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Abstract
We investigate the asymptotic mean squared error of kernel estimators of the intensity func-
tion of a spatial point process. We derive expansions for the bias and variance in the scenario
that n independent copies of a point process in R

d are superposed. When the same band-
width is used in all d dimensions, we show that an optimal bandwidth exists and is of the
order n−1/(d+4) under appropriate smoothness conditions on the true intensity function.
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1 Introduction

Often the first step in the analysis of a spatial point pattern is to estimate its intensity func-
tion. Various non-parametric estimators are available to do so. Some techniques are based
on local neighbourhoods of a point, expressed for example in terms of its nearest neighbours
(Granville 1998) or in terms of its cells in the Voronoi (Ord 1978) or Delaunay tessellation
(Schaap 2007; Schaap and Van de Weygaert 2000) of the pattern. By far the most popu-
lar technique, however, is kernel smoothing (Diggle 1985). Specifically, let Φ be a simple
point process that is observed in a bounded open subset W �= ∅ of Rd and assume that its
first order moment measure exists as a σ -finite Borel measure and is absolutely continu-
ous with respect to Lebesgue measure with a Radon–Nikodym derivative λ : Rd → [0,∞)

known as its intensity function. Heuristically speaking λ(x0) dx0 can be interpreted as the

This research was partially supported by The Netherlands Organisation for Scientific Research NWO
(project DEEP.NL.2018.033).

� M. N. M. van Lieshout
Marie-Colette.van.Lieshout@cwi.nl

1 CWI, P.O. Box 94079, NL-1090 GB, Amsterdam, The Netherlands
2 University of Twente, P.O. Box 217, NL-7500 AE, Enschede, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s11009-019-09749-x&domain=pdf
http://orcid.org/0000-0002-7941-2176
mailto: Marie-Colette.van.Lieshout@cwi.nl


Methodology and Computing in Applied Probability

infinitesimal probability that Φ places a point in dx0. A kernel estimator of λ based on
Φ ∩ W then takes the form

̂λ(x0; H) = ̂λ(x0; H,Φ, W) = 1

det(H)

∑

y∈Φ∩W

κ
(
H−1(x0 − y)

)
(1)

at x0 ∈ W . The function κ : Rd → [0,∞) is supposed to be kernel, that is, a d-dimensional
symmetric probability density function (Silverman 1986, p. 13) and H = diag(h1, . . . , hd)

is a diagonal matrix with entries hi > 0, i = 1, . . . , d . The choices of the bandwidths hi

determine the amount of smoothing per component. As an aside, note that the support of
κ(H−1(x0 −y)) as a function of y could overlap the complement of W . For this reason var-
ious edge corrections have been proposed (Berman and Diggle 1989; Van Lieshout 2012).
In the sequel, though, we shall be concerned with very small bandwidths so this aspect may
be ignored.

The aim of this paper is to derive asymptotic expansions for the bias and variance of
Eq. 1 in terms of the bandwidth matrix H . Such expansions are well known in the superfi-
cially similar case of estimating a probability density function based on a random sample.
Indeed, there is a vast literature on this topic that is summarised in the textbooks by Bowman
and Azzalini (1997), by Silverman (1986) or by Wand and Jones (1994) and the references
therein. However, intensity function estimation is different in three respects: λ is not nor-
malised, the number of points in Φ ∩ W is random and their locations are not necessarily
independent. In this spatial context, bandwidth selection is dominated by ad hoc (Berman
and Diggle 1989) and non-parametric methods (Cronie and Van Lieshout 2018). Rigorous
techniques, to the best of our knowledge, only exist for point processes that consist of inde-
pendent and identically distributed points. For example, assuming a simple multiplicative
model on the intensity function of a Poisson process on the real line, Brooks and Mar-
ron (1991) derived an asymptotically optimal least-squares cross-validation estimator. Lo
(2017) studied the asymptotic (integrated) mean squared error for binomial point processes
in any dimension without imposing specific model assumptions on λ. Note that the inherent
conditioning on the number of points serves to reduce the problem of intensity estimation
to that of multivariate density estimation. Bootstrap ideas can be used to construct confi-
dence regions as proposed in one dimension by Cowling et al. (1996) and extended to R

d

by Fuentes–Santos et al. (2016). Our goal is to extend Lo’s approach to point processes that
do not consist of a given number of independent and identically distributed points.

