
Algebraic
Specification

of
Visual

Languages

Susan M. U skiidarh

Algebraic Specification of Visual Languages

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam,
op gezag van de Rector Magnificus

prof.cir J.J.M. Franse
ten overstaan van een door het college van dekanen ingestelde

commissie in het openbaar te verdedigen in de Aula der Universiteit
op maandag 24 maart 1997 om 13:30 uur

door

Susan Michele Uskiidarh

geboren te Kirksville, U.S.A.

Promotor: Prof. dr P. Klint
Faculteit der Wiskunde, Informatica, Natuurkunde en Sterrenkunde
Universiteit van Amsterdam
Kruislaan 403
1098 SJ Amsterdam

CIP gegevens

Uskiidarh, Susan M

Algebraic Specification of Visual Languages
Susan M. Uskiidarh
Thesis Universiteit van Amsterdam. - With ref.
ISBN: 90- 74795- 65- X

Copyright© 1996 by Susan M. Uskiidarh

Printed and bound by Print Partners Ipskamp.

to my dear friend T. B. Dinesh

iii

iv

Contents

Words of Thanks

1 Introduction

1.1 Main Goals

1.2 Programming Environments and Generators .

1.3 Frameworks

1.4 Grammars .

1.4.1

1.4.2

1.4.3

1.4.4

Attribute Grammars

Graph Grammars . .

Algebraic Specifications

VASE

1.5 Organization of Thesis

2 Visual Formalisms

2.1 Why a Visual Formalism.

2.2 Language Specific Notation in Programming .

2.3 Language Specific Notation in Specification

2.4 Visual Algebraic Specifications

2.4.1 Visual Lexicals . .

2.4.2 Syntax Definition .

2.4.3 Semantic Definition

2.4.4 Term editor

2.5 A comment on structured editors

3 Generating Visual Editors

3.1 Introduction

3.2 Overview of the Approach

V

xi

1

1

2

3

5

5

8

9

15

16

17

18

18

19

20

20

22

22

24

24

27

27

28

3.3 Formal specification of a language 29
3.4 Visual Object Definition Language (VODL) 30

3.4.1 Primitive visual object definitions 31
3.4.2 Composite visual object definitions 31
3.4.3 Spatial Relations 31
3.4.4 Example: A visual expression 32

3.5 Editor Definition Language 33
3.5.1 Replacement behavior 33
3.5.2 Semantic behavior 34
3.5.3 Generating editor descriptions 34
3.5.4 The Structured Visual Editor 37

3.6 Visual Expression Editor . 38
3.6.1 Abstract syntax tree 38
3.6.2 Sharing 38

3.7 Example: Set Editor 40
3.8 Towards a Visual Specification Environment . 42

3.8.1 Visual Syntax . 43
3.8.2 Visual semantics 45
3.8.3 Overview of the VPE generation 45

3.9 Implementation 46
3.10 Summary 47

4 VODL: Visual Object Definition Language 49

4.1 Introduction . 49
4.1.1 The VODL Language 51

4.2 Example: SET 51
4.2.1 vod abstraction 53
4.2.2 Primitives . 53
4.2.3 Composites 54
4.2.4 Constraints 54
4.2.5 Emergent objects . 55
4.2.6 Attributes . 55
4.2.7 vod operations 56

4.3 VODL editor 59
4.4 Implementation 61
4.5 Summary 61

vi

5 The VAS Formalism in VASE 63

5.1 Introduction 63
5.2 The VAS formalism 64

5.2.1 Specifying syntax . 65
5.2.2 Collections and VAS 67
5.2.3 Specifying semantics 69

5.3 VASE 69
5.3.1 VAS syntax editor . 70
5.3.2 The equation editor 70

5.4 VPE for specified languages 71
5.5 Example 72

5.5.1 Syntax definition . . 72
5.5.2 The move-about editor . 74
5.5.3 Evaluation semantics . . 75
5.5.4 Specification of interaction 76
5.5.5 Static checking 76

5.6 Related work 77

5.7 Discussion 78
5.8 Summary .. 79

6 Share-Where Maintenance 81

6.1 Introduction 81
6.1.l Approach and Aim 82

6.2 VAS specification 84
6.2.1 Visual lexicals 84
6.2.2 Syntax definition 84
6.2.3 FSA Evaluation 87
6.2.4 FSA Term Construction 92

6.3 Pretty Printing Issues 92
6.3.1 Share-Where maintenance 95
6.3.2 Share-Where maintenance during evaluation 97
6.3.3 Dependence labeling 99
6.3.4 Discussion . . . 102

6.4 Implementation Ideas 103
6.5 Related Work 103
6.6 Summary 104

vii

9.3

9.2.1 Limitations

9.2.2 Use of visual notation in specification

9.2.3 Application of Share-Where maintenance .

Future directions

Bibliography

Samenvatting

ix

142

148

149

150

153

161

X

Words of Thanks

My doctoral research started as a result of a short visit to Amsterdam, which
turned into a rather extended stay. During my visit I was offered an assistantship
from my promotor (advisor) Prof. dr Paul Klint and the rest, as they say, is history.
I am deeply grateful both to Prof. Klint and to the programming research group
which I have been a part of at the University of Amsterdam. They have graciously
provided me with the opportunities to conduct my research.

I would like to extend my gratitude to my committee members: Prof. dr K.
R. Apt, Prof. dr J. A . Bergstra, dr W. Citrin, Prof. dr P . Klint, Prof. dr ir F .
C. A. Groen, dr J . Rekers , and dr D. Wang. Their diligent efforts in reading my
manuscript and their excellent input has been very much appreciated.

Dr T. B . Dinesh is undoubtably the person who has had the most impact on
my work. We have had many collaborations and lots of fun. He has been a great
friend and kept me on my toes. I shall always remain grateful for his input and
challenges!

I owe a very special thanks to Prof. Lambert Meertens for reading my thesis
draft very thoroughly and providing me with detailed and humorous feedback.
Te§ekkiirler dostum! Jan Heering has been instrumental in helping me keep per­
spective and lifting my spirits which have made a great difference to me.

I have had the opportunity to have great colleagues at the University of Am­
sterdam and at CWI (Centrum voor Wiskunde en Informatica) . I would espe­
cially like to acknowledge: Huub Bakker, Mark van den Brand, Arie van Deursen,
Casper Dik, Joris Hillebrand, Wilco Koorn , Emma van der Meulen, Pieter Olivier,
Chris Verhoef, and Eelco Visser. Among them I would like to acknowledge Arie
van Deursen for his constant support both personally and professionally. He has
provided me with very detailed and useful feedback. He has also translated the
summary of this thesis into Dutch. Also, my former office mate and good friend
Eelco Visser for his support and good company. Also, my thanks goes to Pieter
Olivier who has been very helpful and amazingly quick with his technical help.

During the Spring of 1996 I had the great opportunity to visit dr Kim Marriott
and dr Bernd Meyer at Monash University in Australia. I would like to thank them
for all the support and fun they provided during my visit.

XI

I have also had the pleasure to assist two masters projects one with Mike
Taiafat and another with Harold Breebart. I would like to thank them both. I am
still working with Harold who has been very fun to work with.

I hope I am not alone in having tortured my family and many friends especially
while writing a dissertation. Their support has been phenomenal and has touched
me deeply. I am told I shall be under observation to see if I ever return to being
human..:..:.,! I hope that I prove to do so ...

I will start by thanking my parents Janet and Ayet Uskiidarh for believing
in me and supporting and putting up with me during my long academic path.
Can Uskiidarh has been a great brother and good friend flooding me with e-mail
and phone calls (international) of constant support. He has lightened my spirits
with his crazy sense of humor. I warmly remember my grandmothers, Wilma
Dubberke and Irene Uskiidarh, who were great women and who have inspired me
in many ways and I am grateful for having known them and experienced their
love. Also, my grandfather Ayet Uskiidarh has always encouraged me to pursue
higher education.

My dear friend Nurshen Bak1r has been a great help and supporter. We
have had great conversations and grown together as foreigners in a strange land.
Her presence has made a great difference to my life. Patricia Griffin has been an
inspirational friend who has always given me new ways to think about situations.
She has been a very good friend and great great fun to be with. A very warm
thanks goes to my dear friend Hikmet Salih Ozkan, otherwise known as Chief
Crazy Blanket, who has been a constant support and who has kept me in good
spirits with his immense kindness and great sense of humor.

There are so many more to thank... Among them I would like to acknowl­
edge Hamideh Afsarmanesh, Harun Aksu, Farhad Arbab, Lon Barfield, Pmar El­
masoglu, Murat Fad1loglu, Lene Gravesen, Lynda Hardman, Wendelynne Heelis,
Ece Heper, Imagine, Sjoerd Mullender, Giinsu Oguztiiziin, Carol Orange, Cocky
Rotteveel, Chris Scheel, Jacintha Santen, Machteld Vonk (who has also been very
helpful in reading parts of my dissertation) and Els Willems.

