points of the
corresponding priors are also shown in Figure 3.

4.4 General Exponential Families

The contingency table setting is an instance of a test between two nested (conditional) expo-
nential families. We can extend the approach of defining GROW sets Θ(ε) relative to distance
measures d and numerically calculating corresponding JIPrs (PW ∗1 , PW ∗0 ) straightforwardly to
this far more general setting. As long as Theorem 1, Part 3 can be applied withW ′1 =W(Θ(ε)),
the resulting Bayes factor pW ∗1 (Z)/pW ∗0 (Z) will be a GROW s-value. The main condition for
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Part 3 is the requirement that D(PW ′1‖PW ∗0 ) <∞ for all W ′ ∈ W(Θ(ε)), which automatically
holds if D(Pθ‖PW ∗0 ) <∞ for all θ ∈ Θ(ε). Since, for exponential families, D(Pθ‖Pθ′) <∞ for
all θ, θ′ in the interior of the parameter space Θ = Θ1, this condition can often be enforced to
hold though, if we take a divergence measure d such that for each ε > 0, Θ(ε) is a compact
subset of Θ1 and for each θ ∈ Θ1 that is not on the boundary, there is an ε > 0 such that
θ ∈ Θ(ε).

For large n though, numerical calculation of GROW s-values may be time consuming, and
one may wonder whether there exists other nontrivial (but perhaps not GROW, or at least
not GROW relative to any intuitive sets Θ(ε)) S-values that take less computational effort.
It turns out that these exist: if one is willing to be ‘Bayesian’ about Θ1 and specify a prior
W1 on Θ1, then one can calculate a conditional GROW-s-value. We illustrate this for the
contingency table setting: conditional on the sufficient statistic relative to H0, µ̂1(Y ) = N1/n,
all distributions in H0, assign the same probability mass p0(y | µ̂1(y)) = 1/

(
n
N1

)
to all y with

µ̂1(y) = µ̂1(Y ). The conditional s-value is then given by

S =
pW1

(Y | µ̂1(Y ), x)

p0(Y | µ̂1(Y ))
=

(
n

N1

)
· pW1

(Y | x)

pW1
(µ̂1(Y ) | x)

.

While this S-value may not be GROW, it is still meaningful if one has reason to adoptW1. This
‘quick and dirty’ S-value approach can be extended to any combination of H1 (not necessarily
an exponential family) and any exponential family H0 such that the ML estimator θ̂0(yn) is
almost surely well-defined under all P ∈ H0, whereas at the same time, θ̂0(Y n) is a sufficient
statistic for H0, i.e. there is a 1-to-1 correspondence between the ML estimator θ̂0(Y n) and
the sufficient statistic φ(Y n). This will hold for most exponential families encountered in
practice (to be precise, H0 has to be a regular or ‘aggregate’ (Barndorff-Nielsen, 1978, page
154-158) exponential family). In such cases, if a reasonable priorW1 on Θ1 is available, we can
efficiently calculate nontrivial s-values of the form pW1(Z | θ̂1(Z))/p0(Z | θ̂0(Z)) but whether
these are sufficiently strong approximations of the GROW s-value will have to be determined
on a case-by-case, i.e. model-by-model basis; we did some experiments for the contingency
table, with W1 a Beta prior, and there we found them to be noncompetitive in terms of power
with respect to the full JIPr2.

5 Testing Our GROW Tests

We perform some initial experiments with our default and nondefault GROW s-values for
composite H0 nested within H1. We consider two common settings: in one setting, we want
to perform the most sensitive test possible for a given sample size n; we illustrate this with
the contingency table test. In the second setting, we are given a minimum clinically relevant
effect size δ and we want to find the smallest sample size n for which we can expect good
statistical (power) properties.

5.1 Case 1: Fixed n, ε unknown

Suppose that n is fixed but we have no idea what the smallest ε is such that θ1 ∈ Θ((ε)). We
may then simply ‘give up’ on θ ∈ Θ1 that are too close to Θ0, where ‘too close’ depends on the

2Although it was not connected to s-values, the idea to modify Bayes factors for nested exponential families
by conditioning on the smaller model’s sufficient statistic is due to T. Seidenfeld (2016).
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given sample size. Formally, we fix an L > 0 and we determine εL: the smallest ε such that
S∗Θ(ε) achieves rate L, i.e. gr(Θ(ε)) = L. We then use as our s-value S∗Θ((εL)). In other words,
we are really testing Θ0 against Θ((εL)) rather than Θ1. It is of course not clear how exactly
we should choose L — but the same can be said for the traditional choice of significance levels
and powers. In fact, we can fix an L and use S∗Θ((εL)) even if we do not know in advance what
α will be used (as long as the choice of α is data-independent): s-values lead to valid Type-I
error guarantees for every fixed α, irrespective of the L for which they are defined. We can
also use such an s-value if the test will be purely diagnostic and no accept/reject decision will
be taken.

However, if we do know the significance level α we have used and we have a desired power
1 − β, then we can try to determine the smallest ε := ε(β), i.e. the largest GROW set Θ(ε),
for which the desired power 1 − β can be achieved by some d-based GROW s-value S∗Θ(ε∗),
uniformly for all θ1 ∈ Θ(ε). Thus, We should be very careful here, since we may have ε 6= ε∗.
For example, in case of a point null with a one-sided test as in Section 4.1, we should take ε∗

such that gr(Θ(ε′)) = − logα, since by Theorem 2 this will give the uniformly most powerful
safe test (and ε∗ does not depend on β). Yet the power of this test will depend on the Pθ with
θ ∈ Θ1 from which data are sampled, and will be only larger than 1− β for θ ∈ Θ(ε) for some
potentially different ε.

Mini-Simulation-Study 1: The 2x2 Table Here we investigate these ideas within the
contingency table setting.

We first consider the default GROW s-values S∗Θ(δ) relative to parameter of interest δ =

|µ1|a − µ1|b|, the first option considered in Section 4.3. For a grid of δ’s in the range [0.4, 0.9]
we looked at the best power that can be achieved by a default GROW s-value S∗Θ(δ∗), i.e. we
looked for the δ∗ (again taken from a grid in the range [0.4, 0.9]) such that

1− β(δ, δ∗) := inf
θ∈Θ((δ))

Pθ

(
logS∗Θ((δ∗)) ≥ − logα

)
(27)

is maximized. We summarized the results in Table 2. We see that, although we know of
no analogue to Johnson’s Theorem 2 here, something like a “uniformly most powerful default
GROW safe test” does seem to exist — it is given by S∗Θ(δ∗) with δ∗ = 0.50; and we can
achieve power 0.8 for all θ ∈ Θ(δ) with δ ' 0.5. The same exercise is repeated with the
GROW s-values defined relative to the KL divergence in Table 3, again indicating that there
is something like a uniformly most powerful default GROW safe test. We now compare four
hypothesis tests for contingency tables for the na = nb = 10 design: Fisher’s exact test
(with significance level α = 0.05), the default Bayes Factor for contingency tables (Gunel and
Dickey, 1974, Jamil et al., 2016) (which is turned into a test by rejecting if the Bayes factor
≥ 20 = − logα), the ‘uniformly most powerful’ default GROW s-value S∗Θ(δ∗) with δ∗ = 0.50

(see Table 2) which we call GROW(Θ(δ)) and the ‘uniformly most powerful’ KL-based GROW
s-value S∗Θ(ε∗) with ε

∗ = log 16 (see Table 3) which we call (Θ(ε)). The 0.8-iso-power lines are
depicted in Figure 4; for example, if θ1 = (µ1|a, µ1|b) is on or outside the two curved red lines,
then Fisher’s exact test achieves power 0.8 or higher. The difference between the four tests
is in the shape: Bayes and the default JIPr yield almost straight power lines, the KL-based
JIPr and Fisher curved. Fisher gives a power ≥ 0.8 in a region larger than the KL-based JIPr,
which makes sense because the corresponding test is not safe; the default GROW and default
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δ gr(Θ(δ)) = D(PW ∗1 ‖PW ∗0 ) δ∗ power 1− β̄

0.42 1.20194 0.50 0.20
0.46 1.57280 0.50 0.29
0.50 1.99682 0.50 0.39
0.55 2.47408 0.50 0.49
0.59 3.00539 0.50 0.60
0.63 3.59327 0.50 0.69
0.67 4.23919 0.50 0.77
0.71 4.94988 0.50 0.85
0.75 5.73236 0.50 0.91

Table 2: Relating δ, δ∗, power and capital growth gr(Θ(δ)) for na = nb = 10 for the default
GROW s-values. For example, the row with 0.42 in the first column corresponds to the two
black lines in Figure 2 which represent all θ1 = (µ1|a, µ1|b) with δ = 0.42.

log nε gr(Θ(ε)) = D(PW ∗1 ‖PW ∗0 ) lognε∗ power

2 0.21884 16 0.06
5 0.98684 16 0.18
10 1.61794 16 0.29
15 1.99988 16 0.35
20 2.27332 16 0.40
25 2.48597 16 0.44
30 2.65997 16 0.47
40 2.93317 16 0.52
50 3.14447 16 0.55
100 3.78479 16 0.65
200 4.48606 16 0.74
300 4.86195 16 0.79
400 5.12058 16 0.82

Table 3: Relating ε, ε∗, power and capital growth gr(Θ(ε)) for na = nb = 10 for the KL-based
GROW s-values. For example, the row with 20 in the first column corresponds to the two
curved red lines in Figure 3 which represent all θ1 = (µ1|a, µ1|b) with infµ∈[0,1]D(Pθ1‖Pµ) =
log 20.

Bayes factor behave very similarly, but they are not the same: in larger-scale experiments we
do find differences. We see similar figures if we compare the rejection regions rather than the
iso-power lines of the four tests (figures omitted).
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Figure 4: 0.8-iso-powerlines for the four different tests.

5.2 Case 2: n to be determined, δ known

Consider default GROW s-values for some scalar parameter of interest δ. Whereas in Case
1, the goal was implicitly to detect the ‘smallest detectable deviation’ from H0, in Case 2 we
know beforehand that we are only really interested in rejecting H0 if δ ≥ δ. Here δ > 0 is
the minimum value at which the statement ‘|δ| ≥ δ’ has any practical repercussions. This is
common in medical testing in which one talks about the minimum clinically relevant effect
size δ.

Assuming that generating data costs money, we would like to find the smallest possible n
at which we have a reasonable chance of detecting that |δ| ≥ δ. Proceeding analogously to
Case 1, we may determine, for given significance level α and desired power 1−β, the smallest
n at which there exist δ∗ such that the safe test based on s-value S∗Θ(δ∗) has power at least
1 − β for all θ ∈ Θ(δ). Again, both n and δ∗ may have to be determined numerically (note
that δ∗ is not necessarily equal to δ).

Mini-Simulation-Study 2: 1-Sample t-test In this simulation study, we test whether
the mean of a normal distribution is different from zero, when the variance is unknown. We
determine, for a number of tests, the minimum n needed as a function of minimal effect size
δ to achieve power at least 0.8 when rejecting at significance level α = 0.05. We compare the
classical t-test, the Bayesian t-test (with Cauchy prior on δ, turned into a safe test at level
α by rejecting when BF ≥ 20 = 1/α) and our safe test based on the default GROW s-value
S∗Θ(δ∗) that maximizes power while having the GROW property. For the standard t-test we
can just compute the required (batch) sample size. This is plotted (black line) in Figure 5 as
a function of δ, where we also plot the corresponding required sample sizes for the Bayesian
t-test (larger by a factor of around 1.9−−2.1) and our maximum power default GROW t-test
(larger by a factor of around 1.4−−1.6).