The plan of this paper is as follows. In Section 2 we focus on the regime in which n

independent copies Φi of the same point process are superposed and the bandwidths hi,n

tend to zero at the same rate bn as n tends to infinity. Note that the hi,n may depend on the
location, x0, of interest but not on the points of the pattern Φ. Adaptive bandwidth selec-
tion (Abramson 1982) in which the bandwidths may depend on the Φi will be treated in a
companion paper. We derive expansions for the bias and variance and deduce the asymptot-
ically optimal bandwidth when the diagonal entries hi,n = hn are identical. In the general
case we show by counterexample that an asymptotically optimal bandwidth matrix may not
exist. For the sake of readability, all proofs are deferred to Section 3.

2 Infill Asymptotics

Let Φ1, Φ2, . . . be independent and identically distributed simple point processes (Chiu
et al. 2013) restricted to a non-empty bounded open set W ⊂ R

d for which the first order
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moment measure exists, is locally finite and admits an intensity function λ : W → [0,∞).
For n ∈ N, let

Yn =
n⋃

i=1

Φi

denote the union. Upon taking the limit for n → ∞, one obtains an asymptotic regime
known as ‘infill asymptotics’ (Ripley 1988). Since the Φi share the same intensity function,
the intensity function of their union Yn is nλ. Therefore λ(x0), x0 ∈ W , may be estimated by

λ̂n(x0) :=
̂λ(x0;H, Yn,W)

n
= 1

n

n∑

i=1

̂λ(x0; H,Φi,W) (2)

where ̂λ(x0; H, Φi,W) is given by Eq. 1.
The next Lemma collects the first two moments of Eq. 1.

Lemma 1 LetΦ be a simple point process observed in a bounded open subset ∅ �= W ⊂ R
d

whose factorial moment measures exist up to second order as locally finite Borel measures
and are absolutely continuous with intensity function λ and second order product density
ρ(2). Let κ be a kernel and H a diagonal matrix with positive entries. Then the first two
moments of Eq. 1 are

E

[
̂λ(x0;H, Φ,W)

]
= 1

det(H)

∫

W

κ
(
H−1(x0 − u)

)
λ(u) du

and

E

[(
̂λ(x0; h,Φ,W)

)2
]

= 1

det(H)2

∫

W

∫

W

κ
(
H−1(x0 − u)

)
κ
(
H−1(x0 − v)

)

×ρ(2)(u, v) du dv

+ 1

det(H)2

∫

W

κ
(
H−1(x0 − u)

)2
λ(u) du.

The proof follows directly from the definition of product densities in, for example,
Section 4.3.3 in Chiu et al. (2013). Provided that λ takes values in (0,∞) and the first
moment is finite, the variance of ̂λ(x0; H,Φ, W) can be expressed in terms of the pair
correlation function g : W × W → [0, ∞), defined by

g(u, v) = ρ(2)(u, v)

λ(u) λ(v)
,

as

1

det(H)2

∫

W×W

κ
(
H−1(x0 − u)

)
κ
(
H−1(x0 − v)

)
(g(u, v) − 1) λ(u) λ(v) du dv

+ 1

det(H)2

∫

W

κ
(
H−1(x0 − u)

)2
λ(u) du.

For Poisson processes, the first integral vanishes as g ≡ 1.
In this paper, we will restrict ourselves to kernels that belong to the Beta class:

κγ (x) = Γ (d/2 + γ + 1)

πd/2Γ (γ + 1)
(1 − xT x)γ 1{x ∈ b(0, 1)}, x ∈ R

d , (3)
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for γ ≥ 0. Here b(0, 1) is the closed unit ball in R
d centred at the origin. The normalising

constant will be abbreviated by

c(d, γ ) =
∫

b(0,1)

(1 − xT x)γ dx = πd/2Γ (γ + 1)

Γ (d/2 + γ + 1)
, d ∈ N, γ ≥ 0. (4)

Note that Beta kernels are supported on the closed unit ball and that their smoothness is
governed by the parameter γ . Indeed, the box kernel defined by γ = 0 is constant and
therefore continuous on the interior of the unit ball; the Epanechnikov kernel corresponding
to the choice γ = 1 is Lipschitz continuous and for γ > k ∈ N the function κγ is k times
continuously differentiable on R

d .
The following Lemma collects further basic properties of the Beta kernels. The proof can

be found in Section 3.1.