Finally, I have to acknowledge a place that I have frequented during my stay
here. It is a nearby Turkish bakery called Saray, where Ibrahim Karaba§ and Bekir
Ale§ work. It has always been a great place where I could escape when I needed .
They always asked me what I was doing to get so tired. And I would answer "I
am writing a thesis". It so happens that in Turkish the word for ' thesis' and for
'quick' are the same (tez). I had never noticed this until one fine day Bekir, who
did not know what a thesis was , finally bursted out saying "Sister! This sure is
not going very fast!!! What exactly were you doing?". He was right! And boy did
I ever have a good laugh ...

February 1997

Xll

Chapter 1

Introduction

1.1 Main Goals

For textual languages many techniques have been developed for generating tools to
support programming in these languages. Examples of such techniques are parser
and editor generators yielding an environment of language specific tools for the
end-user. The objective of these techniques are to reuse the methods employed in
constructing the commonly desired tools by generating them from a description of
a language.

Several visual languages have graphical programming environments, some­
times referred to as visual programming environments, which have been crafted to
support the construction, manipulation and evaluation of programs of those lan­
guages. This thesis is concerned with visual programming environment generation
and the specification of visual languages. The next section discusses environment
generation to better position this research in the programming environments spec­
trum.

Techniques for generating programming environments for visual languages
have also been developed. One such technique is also the aim of this work. Our
work finds its roots in the ASF+SDF formalism for specifying textual languages,
and its supporting environment the ASF+SDF Meta-Environment [42]. ASF+SDF
is an algebraic specification formalism for specifying textual languages and the
ASF+SDF Meta-Environment is an interactive specification environment support­
ing the specification of languages using the ASF+SDF formalism. We explore the
possibilities of extending the ASF+SDF formalism and environment to handle vi­
sual notation and specify visual languages. Accordingly, we can summarize our
goals as the following:

• To extend textual, algebraic, language definitions with textual definitions of
visual notation.

1

2 CHAPTER l. INTRODUCTION

• To give visual support for the definition of visual notation.

• To generate tools based on the definitions for both the visual notation as
well as visual language definitions.

• To support the previous three goals by means of experimental implementa­
tions.

Much like the ASF+SDF Meta-Environment this work is intended for pro­
viding support to the specifier and end-user of the specified language. Both the
specifier and the end-user are in need of visual programming environments (VPEs)
which are a set of tools that assist the development of visual program construction.
Such tools can be editors, parsers, and analyzers. Programming environments have
been highly successful for the case of textual languages. Considering the complex­
ity of visual languages, programming environments for them are considered even
more valuable.

1.2 Programming Environments and Generators

To build a highly sophisticated programming environment, indeed, requires much
care and work as tools that bring about the particular features of the language
of interest must be designed. On the other hand there are some basic tools that
remain the same from one language to another. For example, editors and parsers
share the same behavior but operate on different syntax. For such common tools it
is sensible to avoid repetitive work by generating them from specifications. Given
a specification formalism and tool generators for this formalism, any language that
can be defined with that formalism can automatically obtain all generated tools.
This means that tools may not be highly specialized but standard tools can be
obtained effortlessly. This is particularly useful in language prototyping.

We sketch the context of our research by relating this work to that of oth­
ers in the area of programming environments. This work focuses on generating
programming environments for visual languages as well as on a programming en­
vironment supporting the definition of visual languages. It addresses two main
issues: visual programming environments and visual languages. More specifically,
it is concerned with the former for the latter.

In order to generate tools, a description of the language must exist. Tool
generation is based on the description language. This is typically done with a
specification formalism although occasionally frameworks have also been used as
well. Specification formalisms are more formal and lend themselves to better
analysis.

To set the context of this work, it is useful to have a taxonomy (Figure 1.1)
relating the wide range of work in the area of visual languages as well as program-

1.3. FRAMEWORKS 3

ming environments. The leaves of the tree represent programming environments
or generators which are listed as representative environments/formalisms.

This taxonomy first divides programming environments along the line of
language-specific and generic environments. It is very likely that nearly all pro­
grammers have used some language-specific programming environment. They are
in demand since they ease the development and perhaps the maintenance of pro­
grams for a specific language with a set of tools specifically addressing the tasks
required for that language.

Generic environments on the other hand are not language-specific, but rather
environments with the intention of generating language-specific environments. The
landmark environment for textual languages is the Cornell Synthesizer Genera­
tor [64) which uses attribute grammars to specify languages. The ASF+SDF Meta­
Environment [42) uses an algebraic formalism for specifying textual languages and
has been the inspiration for the VASE environment and will be explained in more
detail in the next section and in Chapter 5.

Our work falls within the area of the dashed box, which concerns itself with the
generation of programming environments for visual languages. Within this box
different kinds of definition languages for specifying the visual languages which
range from textual to visual languages. In the next section we shift our attention
from programming environments to the definition of visual languages on which
the generators rely. In doing so we look at two approaches: frameworks and
grammar based approaches concentrating more on the latter as our work follows
this approach.

1.3 Frameworks

Frameworks consist of a set of predefined data and behavior that provide the basis
for a set of applications. They became popular in light of the graphical user­
interfaces for applications that involved lots of similar work but were different in
application specific behavior. By providing a large part of the base of an applica­
tion the user becomes free to concentrate on customizing the framework with the
application specific details. Frameworks require the language designer to adhere
to a more specific style and are typically built for a class of languages which are to
be customized with the language specific parts. Since frameworks are specialized
they tend to yield more sophisticated tools. On the other hand if the language
does not conform to the framework it is difficult or impossible to define the needed
language.

McIntyre 's VAMPIRE [51) is an object-oriented framework for defining iconic
languages. It consists of a set of tools for editing class hierarchies, rules, and
icons; and generates a run time environment that allows building and executing
programs in the defined language. The general behavior of the icons is defined in
the class hierarchy where the leaf nodes represent the icons of the language. Their

2;
0
h
g
Q
0

~
~
.....
~

~
'1..

~
Cj

Language Specific

Textual Visual

• SmallTalk [27] • P. Janus [40]
• THINK C [11] • Prograph [58]
• Visual Basic [53] • CUBE [55]

Programming
Environments

For Textual
Languages

Textual

• Cornell Synthesizer
Generator [64]

• ASF+SDF [42, 18]

Generic

Textual

• VPW [67]
• Backlund [4]

For Visual
Languages

Hybrid

• VAMPIRE [51]
• PROGRES [71]

Visual

• VASE [77]

Figure 1.1: Taxonomy of programming environments and their generators. The region enclosed within the dashed box
""' indicates the research concerning this work: visual environments for visual language specification.

1.4. GRAMMARS 5

behavior is represented as much as possible with graphical rules that look like:

A.t -- B.t;

~ ~:
1

A.value+= 1

on the left side the rule shows the icon and any attributes to be matched and the
right side shows the icon to replace it and possibly new values for its attributes.
Each box consists of three parts: the upper left part contains attributes that have
no visual representation, the lower left part shows a labeled depiction of the icon
of interest to be used in the attribute box, and the right box contains the icon to
be matched . The expressions in the attribute box are considered as constraints if
they are on the left side of the rewrite rule and as attribute assignments if they are
to the right of the rewrite rule. The number above the arrow indicates a preference
to resolve any conflicts when multiple rules match the icons in the icon box. The
above rule matches the icons in the left box when the t attribute of the two icons
are equal. These icons are then replaced with just the icon labeled A and the value
attribute of the icon is incremented by one.

1.4 Grammars

A more formal approach to the specification of languages is grammars. There have
been a number of visual language grammar formalisms which themselves may be
textual, hybrid, or visual. Grammar formalism are favored for the reasons of
semantic clarity and verifiability. On the down side they are often rather difficult
to comprehend by the observer due to detail or cryptic notation. In this section
we will survey some of these formalisms .

1.4.1 Attribute Grammars

For the textual case, the most well known environment generator is the Cornell
Synthesizer Generator (64) . It uses attribute grammars to specify languages from
which it generates syntax-directed editors. The attributes are used for type check­
ing which is also incorporated into the editor supporting not only syntactically
but also type correct program construction.

6 CHAPTER 1. INTRODUCTION

For visual languages also several attribute grammars have been proposed [5,
28, 50] where the definition of the graphical syntax is defined with spatial at­
tributes. These grammar rules are themselves textual.

Visual Programmer's WorkBench(VPW) [67] is a collection of tools that syn­
thesizes environments for the specification, analysis, and execution of visual pro­
grams. It generates visual programming environments for languages which are
specified in terms of their syntax, abstract structure and static and dynamic se­
mantics . The programming environment consists of a general purpose editor, a
grammar driven spatial parser, and some other analyzers.

The syntax of the language is defined with Golin's picture layout grammar
[28, 29] . The abstract structure is defined as an object graph and serves as the
basis for the static and dynamic semantics. The object graph defines a set of
relations specifying interactions among objects. The static semantics is defined
by processing visual programs in terms of extracting, analyzing or synthesizing
the static properties of a visual program. The dynamic semantics defines the
execution properties such as interpretation, simulation, and dynamic verification.
It is specified with action routines in terms of an external method. Action equations
define relationships that must hold between objects and external methods.

