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Introduction

This thesis adresses the formal semantics of programming and specification
languages for concurrent discrete event systems. Moreover it is concerned with
various applications of such semantics.

A formal semantics is a mapping that relates to each program or
specification in a language a computational structure (or a class of structures)
in some semantic, mathematical domain. The intention is that a semantical
object related to a program or specification models the behaviour of a com-
puter system that executes the program, resp. the behaviour of a system that is
described in the specification.

Both programming and specification languages are designed with some for-
mal or intuitive semantics in mind. The distinguishing feature of a program-
ming language however is that either there exists a physical machine which can
realise a behaviour structure associated to a language element (with a high pro-
bability), or, at least, we know how to build such a machine in principle. For
a fixed semantics, a programming language must be executable. For a
specification language on the other hand, this is not required. It is hard to
establish the exact boundary between programming and specification
languages. Clearly a lot of languages can be and have been implemented.
There are also languages for which we do not know how to implement them.
Finally, given the existence of undecidable problems and assuming the
Church-Turing thesis, some languages can never be implemented. In general
however, certain parts of a specification language will always be executable.

In this thesis I will model systems in terms of the events that they generate
in time. I will restrict attention to systems that are discrete in the sense that at
any moment the set of events that have occurred is finite. Often the systems
that will be considered consist of a number of components, each of them gen-
erating events independently or concurrently. Examples of concurrent discrete
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event systems are parallel computers, operating systems, telephone switching
systems, distributed database systems and delay insensitive circuits.

The first section of this introduction contains a discussion of the aim and
scope of semantic theories. I will list some of the questions which in my view
should motivate research on semantics and point out a number of areas where
semantic theories have contributed. Then I will sketch briefly, in Section 2,
the main ingredients of the semantic theory for concurrency as it has been
developed over the last ten years. In Section 3, I will present an overview of
the contents of this thesis. Referring to the first section, I will indicate what
are the questions that will be addressed in the thesis. Section 2 will allow me
to position my work within the theory of concurrency semantics.

1. AIM AND SCOPE OF SEMANTIC THEORIES

1.1. Language design. Formal semantics can be useful in the design of a
language. In the case of functional and logic programming one could even say
that the semantics, as mathematical theories, existed before the programming
languages, and that these languages were created in an attempt ‘to implement
their semantics’.

A typical situation which occurs during language design is that implemen-
tors as well as (future) users want to introduce in a language lots of features
which (1) are easy to implement, (2) often allow for short and fast programs,
(3) do not fit at all in the semantic model of the language. Often in such a
case, a semanticist will oppose incorporating this type of features in the
language because they will lead to unstructured programs whose correctness is
very hard to prove. As argued by AMERICA [3], it is a good rule of thumb to
say that there is a problem in the language design whenever the description of
a language feature that is considered to be inessential requires a special adap-
tation of the overall semantic model used to describe the language. A typical
example is the goto-statement in languages like Pascal. In many cases however
the gain in efficiency and practical usefulness obtained by extending a
language with features that are outside the semantic model is so immense that
they are just added, whether the semanticists appreciate it or not. The success
of languages like LISP and Prolog for instance is due to a large extent to the
imperative features which they incorporate. Therefore, only certain parts of
real-life languages will have a neat underlying semantic theory. The job of the
semanticist here is to help the language designer to make these parts as large
as possible (without restricting the general expressiveness of the language too
much), and to explain to programmers why they should try not to use certain
constructs.

Informal language definitions as one can find in manuals are sometimes
imprecise, ambiguous or incomplete. This can be ruled out by a formal
language definition. One may hope that when persons who write language
manuals base their work on a formal language definition, this will lead to a
clearer and more systematic exposition. It is wrong to bother a user with all
the details of a language implementation. If the language is provided with an
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operational semantics, then (ideally) a simple and intuitive presentation of the
abstract machine model underlying this semantics, can be used to explain the
language to a user.

1.2. Correctness of programming language implementations. A formal semantics
will often present us with a rather abstract view of the behaviour of a program.
It is exactly this abstractness which makes it possible to reason about pro-
grams and their correctness. Eventually, of course, the aim of writing pro-
grams is to run them on a computer, i.e. a concrete, physical machine. All rea-
soning at the level of the abstract, mathematical semantics would be com-
pletely useless if there would not be a strong relationship between the
mathematical semantics of a program and what happens in physical reality
when the program is executed on a computer. If one has proved a program
correct with respect to the mathematical semantics, then one wants to be quite
sure that the output of the computer will be correct when running the pro-
gram. In the case of current high level programming languages a semantics
often provides a very abstract view of what goes on during execution of a pro-
gram, and there is a huge distance between this view and what actually goes
on in the machine. I think that a good theory of semantics can and should
play a crucial role in bridging the gap between the two views. Often it will be
necessary to provide, instead of a single mathematical semantics, a whole
sequence of semantics for a language, ranging from a ‘fully’ abstract semantics
used for reasoning about programs, to a semantics that relates to a program a
mathematical object, a description of a machine that in its behaviour closely
resembles the physical machine that will have to execute the program. It is
part of a theory of semantics to establish the behavioural relationships between
consecutive semantics in the sequence. I would like to stress that this is a
mathematical activity. Establishing the relation between the machine model
underlying the last semantics of the sequence and the physical machine is a
task for physicists and the people who build the machines. Ideally, there is a
strong mutual influence between semanticists and machine builders. The
semanticists should tell the machine builders which abstract machines have
nice computational properties and are worth implementing. On the other
hand the machine builders have to tell the semanticists what type of machine
models can be realised physically, and whether or not the models of the
semanticists adequately describe the behaviour of computer equipment. In a
time when on the one hand programming languages are based on increasingly
more abstract concepts, and on the other hand the architectures of the
machine on which these programs have to run become increasingly more com-
plicated, a large effort is needed in the field of semantics to establish the
behavioural relationships between the abstract models and the physical
machines. That these relationships are by no means trivial, and sometimes
even absent, will be illustrated in the section of this thesis which deals with the
semantics of the language POOL.

Ideally, an abstract semantics provides a standard which can be used to say
whether or not a physical machine correctly implements a language. At
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present however, a rigorous proof that the behaviour of a physical machine is
correctly modelled by some abstract semantics is completely out of scope in
most cases. Only in particular instances (I am thinking of the implementation
of the language occam on the transputer) it seems a feasible exercise right now.
But even though a complete proof of correctness of an implementation is not
feasible in most cases, it is possible to prove correctness of certain crucial
parts. Research in the area of ‘comparative concurrency semantics’ has pro-
vided us with a lot of insight in the various possible behavioural relations
between abstract machines.

It would be nice if, starting from a formal semantic model of some language,
one could generate efficient implementations automatically. Unfortunately this
does not seem to be feasible at the moment. However, in some cases it is pos-
sible to generate prototype implementations based on a formal semantics. Such
prototypes can be useful in the language design phase.

Assuming that a machine correctly implements a language relative to some
abstract semantics, this semantics in turn can be used to increase efficiency. If
a user has written a program P 1 and wants to execute this, then one may exe-
cute instead any program P2 which is semantically equivalent with P 1. In par-
ticular one may choose P2 in such a way that it is more efficient than P 1 (fas-
ter, less use of storage capacity, etc.).

1.3. Notions of implementation and proof systems. In the previous section I dis-
cussed the notion of implementing a programming language on a physical
machine and the idea of showing that such an implementation is correct with
respect to a mathematical semantics. I argued that often it is wise to introduce
a number of intermediate mathematical semantics. In a natural way this leads
to the introduction of an implementation relation between the elements of the
various semantic domains. Often we have that two semantic mappings, an
abstract and a concrete one, both map programs into the same semantic
domain. In such cases we have to define an implementation relation on the
semantic domain itself. Typically, such an implementation relation will be a
pre-order, i.e. a transitive and reflexive relation. This type of implementation
relation turns out to be extremely important, not only for proving correctness
of machine implementations of programming languages. Given a notion of
implementation for a specification language, one may try to establish that a
specification which is not in the class of executable specifications, can be
implemented (in the mathematical sense) by some member of the language
which is in this class.

Specification languages which are not fully executable can still be very
important, basically because of the connection with the stepwise refinement
method. This method advocates a system construction route that starts with
some high level, declarative, nonexecutable (or merely inefficient) specification,
goes via a number of intermediate development steps which are provably
correct with respect to some implementation relation, and ends with an
efficiently executable program. The stepwise refinement method naturally
leads to mixing programming parts with (nonexecutable) specification parts.
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An important part of semantical theories should be (and is) devoted towards
defining sensible notions of implementation, and the development of proof sys-
tems and associated decision procedures for establishing these implementation
relations. The idea that all programs should be developed rigorously, using a
stepwise refinement method, or should be verified formally is absurd, mostly it
is just not worth the effort, but some programs are used in such critical appli-
cations (space shuttles, banking systems, etc.) that a large effort for proving
correctness is justified. Even though much can still be improved, semantic
theories have contributed substantially in this area. Typical issues which play a
role here are the soundness and completeness of proof systems: all provable
statements should be true and moreover any true statement that can be formu-
lated in the language of the proof system should be provable. In designing
implementation notions and proof systems, the semanticist is in interaction
with the programmers and system designers. The semanticists should provide
these people with simple, sound and complete proof systems which are still
expressive enough for capturing important intuitions and proving relevant pro-
perties. Now and then a semanticist should reveal a serious bug in a system
that has not been verified rigorously, thus stressing the importance of a more
systematic approach to design and verification of programs.

Summarising, I sketched in this section a picture of a semanticist as someone
who plays a role intermediate between the designers of a language, the imple-
mentors and the users (system designers and programmers). The semanticists
produces mathematical theory which helps these people in doing their job. In
the next section I want to say more about the internal structure of semantic
theories.

2. INGREDIENTS OF SEMANTIC THEORIES FOR CONCURRENCY

Below I list some important ingredients of semantic theories for programming
and specification languages for concurrent discrete event systems. Here I
profited from a similar listing which occurs in [23].

2.1. System models, semantic domains of computation structures. Many different

semantic domains for modelling concurrent systems have been proposed. Just

to give an idea, a few of them will be listed, together with some basic refer-

ences:

- (labelled) transition systems [21].

- Petri nets [30]. There are many variants: C/E systems, P/T nets, safe
nets, high-level Petri nets, timed Petri nets, etc.

- Event structures [35]. Again there are many variants: prime e.s., stable
e.s., e.s. with binary conflict, etc.

- Mazurkiewicz traces [25].

- 170 automata [22].

- De Bakker-Zucker processes [7].

- Aczel’s process domain of non-well-founded sets [1].

- The failure set model of [11].
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Sometimes these models are equivalent, they just give different representations
of what is essentially the same system behaviour. Often however, one model
captures more features of system behaviour than another. In Petri nets for
instance, one can describe that two events are causally independent (or con-
current). Independence of events is not a primitive notion in labelled transi-
tion systems. Similarly, labelled transition systems preserve the branching
structure of a process, whereas this information is not fully preserved if one
describes a system by a failure set.

2.2. Behavioural equivalences and notions of implementation. The semantics of
concurrent and reactive systems is inherently more complex than for non-
reactive systems. For non-reactive systems, it is clear what the observable
behaviour of a system is: an input/output pair, leading to a semantic descrip-
tion of a system as a (partial) function, or in the nondeterministic case, a rela-
tion. For concurrent/reactive systems, there is no single, canonical notion of
observable behaviour, but rather a multiplicity of such notions, leading to a
multiplicity of behavioural equivalences: given a set A of observable proper-
ties, one can define an equivalence ~ on the semantic domain by:

p~q iff for any 4 €A : p satisfies 4 < g satisfies 4.

Often the relationship between two semantic domains can be characterised
in terms of some (behavioural) equivalence: the elements of one semantic
domain represent equivalence classes of the elements of another semantic
domain.

Behavioural equivalences on a semantic domain form an important category
of implementation relations. In fact this is the only type of implementation
relations that will be considered in this thesis. Often it is argued that an
implementation relation should not be symmetric: besides providing the service
required by the specification, an implementation may do much more. The
main reason why I have been able to prove correctness of implementations
using a symmetric notion of implementation is that I considered languages
with a built-in abstraction mechanism: this mechanism allows to disregard
those behavioural aspects of an implementation which do not occur in the ser-
vice specification. At present I do not know whether it is feasible to use sym-
metric implementation relations for the verification of larger systems.

2.3. Programming and specification languages with interpretations in semantic
domains. We are faced with an almost infinite amount of programming and
specification languages for concurrent systems. One can try to classify these
languages by looking at the programming or specification paradigm they
adhere to (object oriented, functional and logic programming, data flow com-
putation, etc.). For each particular paradigm there will be a certain amount of
semantic theory dealing with the peculiarities of that paradigm. For instance,
in logic programming one will study the issue of resolution, in object-oriented
programming one tries to understand what an ‘object’ is, etc.

Besides semantic theory that is specific to a single paradigm, there is also
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theory dealing with concurrent languages in general. One can try to say some-
thing general about how to map a language to a semantic domain, how to give
a compositional semantics, etc. Milner had the idea that for a proper under-
standing of the basic issues concerning the behaviour of concurrent systems it
could be helpful to look for a simple language, with ‘as few operators or com-
binators as possible, each of which embodies some distinct and intuitive idea,
and which together give completely general expressive power’ [27]. Besides
Milner’s calculi CCS and SCCS [26,27], several other calculi have been
developed with this idea in mind, such as TCSP [19], MEDE [4] and ACP [8,9].
These calculi are all very similar and this supports the idea that indeed some
fundamental notions have been discovered. Work by DE SIMONE [31, 32] more-
over supports the claim that these languages have a ‘completely general expres-
sive power’. This expressiveness makes that the languages are not fully execut-
able and therefore are to be viewed as specification languages rather than as
programming languages.

Starting with an example in [26], several high-level languages have been
translated to CCS-like calculi. Inevitably, some of the structural properties of
high-level languages get lost in such a translation. Often however, the rich
semantic theory which is available for the basic calculi makes such translations
really worth the effort.

2.4. Proof systems for showing implementation relations and semantic equivalence.
It turns out that, at least for the basic calculi, most semantic equivalences and
implementation relations can be characterised by means of simple (often even
equational) axiomatisations. Of course one can always try to establish
behavioural equivalence of two expressions at the level of the semantic
domain. For a number of reasons however, I think that often it is advanta-
geous to carry out verifications on the syntactic rather then the semantic level.
I will come back to this issue in Section 3.2.

2.5. Property languages with satisfaction relations. When reasoning about
semantic objects, there is a need for languages that can be used to express that
a semantic object has a certain property. Such languages will be called property
languages. In general, a property language is just a set of logic formulas.
Further we have that the computational structures which form the semantic
domain of programs can serve as models (in the logical sense) for the formulas.
A semantical object (and hence a program) may or may not satisfy some for-
mula. Some well known property languages are: temporal logic, Hennessy-
Milner logic and trace logic. Sometimes, a single language can serve as a pro-
perty language as well as a specification language. Consider, as an example,
trace logic. A labelled transition system or a Petri net may or may not satisfy a
certain trace formula. But on the other hand, working in a semantic model of
trace sets, a trace formula can be interpreted as a trace set (namely the set of
traces for which the formula holds).
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2.6. (Compositional) proof systems for property languages. Given a property
language and an associated satisfaction relation, it is useful to have a proof
system for proving that a semantic object denoted by some program or
specification satisfies a certain formula. These proof systems should preferably
be compositional: it should be possible to prove a property of a composite sys-
tem from properties of its components.

2.7. Comparative concurrency semantics and classification of properties. The
incredible amount of available semantic models and behavioural equivalences
asks for a systematic approach. Within the field of semantics, the discipline of
comparative concurrency semantics aims at the construction of a lattice of pro-
cess semantics, ordered by a relation ‘makes at least as many identifications
as’. Moreover the various features which can be described in a certain process
semantics are to be identified. This will facilitate the task of finding an
appropriate semantics for a given application.

Any semantics provides an answer to the following basic question: ‘When
do two expressions have the same meaning?’ Often however, the ways in which
two semantic mappings are defined are so completely different, that at first
sight it is not clear at all that they both give the same answer to the above
question. A comparative concurrency semantics should therefore try to
characterise what is essentially a single semantics, in as many ways as possible.
Below some of the possibilities are listed:

1. A characterisation in terms of equivalence classes of concrete semantic
objects which somehow reflect the ‘operational’ behaviour associated to a
program or specification.

2. A more abstract explicit representation, i.e. an interpretation in a seman-
tic domain whose elements are not equivalence classes of some concrete
domain. When the interpretation is moreover compositional and fixed
point theory is used to deal with recursion in the language, this type of
semantics is often called ‘denotational’.

3. An algebraic characterisation of semantic equality: two terms are equal if
their identity can be proved by means of given algebraic laws.

4. A logic characterisation. Two expressions are semantically equal iff certain
concrete semantic objects associated to them satisfy the same properties.

5. A characterisation in terms of a ‘button pushing scenario’. To each
expression an abstract machine is associated. Two expressions are con-
sidered semantically equal iff an experimenter, given a repertoire of exper-
iments (like pushing buttons) and a set of possible observations (like read-
ing a terminal screen), cannot observe any difference between the
machines.

6. A characterisation in terms of a simple observation criterion and a
language for which the semantics is ‘fully abstract’. If Obs(p) denotes the
set of observations one can do on expression p in some language L, then
an equivalence ~ on L is ‘fully abstract’ with respect to Obs iff:

p~q < for all L-contexts C[] : Obs(C[p])=0bs(C[q]).
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7. A characterisation by means of abstraction homomorphisms (see for
instance [12]).

3. OVERVIEW OF WORK IN THIS THESIS

Besides the introduction, this thesis consists of the following six papers:

1. (with Jan Friso Groote). Structured operational semantics and bisimulation
as a congruence, Report CS-R8845, Centrum voor Wiskunde en Informa-
tica, Amsterdam, 1988. Submitted to Information and Computation. An
extended abstract appeared in: Proceedings ICALP 89, Stresa (G.
Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), LNCS
372, Springer-Verlag, pp. 423-438, 1989.

2. (with Rob van Glabbeek). Modular specifications in process algebra. This
paper is obtained by leaving out the sections on ‘curious queues’ from the
paper: Modular specifications in process algebra - with curious queues,
Report CS-R8821, Centrum voor Wiskunde en Informatica, Amsterdam,
1988. Submitted to Theoretical Computer Science. An extended abstract
appeared in: Algebraic Methods: Theory, Tools and Applications (M.
Wirsing & J.A. Bergstra, eds.), LNCS 394, Springer-Verlag, pp. 465-506.

3. Two simple protocols, to appear in: Applications of process algebra,
(J.C.M. Baeten, ed.), 1990, pp. 23-44.

4.  Some observations on redundancy in a context, Report CS-R8812, Centrum
voor Wiskunde en Informatica, Amsterdam, 1988, to appear in: Applica-
tions of process algebra, (J.C.M. Baeten, ed.), 1990, pp. 237-260.

5. Process algebra semantics of POOL, Report CS-R8629, Centrum voor
Wiskunde en Informatica, Amsterdam, 1986, to appear in: Applications of
process algebra, (J.C.M. Baeten, ed.), 1990, pp. 173-236.

6. Determinism — (event structure isomorphism = step sequence equivalence),
Report CS-R8839, Centrum voor Wiskunde en Informatica, Amsterdam,
1988. Submitted to Theoretical Computer Science.

These papers can be read independently, except that papers 3, 4 and 5 use the

language and axioms of ACP, as presented in paper 2. '

Below I will comment on the papers separately. It is not my aim to give a
complete overview of the results that have been obtained. Each paper has an
introductory section where the results of that particular are summarised and
also a comparison is made with related work.

3.1. Structured operational semantics. The first paper in this thesis was written
last. It is concerned with a certain type of conditional rules, used for defining
transition system semantics of (programming) languages. About ten years ago,
the semantics of concurrency was generally considered to be a difficult issue
and for many languages one did not know how to obtain a simple and intui-
tively convincing semantics. But then suddenly these conditional rules
appeared. Since then, nobody can claim any more that it is difficult to give at
least one (operational) semantics to any programming language used in prac-
tice: with these rules it has become more or less trivial. It seems that the idea
of using conditional rules for giving semantics to concurrent programming
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languages arose first in Edinburgh. The first publication I know of on seman-
tics of parallelism in which the rules occur is a paper by HENNESSY & PLOTKIN
[18] from 1979. Clearly, Plotkin was the one who most emphatically stressed
the importance of the rules. Anyway, by now they are used widely and cer-
tainly form the most popular way to give an operational semantics to parallel
programming languages. Therefore it was a bit surprising that there was
almost no general, theoretical work on ‘Plotkin style rules’. Notable exceptions
were the Ph.D. Thesis of DE SIMONE [31] (see also [32]) and a recent paper by
BLooM, ISTRAIL & MEYER [10]. Together with Jan Friso Groote, I studied the
question if it would be possible to know, just by looking at the form of the
rules used for describing a certain language, various basic properties of the
induced transition system semantics. In the first paper of this thesis this prob-
lem is addressed and it is shown that indeed the general form of the condi-
tional rules already determines many key properties such as whether or not
bisimulation is a congruence, the effect of adding new language constructs and
rules on the semantics, and the nature of a fully abstract model determined by
the operational rules.

Maybe one reason why semanticists have paid almost no attention to a gen-
eral theory of Plotkin style rules is the fact that they are so simple to use.
Because semanticists do not like to deal with trivialities, they tend to spend
only a very small amount of their time on giving a Plotkin style operational
semantics for a particular language; after that they rush forward to more
difficult questions, like compositionality and full abstractness. I hope that the
first paper of this thesis convinces people that it is worthwhile to spend a sub-
stantial amount of time on operational semantics. If one selects semantic rules
carefully (and this is not a trivial task) then compositionality, full abstraction
and all the rest may follow more or less automatically.

3.2. Modular specifications in process algebra. In Section 2, I pointed out that
there are many different types of process semantics. In general, there is no
clear reason to prefer one type of semantics over another: what is optimal
depends on the particular application one has in mind. Besides the variety in
process semantics, there is also a huge variety in languages. In order to deal
with this combined complexity, I will employ in this thesis, as much as possi-
ble, an algebraic, axiomatic approach, that is I prefer to reason about pro-
grams and specifications on the level of syntax, using (infinitary, conditional)
equations, instead of working on the level of semantics, i.e. in terms of the
semantic objects associated to expressions. In my view, the advantages of this
approach are the following:

1. The use of an algebraic, axiomatic approach is highly organising and uni-
fying. As described in Section 2.7, there are many different ways to give
semantics to languages. Often the only meaningful way to compare
different semantics is to look which expressions are identified in each of
them. It is exactly this crucial information that can be expressed by means
of axioms. Often it occurs, and this is very illuminating to see, that the
difference between two process semantics, which have been defined by
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different people, at different places, in a completely different style, can be
characterised in terms of one or two simple axioms.

2. Results from mathematical logic and the theory of abstract data types can
be used. That this is not just a theoretical possibility, is illustrated in the
second paper, where some nontrivial results from the field of universal
algebra are used to solve certain semantic problems in concurrency.

3. System verifications can be done independent of a particular model. If
one has proved correctness of say a communication protocol, using a cer-
tain set of axioms, then one knows that the protocol will be correct with
respect to all models of these axioms. Thus system verifications become
reusable.

Of course the algebraic approach also has disadvantages. There are many

important issues in concurrency which cannot be dealt with algebraically. If

one places too much stress on algebra, then one will tend to disregard the
other issues, and this endangers the applicability of the theory. Let me give
some examples.

1. Binding of variables is needed if one wants to describe value passing
between processes. In this thesis I use binding of variables as a kind of
notation, which is not formally present in the language, just because I
want to stay in the realms of algebra. This is not the type of solution that
one would like to see in a full-grown methodology.

2. I think that property languages are very important, also for establishing
implementation relations in more advanced applications. Property
languages do not really fit into an algebraic/axiomatic framework.

3. A next weak point of the algebraic methodology is that almost all relevant
decision procedures can be described best on the semantic level. In this
thesis I present some system verifications, but I do not present any algo-
rithms which could be used to let a computer do these verifications also.
It is just completely unclear how one could do such a thing in an alge-
braic way. It should be noted here that the algebraic approach allows one
to do certain verifications which certainly could not be done by any exist-
ing (model based) tool. Most computer tools are developed for doing
finite state verifications. As soon as the state space becomes infinite, or if
one wants to verify some very generic statement like that the implementa-
tion of a programming language is correct, tools crash immediately.

4. At present there are no convincing axiomatisations for non-interleaved
models. Maybe this explains why people advocating an algebraic,
axiomatic approach to concurrency mainly work in the setting of inter-
leaving, even when they agree that non-interleaved models are interesting.

The axiomatic theory, which is presented in the second paper, is essentially

the Algebra of Communicating Processes (ACP) of BERGSTRA & KuiropP [8,9]

augmented with a number of operators and axioms to make specification and

verification of larger systems feasible. The main contribution of this paper is a

structured presentation of operators and axioms using a notion of module. A

module is a small collection of operators and axioms describing some feature

of concurrency. Modules can be combined in various ways using module
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operators.