Lemma 2 For the Beta kernels κγ , γ ≥ 0, defined in Eq. 3 the integrals

∫

R

xi κγ (x) dxi = 0 =
∫

b(0,1)

xi xj κγ (x) dx1 · · · dxd

vanish for all i, j ∈ {1, . . . , d} such that i �= j . Furthermore, with c defined in Eq. 4,

Q(d, γ ) :=
∫

Rd

κγ (x)2 dx = c(d, 2γ )

c(d, γ )2

is finite and so is, for all i = 1, . . . , d ,

V (d, γ ) :=
∫ ∞

−∞
· · ·

∫ ∞

−∞
x2
i κγ (x) dx1 · · · dxd = 1

d + 2γ + 2
.

For the important special case d = 2,

Q(2, γ ) = (γ + 1)2

(2γ + 1)π
.

At this point it is important to stress that the restriction to Beta kernels is made for speci-
ficity only. Our results extend with minor modifications (different expressions for Q and V )
to any non-negative squared integrable function κ that is compactly supported, integrates to
one, has finite and positive second order moments and is symmetric in the sense that, for all
x ∈ R

d , κ(x) = κ(−x) and the first displayed formula in Lemma 2 holds (Silverman 1986).
Lemma 1 can be used to derive the mean squared error of Eq. 2. For the proof we refer

to Section 3.2.

Assumption A Let Φ1, Φ2, . . . be independent and identically distributed simple point pro-
cesses observed in a bounded open subset ∅ �= W ⊂ R

d . Assume that their factorial moment
measures exist up to second order as locally finite Borel measures and are absolutely con-
tinuous with strictly positive intensity function λ : W → (0,∞) and second order product
densities ρ(2). Write Yn = ⋃n

i=1 Φi for the union, n ∈ N.
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Proposition 1 Let κγ be a Beta kernel (3) with γ ≥ 0. Then under Assumption A the mean
squared error of Eq. 2 is given by

mse λ̂n(x0) =
(

1

det(H)

∫

W

κγ
(
H−1(x0 − u)

)
λ(u) du − λ(x0)

)2

+ 1

n det(H)2

∫

W

∫

W

κγ
(
H−1(x0 − u)

)
κγ

(
H−1(x0 − v)

)

× (g(u, v) − 1) λ(u) λ(v) du dv

+ 1

n det(H)2

∫

W

κγ
(
H−1(x0 − u)

)2
λ(u) du. (5)

If h1 = · · · = hd = h then Eq. 5 reduces to

mse λ̂n(x0) =
(

1

hd

∫

b(x0,h)∩W

κγ

(
x0 − u

h

)
λ(u) du − λ(x0)

)2

+ 1

nh2d

∫

(b(x0,h)∩W)2
κγ

(
x0 − u

h

)
κγ

(
x0 − v

h

)

× (g(u, v) − 1) λ(u) λ(v) du dv

+ 1

nh2d

∫

b(x0,h)∩W

κγ

(
x0 − u

h

)2

λ(u) du.

The first term in Eq. 5 is the squared bias. It depends on λ and on the bandwidth matrix
H but not on n. The remaining terms come from the variance and depend on λ, on g, on H

and on n. Note that λ and g are unknown. Therefore, if one were to use Eq. 5 for selecting a
bandwidth, these quantities would have to be estimated. Moreover, Eq. 5 involves integrals
that would have to be approximated numerically. Therefore, our aim in the remainder of this
section is to derive an asymptotic expansion for the mean squared error for bandwidths hi,n

that depend on n in such a way that for all components i = 1, . . . , d , hi,n → 0 as n → ∞.
It will turn out that the leading terms no longer depend on the pair correlation function and
do not involve integrals that cannot be evaluated explicitly.