A Picture layout grammar is an attributed multi-set grammar where the pro­
ductions are picture composition operators. Each grammar symbol has attributes
representing spatial information. The constraints represent relationships among
the components and the semantic functions compute attributes for the aggregate
object. A production is defined as follows :

A-+ {B, C}
A.attr = func 0 p(B.attr, C .attr) #semantic function

where:
pred0 p(B.attr, C.attr) #constraint

where { B, C} is a multi-set, the semantic function describes the attribute transfers
and the constraints describe the graphical layout between the production elements.
VPW supports a predefined set of production operators that consist of a constraint
and a semantic function. This permits the shorthand notation: A -+ op(B, C)
which is equivalent to the above production.

A fragment of a grammar of a language called PetriFSA obtained from [67]
is seen in Figure 1.3. The operators seLof, touches, contains, tiling, points_to,
points-from, and over are grammar production operators of the picture layout
grammar. The underlined non-terminals represent remote symbols which allow
directed graphs to be described. A remote symbol is not considered to be part of
the production but one that is defined somewhere else. It serves as a non-tree edge
in the parse tree making the parse structure a directed graph (which are restricted
to be acyclic). The attributed multi-set grammar rule for the STATE is shown in
Figure 1.2.

1.4. GRAMMARS

STATE -+ STATE.JNITIAL

STATE.ID = STATE.JNITIAL.ID
STATE.LABEL = STATE.JNITIAL.LABEL
STATE.EVAL = STATE.JNITIAL.EVAL

TRANSITION-+ tiling(TRANSITIONJN,TRANSITION..OUT)

TRANSITION.ID = TRANSITIONJN.ID
TRANSITION.LABEL= TRANSITIONJN.LABEL
TRANSITION.trigger= TRANSITIONJN.trigger
TRANSITION.action= TRANSITIONJN.action
TRANSITION.from= TRANSITIONJN.from
TRANSITION.to= TRANSITIONJN.to

Where:
TRANSITIONJN.ID == TRANSITION.DDT.ID

Figure 1.2: Attributed multi-set grammar for STATE.

PFSA -+ set..of(STATE8...AND_TRANSITIONS)
STATE8...AND_TRANSITIONS-+ STATE I TRANSITIONS
STATE -+ STATE.JNITIAL I STATE.FINAL I STATE.NORMAL
STATE.JNITIAL -+ touches(CARAT,STATE.NORMAL)
STATE.FINAL -+ contains(circle,STATE.NORMAL)
STATE.NORMAL -+ touches(circle,string)
TRANSITION-+ tiling(TRANSITIONJN,TRANSITION..OUT)
TRANSITIONJN -+ points..to(TRANSITION.ARROW,STATE)
TRANSITION.OUT -+ pointslrom(TRANSITION.ARROW,STATE)
TRANSITION.ARROW -+ touches(TRANSITION...BOX..CONNECT ,arrow)
TRANSITION.BOX.CONNECT -+ touches(line, TRANSITION.BOX)
TRANSITION.BOX-+ contains(box,TRIGGER..AND_ACTION)
TRIGGER..AND_ACTION -+ over(string,ACTION)
ACTION -+ over(line ,STRING)

7

Figure 1.3: The grammar and corresponding attributed multi-set grammar of
PetriFSA.

8 CHAPTER 1. INTRODUCTION

The parser Vizier [28] takes a picture created in a general purpose editor with a
picture layout grammar and produces a parse graph corresponding to the syntactic
structure of the input picture. The abstract structure is obtained from an object­
graph system which defines all the object-graph types with definitions which maps
each abstract structure to an object-graph type. VPW then uses Awk [1], definite
clause grammars (DCG's) in Prolog [85], and synthesized attribute-evaluation [64]
over the parse graph to yield an abstract representation. It is this abstract struc­
ture which is processed in various ways when defining the static and dynamic
semantics of a language. The various tools that make up the VPW are integrated
with a Message Backplane which supports distributed programming. The Message
Backplane is based on the Linda [25] model and its implementation was derived
from FIELD [60].

Bjorn Backlund et. al. [5, 4] define the generation of visual language-oriented
environments where they distinguish two layers: derivation and structured presen­
tation. The derivation layer defines the concrete syntax in terms of graphical data
types and the structured presentation layer concretizes these views. Their formal­
ism combines attribute grammars and graphical constraints. Attribute grammars
are used to define edit semantics at the derivation layer. A predefined set of graph­
ical types and constraints at the presentation layer are used for specifying pictures
and their constraints. Hagsand [34] extended this work by defining the dynamic
semantics of visual languages using operational semantics.

1.4.2 Graph Grammars

Graph grammars have been proposed as a formalism for specifying visual languages
due to their "natural" correspondence to graph representations. A good example of
an interactive specification environment for visual languages is PROGRES [70, 71]
which is a multi-paradigm language based on graph rewriting. It has a mixed
textual and graphical representation, where various aspects of a language can be
defined. Language specification consists of defining graph schemata, declaration of
attributes, atomic graph rewrite rules, and the imperative programming of graph
transformation rules. It uses a graphical syntax for defining the graph schemata,
graph queries and atomic graph rewriting steps. It provides an editor and analyzer
for checking static semantic errors of the PROGRES language.

With this style of specification it is argued that the most relevant aspects
of a visual language are specified with a visual language - namely the graph
rewrite and graph schemata. The specifier is aided with various analyzers to assist
in yielding correct specifications. However, the specifier must switch from one
context to another using different tools to specify different parts of a language.
While the graphical editor for rewrite rules does show the relationships among
language components it does not really bear any similarity to the end language.
The syntax of the language is completely disjoint from the semantic specification.

Abstract syntax of the graphical part of hybrid languages can be specified

1.4. GRAMMARS 9

by means of a PROGRES graph grammar [2] . Rekers and Schurr consider the
definition of syntax of visual languages and the parsing of pictures according to
such syntax definition [61]. Such specifications are written in a formalism that
provides labeled boxes and labeled arrows to define the productions. Figure 1.4
shows a specification for entity relationship diagrams. The grey nodes are called
context nodes which must exist on both sides of the production (e.g. they must be
common). The grey boxes allow the definition of embedding rules. For example,
the production number 2 allows the introduction of an entity, where the diagram
remains connected. Graph grammar productions can get very involved and hard
to read as they can be graphs represented with a great many boxes and arrows.
Examples of such productions can be found in [61].

1.4.3 Algebraic Specifications

Algebraic language specifications have been around for a long time and promote
the benefits of abstract data type specifications. They specify the functions using
equations which may be conditional. Algebraic specifications declare a set of sorts,
which are the types used in describing the language, and functions

f : s1 x ... x s~ -+ s~ x ... x s~

where each s{ is a sort and m is usually 1 and for constants n=0. A term is a
syntactically correct function which has terms as arguments. A term may also be
a variable.

Equations when oriented can be interpreted as rewrite rules. An equation:

means to rewrite a term that matches the pattern off with the function g. Match­
ing involves the matching of tree structures representing the abstract syntax of a
term.

Conditional equations are used to specify language semantics and occur very
frequently in realistic specifications. Conditional rewrite rules [8, 43, 17] are used
to execute conditional equations.

A conditional rewrite rule:

S1 = t1' ... 'Sn = tn

so= to

with n 2: 0, and Si, ti (0 :S i :S n) terms. There are usually well-definedness
constraints imposed on the variables of the conditions [81, p.16] in order to ensure
their definedness during execution .

The VAS formalism and the VASE environment, which will be discussed in
Chapter 5, find their roots in the algebraic specification formalism ASF+SDF. For

10 CHAPTER 1. INTRODUCTION

1.

2. I Entity .1 .- ·,gtiml relates Relationship relates Entity

3.

4.

5.

6

7.

!Entity I
I

lc-Attr I

I Entity I
2

1
:Entity j relates

I
I I relates~
Relationshi~ ---~

consists Attr

I Entity j c-has C-Attr

consists,~-~
Attr

lc-Attr I consists~ Attr I

Figure 1.4: A PROGRES specification for entity relationship diagrams.

2

1.4. GRAMMARS 11

this purpose this formalism is explained in greater detail especially since we rely on
the ASF for the underlying representation and for the term rewriting machinery.

The ASF+SDF formalism and Meta-Environment

The ASF+SDF formalism (42] is a many-sorted algebraic specification formalism
for textual languages. The ASF+SDF Meta-Environment supports the modular
interactive specification of languages and the generation of programming environ­
ments for the specified languages. We find algebraic specifications attractive in
that they allow the definition of equational semantics which lend themselves to
analysis, verification, and the semi-automatic and automatic generation of tools
based on specifications. Tools that can be generated are among others editors,
term rewriters (for executable specifications), pretty printers, and type-checkers.

The ASF+SDF Meta-Environment is well suited for specifying arbitrary ab­
stract data types (traditional algebraic specifications), as well as the definition of
any (formal) language. The specification environment is based on the ASF+SDF
formalism which combines the Algebraic Specification Formalism (ASF) with
the Syntax Definition Formalism (SDF). This environment, called the ASF+SDF
Meta-Environment, is an interactive environment that supports the specification
of languages. The Meta- Environment provides module editors for the development
of modular specifications. Each module editor consists of two parts: one for the
syntax and one for the semantics.