However, these three lines do not paint the whole picture: for any symmetric priorW [δ] on
δ, the safe test based on S∗W [δ] given by (22), which included both the Bayesian t-test and our
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default GROW t-test preserves Type-I error guarantees not just under optional continuation,
but also under a slightly restricted form of optional stopping, as was shown by (Hendriksen
et al., 2018) (and anticipated in various papers by Berger and collaborators, e.g. Bayarri et al.
(2016)). In terms of Proposition 3 and Corollary 1, we observe a sequence of data Y1, Y2, . . .;
we then define U(j) = Vj−1 with V0 ≡ 1 and for j ≥ 1, Vj = Yj/Y1 as in Section 4.2;
Z ′(j) = Yj , and S[j] = S∗W [δ]〈V1, . . . , Vj〉 the Bayes factor based on the right Haar prior as
in (22). Then Hendriksen et al. (2018)) show that(S[1], S[2], . . .) constitute a test martingale.
Hence, by Corollary 1, S[Kstop] = SW [δ]〈VKstop〉, i.e. the Bayes factor based on the right Haar
prior stopped at Kstop is an s-value as long as the decision B′(t) whether to stop or not after
t outcomes is determined by a function of V t. As can be seen from (22), for each symmetric
prior W [δ] on δ, be it Cauchy or our two-point-prior, the s-value S∗W [δ](Y1, . . . , Yt) can be
written as a function of V1, . . . , Vt, and thus, by optional stopping at the smallest t such that
S∗W [δ](Y1, . . . , Yt) ≥ 1/α, B(t) can be written as a function of V t. The corollary thus implies
that Type I error guarantees are preserved under this aggressive stopping rule.

We can now compute an effective sample size under optional stopping in two steps, for
given δ. First, we determine the smallest n at which the default GROW s-value S∗Θ(δ∗) which
optimizes power achieves a power of at least 0.8 = 1 − β; we call this nmax. We then draw
data sequentially and record the S∗Θ(δ∗)(Y1, . . . , Yt) until either this s-value exceeds 1/α or
t = nmax. This new procedure still has Type I error at most α, and it must have power
≥ 0.8. The ‘effective sample size’ is now the sample size we expect if data are drawn from a
distribution with effect size at δ and we do optional stopping in the above manner (‘stopping’
includes both the occasions on which H0 is accepted and t = nmax, and the occasions when
H0 is rejected and t ≤ nmax). In Figure 5 we see that this effective sample size is about equal
to the fixed sample size we need with the standard t-test to obtain the required power (it
seems even slightly better for small δ, but the difference is on the order of just 1 example
and may be due to numerical imprecisions). Thus, quite unlike the classical t-test, our default
GROW t-test s-value preserves Type I error probabilities under optional stopping; it needs
more data than the classical t-test in the worst-case, but not more on average under H1. For
a Neyman-Pearsonian hypothesis tester, this should be a very good reason to adopt it!

6 Earlier, Related and Future Work

Test Martingales, Sequential Tests, Conditional Frequentist Tests As seen in Sec-
tion 2, s-values constitute a natural weakening of the concept of test martingale, a notion
that in essence goes back to Ville (1939), the paper that introduced the modern notion of
a martingale. s-values themselves have probably been originally introduced by Levin (of P
vs NP fame) Levin (1976) (see also (Gács, 2005)) under the name test of randomness, but
Levin’s abstract context is quite different from ours. The first detailed study of s-values in
a context more similar to ours is, presumably, Shafer et al. (2011), who call s-values ‘Bayes
factors’, a terminology which can be explained since, like Levin and Gács, the authors (almost)
exclusively focus on simple H0. The same can also be said for sequential testing (Lai, 2009)
as pioneered by Wald and developed further by Robbins, Lai and others : the methods are
related, but the focus in sequential testing is again almost exclusively on point null hypotheses.
Very recent related work that builds on sequential testing ideas are the anytime p-values of
Johari et al. (2015), who provide corrections to p-values that allow one to preserve Type I error
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Figure 5: Effective sample size for the classical t-test (black), Bayesian t-test (s-test with
Cauchy prior on δ) (red), and the default GROW s-test S∗ with a two-point prior on δ (blue).
The lines denoted batch denote the smallest fixed sample size at which power β = 0.8 can be
obtained under H1 as a function of the ‘true’ effect size δ. The continuous lines, denoted ‘o.s.’
denote the sample size needed if optional stopping (see main text) is done (and for S∗, the
prior is optimized for the batch sizes that were plotted as well. The ratios between the curves
at δ = 0.5 and the batch sample size needed for the t-test is 0.9 (S∗ with o.s.), 1.1 (Bayes
t-test with o.s.), 1.5 (S∗ with fixed sample size) and 1.9 (Bayes t-test with fixed sample size).
At δ = 1 they are 0.98, 1.26, 1.61 and 2.01 respectively: the amount of data needed compared
with the tradition t-test thus increases in δ within the given range. The two lines indicated as
‘nmax (o.s.)’ are explained in the main text.
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guarantees under optional stopping. While the goal of this work is thus very similar to ours,
there are no obvious connections to either a Bayesian approach or a monetary interpretation
or an information projection; it would be quite interesting to compare the results in terms of
amount of data needed before a reject at a given level takes place.

Finally, in a series of papers starting with the landmark (Berger et al., 1994), Berger,
Brown, Wolpert (BBW) and collaborators, extending initial ideas by Kiefer (1977) develop
a theory of frequentist conditional testing that “in spirit” is very similar to ours (see also
Wolpert (1996), Berger (2003)) — one can view the present paper as a radicalization of the
BBW stance. Yet in practice there are important differences. For example, our link between
posteriors and Type I error is slightly different (Bayes factors, i.e. posterior ratios vs. posterior
probabilities), in our approach there are no ‘no-decision regions’, in the BBW approach there
is no direct link to optional continuation.

Related Work on Relating p- and s-values Shafer and Vovk (2019) give a general
formula for calibrators f . These are decreasing functions f : [0, 1] → [0,∞] so that for any
p-value, S := 1/f(p) is an s-value. Let fvs(p) := −ep log p, a quantity sometimes called the
Vovk-Sellke bound (Bayarri et al., 2016)), having roots in earlier work by by Vovk (1993)
and Sellke et al. (Sellke et al., 2001). All calibrators satisfy limp↓0 f(p)/fvs(p) = ∞, and
calibrators f advocated in practice additionally satisfy, for all p ≤ 1/e, f(p) ≥ fvs(p). For
example, rejection under the safe test with significance level α = 0.05, so that S ≥ 20, would
then correspond to reject only if p ≤ f−1

vs (0.05) ≈ 0.0032, requiring a substantial amount of
additional data for rejection under a given alternative. Note that the s-values we developed
for given models in previous sections are more sensitive than such generic calibrators though.
For example, in Example 1 the threshold 2.72/

√
n corresponding to α = 0.05 corresponds

roughly to p = 0.007 (for composite H0 as in the safe t-test there does not seem to be such a
generic ‘factor’ that is independent of n). Another issue with calibrating p-values is that the
resulting s-value are generally not capable of handling optional stopping, whereas, as we have
seen for e.g. the t-test, in some (not all) settings, GROW s-values allow for optional stopping
after all.

Related Work: Testing based on Data-Compression and MDL

Example 5. Ryabko and Monarev (2005) show that bit strings produced by standard random
number generators can be substantially compressed by standard lossless data compression
algorithms such as zip, which is a clear indication that the bits are not so random after all.
Thus, the null hypothesis states that data are ‘random’ (independent fair coin flips). They
measure ‘amount of evidence against H0 provided by data yn = y1, . . . , yn’ as

n− Lzip(y
n),

where Lzip(y
n) is the number of bits needed to code yn using (say) zip. Now, define

p̄1(yn) = 2−Lzip(yn). Via Kraft’s inequality (Cover and Thomas, 1991) one can infer that∑
yn∈{0,1}n p̄1(yn) ≤ 1 (for this particular case, see the extended discussion by (Grünwald,

2007, Chapter 17)). At the same time, for the null we have H0 = {P0}, where P0 has mass
function p0 with for each n, yn ∈ {0, 1}, p0(yn) = 2−n. Defining S := p̄1(Y n)/p0(Y n) we thus
find

EY n∼P0 [S] =
∑

yn∈{0,1}n
p̄1(yn) ≤ 1 ; logS = n− Lzip(Y

n).
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Thus, the Ryabko-Monarov codelength difference is the logarithm of an s-value. Note that
in this example, there is no clearly defined alternative; being able to compress by zip simply
means that the null hypothesis is false; it certainly does not mean that the ‘sub-distribution’
p̄1 is true (if one insists on there being an alternative, one could view p̄1 as a representative
of a nonparametric H1 consisting of all distributions P1 with EY n∼P1 [logS] > 0, a truly huge
and not so useful set).

More generally, by the same reasoning, for singleton H0 = {P0}, any test statistic of the
form p̄1(Y n)/p0(Y n), with p0 the density of P0 and p̄1 a density or sub-density (integrating to
less than 1) is an s-value. Such s-values have been considered extensively within the Minimum
Description Length (MDL) and prequential approaches to model selection (Rissanen, 1989,
Dawid, 1997, Barron et al., 1998, Grünwald, 2007). In these approaches there usually is a
clearly defined alternative H1, so that a Bayesian would choose p̄1 := pW1 to be a Bayes
marginal density. In contrast, the MDL and prequential approach allow more freedom in the
choice of p̄1. MDL merely requires p̄1 to be a ‘universal distribution’ such as a Bayes marginal,
a normalized maximum likelihood, prequential plug-in or a ‘switch’ distribution (Grünwald,
2007). With simple H0, all such ‘MDL factors’ also constitute s-values; but with composite
H0, just as with Bayes factors, the standard MDL approach may fail to deliver s-values.

Future Work, Open Questions: Practical From a practical perspective, it is now impor-
tant to come up with software for easy calculation of s-values; packages for the t-test and the
2× 2-table are already under way. Also, with some of our GROW s-values, e.g. those for the
2× 2 tables, we can only do optional continuation, not optional stopping. For obvious reasons
(such as needing less data, see Section 5.2, and applications such as A/B-testing) we would
like to have s-values that preserve Type-I error under optional stopping. Perhaps, even for
2× 2 tables, this is possible by deviating slightly from our GROW optimality criterion? The
following example suggests that optional stopping can sometimes be achieved under very mild
conditions, and at the same time points towards the possibility of s-values for semiparametric
tests:

Example 6. [Allard’s Test Martingale] In his master’s thesis, A. Hendriksen (2017) pro-
poses a variation of the t-test when normality cannot be assumed: H1 represents the hy-
pothesis that Yi are i.i.d. with some mean µ, H0 represents the special case that µ = 0;
no further distributional assumptions are made. One can then coarsen the data by setting
f(Yi) = 1 iff Yi ≥ 0 and f(Yi) = −1 otherwise, and then create an s-value on Y n by setting
S(Y n) =

pW1
(f(Y1),...,f(Yn))

p0(f(Y1,...,Yn)) , where according to p0, the data are i.i.d. Bernoulli(1/2), pθ is
the density of the data according to Bernoulli(θ), and pW1 is the Bayes marginal obtained by
putting a priorW1 (say, uniform or Jeffreys’) on θ. Then S is an s-value; in fact it even defines
a test martingale, so Type-I error probability guarantees still hold under optional stopping,
as long as the data are i.i.d. under some distribution with mean 0. A strict Bayesian would
not be allowed to do such a coarsening of the data since it loses information (although the
great Bayesian I.J. Good acknowledged that such an operation was often very useful, and that
Bayesians really needed a statistician’s stooge to prepare the data for them (Good (1983), in
the Chapter titled 46656 Varieties of Bayesians)). For the safe testing theory developed here,
such a coarsening is not an issue at all. If one is unsure of normality, once may replace the
default GROW t-test by Allard’s martingale. The price one pays is, of course, that, for any
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given µ > 0, more data will tend to be needed to get substantial evidence against µ = 0, i.e.
a large s-value.