First recall some basic facts from analysis. Let E be an open subset of Rd and denote by
Ck(E) the class of functions f : E → R

m for which all kth order partial derivatives Dj1···jk
f

exist and are continuous on E. For such functions the order of taking partial derivatives may
be interchanged and the Taylor theorem states that if x ∈ E and x+th ∈ E for all 0 ≤ t ≤ 1
then a θ ∈ (0, 1) can be found such that

f (x + h) − f (x) =
k−1∑

r=1

1

r!D
rf (x)(h(r)) + 1

k!D
kf (x + θh)(h(k)). (6)

Here h(r) is the r-tuple (h, . . . , h) and

Drf (x)(h(r)) :=
d∑

j1,...,jr=1

hj1 · · ·hjr Dj1···jr f (x)

for h = (h1, . . . , hd) ∈ R
d .

We are now ready to state the main result of this section, generalising Theorem 2 in
Lo (2017) for the union of independent random points. The proof can be found in
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Section 3.2. We will make the following assumptions on the asymptotic regime and the
factorial moment measures of the point processes.

Assumption B Let Hn, n ∈ N, be a sequence of diagonal matrices with entries hi,n > 0 for
i = 1, . . . , d . Suppose that, as n → ∞, hi,n/bn → βi for some constants 0 < βi < ∞ and
a sequence of positive numbers bn > 0 such that bn → 0 and nbd

n → ∞.

Assumption C Additional to Assumption A suppose that the pair correlation function
g : W × W → [0, ∞) is bounded and that the intensity function λ : W → (0,∞)

is twice continuously differentiable with second order partial derivatives λij = Dijλ,
i, j = 1, . . . , d , that are Hőlder continuous with exponent α > 0 on W , that is, there exists
some C > 0 such that, for all i, j ∈ {1, . . . , d},

|λij (x) − λij (y)| ≤ C||x − y||α, x, y ∈ W .

Theorem 1 Under Assumptions A and C and in the asymptotic regime of Assumption B the
bias and variance of the estimator (2) with Beta kernel κγ , γ ≥ 0, satisfy

1. bias λ̂n(x0) =
∑d

i=1 h2
i,nλii (x0)

2(d+2γ+2)
+ O(b2+α

n )

2. Var λ̂n(x0) = λ(x0) Q(d,γ )
n det(Hn)

+ O
(

1
nbd−1

n

)

as n → ∞.

The bias expansion depends on the second order partial derivatives of the unknown inten-
sity function and on the smoothness parameter α. The smoothness of the kernel, measured
by γ , also plays a role. The leading term of the variance depends on λ(x0) and on the
smoothness of the kernel.

Theorem 1 implies an expansion for the mean squared error, cf. Section 3.2 for a proof.

Corollary 1 Consider the setting of Theorem 1. Then, as n → ∞,

mse λ̂n(x0) = V (d, γ )2

4

(
d∑

i=1

h2
i,nλii (x0)

)2

+ λ(x0) Q(d, γ )

n det(Hn)

+ O
(
b4+α
n

)
+ O

(
1

nbd−1
n

)
.

If hi,n = hn = bn for i = 1, . . . , d then, provided
∑d

i=1 λii(x0) �= 0, the asymptotic mean
squared error is minimal for

h∗
n(x0) = 1

n1/(d+4)

⎛

⎜⎝
d λ(x0) Q(d, γ )

V (d, γ )2
(∑d

i=1 λii(x0)
)2

⎞

⎟⎠

1/(d+4)

.

In words, h∗
n(x0) is of the order n−1/(d+4). Clearly h∗

n(x0) tends to zero as n → ∞.
Moreover, nh∗

n(x0)
d is of the order n to the 1−d/(d+4) and therefore tends to infinity with
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n. The expression is similar to the Parzen formula (1962) for classic density estimation. For
the special case d = 2,

h∗
n(x0) = 1

n1/6

(
8λ(x0)(γ + 1)2(γ + 2)2

(2γ + 1)π(λ11(x0) + λ22(x0))2

)1/6

.