In a rather strong sense the axioms as presented in the second paper
correspond to what is called rooted-r-bisimulation equivalence in [6] and weak
bisimulation congruence in [28]. The idea is that, whenever possible,
verifications are carried out using the laws of (rooted-r-)bisimulation seman-
tics. If this turns out not to be possible, then one can always add some laws.
The motivation for doing things in this way is that: (1) mathematically,
bisimulation is a very pleasant notion, it is a natural first behavioural abstrac-
tion from transition systems; (2) the axioms which capture bisimulation seman-
tics are simple; (3) at least for finite state systems, deciding bisimulation is
easy, this in contrast with all (interesting) equivalences which identify more;
(4) roughly speaking, bisimulation semantics is the most refined semantics in
which nontrivial system verifications are possible. Doing it with fewer laws is
not feasible at the moment, often there is no need to use more laws.

Currently, some work is done on axiomatising even finer equivalences. First,
there is the work by VAN GLABBEEK & WEDLAND [17] on the branching bisimu-
lation, which is a variant of the semantics that underlies the axioms in this
thesis but gives a more subtle treatment of the silent step 7. Second, there is a
paper by DARONDEAU & DEGANO [14] which contains a very good idea about
how to axiomatise non-interleaved equivalences. I am convinced that, when the
ideas of both papers have been worked out, many system verifications can be
performed in these more discriminating semantics.

Clearly however, there are cases where the interleaving bisimulation seman-
tics already does not work because it makes unnecessary distinctions between
processes. One of these cases will be discussed in the paper about POOL.

3.3. Two simple protocols. In the third paper of this thesis, simple versions of
the alternating bit protocol and the positive acknowledgement with retransmis-
sion protocol are specified and verified in the framework of ACP. These exam-
ples together with many other similar case studies (see for instance [5]) clearly
show that it is possible and also useful to describe and analyse small systems
in terms of process algebra. Certain features are dealt with in a slightly ad hoc
way (for instance: fairness by means of the so-called Koomen’s Fair Abstrac-
tion Rule, and time-outs using a priority operator) but generally speaking I
think that the modelling is reasonably convincing. A more serious problem is
how this type of verifications can be scaled up so that they become useful for
‘real’ applications.

To begin with, there is a problem with the language that I used. I tend to
view ACP as a kind of assembly language for concurrency. In order to give
precise and structured specifications of larger systems it becomes necessary to
have higher level, more sophisticated languages. Candidates are LOTOS [20] or
the ACP-based PSF [24], but personally I think that these proposals are far
from ideal. In the first place they do not provide the flexibility and expressive-
ness that I would like to have, in the second place system verification becomes
highly problematic as soon as you start to use the specification constructs that
these languages have on top of say the ACP framework as presented in the
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second paper of this thesis. For instance, in LOTOS as well as PSF it is
allowed to input a value over an infinite data type. There is almost no theory
about deciding behavioural equivalence of expressions that contain such a con-
struct.

But also when using the ACP axioms, verification becomes difficult when the
systems under consideration grow larger. In [34], I described a case study deal-
ing with the verification of a one bit sliding window protocol. This protocol is
not trivial (in fact I managed to discover a small error in the description of the
protocol in [33]) but when compared with many existing protocols it is small in
size and complexity. For me this case study was very instructive. It showed
that the ACP axioms basically allow for one type of verification only: brute
force state space exploration using the expansion theorem. The verifier can
bring in some cleverness by first expanding and minimizing certain subexpres-
sions (a technique called local replacement in [34]). Still this is not the way in
which one would like to reason about protocols: it is rather boring, provides
not much insight and takes a lot of time. Machines are good in brute force
calculations and they don’t mind doing boring work. However, the
phenomenon of combinatorial state space explosion will make that, when the
protocols become a bit larger, also computers will not succeed in exploring all
the states.

If one looks for some time at a protocol like the one bit sliding window pro-
tocol as presented in [34], one just ‘sees’ that it is correct: one has constructed
a chain of arguments which somehow makes one believe in the correctness of
the protocol. What one would like to have is a formal verification technique
that allows one to formalise these arguments rather directly so that one can
check whether the reasoning is correct. A first and very modest step towards
such a verification technique is described in the fourth paper in this thesis.

3.4. Redundancy in a context. When I was involved in the extensive calcula-
tions of [34], it occurred to me that at a number of places it would help a lot if
I could just drop certain summands in a process algebra expression. Intui-
tively, it was obvious that these summands could be omitted because they
corresponded to behaviours of components in the system that could never be
realised due to the context in which these components were placed. The sum-
mands were so to say redundant in the given context. When I tried to formal-
ise the intuitive reasoning for showing redundancy of summands, it turned out
that in all cases that I considered this could be achieved using properties of the
sets of traces of processes. I proved the soundness of a rule saying that one can
omit a certain summand in a process expression if the trace sets of some
subexpressions have certain properties. In order to make this rule practically
useful in verifications, I needed a property language for expressing that the
traces of a process have some property, together with a proof system. Here I
used a many-sorted first-order predicate logic, which is called trace logic. It
was employed before by many others (see for instance [13,29,36]). In the
fourth paper the idea of using trace logic for proving behavioural equivalence
of process expressions is worked out and its usefulness is illustrated by means



14 Introduction
of a verification of a small workcell architecture.

3.5. Process algebra semantics of POOL. The main case study in this thesis is
reported in the fifth paper. There I describe a translation of the Parallel
Object-Oriented Language POOL to the ACP language. Moreover some results
are obtained about the correctness of implementations of POOL. There are a
couple of remarks on the paper that I would like to make here.

One of the main ideas behind the translation from POOL to ACP was that
it would provide us with a large number of semantics for POOL, one for each
interpretation of the ACP language. In the paper it is pointed out that the
Koomen’s Fair Abstraction Rule from ACP does not give one the right notion
of fairness for POOL. Since no other fairness notion was available for process
algebra at the time at which the paper was written, the issue of fairness was
left as an open problem. Recently much work has been done on giving seman-
tics to ACP-like languages using Petri nets (see for instance [15,16,29]). Now
I claim that the notion of place fairness, which is well known for Petri nets,
gives exactly the right notion of fairness for POOL if we use the ACP transla-
tion given in this thesis together with an interpretation of ACP in the domain
of Petri nets in the style of [15,29] (In [16] only finite processes are discussed.)

In the paper on POOL I prove that a semantical description of POOL (as
defined in [2]) based on handshaking communication between objects, is
incompatible with an implementation where message queues are used. Since
any implementation of POOL will use message queues, and moreover the
language designers really want users to think about communication between
objects in terms of handshaking, this result meant that there was an error in
the language design. The error was due to the most complex construct in the
POOL language, namely the ‘select statement’. This select statement was a ter-
rible construct anyhow, in the paper no less than three pages are needed to
describe its semantics. For these reasons the select statement has been
removed altogether in a more recent offspring of the POOL-family of
languages. Instead this language contains a ‘conditional answer statement’.
The questions now is whether the new version of the language can be correctly
implemented using queues. My conjecture is ‘Yes’, but this still requires a
proof. I think that at this moment the proof techniques within the process
algebra formalism are sufficiently strong to tackle this nontrivial but important
problem.

3.6. Deterministic event structures. In computer science there is the extremely
useful distinction between functional behaviour and performance. The idea is
that for a given (distributed) system one first studies whether it is functionally
correct, and only when this has been shown (ideally), one moves to questions
concerning its time/space complexity. The axioms that are used in the previous
chapters of the thesis correspond to what is often called interleaving semantics.
In interleaving semantics the actions of different components in a parallel sys-
tem are interleaved. A typical equation valid in interleaving semantics is
allb=a-b+b-a: if one considers the parallel composition of actions a and b,
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either first a occurs and then b, or b occurs first followed by a. So any intui-
tion that allb is ‘faster’ than a-b+b-a or that in allb the a and the b are
‘causally independent’ whereas in a-b+b-a there are causal links, cannot be
captured in interleaving semantics in terms of primitive notions. Therefore,
interleaving semantics may be appropriate for dealing with functional
behaviour, but it is not really suited for analysing performance. I think that
one important reason why non-interleaved semantics for languages with con-
currency are interesting is that they may help to solve this problem.

A well-known system model that can be used for giving non-interleaved
semantics is the model of event structures. In [35], WINSKEL gives an exposi-
tion of the theory of event structures where he also describes how CCS-like
languages can be interpreted on the domain of event structures. Now it is
interesting to look for behavioural equivalences on event structures that still
preserve features like real-time behaviour, causality and branching time. A
multitude of equivalences have been proposed over the last years and it is a
topic of current research to classify these equivalences and find out which are
the most interesting ones. The concluding paper of this thesis is a contribution
to this area. I prove that for an important class of processes, namely the deter-
ministic ones, almost all of the non-interleaved equivalences that have been
proposed in the literature coincide. More specifically, I will show that step
sequence equivalence and event structure isomorphism agree on the domain of
deterministic event structures. Since step sequence equivalence, which makes a
lot of identifications and is almost an interleaving equivalence, can be axioma-
tised easily, this result can be used to obtain an algebraic characterisation of
event structure isomorphism for deterministic systems.
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In this paper we are interested in general properties of classes of transition sys-
tem specifications in Plotkin style. The discussion takes place in a setting of
labelled transition systems. The states of the transition systems are terms gen-
erated by a single sorted signature and the transitions between states are
defined by conditional rules over the syntax. It is argued that in this setting it is
natural to require that strong bisimulation equivalence is a congruence on the
states of the transition systems. A general format, called the tyft/tyxt format, is
presented for the rules in a transition system specification, such that bisimula-
tion is always a congruence when all the rules fit this format. With a series of
examples it is demonstrated that the tyft/tyxt format cannot be generalized in
any obvious way. Another series of examples illustrates the usefulness of our
congruence theorem. Briefly we touch upon the issue of modularity of transi-
tion system specifications. It is argued that certain pathological tyft/tyxt rules
(the ones which are not pure) can be disqualified because they behave badly
with respect to modularisation. Next we address the issue of full abstraction.
We characterize the completed trace congruence induced by the operators in
pure tyft/tyxt format as 2-nested simulation equivalence. The pure tyft/tyxt for-
mat includes the format given by De SiMONE (1984,1985) but is incomparable to
the GSOS format of BLoom, IsTRAIL & MEYER (1988). However, it turns out that
2-nested simulation equivalence strictly refines the completed trace congruence
induced by the GSOS format.

Key Words and Phrases: Structured Operational Semantics (SOS), transition
system specifications, compositionality, labelled transition systems, bisimulation,
congruence, process algebra, tyft/tyxt format, modularity of transition system
specifications, full abstraction, testing, nested simulations, Hennessy-Milner
logic, De Simone format, GSOS format.
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1. INTRODUCTION

PLOTKIN (1981,1983) advocates a simple method for giving operational seman-
tics to programming languages. The method, which is often referred to as SOS
(for Structured Operational Semantics), is based on the notion of transition sys-
tems. The states of the transition systems are elements of some formal
language that, in general, will extend the language for which one wants to give
an operational semantics. The main idea of the method is to define the transi-
tions between states by, what we call a Transition System Specification (TSS): a
set of conditional rules over the syntax of the language.

In recent years a large number of (concurrent) languages have been provided
with an operational semantics using Plotkin’s approach. Therefore it might be
worthwhile to develop a general theory of structured operational semantics: to
establish a hierarchy of ‘formats’ of transition system specifications and to
investigate the expressiveness and nice properties of each format. We think
that it is possible to develop such a general theory: many important properties
of transition system specifications can be derived by just looking at the syntac-
tic form of the rules. A general theory of SOS will be useful for several rea-
sons. Firstly, certain results will become reusable so that one does not have to
prove them for each individual language separately. Secondly, a general theory
of SOS may lead to a better understanding of the relations between languages
that have been provided with a semantics using the approach. Thirdly, one
may hope that a general theory helps people in giving good operational seman-
tics: if one knows that certain types of rules have bad properties, then one will
try not to use them. Surprisingly, there are not so many papers that contain
general results on SOS. We are only aware of the work of DE SIMONE
(1984,1985) and BLOOM, ISTRAIL & MEYER (1988).

The aim of this paper is to contribute to the general theory of structured
operational semantics. We start from the requirement that strong bisimulation
equivalence should be a congruence for the operators in a transition system
specification. We then show how this requirement leads naturally to a certain
format of rules, which we call the tyft/tyxt format. Next we analyze the pro-
perties of the tyft/tyxt format and make comparisons with related work.

In order to facilitate analysis, we restrict our attention to a specific type of
transition systems: transitions are labelled and as states we have ground terms
generated by a single sorted signature. This is an important subcase: the
operational semantics of languages like CCS (MILNER, 1980), TCSP (OLDEROG
& HOARE, 1986), ACP (VAN GLABBEEK, 1987) and MEUE (BoupoL, 1985) has
been described in essentially this way. However, there are also many examples
of transition system specifications where the set of states is not specified by a
single sorted signature, for instance the semantics for CSP as presented by
PLOTKIN (1983) and the semantics for POOL of AMERICA, DE BAKKER, KOK &
RUTTEN (1986). We hope that the insights derived from our analysis of a basic
case will somehow generalize to more general settings.
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1.1. Bisimulation as a congruence. A fundamental equivalence on the states of a
labelled transition system is the strong bisimulation equivalence of PARK
(1981). Strong bisimulation equivalence seems to be the finest extensional
behavioural equivalence one would want to impose, i.e. two states of a transi-
tion system which are strongly bisimilar cannot be distinguished by external
observation. This means that from an observational point of view, the transi-
tion systems generated by the SOS approach are too concrete as semantical
objects. The objects that really interest us will be abstract transition systems
where the states are bisimulation equivalence classes of terms, or maybe some-
thing even more abstract. If bisimulation is not a congruence then the function
that computes the transitions associated to a phrase from the transitions asso-
ciated to its components, depends on properties of the transition system which
are generally considered to be irrelevant, such as the specific names of states.
Hence we think that a transition system specification which leads to transition
systems for which bisimulation is not a congruence should not be called stzruc-
tured: possibly it is compositional on the level of (concrete) transition systems
but it is not compositional on the more fundamental level of transition systems
modulo bisimulation equivalence.

This brings us to the first main question of this paper which is to find a for-
mat, as general as possible, for the rules in a transition system specification,
such that bisimulation is always a congruence when all the rules have this for-
mat. We proceed in a number of steps.

In Section 2 of the paper definitions are given of some basic notions like sig-
nature, term and substitution. Section 3 contains a formal definition of the
notion of a transition system specification (TSS). In Section 4 it is described
how a TSS determines a transition system. Moreover the fundamental notion
of strong bisimulation is introduced. The real work starts in Section 5, where
we present a general format, called the 7yft/tyxt format, for the inductive rules
in a TSS and prove that bisimulation is always a congruence when all rules
have this format (and a small additional requirement is met). With a series of
examples it is demonstrated that this format cannot be generalized in any
obvious way.

Section 6 contains some applications of our congruence theorem. We think
that our result will be useful in many situations because it allows one to see
immediately that bisimulation is a congruence. Thus it generalizes and makes
less ad hoc the congruence proofs in (MILNER, 1983), (BAETEN & VAN GLAB-
BEEK, 1987) and elsewhere. If the rules in a TSS do not fit our format then
there is a good chance that something will be wrong: either bisimulation is not
a congruence right away or the congruence property will get lost if more
operators and rules are added.
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1.2. Modularity of transition system specifications. Often one wants to add new
operators and rules to a TSS. Therefore, a very natural and important opera-
tion on TSS’s is to take their componentwise union. Given two specifications
P and P, let Py P, denote this union. A desirable property to have is that
the outgoing transition of states in the transition system associated to P are
the same as the outgoing transitions of these states in the extended system
Py®P,. This means that P, P, is a ‘conservative extension’ of P,: any pro-
perty which has been proved for the states in the old transition system remains
valid (for the old states) in the enriched system. In Section 7 we show that,
except for certain rules which are not ‘pure’, tyft/tyxt rules behave fine under
modularisation. Fortunately, non-pure rules are quite pathological and we have
never seen an application in which they are used.

1.3. Trace congruences. A central idea in the theory of concurrency is that
processes which cannot be distinguished by observation, should be identified:
the process semantics should be fully abstract with respect to some notion of
testing (DE NicoLA & HENNEssy, 1984). Natural observations that one can
make on a process are its (completed) traces. A trace of a process is a finite
sequence of actions that can be performed during a run of the process. A trace
is completed if it leads to a state from where no further actions are possible.
Two processes are (completed) trace congruent with respect to some format of
rules if they yield the same (completed) traces in any context that can be built
from operations defined in this format. The first main result of Section 8 is a
characterization, valid for image finite transition systems, of the completed
trace congruence induced by the pure tyft/tyxt format as 2-nested simulation
equivalence. On the domain of image finite transition systems, 2-nested simula-
tion coincides with the equivalence induced by the Hennessy-Milner logic for-
mulas (HENNESSY & MILNER, 1985) with no [] in the scope of a ¢. Conse-
quently the two trees in Figure 1, which are not bisimilar, cannot be dis-
tinguished by operators defined with pure tyft/tyxt rules. Also in Section 8, we
characterize the trace congruence induced by the pure tyft/tyxt format as simu-
lation equivalence.

1.4. Comparison with related work. In Section 9 we give an extensive com-
parison of our format with the format proposed by DE SIMONE (1984,1985)
and the GSOS format of BLoOM, ISTRAIL & MEYER (1988). Roughly speaking,
the situation is as displayed in Figure 2. The GSOS format and the pure
tyft/tyxt format both generalize the format of De Simone. The GSOS format
and our format are incomparable since the GSOS format allows negations in
the premises, whereas all our rules are positive. On the other hand we allow
for rules that give operators a lookahead and this is not allowed by the GSOS
format. A simple example in (BLOOM, ISTRAIL & MEYER, 1988) shows that the
combination of negation and lookahead is inconsistent in general. The point
where the two formats diverge is characterized by the rules which fit the GSOS
format but which contain no negation. We call the corresponding format posi-
tive GSOS.



1. Introduction 23

FIGURE 1. Pure #yft/tyxt congruent but not bisimilar

pure tyft/tyxt GSOS

positive GSOS

DE SIMONE format

FIGURE 2

From results of DE SIMONE (1985) and BERGSTRA, KLOP & OLDEROG (1988)
it follows that the completed trace congruence that corresponds to the format
of De Simone coincides with failure equivalence. BLOOM, ISTRAIL & MEYER
(1988) proved that the completed trace congruence induced by the GSOS for-
mat can be characterized by the class of Hennessy-Milner logic formulas in
which only F may occur in the scope of a []. LARSEN & Skou (1988) in turn
showed that the equivalence induced by this class of logical formulas can be
characterized as 2/3-bisimulation equivalence. From these results we can con-
clude quite directly that the pure #yft/tyxt format can make more distinctions
between processes than the GSOS format: 2-nested simulation refines 2/3-
bisimulation. Now, interestingly, it turns out that the completed trace
congruence induced by the positive GSOS format is also 2/3-bisimulation
equivalence. So although it may be the case that in the general GSOS format
can be used to define certain operations which cannot be defined using positive
rules only, the use of negations in the definition of operators does not intro-
duce any new distinctions between processes!
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The notion of testing associated with the (positive) GSOS format allows one
to observe traces of processes, to detect refusals and to make copies of
processes at every moment. Our format allows one in addition to test whether
some action is possible in the future: operators can have a lookahead. This can
be seen as a weak form of global testing (ABRAMSKY, 1987).

A notable difference between the GSOS format and our format is that the
GSOS format always leads to a computably finitely branching transition rela-
tion whereas our format does not necessarily do so. We argue that, even
though finiteness and computability are very desirable properties, the state-
ment of BLOOM, ISTRAIL & MEYER (1988) that any ‘reasonably structured’
specification should induce a computably finitely branching transition relation,
is too strong and discards a large number of interesting applications.
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2. PRELIMINARIES

In this paper we will work with a very simple notion of a signature. Only one
sort is allowed; there are only function symbols and no predicate symbols;
there is no overloading and no recursion construct. Throughout this paper we
assume the presence of an infinite set V' of variables with typical elements

X V2

2.1. DEFINITION. A (single sorted) signature X is a pair (F,r) where:
F is a set of function symbols disjoint with V,

- r:F->N is a rank function which gives the arity of a function symbol; if
feF and r(f)=0 then fis called a constant symbol.

2.2. DEFINITION. Let 2=(F,r) be a signature. Let W CV be a set of variables.
The set of Z-terms over W, notation T'(Z, W), is the least set satisfying:

- W g T(E’ W)’

- if feFand ty,..t,) €T (Z, W), then f(1y,...t,(1)) €T (Z, W).

T(Z, D) is abbreviated by T(Z) and T'(Z,V) is abbreviated by T(Z); elements
from T'(Z) are called closed or ground terms, elements from T(Z) are called
open terms. Var(t)CV is the set of variables in a term 7 e T(Z).

2.3. DEFINITION. Let Z=(F,r) be a signature. A substitution o is a mapping in
V—>T(Z). A substitution o is extended to a mapping ¢:T(Z)—>T(Z) in a stan-
dard way by the following definition:

= O(f(tl,..,t,(f))) — f(o(tl),..,o(t,(,))) fOl'fEF and t,,..,t,weT(E).

If o and p are substitutions, then the substitution o°p is defined by:

oop(x) = o(p(x)) forxeV.
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2.4. NotE. Observe that we have the following identities:

oop(t) = a(p(1)) teT(2)
o(t) =t for teT(Z)

3. TRANSITION SYSTEM SPECIFICATIONS

In this section a formal definition is given of the notion of a transition system
specification. Also the notion of a proof of a transition from such a
specification is defined.

3.1. DEFINITION. A transition system specification (TSS) is a triple (Z,4,R) with
2 a signature, A a set of labels and R a set of rules of the form:
{(t; 2>t/ |iel}
-5t
where [ is an index set, ¢;,¢;/,2,t’€T(2) and g;,a€A for il. If r is a rule in the

format above, then the elements of {7, —%>¢’|iel} are called the premises or
hypotheses of r and t —>t’ is called the conclusion of r. A rule of the form

PRI is called an axiom, which, if no confusion can arise, is also written as
t—51". An expression of the form 1 —%>¢" with a€A4 and 1,1’ T(Z) is called a
transition (labelled with a). The symbols ¢,{,x,.. will be used to range over
transitions. The notions ‘substitution’, ‘Var’ and ‘closed’ extend to transitions

and rules as expected.

3.2. DEFINITION. Let P =(Z,4,R) be a TSS. A proof of a transition y from P is
a well-founded, upwardly branching tree of which the nodes are labelled by
transitions ¢t —2>¢’ with ,t’€T(Z) and a €4, such that:
- the root is labelled with v,
- if x is the label of a node q and {x;|i€l} is the set of labels of the nodes
liel
directly above g, then there is a rule bt in R and a substitution
0:V—>T(Z) such that x=o0(¢) and x; =a(¢;) for iel.
If a proof of ¢ from P exists, we say that y is provable from P, notation Pt .
A proof is closed if it only contains closed transitions.

3.3. LEMMA. Let P =(2,A,R) be a TSS, let acA and let t,t' e T(Z) such that
P+t >t". Then t 51’ is provable by a closed proof.

PROOF. As P+ t —51t’ there is a proof tree T for t <>¢’. Define the substitution
o0:V — T(2) by a(x)=t for all xeV (in fact, any closed term will do). Apply-
ing o to all transitions in the proof T of 1 <>t yields a tree 7" containing only
closed transitions. Now one can easily check that 7" is a proof of t —>¢. O

TSS’s have been used mainly as a tool to give operational semantics to (con-
current) programming languages. As a running example we therefore present
below a TSS for a simple process language.
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3.4. EXAMPLE. Let Act ={a,b,c,..} be a given set of actions. We consider the
signature Z(BPAj) (Basic Process Algebra with § and €) as introduced in
VRANCKEN (1986). Z(BPAj) contains constants a for each a €Act, a constant 8
that stands for deadlock or inaction, comparable to NIL in CCS and STOP in
TCSP, and a constant e that denotes the empty process, a process that ter-
minates immediately and successfully. It is comparable to SKIP in TCSP and
skip in CCS. Furthermore the signature contains binary operators + (alterna-
tive composition) and - (sequential composition). As labels of transitions we take
elements of Acty = Act U{V}. Here V (pronounce ‘tick’) is a special symbol
used to denote the action of successful termination. At the end of a process
this action indicates that execution has finished.

Define the TSS P(BPAj) as (Z(BPAj),Act,/,R(BPAj)) where R(BPAj) is
defined below in Table 1. In the table a ranges over Act/, unless further res-
trictions are made. Infix notation is used for the binary function symbols.