Similarly to this semiparametric case, it would be of major practical interest if we could
use s-values even if Assumption A does not hold, as elaborated beneath Example 7; or if we
could extend our ideas to confidence intervals, as elaborated at the end of the paper.

Future Work, Open Problems, Theoretical We showed here that Bayes factors based
on the right Haar prior in the 1-sample t-test setting constitute GROW s-values. While
Hendriksen et al. (2018) implies that using the right Haar prior in general group invariant
situations always leads to s-values, the result that these are even GROW s-values is currently
restricted to the t-test setting, with the Haar prior on the variance (scalar multiplication
group). The only part of the proof that does not extend to the general group invariant setting
is Lemma 2 in Appendix F; extending this is a major goal for future work. This would lead to
an extension of Theorem 3 and 4 for general group invariant settings. But we want to go even
further: Theorem 3 and 4 closely resemble Theorem 1, Part 3, but without the KL infimum
being achieved. More generally, a major aim for future work is thus to provide a generalized
(even beyond group invariant cases) version of Theorem 1 in which the KL infimum in the
first argument is not necessarily achieved.

Finally, from a more conceptual perspective, it would be of major interest to establish
the precise link between the present s-value theory and the BBW testing procedures referred
to above. Also, just as we propose to fully base testing on a method that has a sequential
gambling/investment interpretation, Shafer and Vovk have suggested, even more ambitiously,
to base the whole edifice of probability theory on sequential-gambling based game theory rather
than measure theory (Shafer and Vovk, 2001, 2019); see also (Shafer, 2019) who emphasizes
the ease of the betting interpretation. Obviously our work is related, and it would be of
interest to understand the connections more precisely.

7 A Theory of Hypothesis Testing

7.1 A Common Currency for Testers adhering Jeffreys’, Neyman’s and
Fisher’s Testing Philosophies

The three main approaches towards null hypothesis testing are Jeffreys’ Bayes factor methods,
Fisher’s p-value-based testing and the Neyman-Pearson method. Berger (2003), based on ear-
lier work, e.g. (Berger et al., 1994), was the first to note that, while these three methodologies
seem superficially highly contradictory, there exist methods that have a place within all three.
Our proposal is in the same spirit, yet more radical; it also differs in many technical respects
from Berger’s. Let us briefly summarize how s-values and the corresponding safe tests can be
fit within the three paradigms:

Concerning the Neyman-Pearson approach: s-values lead to tests with Type-I error guar-
antees at any fixed significance level α, which is the first requirement of a Neyman-Pearson
test. The second requirement is to use the test that maximizes power. But we can use GROW
s-values designed to do exactly this, as we illustrated in Section 5. The one difference to the
NP approach is that we optimize power under the constraint that the s-value is GROW —
which is essential to make the results of various tests of the same null easily combinable, and
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preserve Type I error probabilities under optional stopping. Note though that this constraint
is major: as shown in Example 3, the standard NP tests lead to useless s-values under the
GROW criterion.

Concerning the Fisherian approach: we have seen that s-values can be reinterpreted as
(quite) conservative p-values. But much more importantly within this discussion, s-values
can be defined, and have a meaningful (monetary) interpretation, even if no clear (or only
a highly nonparametric/nonstationary) alternative can be defined. This was illustrated in the
data compression setting of Example 5. Thus, in spirit of Fisher’s philosophy, we can use s-
values to determine whether there is substantial evidence against H0, without predetermining
any significance level: we simply postulate that the larger s, the more evidence against H0

without having specific frequentist error guarantees. The major difference though is that these
s-values continue to have a clear (monetary) interpretation even if we multiply them over
different tests, and even if the decision whether or not to perform a test (gather additional
data) depends on the past.

Concerning the Bayesian approach: despite their monetary interpretation, all s-values
that we encountered can also be written as likelihood ratios, although (e.g. in Example 5
or Section 4.4) either H0 or H1 may be represented by a distribution that is different from
a Bayes marginal distribution. Still, all GROW (optimal) s-values we encountered are in
fact equivalent to Bayes factors, and Theorem 1 Part 3 strongly suggests that this is a very
general phenomenon. While the point priors arising in the default GROW s-values may be
quite different from priors commonly adopted in the Bayesian literature, one can also obtain
s-values by using priors on H1 that do reflect prior knowledge or beliefs — we elaborate on
this under Hope vs. Belief below (note that the prior W1 on H1 can be chosen completely
freely, but the prior on H0 cannot: the s-value S∗W1

based on this prior is determined by the
RIPr prior W ∗0 determined by W1; see Theorem 1, Part 2).

The Dream With the massive criticisms of p-values in recent years, there seems a consensus
that p-values should be used not at all or, at best, with utter care (Wasserstein et al., 2016,
Benjamin et al., 2018), but otherwise, the disputes among adherents of the three schools
continue — intuitions among great scientists still vary dramatically. For example, some highly
accomplished statisticians reject the idea of testing without a clear alternative outright; others
say that, for example, misspecification testing is an essential part of data analysis. Some
insist that significance testing should be abolished altogether (Amrhein et al., 2019), others
(perhaps slightly cynically) acknowledge that significance may be silly in principle, yet insist
that journals and conferences will always require a significance-style ‘bar’ in practice and thus
such bars should be made as meaningful as possible. Finally, within the Bayesian community,
the Bayes factor is sometimes presented as a panacea for most testing ills, while others warn
against its use, pointing out for example that with different default priors that have been
proposed, one can get quite differing answers.

Wouldn’t it be nice if all these accomplished but disagreeing people could continue to go
their way, yet would have a common language or ‘currency’ to express amounts of evidence,
and would be able to combine their results in a meaningful way? This is what s-values can
provide: consider three tests with the same null hypothesis H0, based on samples Z(1), Z(2)

and Z(3) respectively. The results of a default s-value test aimed to optimize power on sample
Z(1), an s-value test for sample Z(2) based on a Bayesian prior W1 on H1 and a Fisherian
s-value test in which the alternative H1 is not explicitly formulated, can all be multiplied —
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and the result will be meaningful.

Hope vs. Belief In a purely Bayesian set-up, optional stopping is justified if the prior on
W1 has θ ∈ Θ0∪Θ1 independent of the stopping time N . In that case, a celebrated result going
back to Barnard (1947) (see Hendriksen et al. (2018) for an overview) says that the posterior
does not depend on the stopping rule used; hence it does not matter how N was determined
(as long as it does not depend on future data). If Bayes factors are ‘local’, based on priors that
depend on the design and thus on the sample size n, then, from a purely Bayesian perspective,
optional (early) stopping is not allowed: since the prior depends on n, when stopping at the
first T < n at which pW1(yT )/pW0(yT ) > 20, neither the original prior based on the fixed n nor
the prior based on the observed T (which treats the random T as fixed in advance) is correct
any more. This happens, for example, for the default (Gunel and Dickey, 1974) Bayes factors
for 2× 2 contingency tables advocated by Jamil et al. (2016) — from a Bayesian perspective,
these do not allow for optional stopping.

The same holds for the Bayes factors that correspond to default GROW s-values: these
generally are ‘local’, the prior W1(and potentially also W0) depending on the sample size n
(for example, for the 1-sided test with the normal location family, Example 4, we set all prior
mass on µ̃n =

√
2(− logα)/n; a similar dependence holds for the prior on δ in the default

GROW t-test). Thus, while from a purely Bayesian perspective such s-values/Bayes factors
are not suitable for optional stopping, in Section 4, both the default GROW s-value for the
normal location family and for the t-test setting do allow for optional stopping under our
definition: one may also stop and report the Bayes factor at any time one likes during the
experiment, and still Type I error probabilities are preserved (Hendriksen et al., 2018), as we
did in the experiment reported in Figure 5: the pre-determined n (called there nmax) on which
the prior on δ is based is determined such that, if we stop at any fixed T = n′, the statistical
power of the test is optimal if n′ = nmax; but the likelihood ratio s(Y T ) := pW1(Y T )/pW0(Y T )
remains an S-value even if T = n′ 6= nmax or even if one stops at the first T ≤ nmax such
that S(Y T ) ≥ 20. Thus, we should make a distinction between prior beliefs as they arise in
Bayesian approaches, and what one may call ‘prior hope’ as it arises in the s-value approach.
The purely Bayesian approach relies on the beliefs being, in some sense, adequate. In the
s-value based approach, one can use priors that represent subjective a priori assessments; for
example, in the Bayesian t-test, instead of a Cauchy or a 2-point prior, one can use any prior
W1 on δ that is symmetric around 0 one likes, with any dependency on sample size n one
likes, and still the resulting Bayes factor with the right Haar prior on σ will be a GROW
s-value (Theorem 3). If H1 is the case, and the data behave as one would expect according to
the prior W1, then the s-value will tend to be large – it GROWs fast. But if the data come
from a distribution in H1 in a region that is very unlikely under W1, S(Y n) will tend to be
smaller — but it is still an s-value, hence leads to valid Type-I error guarantees and can be
interpreted when multiplied across experiments. Thus, from the s-value perspective, the prior
on W1 represents something more like ‘hope’ than ‘belief’ — if one is lucky and data behave
like W1 suggests, one gets better results; but one still gets valid and safe results even if W1 is
chosen badly (corresponds to false beliefs).

This makes the s-value approach part of what is perhaps among the most under-recognized
paradigms in statistics and machine learning: methods supplying results that have frequentist
validity under a broad range of conditions (in our case: as long as either H0 or H1 is correct),
but that can give much stronger results if one is ‘lucky’ on the data at hand (e.g. the data
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matches the prior). It is, for example, the basis of the so-called PAC-Bayesian approach to
classification in machine learning (McAllester, 1998, Grünwald and Mehta, 2019), which itself,
via Shawe-Taylor and Williamson (1997), can be traced back to be inspired by the conditional
testing approach of Kiefer (1977) that also inspired the BBW approach to testing.

7.2 A Safer Form of Testing

We have already seen that some, but not all s-values allow not just for optional continuation
but also for optional stopping, as long as Assumption A holds. One might also ask if we
can still make valid inferences using (perhaps suitably modified) s-values if Assumption A is
violated. Also, while the Type-I error guarantees based on safe tests are always valid under
Assumption A, any guarantees for, e.g. expected growth rate or power under H1 rely on, e.g.,
the prior assumptions for H1 or the restriction to Θ1(δ) being correct. Thus, s-values and
corresponding safe tests suggest a range of inferences, some of which are safe (i..e., valid)
under quite weak additional assumptions, and some of which only become safe under much
stronger additional assumptions. One can envision a methodology of hypothesis testing in
which researchers who base their test on a test statistic S are always required to state what
inferences they consider ‘safe’ based on the test based on test statistic S, i.e. which of these
additional assumptions hold.

If S is actually an s-value, and if it is used in a context in which Assumption A holds, then
it will automatically follow that the safe test on S achieves valid Type-I error probabilities
bounds under optional continuation. Thus, what we previously called a ‘safe test’ is really
a test that is safe for Type-I Error Probability under optional continuation when evidence is
combined by multiplication, which we require as a minimal safety guarantee. But there are
many other types of safety: for example a researcher may claim that the test tα(S) based on
S is also safe for Type-II Error probability. By this we mean that she believes that the actual
power of the test at the given sample size is at least PW1(tα = reject0) = PW1(T ≥ 1/α).
This could be the case if she is a Bayesian who is very convinced that, given Θ1, W1 is the
appropriate prior (then she believes the power is in fact equal to PW1(tα = reject0)).

Another researcher might read about her results and be convinced that, in her testing
scenario, Assumption A held (so that her results are indeed safe for Type-I error), but may
have doubts about the prior W1 — such a researcher would be happy to base Type-I error
inferences based on the value of S but not Type-II error probability inferences. Note that, if
H1 is a singleton, then any researcher who thinks the models H0 and H1 are well-specified
and uses an s-value would be safe, under Assumption A, for both Type-I and Type-II error
probability inferences. However, in this case (H1 singleton), yet another researcher might
think that H1 is not even well-specified (as in Example 5, if H1 is identified with p1 as defined
there). If such a researcher still thinks that Assumption A holds, then he would consider
inferences based on the proposed s-value still safe for Type-I error probabilities but not for the
power, i.e. ‘probability that H1 is correctly accepted’ — the real probability that a decision
to accept H1 is correct, is 0 according to such a researcher.