The optimal bandwidth h∗
n(x0) depends on the unknown intensity function and its sec-

ond order partial derivatives. A simple approach would be to take a fully non-parametric
pilot estimator (for example the one proposed by Cronie and Van Lieshout (2018) that is
sufficiently smooth to allow taking second order partial derivatives and to plug these into
the expression for h∗

n(x0). More sophisticated approaches involve iterations of kernel esti-
mators for λ(x0). Again provided that the kernel is sufficiently smooth, the second order
partial derivatives of these kernel estimators can be used to estimate λii(x0), i = 1, . . . , d

(Engel et al. 1994; Lo 2017), possibly using a somewhat larger bandwidth.
Note that when the second order partial derivatives have different signs, the leading

term in the expansion for the bias in Theorem 1 may vanish. If the bandwidth components
may differ, a unique asymptotically optimal bandwidth matrix may not exist even when the
leading bias term is non-zero. These points are illustrated in the following example.

Example 1 Take d = 2, W = (0, 1)2, the box kernel κ0 and suppose that λ(x, y) =
2 − x2 + y2 for (x, y) ∈ W . Then the leading terms in the mean squared error expansion
add up to

(
h2

1,nλ11(x0) + h2
2,nλ22(x0)

)2 V (2, γ )2

4
+ λ(x0)Q(2, γ )

nh1,nh2,n

,

which at x0 = (1/2, 1/2) reduce to

1

16

(
h2

2,n − h2
1,n

)2 + 2

πnh1,nh2,n

by Lemma 2. For this example the score equations do not have a zero in (0,∞)2. Specialis-
ing to the case that h1,n = h2,n = hn, note that for hn < 1/2, the bias is zero (cf. Lemma 1
and Proposition 1). Hence, under the asymptotic regime of Assumption B, there can be no
trade-off between bias and variance.

In two dimensions a sufficient condition for the existence of an asymptotically optimal
bandwidth matrix is that λ11(x0)λ22(x0) > 0, cf. Section 2.2 in Lo (2017), in which case
the optimal components satisfy

h∗
2,n(x0) = h∗

1,n(x0)

√
λ11(x0)

λ22(x0)
.

We conclude this section with an expansion for the random variable λ̂n(x0) itself. Its
proof can be found in Section 3.2.

Proposition 2 Under Assumptions A and C and in the asymptotic regime of Assumption B
the estimator (2) with Beta kernel κγ , γ ≥ 0, satisfies

λ̂n(x0) = λ(x0) + O(b2
n) + OP

(
n−1/2b

−d/2
n

)

as n → ∞.
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3 Proofs and Technicalities

3.1 Properties of the Beta Kernel

Proof of Lemma 2 The first two claims follow from the symmetry of the Beta kernel.
Furthermore

Q(d, γ ) =
∫

Rd

κγ (x)2dx = 1

c(d, γ )2

∫

b(0,1)

(1 − xT x)2γ dx = c(d, 2γ )

c(d, γ )2
.

From the symmetry of the Beta kernel it is clear that the definition of V (d, γ ) does not
depend on the choice of i. First consider the case d = 1. By the symmetry of κγ and a
change of variables v = x2, dx = dv/(2

√
v),

V (1, γ ) =
∫ ∞

−∞
x2κγ (x) dx = 2

c(1, γ )

∫ 1

0
v (1 − v)γ

1

2 v1/2
dv = B( 3

2 , γ + 1)

c(1, γ )

= 1

2γ + 3
.

For dimensions d > 1, use Fubini’s theorem to write V (d, γ ) as a repeated integral and
note that the innermost integral takes the form

∫
{

s2

1−||x||2
d−1

≤1

} s2(1 − ||x||2d−1 − s2)γ ds.

By the symmetry and a change of variables t = s2/(1 − ||x||2d−1),

V (d, γ ) =
B
(

3
2 , γ + 1

)

c(d, γ )
c

(
d − 1, γ + 3

2

)

in accordance with the claim.

3.2 Proofs

Proof of Proposition 1 Since λ̂n(x0) is the average of n independent and identically dis-
tributed random variables ̂λ(x0; H,Φi, W), i = 1, . . . , n,

E λ̂n(x0) = E ̂λ(x0; H,Φ1, W)

and

Var λ̂n(x0) = 1

n
Var ̂λ(x0; H,Φ1,W).