L a—Se a#%V 2 PN
x %ax’ 4] y a%a}_"
x+y—=->x’ x+y--y’
V7 as..s
x-x’ o x—x" y Sy
_— 6.
xySxy 7 xy -y

TABLE 1. The rules of R(BPAj)

One can easily check that the tree in Figure 3 constitutes a proof of the transi-
tion (e:(a +b)).c “ec from P(BPAS}).

aSe
-~
PIRLY a+b-Se¢
S o
e(a+b)Se
(e(a+b))ycSec

FIGURE 3
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3.4.1. ReMARK. Even though similar semantic interpretations have been given
to (extensions of) Z(BPAj) at a number of places, the rules of Table 1 seem to
be new. VRANCKEN (1986) does not use inductive rules to give semantics to
BPAj. Instead, operations are defined directly on process graphs. In (BAETEN &
VAN GLABBEEK, 1987) there are no transitions labelled with V. Instead, a
unary termination predicate | is used. The analogue of our rule 6 in their set-
ting is:

x|, ¥y’
xy =y’

Such a rule does not fit in the framework of this paper. We have chosen not to
deal here with predicates like | because the additional complexity would dis-
tract attention from the main issues in this paper. Moreover, a unary predicate
p(x) can always be coded in our setting by adding a new label g, and rules
such that:

px) & IFy:x-Sy.

We think that it will not be too difficult to extend the framework of this paper
with predicates.

3.5. EXAMPLE. Our next example shows that the range of applications of TSS’s
is not restricted to the area of operational semantics: every Term Rewriting
System (TRS) can be viewed as a TSS. Unfortunately, it seems that the inter-
section of the class of TSS’s which correspond to TRS’s and the class of TSS’s
for which bisimulation is a congruence is of no interest. A Term Rewriting Sys-
tem (TRS) is defined as a pair (Z9,R() with 2, a signature and R, a set of
reduction or rewrite rules of the form r:(¢,s) with r the name of the rewrite rule
and 1,s€T(Zy). Here, ¢ contains at least one function symbol and
Var(s)C Var(t).

A TRS (Zy,R() can be viewed as a TSS (Z,4,R). Take 2=2; as the signature
and define the alphabet A as the set of all names r of rules r:(¢,s)eR,. R con-
tains for every r: (t,s)€R, a rule:

t-5Os
and for every function symbol fin X rules:
Xy

F e poms XX gp )~ D X 1503 Pis Xaity)

to allow reductions in contexts. One can easily prove that there is a one step
rewrite t—, s in the TRS (see (KLoP, 1987) for a definition) iff the correspond-
ing TSS proves t —s.
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4. TRANSITION SYSTEMS AND STRONG BISIMULATION EQUIVALENCE

An operational semantics makes use of some sort of (abstract) machines and
describes how these machines behave. Often one takes as machines simply
nondeterministic automata in the sense of classical automata theory, also
called labelled transition systems (KELLER, 1976).

4.1. DEFINITION. A (nondeterministic) automaton or labelled transition system
(LTS) is a structure (S,4,—) where:

- S s a set of states,

- A is an alphabet,

- —>CS XA XS is a transition relation.

Elements (s,a,s’)e—> are called transitions and will be written as s <-s’. The
intended interpretation is that from state s the machine can do an action a and
thereby get into state s’.

4.1.1. REMARK. Often transition systems are provided with an additional fourth
component: the initial state. For our purpose it has some small technical
advantages to work with transition systems that do not contain this ingredient.
All considerations of this paper can trivially be extended to transition systems
with initial state.

The notion of strong bisimulation equivalence as defined below is from PARK
(1981).

4.2. DEFINITION. Let @=(S,4,—>) be a labelled transition system. A relation

R CS XS is a (strong) bisimulation if for all s, with s R ¢:

1. whenever s s’ for some a and s, then, for some ¢, also t-%>¢ and
s’RY,

2. conversely, whenever 1t —>¢’ for some a and ¢, then, for some s, also
s—s’ and s'R 1.

Two states s,t €S are bisimilar in @, notation @:s < ¢, if there exists a bisimula-

tion containing the pair (s,z). Note that bisimilarity is indeed an equivalence

relation on states.

4.3. DEFINITION (T'SS’s, transition systems and bisimulation). Let P =(Z,4,R)
be a TSS. The transition system 7'S(P) specified by P is given by:
TS(P) = (T(2),4,—p),
where relation —p CT(2) XA X T(Z) is defined by: 1-p 1" < P+t -1,
We say that two terms t,t'€T(Z) are (P-)bisimilar, notation t<pt’, if

TS(P):t < t'. We write t € ¢’ if it is clear from the context what P is. Note
that < p is also an equivalence relation.
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4.4. ExaMpLE. For the TSS P(BPASj) of Example 3.4 we can derive the identi-
ties (a)-(e) below. In (f) it is shown that the left distributivity of - over + does
not hold in bisimulation semantics. Like in regular algebra we will often omit
the - in a product x-y and we take - to be more binding than +.

(@) e<ee (d beeb
(b) beb+b (e) ebeb
(c) (eateb)(c(dd)+6) < (a((c+8)d)+b(c(d+d))d (f) ab+ac ¥ a(b+c)

The parts of the automaton belonging to (a),(b),(c) and (f) are drawn in Figure
4-6. A dotted line indicates that a pair of states is in the bisimulation relation.
Furthermore, a state is always related to itself. In showing that two states are
related, only the states that can be reached from these states are relevant and
therefore only these states are drawn.

b+b

FIGURE 4. Examples 4.4(a) and 4.4(b)

In Figures 5/6 two separate automata are drawn instead of a combined one, to
make the pictures clearer.

(ea +eb)c(dd)+8) o - .. ... ... -a(a((c+8)d)+b(c(d +d)))s

-0 (e(c(d +d)))d

Y (e(d +d))s

FIGURE 5. Example 4.4(c)

In Figure 6 the states a(b +c) and €(b +c) in the right transition system can-
not be related to any of the states in the left transition system.
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FIGURE 6. Example 4.4(f)

5. COMPOSITIONAL TRANSITION SYSTEM SPECIFICATIONS

TSS’s do not always generate automata for which strong bisimulation is a
congruence. A number of examples will follow in the sequel. But if the rules in
TSS satisfy the format below (and an additional small technical requirement is
met), strong bisimulation will turn out to be a congruence.

5.1. DEFINITION. Let Z=(F,r) be a signature and let P =(2,4,R) be a TSS. A
rule in R is in tyft format if it has the following form:

{t: *yiliel}
J(x5es%) 2D

with I an index set, feF, r(f)=n, x; (1<<i<n) and y; (i€l) are all different
variables from V, a;,a€A and t;,t€T(Z) foriel.
A rule in R is in tyxt format if it has the following form:

{(t: >y;liel}
xSt
with I an index set, x,y; (i€l) all different variables from V, g;,acA and
t;,teT(Z) for iel. P is in tyft/tyxt format if every rule in R is either in tyft for-
mat or in tyxt format. A transition system @ is called tyft/tyxt specifiable if
there exists a TSS P in tyft/tyxt format with @=TS (P).

5.2. Note. Observe that there does not have to be any relation at all between
the premises and the conclusions in a rule satisfying our format. In fact our
format explicitly requires the absence of certain relations between occurrences
of variables in the premises and in the conclusion. Note that not only the TSS
P(BPAj) of Example 3.4 is in tyft/tyxt format, but also any TSS obtained
from P(BPAj) by dropping some rules. The transition system specifications
related to term rewriting systems (see Example 3.5) are in general not in
tyft/tyxt format.
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5.3. ExaMPLE. Below we describe a TSS that models a simple typewriter that
can be used to type strings and that has the option to delete the last character
of the typed string using ‘backspace’. The signature consists of the binary func-
tion symbol * denoting concatenation, and constant symbols A (empty string)
and a,4,..,54,z. As alphabet we take A ={a,4,..,4,2,4}. Here, A stands for a
backspace. Rules for the typewriter can be given as follows:

xx*a for ac{af, . .y 2}
a ——Aé}\ for ae{a,’4,..,y,2}

x*a %x for ae{ad,.. 4,2}

This description of the typewriter is not in tyft/tyxt format, because the lhs of
the last axiom contains two function symbols. A TSS for the typewriter in
tyft/tyxt format is more involved. We need an auxiliary label empty, which
denotes that an expression consists of the empty string. We also need more
rules:

x Dx*a for ae{a4,.. .y}
a%)\ for ae{a’,.., 4,2}

X %x’
y*x %Kytx’
x-Sx' y LSy
x*y S>x’
We come back to this example in Section 5.11.2.

for e € {empty,A}

5.4. Well-foundedness. A TSS with the rule:

fOp2) Dy g(x'y) Sy
x-x'
can be in tyft/tyxt format. However, we have a circular reference. In general y,
will depend on f(x,y,) and thus on y, while y, depends on g(x’,y;) and thus
on y,. We will exclude this type of dependencies, as they give rise to compli-
cated TSS’s. For this purpose the notion of a dependency graph is introduced.

5.4.1. DEFINITION. Let P =(2,4,R) be a TSS. Let S={r,—%>¢t/|i€l} be a set
of transitions of P. The dependency graph of S is a directed (unlabelled) graph
with:

- Nodes: UIVar(ti —“>1"),

- Edges: {<x,y>I|xeVar(t;), yeVar(t/) for some iel}.

A set of transitions is called well-founded if any backward chain of edges in the
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dependency graph of these transitions is finite. A rule is called well-founded if
the set of its premises is so. Finally, a TSS is called well-founded if all its rules
are well-founded.

5.4.2. ExampLE. The dependency graph of the set of premises of the rule in
Section 5.4 is given in Figure 7. The rule is not well-founded since the graph
clearly contains a cycle.

X —————=y, Yy, *+—————x

77N\
N

5.5. DEFINITION. Two TSS’s P and P’ are transition equivalent if
TS(P) = TS(P).

Hence, two TSS’s are transition equivalent if they have the same signature, the
same set of labels and if the sets of rules determine the same transition rela-
tion. The particular form of the rules is not important. In Example 3.4 for
instance, we can replace rule 6 of Table 1 by the rule:
x-58 y -5y’
xy =y

The resulting TSS P’(BPAj) is transition equivalent to P(BPA,;) This is
because whenever P(BPA§) proves a transition of the form t%t t” will be
syntactically equal to 8. Observe that P'(BPAj) is not in tyft/tyxt format. We
will come back to this in Section 5.13.

When dealing with closed terms, only the tyft format is necessary and the tyxt
format is not needed. This is what the following lemma says.

5.6. LEMMA. Let P =(Z,4,R) be a (well-founded) TSS in tyft/tyxt format.
Then there is a transition equivalent (well-founded) TSS P'=(Z,A,R’) in tyft for-
mat.

PROOF. Let =(F,rank). Define R’ by:

- every tyft rule of Risin R/,

- for every tyxt rule reR and for every function symbol f€F, rs is in R’,
where r, is obtained by substituting f(x,..,X;amk()) for x in r with
{x15-sXrank ()} SV — Var(r).

If the old tyxt rules were well-founded, then the new rules will be well-founded

too and in tyft format. Suppose that 1 <*>¢’ is a transition in 7S(P). Then, by

definition of 7S(P) and Lemma 3.3, there is a closed proof from P of this

transition. Now one can easily see that this is also a proof for  —*>¢’ from P’.
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A similar argument gives that every transition of TS(P’) is also a transition of
TS(P). a

5.7. DEFINITION. Let P =(2,4,R) be a TSS and let r be a rule in R. A vari-
able in Var(r) is called free if it does not occur in the left hand side of the
conclusion or in the right hand side of a premise.

5.8. DEFINITION. Let P =(Z,4,R) be a TSS. A rule reR is called pure if it is
well-founded and contains no free variables. The TSS P is pure if all its rules
are pure.

5.9 LemMA. Let P =(2,4,R) be a well-founded TSS in tyft/tyxt format. Then
there is a transition equivalent pure TSS P’ =(Z,4,R’) in tyft format.
PROOF. By the previous lemma we can assume that P is in #yft format. Replace
every rule with free variables by a set of new rules. The new rules are obtained
by applying every possible substitution of closed terms for the free variables in
the old rule. If the old rules were well-founded and in tyft format then the
new rules will be pure and in tyft format. Now, every closed proof T for a
transition ¢, —“>¢, from P is also a proof for 1} <*>¢, from P’ and vice versa.
O

We now come to the first main theorem of this paper. It says that strong
bisimulation is a congruence for all operators defined using a well-founded
TSS in tyft/tyxt format.

5.10. THEOREM. Let Z=(F,r) be a signature and let P =(2,A,R) be a TSS. If
P is well-founded and in tyft/tyxt format then strong bisimulation is a congruence
for all function symbols, i.e. for all function symbols f in F and all closed terms
u,v,eT(2) (I<i<r(f)):

Viu<pv, = f(ul,..,u,(f)) <p f(v,,..,v,(f)).

Before we commence with the proof of this theorem, we present a number of
examples which show that the condition in the theorem that the TSS is in
tyft/tyxt format cannot be weakened in any obvious way. At present, we have
no example to show that the condition that the TSS is well-founded cannot be
missed: we just have not been able to prove the theorem without it. However,
non-well-founded TSS’s are quite pathological and we know of no application.
In Section 7 it will be shown that non-well-founded rules are ill-behaved with
respect to modularisation.

5.11. COUNTEREXAMPLES.

5.11.1. ExaMPLE. The first example shows that in general the variables in the
source of

the conclusion must all be different. The crucial part of the example is a rule
that one could call a syntactical tester. In case of the alternative composition, it



34 SOS and bisimulation as a congruence

tests whether the left and right argument of the + are syntactically identical.
The TSS which we have in mind, is obtained by adding to P(BPAj) the
axiom: x +x -%58. We then have a < ae, but a+a ¥ a+ae as a and ae are
not syntactically equal.

5.11.2. EXaMPLE. In general, not more than one function symbol may occur in
the source of the conclusion. Take the TSS P(BPA§) extended with the axiom
ab-%38. As in Example 4.4(b) b < b+b, but in the new situation we do not
have any more that ab < a(b+b) as a(b+b) cannot do an initial ok-
transition. Another example illustrating this point is obtained by adding the
axiom x +(y +z)-%58 to P(BPA§). Again we have b < b +b, but now it is
not the case that b +(b +b) < b +b.

As a last example of this kind we mention the typewriter of Section 5.3. The
first sg)eciﬁcation is not in tyft/tyxt format, because it contains the axiom
x*a—>x with » and a function symbols. Now A*a < a but a*(A*a) ¥ a*a.
Bisimulation is a congruence for the tyft/tyxt version of the typewriter. The
reader may also check that the identities A*xt < t*A <t and
(s*t)*u < sx(t*u) with s,t,u closed terms over the signature, hold for the
second version of the typewriter but not for the first version.

5.11.3. EXAMPLE. Our next example shows that in the right hand side of a
premise, function symbols are not allowed to occur. We can add prefixing
operators a:(-) to P(BPAj) for each a Act and define the operational meaning
of these operators with rules:

a:x Sx.
If we now add moreover the rule:
x -8
a:x %58
we have problems because a:a:8 ¢ a:a:(6+8) even though § & §+386.

5.11.4. ExampLE. The variables in the right hand sides of the arrows in the
premises must in general be different. This is shown by adding the rule:

xDy xSy
xx' %58 a;é\/

to P(BPAj). Now a < ae, but aa ¥ (a€)a.

5.11.5. ExampLE. If variables in the left hand side of the conclusion and the
right hand side of the premises coincide, problems can arise too. Add the rule:
xSy
x+y —)EJE é

to P(BPAj) and observe that ee © ¢, but a +ee <2 a+e.
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5.12. We now will prove Theorem 5.10.

PrROOF. Let Z=(F,r) be a signature and let P =(Z,4,R,) be a well-founded
TSS in #yft/tyxt format. We have to prove that <p is a congruence. Let
R CT(Z)XT(Z) be the least relation satisfying;:

- ©pCR,

- for all function symbols fin F and terms u;,v; (1<<i<r(f)) in T(2):

ViuRv; = f(urty)) RO 1,00)-

It is enough to show R C<p because then R=<p and it follows from the
definition of R that <, is a congruence for all f in F. In order to prove
R C<p it is enough to show that R is a bisimulation. For reasons of symmetry
it is even enough to show only one half of the transfer property: if # Rv and
u—pu’ then there is a v’ such that v—pv’ and u’Rv’. If uRv then by
definition of R either u <,v or, for some function symbol f in F:
u=f(uy,...4r)) and v=f(vy,..,v,(r)) With u; Rv; for all i. As <, trivially
satisfies the transfer property, only the second option needs to be checked.
Summarizing, we have to prove the following statement:

Whenever Pt f(uy,..,u,r))—>u’ and u; Rv; for 1<i<r(f) then there is a v’
such that P+ f(vy,..,v,(r))—>v" and u'RV'".

Lemma 3.3 says that there is a proof T of f(u,..,u,(r))—*>u’ that only con-
tains closed transitions. We will prove the statement with ordinal induction on
the structure of 7. Lemma 5.9 allows us to assume throughout the proof that
the rules in R are pure and in tyft format.

Let r be the last rule used in proof 7, in combination with a substitution o.
Assume that r is equal to:
{ti *oyiliel}
LG Xp) 5t

It follows that: 1) f'=f

2) o(x;))=u; for 1<i<r(f)

3)o(t)=u’
Our aim is to use the rule r again in the proof of f(v,..,v,(r))—*>v’ for some v’
by finding a proper substitution o’. Consider the dependency graph G of the
premises of r. Because r is 7yft, each node in G has at most finitely many
incoming edges. Because G is well-founded we can define for each node x of G,
depth(x)eN as the length of the maximal backward chain of edges (use
Ko6nig’s lemma). Define

X = {xll<i<r(f)}
Y = {yiliel}
Y, = {yeYldepth(y)=n} for n=0
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Observe that for any variable x € X: depth(x)=0, and that the sets Y, form a
partition of Y. We will define a substitution ¢’ that satisfies the following pro-

perties:

o’'(x;)=v; for 1<i<r(f) @))
o(y)Ro'(y) foryeXuY 2)
P+ o(t; y) foriel 3)

Substitution o’ will be constructed in a stepwise fashion. To begin with we
define:

o'(x;)) = v; for I<i<r(f)
o) =o(y) foryeV—(XU|JY,
n>0
We still have to define o’ on | J _ Y. As soon as ¢’ has been defined for all
variables in XU YU - - - UY, (m=0), we can state the following properties
a(m) and B(m):

a(m): o(y)Ra'(y) foryeXUYoU - - UY,

One can easily check that a(0) and B(0). Let n >0. Suppose that o’ has been
defined already for all variables in XUY U --- UY,_; in such a way that
properties a(n —1) and B(n —1) hold. We show how to define ¢’ on all vari-
ables of Y, such that a(n) and B(n) hold. This is sufficient for completing the
definition of a o’ that satifies properties 1-3: property 1 is met by definition,
property 2 and 3 follow because o’ satisfies properties a(n) resp. B(n) for all
neN.

Pick an element y*€Y,. There is a unique i€/ with y*=y,. Because y,€Y,
and rule r is pure, Var(t;)CXUY, U --- UY,_,. Now use that o’ satisfies
a(n —1) to obtain that for all variables y € Var(t;): o(y) R o’(y). Next we use
the following

FACT. Let t€T(2) and let p,p’:V—T(Z) be substitutions such that for all x in
Var(t): p(x)R p’(x). Then p(t) R p'(?).

PROOF. Straightforward induction on the structure of term ¢ using the
definition of R. (J

We obtain that o(#;) R o'(¢;). Since also P + o(t;)—“>o(y;), we can distinguish,

by definition of R, between two cases:

1) o(t;) 2p d(t;). In this case we can find a we T (Z) such that P+ o/'(;)Ow
and o(y;) R w. We then define o’'(y*)=0'(y;)=w.

2) There is a function symbol g in F and there are terms w;,w;’ for
1<<j<r(g) such that:

o(ti)zg(w 1 ’"9wr(g))’
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o'(t;)=gwy’,...,w,()") and
w;Rw/’ for I<j<r(g).

But now we can apply the induction hypothesis which gives that we can
find a w such that Pr g(w/’,..,w,)")—2>w and o(y;)Rw. We define
ad(y")=d'(y;)=w.
In the same way we can define o’ for the other elements of Y,. It is not hard
to see that after this a(n) and B(n) hold.
Let for iel, T; be a proof of o’(f; =%>y;). Construct a proof 7’ with root
o'(f (X150 %(f)) —“>t) and as direct subtrees the proofs 7; (i€l). Define
v'=0d'(t). Clearly T" is a proof for f(vi,..,v,())—*>Vv’. Since for all x € Var(t):
o(x) R o’(x) (use that r is pure), it follows by an application of the previously
stated fact that o(¢) R o’(¢) or, equivalently, «’ R v'. O

5.13. The implication in Theorem 5.10 cannot be reversed. So given a TSS for
which bisimulation is a congruence, this TSS need not be well-founded and in
tyft/tyxt format. This is obvious because for any TSS, a transition equivalent
TSS can be obtained by adding all derivable transitions as rules. And if
bisimulation is a congruence for the one it is a congruence for the other. If one
starts from a well-founded TSS in #yft/tyxt format, the result will in general
not be tyft/tyxt. For instance, in the case of P(BPA§) one adds the rule
a(x +y)-Se(x +y).

Even after removing derivable rules, a TSS for which bisimulation is a
congruence need not be well-founded and in #yft/tyxt format. The TSS
P’(BPAj) described in Section 5.5 contains no derivable rules and is not in
tyft/tyxt format. But, as observed in that section, it is transition equivalent to
the TSS P(BPAj§) which is in tyft/tyxt format. Hence, bisimulation equivalence
is a congruence.

It is worth noting that if one adds new operators and rules to P’(BPAS§), the
congruence property can get lost, even if the rules for the new operators are
tyft. In order to see this, consider the TSS obtained by adding to P’/(BPAj)
encapsulation or restriction operators dy for H CAct and the #yft rules:

x-Sx’
o) 0a0) =1
We then obtain a < 93)(a), but a-b ¥ 9)(a)b.

The examples above do not rule out the following weakened variant of the
reverse implication of Theorem 5.10: if P is a TSS for which bisimulation is a
congruence, then TS (P) can be specified by a well-founded TSS in #yft/tyxt
format. Below we present a TSS that eliminates this variant of the reverse
implication. Consider the TSS P that has constant symbols a,b and 6§, a
binary function symbol f, labels a,b,c and rules:

a6
b6
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b8
f(a)->>9

The last rule is not zyft/tyxt, but it is not hard to see that <p is a congruence.
We claim that there exists no TSS in tyft/tyxt format that is transition
equivalent to P. In order to prove this claim, it is, by Lemma 5.6 and the
proof of Lemma 5.9, sufficient to show that no TSS P’ in tyft format and
without free variables in the rules can be transition equivalent to P. Suppose
there would be such a P’. Since P’ + f(a)—->9, there is a closed proof T of
f(a)-=>38 such that only the root of T is labelled with f (a)->4. The other
nodes in T are labelled with either a 238, b -2>8 or b-2>8. Let r be the last
rule used in 7, in combination with a substitution o. Rule r must be of the
form:
{t:. 2>t liel}
fx)-=5t

It is not hard to see that for iel, t; must be equal to x, a or b. Clearly
o(x)=a. Let o’ be the same as o except that o’(x)=b. Let iel. Then

o'(1; %>1,") is either a 258, b-2>8 or b-2>8. Moreover o’(t)=48. Thus we can
construct a proof from P’ of transition f(b)—>8 by taking r as a last rule
with substitution o’ and appending proofs of a —2>8, b-2>8 and b-2>8 on top
of that at the appropriate places. Contradiction.

Also in this case we have that adding tyft rules may destroy the congruence
property (take the axiom a -2>8).

5.14. REMARK. The examples of Section 5.13 show that there is another reason
for using TSS’s in tyft/tyxt format, namely their extensibility, without
endangering congruence properties. It seems that, whenever a TSS contains a
non tyft/tyxt rule, we can extend this TSS (except for some trivial cases, for
instance if the non tyft/tyxt rules are derivable) with a number of #yft rules in
such a way that for the resulting TSS bisimulation is not a congruence.

6. SOME APPLICATIONS
In this section we give some examples of TSS’s and applications of the
congruence theorem.

6.1. The silent move. In process algebra it is current practice to have a con-
stant ‘T’ representing an internal machine step that cannot be observed. In
order to describe the ‘invisible’ nature of 7, the notions of observation
congruence (MILNER, 1980) and rooted-r-bisimulation (BERGSTRA & KLOP,
1988) have been introduced. As observed by VAN GLABBEEK (1987) it is not
necessary to introduce a new notion of bisimulation: one can just work with
the standard notion of strong bisimulation if one is willing to add some Plot-
kin style rules that capture the notion of a hidden, internal machine step.

Below we assume that 7 is an element of the set Act of actions that figures as a
parameter of the TSS P(BPAj§). The TSS P(BPAg) is obtained by adding to
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P (BPA}) the rules of Table 2 (a€Act ).

7. a5 a;é\/

g x%z y -3z
’ x5z

9 x%z y Dz
’ x5z

TABLE 2. Rules for the silent move 7

One possible interpretation that one can give to a transition =t (a57) is
that the system that is modelled can evolve from state ¢ to state ' during a cer-
tain positive time interval in which an occurrence of action a can be observed.
Then ¢ —>¢ means that no action can be observed during such an interval.
Rule 8 and 9 can be viewed as logical consequences of this interpretation. It is
consistent with the interpretation of transitions and the rules of Table 1 and
Table 2 to assume that execution of a process a takes a positive amount of
time; the observation of the action a however takes place at the beginning.
Rule 7 says that when the action a is observed, the process a that executes this
action may still perform some internal activity before it terminates successfully.