We can even go a step further and consider what happens in the case that Assumption A
is violated, as happens all too often in the real world:

Example 7. Optional Starting and Double Use of Data In a 2004 (in)famous court case,
Dutch nurse Lucia de Berk was convicted of killing several patients, based partly on statistical
evidence. Deaths in her ward always occurred while she was on duty; colleagues become
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suspicious and the public prosecutor had a statistician look into a matter. The statistician
modeled the data as a 2 × 2 table and performed a null hypothesis test. H0 represented the
hypothesis that it was all a coincidence, i.e. the probability of a patient dying at the jth shift
(Yj = 1) would be the same if Lucia were present (Xj = a) than if she were not present
(Xj = b). Fisher’s exact test gave a p-value of 1 in 342 million. Of course, a cardinal sin of
traditional hypothesis testing was committed here: the data that suggested a hypothesis was
used to test the hypothesis itself, leading to wild overestimation of effects.

How is this related to our work? Until now, we only thought of Assumption A in terms of
optional continuation: we can only use s-values in a context with optional continuation if the
decision to continue to do a test on a new sample does not depend on that new sample itself.
But Assumption A also rules out optional starting, the extreme case of optional stopping at
time 1, which arises at the start of the first test: Assumption A requires that we only start
using s-values at all if the decision to calculate the first s-value is independent on the data
on which this s-value is based. Thus, if, as a general rule, data analysts would check whether
the context in which they do their test is such that Assumption A holds, then the error above
is automatically avoided. Assumption A is just a natural extension of the rule ‘don’t use the
data that suggested a hypothesis to test that hypothesis’.

Even though in the example above, Assumption A does not hold, one would still like to be
able to say something about the strength of evidence of the nurse data. Under strict Bayesian
assumptions, one can: one assigns prior π(H0) = 1− π(H1) to the hypotheses, and equips Θ0

and Θ1 with priors W0 and W1 respectively. As Bayesians, we might reject H0 if the posterior
probability of H0 given data Z is no larger than some α, i.e.

π(H0 | Z) ∝ pW0(Z)π(H0) ≤ α, (28)

while, if we only decide to do a test if Z takes values within a certain set E (e.g. E contains
just those Z for which π(cH0 | Z) is smaller than some ε), we should really be rejecting if

π(H0 | Z,Z ∈ E) ≤ α.

However, for all Z ∈ E , the two probabilities on the left are in fact equal — since given such
a Z, we already know that it is in E . Since a Bayesian conditions on all the data, the fact
that Z ∈ E is irrelevant for the posterior given Z, and one may say that, assuming the priors
are trustworthy, the posterior is trustworthy as well, so that (28) gives the correct conditional
Type-I error probability. (in the nurse case, a logical choice for H1 would be ‘nurse murders
patients’, the prior on which, although one cannot be sure of the precise numerical value, can
safely be taken to be very small, making the evidence far weaker — indeed it is now commonly
accepted that the nurse was innocent and the deaths were just accidents).

Thus, we may say that assuming the priors on H0 and H1 and the priors W1 and W2 are
correct, Bayesian inference is Safe for Type-I error probability under optional starting even if
Assumption A does not hold. Similarly, again assuming that all priors are correctly specified,
Bayesian inference is safe for Type-I and Type-II error probability under optional stopping
and optional continuation. The idea of s-values is to get safety guarantees that still hold
without assuming that (all) of the specified priors are correct. An interesting and intriguing
question for future work is the case where we may be able to specify (bounds on) priors π(H0)
and π(H1), but are hard pressed to subjectively yet thrustworthily assess the in-model prior
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densities W0 and/or W1. For certain types of s-values, it may be possible to replace the Bayes
factors in Bayes’ theorem by these s-values and still get valid Type-I error guarantees, even
though we were not able to specify ‘subjective’ W0 and W1.

This discussion of various forms of ‘safety’ is admittedly somewhat vague. A first stab at
making it precise, in which the focus is on posterior probabilities rather then test decisions,
is made in the paper safe probability written by one of us (Grünwald, 2018), based on earlier
ideas from Grünwald (2000).

7.3 Possible Objections

By the nature of the subject, the relevance of this work is bound to be criticized. We would
like to end this paper by briefly anticipating three potential criticisms.

Where does all this leave the poor practitioner? A natural question is, whether the s-
value based approach isn’t much too difficult and mathematical. Although the present, initial
paper is quite technical, we feel the approach in general is in fact easier to understand than any
approach based on p-values. The difficulty is that one has to explain it to researchers who have
grown up with p-values — we are confident that, to researchers who neither know p-values
nor s-values, the s-values are easier to explain, via the direct analogy to gambling. Also, we
suggested ‘default’ s-values that (unlike some default Bayes factors) can be used in absence of
strong prior knowledge about the problem yet still have a valid monetary interpretation and
valid Type I Error guarantees. Finally, if, as suggested above, practitioners really were to be
forced, when starting an analysis, to think about optional stopping, optional continuation and
misspecification — this would make life difficult, but would make practice all the better.

No Binary Decisions, Part I: Removing Significance There is a growing number of
influential researchers who hold that the whole concept of ‘significance’, and ensuing binary
‘reject’ or ‘accept’ decisions, should be abandoned altogether (see e.g. the 800 co-signatories
of the recent Amrhein et al. (2019), or the call to abandon significance by McShane et al.
(2019)). This paper is not the place to take sides in this debate, but we should stress that,
although we strongly emphasized Type-I and Type-II error probability bounds here, s-values
still have a meaningful interpretation, as amount of evidence measured in monetary terms,
even if one never uses them to make binary decisions; and we stress that, again, this monetary
interpretation remains valid under optional continuation, also in the absence of binary deci-
sions. We should also stress here that we do not necessarily want to adopt ‘uniformly most
powerful s-values, even though our comparison to Johnson’s uniformly most powerful Bayes
tests in Section 4 and the experiments in Section 5 might perhaps suggest this. Rather, our
goal is to advocate using GROW s-values relative to some prior W on Θ1 or a subset of Θ(δ)
of Θ1 — the GROW criterion leaves open some details, and our point in these experiments is
merely to compare our approach to classical, power-optimizing Neyman-Pearson approaches
— to obtain the sharpest comparison, we decided to fill in the details (the prior W on Θ(δ))
for which the two approaches (s-values vs. classical testing) behave most similarly.

No Binary Decisions, Part II: Towards Safe Confidence Intervals Another group
of researchers (e.g. Cumming (2012)) has been advocating for generally replacing testing by
estimation accompanied by confidence intervals; or, more generally (McShane et al., 2019),
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that researchers should always provide an analysis of the behaviour of and uncertainty inherent
in one or more estimators for the given data. While we sympathize with the latter point of
view, we stress that standard confidence intervals (as well as other measures of uncertainty
of estimators such as standard errors) suffer from a similar problem as p-values: they are
not safe under optional continuation. To illustrate, consider the following scenario: suppose
that one estimates a parameter θ based on initial sample Z(1) and the result is promising
but inconclusive – for example, the minimum interesting effect size is 2, the estimate θ̂ was
substantially greater than 2 but the left end of the confidence interval was below 2. Thus,
because the result is promising, one gathers a second batch of data Z(2). Now if one re-
calculates θ̂ based on the joint data (Z(1), Z(2)), the corresponding confidence interval, when
calculated in the standard manner, will not be valid any more. These confidence intervals
somehow have to be adjusted, or calculated differently. Thus, rather than criticizing confidence
interval-based approaches, we would rather like to argue that they do have their uses, but they,
too, should be transformed to a novel type of confidence bounds that are safe under optional
continuation. Developing such safer confidence methods is a major goal for future research.
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Appendix A Proof Preliminaries

In the next sections we will prove our theorems. To make all statements in the main text math-
ematically rigorous and to ensure that all notations in the main text are mutually compatible,
we need to provide a few additional definitions and some notation first.

Sample Spaces and σ-Algebras In all mathematical results and examples in the main
text, we tacitly make the following assumptions: all random elements mentioned in the main
text are defined on some measure space Ω = Ym ×Rm for some large but finite m, where Y,
R are finite-dimensional vector spaces. Whenever we speak about a distribution on Ω or Ym,
we implicitly take its associated σ-algebra to be the Borel σ-algebra for Ω or Ym, respectively.
For each θ ∈ Θ := Θ0 ∪ Θ1, Pθ is a distribution on Ym. Thus, unless R = {0}, Pθ does not
necessarily define a distribution on the full space Ω. We let Yi be the random vector defined
by Yi(ω) = yi when ω = (y1, . . . , ym, r1, . . . , rm) and similarly Ri(ω) = ri.

In Section 2 we group outcomes in ‘batches’ or ‘samples’, Z(1) = (Y1, . . . , Yn1), Z(2) =
(Yn1+1, . . . , Yn2) and so on, where n1 ≤ n2 ≤ nkmax ≤ m are fixed in advance; similarly for
V(1) = (R1, . . . , Rn1), V(2) = (Rn1+1, . . . , Rn2), . . .. In other sections, we focus on a single
batch Z = (Y1, . . . , Yn). We can make this compatible with the grouping in Section 2 by
setting Z = Z(1) and n = n1. Whenever we refer to a random variable such as Y without
giving an index, it stands for Y n = (Y1, . . . , Yn); similarly for all other time-indexed random
variables.
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In some applications though (all marked in the text) we set Z(j) = Yj , thus each outcome
is ‘its own group’. We could extend this setting, using measure theory, to settings in which
the n1, n2, . . . are themselves random stopping times, but for simplicity will not do so here.

We stated in the main text that we assume that the parameterization is 1-to-1. By this
we mean that for each θ, θ′ ∈ Θ with θ 6= θ′, the associated distributions are also different, so
that Pθ 6= Pθ′ . We also assume that Θ0 and Θ1 are themselves associated with appropriate
σ-algebras. In general, Θj need not be finite-dimensional, so we allow non-parametric settings.

Densities Throughout the text, we assume that the Yi are independent and that for each
θ ∈ Θ, all i, the marginal distribution Pθ(Yi) has a density relative to some underlying measure
λ1. That is, we for each j we can write pθ(Y j) = pθ(Y1, . . . , Yj) =

∏j
i=1 p

′
θ,i(Yi) as a product

density where p′θ,i is a density relative to λ1. In all our examples, λ1 is either a probability
mass function on Y or a density on Y relative to Lebesgue measure, but the theorems work
for general λ1. Recall that invariably Z stands for n outcomes, i.e. Z = (Y1, . . . , Yn) for some
n ≤ m with m defined as above. Thus, pθ(Z) =

∏n
i=1 p

′
θ,i(Yi) is a density relative to λ := λn,

defined as the n-fold product measure of λ1.
With the exception of the contingency table setting of Section 4.3 and the conditional

exponential family setting that we briefly mentioned in Section 4.4, we assume that the Yi
are not just independent but also identically distributed, hence p′θ,i = p′θ,1 for all i. To bring
the contingency table and general conditional exponential family setting into our realm, we
assume that there is an additional set X and a fixed vector (x1, . . . , xm), with each xi ∈ X .
Then p′θ,i(y) := pθ(y | x), where, for each θ ∈ Θ and each x ∈ X , pθ(· | x) is a density on
Y relative to the same underlying measure λ1, so that, for each θ, the density of distribution
Pθ for Z = (Y1, . . . , Yn) is given by pθ(Y1, . . . , Yn) := pθ(Y1, . . . Yn | x1, . . . , xn) :=

∏n
i=1 pθ(Yi |

xi). Since we regard x1, . . . , xn as fixed in advance, we can write, if so inclined, Pθ without
conditioning on x1, . . . , xn.