As mse λ̂n(x0) is the sum of the squared bias and the variance the claim follows from
Lemma 1. If the diagonal of H is constant, the fact that κγ is supported on b(0, 1) implies
that

E λ̂n(x0) = 1

hd

∫

b(x0,h)∩W

κγ

(
x0 − u

h

)
λ(u) du
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and

Var λ̂n(x0) = 1

nh2d

∫

b(x0,h)∩W

∫

b(x0,h)∩W

κγ

(
x0 − u

h

)
κγ

(
x0 − v

h

)

× (g(u, v) − 1) λ(u) λ(v) du dv

+ 1

nh2d

∫

b(x0,h)∩W

κγ

(
x0 − u

h

)2

λ(u) du.

Proof of Theorem 1 To prove 1. note that since each hi,n goes to zero, x0 ∈ W and W is
open, for n large enough,

{x ∈ R
d : ||H−1

n (x0 − x)|| ≤ 1} ⊂
d∏

i=1

[x0,i − hi,n, x0,i + hi,n] ⊂ W . (7)

For such n, by a change of variables, the symmetry and support of the Beta kernels and the
proof of Proposition 1, the bias is

1

det(H)

∫

Rd

κγ

(
x0,1 − u1

h1,n

, . . . ,
x0,d − ud

hd,n

)
λ(u) du − λ(x0)

=
∫

b(0,1)

κγ (u) {λ(x0 + Hnu) − λ(x0)} du. (8)

The term λ(x0) can be brought under the integral since κγ is a probability density function.
Fix u ∈ b(0, 1). As x0 + tHnu ∈ W for all 0 ≤ t ≤ 1 and λ is twice continuously differ-

entiable on W the term between curly brackets in the integrand in Eq. 8 may be expanded
as a Taylor series (6) with k = 2:

λ(x0 + Hnu) − λ(x0) = D1λ(x0)(Hnu) + 1

2
D2λ(x0 + θHnu)(Hnu,Hnu)

for some 0 < θ = θ(u) < 1 that may depend on u. Write

D2λ(x0 + θHnu)(Hnu,Hnu) = D2λ(x0 + θHnu)(Hnu,Hnu)

−D2λ(x0)(Hnu,Hnu) + D2λ(x0)(Hnu,Hnu).
Now ∣∣∣D2λ(x0 + θHnu)(Hnu,Hnu) − D2λ(x0)(Hnu,Hnu)

∣∣∣

=
∣∣∣∣∣∣

d∑

i=1

d∑

j=1

hi,nhj,nuiuj

(
λij (x0 + θHnu) − λij (x0)

)
∣∣∣∣∣∣

is dominated by
d∑

i=1

d∑

j=1

hi,nhj,n

∣∣λij (x0 + θHnu) − λij (x0)
∣∣

because |ui | ≤ 1. Since n was chosen large enough for x0 + θHnu to lie in W we may use
the Hőlder assumption to obtain the inequality

∣∣∣D2λ(x0 + θHnu)(Hnu,Hnu) − D2λ(x0)(Hnu,Hnu)

∣∣∣

≤ C||θHnu||α
d∑

i=1

d∑

j=1

hi,nhj,n.
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Write

||Hnu|| =
(

d∑

i=1

h2
i,nu

2
i

)1/2

= bn

(
d∑

i=1

h2
i,n

b2
n

u2
i

)1/2

.

The sum in the expression in the right hand side is uniformly bounded over u ∈ b(0, 1)

since each hi,n/bn converges. Similarly

d∑

i=1

d∑

j=1

hi,nhj,n = b2
n

d∑

i=1

d∑

j=1

hi,nhj,n

b2
n

and the sum in the right hand side is bounded. In summary,
∣∣∣D2λ(x0 + θHnu)(Hnu,Hnu) − D2λ(x0)(Hnu,Hnu)

∣∣∣ ≤ C̃b2+α
n

for a constant C̃ that does not depend on the particular choice of u ∈ b(0, 1) nor on θ ∈
(0, 1). We conclude that, for n large enough,

λ(x0 + Hnu) − λ(x0) = D1λ(x0)(Hnu) + 1

2
D2λ(x0)(Hnu,Hnu) + R(Hnu)

for a remainder term R(Hnu) that satisfies |R(Hnu)| ≤ b2+α
n C̃/2 uniformly over u ∈

b(0, 1).
Returning to the bias (8),

bias λ̂n(x0) =
∫

b(0,1)

κγ (u)D1λ(x0)(Hnu) du

+1

2

∫

b(0,1)

κγ (u)D2λ(x0)(Hnu,Hnu) du

+
∫

b(0,1)

κγ (u)R(Hnu) du.

