
Exploiting Models for Scalable and High Throughput
Distributed Software

Tim Soethout

ING Bank and Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands

Tim.Soethout@ing.com

Abstract
In high-throughput distributed applications, such as large-

scale banking systems, synchronization between objects be-

comes a bottleneck. This short paper focusses on research,

in close collaboration with ING Bank, on the opportunity of

leveraging application specific knowledge captured bymodel

driven engineering approaches, to increase application per-

formance in high-contention scenarios, while maintaining

functional application-level consistency.

CCS Concepts • Information systems → Distributed
database transactions; • Software and its engineering→

Domain specific languages; State systems; Model-driven

software engineering; • Applied computing→ Enterprise

architectures; Event-driven architectures.

Keywords Synchronization, Atomic commit protocols

ACM Reference Format:
Tim Soethout. 2019. Exploiting Models for Scalable and High

Throughput Distributed Software. In Proceedings of the 2019
ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Com-
panion ’19), October 20–25, 2019, Athens, Greece. ACM, New York,

NY, USA, 3 pages. https://doi.org/10.1145/3359061.3361073

1 Motivation
Enterprise software systems are large, complex, and hard

to maintain. Many applications communicate, operate inde-

pendently, and need to change frequently. Domain Specific

Languages (DSLs) are an approach to control the complex-

ity by capturing domain knowledge in a non-ambiguous,

single-source, and traceable way. DSLs enables automati-

cally generating optimized code, where domain knowledge

can be used which is not available to a general purpose pro-

gramming language compiler.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SPLASH Companion ’19, October 20–25, 2019, Athens, Greece
© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6992-3/19/10. . . $15.00

https://doi.org/10.1145/3359061.3361073

The DSL Rebel [16] describes state machines for enterprise

products, which communicate using atomic synchronized

actions. These specifications are generated into a horizon-

tally scalable distributed application, built on the Akka ac-

tor toolkit. Generating code for Rebel’s distributed synchro-

nization in a generic scalable fashion is hard, because high-

contention specifications result in bottlenecks in through-

put and latency. Atomic synchronized actions, formalized

as Atomic Commit [8], guarantee that actions on multiple

objects are a single atomic step, where all or none should

happen. A well-known generic blocking atomic commitment

protocol is Two-Phase Commit (2PC) [8].

Improvements in scalability and throughput of Atomic

Commit implementations and other optimizations related

to consistency, are widely applicable to databases [1, 2, 7,

18], programming languages [3, 10–12, 17] and distributed

systems in general [6, 9, 19].

2 Problem
High load on synchronization participants of distributed 2PC

transactions results in high transaction latency and limits

throughput, because each transaction has to wait until the

previous one is finished. This high-contention is problematic

in scenario’s where latency and throughput requirements

have to meet. For example when a single bank account has

a large number of money transfers to process this becomes

an issue, e.g., a tax office account paying out benefits to a lot

of citizens’ accounts in a small time frame.

We need approaches to improve in the high-contention

bottleneck scenario. In which ways can we exploit models

to safely improve synchronization performance?

3 Approach
Models of the distributed transaction’s participants en-

able specialized implementations of safe synchronization

that maintains application-level consistency, in contrast to

generic atomic commitment protocols and general purpose

databases that need to be overly conservative to maintain

consistency. These specialized protocols can lead to higher

throughput and better scalability.

An example of exploitable model information is the

Deposit operation as found in an Account state machine

example, shown in Figure 1. The state machine instance

can stay application-level consistent, even when multiple

35

https://doi.org/10.1145/3359061.3361073
https://doi.org/10.1145/3359061.3361073

SPLASH Companion ’19, October 20–25, 2019, Athens, Greece Tim Soethout

Open()[]/
New

Opened

balance: Int

Deposit(amount: Int)[]/

Withdraw(amount: Int)[,]/

Figure 1. State machine of example simple account. Events

are defined in state chart notation: Event(fields)[guard]/effect

Deposit operations are executed in parallel, because it’s

preconditions cannot be invalided.

Our research is centered around utilizing this model

knowledge, which general purpose algorithms and database

can not rely on.

We plan to look into these open questions:

• ING Bank’s transaction data indicates that high con-

tentionwill become a problem in practice. Do synthetic

benchmarks in literature accurately exercise this be-

havior?

• Can we exploit run time model information to improve

the performance of synchronization?

• Can we exploit compile time model information to

improve the performance of synchronization?

• Using previous research results, can potential perfor-

mance bottlenecks be detected at design time to sup-

port the designer?

The next section poses directions to answer these questions.