The TSS P (BPAg) is in pure tyft/tyxt format. Thus strong bisimulation is a
congruence. One can prove that the theory BPAg;, as presented in Table 3 (a
ranges over Act), is a sound and complete axiomatisation of the model induced
by the TSS P (BPA¢) modulo strong (!) bisimulation.

x+ty =y+x Al [ atr=a Tl
x+(y+z)=(x+y)+tz A2 [ =x+x = 11x T2
x+x =x A3 | a(tx +y) = a(tx +y)+ax T3
(x+y)z = xz+yz A4
(xy)z = x(yz) AS
x+8 =x A6
ox =6 A7
& = Xx A8
XxX€e = X A9

TABLE 3. The axiom system BPAZ;

This means that, if <, denotes rooted-r-bisimulation (i.e. observation
congruence), we have the following situation:
PBPA})Ers <2t & P(BPAs)Es<,5t < BPAGF s =1t

In Figure 8-10 we give three examples corresponding to the 7-laws of MILNER
(1980). In Figure 8 two separate transition systems are drawn. In Figures 8
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and 10 @ may not equal 7. In Figure 9 the relevant states of 7+¢ and 7 are
drawn, as the equation 7+e=r7 is equivalent to the axiom T2. It is left to the
reader to check that the transition systems are strongly bisimilar.

a
a
a
)
€
Y\ |V
)

FIGURE 8 (a = ar)

Tt+e€

FIGURE 10 (a(tx+y) = a(rx +y)+ax)
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6.2. Recursion. There are many ways to deal with recursion in process algebra.
One approach is to introduce a set = of process names. Elements of = are
added to the signature of the TSS as constant symbols. The recursive
definitions of the process names are given by a set E={Xetyx|XeX} of
declarations. Here the ty are ground terms over the signature of the TSS
(hence, they may contain process names in ). If X<ty is a declaration, then
this means that the behaviour of process X is given by its body ty. Formally
this is expressed by adding to the TSS rules:

tx Dy

Xy
for every declaration X<«ty. Now observe that these rules are pure tyft. Hence
it follows that if one adds recursion to a well-founded TSS in tyft/tyxt format
in the way described above, bisimulation remains a congruence.

A slightly different way of dealing with recursion is followed by OLDEROG &
HoARE (1986) and HENNESSY (1988). Here axioms X —>ty appear saying that
by some internal activity, a process name can expand to its body. Also this
type of rules satisfy our format.

6.3. The state operator. In many cases where operational semantics of a
language is defined using Plotkin style rules, values play a role (see for instance
(AMERICA ET AL., 1986) and (PLOTKIN, 1983)). Here, states of the transition
system are generally configurations, i.e. pairs <t,06> of a process expression ¢
and a valuation o. In this section we argue that it is often possible to give
inductive rules for these languages within the #yft/tyxt format using the
extended state operator A, of BAETEN & BERGSTRA (1988).
We will add the state operator to the setting of BPAZ; of Section 6.1. Let S be
a set of states. For each 6eS we add a function symbol A, to the signature.
An expression A,(?), represents a process that transforms the state ¢ during
successive transitions of ¢ as specified by a function effect:S XAct XAct—S
while influencing the actual labels of the transitions of ¢ as specified by a func-
tion action:Act X S—24°. action (a,0) defines the set of actions that can be per-
formed by A,(¢) if ¢ performs an a. effect(o,a,b) defines the resulting state if
A,(t) actually transforms under b eaction (a,0). Note that the extra argument b
is necessary as the action function defines a set of possible actions that can be
performed by A,(¢). The environment may determine which action from this
set actually will occur. The functions effect and action are inert for =, ie.
action(t,0)={1} and effect(o,7,a)=0 for every acAct. The rules for the state
operator are (6€S; a,beAct):
xDx’
Ao(x) %Aeﬂ'ect (a,a.b)(x l)
x 5%’

Ag(x) =D Aq(x")

Clearly the above rules are pure #yft, so bisimulation will be a congruence. As

b eaction (a, o)
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a typical application we consider a small subset of CSP. Actions in Act are of
the form 7, gle, g7 or [v:=e] where v ranges over a set V of program vari-
ables and e ranges over natural number expressions built from Y, constants for
the natural numbers and the usual operations such as +, —, X. gle means
‘write the value of expression e to channel g’, g?v means ‘read a value from
channel g and assign this value to v’ and [v:=e] means: ‘assign the value of
expression e to v'. We assume the presence of an interpretation function [1
that, given a valuation ¢ of the variables, yields for each expression a natural
number. As state space S we take all valuations in V—IN. Let o[n/v] be the
valuation o except for the fact that variable v is mapped on n. Now we can
define the functions action and effect as follows:

action (o, g'e) = {g'le]°} effect(o,gle,g'n) = o
action(o,gm) = {gm|neN} effect(o,g?m,gMn) = o[n/v]
action (o, [v:=e])={1} effect (o, [v:=e],7) = oflel®/v]

Function effect is inert in the cases that are not specified. As an example con-
sider a process that is capable of reading a value from channel g, and sending
the square of that value to channel g,:

A (g1 v [w:=v Xv]g,y'!w)
A particular sequence of transitions of this process is:
Ay W=V Xy Iga!w) £S5 Ay (€w: =v X Vg2 !w) 5>
An(3/v,9/w]((°g2!w)_&%Aoﬂ/vﬁ/w](c)éAu[S/vﬂlw](a)

It is not difficult to extend the combination of BPA}; and the state operator
with a parallel combinator. Then, communication can be defined such that we
have value passing between several processes. We will not give a detailed ela-
boration of this because that would go beyond the scope of this article. How-
ever, we would like to stress that in some sense the extended state operator is
more powerful than the approach with a global state using configurations. The
extended state operator can in a very natural way be used to model that cer-
tain data are local to some processes.

7. MODULAR PROPERTIES OF TRANSITION SYSTEM SPECIFICATIONS

Often one wants to add new operators and rules to a given TSS. Therefore, a
very natural operation on TSS’s is to take their componentwise union. Given
two TSS’s P, and P, we use the notation Py P, to denote the resulting sys-
tem. A nice property to have in such a situation is that the outgoing transi-
tions in TS (P,) of terms in the signature of P, are the same as the outgoing
transitions of these terms in 7S (P D P,). This means that P, P, is a conser-
vative extension of P,: any property which has been proved for the states in
the old transition system remains valid (for the old states) in the enriched sys-
tem.

In this section we study the question what restrictions we have to impose on
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P, and P, in order to obtain conservativity. First we give the basic definitions.

7.1. DEFINITION. Let Z,=(F;,r;) (i=0,1) be two signatures such that
feFyNF, = ro(f)=ri(f). The sum of Z, and Z,, notation Z,DZ,, is the
signature:

20D, = (FoUF Afif feF, then ro(f) else ri(f)).

7.2. DEFINITION. Let P,=(Z;,4;,R;) (i=0,1) be two TSS’s with Z D=,
defined. The sum of Py and P, notation Py®P,, is the TSS:

PQ@P[ = (20®2|,A0UA1,R0UR]).

7.3. DEFINITION. Let P,=(Z,,4;,R;) (i =0,1) be two TSS’s with P=P,®DP,
defined. Let P =(Z,4,R). We say that P is a conservative extension of P, and
that P, can be added conservatively to P, if for all seT(Z,), acA and
teT(2):

PtsSt o PyorsSut

Note that the implication P+ s <>t < P+ s =1 holds trivially.

7.4. REMARK. Let P,=(Z;,4;,R;) (i=0,1) be two TSS’s with P=P,DP, a
conservative extension of P,. Then P is also a conservative extension of P, up
to bisimulation, i.e. for s,z €T (Z):

sept & sp L.

7.5. COUNTEREXAMPLES. We want to study the question in which cases a TSS
P, can be added conservatively to a TSS P,. However, we will restrict our-
selves to the case where both P, and P, are in tyft/tyxt format. Below, 5
examples are presented that illustrate different situations where we do not have
conservativity.

7.5.1. EXaMPLE. If P, has a rule with a function symbol that already occurs in
2y in the lhs of the conclusion, then problems arise quite soon. If
P,=P(BPAj) and P, contains a single rule:

x +y %258
then 8‘:’}:“ 8+ 48 but not 8‘:’p°$pl 8+6.
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7.5.2. ExamMPLE. Conservativity can get lost if free variables occur in a premise
of a rule in P,. In order to see this consider the TSS P, with constant symbols
a, b, a labg] a and rules:

a->a

x5y

bS5y
It is not hard to see that a < b. However, if we add constant symbols ¢,d and
a rule ¢ -2>d it follows that a ¢ b.

7.5.3. ExaMpPLE. Conservativity can get lost also if free variables occur in the
conclusion of a rule in P,. Let the signature of P, consists of two constant
symbols a and b. The set of labels contains only a and there are two axioms:

aSa

bSx
It is not hard to see that a ©p b. However, if we add a TSS P, which con-
tains a constant symbol ¢ and no rules, then a ¥ p op, b.

7.5.4. ExaMPLE. Conservativity up to bisimulation can be violated if we add
tyxt rules to a given TSS. Let P, consist of P(BPA§). In P, we have
a < a+3§. This is no longer true if we add a TSS P, which contains a single
axiom x S x.

Another example of this kind is given by the rules 8 and 9 in Table 2 of Sec-
tion 6.1. Consider P(BPAj§) to which rule 7 has been added. None of the 7-
laws holds in this system. However, if rules 8 and 9 are added the 7-laws do
hold. Hence, rules 8 and 9 do not preserve conservativity up to bisimulation.

7.5.5. EXAMPLE. Our last example shows that non-well-foundedness of P, can
disturb conservativity. Suppose P, consists of P(BPA§) and a circular (non-
well-founded) rule:
x1 4y -Ly; x4y, By,
x1+x2 %5y, +y,
One can easily see that § <p §+8. However, adding a TSS P, with a single
axiom ok %50k makes that 8 ¥ p gp, 8+9.

The next theorem shows that in some sense the examples above give a com-
plete overview of the situations in which we do not have conservativity.
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7.6. THEOREM. Let Py=(Z,A¢,R¢) be a TSS in pure tyft/tyxt format and let
P,=(2),4,R)) be a TSS in tyft format such that there is no rule in R, that
contains a function symbol from Z in the left hand side of its conclusion. Let
P=P,®P, be defined. Then P, can be added conservatively to P.

PrOOF. We use the same type of strategy as in the proof of Theorem 5.10. Let
P=(2,A,R). Let seT(Z)), acA and s’eT(Z) with Prs—>s’. Let T be a
proof of s >s’ from P. With ordinal induction on the structure of T we prove
that T is also a proof of s >s’ from P,. Let r be the last rule which is used in
T. Because s €T (Zy) and all rules of P, are tyft and contain no function sym-
bols from Z, in the left hand side of their conclusions,  must be in R,. Sup-
pose r is pure tyft (the case that r is pure fyxt is completely analogous and
omitted). Suppose in particular that r is equal to:

{t:. %Syiliel)
f(x 1 ,..,X,(,‘)) %t

Let o be the substitution that relates rule r to the last step in proof 7. We then
have:

o(f(x.,..,x,(f)))=s,
o(t)=ys".
Consider the dependency graph G of the premises of r. Like in the proof of

Theorem 5.10 we define for each node x of G, depth(x)eN as the length of the
maximal backward chain of edges. Further we define:

X = {x;|1<i<r(f)}
Y = {y;liel}
Y, = {y€Yl|depth(y)=n} for n=0

With induction on n we prove that o(x) is in T(Z,) for all xeXU Y. Because
se€T(Zp) and o(f (x1,.., X)) =5, o(x)€T(Zp) for all xeX. Let neN and sup-
pose that o(x)eT(Zp) for all xeXUY,U --- UY,_,. Let y*€Y,. There is a
unique i€l with y"=y, Because y,€Y, and rule r is pure,
Var(t)CXUY,U --- UY,_;. But now we can apply the induction
hypothesis: since s;=a(t,)eT(Zg), s;’=0o(y;)eT(Zy) too. Since y* is chosen
arbitrarily, o(y)eT(Z) for all yeY,. This finishes the induction on n so that
we have shown that o(y)eT(Z)) for all xeXUY. Since Var(t)CXUY, we
may conclude s’=o(¢)eT (Z)). O

7.7. In our view the counterexamples which show that the original system has
to be pure and no rule from the added system may contain a function symbol
of the original system in the lhs of its conclusion are quite strong. It will be
difficult to strengthen Theorem 7.6 by weakening these constraints. Because
modularity is an important and desirable property and because TSS’s which
are not pure are ill-behaved with respect to modularity, one might decide, for
this reason, to call such TSS’s unstructured.
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The main reason we had for including Theorem 7.6 in this paper is that we
need it in the next section. It is clear that a lot more can be said about modu-
lar properties of TSS’s than we have done here.

8. TRACE CONGRUENCES

In this section we study the trace congruences induced by the pure tyft/tyxt
format. Intuitively, two processes s and ¢ are (completed) trace congruent if for
any context C[] which can be defined using the pure fyft/tyxt format, the
(completed) traces of C[s] and C[t] are the same. It seems reasonable to
require that, whenever new function symbols and rules are added to a TSS in
order to build a context which can distinguish between terms, these new
ingredients may not change the original transition system: the extension should
be conservative. If it would be allowed to introduce new transitions in the ori-
ginal transition system, then we could add rules like:

x I’mg:);xr’y l’mjl!)yr
x+y I'm(s +’!)X’+y’

and make that syntactically different terms always have outgoing transitions
with different labels. As a result completed trace congruence would just be
syntactic equality between terms.
The results of the previous section show that for a TSS in tyft/tyxt format it is
in general rather difficult to determine a class of TSS’s which can be added to
it conservatively. Consequently it is also difficult to characterize the completed
trace congruence induced by this format. However, for TSS’s in pure tyft/tyxt
format such a class exists: by Theorem 7.6 every TSS in #yft format can be
added conservatively to a TSS in pure tyft/tyxt format. For this reason we
decided to work on a characterization of the completed trace congruence
induced by the pure tyft/tyxt format and leave the general tyft/tyxt format for
what it is. We think that this is not a serious restriction because:

- We have never seen an application of a TSS with non-well-founded rules
or rules with free variables.

- Well-foundedness is used anyhow in the proof of Theorem 5.10. The proof
of Lemma 5.9 shows that for every well-founded TSS in tyft/tyxt format
there exists an equivalent TSS in pure #yft/tyxt format.

- TSS’s in tyft/tyxt format that are not pure, are ill-behaved with respect to
modularisation and therefore not much effort should be spent in proving
theorems about them.

8.1. DEFINITION. Let @=(S,4,—>) be a LTS. A state s€S is a termination
node, notation s -/, if there are no reS and aeA with s—>¢. A sequence
a;* - - *a,€A" is a completed trace of s if there are states sy,..,5, €S such that
so=s and 5o —>5, 2>, %55, +>. CT(s) is the set of all completed traces of
s. Two states s,t€S are completed trace equivalent if CT(s)=CT(t). This is
denoted as s =crt.
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8.2. DEFINITION. Let % be some format of TSS rules. Let P =(Z,4,R) be a
TSS in & format. Two terms s,teT(Z) are completed trace congruent with
respect to ¥ rules, notation s =g, if for every TSS P’=(Z’,4’,R’) in ¥ format
which can be added conservatively to P and for every Z@®Z’-context C[]:
C[s]=crClt]. s and ¢ are completed trace congruent within P, notation s =p 1,
if for every Z-context C[]: C[s]=cr C[t].

8.3. NotE. In the sequel we will define a number of equivalence relations on
the states of transition systems. If P =(Z,4,R) is a TSS and s,7 are terms in
T(Z) then, whenever we say that s and ¢ are equivalent according to a certain
equivalence relation, what we mean is that the states s and ¢ of the transition
system TS (P) are equivalent according to this relation.

8.4. Overview of results of Section 8. ABRAMSKY (1987) and BLOOM, ISTRAIL &
MEYER (1988) give Plotkin style rules to define operators with which one can
distinguish between any pair of non-bisimilar processes. We cannot obtain this
result with pure tyft/tyxt rules, but we will show that the notion of completed
trace congruence with respect to pure tyft/tyxt rules exactly coincides with 2-
nested simulation equivalence for all image finite processes. What we in fact will
prove is best illustrated by Figure 11.

2 m

s s
Zpure tyft/ tyxt 3 (IF) '4 ="
\ %’
~e o TR
FIGURE 11

The arrows indicate set inclusion. ‘IF’ stands for Image Finite and indicates
that we need image finiteness of processes for the proofs of inclusions 3, 5 and
6. For meN, ™ is m-nested simulation equivalence. ~¢_ is the equivalence
induced by the set £, of Hennessy-Milner formulas in which no negation sym-
bol occurs nested m times or more. In the right corner of Figure 11 we have an
auxiliary equivalence notion £5™. In Sections 8.5-8.7 these notions are made
precise and the inclusions are proved. It immediately follows that both trian-
gles collapse for image finite transitions systems. In particular we will prove
the following Theorem 8.4.2.
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8.4.1. DEFINITION. An LTS @=(S,4,—>) is image finite if for all s€S and acA
the set {z|s—*>¢} is finite.

8.4.2. THEOREM. Let P =(Z,A,R) be a TSS in pure tyft/tyxt format such that
TS (P) is image finite. Let s,t €T (Z). Then:

S Spure pfisyst t S sS?t o s ~g, L

PRrOOF. Direct from Theorem 8.5.8, Corollary 8.6.7 and Corollary 8.7.6 of this
section. O

We are quite sure that, if one uses infinitary Hennessy-Milner logic as in
(MILNER, 1989), the restriction of image finiteness in Theorem 8.4.2 can be
dropped. Because we wanted to keep the presentation as simple as possible,
we preferred to leave this generalization as an exercise to the reader.

In Section 8.8 we show that, using the results that were needed to characterize
the completed trace congruence for the pure #yft/tyxt format, it is easy to
prove that the trace congruence with respect to this format coincides with
simulation equivalence for image finite processes.

Bloom, Istrail & Meyer have studied the completed trace congruence induced
by tree rules. Tree rules differ from pure tyft/tyxt rules in that they may only
have variables in the premises and there may not be a single variable in the
left hand side of a conclusion. Hence, one could also call this type of rules
‘pure xyft rules’. They proved the following theorem (BLooM, 1988):

8.4.3. THEOREM (BLOOM, ISTRAIL & MEYER). Let P =(2,4,R) be a TSS in tree
rule format such that TS (P) is image finite. Let s,t €T (Z). Then:

S =tree rules?! S S~gl

This result, which is close to our characterization theorem, has not been pub-
lished. A sketch of the proof is included at the end of this section. We were
aware of the result of Bloom, Istrail & Meyer before we proved the characteri-
zation theorem for the pure fyft/tyxt format. However, all proofs in this sec-
tion are entirely our own.

8.5. Nested simulation equivalences.

8.5.1. DEFINITION. Let =(S,4,—) be a LTS. A relation
R C S XS is called a simulation if it satisfies:
whenever s R t and s 55’ then, for some t’€S, also t 2>¢’ and s’R t'.
s can be simulated by t, notation s C ¢, if there is a simulation containing the
pair (s,t). s and ¢t are simulation equivalent, notation s, if s trand ¢ C 5.

Note the difference between simulation equivalence and bisimulation
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equivalence: in the case of a bisimulation equivalence, there should be single
relation which is a simulation relation in two directions; in the case of simula-
tion equivalence it is required that there are two simulation relations, one for
each direction.

8.5.2. DEFINITION. Let @=(S,4,—>) be a LTS and let a be an ordinal number.
We define the relation ¢* C S XS inductively as follows:
s ¢t iff for each B<a there is a simulation relation R C(Gf)~ 1 with

SRt
Two states s and ¢ are a-nested simulation equivalent, notation s<* ¢, if s C* ¢

and r C°s.

8.5.3. LEMMA. Let @=(S,A,—>) be a LTS. Let a,B be ordinal numbers with
B<<a. Let s,t €S. Then:

0. ¢%=5xs§
. ¢g'=¢g and s =
§ %Z g (Eéﬁﬁ)—'
e
4. s*cercsf
5. ecs’
6. s St iff there is a simulation relation R C(C )~ withsR 1.
7. if ais a limit ordinal, then s C*t iff for all B<a: s gﬂ t

PROOF. Straightforward using the definitions. O

Besides the above lemma, there are a lot of other interesting facts about nested
simulations that one may try to prove. In particular it is interesting to see what
are the exact relationships between nested simulation equivalences and bisimu-
lation equivalence. Below some results are presented which clarify these rela-
tionships. Since these results are a bit outside the scope of this paper, all
proofs have been omitted.

8.5.4. COUNTEREXAMPLE. Below we present a counterexample which shows
that the inclusion of Lemma 8.5.3.5 is strict. In order to present the example it
is useful (although not necessary) to introduce the summation operator . This
operator, which for instance occurs in (MILNER, 1989), does not fit the frame-
work of this paper because it may have an arbitrary, possibly infinite number
of arguments. If ¢; (i €l) are terms, then Eie i is a term too. Its behaviour is
described by rules (for all a4, jel):
4 Sy
2i el L -%y

One has to assume an upperbound on the cardinality of the index set I in
order to make the collection of terms setlike. In our framework the operator >
can be coded by viewing Zie /1i as a constant. Besides the > operator, we will

use § and + as in P(BPA§) and prefixing operators a:(.) as in Section 5.11.3.
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We define the following terms:

so = c:6
to = sot+b:é
Sa+1 = Aty
la+1 = Sa+1 T ais,
If a is a limit ordinal, then:
Sa = zlkad:sﬂ
Sa = qud:(S,, + d:tg)
t, =5, +d:S,
Below in Figure 12 a part of the transition system is displayed:

s s Sg
9

FIGURE 12

One can prove that for every ordinal a: 5s,S"t, and s, ¥ t,. However,
within a fixed transition system <" and < will coincide when a is large
enough:

8.5.5. THEOREM. Let @=(S,A,—>) be a LTS and let a be the smallest regular
cardinal larger than the cardinality of all sets {s’|s >s’} (acA,s€S). Then

sS"t o set

This theorem implies in particular that for image finite transition systems the
intersection for all meIN of m-nested simulation equivalence coincides with
bisimulation equivalence.

Another implication is that if, relative to some transition system, <* is
different from <, # and <" are different for all B<y<a.

8.5.6. Nested simulations and completed trace equivalence. Simulation
equivalence does not refine completed trace equivalence. Take for example the
simulation equivalent processes a and ad+a. The completed trace sets are
{a*V} and {a,a*V}, respectively. However, it is not hard to see that for
m=2, m-nested simulation equivalence does refine completed trace
equivalence.
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8.5.7. LEMMA. Let Z=(F,r) be a signature and let P =(Z,4,R) be a TSS. If P
is well-founded and in tyft/tyxt format, then for all ordinals o, S* is a
congruence for all function symbols in F.

ProoF. Completely analogous to the proof of Theorem 5.10. Let P be well-
founded and in tyft/tyxt format. It is sufficient to show that for all ordinals «,
all feF and all closed terms u;,v;€T(Z) (1<i<r(f)):

Vi u; Sa Vi = f(u]"-’ur(f)) Sa f(vlr"vr(f))'

We prove this statement with induction on a. Let a be an ordinal and suppose
the statement is proved for B<a. Let RCT(Z)XT(Z) be the least relation
satisfying:

= GFCR,

- for all function symbols fin F and terms u;,v; (1<i<r(f)) in T(Z):

ViuRv; = fupsthp) RV 15eVr()-

It is enou to show RCC®* Let B<a. Since, by Lemma 8.5.3.3,
g g(gﬁ)_ , and because, by induction hypothesis, gﬁ is a congruence we
have that R C (g/’)_'. In order to show R C ¢ %, it remains to be shown that R
is a simulation relation, i.e. if ¥ Rv and u—“>p u’ then there is a v’ such that
v—p v’ and u’Rv’. The proof of this fact can in essence be copied from the
proof of Theorem 5.10. O

The next theorem states the validity of inclusion 1.

8.5.8. THEOREM (inclusion 1). Let P=(2,A,R) be a TSS that is in pure tyft/tyxt
format. Then:

2 =
S°C =pure tyft/tyxt:

PROOF. Let 5,1 T(Z) with s<? 1. Let P’=(2',A’,R’) be a TSS in pure tyft/tyxt
format that can be added conservatively to P and let C[] be a 2@ Z’-context.
Since P@P’ is a conservative extension of P, s<?t within TS (P®P’). Now
we use that <5? is a congruence for operators in pure fyft/tyxt format (Lemma
8.5.7) and get C[s]<? C[t]. Since <? refines completed trace congruence:
C[s]=crClt]. Because P’ and C[] were chosen arbitrarily this gives us:
S Spure tyft/ tyxt 1 O
8.6. Testing Hennessy-Milner formulas. Next we give the definitions of
Hennessy-Milner logic (HML) and prove the second inclusion in Figure 11.
Most definitions are standard and can also be found in (HENNESSY & MILNER,
1985). The notion of HML-formulas of alternation depth m seems to be new,
although the set of HML-formulas of alternation depth 1 (the formulas
without negation) is exactly the set 9 of (HENNESSY & MILNER, 1985).
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8.6.1. DEFINITION. The set £ of Hennessy-Milner logic (HML) formulas (over a
given alphabet 4 ={a,b,... }) is given by the following grammar:

¢::=T | p/\¢ | =9 | )¢

Let @=(S,4,—>) be a LTS. The satisfaction relation k¥ C S XE£ is the least rela-
tion such that:

- seTfor all ses,

- sepAyiff skgp and sk,

-  se—¢iff not sk,

- skar¢ iff for some t€S: s>t and 1k ¢.