By Lemma 2,

∫

b(0,1)

κγ (u)D1λ(x0)(Hnu) du =
d∑

i=1

hi,nDiλ(x0)

∫

b(0,1)

ui κγ (u) du = 0.

Furthermore,
1

2

∫

b(0,1)

κγ (u)D2λ(x0)(Hnu,Hnu) du

is equal to

1

2

d∑

i=1

d∑

j=1

hi,nhj,nλij (x0)

∫

b(0,1)

ui uj κγ (u) du = 1

2

d∑

i=1

h2
i,nλii (x0)V (d, γ )

because, again by Lemma 2, the cross terms with i �= j are zero. Finally, since κγ is a
probability density function, for n large enough,

∣∣∣∣
∫

b(0,1)

κγ (u)R(Hnu) du

∣∣∣∣ ≤ C̃

2
b2+α
n

and 1. is proved.
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To prove 2. note that, as for the bias, n may be chosen large enough for the inclusions in
Eq. 7 to hold. For such n, by a change of variables u = H−1

n (x − x0) and the symmetry and
support of the Beta kernels,

1

n det(Hn)2

∫

Rd

κγ
(
H−1

n (x0 − x)
)2

λ(x) dx

= 1

n det(Hn)

∫

b(0,1)

κγ (u)2λ(x0 + Hnu) du.

Fix u ∈ b(0, 1). As x0 + tHnu ∈ W for all 0 ≤ t ≤ 1 and λ is continuously differentiable
on W we may use the Taylor expansion (6) with k = 1 to write

λ(x0 + Hnu) = λ(x0) + D1λ(x0 + θHnu)(Hnu)

= λ(x0) +
d∑

i=1

hi,nDiλ(x0 + θHnu) ui

for some 0 < θ = θ(u) < 1 that may depend on u. Thus we may write

λ(x0 + Hnu) = λ(x0) + R(Hnu) (9)

for a remainder term

R(Hnu) =
d∑

i=1

hi,nDiλ(x0 + θHnu) ui = bn

d∑

i=1

hi,n

bn

Diλ(x0 + θHnu) ui .

Since the partial derivatives are continuous and hence bounded on compact sets contained
in W , hi,n/bn → βi > 0 and |ui | ≤ 1 on b(0, 1) we see that |R(Hnu)| ≤ D̃bn for some
constant D̃ and consequently

1

n det(Hn)

∫

b(0,1)

κγ (u)2λ(x0 + Hnu) du

= 1

n det(Hn)
λ(x0) Q(d, γ ) + 1

n det(Hn)

∫

b(0,1)

κγ (u)2R(Hnu) du

by Lemma 2. The bound on the remainder term R(Hnu) implies that
∣∣∣∣

1

n det(Hn)

∫

b(0,1)

κγ (u)2R(Hnu) du

∣∣∣∣ ≤ 1

n det(Hn)

∫

b(0,1)

κγ (u)2|R(Hnu)| du

≤ bnD̃

n det(Hn)
Q(d, γ ).

Now
bn

n det(Hn)
= bn

nbd
n

∏d
i=1(hi,n/bn)

= O

(
1

nbd−1
n

)

because hi,n/bn → βi for some βi > 0 as n → ∞. We arrive at

1

n det(Hn)2

∫

W

κγ
(
H−1

n (x0 − x)
)2

λ(x) dx

= λ(x0)Q(d, γ )

n det(Hn)
+ O

(
1

nbd−1
n

)
(10)

as n → ∞.
We will now show that the contribution of the interaction structure (via the pair corre-

lation function) to the variance is negligible. Again choose n so large that the inclusions
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in Eq. 7 hold. Then, by a change of variables and the symmetry and support of the Beta
kernels, the double integral in Eq. 5 in Proposition 1 reduces to

1

n

∫

b(0,1)2
κγ (u) κγ (v)

× (g(x0 + Hnu, x0 + Hnv) − 1) λ(x0 + Hnu) λ(x0 + Hnv) du dv.