The syntax definition formalism (SDF) supports the definition of free syntax
which allows specifiers the freedom to choose any syntax for their language. Thus,
the same program can be represented in a variety of ways (see Section 1.4.3).

The semantics of a language is specified with conditional equations (both pos­
itive and negative) over terms defined in the syntax of the language. Furthermore,
these equations are implemented as a term rewriting system yielding executable
specifications.

Given a specification, the system automatically generates a parser and a
syntax-directed editor for that language. The equations are always type correct
as they must conform to the specified syntax. The editor enables the specifier
to immediately write terms of the specified language. The terms are then parsed
with the generated parser. Finally, these terms can be executed according to the
specified semantics.

The ASF+SDF . Meta-Environment is an incremental development environ­
ment. When a specification is modified, its associated tools are automatically
adapted rather than regenerated from scratch, saving significant regeneration time
that would otherwise be required after each modification. This makes interactive
development of specifications, that usually involves a lot of modification, feasible
in practice.

12 CHAPTER 1. INTRODUCTION

The SDF formalism For the case of textual languages, the ASF+SDF Meta­
Environment has demonstrated that the use of concrete syntax for defining an
algebraic specification of a language - both the signature and the semantics, is
not only feasible but also desirable as it enhances the comprehensibility of the
specification. The free syntax is particularly useful in specifying a language when
following a written specification as the specification can be written in a similar
form. SDF (35] is the Syntax Definition Formalism used for defining "grammars"
for context-free languages. The syntax definition is utilized in generating a term
editor for writing terms over the language and an equation editor for defining the
semantics of the language.

The language syntax is defined by a signature consisting of syntax rules of
the form:

a -+ S

where a is either a sequence of any combination of sorts and literals or a literal
followed by parenthesized sequence of sort and S is a sort (non-terminal) of the
language. We can define the syntax for a function called plus as follows:

plus(N,N) ➔ N

which resembles abstract syntax. In this rule N is a sort and "plus()" is the pre­
defined notion of a function in SDF. We could also have defined the plus function
as:

N"+" N ➔ N

where N is a sort name and "+" is concrete syntax representing the plus function .
In the generated term editor, the user may enter the term: 4+5.

Semantic equations use the concrete syntax of the languages which makes the
association between the syntax and semantics visible to the specifier who is not
forced to make a mental translation into some abstract representation. Equations
are written over terms of equal sorts. The following equation can be one of the
several equations required to define the "+" function:

[1] Nat+0=Nat

where Nat is a variable of sort N. In the above equation [1] is a label used for
identification purposes.

SDF also has a built in notation for associative lists having the syntax:

1.4. GRAMMARS 13

{ SORT [II SEPARATOR " l } * I +

defining list of zero or more items with an optional separator. We can define, for
instance, a sort SET as a comma separated list of integers:

"{,, {N "," }* "}" --+ SET

which defines a "," separated list of items of sort N. Here we also see the "{" and
"}" as part of the syntax definition which defines the bracket as part of the SET
syntax. The syntax for a union function of the sort SET can be defined as:

SET "U" SET --+ SET

allowing the term: { 3,2,7,6} U { 6,1,3,9} to be constructed. Finally, we can write
an equation defining U that simply adjoins them into a single list representation
and another rule that defines the equality of sets in the presence of multiple items
which together result in a set without duplications in a normal form:

[union] {Nati*}u{Nat2*} = {Nati* ,Nat2*}

[dupl] {Nati*, Nat, Nat2 *, Nat, Nat3*} = {Nati*, Nat, Nat2*, Nat3*}

where Nati* and N at2 * are variables over the "list of Nat" sort and Nat is of sort
N.

Example: Binary Trees In order to give a flavor of the specification environ­
ment , let us consider a specification for binary trees. To specify this in ASF+SDF
we need to define two parts: the syntax and the semantics. Figure 1.5 shows a
module specifying the modules for the binary tree language (modules BTree and
RLinear-B Tree).

1. The top part defines the syntax and consists of the definitions of new sorts,
lexical and context- free syntax and variables that are used in defining the
semantics. This section also defines the modules to be imported for the
specification (in this case the module Integers) which specified the syntax
and semantics of integers). The binary trees use the INT from this mod­
ule to represent the leaf nodes. It is the import facility which enables the
modularization of specifications.

14

module: BTree
imports Integers
exports

sorts Leaf Node
context-free syntax

INT -+ Leaf
Leaf -+ Node
node(Node, Node) -+ Node

Module: RLinear-BTree
imports BTree
exports

context-free syntax
rl(Node) -+ Node

variables
Lf -+ Leaf
Nd [1-3]* -+ Node

equations

CHAPTER 1. INTRODUCTION

rl(node(node(Nd1 , Nd2), Nd3)) = rl(node(Nd1 , node(Nd2, Nd3)))

rl(node(L/, Na))= node(Lf, rl(Nd:))

rl(Lf) = Lf

Figure 1.5: The modules containing the specification for the BTree language.

2. The lower half defines the semantics by defining equations over the syntax.
The module BTree has none and the module RLinear-BTree has three equa­
tions defining the rl function which transforms a binary tree into another
one that is right linear. A right linear binary tree has only leaf nodes in the
left branches of each sub-tree.

After writing the specification one can immediately test it by executing a term
over the specification. The term

node(node(l, node(2, 3)), node(node(4, 5), node(7, 3)))

[1]

[2]

[3]

1.4. GRAMMARS 15

is entered in the editor. The buttons on the editor allow the user to create a
LaTeX representation of the term, or to apply the rl function to the term. A
button called "right-linear' is bound to the rl(N) function defined in RLinear­
BTree module. The result of applying this function to the term is:

node(l, node(2, node(3, node(4, node(5, node(7, 3))))))

This style of specification allows the concentration to be on the language spe­
cific issues. The syntax and semantics are defined within one formalism making
the entire specification accessible for understanding, maintaining, and testing. The
semantic definition does not rely on external functions defined in some other lan­
guage. While the equations provide a nice declarative manner of expressing the
functions, they may still not be so easy to understand. Some languages benefit
greatly from a visual representation. In Chapter 2 we will reexamine the right
linear binary tree again with a visual syntax.

The process of developing language specifications is a tedious task which can
be significantly aided with interactive tools facilitating language development and
testing. The executability of the specifications seems to be the crucial factor for
realizing the utility of specifications for prototyping languages and their environ­
ments.

1.4.4 VASE

The Visual Algebraic Specification Environment (VASE) is an interactive visual
specification environment for visual languages and is based on the Visual Algebraic
Specification formalism (VAS) and both are the main topic of this thesis. VASE is
defined with the express intention of providing a specifier-friendly specification
environment. For achieving this, it is our belief that interactive tools as well
as the use of concrete syntax in specifying static and dynamic semantics as well
as having executable specifications are very useful. The VASE environment has
been based on an uniform formalism for the specification visual languages and
the generation of environments for them. In our formalism we have separated the
specification of the semantics of the language definition from the visual syntax.

Rekers in [3) advocates the utility of a clear separation of graphical lexical
description from syntax definition. This is a confirmation that our approach is
indeed desirable. But they do not use concrete pictures in the specification and
thus it would still involve specifying attribute manipulation explicitly.

The style of the lexical syntax definition is influenced by Helm and Marriott
[36] who define pictures as being either primitive or complex. Complex pictures
are specified in terms of their sub- pictures and a set of constraints. They provide
a rigorous declarative semantics both for the specification and the recognition of
pictures. We have limited our work to the specification of pictures and define

16 CHAPTER 1. INTRODUCTION

the picture specification language VODL (Chapter 4) and how it may be used in
specifying visual languages and in end-user environments.

The work on VASE enhances this by allowing one to build binary trees with
visual representations that reflect the tree structure.

1.5 Organization of Thesis

The remainder of the thesis is organized as follows: Chapter 2 provides an overview
of the VAS specification formalism by use of an example. Chapter 3 discusses ed­
itor generation which forms the basis of all interactive tools described in this
thesis. Chapter 4 introduces a picture definition language called VODL which is
the foundation for describing all "visual" elements of both end-user and speci­
fication languages. Chapter 5 describes a "visual" visual algebraic specification
language called VAS formalism and a framework for an interactive specification
environment for it called VASE. Chapter 6 introduces a technique called "Share­
Where maintenance" for maintaining the information regarding shared sub-terms
that are introduced by editors and how this technique is used in pretty printing
rewritten terms. Chapter 7 describes an extension to the VAS formalism for speci­
fying input and output behavior during execution. Chapter 8 describes our various
implementation experiments. Finally, in Chapter 9 we draw our conclusions and
suggest possible future directions.

Several chapters in this thesis are revised versions of articles that have ap­
peared elsewhere. Most revisions made were to cut out some duplication of in­
troductory material and provide continuity. The chapters 3, 4, and 5 have been
published in the proceedings of the Symposium of Visual Languages in [75], [76)
and [77) respectively. Part of Chapter 4 was also discussed in the Eurographics
workshop on Programming Paradigms in Graphics [20). Ideas in Chapter 7 were
presented both at the Workshop on the Theory of Visual Languages (21) and the
ERCIM Workshop on user Interfaces for All [19] . A version of Chapter 6 will ap­
pear in a book that forms the collection of articles that originate from Workshop
on the Theory of Visual Languages, 1996.