We adopt the following notations:

- F stands for -7,

- ¢V stands for —(—pA\—),

- [ale stands for —<ay—¢.

It is not difficult to see that any HML formula is logically equivalent to a for-
mula in the language £’ which is generated by the following grammar:
¢::=T | F| ¢N\¢ | oV | ¢ | [ald.

8.6.2. DEFINITION. Let =(S,4,—>) be a LTS and let K be a set of HML for-
mulas. With ~q we denote the equivalence relation on S induced by ¥:

s~yt o (VoeH:skd < tEP).
We will call this relation X formula equivalence.

We recall a fundamental result of HENNESSY & MILNER (1985):

8.6.3. THEOREM (HENNESSY & MILNER). Let @=(S,4,—> ) be an image finite
LTS. Then for all s,teS:

st © s~pl

8.6.4. DEFINITION. For meNN define the set £,, of HML-formulas by:
- £y is empty,
- £, 41 is given by the following grammar:

o::=—y(for yeb,) | T | p/\¢ | ar¢.

We leave it as an exercise to the reader to check that the equivalence induced
by £,, formulas is the same as the equivalences induced by the sets %, and %}
which are given by:
- ‘)C(()) — 9{1} =.
- %+ is defined by:

¢ =y (for yeIP) | T | F | $/\¢ | 6V | @),

- 3l 4, is defined by:
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g:=y(for ye¥H3) | T | F | $/\¢ | $V | [alo.

8.6.5. ExaMPLE. Consider the terms s;,7; as defined in Section 8.5.4. Define
for 0<m<w the formula ¢, €, by: ¢, =M TA)T and @, +| =@ —@,,. It
is easily checked that for i=0: s;¥ ¢; 1, and ¢; Eq; 4.

8.6.6. THEOREM (Testing £, formulas). Let Py=(Zy,A¢,Ro) be a TSS in pure
tyft/tyxt format. Then there is a TSS P,=(Z,,4,,R,) in pure tyft format, which
can be added conservatively to P, such that completed trace congruence within
Py®P, is included in £, formula equivalence.

PROOF. P, is constructed in the following way. The set 4, consists of 4,
together with 5 new labels:

A =Aq VU {ok,left,right,syn,skip }.

Signature 2, contains a constant §, unary function names a: for each ae4 |,
and binary function symbols + and Sar. Observe that the signature is finite if
the alphabet A4 is finite. For § and + we have just the same rules as in BPA§
and a: denotes prefixing like in Example 5.11.3. The most interesting operator
is the operator Sat. Its first argument is intended to be a coding of some £,
formula. The Sat operator tests whether its second argument satisfies the £,
formula which is represented by its first argument. The rules of the Sar opera-
tor are given in Table 4. In the table a ranges over A ,. Because P, is in tyft
format, 2y NZ, =@ and P, is pure tyft/tyxt, it follows with Theorem 7.6 that
P, is a conservative extension of P.

skij ’
X X
1

Sat(x,y)-%>Sat(x’,y)
x —_L‘Qx,, Sat(x;,y) %>y,
x TS ., Sat(x,,y) %>y,
Sat(x,y) -2y, +y,

x ﬂ"}x’, x’%x"
»-5y', Sat(x",y")-%5y" 3
Sat(x,y)—"k%y”

TABLE 4. A test system for £, formulas

£, formulas are encoded using the following rules:
Cr=skip .9,
Cony =left:Cy+right:Cy,
C_s=skip:C,,
Cp=syn:a:C,.
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We claim that for ¢€L,, Sat(C,,?) has a completed trace ok iff 7 k¢. With this
claim, which we will prove below, we can finish the proof of Theorem 8.6.6:
whenever for some 5,1 T (Zo®DZ,) with s #¢ ¢, then there is an £, formula ¢y
such that sk¢y and t¥ ¢y (or vice versa). Using the claim this means
Sat(C%,s)ECTSat(C%,t).

Before we present a formal proof of the claim, we give some intuition about
how Sat(Cgy,t) tests the formula ¢ on t. If ¢=T, testing is straightforward:
Cr=skip:6 and skip indicates to Sat that it can do an ok step (rule 1). Hence,
Sat (skip:&,t)%Sat (8,1) and it is not hard to check that Sat(8,¢) cannot do a
next step.

Testing of /\ and (a) is almost as straightforward as testing the formula 7" and
resembles the definition of k. The intuitive meaning of the constant symbols
left:, right: and syn: is respectively: transform to the left/right part of a for-
mula and synchronize the next action of the coded formula and the tested pro-
cess. Testing — contains a little trick. First, the positive part of a formula is
tested, which possibly yields a first ok and then the negative parts are tested.
This can give rise to another ok. For instance the test Sat(C_g4,¢) performs an
initial ok step as its positive part is empty and then tests for the £, formula ¢
whether 7k¢. If there is no negative part that holds, the test does not yield
another ok action and there is a completed trace ok. If a negative part is true,
the test will yield another ok step and the ok trace is extended to the trace
ok*ok, which is not ok because now ok € MT (Sat(C,,t)). Next we will give a
formal proof of the claim.

LEMMA. Let teT(ZyDZ2,) and let pL,. Then:

i) te¢ = CT(Sat(Cy,t))={0k},

i) t¥¢o = CT(Sat(Cy,t))=92.

PRrOOF. Induction on the structure of ¢.

a) ¢ is 7. Then tk¢. The only move of Sat(Cy,t) is Sat(C,,t)-%>Sat (8,1)
and Sat(8,¢) has no outgoing transitions. Both implications hold.

b) ¢ is ¢ /A\¢,. If te¢p then k¢, and tr¢,. By induction
CT(Sat(Cy ,t))={ok} and CT(Sat(C,,t))={ok}. Since all outgoing
transitions of Sat(C,t) are proved using rule 2 in Table 4, one can easily
see that CT(Sat(Cg,t))={ok}. If on the other hand ¢ ¥ ¢ then either 7 ¥ ¢,
or (¥F¢,. Hence by induction either CT(Sat(Cy,1))=92 or
CT(Sat(Cy,,t))= @. Thus Sat(C4,t) can have no outgoing transitions and
CT(Sat(Cy,1))= 9.

c) ¢ is )¢’ If tE¢ then there is a ¢’ such that 1 —>¢’ and ¢’k ¢’. By induc-
tion CT(Sat(Cy,t"))={ok}. Outgoing transitions of Sat(C,,t) can only
be proved using rule 3 and inspection of this rule allows us to conclude
that CT(Sat(Cg4,t))={ok}. If t¥ ¢ then for all ¢’ with t-¢', t'¥ ¢'.
Hence by induction CT(Sat(Cy,t'))=@. But this implies
CT(Sat(Cgy,t))= @ since rule 3 cannot be applied. [

CLAIM. Let teT(ZyDZ,) and let p€,. Then:
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tk¢p < 0keCT(Sat(Cy,t)).

PrROOF. =) Induction on the structure of ¢.

a) ¢ is -y, yel;. We have 7¥ . By the lemma above, CT(Sat(Cy,1))= 2.
By rule 1: Sat(C,,,t)%Saz(C,p,t) Hence ok is in CT (Sat(C,t)).

b) ¢ is T. Rule 1 gives Sat(Cr,t)-%>Sar(6,t)—Y . Hence
ok eCT (Sat(Cy,t)).

c) ¢ is ¢;/\¢,. Since k¢ we also have tk¢;, and rk¢,. By induction
ok eCT (Sat(Cy,,t)) and ok €CT(Sat(C,,t)). Since all outgoing transi-
tions of Sat(C,,t) are proved using rule 2, one can easily see that
0ok e CT (Sat(C,t)).

d) ¢=«a¢'. Since 1 k<a)¢’, there is a ¢’ such that 1 < *>¢’ and ¢’k ¢’. Induction
gives that okeCT(Sat(C #»1"))- Hence there is a termination node ¢” such
that Sat(Cy,t )-2%k5¢”. Now an application of rule 3 gives that
ok e CT (Sat(Cy,t)).

<) Induction on the structure of ¢.

a) ¢ is -, Yeby. If Sat(Cy,t) does a move, then the last rule applied in the
proof must have been rule 1 and the transition must be
Sat(C,,,t)%Sat(C,p,t) Because ok € CT (Sat(Cy,t)), Sat(Cy,t) can have
no outgoing transitions. Since Y €f£,, the lemma allows us to conclude that
t¥ y. Hence ¢k ¢.

b) ¢ is T. Since ¢k T the implication holds.

c) ¢ is ¢ Agy. If Sat(Cy,t) does a move then the last rule applied in the
proof of this transition must have been rule 2. Since ok € CT(Sat(C,1)),
it must be that okeCT(Sat(C,,,t)) and ok eCT(Sat(Cy,t)). But this
means that we can apply the induction hypothesis to obtain k¢, and
tE¢,. Hence t k.

d) ¢is ¢’ If Sat(Cy4,t) does a move then the last rule applied in the proof
must have been rule 3. So because ok € CT(Sat(Cgy,t)), there are t',t”
with ¢t -5¢’, Sat(Cy,t ’y-%5¢” and t” a termination node. This implies
that ok e CT (Sat(Cy,t")). By induction ¢'k¢’. Hence 1k ¢. [

This completes the proof of Theorem 8.6.6. a

8.6.7. COROLLARY (inclusion 2). Let P be a TSS in pure tyft/tyxt format. Then:

Spure pfi/yxe &~y

8.7. In this section it will be shown that the inclusions 4, 5 and 6 hold. As an
immediate corollary it follows that inclusion 3 holds.
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8.7.1. THEOREM (inclusion 4). Let @=(S,A, — ) be a LTS. Then for all s,teS
and meN:

sS"t = s~ L

PROOF. Suppose that s C™¢ and sk¢ for some ¢ef,. We prove rk¢ with

induction on m. The case m =0 is trivial. So suppose m >0. We prove ¢k ¢

with induction on the structure of ¢.

a) ¢ is —y, YL, ;. By definition of s ™ we have r ™ ~!s. Application
of the induction hypothesis gives ¢ ¥ y and hence ¢k ¢.

b) ¢ is T. In this case ¢ k¢ trivially holds.

c) ¢ is ¢;/\¢,. From sk ¢ it follows that s k¢; and s k¢,. By induction ¢ k¢,
and 7k ¢,. Hence, 1 E¢.

d) ¢ is @¢’. There exists an s’ such that s <>s’ and s'k¢’. Since s ™1,
there exists an m-nested simulation R containing (s,z). Hence, for some
t'eS, t-¢t" and s’Rt’. So s’ g™ t’. By induction ¢’k ¢’ and thus tk¢. [

We define 5™ and %5, as auxiliary notions. Roughly speaking, s ;' ¢ means
that s and ¢ are m-nested simulation equivalent to depth n. £3™ is the intersec-
tion of s for all n.

8.7.2. DEFINITION. Let @=(S,4,—>) be a LTS. Define for m,neN relations

Gm C SXS by:

- 5 S8t always,

- 5 G917 always,

- sGrHltiff t g7y s and whenever s -5’ then there is a ¢’ such that
t-St and s’ gty

We write:

- sssptifsgrMtandr g7,

- sss"tif for all n: sS)e,

- sgmrrifforalln: s gme.

8.7.3. LEMMA. Let mneN. Then 7 C QM and Ssp'4 C Sy
PROOF. Straightforward simultaneous induction on m and n. O

8.7.4. THEOREM (inclusion 5). Let @=(S,A,—>) be a LTS which is image finite.
Then for all s,t €S and meN:

s~et = sS"L

PROOF. Suppose that s ¢™¢. With induction on m we show that there is a
¢€L,, such that se¢ but ¢ ¢. It cannot be that m =0. So take m >0. Since
s ¢™t, there must be an n such that s ' r. With induction on n we show that
there exists a ¢ such that s k¢ but not 7k ¢.

It cannot be that n =0. Take n>0. If tg 7~ 's then we can find, by induction
hypothesis, a Y €f,, _, such that # £y and s ¥ y. Hence s k- (the formula —y is
in £,) and r¥ —. If, on the other hand, ¢ g7 ~ls, then it must be that for
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some acA and s’eS with s—2s’ we have that for all ¢ with 1-%>¢":
s’qm—1t'. Now a first possibility is that there is no ¢’ such that  =5>¢’. In this
situation sk« T, t¥ «<a>T and we are done. The other possibility is that there
is a nonzero, but due to the image finiteness, finite number of states iseslp
that can be reached from ¢ by an a-transition. Since s’ & '—; ¢; for 1<<i<p, we
have by induction that there are ¢, €L, such that s’k¢; and #; ¥ ¢;. Consider
the £, -formula $=¢; /\../\¢,. Since s"k¢ and ¢, ¥ ¢, s k@) and 1 ¥ a)¢. O

8.7.5. THEOREM (inclusion 6). Let @=(S,A,—>) be a LTS which is image finite.
Then for all s,t€S and meN:

st = sS™t

PROOF. Suppose that s ™. With induction on m we prove that s C™¢. The
case m =0 is trivial. So suppose m >0. We prove that ¢ is an m-nested simu-
lation relation. Whenever v g™ w then for all n, v ' w. Hence by definition of
g™ wgm~ly for all n. Thus wg™ ~!'v and by induction w ™~ !v. So the
relation G is contained in the relation (™ ~')~'. It remains to be shown
that ™ is a simulation relation. Suppose v G™w and v -*>v’. Since for all
n>0, vg,™w there is for each n a w, such that w —“>w, and v'g?_ | w,. Due
to the image finiteness there must be a w* that occurs infinitely often in the
sequence w) wj,.... Because for all n C' | DG by Lemma 8.7.3, we have
that for all n>0, v g™ ; w" and therefore v G™w". This concludes the proof
that g™ is an m-nested simulation. O

8.7.6. COROLLARY. Let @=(S,A,—>) be a LTS which is image finite. Then for
all s,teS and meN:

sS"t o sSt o s~g L

ProOOF. Immediate from Theorems 8.7.1, 8.7.4 and 8.7.5. O

8.8. Trace congruence. Using the above results, we can easily characterize the
‘trace congruence’ induced by pure #yft/tyxt rules as simulation equivalence or
£, formula equivalence (for image finite LTS’s). We just repeat the argumenta-
tion above for trace congruence instead of completed trace congruence. First
the notion of trace congruence is defined.

8.8.1. DEFINITION. Let @=(S,4,—>) be a LTS. A sequence a,*..*a,€A4" is a
trace of s if there are states s|,s5,..,5, €S such that s 255, 2>, 455, T(s)
is the set of all traces of s. Two states s, €S are trace equivalent if T (s)=T(t).
This is denoted s =7 ¢.



58 SOS and bisimulation as a congruence

8.8.2. DEFINITION. Let ¥ be some format of TSS rules. Let P =(Z,4,R) be a
TSS in ¥ format. Two terms s,t€T(Z) are trace congruent with respect to
rules, notation s =&, if for every TSS P’=(2’,4’,R’) in ¥ format which can be
added conservatively to P and for every 2@Z2'-context C[]: C[s]=r C|[t].

8.8.3. THEOREM. Let P =(Z,A,R) be a TSS in pure tyft/tyxt format such that
TS (P) is image finite. Let s,t €T (Z). Then:

SShrepiputl S St © s~

PROOF. In fact most of the work has already been done. The equivalence of <
and ~;, follows from Corollary 8.7.6. The implication s =1, y5/0ut = s St
follows by Lemma 8.5.7 and the observation that simulation equivalence
refines trace equivalence. The reverse implication can be proved using the same
test system as in the proof of Theorem 8.6.6. a

8.9. Characterization theorem for tree rules. The characterization Theorem 8.4.3
for tree rules of Bloom, Istrail & Meyer follows from Theorem 8.5.8, Corollary
8.7.6 and the following Theorem 8.9.1. In fact this combination gives a result
which is even stronger than the result of Bloom, Istrail & Meyer as we allow
more general rules in the original system and our test system is finite if the
alphabet of the old system is finite (they did not look at finite test systems for
£, formulas). The next theorem also strengthens Theorem 8.6.6 because now
only tree rules are used. But, as the proof of this theorem is rather tricky, we
liked to give the simpler variant first.

8.9.1. THEOREM. Let Py=(Z,A¢,R¢) be a TSS in pure tyft/tyxt format. Then
there is a TSS P,=(2,,41,R)) in tree rule format, which can be added conser-
vatively to P, such that completed trace congruence within Py® P is included in
£, formula equivalence. Moreover, if alphabet A is finite, then the components of
P, are finite too.

PROOF (sketch). The alphabet 4, consists of A, together with 8 new labels:

A =AU {ok,ko,left,right,size,neg, 0,i}.

3, contains §, + and prefix-operators a: for every a€A,. In R, we find the
usual rules for these operators. Furthermore Z; contains binary operators ||z
which model parallel composition with synchronisation of actions in a set
H CA,. For these operators R contains rules (a€4,):

x-5>x’ y -S>y
——— e eH = eH
x\lgy S gy “ xllgy xligy’ “
x-53x', y S5y
eH
xlgy x' gy’ “

Next Z; contains a binary operator Sar which tests whether its second
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argument satisfies the £, formula which is encoded using the rules below.
Further it contains the auxiliary operators Context, skip-i and ok-to-ko. The
rules in R, for these operators are displayed in Table 5 (where ae4,). If 4,
is finite then clearly 4,, Z; and R, are finite too.

x =25 xSx’
Sat (x,y) 3V Context (x,y)—> Context (x’,skip -i (y))

x_'%xl’x_nx’%xr x ok xl

Sat (x,y) -S> Sat (x,p)ll (ok} St (x,,y) Context (x,y) %> ok -to -ko (y)

x%x’%x”,y%y’ x'%x’“%x"
Sat (x,y)—>Sat (x",y") skip -i (x)“>x"
X .f'izeax/’x m;xn x ok x’
Sat (x,y) —> Context (x’,Sat (x",y)) ok -to -ko(x) X256

TABLE 5. A test system for £, formulas with tree rules only
Let the mapping s:2,—N be given by:
s(T)=0
s(@AY)=1+s(d)+sW)
s(@¢)=1+s(9)
and let the =, terms S, (n=0) be given by:
So=o0k:6
Sn+1=1:8,
£, formulas are coded as follows:
Cr=ok:8
Cony=left:Cy +right:C,
C_s=size:Syg) tneg:Cy
Cae=0:a:Cy
We will now briefly explain the way in which the above construction works.

We have the following claim:

CLAIM. Let ¢l and teT(Z(DZ,). Then tr¢ iff Sat(Cgy,t) has a completed
trace with an ok action but without a ko action.

It is not hard to see that the above claim is correct in case ¢€£,. This is a
direct consequence of the next lemma which can be proved easily by means of
induction on the structure of ¢:



60 SOS and bisimulation as a congruence

LEMMA 1. Let € with s(p)=n and let teT(ZyDZ,). Then:
-tk = (i"rok} C CT(Sat(Cy,t)) C {i"*ok}U(i"|1<m<n},
- t¥Fp = CT(Sat(Cy,t)) C {i"l1<m=<n}.

The problem is what to do with negations. The key idea of our solution is that
if one applies the skip -i operator s(¢) times on Sat(C,,t), the trace set of the
resulting process consists of ok if ¢ k¢ and will be empty otherwise. So what we
have to do is to place s(¢) times a skip -i operator around Sat(Cg,?) in a struc-
tured way and next apply a renaming of ok into ko. This is of course done
using the binary operator Context. The first argument of this operator gives
instructions on how to build a context around the second argument. In case a
formula —¢ has to be tested, our construction works in such a way that (after
some i-steps) always an ok step will be generated, whereas a subsequent ko
action is generated only when the tested process satisfies ¢. One can prove the
following lemma:

LEMMA 2. Let €L with s(p)=n and let teT(ZyDZ,). Then:
- tk¢p = CT(Context(S,,Sat(Cy,t))) = {i"*ok*ko},
- t¥ ¢ = CT(Context(S,,Sat(Cq,t))) = {i"*ok}.

Using Lemma 2, the Claim can be proved with straightforward induction on
the structure of ¢. Theorem 8.9.1 is an immediate consequence of the Claim.
a

9. COMPARISON WITH OTHER FORMATS

In this section we will give an extensive comparison of our format with the for-
mats proposed by DE SIMONE (1984,1985) and BLOOM, ISTRAIL & MEYER
(1988). First both formats are described.

9.1. DEFINITION. Let Z=(F,r) be a signature and let 4 be a set of labels. A
De Simone rule (over Z and A) takes the form:

{(x; >y liel}
S 15x) =t

where:

-  feFand r(f)=|,

- IC{1,.,1},

- Xy,.,x; and y; (i ) are distinct variables,

Let for 1<i<! x;/’=y; if iel and x;=x; otherwise.

- tisatermin T'(Z,{x,’,..,x,/}) in which each x;” occurs at most once.

Clearly the De Simone format as presented above is included in our #yft/tyxt
format. One should note however that De Simone assumes in addition that the
set of labels is an (infinite) commutative monoid. Moreover he includes
(unguarded) recursion in the language together with the standard fixed point
rules.
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9.2. DEFINITION. Let Z=(F,r) be a signature and let 4 be a set of labels. A
GSOS rule (over Z and A) takes the form:

{x; 2y 11<i<l, 1<j<m}U{x; 2> |1<i<l, 1<j<n;)
Slx1,e, %) 1
where the variables are all distinct, f€F, I=r(f), m;,n;=0, a;;,b;;€A and ¢ is a
term in T(E, {x,,yul lglsl, 1<j<m,}).
A GSOS rule system is a triple (2,4,R) with 2 a signature, 4 a set of labels
and R a set of GSOS rules over 2 and 4.

We should mention here that the above definition is simplified in order to
make comparison possible and only gives an approximation of the notion of a
GSOS rule system as it is defined by BLOOM, ISTRAIL & MEYER (1988). There
a GSOS rule system contains some additional ingredients for dealing with
guarded recursion and there are a number of finiteness constraints. The feature
which distinguishes GSOS rules from the other rules in this paper is the possi-
bility of negative premises. This makes that it is not immediately clear how
(and if) a GSOS rule system determines a transition relation.

9.2.1. DEFINITION. Let (2,4,R) be a GSOS rule system. A transition relation —

o & Ee%xé(v'grxag (izngtgﬁrtfgfi(‘)‘gt%;h a su essultrllxtﬁnllf o of the premises of a rule is
true of the relation, then the instantiation of the conclusion by ¢ is true as
well.

- Whenever 1 <>t’ is true, then there is a rule r and an instantiation ¢ such
that r —>¢’ is the instantiation of the conclusion of r by o, and the instan-
tiations of the premises of r by o are true.

It is not hard to show that for any GSOS rule system, there is a unique transi-
tion relation which agrees with the rules. If a GSOS rule system only contains
positive rules then it is a TSS according to our definition. Moreover in this
case the unique transition relation which agrees with the rules according to the
definition above is just the same relation as the one defined in Definition 3.2
using the notion of proof trees of transitions.
The following example from BLOOM, ISTRAIL & MEYER (1988) shows that in
general the GSOS format cannot be combined consistently with the tyft/tyxt
format. There are 4 operators in the signature: f, g, ¢ and 4. We have an action
a and the following rules:
xDy y-Hz
fx)->d

e - 2
g(x)—>d

c—g(f ()
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There is no transition relation which agrees with these rules. In particular, f (c)
can move iff it cannot move.!

9.3. ExaMpLES. Below we list some examples that illustrate the differences
between the formats.

9.3.1. Global closure properties. Rules in tyxt format fit neither De Simone’s for-
mat nor the GSOS format. One could say that zyxt rules, like for instance the 7
rules of Table 2, express certain ‘global closure properties’, a form of opera-
tional behaviour which is in general independent of the particular function
symbol at the head of a term.