Since the pair correlation function is assumed to be bounded on W , say g(·, ·) ≤ g, and
x0 + Hnu ∈ W for all u ∈ b(0, 1) the double integral can be bounded in absolute value by

1 + g

n

(∫

b(0,1)

κγ (u) λ(x0 + Hnu) du

)2

= 1 + g

n

(∫

b(0,1)

κγ (u) {λ(x0) + R(Hnu)} du

)2

,

cf. Eq. 9. The integrand in the right hand side is bounded in absolute value by

κγ (u)
{
λ(x0) + D̃bn

}
and therefore the interaction structure contributes O(1/n) to the

mean squared error. Upon adding Eq. 10, we conclude that

Var λ̂n(x0) = λ(x0) Q(d, γ )

n det(Hn)
+ O

(
1

nbd−1
n

)
+ O

(
1

n

)

as n → ∞. To complete the proof note that the last term in the right hand side is negligible
or of the same order compared to the middle one.

Proof of Corollary 1 By Theorem 1 the squared bias reads
(∑d

i=1 h2
i,nλii(x0)

2(d + 2γ + 2)

)2

+ 2R(bn)

∑d
i=1 h2

i,nλii(x0)

2(d + 2γ + 2)
+ R(bn)

2 (11)

for a remainder term R(bn) for which there exists a scalar M such that |R(bn)| ≤ Mb2+α
n

for large n. Because

R(bn)

d∑

i=1

h2
i,nλii(x0) = b2

nR(bn)

d∑

i=1

h2
i,n

b2
n

λii(x0)

and h2
i,n/b

2
n → β2

i > 0, n → ∞, the second term in Eq. 11 is O(b2
nb

2+α
n ) = O(b4+α

n ). The

third term R(bn)
2 is O(b4+2α

n ) and therefore negligible. Hence

(
bias λ̂(x0)

)2 =
(∑d

i=1 h2
i,nλii(x0)

2 (d + 2γ + 2)

)2

+ O(b4+α
n )

as n → ∞ and the claimed expression for the mean squared error follows from Theorem 1.
If we restrict ourselves to the case that the entries on the diagonal of Hn are equal, the

asymptotic mean squared error takes the form

αh4
n + β

nhd
n

for some scalars α and β that are strictly positive under the assumption that
∑

i λii (x0) �= 0.
Equating the derivative with respect to hn to zero yields the score equation

(hn)
3+d+1 = dβ

4nα
.
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The second derivative with respect to hn, 12αh2
n + d(d + 1)βn−1h−d−2

n , is strictly posi-
tive and therefore the solution to the score equation corresponds to the unique minimum.
Plugging in the expressions for α and β completes the proof.

Proof of Proposition 2 Since each hi,n goes to zero, x0 ∈ W and W is open, for n large
enough, the inclusions in Eq. 7 hold and, using Lemma 1,

λ̂n(x0) − Eλ̂n(x0) = λ̂n(x0) − 1

det(Hn)

∫

Rd

κγ
(
H−1

n (x0 − x)
)

λ(x) dx

can be written as an average of n independent random variables

Zi := ̂λ(x0; Hn, Φi,W) − 1

det(Hn)

∫

Rd

κγ
(
H−1

n (x0 − x)
)

λ(x) dx

with EZi = 0. Furthermore, by Theorem 1,

Var

(
1

n

n∑

i=1

Zi

)
= λ(x0) Q(d, γ )

n det(Hn)
+ R(bn)

for a remainder term R(bn) satisfying nbd−1
n |R(bn)| ≤ M for some M > 0 and large n. By

Chebychev’s inequality, for all ε > 0,

P

⎛

⎝
∣∣∣∣∣
1

n

n∑

i=1

Zi

∣∣∣∣∣ ≥ ε−1/2

√√√√λ(x0) Q(d, γ )

nbd
n

d∏

i=1

β−1
i

⎞

⎠

≤ ε

d∏

i=1

βi

nbd
n

λ(x0) Q(d, γ )

(
λ(x0) Q(d, γ )

ndet(Hn)
+ R(bn)

)
.

Since bn/hi,n → 1/βi and βi > 0, the upper bound tends to ε as n → ∞ and therefore

1

n

n∑

i=1

Zi = OP

(
n−1/2b

−d/2
n

)
.

To finish the proof note that the bias expansion 1. in Theorem 1 implies that the bias is
O(b2

n).
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