Chapter 2

Visual Formalisms

This thesis concerns itself both with the specification of visual languages as well
as the generation of end-user environments for them. Similar to the arguments
that favor programming environments for programmers we believe that language
specifiers need specification environments. This is perhaps more relevant with the
increase of special purpose language. Having tools for the generation of language­
specific environments, at least for prototyping, is very useful.

We propose that the specifier as well as the visual language researcher need
interactive tools which allow them to specify and interact with visual languages.
In this line we propose a number of tools that support the definition of graphical
lexicals, visual syntax, syntax-directed visual editors, and visual term rewriters.
We believe that there is much to be gained by providing visual support for the
definition of visual languages. The visual representations both at the specification
level and at the end-user programming level allow the user of such tools to remain
closer to the language of interest.

This thesis focuses on visual environments which are based on the abstract
syntax of visual languages but support the definition at a concrete syntax level.
Since the syntax of visual languages is often semantically relevant, it is important
to have tools that provide access to their appearances. The concrete notation
allows the specification to be made at a level close to the language of interest,
facilitating comprehensibility, and the abstract syntax, hidden from the user, rep­
resents the interpretation which is used by the underlying tools.

The specification formalism promotes two main themes: the use of visual
syntax and the use of concrete syntax in language specification. In the next three
sections we motivate these themes by first examining the choice of visual syntax
and in the following two sections the use of language-specific syntax in program
specifications and language specifications respectively.

17

18 CHAPTER 2. VISUAL FORMALISMS

2 .1 Why a Visual Formalism

The visual language users as well as specifiers need tools to assist them in their
tasks. Much of the research regarding visual languages has focused on end user
issues (language and/or environments). However, there has been little effort in
providing support for the language designer, which is very important for language
prototyping.

Visual notation is much more complicated both in its underlying representa­
tion as well as its concrete notation. In Section 1.2 various specification formalisms
were discussed. These were mostly textual formalisms which prevent the specifier
from being directly in touch with the syntax of the language. Although these
grammar rules yield the desired results and can be utilized in generating tools
for the end user, for the language specifier there is no view of graphical nota­
tion [28, 86]. In many cases the syntactic representations chosen are very relevant.
This is particularly true for special-purpose languages as they typically relate to
some real-world entities or some conventionally accepted notation in that prob­
lem domain. Having the visual notation accessible during the specification process
would be valuable since it would facilitate the recognition of the language elements.

In our approach, we view the language designer also as a user who requires
tool support. Visual notation is often different from textual notation since the
physical attributes and spatial relations often are semantically significant.

Notational freedom is a powerful tool for expressing problems and solutions.
This is utilized by mathematicians who define their notation in a domain and
express their definitions, problems and solutions using that notation .

Still we must assure that we do not loose the proven benefits of abstract
representations. While visual notation frequently lends itself to ambiguous repre­
sentations, the meaning of the specification must be unambiguous - there must
be a single interpretation of a specification or program. This is usually achieved
with a parser or constructing the program in a syntax directed manner. The in­
terpretation relies on the syntax definition, where all concrete representations are
removed. We chose to construct the program in a syntax directed manner to avoid
dealing with parsing issues.

2.2 Language Specific Notation in P rogramming

Visual rules allow the reader to comprehend the semantics of languages or pro­
grams by bringing the visual representations to the foreground . For example,
AgentBuilder [65] is a tool developed for defining agent rules for Agentsheets1 .

This tool provides support for defining the actions for the icons of an Agentsheet.
These rules define the actions which define what happens to depictions of agents

1 Agentsheets is a tool for generating iconic programming environments based on a spatio­
temporal metaphor of communicating agents (62].

2.3. LANGUAGE SPECIFIC NOTATION IN SPECIFICATION 19

? ? • ■ T

Figure 2.1: Part of a graphical rule as would be entered in Agent Builder.

under certain conditions. The actions applied to depictions are movements m
different directions.

Figure 2.1 shows a part of a rule for KidSim [72] in Agent Builder [65].

In the rule ~ denotes a depiction of an agent, ? denotes a query which
is used in conjunction with a depiction to query the depiction of an agent, the

l denotes a direction modifier to query the icon below the one in consideration,

and T denotes a downward movement. The rule uses these language constructs

along with the icons I (for a gorilla) and ■ (for empty space) to state that the
gorilla is to move down when it is above empty space. More specifically, the rule
states that if the icon that is being queried is a depiction of a gorilla (first three
symbols), and the icon below it is a depiction of empty space, then the gorilla
should move down. Without the Agent Builder tool these rules would be encoded
in common lisp, which is generated by this tool.

Granted that users must learn some visual syntax, this syntax is closer to the
domain of interest . The icons of interest are presented in the same manner as in
the execution of the program, for example a gorilla icon is used rather than an
icon name. This makes the connection between the definition and the execution of
the program more obvious by reducing the amount of translation needed between
the problem being defined and the language in which to express this problem.

2.3 Language Specific Notation in Specification

The AgentBuilder tool demonstrates the support offered for the programmer by
using graphical rules. It is a tool defined for a specific language. In the VAS

formalism we define a specification language for defining visual language syntax
which is then used to define the semantics of that language. Thus, the language­
specific notation is used in semantic definitions as well, but in this case the method
is generic - i.e. applicable to all languages specified with the VAS formalism.

Language specifications define the properties of languages by means of some
formalism so that they can be analyzed and used for generating tools such as
editors, parsers, and evaluators. The advantages of abstracting away from concrete
properties of languages are to have one formalism capable of representing many
languages with an uniform abstract representation. While abstract representations
are well suited for capturing the language characteristics, they are usually too
difficult for a user to comprehend and maintain.

20 CHAPTER 2. VISUAL FORMALISMS

The cryptic nature of abstract representations makes it difficult for the spec­
ifier to relate the specification to the real representation (concrete syntax) of the
language. Concrete syntax is used precisely to alleviate this problem by introduc­
ing non essential syntax that provides some cues and/or context for understanding.
The more concrete syntax the language uses the greater the gap between its con­
crete and abstract representation. In the case of visual languages, the gap is
typically larger due to high dependence on graphical and spatial representation
which is lost in an abstract representation.

In order to reduce this gap we promote the use of concrete syntax of the lan­
guage being specified during language semantic specification. This allows the lan­
guage specification to be much more accessible to unsophisticated users (specifiers).
The success of the use of concrete syntax in the ASF+SDF Meta-Environment is
attributed to the fact that the language specifier is much more comfortable in
dealing with a syntax that represents the language of interest. While the speci­
fication is developed using the concrete syntax the underlying abstract syntax is
constructed automatically, which distills the term representation from irrelevant
concrete information leaving semantically relevant properties which generic tools
are based on.

2.4 Visual Algebraic Specifications

The Visual Algebraic Specification (VAS) formalism is inspired by ASF+SDF. VASE

is the proposed specification environment for language specification. It consists of
editors for defining lexicals, language syntax and semantics, and an editor gener­
ator. In this section, we give a very small specification of a visual language for
binary trees . Languages are specified in modules that define some syntax and/or
some semantic equations. The syntax is defined using the VAS formalism which is
covered in Chapter 5. The VAS formalism requires the definition of visual lexicals
which are defined using the picture specification language VODL which is explained
in Chapter 4.

2.4.1 Visual Lexicals

Visual Object Definitions(vods) define the lexical representations of a language.
They are defined with the picture definition language VODL which is a constraint­
based declarative picture specification language supporting user-defined types.

Graphical lexicals are defined by vods which consist of sub-vods and their
spatial relationships. Each vod may also have a set of attributes defined. The idea
is to set the values that are relevant and leave the others to be determined by the
system (by constraint satisfaction or default values for unconstrained attributes).
We need two classes of values: "don't care" values (user preference or default)
and semantically relevant values. Attributes that are set by preference (=µ) or

2.4. VISUAL ALGEBRAIC SPECIFICATIONS 21

default (=d) are needed for rendering. Attributes that are set as relevant (=r) are
considered as significant and are reflected in the abstract syntax.

When defining new vods the specifier can compose a new type from previ­
ously defined vods and define only the significant attributes. Leaving irrelevant
attributes undefined results in default values to be used in initial presentation.
Since, at the time ofrendering, some basic values must be known (such as position,
width, and height) default values are used. As these values are not semantically
relevant it is important that they are not reflected in the abstract syntax. Consid­
ering the KidSim example, we might want to set apart the case when the gorilla is
red (indicating super-powerful) in which case it can walk through obstacles which
if encountered otherwise would cause it to turn around. In this case the color is
relevant and must be reflected in the definition as such.

Most vods are under-specified, rather under-constrained, leaving a great many
concrete presentations that are consistent with their specification. Thus, when we
show some presentation, it is almost certainly one of many possible acceptable
presentations. The interactive tools deal with representative-vods which are vods
that are consistent with their definitions. Typically there are numerous vod in­
stances that are consistent with vods. Users may manipulate interactively these
representations as long as the manipulation does not violate the constraints in the
definition - in which case the interaction is not permitted. This approach allows
for a single vod definition to cover a large set of graphical descriptions.