9.3.2. Contexts. Often it is very useful to have function symbols in the left
hand side of a premise. However, this is not allowed by the De Simone or
GSOS format. In Section 6.2 we saw that these rules can be used to model
recursion. Also in the system of Table 4 for testing £, formulas, this type of
rules play an important role. In (BAETEN & VAN GLABBEEK, 1987), operators
ex are described that erase all actions from a set K CAct. We can add these
operators to P(BPAj) together with the following rules from (BAETEN & VAN
GLABBEEK, 1987):

a

Xy
) Bely) "N

x5y e(y)-Dz
ex(x)->z

The same type of trick can also be used to describe the ‘atomic version opera-
tor’. This operator was introduced by DE BAKKER & Kok (1988) for giving
semantics to concurrent Prolog. Here we will give our own variant of this
operator, using our own notation. The interested reader who wants to know
how this type of operators can be used to give semantics to concurrent Prolog
is referred to (DE BAKKER & KOK, 1988). Take as starting point the signature
of BPA§. But as labels of transitions we now don’t take elements of Act,/, but
elements of the set of finite sequences over Act,. Write a for the sequence
consisting of the single symbol a eAct ;. With oo’ we denote the concatenation
of the sequences o and o’. The set of rules of the TSS contains the rules of
R(BPAj) (but now the labels should be interpreted as sequences!) and more-

over the following rules:
XDy
[x]—=>y

1. In (GROOTE, 1989), it is investigated in which cases a specification in ‘ntyft/ntyxt’ format is
consistent. A general method, based on the stratification technique in logic programming, is
presented to show consistency of sets of rules. It is shown that various results from this paper ex-
tend smoothly to a setting where rules may contain negative premises.

aek
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xSy 1>z
[x] ao z

The rules express that only successful sequences, i.e. sequences ending on V,
can happen in the scope of an atomic version operator. The rules are in zyft
format. Hence, strong bisimulation is a congruence in this setting.

9.3.3. Lookahead. All operators defined with the De Simone or GSOS format
have a lookahead of at most 1. Hence the following operator, which can be
viewed as the inverse of the split operator of VAN GLABBEEK & VAANDRAGER
(1987), cannot be defined:
+ =
combine (x) —*>combine (z)

Other examples of operators with a lookahead are the ex and the atomic ver-
sion operator as described above. As a last example we mention the abstraction
or hiding operator from ACP, (here I CAct):

xSx’
—_— 1
) Snx) S
xSx’
— 1
T1(x) =7 (x") -

If we add these rules to the system P(BPA(;) as described in Section 6.1, then
we can derive:

(@) =73y (o).

Observe that the rules that contain a function symbol 7; all have a lookahead
of 1 (i.e. the length of the maximal path in the dependency graphs of the rules
is 1). As operators on transition systems the 7; have an unbounded lookahead,
due to the presence of tyxt rules with a lookahead of 2 in P(BPA).

9.3.4. Copying. In contrast to De Simone’s format, the GSOS format and also
our format can describe operators which copy their arguments. The system call
Sfork of UNix (1986) is a typical example of an operation that one would like to
describe using copying. One can think of a rule like:

fork (x) —>parent (x)l|child (x).

Below we present another example where copying occurs naturally. It describes
an operational semantics of the natural numbers which is based on the idea of
counting: the process associated to an integer expression performs as many
actions as the value which is denoted by this expression under the standard
interpretation. We consider the signature containing a constant symbol 0, a
unary function symbol succ and binary function symbols + and X. There is
only one transition label, namely 1. The operational semantics of the operators
is described by the following rules:

suce(x)—x
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xLx’ e
— X AX —_—
x+y—')x’+y x+y—>x+y’
xSx’ y—léy’

x Xy —%(x’)(y')+(x’+y')
Observe that two expressions denote the same value under the standard
interpretation iff they are bisimilar.

9.3.5. Branching. The ability to copy arguments is not the only difference
between De Simone’s format and the GSOS format. A rule like:

x-25x', xL3x"
fx)-Df ()

fits De Simone’s format but not the GSOS format. In this rule we see a
branching in the dependency graph at node x.

9.3.6. Catalysis. A similar example is obtained if we add to P(BPAj) the fol-
lowing rule which fits the GSOS format:
x-25x, y S5’
Cat (x,y)-*>Cat (x,y")

Here we have a situation, not allowed by De Simone’s format, where a poten-
tial ok-action of the first component makes it possible for the second com-
ponent to proceed. But when it proceeds the first component remains
unchanged. Hence, one can view the first component as a catalyst of the
second component.

9.3.7. Priorities. In (BAETEN, BERGSTRA & KLOP, 1986) an operator is intro-
duced to describe priorities in ACP, whereby some actions have priorities over
others in a non-deterministic choice. The operator turns out to be quite
interesting and has been used in a number of applications. In (BAETEN, BERGS-
TRA & KLOP, 1986) the operator is defined using equations, but if one uses
Plotkin-style rules then it is inevitable to use negative hypotheses.

Consider the GSOS rule system P(BPAj) and assume that the set Act,/ of
labels is finite. Assume furthermore that a partial order > is given on Act
such that V is not in the ordering. Now we can add a unary operator 6 to the
rule system, with for each a€A4 y a rule:

x-Dx', Vb>a : x>
0(x) >6(x")
The rule expresses that in the scope of a f-operator an a action can occur
unless an action with a higher priority is possible. CLEAVELAND & HENNESSY
(1988) describe priorities using fyxt rules with negative hypotheses. Another
example of an operator that is defined using rules with negative premises is the
broadcast operator as described by PNUELI (1985).
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9.4. Completed trace congruences. The differences between the formats
presented thus far can be understood also if we look at the completed trace
congruences which they induce. In Section 8 we saw that the trace congruence
induced by (variants) of the pure tyft/tyxt format coincides with £, formula
equivalence.

The main theorem which De Simone proved about his format is that all opera-
tors defined using his type of inductive rules can also be defined by MEDE-
SCCS ‘architectural’ expressions. Similar results have not yet been proved for
the GSOS or the tyft/tyxt format. Now it is a standard result that the com-
pleted trace congruence induced by languages like MEnE-SCCS, ACP, CSP,
etc., coincides with failure equivalence (=f) (see for instance (BERGSTRA, KLOP
& OLDEROG, 1988)). Hence the completed trace congruence induced by De
Simone’s format is failure equivalence (it is not too difficult to give a direct
proof of this fact).

BLOOM, ISTRAIL & MEYER (1988) characterized the completed trace congruence
induced by their format in terms of the equivalence corresponding to the fol-
lowing set of formulas:

9.4.1. DEFINITION. The set D of denial' (HML) formulas (over a given alphabet
A ={a,b,... }) is given by the following grammar:

o::=T | p/A\¢ | [a]F | <ar¢.

9.4.2. THEOREM (BLOOM, ISTRAIL & MEYER). Let P=(Z,A,R) be a GSOS rule
system such that the associated transition system is image finite. Then:

=Gsos = ~9-

Some additional insight is provided by the following characterization of denial
equivalence which is due to LARSEN & Skou (1988).

9.4.3. DEFINITION. Let @=(S,4,—>) be a LTS. A relation RCSXS is a 2/3-
bisimulation, also called a ready simulation, if it satisfies:

1. whenever s Rt and s 55’ then, for some t’€S, also t >¢’ and s’R ¢/,

2. whenever s R t and t <>¢’ then, for some s’€ S, also s —s’.

Two states s,z €S are 2/3-bisimilar (or ready simulation equivalent) in @ if there
exists a 2/3-bisimulation containing the pair (s,7) and a 2/3-bisimulation con-
taining the pair (t,s).

1. The formulas as defined in (BLOOM, ISTRAIL & MEYER, 1988) were called /imited modal formu-
las and may also contain F and V. However, it is easily proved that this addition does not in-
crease the distinguishing power.
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9.4.4. THEOREM (LARSEN & SKOU). Let @=(S,A,—>) be an image finite LTS.
Then two states are 2/3-bisimilar just in case they satisfy exactly the same denial
formulas.

It is a trivial exercise to show that:
S? C 293 C=f C =cr

The examples of Figures 13, 14 and 15 show that these inclusions are strict.

a a a
b 4 b C

FIGURE 13. Completed trace equivalent but not De Simone congruent

a a a
b b b b
¢ d G d

FIGURE 14. De Simone congruent but not GSOS congruent

9.4.5. Testing denial formulas. The question arises whether all features of the
GSOS format are really needed in order to test denial formulas. In particular it
is interesting to know whether the negative premises add anything to the
discriminating power of the format. Surprisingly, as was first observed by RoB
VAN GLABBEEK (1988), this is not the case: GSOS congruence coincides with
positive GSOS congruence. Below we present a system in positive GSOS for-
mat for testing denial formulas. The system is simpler than the original system
of Rob van Glabbeek. Moreover our system has the advantage of being finite
in case the alphabet of the old system is finite.
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FIGURE 15. GSOS congruent but not pure #yft/tyxt congruent

9.4.6. THEOREM. Suppose we have a TSS Py=(Z¢,A¢,Ro) in GSOS format.
Then there exists a TSS P;=(Z,,A,,R;) in GSOS format with all premises
positive and non-branching, which can be added conservatively to P, such that
completed trace congruence within Poa®P, is included in denial equivalence.
Moreover, if alphabet A is finite, then the components of P are finite too.
PRrROOF. The set A consists of 4, together with 6 new labels:

A=Ay {ok,ko,left,right,[],0 }.

Signature 2; contains a constant §, unary function names a: for each ae4,
and binary function symbols +, ||, Saz, Satj), Sat,, and Sat g, The rules for
8, a: and + are as usual. || is just arbitrary interleaving. The Sat operator tests
whether its second argument satisfies the denial formula which is represented
by its first argument. The rules for the |l-operator and the various Sat-
operators are given in Table 6. In the table, a ranges over 4,. One can check
that P, can be added conservatively to P,.

x A x’ xSx' y-Dy’
Sat(x,y) 1> Sat(x',y) Saty(x,y) *2>8

x—x" x-Hx' y-Hy'
Sat(x,y)—>>Sat ,(x’,y) Sat ,(x,y)-2%>Sat (x",y")

x Ieﬁ;xl x right x’

Sat (x,y) Lefts, Sat " )ISat ign(x,y) Sat ign(x,y) rights, Sar x'.y)

X 95’ y 25y’
xlly =>x'lly xlly S>xly’

TABLE 6. A test system for denial formulas

Denial formulas are encoded using the following rules:
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CT =d
C¢/\¢ — Ieft:C¢ T rlght.‘C,‘,
C[a F= []a :8

Carp=0:a:Cy

CLAIM. Let teT(Zy®Z)) and let ¢ be a denial formula. Then te¢ iff
Sat(Cg,t) has a completed trace with as many ok’s as ¢ has <a)’s, and no ko.
PRrOOF. Rather straightforward induction on the structure of ¢. a

9.4.7. Comparison of testing abilities. The notion of testing which underlies
CCS/CSP/ACP, and hence De Simone’s format, is well-known (see for
instance (DE NicoLA & HENNEssY, 1984) and (BERGSTRA, KLOP & OLDEROG,
1988)): these languages allow one to observe traces, deadlock and to block
actions from a certain moment onwards. This makes it possible to detect
refusals indirectly: one concludes that a certain action can be refused after an
initial trace because deadlock occurs if all the other actions are blocked. The
construction in the proof of Theorem 9.4.6 clearly shows which notion of test-
ing underlies the (positive) GSOS format: the format allows one to observe
traces of processes, to detect refusals and to make copies of processes at every
moment. In the general GSOS format refusals can be observed directly: one
can define a context which performs an ok step if its argument cannot do a
certain action. In the positive GSOS format refusals can also be observed, but
only indirectly. The key feature which distinguishes the positive GSOS format
from the De Simone format is the capacity to make copies of processes at
every moment. Observe that the only rule in Table 6 that does not fit De
Simone’s format is the rule dealing with the left action. In this rule the x and y
are copied. In many situations copying is a natural operation which can be
realised physically by for instance a core dump procedure.

The construction in the proof of Theorem 8.9.1 shows that the additional
testing power needed to bring one from denial equivalence to £, formula
equivalence only consists of the ability to see whether some action is possible
in the future: there should be operations with a lookahead (in fact the proof of
Theorem 8.9.1 shows that a lookahead of 2 is already enough). Using operators
with a lookahead one can investigate all branches of a process for positive
information and one can see whether a certain tree is possible. In particular
one can see whether there exists a branch in which a certain action is present.
In the same way as one can observe in De Simone’s format that a certain
action is refused because deadlock occurs when the other actions are blocked,
one can conclude in the tyft/tyxt format that a tree is refused. The ability to
see in the future of a process can be considered as a weak form of global test-
ing. Global testing is the same as what MILNER (1981) calls controlling the
weather conditions. ABRAMSKY (1987) describes global testing as: ”the ability
to enumerate all (of finitely many) possible ‘operating environments’ at each
stage of the test, so as to guarantee that all nondeterministic branches will be
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pursued by various copies of the subject process”. Because an operator with
lookahead is not capable to see negative information (like the absence of some
action) directly, and because it is also not able to force that all nondeterminis-
tic branches are pursued by some number of copies, lookahead does not give
one the full testing power of global testing. Since global testing is needed in
order to distinguish between processes which are not bisimilar, this explains
why the fully abstract semantics induced by our format is still below bisimula-
tion equivalence. Global testing in the above sense seems very unrealistic as a
testing ability and in direct conflict with the observational viewpoint of con-
current systems. Recently however, LARSEN & Skou (1988) have pointed out
that if one assumes that every transition in a transition system has a certain
minimum probability of being taken, an observer can - due to the probabilistic
nature of transitions - with arbitrary high degree of confidence, assume that all
transitions have been examined, simply by repeating an experiment many
times (using the copying facility). This idea gives some plausibility to the
notion of global testing. In fact LARSEN & Skou (1988) deviced some testing
algorithms which allow them, with a probability arbitrary close to 1, to distin-
guish between processes that are not bisimilar.

Unless one believes in fortune telling as a technique which has some practi-
cal relevance for computer science, lookahead as a testing notion is not very
realistic. Still, this lookahead pops up naturally if one looks at the maximal
format of rules for which bisimulation is a congruence and we showed that
rules with a lookahead are often useful. Therefore we think that, just like
bisimulation equivalence, £, formula equivalence is an interesting equivalence
that is worth studying, even though it does not correspond to a very natural
notion of testing.

9.4.8. Finiteness and decidability. In their paper ‘Bisimulation can’t be traced’,
BLoOM, ISTRAIL & MEYER (1988) argue that bisimulation equivalence cannot be
reduced to completed trace congruence with respect to any reasonably struc-
tured system of process constructing operations. They present the GSOS for-
mat, which they believe to be the most general format leading to reasonably
structured systems, and then show that the congruence induced by this format
is denial formula equivalence. Although the pure tyft/tyxt format cannot trace
bisimulation equivalence, it can trace more of it than the GSOS format. This
implies that not all pure #yft/tyxt rules are structured according to the
definition of BLOOM, ISTRAIL & MEYER (1988). And indeed what’s wrong in
their opinion with our rules is that they might lead to transition systems with a
transition relation which is infinitely branching or not computable. The various
finiteness constraints which are present in the definition of the GSOS format in
(BLooM, ISTRAIL & MEYER, 1988), are motivated by the requirement that the
transition relation should be computably finitely branching. We think that,
although it is certainly important to have finiteness and decidability, it is much
too strong to call any TSS leading to a transition relation which does not have
these properties ‘not reasonably structured’ (this is what BLOOM, MEYER &
ISTRAIL (1988) seem to do). Since our format gives us the expressiveness to
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describe the invisible nature of 7 (see Section 6.1) it is to be expected that, in
general, we also have the infinite branching and undecidability of the models
of CCS/ACP, based on observational congruence. If one disqualifies infinitary
and undecidable TSS’s right from the start, then one misses a large number of
interesting applications. Of course the question what type of TSS’s do lead to
computably finitely branching transition systems is a very interesting one. It
seems that if one generalises the positive GSOS format in the direction of the
tyft/tyxt format, infinite branching arises quite soon. The following example
for instance, which is due to Bard Bloom, illustrates that function symbols in
the premises are ‘dangerous’.

FIGURE 15

In the example we have prefixing and & as usual and moreover a constant w
with rules:

w'%x

w%l:x
The part of the transition system which is displayed in Figure 15 shows that w
has an infinite number of outgoing transitions. Another example illustrating
the same point is obtained by adding recursion to P(BPA$) in the style of Sec-
tion 6.2 with the ‘unguarded’ recursive definition X<Xa +a. It is easy to give
examples of zyxt rules or tree rules which lead to infinite branching or undeci-
dability. It is an open question to find a format in between positive GSOS and
tyft/tyxt which always leads to computably finitely branching transition rela-
tions.
In our view one reason why rules with a lookahead are important is that they
make it possible to have different levels of granularity of actions and to
express that an action at one level can be composed of several smaller actions
at a lower level. The system of Table 6 for testing denial equivalence is an

w8
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excellent example of a situation where the GSOS format forces one to do in
two steps what one would like to do in only one.
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In recent years a wide variety of process algebras has been proposed in the
literature. Often these process algebras are closely related: they can be viewed
as homomorphic images, submodels or restrictions of each other. The aim of
this paper is to show how the semantical reality, consisting of a large number
of closely related process algebras, can be reflected, and even used, on the
level of algebraic specifications and in process verifications. This is done by
means of the notion of a module. The simplest modules are building blocks of
operators and axioms, each block describing a feature of concurrency in a cer-
tain semantical setting. These modules can then be combined by means of a
union operator +, an export operator OJ, allowing to forget some operators in
a module, an operator H, changing semantics by taking homomorphic images,
and an operator S which takes subalgebras. These operators enable us to
combine modules in a subtle way, when the direct combination would be
inconsistent. We show how auxiliary process algebra operators can be hidden
when this is needed. Moreover it is demonstrated how new process combina-
tors can be defined in terms of the more elementary ones in a clean way.

Key Words & Phrases: process algebra, concurrency, modular algebraic
specifications, export operator, union of modules, homomorphism operator,
subalgebra operator, chaining operator.

Note. This paper is essentially the same as [14], except that Sections 4 (on
queues) and 5 (on the CABP protocol) have been left out.

INTRODUCTION

During the last decade, a lot of research has been done on process algebra: the
branch of theoretical computer science concerned with the modelling of con-
current systems as elements of an algebra. Besides the Calculus of Communi-
cating Systems (CCS) of MILNER [18, 19], several related formalisms have been
developed, such as the theory of Communicating Sequential Processes (CSP) of
HOARE [16], the MEDE calculus of AUSTRY & BouDoOL [1] and the Algebra of
Communicating Processes (ACP) of BERGSTRA & KvroP [8-10].

When work on process algebra started, many people hoped that it would be
possible to come up, eventually, with the ‘ultimate’ process algebra, leading to
a ‘Church thesis’ for concurrent computation. This process algebra, one ima-
gined, should contain only a few fundamental operators and it should be
suited to model all concurrent computational processes. Moreover there should
be a calculus for this model making it possible to prove the identity of
processes algebraically, thus proving correctness of implementations with
respect to specifications. As far as we know, the ultimate process algebra has
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not yet been found, but we will not exclude that it will be discovered in the
near future.

Two things however, have become clear in the meantime: (1) it is doubtful
whether algebraic system verification, as envisaged in [18], will be possible in
this model, and (2) even if the ultimate process algebra exists, this certainly
does not mean that all other process algebras are no longer interesting. We ela-
borate on this below.

A central idea in process algebra is that two processes which cannot be dis-
tinguished by observation should preferably be identified: the process seman-
tics should be fully abstract with respect to some notion of testing (see
[12,18]). This means that the choice of a suitable process algebra may depend
on the tools an environment has to distinguish between certain processes. In
different applications the tools of the environment may be different, and there-
fore different applications may require different process algebras. A large
number of process semantics are not fully abstract with respect to any (reason-
able) notion of testing (bisimulation semantics and partial order semantics, for
instance). Still these semantics can be very interesting because they have simple
definitions or correspond to some strong operational intuition. Our hypotheti-
cal ultimate process algebra will make very few identifications, because it
should be resistant against all forms of testing. Therefore not many algebraic
laws will be valid in this model and algebraic system verification will presum-
ably not be possible (specification and implementation correspond to different
processes in the model).

Another factor which plays a role has to do with the operators of process
algebras. For theoretical purposes it is in general desirable to work with a sin-
gle, small set of fundamental operators. We doubt however that a unique
optimal and minimal collection exists. What is optimal depends on the type of
results one likes to prove. This becomes even more clear if we look towards
practical applications. Some operators in process algebra can be used for a
wide range of applications, but we agree with JIFENG & HOARE [17] that we
may have to accept that each application will require derivation of specialised
laws (and operators) to control its complexity.

Many people are embarrassed by the multitude of process algebras occurring
in the literature. They should be aware of the fact that there are close rela-
tionships between the various process algebras: often one process algebra can
be viewed as a homomorphic image, subalgebra or restriction of another one.
The aim of this paper is to show how the semantical reality, consisting of a
large number of closely related process algebras, can be reflected, and even
used, on the level of algebraic specifications and in process verifications.

This paper is about process algebras, their mutual relationships, and stra-
tegies to prove that a formula is valid in a process algebra. Still, we do not
present any particular process algebra in this paper. We only define classes of
models of process modules. One reason for doing this is that a detailed
description of particular process algebras would make this paper too long.
Another reason is that there is often no clear argument for selecting a particu-
lar process algebra. In such situations we are interested in assertions saying
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that a formula is valid in all algebras satisfying a certain theory. A number of
times we need results stating that some formulas cannot be proven from a cer-
tain module. A standard way to prove this is to give a model of the module
where the formulas are not true. For this reason we will often refer to particu-
lar process algebras which have been described elsewhere in the literature.

The discussion of this paper takes place in the setting of ACP. We think
however that the results can be carried over to CCS, CSP, MEDE, or any other
process algebra formalism.

Modularisation.

The creation of an algebraic framework suitable to deal with realistic applica-

tions, gives rise to the construction of building blocks, or modules, of operators

and axioms, each block describing a feature of concurrency in a certain

semantical setting. These modules can then be combined by means of a

module combinator +. We give some examples:

i) A kernel module, that expresses some basic features of concurrent
processes, is the module ACP. For a lot of applications however, ACP
does not provide enough operators. Often the use of renaming operators
makes specifications shorter and more comprehensible. These renaming
operators can be defined in a separate module RN. Now the module
ACP+RN combines the specification and verification power of modules
ACP and RN.

i) The axioms of module ACP correspond to the semantical notion of
bisimulation. For some applications bisimulation semantics does not
make enough identifications. In these cases one would like to deal with
processes on the level of, for example, failure semantics. Now one can
define a module F, corresponding to the identifications made in failure
semantics on top of the identifications of bisimulation semantics. The
module ACP+F then corresponds to the failure model.

Once a number of modules have been defined, they can be combined in a lot

of ways. Some combinations are interesting (for example the module

ACP+RN+F), for other combinations no interesting applications exist (the

module RN +F). Didactical aspects aside, a major advantage of the modular

approach is that results which have been proved from a module M, can also be
proved from a module M+N. This means that process verifications become
reusable.

It turns out that certain pairs of modules are incompatible in a very strong
sense: with the combination of two modules strange and counter-intuitive
identities can be derived. In BAETEN, BERGSTRA & KLoP [4], for example, it is
shown that the combination of failure semantics and the priority operator is
inconsistent in the sense that an identity can be derived which says that a par-
ticular process that can do a b-action after it has done an g-action, equals a
process that cannot do this. Another example can be found in BERGSTRA,
KrLoP & OLDEROG [11], where it is pointed out that the combination of failure
semantics and Koomen’s Fair Abstraction Rule (KFAR) is inconsistent.

In the first section of this paper we present, besides the combinator +, some
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other operators on modules. We discuss an export operator [, allowing to
forget some operators in a module, an operator H, changing semantics by tak-
ing homomorphic images, and an operator S which takes subalgebras. These
operators enable us to combine modules in a subtle way, when the direct com-
bination would be inconsistent. In Section 2 we describe a large number of
process modules which play a role in the ACP framework. Section 3 contains
two examples of applications of the new module operators in process algebra:

1. The axiom system ACP contains auxiliary operators [ and | (left-merge
and communication-merge) which drastically simplify computations and
have some desirable ‘metamathematical’ consequences (finite axiomatisa-
bility'; greater suitability for term rewriting analysis). These auxiliary
operators can be defined in a large class of process algebras. However, it
turns out that in a setting with the silent step 7 the left-merge cannot be
added consistently to all algebras (for instance not to the usual variants of
failure semantics). Now one may think that this result means that some-
one who is doing failure semantics with 7’s cannot profit from the nice
properties of the left-merge. However, we will show in this paper that use
of the module approach makes it possible to do failure semantics with 7’s
but still benefit from the left-merge in verifications. The idea is that
verifications take place on two levels: the level of bisimulation semantics
where the left-merge can be used, and a level of for instance failure
semantics, where no left-merge is present. The failure model can be
obtained from the bisimulation model by removing the auxiliary operators
and taking a homomorphic image. Now we use the observation that cer-
tain formulas (the °‘positive’ ones without auxiliary operators) are
preserved under this procedure. A consequence of this application is that
even if bisimulation semantics is not considered to be an appropriate pro-
cess semantics (since it is not fully abstract with respect to any reasonable
notion of testing), it still can be useful as an expedient for proving formu-
las in failure semantics.