Notational Conventions When we mention a distribution P without further qualification,
we mean that it is the distribution of the random variable Z defined on Ω. When P is defined
on a different random variable U , we write P [U ] instead and (unless explicitly stated otherwise)
we denote its density by p[U ]. Similarly, when we mention a distribution Wj without further
qualification, we mean that it is a (“prior”) distribution on the parameter set Θj . In case
Θ = ∆×Γ, W = W [Θ] denotes a distribution on Θ, and distributions on ∆ and Γ are denoted
as W [δ] and W [γ] respectively.

A test statistic S is by definition a random variable that can itself be written as a function
of the data Z. If S can be written as a function of another random variable V (that is itself
determined by Z) we write it as S〈V 〉. Since an s-value is just a test statistic that satisfies some
additional constraints, each s-value can also be written as S〈Z〉, and the s-value appearing in
(21) is written as S〈V 〉 because it can be written as S = s(V ) for some function s. All these
definitions are extended to test statistics S(k); those can, by definition, be written as functions
of the k-th data sample Z(k).

Appendix B Proofs for Section 2

We will prove Proposition 3, which generalizes Proposition 2.
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Proof of Proposition 3 We will only show the result for S(Kstop), the result for S(k) with
fixed k being easier. All expectations below are under arbitrary Pθ with θ ∈ Θ0. For k =
1, . . . , kmax, we define S′(k)

:= s′(k)(Z(k), U
(k), B(k)) by s′(k)(Z(k), U

(k), B(k)) = s(k)(Z(k), U
(k))

if B(k) = continue and s′(k)(Z(k), U
(k), B(k)) = 1 if B(k) = stop. Since we assume that

S(k) is an s-value conditional on U (k), i.e. E[S(k) | U (k)] ≤ 1, and since B(k) = b(k)(U
(k)) is

determined by U (k), we must also have that

E[S′(k) | U
(k), B(k)] = E[s′(k)(Z(k), U

(k), B(k)) | U (k), B(k)] ≤ 1, (29)

i.e. S′(k) is an s-value conditional on (U (k), B(k)).
We thus have, under Assumption A, letting k̄ = kmax,

E
[
S(Kstop)

]
= EZ(k̄)

[
EU(k̄)|Z(k̄)

[
EB(k̄)|Z(k̄),U(k̄)

[
S(Kstop)

] ] ]
= EZ(k̄)

[
EU(1)|Z(k̄)EU(2)|U(1),Z

(k̄) . . .EU(k̄)|U(k̄−1),Z(k̄)

[
EB(1)|Z(k̄),U(k̄)EB(2)|Z(k̄),U(k̄),B(1)

. . .EB(k̄)|Z(k̄),U(k̄),B(k̄−1)

[
S(Kstop)

] ]]
= EZ(1)

. . .EZ(k̄)

[
EU(1)

EU(2)|U(1),Z(1)
. . .EU(k̄)|U(k̄−1),Z(k̄−1)

[
EB(1)

EB(2)|Z(1),U(1),B(1)
. . .EB(k̄)|Z(k̄−1),U(k̄−1),B(k̄−1)

[
S(Kstop)

] ]]
= EU(1)

EB(1)
EZ(1)

[
EU(2)|U(1),Z(1)

EB(2)|Z(1),U(1),B(1)
EZ(2)

[
. . .

. . .EU(k̄)|U(k̄−1),Z(k̄−1)EB(k̄)|Z(k̄−1),U(k̄−1),B(k̄−1)EZ(k̄)

 (k̄)∏
k=1

s′(k)(Z(k), U
(k), B(k))

 . . .]


= EU(1)
EB(1)

[
EZ(1)

[
s′(1)(Z(1))

]
·EU(2)|U(1),Z(1)

EB(2)|Z(1),U(1),B(1)

[
EZ(2)

[
s′2(Z(2), U

2, B(2))
]
· . . .

EU(k̄)|U(k̄−1),Z(k̄−1)EB(k̄)|Z(k̄−1),U(k̄−1),B(k̄−1)

[
EZ(k̄)

[
s′(k̄)(Z(k̄), U

(k̄), B(k̄))
]]
. . .
]]

≤ EU(1)
EB(1)

[
EZ(1)

[1] ·EU(2)|U(1),Z(1)
EB(2)|Z(1),U(1),B(1)

[
EZ(2)

[1] · . . .

EU(k̄)|U(k̄−1),Z(k̄−1)EB(k̄)|Z(k̄−1),U(k̄−1),B(k̄−1)

[
EZ(k̄)

[1]
]
. . .
]]

= 1.

where we rearranged expectations using our conditional independence assumptions and Ton-
nelli’s theorem. We then used that, by definition of S′, we must have S(Kstop) =

∏kmax
k=1 S′(k)

with S′(k) = s′(k)(Z(k), U
(k), B(k)), and, finally, we used (29), i.e. that for each fixed k, S′(k) is

an S-value conditional on U (k), B(k).

Appendix C Elaborations and Proofs for Section 3

Meaning of “S∗ as defined by achieving (11) is essentially unique” Consider Θ′1 ⊂ Θ1

and Θ0, as in the main text in Section 3. Suppose that there exists an s-value S∗ achieving
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the infimum in (11). We say that S∗ is essentially unique if for any other s-value S◦ achieving
the infimum in (11), we have Pθ(S∗ = S◦) = 1, for all θ ∈ Θ′1 ∪ Θ0. Thus, if the GROW
s-value exists and is essentially unique, any two GROW s-values will take on the same value
with probability 1 under all hypotheses considered, and then we can simply take one of these
GROW s-values and consider it the ‘unique’ one.

C.1 Proof of Theorem 1

For Part 1 of the result, we first need the following lemma. We call a measure Q on Ym
a sub-probability distribution if 0 < Q(Ym) ≤ 1. Note that the KL divergence D(P‖Q)
remains well-defined even if the measure Q is not a probability measure (e.g. Q could be
a sub-probability distribution or might not be integrable), as long as P and Q both have a
density relative to a common underlying measure (the definition of KL divergence does require
the first argument P to be a probability measure though).

Lemma 1. Let {QW : W ∈ W0} be a set of probability measures where each QW has a density
qw relative to some fixed underlying measure λ. Let Q be any convex subset of these pdfs.
Fix any pdf p (defined relative to measure λ) with corresponding probability measure P so that
infQ∈QD(P‖Q) <∞ and so that all Q ∈ Q are absolutely continuous relative to P . Then:

1. There exists a unique sub-distribution Q◦ with density q◦ such that

D(P‖Q◦) = inf
Q∈Q

D(P‖Q), (30)

i.e. Q◦ is the Reverse Information Projection of P on Q.

2. For q◦ as above, for all Q ∈ Q, we have

EZ∼Q

[
p(Z)

q◦(Z)

]
≤ 1. (31)

We note that we may have Q◦ 6∈ Q.

3. Let Q0 be a probability measure in Q with density q0. Then: the infimum in (30) is
achieved by Q0 in Q ⇔ Q◦ = Q0 ⇔ (31) holds for q◦ = q0.

Proof. The existence and uniqueness of a measure Q◦ (not necessarily a probability measure)
with density q◦ that satisfies D(P‖Q◦) = infQ∈QD(P‖Q), and furthermore has the property

for all q that are densities of some Q ∈ Q: EZ∼P

[
q(Z)

q◦(Z)

]
≤ 1. (32)

follows directly from (Li, 1999, Theorem 4.3). But by writing out the integral in the expecta-
tion explicitly we immediately see that we can rewrite (32) as:

for all Q ∈ Q: EZ∼Q

[
p(Z)

q◦(Z)

]
≤ 1.

Li’s Theorem 4.3 still allows for the possibility that
∫
q◦(z)dλ(z) > 1. To see that in fact this

is impossible, i.e. q◦ defines a (sub-) probability density, use Lemma 4.5 of Li (1999). This
shows Part 1 and 2 of the lemma. The third part of the result follows directly from Lemma
4.1 of Li (1999)). (additional proofs of (extensions of) Li’s results can be found in the refereed
paper Grünwald and Mehta (2019)).
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We shall now prove Theorem 1 itself. Throughout the proof, λ stands for the n-fold
product measure as defined in the introduction of this appendix, so that all distributions PW
with W ∈ W ′1 ∪W(Θ0) have a density pW relative to λ, and whenever we speak of a ‘density’
we mean ‘a density relative to λ’.

Proof of Theorem 1, Part 1 Let W0 := W(Θ0) and let Q = {PW : W ∈ W(Θ0)} and
P := PW1 . We see that Q is convex so we can apply Part 1 and 2 of the lemma above to P
and Q and we find that S∗W1

:= pw1(Z)/q◦(Z) is an S-value, and that it satisfies

EPW1
[logS∗W1

] = EPW1

[
log

pW1(Z)

q◦(Z)

]
= D(PW1‖Q◦) = inf

W0∈W(Θ0)
D(PW1‖PW0),

where the second equality is immediate and the third is from (30). It only remains to show
that (a)

sup
S∈S(Θ0)

EZ∼PW1
[logS] ≤ EPW1

[logS∗W1
]

and (b) that S∗W1
is essentially unique. To show (a), fix any S-value S = s(Z) in S(Θ0). Now

further fix ε > 0 and fix a W(ε) ∈ W(Θ0) with D(PW1‖PW(ε)
) ≤ infW0∈W(Θ0)D(PW1‖PW0) +

ε. We must have, with q(z) := s(z)pW(ε)
(z), that

∫
q(z)dλ = EZ∼PW(ε)

[S] ≤ 1, so q is a
sub-probability density, and by the information inequality of information theory (Cover and
Thomas, 1991), it follows:

EPW1
[logS] = EPW1

[
log

q(Z)

pW(ε)
(Z)

]
≤

EPW1

[
log

pW1(Z)

pW(ε)
(Z)

]
= D(PW1‖PW(ε)

) ≤ inf
W0∈W(Θ0)

D(PW1‖PW0) + ε.

Since we can take ε to be arbitrarily close to 0, it follows that

EPW1
[logS] ≤ inf

W0∈W(Θ0)
D(PW1‖PW0) = EPW1

[logS∗W1
],

where the latter equality was shown earlier. This shows (a).
To show essential uniqueness, let S be any s-value with EPW1

[logS] = EPW1
[logS∗W1

]. By
linearity of expectation, S′ = (1/2)S∗W1

+ (1/2)S is then also an s-value, and by Jensen’s in-
equality applied to the logarithm we must have EPW1

[logS′] > EPW1
[logS∗W1

] unless PW1(S =
S∗W1

) = 1. Since we have already shown that for any s-value S′, EPW1
[logS′] ≤ EPW1

[logS∗W1
],

it follows that PW1(S 6= S∗W1
) = 0. But then, by our assumption of absolute continuity, we

also have Pθ0(S 6= S∗W1
) = 0 so S∗W1

is essentially unique.

Proof of Theorem 1, Part 2 The general result of Part 2 (without the differentiability
condition imposed in the proof in the main text) is now a direct extension of Part 1 which
we just proved above: by Part 3 of the lemma above, we must have that Q◦ = PW ∗0 and
everything follows.
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Proof of Theorem 1, Part 3 Let W ∗0 and W ∗1 be as in the statement of the theorem.
Let P be a probability measure that is absolutely continuous with respect to P ∗W0

. Such P
must have a density p and the logarithmic score of p relative to measure PW ∗0 is defined,
in the standard manner, as L(z, p) := − log p(z)/pW ∗0 (z), which is P -almost surely finite, so
that, following standard conventions for expectations of random variables that are unbounded
both from above and from below (see Grünwald and Dawid (2004), Section 3.1), HW ∗0

(P ) :=
EZ∼P [L(Z, p)] = −D(P‖PW ∗0 ), the standard definition of entropy relative to PW ∗0 , is well-
defined and well-defined and nonpositive.