For the binary tree we define two new vods using VODL (Chapter 4). The first
vod represents the "plus" symbol. This vod is named Plus and is a composite vod
consisting of two sub-vods.

defv Plus ()
{ c : circle () ,

1 : text () EB [strval = 11 + 11
] }

<l

{ c contains 1 }

A representative appearance for this definition could be: (±). A vod for
defining a node plus can be defined using the just defined Plus vod.

defv Node (Nl, N2)
{ nl: Nl,

n2: N2,
p:Plus(),

<l

cl : Connector (p, nl),
c2 : Connector (p, n2) }

{ p over nl,
p over n2}

22 CHAPTER 2. VISUAL FORMALISMS

Node is a composite vod with two parameters and five sub-vods. The first two sub­
vods correspond to the parameters and the last three to previously defined vods.
Connector is a vod with two parameters that defines a line that touches the two
parameters. The following picture is a representative vod where the parameters
are represented with dashed boxes containing the parameter names .

. --A-.
I Nl I I N2 I
l ____ J L ____ J

2.4.2 Syntax Definition

The syntax for binary trees is defined using the visual lexicals and the VAS formal­
ism which is directly analogous to the SDF formalism explained in Section 1.4.3.
The "Integers" module which defines integer numbers is imported. Two sorts
named L and N representing leaf and a node are introduced. Two variables of
each of these sorts which are coincidentally represented with the same name as
the sorts are also introduced. These variables will be used when defining semantic
equations in the next section.

module BTree

imports Integers

sorts L N

functions

INT

L

A
N N

2.4.3 Semantic Definition

-+ L

-+ N

-+ N

In our work we are interested in graphical equations which define language seman­
tics. These equations, when oriented (left to right), are considered as graphical
rewrite rules. Graphical rewriting rules have been used to define iconic language
semantics in [24, 51]. We consider the rewrite rules for the VAS formalism which

2.4. VISUAL ALGEBRAIC SPECIFICATIONS 23

is parameterized with a particular language specification. Semantic equations use
the context-free syntax of a langauge. Thus, rewrite rules may be written only for
specified languages.

The semantics are defined using conditional equations. The equations use the
syntax specified for the language. Such syntax includes the syntax introduced in
the same module as well as any imported module. Here , we define some semantic
equations that produce right-linear binary trees. To do this first we introduce a
new function for the right-linearalization function which uses the function symbol
'>,.., takes an argument of sort "N" and returns a results of sort "N''.

module RLinear-BTree

imports BTree

sorts

functions

variables

equations

1>,._ (N)

.c
N

➔ N

➔ L

➔ N

[1] ~ [N?(N,) ~[N~J
[2] ~(cAN) A .c 1>,.. (N)

[3] '>.. (.C) .c

One can observe that the use of tree representation in the equation visually
reflects how the tree is manipulated to get a right linear tree. When a term of the
language is constructed, it will be matched against the set of rewrite rules defined
for the language. The matching policy is with respect to the abstract syntax of the
language. It is possible that a term matches several rules, in which case the most
specific one is chosen. The specificity of the rules are determined by the number
of variables present in a rule.

24 CHAPTER 2. VISUAL FORMALISMS

2.4.4 Term editor

Given the language specification, domain specific tools are generated - some of
which are interactive tools using the syntax of the language. The major tool
being an editor which the end-user uses for constructing programs (terms over the
syntax). These programs can be evaluated (rewritten) by the term rewriter. The
abstract representation of the syntax definition allows the terms in the editor to
match the terms in the equation even though their physical appearances are not
identical. Figure 2.2 shows an instance of a BTree term editor while constructing
the term:

1'9
2 3

Terms are constructed in a syntax directed manner where the focus of a term
is replaced with a set of permissible replacements presented in the selection panel.
The focus is indicated with a surrounding dashed box and the selection panel is the
left panel of the editor. The term shown in the editor is a normal term conforming
to an underlying tree representation.

Frequently, a strict tree representation is not sufficient and we need a graph­
like structure to represent multi-dimensional relationships. For this, the term
editors allow the sharing of sub-terms when the sorts are appropriate. For example,
a binary tree sharing the same leaf can be constructed as:

Cf?
2

(a) (b)
where (N) is replaced with the "2" present in the term instead of making a selection
from the selection panel.

2.5 A comment on structured editors

We, thus, start our journey with the consideration of obtaining editors for visual
languages . Editors allow the construction of specifications/programs and allow
interaction with them. They can be used for presenting animations, presenting
results of computations or analysis , or for dialogs for obtaining and presenting

2.5. A COMMENT ON STRUCTURED EDITORS 25

File ...

~
(N) (N)

(L) f±f.
2 i_(N)_i

I■

Figure 2.2: An instance of the BTree term editor.

input and output.

In this work, we regard the existence of structured visual editors as the basis
of the interactive tools that make up the end-user as well as the specification
environment. By choosing structured editors we have quite intentionally tried to
set aside any parsing issues of visual languages. This decision has no bearing in any
manner on the desirability or appropriateness of parsers2

• It simply reflects the
main focus of this research: kinds of tools that can be generated from specifications
and the support provided for creating these specifications. By describing some kind
of simple editor we can at least be assured that we can construct the intended terms
in some manner. One can imagine that one of the desirable tools to generate would
be a parser for the specified languages. However, this is not in the scope of this
research.

2 Visual parsing is an active research area [86, 28, 61]; however we feel that the results are not
yet satisfactory enough for us to depend on them .

26 CHAPTER 2. VISUAL FORMALISMS

Chapter 3

Generating Visual Editors

3.1 Introduction

There are an increasing number of visual programming environments for a great
many languages [26). One of the concerns related to visual languages is supporting
environments for the construction of programs. Visual programming environments
should provide a set of tools that aid the software development process for visual
languages. There are many programming environments for textual languages and
several systems that can generate such environments given their specifications [63,
42) . We are interested in the generation of visual environments for visual languages .
We concentrate on the specification of visual languages and the generation of
language specific visual editors for them.

This chapter covers two themes which the rest of the work relies on: editor
generation and the specification of visual notation. Editors are what form the
interactive environment for both the language-specific editors as well as the de­
velopment environment. This chapter addresses only language specific editors. In
subsequent chapters we will look at editors for developing the specifications them­
selves - which can also be considered to be language specific where the language
of interest is the specification language.

The construction of visual editors is typically addressed in two ways: (1)
structure-oriented (syntax-directed) visual editors, and (2) general- purpose visual
editors. While the first approach considerably restricts the user freedom , the
second approach requires visual parsing. Ideally, we would prefer hybrid editors
that support both structured and free form editing. We chose to develop structure­
oriented visual editors , not only because of the difficulties related to visual parsing,
but also since our concentration is on generating language specific components.

All the editors in consideration are visual editors. This makes it necessary for
us to be able to define visual notations. For this, we introduce a picture definition

27

28 CHAPTER 3. GENERATING VISUAL EDITORS

language called VODL (visual object definition language) which will be explained
in detail in Chapter 4. In this chapter, we examine how visual notation definitions
can be used in conjunction with textual language definitions for obtaining visual
editors. We start from textual languages since we are interested in extending
such an existing textual specification environment and the approach given in this
chapter is the first step towards that end. This is basically done by mapping the
language constructs onto vods (visual object definitions). This approach results
in modifying the appearance of the language constructs during visual sentence
construction. In chapters 4 and 5 we will describe how visual language syntax can
be defined directly without any such mappings.

3.2 Overview of the Approach

We approach visual syntax specification and visual editors from the programming
environments perspective. P rogramming environments are comprised of several
components, such as editors, type-checkers, debuggers, animators, etc. These com­
ponents are integrated with the intention of providing users with an environment
that supports the software development process for a given language. Program­
ming environment generators are capable of deriving such environments from the
formal specification of languages. The medium of communication among these
tools is typically an abstract syntax tree.

In addition to the context-free syntax and the dynamic semantics of a lan­
guage, other aspects of a language such as type-checking and pretty- printing can
be specified. One such aspect, relevant to our purposes, is the visual representa­
tion of the syntactic units. Our research focuses on such specifications and how
they can be utilized in the generation of visual editors.

Structured visual editing mainly requires two kinds of specification: visual
appearances and editing behavior. Visual notation definition is done with VODL

(Visual Object Definition Language) which is eventually reflected in the visual
syntax of the editor. Editor behavior is generated from the syntax definition of
the language of interest which is mapped onto the defined visual descriptions.

Figure 3.1 shows the overall approach to generating structure- oriented visual
editors. We start with a formal specification of a language .C. Then a visual syn­
tax for £ (Vi::) is specified. At this stage the formal specification of£ is enriched
with the visual description of its syntactic units. Next , this specification is pro­
cessed to generate a structure-oriented visual editor description , which contains
the language- specific information necessary for the implementation of the user­
interface for the visual editor. Finally, the graphical user- interface for the editor
is constructed - using the editor description.