4 Evaluation Methodology
High-concurrent participants become a real problem for

banking use cases when system usage keeps growing. This

limits throughput and scalability of implementations. The

main hypothesis is that performance can be improved by

using knowledge of the application to safely parallelize trans-

actions, where generic solutions can not. Secondary hypothe-

ses are:

• Synthetic benchmarks from literature, such as TPC-

C [13] and YCSB [4], capture high-contention use cases

similarly to industrial transaction data.

• Domain-knowledge can be exploited at run time, to
allow parallel transactions if it detects that their effects

are independent at run time.

• Domain-knowledge can be exploited at compile time,

to allow parallel transactions if it is statically detected

that their effects are always independent.

• Similar to static compile time analyses, automated de-

sign time analyses can alert the designer of potential

synchronization and performance bottlenecks.

The following paragraphs describe each secondary hy-

pothesis approach in more detail.

Realistic Benchmark Analysis ING transaction data

shows that high-contention can become a real issue in

banking use cases and lead to bottlenecks for a 2PC im-

plementation of synchronization. In order to guarantee

consistency and atomicity, 2PC allows a single action per

state machine instance to be in progress at the same moment,

resulting in delaying other actions.

In literature, synthetic benchmarks, such as TPC-C [13]

and YCSB [4], are used to evaluate database and middleware

performance. These benchmarks claim to represent realistic

use cases. We want to determine if these benchmarks accu-

rately represent the high-contention use cases found in the

ING transaction data set.

Path-Sensitive Atomic Commit We present a novel con-

currency control mechanism, Path-Sensitive Atomic Com-

mit [14] (PSAC), to reduce the bottlenecks of atomic commit

in high-contention scenarios. Unlike 2PC, which is designed

to be generic and applicable in all use possible cases, PSAC

makes use of the domain knowledge of state machine actions.

PSAC uses the pre- and post-conditions of actions to de-

tect, at run time, when actions are independent and can safely

be parallelized. If an action is independent of in-progress

actions’ outcomes, it is safe to already start processing, while

vanilla 2PC would have to delay, e.g., parallel withdrawals

on bank accounts when the balance is sufficient for all. More

parallel running actions in the high-contention objects re-

duce the delay and improve the throughput, up until the

CPU is saturated. Performance evaluation shows that PSAC

exhibits the same scalability characteristics as standard 2PC,

but obtains up to 1.8 times median higher throughput in

high-contention scenarios.

Static Independent Events Analysis PSAC reduces the

bottleneck of busy objects in 2PC by preemptively calculating

more to find the independent actions. This extra calculation

would not be necessary when the detection of independence

of actions is determined statically. Static offline analysis of

the specifications can determine actions that can always

be run independently, e.g., deposits on accounts without

balance checks. Fewer run-time calculations and conflict

checks result in lower action latency and more processing

power for other actions.

An SMT-solver, such as Z3 [5], can be used to analyze all

possible pairs of actions per specification to determine static

independence. At run time a new concurrency control mech-

anism, Local Coordination Avoidance (LoCA) [15], uses the

36

Exploiting Models for Scalable and High Throughput Distributed Software SPLASH Companion ’19, October 20–25, 2019, Athens, Greece

static independent analysis output to speed up synchroniza-

tion by skipping the dependency checks in the implemen-

tation. We expect that performance evaluation will show

better latency and throughput than 2PC. LoCA should also

perform better than PSAC in the specific cases where calcu-

lating run-time independence and new states is expensive.

The static optimization complements run-time PSAC,

which still provides extra performance gains on top of this

for the other actions, which are only non-conflicting when

run-time data is known, e.g., in account transactions for

withdrawals when enough balance is available.

Design Time Analyses Offline analysis can also be used to

support specification designers by giving insight in potential

performance bottlenecks at design time. The specification

IDE can provide this feedback for the current in progress

specification. We expect to implement at least two analyses

using a similar analysis approach using SMT:

• Synchronization Bottleneck Analysis (SBA) finds ac-

tions, which potentially become synchronization bot-

tlenecks by detecting when actions are only used in

syncs and never independent.

• Synchronization Precondition Analysis (SPA) detects

which precondition on an action might be weakened

to reduce performance bottlenecks, by systematically

removing preconditions from dependent actions, until

it becomes independent.

We aim to create an implementation of the two design time

analyses for Rebel, which feeds analysis results back into the

IDE and provides infrastructure to add similar analyses.

4.1 Experimental Setup
Each hypothesis requires different experimental setup.

The synthetic benchmark evaluation requires analysis of

the transactions in the benchmarks. An overview has to

be created that shows which high-contention use cases are

covered by the synthetic benchmarks, and how they relate

to the bank transaction data.