We will apply the minimax Theorem 6.3 of (Grünwald and Dawid, 2004) with L as defined
above. For this, we need to verify Conditions 6.2–6.4 of that paper, where Γ in Condition 6.3
and 6.4 is set to be our W ′1, and the set Q mentioned in Condition 6.2 must be a superset
of Γ. We will take Q to be the set of all probability distributions absolutely continuous
relative to PW ∗0 ; note that each Q ∈ Q then has a density q; we let Qdens be the set of all
densities corresponding to Q. By our requirement that D(PW1‖PW ∗0 ) < ∞ for all W1 ∈ W ′1,
we then have that W ′1 = Γ ⊂ Q as required. By our definition of Q, Condition 6.2 then
follows from Proposition A.1. from the same paper (Grünwald and Dawid, 2004) (with µ in
the role of PW ∗0 ), and it remains to verify Condition 6.3 and 6.4, which, taken together, in
our notation together amount to the requirements (a) W ′1 is convex, (b1) for every W1 ∈ W ′1,
PW1 has a Bayes act relative to L and (b2) HW ∗0

(PW1) > −∞, and (c) there exists W ∗1 with
HW ∗0

(PW ∗1 ) = supW1∈W ′1 HW ∗0
(PW1) <∞. Now, (a) holds by definition; (b1) holds because L is

a proper scoring rule so the density p of any P is an L-Bayes act for P (see Grünwald and Dawid
(2004) for details); (b2) holds by our assumption that −HW ∗0

(PW1) = D(PW1‖PW ∗0 ) <∞ and
(c) holds because for all W1 ∈ W ′1, HW ∗0

(PW1) = −D(PW1‖PW ∗0 ) ≤ 0.
Theorem 6.3 of Grünwald and Dawid (2004) together with Lemma 4.1 of that same paper

then gives

HW ∗0
(PW ∗1 ) = sup

W∈W ′1
EZ∼PW

[
− log

pW (Z)

pW ∗0 (Z)

]
= sup

W∈W ′1
inf

q∈Qdens
EZ∼PW

[
− log

q(Z)

pW ∗0 (Z)

]
= inf

q∈Qdens
sup
W∈W ′1

EZ∼PW

[
− log

q(Z)

pW ∗0 (Z)

]
= sup

W∈W ′1
EZ∼PW

[
− log

pW ∗1 (Z)

pW ∗0 (Z)

]
, (33)

where, to be more precise, the first equality is immediate from the fact that −HW ∗0
(PW ∗1 ) =

D(PW ∗1 ‖PW ∗0 ) = infW1∈W ′1 D(PW1‖PW ∗0 ); the second follows because the W ∗0 -logarithmic score
is a proper scoring rule, the third is Theorem 6.3 of Grünwald and Dawid (2004); this Theorem
also gives that the infimum must be achieved by someW ′1 ∈ W ′1, and Lemma 4.1 of that paper
then gives that it must be equal to W ∗1 , which gives the fourth equality.

But (33) gives, with S∗ =
pW∗1

(Z)

pW∗0
(Z) , that

D(PW ∗1 ‖PW ∗0 ) = inf
W∈W ′1

EZ∼PW [logS∗] = sup
q∈Qdens

inf
W∈W ′1

EZ∼PW

[
log

q(Z)

pW ∗0 (Z)

]
=

sup
S∈S({W ∗0 })

inf
W∈W ′1

EZ∼PW [logS], (34)

where the first equality follows because the first and last terms in (33) must be equal, using
again that HW ∗0

= −D(·‖PW ∗0 ), the second equality follows from the final equality in (33),
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and the third equality follows by noting, first, that without loss of generality we can restrict
the supremum over S ∈ S({W ∗0 } with EPW∗0

[S] = 1; and second, that for every such s-
value S = s(Z) relative to {W ∗0 } we can define q(Z) := s(Z)pW ∗0 (z) and then

∫
q(z)dλ(z) =

EZ∼PW∗0
[S] = 11, so there is a probability density q ∈ Qdens such that S = q/pW ∗0 ; conversely,

for every q ∈ Sdens, S := q/pW ∗0 is an s-value in S({W ∗0 }).
If we could replace S({W ∗0 }) in (34) by S(Θ0), then (14) would follow and we would be

done. But we can achieve this by noting that

sup
S∈S({W ∗0 })

inf
W∈W ′1

EZ∼PW [logS] ≥ sup
S∈S(W(Θ0))

inf
W∈W ′1

EZ∼PW [logS] =

sup
S∈S(Θ0)

inf
W∈W ′1

EZ∼PW [logS] ≥ inf
W∈W ′1

EZ∼PW [logS∗] = D(PW ∗1 ‖PW ∗0 ), (35)

where the first inequality follows because, as is immediate from the definition of s-value, the
set of s-values relative to any set W ′ ⊂ W must be a superset of the set of s-values relative
to W. The equality follows by linearity of expectation and the definition of s-value. The
second inequality follows because S∗ ∈ S(Θ0), as is implied by Theorem 1, Part 2, applied
with W1 := W ∗1 , and the final equality is the first equality of (34) again. Together (35) and
(34) imply the required result (14).

Appendix D Proofs for Section 4.1

(18) is a consequence of the following proposition:

Proposition Let Θ0 = {0}, let Θ(δ) be defined as in (16) and let bd(Θ(δ)) be the boundary
bd(Θ(δ)) = {θ ∈ Θ1 : d(θ‖Θ0) = δ}. Suppose that minW∈W(bd(Θ(δ)))D(PW ‖P0) is achieved
by someW ∗1 (note that this will automatically be the case if bd(Θ(δ)) is a finite set). We then
have for all θ ∈ bd(Θ(δ)),

EZ∼Pθ

[
log

pW ∗1 (Z)

p0(Z)

]
≥ EZ∼PW∗1

[
log

pW ∗1 (Z)

p0(Z)

]
= D(PW ∗1 ‖P0). (36)

Now, suppose further that

inf
θ∈Θ(δ)

EZ∼Pθ

[
log

pW ∗1 (Z)

p0(Z)

]
= inf

θ∈bd(Θ(δ))
EZ∼Pθ

[
log

pW ∗1 (Z)

p0(Z)

]
. (37)

Then for all W1 ∈ W(Θ(δ)), we also have D(PW1‖P0) ≥ D(PW ∗1 ‖P0).

Proof. (36) is immediate from Theorem 1, Part 3, which gives that PW ∗1 is the information
projection on the set W ′1 = W(bd(Θ(δ))). Now, fix any W1 ∈ W(Θ(δ)) and consider the
function f(α) = D((1−α)PW ∗1 +αPW1‖P0) on α ∈ [0, 1]. Straightforward differentiation gives
the following: the second derivative of f is nonnegative, so f is convex on [0, 1]. The first
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derivative of f(α) at α = 0 is given by

EZ∼PW1

[
log

pW ∗1 (Z)

p0(Z)

]
−EZ∼PW∗1

[
log

pW ∗1 (Z)

p0(Z)

]
≥

EZ∼PW1

[
log

pW ∗1 (Z)

p0(Z)

]
− inf
θ∈bd(Θ(δ))

EZ∼Pθ

[
log

pW ∗1 (Z)

p0(Z)

]
, (38)

where the first expression is just differentiation and the inequality follows from (36). so if we
can show that, no matter how W1 was chosen, the right-hand side of (38) is nonnegative, we
must have f(1) ≥ f(0) and the desired result follows. But nonnegativity of (38) follows by
the premise (37) and linearity of expectation.

We need to prove (18) from the main text. (18) immediately follows from the proposition
above if we can prove that (37) holds for δ = δ, with the 1-dimensional Θ(δ) = Θ(δ) under
consideration. But this is straightforward: in this case bd(Θ(δ)) is a singleton, so W ∗1 is
the degenerate distribution putting all mass on δ, and the right-hand side of (37) is just
D(Pδ‖P0) whereas the θ on the left-hand side must satisfy θ ≥ δ. Without loss of generality,
we may assume that {Pθ : θ ∈ Θ} is given in the canonical parameterization, so that pθ(z) =
exp(θφ(z))p0(z)Z−1(θ), for some function φ. We can then write

EZ∼Pθ

[
log

pW ∗1 (Z)

p0(Z)

]
= δ ·EZ∼Pθ [φ(Z)]− logZ(δ).

Since for general exponential families, EZ∼Pθ [φ(Z)] is an increasing function in θ, (37) and
thus also (18) follows.

Relating S◦Θ(δ) and S∗Θ(δ) in the two-sided case We have, on all samples, logS◦Θ(δ) ≥
max{log(1/2)S∗δ , log(1/2)S∗−δ}, so that

inf
θ:|θ|≥δ

EZ∼Pθ [logS◦Θ(δ)] ≥ inf
θ:|θ|≥δ

max{EZ∼Pθ [log
1

2
S∗δ ],EZ∼Pθ [log

1

2
S∗−δ]} ≥

max{ inf
θ:|θ|≥δ

EZ∼Pθ [log
1

2
S∗δ ], inf

θ:|θ|≥δ
EZ∼Pθ [log

1

2
S∗−δ]} ≥

max{ inf
θ:θ≥δ

EZ∼Pθ [log
1

2
S∗δ ], inf

θ:θ≤−δ
EZ∼Pθ [log

1

2
S∗−δ]} =

max{EZ∼Pδ [log
1

2
S∗δ ],EZ∼P−δ [log

1

2
S∗−δ]}, (39)

where the final equality is just condition (37) of the proposition above again for the one-sided
case, which above we already showed to hold for 1-dimensional exponential families. On the
other hand, letting Wδ be the prior that puts mass 1/2 on δ and 1/2 on −δ, we have:

inf
θ:|θ|≥δ

EZ∼Pθ [logS∗Θ(δ)] ≤ Eθ∼Wδ
EZ∼Pθ [logS∗Θ(δ)] ≤

Eθ∼Wδ
EZ∼Pθ

[
log

PWδ
(Z)

P0(Z)

]
= Eθ∼Wδ

EZ∼Pθ

[
logS◦Θ(δ)

]
=

1

2
Eδ[log

1

2
S∗δ ] +

1

2
E−δ[log

1

2
S∗−δ] + εn ≤

max{EZ∼Pδ [log
1

2
S∗δ ],EZ∼P−δ [log

1

2
S∗−δ] + εn, (40)
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where the first inequality is linearity of expectation and the second inequality follows because,
since S∗Θ(δ) is an s-value relative to {P0}, we can set q := S∗Θ(δ) · p0; then

∫
q(Z)dλ ≤ 1 and

S∗Θ(δ) = q(Z)/p0(Z), and the inequality follows by the information inequality of information
theory. εn above is defined as:

εn =
1

2
·
(
Eδ[logS◦Θ(δ) − log

1

2
S∗δ ] + E−δ[logS◦Θ(δ) − log

1

2
S∗−δ]

)
= log 2 +

1

2
·
(
Eδ[logS◦Θ(δ)/S

∗
δ ] + E−δ[logS◦Θ(δ)/S

∗
−δ]
)

= log 2− 1

2

(
D(Pδ(Y

n)‖PWδ
(Y n)) +D(P−δ(Y

n)‖PWδ
(Y n))

)
.

Together, (39) and (40) show that S◦Θ(δ) is an s-value whose worst-case growth rate is always
within εn ≤ log 2 (‘1 bit’) of that of the minimax optimal S∗Θ(δ); moreover, for fixed δ, εn
quickly converges to 0, since, for θ ∈ {δ,−δ}, if Yn ∼ Pθ, then with high probability, P−θ/Pθ
will be exponentially small in n, so that D(Pθ(Y

n)‖PWδ
(Y n)) ≈ − log(1/2) = log 2.