We can identify three major phases in the editor generation process , of which
the first two are formally specified and the last is based on some graphical plat­
form . The nature of each phase is somewhat different. The first phase involves

3.3. FORMAL SPECIFICATION OF A LANGUAGE 29

v~7::
specit~r ~

w VEDc

~~
1------~ ~~~~;;

user

Formal specification environment Graphics
platform

____ ,J '------y----/ y
Phase 1

Specification
Phase 2

Generation

Phase 3

GUI implementation

Figure 3.1: The overall view of a structured visual editor generation . .C denotes
the specification of a language, Ve, is the visual specification (in VODL) for that
language and VED c is the visual editor description.

the specification of .C. For our purposes, we are particularly interested in the vi­
sual syntax specification. The second phase is the generation of a visual editor
description. The final phase, implements the graphical user- interface, using the
visual editor description for the language- specific parts , over the desired graphics
platform.

The emphasis of this work is on the specification of the information relevant to
visual syntax and visual editing. The implementation of the user- interface of the
structured visual editor is decoupled from the specification aspects. This allows the
freedom of choosing any graphical platform for the user- interface implementation.

3.3 Formal specification of a language

The aim of the formal language specification in our work is to describe the syntax
and semantics of languages. The semantics can be defined in a denotational,
operational, or any other style so long as certain functions over the abstract syntax
trees are defined, specifying, e.g., statement execution, function evaluation, and
so on, or even program analysis (e.g. type checking). We use the ASF+SDF
specification formalism to explore this problem.

Let us consider a very simple language of expressions that supports two op­
erations: division and addition. The syntax of this language can be defined as
shown in Figure 3.2. This specifies a syntax for expressions with the operations
plus, div, and eval. The expressions are over the digits O - 4 with the operations

30 CHAPTER 3. GENERATING VISUAL EDITORS

imports Layout
exports
sorts

EXP DIGIT
context-free syntax

plus(EXP,EXP)
div(EXP,EXP)
DIGIT
eval(EXP)
0

1

2

3

4

➔ EXP

➔ EXP
➔ EXP
➔ EXP
➔ DIGIT
➔ DIGIT
➔ DIGIT
➔ DIGIT
➔ DIGIT

Figure 3.2: The syntax definition module for EXP.

being modulo 5. This specification imports the definition of layout characters1

from the Layout module. According to this syntax we can create sentences like:

plus(l, div(l, 3)) and div(plus(l , 1), 3)

This language will be our running example throughout this chapter.

For these expressions a two-dimensional representation such as the following
is frequently used:

1 +-1- and l+l
3 3

3.4 Visual Object Definition Language (VODL)

In order to obtain two dimensional notation, we first need a language for speci­
fying the desired visual notation . Visual Object Definition Language (vooL) is a
constraint-based declarative specification language which we use to describe visual
appearances of syntactic constructs of a language. In this chapter we only provide
an outline of VODL to give a flavor of the language to help in the understanding of
the examples covered here . The details of VODL are presented in Chapter 4. VODL

specifies visual notation in terms of:

• primitive visual object definitions

• composite visual object definitions

1 Characters that are not part of the language such as white space and comments.

3.4. VISUAL OBJECT DEFINITION LANGUAGE (VODL) 31

• spatial relations definition

We refer to visual object definitions as vods. Primitive vods serve as a small
foundational set of vods, whereas composite vods are defined in terms of less
complex vods . The spatial relationships define the spatial constraints that exist
among the sub-vods.

3.4.1 Primitive visual object definitions

Primitive vods form the foundation of all visual descriptions. This set consists of
simple geometric objects such as lines, rectangles and circles; text; bitmaps and
so on. For example, a rectangle having the width of 50 can be defined as:

rectangle() EB [width = 50]

where EB [width = 50] defines the value of the width attribute of the rectangle.
Only the desired attribute values need be specified. For unspecified variables
default values are used.

3.4.2 Composite visual object definitions

Composite vods consist of lesser complex vods and are defined with two sets: a
vod set and a spatial relations set. The vod set defines the vods that make up
the composite vod and the spatial relations set provides the spatial relationships
among those vods .

3.4.3 Spatial Relations

The visual layout of vods involves the description of the spatial relationships among
vods. These are similar to Golin's constraints defined in his picture layout grammar
[28]. There are some basic spatial relationships such as touches, left-of, over,
contains, and followed-by.

References to vods (vod-refs) are used to refer to vods in the spatial relations
set. The vod set and the relations set are separate so that multiple relations
between vods can be defined as is the case in the example in Section 3.4.4. We
also use the reference names when discussing vods. For example a spatial relation
could be:

aRect left-of aText

where aRect and aText are vod-refs and would constrain the rectangle to the left
of the text, such as: c:=J Hello World!!!

32 CHAPTER 3. GENERATING VISUAL EDITORS

v(plus(Exp1, Exp2)) = { el: v(Exp1)
op: text() EB [string= "+"]
e2 : v(Exp2)}

<l { el followed-by op
op followed-by e2}

v(div(Exp1, Exp2)) = { el: v(Exp1),
op: line() EB [width= max(el.width,e2.width)],
e2 : v(Exp2),}

<l { el over op,
op over e2}

v(O) = text() EB [string= "O"]
v(l) = text() EB [string="l"]
v(2) = text() EB [string="2"]
v(3) = text() EB [string= "3"]
v(4) = text() EB [string= "4"]

v(eval(Exp)) = { e: v(Exp),
op : rectangle()}

<l { op contains e}

Figure 3.3: Visual mappings for the expression language.

3.4.4 Example: A visual expression

We define the visual syntax of a language .C with a function v , which maps the
abstract syntax of .C to the domain of vods's. vis defined by specifying a mapping
for every syntactic sort in .C. Figure 3.3 shows the visual mappings giving a simple
visual syntax for expressions where Exp1, Exp2 are variables of sort EXP and Digit
is a variable of sort DIGIT.

The following visual expression is a valid expression according to this mapping:

1+0+3

2+ 4
3

It is important to realize that most visual representations shown here are only
representative ones since there is no unique representation corresponding to the
vod definitions as they are generally under-constrained.

When the underlying representation of the picture is a tree (like above) the
visual specification is simple, since the vods are local to the equations.

3.5. EDITOR DEFINITION LANGUAGE 33

3.5 Editor Definition Language

Given a specification of a language, and its corresponding visual syntax description,
an editor for constructing visual sentences of that language can be generated. The
generated part is actually an editor definition which we call a structured visual
editor (SVE) definition for a given language.

A SVE definition is defined in terms of its three major aspects:

• visual syntax

• replacement behavior

• functions over programs

The description of a SVE is a combination of these three parts. The visual
syntax consists of the visual description of the syntactic units as was described in
section 3.4. The remaining two aspects are explained in the following two sections.

3.5.1 Replacement behavior

In a structure-oriented editor , programs are constructed via a series of appropriate
replacements until the desired program is obtained. The replacement behavior is
defined as the set of permissible replacements for each non-terminal of the lan­
guage. The replacement behavior for a language can be obtained from its syntax
definition.

Let the context-free syntax of .C be .Csig and let it be specified by rules of the
form:

where Sk is a sort (non-terminal) of language .C. For each sort s , a meta-variable
(placeholder) is introduced as a special syntactic construct: SM -+ S. The default
visual specification for meta-variables is:

v(SM) = text() EB [string= "(S)"]

The visual syntax for this language is defined in terms of the visual mappings
of its syntactic units : v(ai)- A meta-variable of sort Smay be replaced with any
v(ai), such that a, -+ Sis in .Csig·

When creating visual sentences in a syntax-directed editor meta-variables
bearing the name of corresponding non-terminals (sorts) are used such as:

plus(l, div(EXPM, 3))

which corresponds to:

34 CHAPTER 3. GENERATING VISUAL EDITORS

l + (EXP)

3

3.5.2 Semantic behavior

In addition to constructing visual sentences, we would like to have semantic be­
havior accessible from the editor. Thus, we attach some semantic behavior to the
editor. There are two ways by which terms can be executed . One is to create a
sentence including the function such as: eval(plus(2 , 2)). The other way is to have
a special user interface for such a function such as an eval button (44, 45]. With
the latter method the sentence created in the editor is an expression like plus(2, 2)
and selecting the appropriate function from the menu causes it to be applied to the
sentence. The semantic functions are defined as part of the formal specification
of the language - such as eval for expressions which evaluates an expression. For
example, two of the rules defining eval are:

[1] eval(plus(0, Digit))= Digit

(26] eval(div(Digit, 0)) = div(eval(Digit), 0)

Semantic functions are either applied to the entire program or to a focus in
the program. A focus in a program is some part of a program which is selected via
user interaction. The functions to be included in the editor are designated with
the signature:

(FNsvE, FN c, SORT) -+ FD

where F NsVE and F N c are strings representing the name to be used for the func­
tion in the editor and the name of the function defined as part of the language
specification respectively. SORT is the sort for which the function is defined in­
forming the editor of when the function is applicable.