2. As already pointed out above, one would like to have, from a theoretical
point of view, as few operators or combinators as possible. On the other
hand, when dealing with applications, it is often very rewarding to intro-
duce new operators. This paradox can be resolved if the new operators
are definable in terms of the more elementary ones. In that case the new
operators can be considered as notations which are useful, but do not
complicate the underlying theory. A problem with defining operators in
terms of other operators is that often auxiliary atomic actions are needed
in the definition. These auxiliary actions can then not be used in any
other place, because that would disturb the intended semantics of the
operator. In the laws that can be derived for the defined operator, the
auxiliary actions occur prominently. These ‘side effects’ are often quite

1. Recently, FARON MOLLER [20] from Edinburgh showed that in bisimulation semantics the
merge operator cannot be finitely axiomatised without auxiliary operators.
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unpleasant. One may think that side effects are unavoidable and that
someone who really does not like them should define new operators
directly in the algebras (even though this is in conflict with the desire to
have as few operators as possible). However, we will show that the
module approach can be used to solve also this problem: with the restric-
tion operator we remove the auxiliary actions from the signature and then
we apply the subalgebra operator in order to ‘move’ to algebras where the
auxiliary actions are not present at all.
The concept of hiding auxiliary operators in a module in some formal way is
quite familiar in the literature (see BERGSTRA, HEERING & KLINT [7] for exam-
ple), but the use of module operators H and S, and their application in com-
bining modules that would be incompatible otherwise, is, as far as we know,
new. The H and S operations are in spirit related to the abstract operation of
SANNELLA & WIRSING [25] and SANNELLA & TARLECKI [24], which also
extends the model class of a module.

In previous papers on ACP, the underlying logic used in process
verifications was not made explicit. The reason for this was that a long
definition of the logic would distract the reader’s attention from the more
essential parts of the paper. It was felt that filling in the details of the logic
would not be too difficult and that moreover different options were equivalent.
In this paper we generalise the classical notion of a formal proof of a formula
from a theory to the notion of a formal proof of a formula from a module.
The definition of this last notion is parametrised by the underlying logic. What
is provable from a module really depends on the logic that is used, and this
makes it necessary to consider in more detail the issue of logics. In an appen-
dix we present three alternatives: (1) Equational logic. This logic is suited for
dealing with finite processes, but not strong enough for handling infinite
processes; (2) Infinitary conditional equational logic. This is the logic used in
most process verifications in the ACP framework until now; (3) First order
logic with equality.

Our investigations into the precise nature of the calculi used in process alge-
bra, led us to alternative formulations of some of the proof principles in ACP
which fit better in our formal setup. We present a reformulation of the Recur-
sive Specification Principle (RSP) and also an alphabet operator which returns
a process instead of a set of actions.

1. MODULE LOGIC

In this paper, as in many other papers about process algebra, we use formal
calculi to prove statements about concurrent systems. In this section we answer
the following questions:

- Which kind of calculi do we use?

- What do we understand by a proof?

In the next sections we will apply this general setup to the setting of con-
current systems.
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1.1. Statements about concurrent systems. In many theories of concurrency it is
common practice to represent processes - the behaviours of concurrent systems
- as elements in an algebra. This is a mathematical domain, on which some
operators and predicates are defined. Algebras, which are suitable for the
representation of processes are called process algebras. Thus a statement about
the behaviour of concurrent systems can be regarded as a statement about the
elements of a certain process algebra. Such a statement can be represented by
a formula in a suitable language which is interpreted in this process algebra.
Sometimes we consider several process algebras at the same time and want to
formulate a statement about concurrent processes without choosing one of
these algebras. In this case we represent the statement by a formula in a suit-
able language which has an interpretation in all these process algebras. Hence
we are interested in assertions of the form: ‘Formula ¢ holds in the process
algebra @, notation @ k ¢, or ‘Formula ¢ holds in the class of process algebras
@, notation Ck ¢. Now we can formulate the goal that is pursued in the
present section: to propose a method for proving assertions € k ¢, or Ck ¢.

1.2. Proving formulas from theories. Classical logic gave us the notion of a for-
mal proof of a formula ¢ from a theory 7. Here a theory is a set of formulas.
We write T + ¢ if such a proof exists. The use of this notion is revealed by the
following soundness theorem: If T + ¢ then ¢ holds in all algebras satisfying T.
Here an algebra @ satisfies 7, notation & T, if all formulas of 7" hold in this
algebra. Thus if we want to prove & ¢ ¢ it suffices to prove T + ¢ and @ ¢ T for
a suitable theory T. Likewise, if we want to prove C k ¢, with C a class of alge-
bras, it suffices to prove T + ¢ and Ck T.

At first sight the method of proving @ £ ¢ by means of a formal proof of ¢
out of T seems very inefficient. Instead of verifying @ k ¢, one has to verify
@ k ¢ for all €T, and moreover the formal proof has to be constructed. How-
ever, there are two circumstances in which this method is efficient, and in most
applications both of them apply. First of all it might be the case that ¢ is more
complicated than the formulas of 7" and that a direct verification of @ ¢ is
much more work than the formal proof and all verifications @k ¢ together.
Secondly, it might occur that a single theory T with @k T is used to prove
many formulas ¢, so that many verifications € k ¢ are balanced against many
formal proofs of ¢ out of T and a single set of verifications @ k y. Especially
when constructing formal proofs is considered easier then making verifications
@ k ¢, this reusability argument is very powerful. It also indicates that for a
given algebra @ we want to find a theory T from which most interesting formu-
las ¢ with @ F ¢ can be proved.

Often there are reasons for representing processes in an algebra that satisfies
a particular theory 7, but there is no clear argument for selecting one of these
algebras. In this situation we are interested in assertions Ck ¢ with C the class
of all algebras satisfying 7. Of course assertions of this type can be con-
veniently proved by means of a formal proof of ¢ from T.
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1.3. Proving formulas from modules. In process algebra we often want to
modify the process algebra currently used to represent processes. Such a
modification might be as simple as the addition of another operator, needed
for the proper modelling of yet another feature of concurrency, but it can also
be a more involved modification, such as factoring out a congruence, in order
to identify processes that should not be distinguished in a certain application.
It is our explicit concern to organise proofs of statements about concurrent
systems in such a way that, whenever possible, our results carry over to
modifications of the process algebra for which they were proved.

Now suppose @ is a process algebra satisfying the theory T and a statement
& ¢ has been proved by means of a formal proof of ¢ out of 7. Furthermore
suppose that $ is obtained from @ by factoring out a congruence relation on @
(so B is a homomorphic image of &) and for a certain application % is con-
sidered to be a more suitable model of concurrency than @ Then in general
% k ¢ cannot be concluded, but if ¢ belongs to a certain class of formulas (the
positive ones) it can. So if ¢ is positive we can use the following theorem: ‘If
@k T, T+ ¢, ¢ is positive, and B is a homomorphic image of @ then % k ¢’.
This saves us the trouble of finding another theory U, verifying that ® ¢ U and
proving U + ¢ for many formulas ¢ that have been proved from T already.
Another way of formulating the same idea is to introduce a module H(T). We
postulate that one may derive ‘H(T) + ¢’ from ‘T + ¢’ and ‘¢ is positive’, and
H(T) + ¢ implies that ¢ holds in all homomorphic images of algebras satisfy-
ing T.

Thus we propose a generalisation of the notion of a formal proof. Instead of
theories we use the more general notion of modules. Like a theory a module
characterises a class C of algebras, but besides the class of all algebras satisfy-
ing a given set of formulas, € can for instance also be the class of
homomorphic images or subalgebras of a class of algebras specified earlier.
Now a proof in the framework of module algebra is a sequence or tree of
assertions M + ¢ such that in each step either the formula ¢ is manipulated, as
in classical proofs, or the module M is manipulated. Of course we will estab-
lish a soundness theorem as before, and then an assertion & F ¢ can be proved
by means of a module M with @ F M and a formal proof of ¢ out of M. We
will now turn to the formal definitions.

1.4. Signatures. Let NAMES be a given set of names.

A sort declaration is an expression S:S with S € NAMEs.

A function declaration is an expression F:f :S,X - -+ X§,—S with f,5,,...,S,,
S € NAMEs.

A predicate declaration is an expression R:p CS;X - -- XS, with p,§,,...,S, €
NAMES.

A signature o is a set of sort, function and predicate declarations, satisfying:

F:f:8, X -+ XS§,>S8)eo = (S:5)eo (i=1,..,n) N\ (S:S)eo
RpCS X -+ XS,)eo = (S:S))eo (i=1,..,n)
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A function declaration F:f:—S of arity 0 is sometimes called a constant
declaration and written as F:f€S.

1.5. o-Algebras. Let o be a signature. A o-algebra @ is a function on o that
maps
(S:S)eo to a set S¢,
(F:f:S;X - - XS,—S)€o0 to a function f§ » ... x5 _s:ST X - - - XS§—>S¢,
(R:pCS X --- XS,)€0 to a predicate p§ x ... x5, CSTX -+ XSh
Let @ and B be o-algebras. B is a subalgebra of @ if S® CS? for all (S:S)eo,
if moreover ﬁlx ... xs,—»s Trestricted to P oo« X80 8% s just
f2x .. xs,s for all Fif :8 X - -+ XS,—>S in 0, and if p§ x ... x5, restricted
toSP X --- X853 isjustp?‘x ...xs, forallR:;pCS,; X - -+ XS, ine.
A homomorphism h:@—% consists of mappings hs:S®—>S® for all S:S in o,
such that
hs(fg‘lx coo XSS 1ssXn)) = fRxc.. xS,-8(hs,(x1)s-...hs,(xp))
for all (F:f:S;X -+ XS,—S)eo and all x%,€8%i=1,..,n)
P%.X i XS.(xla"-’xn) < P?,X a8 XS,(hS.(xl)a"-’hS_(xn))
for all R;p CS X - - - XS,)€0 and all x;eSi=1,...,n)
B is a homomorphic image of @ if there exists a surjective homomorphism
h:@—%.
Let @ be a o-algebra. The restriction p(J@ of @ to the signature p is the pNo-
algebra 9, defined by
S® = ¢ for all (S:S)epno
o x5.58 = fEx - xs,-s for all (F:f:8;X - -+ XS,-»S)epNo
P?Ix XS_ = pg‘lx xs. for a].l (R:P gsl X e XS,,)Epﬂo

1.6. Logics. A logic £ is a complex of prescriptions, defining for any signature

o

- aset F of formulas over o such that Ft ﬂFE =3 -

- a binary relation k5 on o-algebrasX F5 such that for all p-algebras @ and
¢eFsn,: 00@H, ¢ & QK5 9

- and a set It of inference rules — with H CF: and ¢F5.

If @5 ¢ we say that the o-algebra @ satisfies the formula ¢, or that ¢ holds in
&@. A theory over o is a set of formulas over 0. If T is a theory over o and
@¢L ¢ for all peT we say that @ satisfies 7, notation @ k5 7. We also say that
@ is a model of T.
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A logic £ is sound if %e]f; implies @ k5 H = @ ¢ for any o-algebra @.

A formula ¢ F% is preserved under subalgebras if @ S implies B k5 ¢, for any
subalgebra 3 of &.

A formula ¢ F is preserved under homomorphisms if @ eS¢ implies % kL ¢, for
any homomorphic image 8 of @.

Without doubt, the definition of a ‘logic’ as presented above is too general for
most applications. However, it is suited for our purposes and anyone can sub-
stitute his/her favourite (and more restricted) definition whenever he/she likes.

In the process algebra verifications of this paper we will use infinitary condi-
tional equational logic. The definition of this logic can be found in the appen-
dix. For comparison, the definitions of equational logic and first order logic
with equality are included too.

1.7. Classical logic.
DERIVABILITY. A o-proof of a formula ¢€F5 from a theory T CF5 using the
logic £, is a well-founded, upwardly branching tree of which the nodes are
labelled by o-formulas, such that
- the root is labelled by ¢
and if ¢ is the label of a node ¢ and H is the set of labels of the nodes
directly above g then
- either yeT and H= @,

= or —IieIE.

If a o-proof of ¢ from T using £ exists, we say that ¢ is o-provable from T by
means of £, notation T +5 ¢.

TRUTH. Let C be a class of o-algebras and ¢eFS. Then ¢ is said to be true in
@, notation C kS ¢, if ¢ holds in all o-algebras @eC. Let Alg(o,T) be the class
of all o-algebras satisfying 7.

SOUNDNESS THEOREM. If £ is sound then T v5 ¢ implies Alg(a,T) £S5 ¢.
PRrOOF. Straightforward with induction. O

If no confusion is likely to result, the sub- and superscripts of F and + may be
dropped without further warning.

1.8. Module logic. The set 9N of modules is defined inductively as follows:
- If ois a signature and T a theory over o, then (o,7)€N,

- If M and N €91 then M + N €91,

- If o is a signature and M €9 then oM €91,

- If Me9n then H(M)en,

- If Me9N then S(M)eM.

Here + is the composition operator, allowing to organise specifications in a
modular way, and [J is the export operator, restricting the visible signature of
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a module, thereby hiding auxiliary items. These operators occur in some form
or other frequently in the literature on software engineering. Our notation is
taken from BERGSTRA, HEERING & KLINT [7] in which also additional refer-
ences can be found. The homomorphism operator H and the subalgebra opera-
tor S are, as far as we know, new in the context of algebraic specifications. Of
course they are well known in model theory, see for instance MONK [21].

The visible signature Z(M) of a module M is defined inductively by:
- 2(0,T) = o,

- 3(M+N) = S(M)UZN),

S(cOM) = ocNZ(M),

2(H(M)) = 2(M),

2(S(M)) = Z(M).

TRUTH. The class Alg(M) of models of a module M is defined inductively by:

- Qis amodel of (a,7) if it is a o-algebra, satisfying T;

- @is amodel of M +N if it is a Z(M + N)-algebra, such that Z(M)OR is a
model of M and Z(N)OR is a model of N;

- @is a model of o[0M if it is the restriction of a model B of M to the sig-
nature o;

- @is a model of H(M) if it is a homomorphic image of a model B of M;
@ is a model of S (M) if it is a subalgebra of a model B of M.

Note that Alg(M) is a generalisation of Alg(o,T) as defined earlier. All the ele-

ments of Alg(M) are Z(M )-a.lgebras A Z(M)-algebra @eAdlg(M) is sa1d to

satisfy M A formula ¢eF§ y, is satisfied by a module M, notation M ¢ ¢, if

Alg(M) '=>:(M) ¢, thus if ¢ holds in all Z(M)-algebras satisfying M.

DERIVABILITY. A proof of a formula ¢ € F§y, from a module M using the logic
£, is a well-founded, upwardly branching tree of which the nodes are labelled
by assertions N + {, such that

the root is labelled by M + ¢

if N + ¢ is the label of a node g and H is the set of labels of the nodes

is one of the inference rules of Table 1.

. H
directly above ¢ then Nt

Here positive and universal are syntactic criteria, to be defined for each logic £
separately, ensuring that a formula is preserved under homomorphisms and

subalgebras respectively. We write N + ¢ for Nﬂ; v and omit braces in the

conditions of inference rules. If a proof of ¢ from M using £ exists, we say
that ¢ is provable from M by means of £, notation M +* ¢.

LEMMA. If M +* ¢ then ¢GF§(M).
ProoF. With induction. The only nontrivial cases are the rules for + and [J.
These follow from F§ CF5,, and F5 NFS5 CF5n, respectively. O

SOUNDNESS THEOREM. If £ is sound then M +* ¢ implies M ¥* ¢.
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(0,T)+ ¢ if peT
Mo, (jeJ) ¢ (jeJ)
—n =
e whenever —L¢—EI§(M)
Mo Nto
M+N+ o M+N+ o
Mt o :
oM+ ¢ if $eF;
Mtr o o »
HOM) o if ¢ is positive
Mt o i@y .
SM)r ¢ if ¢ is universal
TABLE 1

ProoOF. With induction. Again the only nontrivial cases are the rules for +
and 0. These follow since for all p-algebras @ and ¢€F5n,: 0@k ¢ =
@k ¢ and s00RF ¢ < &F ¢ respectively. O

2. PROCESS ALGEBRA

This is not an introductory paper on process algebra. We only give a listing of
some important process modules. For an introduction to the ACP formalism
we refer the reader to [8-10].

2.1. ACP,. In this paper a central role will be played by the module ACP,,
the Algebra of Communicating Processes with abstraction. A first parameter of
ACP, is a finite set A of actions. For each action a €A there is a constant a in
the language, representing the process, starting with an g-action and terminat-
ing (successfully) after some time.

The first two composition operations we consider are -, denoting sequential
composition, and + for alternative composition. If x and y are two processes,
then x-y is the process that starts execution of y after successful completion of
x, and x +y is the process that either behaves like x or like y. We do not
specify whether the choice between x and y is made by the process itsself, or
by the environment.

We have a special constant §, denoting deadlock, inaction, a process that
cannot do anything at all. In particular § does not terminate succesfully. We
write A3 =A4 U {8}.

Next we have a parallel composition operator ||. x|y denotes the process
corresponding to the parallel execution of x and y. Execution of x|ly either
starts with a step from x, or with a step from y, or with a synchronisation of an
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action from x and an action from y. Synchronisation of actions is described
by the second parameter of ACP,, which is is a binary communication func-
tion y:A3XAz;—>A; that is commutative, associative and has § as zero ele-
ment:

Y(a,b) = y(b,a) y(a,Y(b,c)) = v(v(a,b),c) Y(a,8) =8

If y(a,b)=c50 this means that actions a and b can synchronise. The synchro-
nous performance of a and b is then regarded as a performance of the com-
munication action ¢. Formally we should add the parameters to the name of a
module: ACP,(4,y). However, in order to keep notation simple, we will always
omit the parameters if this can be done without causing confusion. In order to
axiomatise the ||-operator we use two auxiliary operators || (left-merge) and |
(communication merge). x|y is x|y, but with the restriction that the first step
comes from x, and x|y is x|ly but with a synchronisation action as the first
step.

Next we have for each H CA an encapsulation operator dy. The operator
0y blocks actions from H. The operator is used to encapsulate a process, i.e. to
block synchronisation with the environment.

When describing concurrent systems and reasoning about their behaviour, it
is often useful to have a distinguished action that cannot synchronise with any
other action. Such an action is denoted by the constant 7¢A4 ;. The fact that 7
cannot synchronise makes that in some sense this action is not observable.
Therefore it is often called the silent action. For each I CA the language con-
tains an abstraction or hiding operator 7;. This operator hides actions in I by
renaming them into 7, thus expressing that certain actions in a system
behaviour cannot be observed.

In Table 2 we summarize the signature of module ACP,.

S (sort): P the set of processes
F (functions): +: PXP—P alternative composition (sum)
% PXP—-P sequential composition (product)
II: PXP—P parallel composition (merge)
L: PXP—P left-merge
| PXP—P communication-merge

dy: PP encapsulation, for any H CA
T PP abstraction, for any 7 CA
a epP for any atomic action a A
é eP inaction, deadlock
T epP silent action

TABLE 2

Table 3 contains the theory of the module ACP,. In this paper we present
ACP, as a monolithic module. In [10] however, it is shown that ACP, can be
viewed as the sum of a large number of sub-modules which are interesting in
their own right. The module consisting of axioms Al-5 only is called BPA
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x+ty =y+x Al xXT =X T1
x+@y+z) = (x+y)tz A2 ™>+x = 1x T2
x+x =x A3 a(tx +y) = a(tx +y)+ax T3
(x+y)z = xz+yz A4
xy)z = x(yz) A5
x+6 =x A6
éx = 8 A7
alb = y(a,b) CF
xlly = xlly +ylLx+xly CMI
all x = ax CM2 | 7llx = mx T™1
(ax)lLy = a(xlly) CM3 | (mx)lLy = m(xlly) T™M2
x+y)lz = xlLz+ylz CM4 | 7|x =6 TC1
(ax)|b = (alb)x CMS | x|t =8 TC2
al(bx) = (alb)x CM6 | (x)ly = x|y TC3
(ax)|(by) = (alb)xlly) CM7 | xl(try) = xly TC4
x+t)z =xlz+ylz CM8
x|y +z) = xly+xlz CM9
oy(r) =7 DT
() =7 TI1
dy(a) = a ifaeH D1 7i(a) =a ifael TI2
dy(a) = 8 ifaeH D2 Ti(a) =7 ifael TI3
dy(x +y) = dy(x)+ay(y) D3 Ti(x +y) = 7(x)+7(y) TI4
Ax(xy) = Ip(x)du(y) D4 Ti(xy) = TH(x)T(y) TI5
TABLE 3

(from Basic Process Algebra). If we add axioms A6-7 we obtain BPA;, and
BPA; plus axioms T1-3 gives BPA,;. The module ACP consists of the axioms
Al-7, CF, CMI1-9 and DI1-4, i.e. the left column of Table 3. All axioms in
Table 3 are in fact axiom schemes in a, b, H and I. Here a and b range over
A s (unless further restrictions are made in the table) and H,7 CA. In a product
x -y we will often omit the -. We take - to be more binding than other opera-
tions and + to be less binding than other operations. In case we are dealing
with an associative operator, we also leave out parentheses.

2.1.1. Note. Let n>0. Let D = (d,,...,d,} be a finite set. Let #;,...,¢; be
process expressions. We use the notation )¢, for the sum z;, + - -+ + 4.

deD
> t; = & by definition.
deo
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2.1.2. Summand inclusion. In process verifications the summand inclusion
predicate C turns out to be a useful notation. It is defined by: xCy <
x+y=y. From the ACP,-axioms Al, A2 and A3 respectively it follows that
C is antisymmetrical, transitive and reflexive, and hence a partial order.

2.1.3. ProposITION. ACP, + mxlly = n(xlly).
PROOF. 7x|ly D x|y = r(xlly) = =Ly = x|y = w(wxlly) D =xlly.
Now use the fact that C is a partial order. a

2.1.4. Monotony. Most of the operators of ACP, are monotonous with respect
to the summand inclusion ordering. Using essentially the distributivity of the
operators over +, one can show that if x Cy, ACP, proves:

= X TZCyTsz,

-~ xzCyz,

- xllzoyl 2

- x|zCylz,

- 3u(x)CIA(),

- 1(x)Cry).

Due to branching time, in general z-xZ z'y, xllz yllz and z|l xZ z|ly.
However, we do have monotony of the merge for the case were x is of the
form 7x’. If 7x’Cy, then ACP, + 7x’|lz Cy|lz:

213
™'z = m(x’llz) = =x’|L.zCyllLzCyllz.

2.2. Standard Concurrency. Often one adds to ACP, the following module SC
of Standard Concurrency (@ €A4;), which is parametrised by 4. A proof that
these axioms hold for all closed recursion-free terms can be found in [9].

SC | (xly)lLz =xlL(llz)  SCI1
(xlay)lLz =xl(aylLz) SC2
x|ly=ylx SC3
xlly =yllx SC4
x|l(ylz)=(xly)lz SCs5
xllpliz) = (xlly)llz SCé

TABLE 4

2.3. Renamings. Let A,s = AsU{7}. For every function f:A4,5—A .5 with the
property that f(8)=8 and f(r)=7, we introduce an operator p;:P—P.
Axioms for p, are given in Table 5 (Here aeA,; and id is the identity).
Module RN is parametrised by 4.
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RN | pda) = f(a) RN1
pfx +y) = pAx)+pAy) RN2
pAxy) = pAx)PAy) RN3
pia(x) = x RN4

PPpg(X) = prog(x) RNS5

TABLE 5

For teA s and H CA we define mappings r,  : A ,5—A 5 as follows:
t faeH
i@ = 14 otherwise

In the following we will implicitly identify the operators 3y and p,,,, and also
the operators 7; and p, : encapsulation is just renaming of actions into §, and
abstraction is renaming of actions into the silent step .

2.4. Chaining operators. A basic situation we will encounter is one in which
processes input and output values in a domain D. Often we want to ‘chain’
two processes in such a way that the output of the first one becomes the input
of the second. In order to describe this, we define chaining operators =>> and
>. In the process x>y the output of process x serves as input of process y.
Operator > is identical to operator =, but hides in addition the communi-
cations that take place at the internal communication port. The reason for
introducing two operators is a technical one: the operator > (in which we are
interested most) often leads to the possibility of an infinite sequence of internal
actions corresponding to hidden synchronisations between the two arguments
of the operator (a form of unguarded recursion, cf. Sections 2.8.1 and 2.12.1).
In order to deal with such behaviours, it is useful to view > as the composi-
tion of two operators: the > operator and an abstraction operator that hides
the communications of >>. We will define the chaining operators in terms of
the operators of ACP, +RN. In this way we obtain a simple, finite axiomati-
sation of the operators. The operator > occurs (in a different notation)
already in HOARE [15] and MILNER [18].

Let for deD, |d be the action of reading d, and 1d be the action of sending
d. Furthermore let ch (D) be the following set:

ch(D) = {1d,|d,s(d),r(d),c(d)|deD).

Here r(d), s(d) and c(d) (d€D) are auxiliary actions which play a role in the
definition of the chaining operators. The module for the chaining operators is
parametrised by an action alphabet 4 satisfying ch (D) CA. The module should
occur in a context with a module ACP,(4, y) where

range(y)N{ld,1d,s(d),r(d)|deD} = @
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and communication on ch (D) is defined by

Y(s(d),r(d)) = c(d)
(all other communications give §). The renaming functions fs and |r are
defined by

1s(1d) = s(d) and |r(ld) = r(d) (deD)

and {s(a)=|r(a)=a for every other acA,;. Now the ‘concrete’ chaining of
processes x and y, notation x>y, is defined by means of the axiom

(H = {s(d),r(d)|deD)):

x>3>y = 0y(pps(x)llpy(y)) CHI

The ‘abstract’ chaining of processes x and y, notation x>y, is defined by
means of the axiom (I = {c(d)|deD}):

x>y = r(x>>y) CH2

The module CH™' consists of axioms CH1 and CH2, and is parametrised by
A. The ‘+’ in CH" refers to the auxiliary actions in the module, which will
be removed in Section 3.