Appendix E Proofs and Details for Section 4.2

We first walk through the claims made in Section 4.2. The first claim is that under all P0,σ

with σ > 0, V has the same distribution, say P0, and under all PW [δ],σ with σ > 0, V has the
same distribution, say PW [δ](V ). To show this, it is sufficient to prove that for all σ, all δ ∈ R,
under all Pδ,σ, the distribution of V only depends on δ but not on σ. But this follows easily:
for i ∈ 1..n, we define Y ′i = Yi/σ. Then Y ′i is ∼ N(δ, 1). But we can write V as a function of
(Y ′1 , . . . , Y

′
n), hence the distribution of V does not depend on σ either (note that at this stage,

symmetry of the prior is not yet required).
To show (22), we first need to show how to re-express the Bayes factor in terms of densities

on V and Y1. For every prior W [δ], the corresponding Bayes marginal distribution PW [δ],σ,
given by (20), viewed as a distribution on (V, Y1), has density p′W [δ],σ

:= pW [δ],σ[V, Y1] on
Rn × R+ that factorizes as

p′W [δ],σ(V ) · p′W [δ],σ(Y1 | V1) = p′W [δ](V ) · p′W [δ],σ(Y1 | V1),

the second equation following because, as we already showed, the density of V does not depend
on σ under either H1 or H0, so that we can write p′W [δ](V ) = p′W [δ],σ(V ) for all σ > 0. Now,
under every distribution in H1 ∪H0, V1 ∈ {−1, 1} a.s. Thus, iff, as we assume, the prior W [δ]
is symmetric around 0, then V1 has a Bernoulli(1/2)-distribution under all P ∈ H0 ∪ H1 and
we also have

p′W [δ],σ(Y1 | V1) = 2p′W [δ],σ(Y1) and p′0,σ(Y1 | V1) = 2p′0,σ(Y1). (41)

We can thus rewrite the Bayes factor with the right Haar prior, (22), as∫
σ pW [δ],σ(Y )wH(σ)dσ∫
σ p0,σ(Y )wH(σ)dσ

=

∫
σ p
′
W [δ],σ(V ) · p′W [δ],σ(Y1)wH(σ)dσ∫
σ p
′
0,σ(V ) · p′0,σ(Y1)wH(σ)dσ

=
p′W [δ](V ) ·

∫
σ pW [δ],σ(Y1)wH(σ)dσ

p′0(V ) ·
∫
σ p
′
0,σ(Y1)wH(σ)dσ

=
p′W [δ](V )

p′0(V )
· g(V1) (42)
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where g is some function of V1. This final equation follows from Theorem 2.1. of Berger
et al. (1998) (this is best seen from its statement in the notation used by (Hendriksen et al.,
2018, Section 4.2)). Since V1 can only take on two values, −1 and 1, it suffices to show that
g(1) = g(−1). But this must be the case, since the ratio of integrals over σ has the same value
for any value of Y1 and −Y1, by our assumption that W [δ] is a prior that is symmetric around
0; (22) is thus proved.

Proof of Theorem 3 We actually prove a more general statement: let W1 be a set of
probability distributions on δ × σ such that (a) for all W ∈ W1, the marginal of W on
δ coincides with the given W [δ] and (b) for all distributions W [σ] ∈ W(Γ) (the set of all
probability distributions on σ ∈ Γ = R+), W1 contains a distribution W whose marginal on
σ coincides with W [σ] and under which σ and δ are independent. Clearly in general we have
W1 ⊆ W ′1 where W ′1 is defined as in Theorem 3 in the main text, and we can also choose W1

to be equal to W ′1. We now show:

Theorem 3, Strengthened Theorem 3 holds not just with W ′1 but with any W1 of the form
just given.

To prove this, fix W [δ] as in the theorem statement, and any corresponding W1 as above.
We need to show (a),

sup
S∈S(Θ0)

inf
W∈W1

EPW [logS] = inf
W∈W1

EPW [logS∗W [δ]〈V 〉] = inf
W∈W1

inf
W [σ]∈W(Γ)

D(PW ‖P0,W [σ]),

(43)

and (b), that the expression in (43) is <∞. We first turn to (a). Clearly the first expression
on the left is no smaller than the second:

sup
S∈S(Θ0)

inf
W∈W1

EPW [logS] ≥ inf
W∈W1

EPW [logS∗W [δ]〈V 〉]

Thus, if we can also show that the second is no smaller than the third,

inf
W∈W1

EPW [logS∗W [δ]〈V 〉] ≥ inf
W∈W1

inf
W [σ]∈W(Γ)

D(PW ‖P0,W [σ]) (44)

and that the third is no smaller than the first,

inf
W1∈W1

inf
W [σ]∈W(Γ)

D(PW1‖P0,W [σ]) ≥ sup
S∈S(Θ0)

inf
W∈W1

EPW [logS], (45)

then we’re done. We first show the latter equation. By Theorem 1, Part 1, we have for each
fixed W1 ∈ W1 that

inf
W [σ]∈W(Γ)

D(PW1‖P0,W [σ]) = sup
S∈S(Θ0)

EPW1
[logS]

and this directly implies (45) by a standard “inf sup ≥ sup inf” argument (the trivial side of
the minimax theorem).
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It thus remains to show (44). Since S∗W [δ]〈V 〉 can be written as a function of V , and, as
we already showed (see main text above (21) and proof in beginning of Appendix E above),
the distribution of V under Pδ,σ does not depend on σ and hence is completely specified by
W [δ], we have for any W ∈ W1 that EPW [logS∗W [δ]〈V 〉] = EPW [δ]

[logS∗W [δ]〈V 〉] and hence we
are done if we can show the following: there exist a set of priors {W (t)[σ] : t > 0} on σ ∈ Γ
such that, for some function u : R+ → R+,

EPW [δ]
[logS∗W [δ]〈V 〉] ≥ lim inf

t↓0
D(PW [δ],W (t)[σ]‖P0,W (u(t))[σ]), (46)

where PW [δ],W (t)[σ] is the marginal over the product prior on δ × σ with marginals W [δ] and
W (t)[σ] which is contained in W1, and W (t)[σ] ∈ W(Γ).

We proceed to show that a family {W (t)[σ] : t > 0} satisfying (46) exists. First, let
wH(σ) = 1/σ be the density of the right Haar prior. For each t > 0, let vt : R+

0 be such that
for all σ > 0, vt(σ) ≤ wH(σ) is an integrable function (to be specified explicitly further below)
such that wt(σ) = vt(σ)∫∞

0 vt(σ)dσ
is a probability density. We define W (t)[σ] to be the distribution

with density wt. Let p̄
(t)
0 be the marginal density for the data based on marginalizing p0,σ over

vt on σ (which in general does not integrate to 1, so p̄(t)
0 may not be a probability density).

Let q̄(t)
0 = pW (t)[σ] be the Bayes marginal probability density based on the prior density wt

(with Q̄(t)
0 the corresponding distribution) and let p̄H0 be the marginal you get with wt replaced

by the right Haar measure wH(σ) = 1/σ. Let p̄(t)
1 and let q̄(t)

1 and p̄H1 be the corresponding
marginal densities based on marginalizing over the product measure on δ × σ with marginals
W [δ] and, respectively, densities vt, wt and wH . Summarizing:

p̄
(t)
0 (y) =

∫
p0,σ(y)vt(σ)dσ

p̄
(t)
1 (y) =

∫
pδ,σ(y)vt(σ)ddW [δ]dσ

q̄
(t)
0 (y) =

∫
p0,σ(y)wt(σ)dσ

q̄
(t)
1 (y) =

∫
pδ,σ(y)wt(σ)ddW [δ]dσ

p̄H0 (y) =

∫
p0,σ(y)wH(σ)dσ

p̄H1 (y) =

∫
pδ,σ(y)wH(σ)ddW [δ]dσ.

The idea is that, as t ↓ 0, the Q̄(t)
j become successively better approximations of the PHj .
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For any function u(t) : R+ → R+, we have, for all t > 0:

EV∼PW [δ]
[logS∗W [δ]〈V 〉] = E

Y∼Q̄(t)
1

[log p̄H1 (Y )/p̄H0 (Y )]

≥ E
Y∼Q̄(t)

1

[log p̄
(t)
1 (Y )/p̄H0 (Y )]

= E
Y∼Q̄(t)

1

[log p̄
(t)
1 (Y )/p̄

(u(t))
0 (Y )] + log p̄

(u(t))
0 (Y )/p̄H0 (Y )]

= D(Q̄
(t)
1 ‖Q̄

(u(t))
0 ) + E

Y∼Q̄(t)
1

[log p̄
(u(t))
0 (Y )/p̄H0 (Y )]

≥ lim inf
t↓0
{D(PW [δ],W (t)[σ]‖P0,W (u(t))[σ]) + E

Y∼Q̄(t)
1

[log p̄
(u(t))
0 (Y )/p̄H0 (Y )]},

where we note that, under our assumptions, the first expectation on the left is well-defined,
nonnegative and bounded by Lemma 2, part 1.

Here the first equation above is just the property of the right-Haar prior expressed by (21)
in the main text, proven in the beginning of Appendix E; the property holds as long as the
prior W [δ] on δ is symmetric around 0, as we require. The second is by definition of p̄(t)

1 , the
final equation is evident and the fourth follows because, as we will show below, the right-most
expression E

Y∼Q̄(t)
1

[log p̄
(u(t))
0 (Y )/p̄H0 (Y )] is finite; hence the sum in the fourth line is finite as

well, and the fourth and third line must be equal.
To show (46), it is thus sufficient to show that we can choose the function u(t) and the

densities {v(t) : t > 0} satisfying the requirements above so that we have

lim inf
t↓0

E
Y∼Q̄(t)

1

[log p̄
(u(t))
0 (Y )/p̄H0 (Y )] ≥ 0,

which is equivalent to:

lim inf
t↓0

Eσ∼W (t)[σ],δ∼W [δ]EY∼Pδ,σ [log p̄
(u(t))
0 (Y )/p̄H0 (Y )] ≥ 0, (47)

But Lemma 2 in the next section shows that we can indeed choose the vt and u(t) such that
(47)) holds. We also need to show that the left-hand side of (46 is bounded, which is also
implied by Lemma 2; the theorem is proved.

Proof of Theorem 4 Let W1 be the set of all product priors on δ× σ so that the marginal
on δ is contained in W1[δ] as defined in the statement of the theorem and the marginal on
σ is contained in W[Γ], the set of all priors on σ. Clearly we can reformulate Theorem 4 as
follows:

Theorem 4, rephrased Theorem 3 (the strengthened version stated and proved above) still
holds with W1 as defined above.

We will now prove this rephrased statement. We see that all steps in the proof of Theo-
rem 3 continue to hold with the new definition of W1, as long as we can prove the following
analogue of (44):

inf
W∈W1

EPW [logS∗Wδ
〈V 〉] ≥ inf

W∈W1

inf
W [σ]∈W(Γ)

D(PW ‖P0,W [σ]). (48)
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Since the product prior on (δ, σ) with marginal Wδ on δ and any prior W [σ] on σ is in W1,
we have

inf
W [σ]∈W(Θ0)

D(PWδ,W [σ]‖P0,W [σ]) ≥ inf
W∈W1

inf
W[σ]∈W(Γ)

D(PW ‖P0,W[σ]
),

and hence, to prove (48) it is sufficient if we can prove that the following strengthening of (46)
holds:

inf
W∈W1

EPW [logS∗Wδ
〈V 〉] ≥ lim inf

t↓0
D(PWδ,W (t)[σ]‖P0,W (u(t))[σ]).