For both PSAC and LoCA, we plan to implement variants

of 2PC, PSAC and LoCA and keep the rest of the application

and use case scenarios the same. This compares the difference

between the mechanisms and avoids accidental implementa-

tion differences. Experiments consist of microbenchmarks

and scalability benchmarks on cloud infrastructure of best

and worst case scenarios, respectively low and high con-

tention. The variants are compared in latency, maximum

sustainable throughput and horizontal scalability potential.

Ideally the design time analyses are applied to real-life

business use cases, to see if it detects bottlenecks correctly

and is useful in industry setting.

5 Conclusion
The main goal of the thesis is to provide approaches to

improve throughput and scalability of distributed software,

reducing synchronization bottlenecks, by leveraging do-

main knowledge from models. Benchmark evaluation will

show if synthetic benchmarks from literature cover the

high-contention synchronization use cases. PSAC and LoCA

optimize synchronization for run-time systems using dy-

namic and static independent events analysis, resulting in

less contention and thus better latency and throughput.

Problematic synchronization bottlenecks can be detected

early with design-time analyses on models, such as SBA and

PSA, which detects these bottlenecks and alerts the designer.

References
[1] Daniel Abadi. 2012. Consistency Tradeoffs in Modern Distributed

Database System Design: CAP is Only Part of the Story. IEEE Computer
45, 2 (2012), 37–42.

[2] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M.

Hellerstein, and Ion Stoica. 2014. Coordination Avoidance in Database

Systems. PVLDB 8, 3 (2014), 185–196.

[3] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues,

Nuno M. Preguiça, Mahsa Najafzadeh, and Marc Shapiro. 2015. Putting

consistency back into eventual consistency. In EuroSys. ACM, 6:1–6:16.

[4] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,

and Russell Sears. 2010. Benchmarking cloud serving systems with

YCSB. In SoCC. ACM, 143–154.

[5] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An

Efficient SMT Solver. In TACAS (Lecture Notes in Computer Science),
Vol. 4963. Springer, 337–340.

[6] Tamer Eldeeb and Phil Bernstein. 2016. Transactions for Distributed
Actors in the Cloud. Technical Report.

[7] Patrice Godefroid. 1996. Partial-Order Methods for the Verification
of Concurrent Systems - An Approach to the State-Explosion Problem.

Lecture Notes in Computer Science, Vol. 1032. Springer.

[8] Jim Gray and Andreas Reuter. 1993. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann.

[9] Joseph M. Hellerstein and Peter Alvaro. 2019. Keeping CALM: When

Distributed Consistency is Easy. CoRR (2019). arXiv:1901.01930

[10] Brandon Holt, James Bornholt, Irene Zhang, Dan R. K. Ports, Mark Os-

kin, and Luis Ceze. 2016. Disciplined Inconsistency with Consistency

Types. In SoCC. ACM, 279–293.

[11] Matthew Milano and Andrew C. Myers. 2018. MixT: a language for

mixing consistency in geodistributed transactions. In PLDI. ACM.

[12] Nuno M. Preguiça, Carlos Baquero, and Marc Shapiro. 2018. Conflict-

free Replicated Data Types (CRDTs). CoRR (2018). arXiv:1805.06358

[13] Francois Raab, Walt Kohler, and Amitabh Shah. 2013. Overview of the

TPC benchmark C: The order-entry benchmark. Transaction Processing
Performance Council, Tech. Rep (2013).

[14] Tim Soethout, Jurgen J. Vinju, and Tijs van der Storm. 2019. Path-

Sensitive Atomic Commit: Local Coordination Avoidance for Dis-

tributed Transactions (Technical Report). CoRR abs/1908.05940 (2019).

[15] Tim Soethout, Jurgen J. Vinju, and Tijs van der Storm. 2019. Static Local

Coordination Avoidance for Distributed Objects. In AGERE!@SPLASH.
ACM. To appear.

[16] Jouke Stoel, Tijs van der Storm, Jurgen J. Vinju, and Joost Bosman. 2016.

Solving the bank with Rebel: on the design of the Rebel specification

language and its application inside a bank. In ITSLE@SPLASH. ACM.

[17] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Dis-

tributed system development with ScalaLoci. PACMPL 2, OOPSLA

(2018), 129:1–129:30.

[18] Michael Whittaker and Joseph M. Hellerstein. 2018. Interactive Checks

for Coordination Avoidance. PVLDB 12, 1 (2018), 14–27.

[19] Xin Zhao and Philipp Haller. 2018. Observable atomic consistency for

CvRDTs. In AGERE!@SPLASH. ACM, 23–32.

37

http://arxiv.org/abs/1901.01930
http://arxiv.org/abs/1805.06358

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	4 Evaluation Methodology
	4.1 Experimental Setup

	5 Conclusion
	References