2.4.1. ExXaMpPLE. Let D={0,1}. Process AND reads two bits and then outputs
1 if both are 1, and 0 otherwise:
AND = [0-(10-10 + |1110) + {1-({0-10 + |I-71)
Process OR reads two bits, outputs 0 if both are 0, and 1 otherwise:
OR = |0(10-10 + [1-11) + L1-(J0-11 + [I-71)
Process NEG reads a bit b and outputs 1—b:
NEG = |0-11 + 110

These processes can be composed using chaining operators. It is not too hard
to prove:

(NEG-NEG>AND)>NEG = OR
Note however that we do not have
(NEG-NEG>=>>AND)>>NEG = OR

since in the LHS process internal computation steps are still visible.
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2.5. Recursion. A recursive specification E is a set of equations {x =1, |x€Vg}
with Vg a set of variables and ¢, a process expression for xeVg. Only the
variables of ¥y may appear in ¢,. A solution of E is an interpretation of the
variables of ¥y as processes (in a certain domain), such that the equations of
E are satisfied. Recursive specifications are used to define (or specify) infinite
processes.

For each recursive specification E and x € Vg, the module REC introduces a
constant <x | E >, denoting the x-component of a solution of E.

In most applications the variables X € Vg in a recursive specification E will
be chosen fresh, so that there is no need to repeat E in each occurrence of
<X|E>. Therefore the convention will be adopted that once a recursive
specification has been declared, <X|E > can be abbreviated by X. If this is
done, X is called a formal variable. Formal variables are denoted by capital
letters. So after the declaration X =aX, a statement X =aaX should be inter-
preted as an abbreviation of <X |X =aX> = aa<X|X =aX>.

Let E = {x=t,|x€Vg} be a recursive specification, and ¢ a process expres-
sion. Then <t¢|E> denotes the term ¢ in which each free occurrence of
x €V is replaced by <x |E>. In a recursive language we have for each E as
above and x € V¢ an axiom

<x|E> = <t,|[E> REC

If the above convention is used, these formulas seem to be just the equations
of E. The module REC is parametrised by the signature in which the recursive
equations are written. In the presence of module REC each system of recur-
sion equations over this signature has a solution.

2.6. Projection. The operator 7, : P—P (neNN) stops processes after they have
performed n atomic actions, with the understanding that 7-steps are tran-
sparent. The axioms for =, are given in Table 6. Module PR is parametrised
by A.

PR | m,(1) =71 PRI
mo(ax) = 6 PR2
7, +1(ax) = a my(x) PR3
T(1x) = 77 (X) PR4
Ta(x ty) = mp(x)+m(y)  PRS

TABLE 6

In this paper, as in other papers on process algebra, we have an infinite collec-
tion of unary projection operators. Another option, which we do not pursue
here, but which might be more fruitful if one is interested in finitary process
algebra proofs, is to introduce a single binary projection operator
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F:m:NXP-P.

2.7. Boundedness. The predicate B, CP (n€N) states that the nondeterminism
displayed by a process before its n* atomic steps is bounded. If for all neN:
B,(x), we say x is bounded. Axioms for B, are in Table 7 (a€A4;). Module B
is parametrised by 4.

B Bo(x) Bl
B,(r) B2
Ii"((f?) B3
B, (x
B 1( (a)x) -
sk
TABLE 7

Boundedness predicates were introduced in [13].

2.8. Approximation Induction Principle. AIP™ is a proof rule which is vital if
we want to prove things about infinite processes. The rule expresses the idea
that if two processes are equal to any depth, and one of them is bounded then
they are equal.

VneN m,(x) = m,(y), Bu(x)
x =)
The ‘=’ in AIP™, distinguishes the rule from a variant without predicates B,,.

(AIPT)

2.8.1. DEFINITION. Let ¢ be an open ACP,-term without abstraction opera-
tors. An occurrence of a variable X in ¢ is guarded if t has a subterm of the
form a-M, with a4, and this X occurs in M. Otherwise, the occurrence is

unguarded.
Let E = {x=t,|xeVg} be a recursive specification in which all ¢, are
ACP,-terms without abstraction operators. For X,Y € Vg we define:

X —>Y & Y occurs unguarded in zy.

We call E guarded if relation —> is well-founded (i.e. there is no infinite
sequenceXik'Y—“)ZL)---).
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2.8.2. THEOREM (Recursive Specification Principle (RSP)).
ACP, + REC + PR + B + AIP™ +

E

(RSP) x = <x|E>

E guarded

In plain English the RSP rule says that every guarded recursive specification
has at most one solution.

2.83. ExampLE. Let E = {X=(a+b)X} and F = {Y=a-(a+b)Y+b'Y}
be two recursive specifications. Since
<X|E> = (a+b)y<X|E> = a<X|E>+b<X|E> =
=a(a+b)y<X|E>+b-<X|E>,
the constant <X |E > satisfies the equation of F. Because the specification F
is guarded, RSP now gives that <X |E> = <Y |F>.

2.9. Koomen’s Fair Abstraction Rule (KFAR). In the verification of communi-
cation protocols one often uses the following rule, called Koomen’s Fair
Abstraction Rule (I CA4). Module KFAR is parametrised by 4.

x=ix+y (@(el)
T(x)=1711(p)

(KFAR)

Fair abstraction here means that 7,(x) will eventually exit the hidden i-cycle.
Below we will formulate a generalisation of KFAR, the Cluster Fair Abstrac-
tion Rule (CFAR), which can be derived from KFAR.

2.9.1. DEerFINITION. Let E = {X=tyx | XeVg} be a recursive specification,
and let I CA. A subset C of Vg is called a cluster (of I) in E iff for all XeC:

m n
ty'= Zik'Xk & EYI
k=1 =1
(For m=0, i,...,i,elU{1}, X,,....X,€C,n=0 and Y,,..,Y,eVg—C). Vari-
ables X € C are called cluster variables. For XeC and Y € V¢ we say that
X~Y <Y occurs in ty.
We define
e(C)={YeVg—C|IXeC:X~Y}

Variables in e(C) are called exits. ~" is the transitive and reflexive closure of
~». Cluster C is conservative iff every exit can be reached from every cluster
variable via a path in the cluster:

VXeCVYee(C): X~"Y.
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2.9.2. ExaMpLE. The transition diagram of Figure 1 represents a cluster in a
recursive specification. The nodes represent variables in the recursive
specification, labelled edges represent summands, and the triangles denote
exits. The sets {1,2,3}, {4,5,6,7}, {8} and {1,2,3,4,5,6,7,8} are examples of
conservative clusters. Cluster {1,2,3,4,5,6,7} is not conservative since exit Z
cannot be reached from cluster variables 4, 5, 6 and 7.

X+Y+Z+T

FIGURE 1

2.9.3. DEFINITION. The Cluster Fair Abstraction Rule (CFAR) reads as follows:

(CFAR) Let E be a guarded recursive specification; let 7 CA4 with
|[I]=2; let C be a finite conservative cluster of I in E; and
let X,X’eC with X~»X". Then: 7(X) =7- 3 7,(Y)
Yee(C)

2.9.4. THEOREM. ACP, + RN + REC + RSP + KFAR + CFAR.
PROOF. See [26]. O

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic
actions which it can perform. This idea is formalised in [2], where an operator
a:P—24 is introduced, with axioms such as:

ald) = @
a(ax) = {a}Ua(x)
a(x +y) = a(x)Ua(y)

In this approach the question arises what axioms should be adopted for the
set-operators U, N, etc. One option, which is implicitly adopted in previous
papers on process algebra, is to take the equalities which are true in set theory.
This collection is unstructured and too large for our purposes. Therefore we
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propose a different, more algebraic solution. We view the alphabet of a process
as a process; the alphabet operator a goes from sort P to sort P. Process a(x)
is the alternative composition of the actions which can be performed by x. In
this way we represent a set of actions by a process. A set B of actions is
represented by the process expression B=, > b. So the empty set is
beB

represented by 8, a singleton-set {a} by the expression a, and a set {a,b} by
expression a +b. Set union corresponds to alternative composition. The pro-
cess algebra axioms Al-3 and A6 correspond to similar axioms for the set
union operator. The notation C for summand inclusion between processes
(Section 2.1.2), fits with the notation for the subset predicate on sets.

The following axioms in Table 8 define the alphabet of finite processes
(a€A). Module AB is parametrised by 4.

AB | a(d) =& ABI
a(ax) = a+a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(t) = 8 AB4
a(tx) = a(x) ABS

TABLE 8

In order to compute the alphabet of infinite processes, we introduce an addi-
tional module AA which is parametrised by 4

AA | a(x)CcA AAl
axlly)=a(x)tay)tax)laly) AA2

acpd(x) Cppdyoa(x) AA3
(where H={aecA|f(a)=1})

VneN a(m,(x))Cy
a(x)Cy

TABLE 9

It is not hard to see that the axioms of AA hold for all closed recursion-free
terms.

2.10.1. ExaMpLE. (from [2]). Let p=<X|{X=aX}>, and define g =7(,(p),
r=gq-b (with ba). What is the alphabet of ? We derive:

a(r) = a(gb) = a(T(a)(P) b) = a(r4y(p) 74y (b)) =

RN5
= a(‘r(,,}(pb)) C —r{,,}oa(a)oa(pb) = a{a)oa(pb)
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Since
AB2
a(pb) = a(apb) = a+a(pb),
we have that a Ca(pb). On the other hand we derive for neN:
a(m,(pb)) = a(a"-8)Ca

and therefore, by application of axiom AA4, a(pb)Ca. Consequently
a(pb) = a and

(!(I') = a{a}oa(pb) - a(,,)(a) = 4.

Information about alphabets must be available if we want to apply the follow-
ing rules. These rules, which are a generalisation of the conditional axioms of
[2], occur in a slightly different form also in [27]. Rules like these are an
important tool in system verifications based on process algebra. Module RR is
parametrised by A and .

a(x)CB . -
pj(x)=xVbEB'f(b) b RR1

a(x)CB, a(y)cC _p _
oxln)=pyxllof)) "¢ <O O=LONWBEBLAb=frG.f () RR2

TABLE 10

Observe that axioms AAl and RRI together imply axiom RN4 of Table 5.
Axiom RR2, which describes the interaction between renaming and parallel
composition, looks complicated, but that is only because it is so general. The
axioms RR are derivable for closed recursion-free terms.

2.10.2. LeMMA: (Conditional Axioms (CA)): Let CA be the theory consisting of

the conditional axioms in Table 11. Then: ACP, + RN + AB + RR + CA.

PROOF: We prove three of the rules. The others can be dealt with similarly.

CA3:  Choose a€a(x). Then a ¢ H. This means that rg y(a) = a. Because a
was chosen arbitrarily, we can aply rule RRI1, which gives
Pro,(X) = 3p(x) = x.

CA5:  Follows immediately from the observation

Ts,H = T8,H,°T§,H,
and application of axiom RNS5 of Table 5.
CAl:  Choose cea(y). We have:
ro,u(c) = rsn°rsu(c)

Choose bea(x). If ceH then rsy(c) = c and the condition of rule
RR2 is fulfilled. If ceH then either y(b,c) equals & (so that we have
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a(x)|(a(y) N\H)CH CAl | A®DN@p)nD=2 .,
Au(x lly)=0x(x135(y)) mi(x ly)=71(xllTy(»))
ax)NH=2 CA3 ax)NI=0 CA4
0p(x)=x (x)=x
04(x)=0dg,°04,(x) T1(x)="11,°17,(X)
HNI=g
CA7
7790 (x)=0g°1/(X)
TABLE 11

rsu°y(b,c) = 8), or y(b,c)eH, so that again rs y°y(b,c) = 4. But in
case ¢ e H we also have

r5,1°Y(b,r5, 1(c)) = rsuov(b,8) = &
This means that we can apply rule RR2. a

2.10.3. ReMARK. In most of the situations where we want to apply axiom
CAl, H does not contain results of communications: (4 |4)NH = &. Further
actions from a(x) will not communicate with actions from H. In these cases
the following weakened version of axiom CALl is already strong enough:

a(x)|H = @
BH(xIIy) = ay(xlla”(y))

CAl~

2.11. ACP%. The combination of all modules presented thus far, except for
KFAR, will be called ACP# (the system ACP# as presented here slightly
differs from a system with the same name occurring in [10]). The module is
defined by:

ACP# = ACP,+SC+RN+CH" +REC+PR+B+AIP~ +AB+AA+RR
Bisimulation semantics, as described in for instance [3], gives a model for the
module ACP# + KFAR. Work of BERGSTRA, KLOP & OLDEROG [11] showed

that in a large number of interesting models KFAR is not valid. Therefore we
have chosen not to include KFAR in the ‘standard’ module ACP#.
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2.12. Generalised Recursive Specification Principle. For many applications the
RSP is too restrictive. Therefore we will present below a more general version

of this rule, called RSP™.

2.12.1. DEFINITION. Let & be the set of closed expressions in the signature of
ACP#. A process expression p €9 is called guardedly specifiable if there exists
a guarded recursive specification F with Y € V¢ such that

ACP} + p=<Y|F>.
We have the following theorem:

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP™)).
ACP# +

E

RSP*
( ) = <x|E>

<x | E > guardedly specifiable

2.12.3. Remarks. In the definition of the notion ‘guardedly specifiable’, it is
essential that the identity p=<Y|F> is provable. If we would only require
that p=<Y|F>, then the corresponding version of RSP would not be
provable from ACP#, since this rule would then not be valid in the action rela-
tion model of [13]. In this model we have the identity <X |{X =X}>=8."
Hence <X|{X=X}>=<Y|{Y=48}>=4. Since the specification {Y =48} is
guarded, this would mean that expression <X|{X=X}> is guardedly
specifiable. But then RSP™ gives that for arbitrary x: x=<X|{X=X}>=3.
This is clearly false.

We conjecture that an expression p is guardedly specifiable iff it is provably
bounded, i.e. for all neN: ACP# + B,(x).

3. APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA

3.1. The auxiliary status of the left-merge.

1. Strictly speaking, this is not correct. In [13], a recursion construct <X |E > is viewed as a
kind of variable which ranges over the X-components of the solutions of E. Since any process X
satisfies X =X, the identity <X |{X =X}> =4 does not hold under this interpretation. However,
if one interprets the construct <X|E > as a constant in the model of [13], then the most natural
choice is to relate to <X|E > the bisimulation equivalence class of the term <X|E >. Under
this interpretation <X|{X=X}>=4.
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3.1.1. Semantics. Sometimes it happens that our ‘customers’ complain that
they do not succeed in proving the identity of two processes in ACP¥, whose
behaviour is considered ‘intuitively the same’. Often, this is because there are
many intuitions possible, and ACP# happens not to represent the particular
intuitions of these customers. Therefore we have defined some auxiliary
modules that should bridge the gaps between intuitions.

In general a user of process algebra wants that his system proves p =q (here
p and g are closed process expressions in the signature of ACP#), whenever p
and ¢ have the same interesting properties. So it depends on what properties
are interesting for a particular user, whether his system should be designed to
prove the equality of p and ¢ or not. For this reason the semantical branch of
process algebra research generated a variety of process algebras in which
different identification strategies were pursued. In bisimulation semantics we
find algebras that distinguish between any two processes that differ in the pre-
cise timing of internal choices; in trace semantics only processes are dis-
tinguished which can perform different sequences of actions; and, somewhere
in between, the algebras of failure semantics identify processes if they have the
same traces (can perform the same sequences of actions) and have the same
deadlock behaviour in any context. A lot of these process algebras can be
organised as homomorphic images of each other, as indicated in Figure 2.

bisimulation semantics with explicit divergence [11]

ready trace semantics [4] bisimulation semantics
/ \ with fair abstraction [3]
readiness semantics [22] failure trace semantics [23]

N

failure semantics [11, 12, 16]

trace semantics [15]
FIGURE 2. The linear time - branching time spectrum

If two process expressions p and q represent the same process in bisimulation
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semantics with explicit divergence, they have many properties in common; if
they only represent the same process in trace semantics, this only guarantees
that they share some of these properties; and, descending from bisimulation
semantics with explicit divergence to trace semantics, less and less distinctions
are made. Now a user should state exactly in which properties of processes
(s)he is interested. Suppose (s)he is only interested in traces and deadlock
behaviour, then we can tell that for this purpose failure semantics suffices. This
means that if processes p and ¢ are proven equal in failure semantics, this
guarantees that they have the same relevant properties. If they are only
identified in trace semantics (somewhere in the lattice below failure semantics)
such a conclusion cannot be drawn, but if they are identified in a semantics
finer than failure semantics (such as bisimulation semantics with explicit diver-
gence), then they certainly have the same interesting properties, and probably
some uninteresting ones as well. Hence a proof in bisimulation semantics with
explicit divergence is just as good as one in failure semantics (or even better).

This is the reason that we do our proofs mostly in bisimulation semantics:
the entire module ACP# is sound with respect to bisimulation semantics with
explicit divergence. However, if two processes are different in bisimulation
semantics, we will never succeed in proving them equal from ACP#. In such a
case we might add some axioms to the system, that represent the extra
identifications made in a less discriminating semantics. If we find a proof from
this enriched module, it can be used by anyone satisfied with the properties of
this coarser semantics.

It is in the light of the above considerations that one should judge the
appearance of the following module T4:

T4 | 7(rx +y) = ™x +y

The law of this module does not hold in bisimulation semantics, but it does
hold in all other semantics of Figure 2. Thus any identity derived from ACP#
+ T4 holds in ready trace semantics and hence also in the courser ones like
failure and trace semantics, or so it seems ...

3.1.2. An inconsistency.

3.1.2.1. DEFINITION. Let M be a process module with Z(M)D3(BPA,;). We
call M consistent if for all closed expressions x and y in the signature of BPA ;
with

Mt x=y,
the sets of complete traces agree:

trace (x)=trace(y).

A complete trace is a finite sequence of actions, ending with a symbol / or §
indicating successful resp. unsuccessful termination. A formal definition of the
set trace(x) is given in [11]. Here we only give some examples, which should
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make the notion sufficiently clear:
trace(abc +ad8+a(tbc +d)) = {abc+/, add, ad~\/}

trace(r) = (\/} # {8, V/} = trace(r+1b)

A model @ of M is consistent if for all closed expressions x and y in the signa-
ture of BPA, s with

Rk x=y,

the sets of complete traces agree. The module ACP# + KFAR is consistent
because bisimulation semantics with fair abstraction, as described in [3], gives
a consistent model for this module. However, KFAR is not valid in any of the
other semantics of Figure 2.

3.1.2.2. PROPOSITION.
ACP,+T4 + 7(ac +ca)+bc = m(r(ac +ca)+bc +c(ra+b)).
PROOF.

T(ra+b)lLc = (ra+b)ll_c = m(allc)+bc = m(ac +ca)+bc
m(ra+b)l_c = 7((ra+b)llc) = r(r(ac +ca)+bc+c(ra+b)) O

Proposition 3.1.2.2 shows that module ACP,+T4 is not consistent. This sud-
den inconsistency must be the result of a serious misunderstanding. And
indeed, what’s wrong is the use of ACP, in the less discriminating models (say
in failure semantics). It happens that, in a setting with 7, failure equivalence
(or ready trace equivalence for that matter) is not a congruence for the left-
merge ||, and this causes all the trouble.

3.1.3. Solution. In applications we do not use the operators || and | directly.
In specifications we use the merge operator ||, and | and | are only auxiliary
operators, needed to give a complete axiomatisation of the merge.

Let sacp, be the signature obtained from Z(ACP,) by stripping the left-
merge and communication-merge:

sacp, = 2(ACP,) — (F:|L:PXP—>P,F:|:PXP-P}

Failure equivalence as in [11], etc. are congruences for the operators of sacp,.
However, the operators || and | in ACP, are needed to axiomatise the ||-
operator, and without them even the most elementary equations cannot be
derived. Our solution to this problem is based on the following idea. Suppose
we want to prove an equation p =gq in the signature sacp, that holds in ready
trace semantics (and hence in failure semantics) but not in bisimulation seman-
tics. Then we first prove an intermediate result from ACP,: one or more equa-
tions holding in bisimulation semantics (with explicit divergence) and in which
no || and | appear. This intermediate result is preserved after mapping the
bisimulation model homomorphically on the ready trace or failure model, and
can be combined consistently with the axiom T4. Thus the proof of p =¢ can
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be completed. In our language of modules we can describe this as follows. The
module

SACP, = H(sacp,J(ACP,+SC))

does not contain the operators || and | in its visible signature and since
failure semantics can be obtained as a homomorphic image of bisimulation
semantics, considering that ACP,+SC is sound w.r.t. bisimulation semantics
and that the operators of sacp, carry over to failure semantics, we conclude
that this module is sound w.r.t. failure semantics. Hence it can be combined
consistently with T4, and SACP, is a suitable framework for proving state-
ments in failure semantics.

We would like to stress that the use of the H-operator is essential here. The
H-operator makes that from module SACP, only positive formulas are prov-
able. The following example shows what goes wrong if we also allow non-
positive formulas. From the proof of Proposition 3.1.2.2 it follows that:

m(ra+b)=1a+b
c¢(ra+b)Cr(ac+ca)+bc

Consequently we can prove an inconsistency if we add law T4:
sacp, J(ACP, + SC)+ <t(tx +y)=1x+y> + c¢(ra+b) Cr(ac +ca)+bc

So although the formulas provable from module sacp, J(ACP,+SC) contain
no left-merge, some of them (which are non-positive) cannot be combined con-
sistently with the laws of ready trace semantics and failure semantics.

sacp, J(ACP, +SC) +

3.2. Associativity of the chaining operator. ACP, is a universal specification for-
malism in the sense that in bisimulation semantics every finitely branching,
effectively presented process can be specified in ACP, by a finite system of
recursion equations (see [3]). Still it often turns out that adding new operators
to the theory facilitates specification and verification of concurrent systems. In
general, adding new operators and laws can have far reaching consequences for
the underlying mathematical theory. Often however, new operators are
definable in terms of others operators and the axioms are derivable from the
other axioms. In that case the new operators can be considered as notations
which are useful, but do not complicate the underlying theory in any way.
Examples of definable operators are the projection operators and the process
creation operator of [6].

Just like the left-merge and the communication-merge are needed in order to
axiomatise the parallel composition operator, new atomic actions are often
needed if we want to define a new operator in terms of more elementary
operators. As an example we mention the actions s(d) and r(d) which we
need in the definition of the chaining operators. These auxiliary atoms will
never be used in process specifications. Unfortunately they have the
unpleasant property that they occur in some important algebraic laws for the
new operators. One of the properties of the chaining operators we use most is
that they are ‘associative’. However, due to the auxiliary actions, the chaining
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operators are not associative in general. We do not have general associativity
in the model of bisimulation semantics. Counterexample:

(r(@)>=>>(s(@)ts(e))>>r(e) = c(d)d
r(d)=>((s(d)ts(e))=>r(e)) = c(e)d

However, we do have associativity under some very weak assumptions. In the
model of bisimulation semantics, the following law is valid (here

H={s(d),r(d)|deD)):

aH(x)=x, aH(y)zy) aH(Z):Z
(XS>y)S>7=x3>(y>>7)

It would be much nicer if we somehow could ‘hide’ the auxiliary atoms, and,
for the >>>-operator, have associativity in general. In this section we will see
how this can be accomplished by means of the module approach.

3.2.1. The associativity of the chaining operators. Although the rule CC holds in
the model of bisimulation semantics, we have not been able to prove it alge-
braically from module ACP#. However, we can prove algebraically a weaker
version of rule CC if we make some additional assumptions about the alpha-
bet. We assume that besides actions ch (D), the alphabet 4 contains actions:

H = (5(d),7(d)|deD) en H = (s(d),r(d)|deD)

One may think about these actions as special fresh atoms which are added to
A only in order to prove the associativity of the chaining operators.' Let
H={r(d),s(d)|ldeD} and let H=HUHUH. We assume that actions from
H do not_synchronise with the other actions in the alphabet, and that
range(yyNH = @. On H communication is given by (d € D):

Y((d), 7(d)) = v(s(d), r(d)) = v(s(d), 7(d)) = v(s(d), r(d)) =
= y(s(d), r(d)) = v(s(d), r(d)) = ¥(s(d), r(d)) = c(d)
We define for v,w E{T,,L,s,r,?,?,i,z} the renaming function vw:

- w(d) if a=v(d) for some deD
vw(a) = a otherwise

1. The Fresh Atom Principle (FAP) says that we can use new (or ‘fresh’) atomic actions in proofs.
In [5), it is shown that FAP holds in bisimulation semantics. We have not included FAP in the
theoretical framework of this paper. Therefore, if we n<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>