Since (46) itself still holds with the prior W [δ] set to Wδ, using the same arguments as in the
proof of Theorem 3, it is sufficient if we can show that

inf
W [δ]∈W1[δ]

EPW [δ]
[logS∗Wδ

〈V 〉] = EPWδ [logS∗Wδ
〈V 〉]. (49)

Now, let W◦1 [δ] = {W ◦ : W ∈ W1[δ]} be the ‘symmetrized’ version of W1[δ]: for given prior
W on δ, W ◦ is defined as (1/2)W + (1/2)W−, where W− is the mirror prior of W . That is,
letting F be the cdf of δ under prior W , F is also the cdf of −δ under prior W−. We have
that Wδ ∈ W◦1 [δ] and, by symmetry and linearity of expectation,

inf
W [δ]∈W1[δ]

EPW [δ]
[logS∗Wδ

〈V 〉] = inf
W [δ]:W [δ]−1∈W1

EPW [δ]
[logS∗Wδ

〈V 〉] = inf
W [δ]∈W◦1 [δ]

EPW [δ]
[logS∗Wδ

〈V 〉],

so it suffices to show (49) with W1 replaced by W◦1 . Let Wδ be the prior that puts mass 1/2
on δ and 1/2 on −δ. By linearity of expectation, it thus suffices to show that

inf
δ≥δ

EPWδ [logS∗Wδ
〈V 〉] = EPWδ [logS∗Wδ

〈V 〉],

which will hold iff EPWδ [logS∗Wδ
〈V 〉] is increasing in δ ≥ δ. But showing the latter is straight-

forward.

Appendix F Approximation Lemma for Right Haar Measure
on σ

Whereas all aspects of the proofs of Theorem 3 and Theorem 4 appear to generalize to arbitrary
group invariant settings with right Haar measures, the proof of the following lemma is highly
specific to the case where the nuisance parameter of interest is the variance σ2; thus, if one
wants to generalize the results to arbitrary group invariant nuisance parameters, it is the
following lemma that needs to be generalized (that’s why we organized it into a separate
section).

Lemma 2. Let W [δ], W (t)[σ] with density wt, Q̄0,t, Q̄1,t, etc. be defined as in and satisfy
the requirements of Theorem 3. Suppose that Eδ∼W [δ][log(1 + |δ|)] < ∞ and that n > 1. We
have, (a), that E

Y∼Q̄(t)
1

[log p̄H1 (Y )/p̄H0 (Y )] < ∞. Furthermore, (b), if we set vt := vt,t where
for t, a > 0:

vt,a(σ) =
1

σ1+a
exp(−t/(2σ2))

and we set u(t) = t2, then (47) holds, i.e. we have:

lim inf
t↓0

Eσ∼W (t)[σ],δ∼W [δ]EY∼Pδ,σ [log p̄
(t2)
0 (Y )/p̄H0 (Y )] ≥ 0. (50)
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Proof of Lemma 2 To show (a), note that it is equal to the left-hand side of (51), and as
established earlier (see (21)), we have, for all distributions W [σ] on σ,

EV∼PW [δ]
[logS∗W [δ]〈V 〉] = Eσ∼W [σ]Eδ∼W [δ]EY∼Pδ,σ [log p̄H1 (Y )/p̄H0 (Y )] (51)

We recognize the term on the left as the KL divergence between two marginal distributions
on V , PW [δ][V ] and P0[V ], hence it is well-defined and ≥ 0; we need to show that it is < ∞.
The right-hand side takes on the same value no matter the definition of W [σ], hence without
loss of generality we can take σ = 1, and the right-hand side then becomes

Eδ∼W [δ]EY∼N(δ,1)[− log p̄H0 (Y ) + log p̄H0 (Y )] =

Eδ∼W [δ]EY∼N(δ,1)[− log p̄H0 (Y )] + Eδ∼W [δ]EY∼N(δ,1)[log p̄H1 (Y )] (52)

provided that the expectations on the right-hand side are both well-defined and not equal to
−∞,∞ or∞,−∞. We show below that the first expectation on the right is finite, so that the
splitting of expectations in (52) is justified.

The Haar integral p̄H0 on the right can be evaluated, which gives

EY∼N(δ,1)[− log p̄H0 (Y )] = f(n) + EY∼N(δ,1)

[n
2

logU2
]

≤ f(n) + logEY∼N(δ,1)

[n
2
U2
]

= f(n) +
n

2
log
(
(k(1 + δ2))2 + 2k(1 + 2δ2)

)
, (53)

where f(n) is a fixed function from N to R and U2 =
∑n

i=1 Y
2
i . Here the first inequality is

Jensen’s and the second follows because U2 has a noncentral χ2 distribution with parameters
k and kδ2. Under our condition that log(1 + |δ|) has finite expectation under W [δ], the
expectation of (53) underW [δ] is bounded, hence the first term on the right in (52) is bounded
from above; since the left-hand side of (52) is ≥ 0, it follows that the whole expression is
bounded above as well.

For the second part of the result, part (b), note first that p̄(t2)
0 (Y ) and p̄H0 (Y ) can both be

written as functions of U2 =
∑n

i=1 Y
2
i . From now on we denote by p̄(t2)

0 and p̄H0 the respective
densities for U2 rather than Y . By definition of the distributions Pδ,σ, the inner expectation
in (50) can be rewritten as

EU2∼Pδ,σ [log p̄
(t2)
0 (U2)/p̄H0 (U2)] = EU2∼Pδ,1 [log p̄

(t2)
0 (σ2U2)/p̄H0 (σU2)]

and we see that (50) is equivalent to (note the sign change)

lim sup
t↓0

h(t) ≤ 0

where h(t) = Eδ∼W [δ]EU2∼Pδ,1

[
Eσ∼W(t)

[
log

p̄H0 (σ2U2)]

p̄
(t2)
0 (σ2U2)

]]
.

For convenience we define p̄(t,a)
0 as the marginal density of Y , integrated over vt,a (so p̄(t2)

0 =

p̄
(t2,t2)
0 ). We can explicitly evaluate the integrals in p̄H0 and p̄(t,a)

0 , which gives:

log
p̄H0 (u2)

p̄
(t,a)
0 (u2)

=
n+ a

2
log

u2 + t

u2
+ a · 1

2
log(u2)− a · 1

2
log 2 + log

Γ(n/2)

Γ(a/2 + n/2)
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Substituting (t, a) by (t2, t2), and noting that the latter two terms do not depend on u and
vanish as t ↓ 0, a ↓ 0, it is thus sufficient if we can show that

lim sup
t↓0

h◦(t) ≤ 0 (54)

where

h◦(t) =Eδ∼W [δ]EU2∼P1,δ
Eσ∼W(t)

[
n+ t2

2
· log

t2 + σ2U2

σ2U2
+ t2 · 1

2
log(σ2U2)

]
≤

Eδ∼W [δ]EU2∼P1,δ

[
n+ t2

2
· log

(
1 + Eσ∼W(t)

[
t2

σ2U2

])
+ Eσ∼W(t)

[
t2 · 1

2
log(σ2U2)

]]
=

Eδ∼W [δ]EU2∼Pδ,1

[
n+ t2

2
· log

(
1 +

t2

U2

)
+ t2 · 1

2

(
logU2 + log(t/2)−Ψ(t/2)

)]
(55)

where the inequality is Jensen’s and the last line follows by evaluating the expectations over
1/σ2 and log σ2 if σ ∼ W(t) = W(t,t), which can be done analytically: the first is equal to 1
and the second is equal to log(t/2)−Ψ(t/2), where Ψ is the digamma function.

Before evaluating (55) further, we first define:

g1(t) =
t2

2
(log(t/2)−Ψ(t/2))

g2(t) = g1(t) +
t2

2
·Eδ∼W [δ][log(n(1 + δ2))]

g3(t) = g1(t) + g2(t) +
n+ t2

2
log(1 + t2)

g4(t) =
n+ t2

2
·
∫ 1

0
(log(t+ u2)− log u2)du.

It is straightforward to establish that limt↓0 gj(t) = 0 for j = 1..4 (if the leftmost t2 in g1(t) is
replaced by t then g1(t) does not converge to 0; this is the reason why we compared Q(t)

1 with
Q

(t2)
0 rather than Q(t)

0 ). For g2, this follows by our assumption on W[δ].
The idea is now to bound (55) further in terms of the gj :

h◦(t) = g1(t) +
t2

2
·Eδ∼W [δ]EU2∼Pδ,1

[
logU2

]
+
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
log

(
1 +

t2

U2

)]
≤

g1(t) +
t2

2
Eδ∼W [δ]

[
logEU2∼Pδ,1

[
U2
]]

+
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
log

t2 + U2

U2

]
=

g1(t) +
t2

2
Eδ∼W [δ]

[
log(n+ nδ2)

]
+
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
log

t2 + U2

U2

]
=
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= g2(t) +
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
1U2≥1 log

(
1 +

t2

U2

)
+ 10≤U2<1 log

t2 + U2

U2

]
≤

g2(t) +
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
1U2≥1 log(1 + t2) + 10≤U2<1

(
log(t2 + U2)− logU2

)]
=

g3(t) +
n+ t2

2
Eδ∼W [δ]EU2∼Pδ,1

[
10≤U2<1

(
log(t2 + U2)− logU2

)]
≤

g3(t) +
n+ t2

2
Eδ∼W [δ]

[∫ 1

0
fδ,n(u)(log(t2 + u2)− log u2)du

]
≤

g3(t) +
n+ t2

2
· sup
δ∈R

max
v∈[0,1]

fδ,n(v)

∫ 1

0
(log(t2 + u2)− log u2)du =

g3(t) + g4(t) · sup
δ∈R

max
v∈[0,1]

fδ,n(v).

Here the second line follows from Jensen’s inequality. For the third, we used that U2 has a
noncentral χ2-distribution with n degrees of freedom and noncentrality parameter nδ2; fδ,n,
appearing later, represents the density of such a distribution. All other (in)equalities are
immediate.

Since we already showed that limt↓0 gj(t) = 0 for j = 3, 4, it suffices if we can show that
supδ∈R maxv∈[0,1] fδ,n(v) < ∞. Since we assume n > 1, we have that maxv∈[0,1] f0,n(v) < ∞.
And since fδ,n(v) is decreasing in |δ| for each v ∈ [0, 1], the result follows.

F.1 Why W ∗
1 and W ∗

0 are achieved and have finite support in Section 4.4

The minima are achieved because of the joint lower-semicontinuity of KL divergence (Posner,
1975). To see that the supports are finite, note the following: for given sample size n, the
probability distribution PW is completely determined by the probabilities assigned to the
sufficient statistics N1|a, N1|b. This means that for each priorW ∈ W(Θ1), the Bayes marginal
PW can be identified with a vector of Mn := (na + 1) · (nb + 1) real-valued components. Every
such PW can also be written as a mixture of Pθ’s for θ = (µa|1, µb|1) ∈ Θ1, a convex set. By
Carathéodory’s theorem we need at most Mn components to describe an arbitrary PW .

Appendix G Motivation for use of KL to define GROW sets

If there is more than a single parameter of interest, then a natural (but certainly not the
only reasonable!) divergence measure to use in (16) is to set d equal to the KL divergence
D(θ1‖Θ0) := infθ0∈Θ0 D(θ1‖θ0).

To see why, note that ε indicates the easiness of testing Θ(ε) vs. Θ0: the larger ε, the
‘further’ Θ(ε) from Θ0 and the larger the value of gr(ε). The KL divergence is the only
divergence measure in which ‘easiness’ of testing Θ(ε) is consistent with easiness of testing
individual elements of Θ1. By this we mean the following: suppose there exist θ1, θ

′
1 ∈ Θ1

with θ1 6= θ′1 achieving equal growth rates gr({θ′1}) = gr({θ1}) in the tests of the individual
point hypotheses {θ1} vs Θ0 and {θ′1} vs. Θ0 Then if d is not the KL it can happen that, for
some ε > 0, θ1 ∈ Θ(ε) yet θ′2 6∈ Θ(ε). With d equal to KL this is impossible. This follows
immediately from Theorem 1, Part 1, which tells us D(θ1‖Θ0) = gr({θ1}).
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