3.5.3 Generating editor descriptions

Given the formal specification of a language we can generate a SVE description
for that language. The signature of a SVE description is:

{ REP-LIST} { FD-LIST}
SORT ":" { VOD-LIST }

-+ SVE
-+ REP

where REP-LIST and FD-LIST are lists of REPs and FDs, and VOD-LIST is a
comma separated list of VODs.

The replacement behavior is, simply, the set of valid substitutions for each
sort of the language. Note that the replacement behavior embodies also the visual

3.5. EDITOR DEFINITION LANGUAGE 35

repl-behavior(imports Layout
exports
sorts

EXP DIGIT
context-free syntax

plus(EXP,EXP) -+ EXP
div(EXP,EXP) -+ EXP
DIGIT -+ EXP
eval(EXP) -+ EXP
0 -+ DIGIT
1 -+ DIGIT
2 -+ DIGIT
3 -+ DIGIT

4 -+ DIGIT
DIGITM -+ DIGIT
EXPM -+ EXP)

Figure 3.4: The application of the replacement-behavior function on the EXP lan­
guage syntax.

syntax to be used. This can be observed from the fact that the replacement
behavior consists of a collection of vods.

The generation of the expression editor uses the expression signature and the
visual mapping. The syntax-directed editor uses meta-variables for constructing
sentences. So, we generate special constants for each sort introduced by the lan­
guage. In this case they are DIGITM and EXPM. We add these constants to the
initial syntax specification and use it as an argument to the editor behavior gener­
ating function replacement-behavior (Figure 3.4). This function first finds all the
syntactically valid replacements for each sort, the result of which can be seen in
Figure 3.5. Then, it maps the replacements to their visual representations and
attaches their corresponding textual syntax as annotations as shown in Figure 3.6.

The SVE description shown in Figure 3.6 has the desired visual syntax for
each sort. Meta-variables are used here since we are dealing with structured visual
editors. The annotations next to each replacement choice are the corresponding
syntax constructs in the initial language. Sentences are constructed in this man­
ner to execute them with the term rewriter generated for the EXP language. A
function definition is also given for including the eval function as a menu item
called Evaluate.

If a visual syntax specification for a language does not exist, it is conceivable
that a default visual specification could be generated for a language, say as corre­
sponding to a syntax-tree. See [13] for such an approach for textual languages.

36 CHAPTER 3. GENERATING VISUAL EDITORS

EXP:

DIGIT:

{ plus(EXPM,EXPM),
div(EXPM,EXPM),
DIG/TM,
eval(EXPM),
EXPM}

{ DIG/TM,
0,
1,
2,
3,
4}

Figure 3.5: The replacement behavior without the visual representations.

{ EXP: { (EXP) + (EXP) { plus(EXP,EXP) } ,

(EXP) . }
(EXP) { div(EXP,EXP) ,

(EXP) { EXPM} ,

(DIGIT) { DIGIT} }

DIGIT: { (DIGIT) { DIG/TM} ,

O{O},
1 { 1} ,
2 { 2} ,
3{3},
4{4}}}

{ ("Evaluate", "eval", EXP) }

Figure 3.6: The editor description for EXP language.

3.5. EDITOR DEFINITION LANGUAGE

Structured Visual Editor
description for L

Functions

Replacement Behavior

General Functions

- .. --- ---------·. ·.·:
··-.:t.

-
Expansion selection

37

Langua e specific functions

I
_.-,,-

Work Space

Figure 3. 7: The structured visual editor and how it relates to the SVE description.

3.5.4 The Structured Visual Editor

The user interface for SVE consists of three major parts:

• Replacement panel is a menu for selecting the desired replacement for a non­
terminal during the construction of a program

• Functions consist of general editor level commands like save, print, load as
well as language specific functions as described in Section 3.5.2. Chapter 7
discusses another approach to realizing this functionality.

• Work Space is the area where the visual program is constructed

The user interface for SVE uses a generated editor specification (result of
phase 2 in Figure 3.1) for the language specific part of editors. Essentially, there
are two distinct parts of the editor. First , there is the shell of the editor which
is constant across all SVEs. This part consists of the graphical components such
as the window, menu bar and the general editor functions. The second part , is
the language specific part of the editor, such as the replacement behavior and
the language specific functions. The language specific aspects of the editor are
obtained from the editor description generated for a given language. Figure 3. 7
shows the structured visual editor and its relationship to the SVE description.

Finally, all language specific functions are to be executed by the ASF+SDF
system. This is done by constructing an abstract syntax of the visual sentences
being constructed. This process is transparent to the SVE user.

38 CHAPTER 3. GENERATING VISUAL EDITORS

3.6 Visual Expression Editor

The visual expression editor, which initially has an empty workspace, allows the
creation of two kinds of meta- variables (for sorts EXP and DIGIT), which corre­
spond to the two sorts in the SVE description given in section 3.5.3. Figure 3.8
shows the beginning sequence of an expression creation. (A) shows the initial se­
lection menu and the choice of the (EXP) meta-variable from the selection menu.
(B) shows the selection menu when the (EXP) is selected .. This selection menu is
obtained from the replacement behavior associated with the EXP sort. Finally,
(C) shows the selection of the division expression followed by the selection of the
numerator expression. The selection menu remains the same as the selected meta­
variable type has not changed and is still (EXP). To fully construct an expression
the user successively expands the expressions as desired. Eventually, each expres­
sion is replaced with a (DIGIT) which is then replaced by one of 0, 1, 2, 3, 4.

The Exp menu consists of one item: Evaluate as is specified in the editor
specification. When this item is selected, the expression in the editor is passed on
to the ASF+SDF system with the semantic function eval applied. The resulting
value is translated to its visual representation and presented to the user.

3.6.1 Abstract syntax tree

As we already mentioned the abstract syntax of the visual sentences is created
by the editor while the user constructs the sentences. The abstract syntax of the
sentence can thus be executed by the system. The resulting term must again be
presented to the user by means of mapping it to visual representation.

The visual editor has to maintain the path information to the corresponding
abstract syntax node at every vod instance of a v map. This path information in
combination with tree movement operations supported by a tree processing tool
and current node information suffices to build language specific editors. This can
also be supported by having special attributes in the tree that serve the purpose
of being a pointer to a vod instance of a v map.

The tree for the expression in Figure 3.8-c is:

div

h
EXP EXP

3 .6.2 Sharing

In order to build reasonable visual sentences we must allow sub-sentence to be
shared. After all, multi-dimensional syntax permitting multiple relationships among
language constructs is the real power of visual expressions . In this work, we have

3.6. VISUAL EXPRESSION EDITOR 39

File Exp

I

<EXP>
<EXP>

<DIGIT> (A)

ll!llil

File Exp

I
<EXP> + <EXP>

<EXP> --
<EXP> :<EXP>;

<EXP> (8)

<DIGIT>

-
File Exp

I
<EXP> + <EXP>

<EXP> :~: --
<EXP>

<EXP>

<EXP> (C)

<DIGIT>

-
Figure 3.8: The structured visual expression editor.

40 CHAPTER 3. GENERATING VISUAL EDITORS

made very conservative extensions which allow pseudo-sharing while still being
based on trees. The sharing is created and manifested at the editor level and thus
is called pseudo-sharing. At the abstract syntax representation this results in copy
semantics.

Sharing is allowed in the following manner:

• when replacing a meta-variable instead of choosing only from the replacement
panel, a sub-sentence having the appropriate sort may be chosen as well.

• a replacement by a sub-sentence that results in vertical sharing is not per­
mitted.

Vertical sharing occurs when a of a node is chosen. This results in cyclic
terms which can not be resolved and are thus not permitted. Such replacements
are rejected by the editor by testing for this condition.

The syntax presented before does not have any allowance for sharing, not
for reasons of vertical sharing but due to its spatial constraints. With a different
visual mapping we can demonstrate a sentence with sharing. Figure 3.9 shows
such a sentence, where the left (EXP) seen in the top window is replaced with the

existing subterm [I] which is shown in the window on the bottom. The abstract
syntax for this sentence is:

I
EXP

I
DIGIT

I
4

div
I

I
plus

17
EXP EXP

I I
DIGIT DIG/TM

I
4

where the shared left expressions are repeated by copying. If (DIGIT) is replaced by

[f] and the "Evaluate" menu is selected the corresponding term will be rewritten
to 4 (modulo 5 arithmetic). This term is then mapped to its visual representation

with the appropriate v mapping resulting in [I], which is presented to the user in
an editor.

3. 7 Example: Set Editor

Figure 3.10 shows a view of the Set editor and the beginning of the construction
of a term of the Set language. The replacement panel (the left part) provides

3. 7. EXAMPLE: SET EDITOR 41

File TExp

I
<E~P>

I

A
i<E~ <EXP> <EXP> ----------

Ci] <DIGIT>
<DIGIT>

- -
File TExp

I [Q] I
[iJ

~dif:.

w
w
0

- -
Figure 3.9: The structured visual expression editor with an alternate syntax.

42 CHAPTER 3. GENERATING VISUAL EDITORS

File Set

s
V
V
V

Figure 3.10: The construction of a set term in the visual set editor.

the appropriate replacements for the selected part (focus) of the term. In this
case the selected meta-variable is of sort SET and the panel shows the allowed
replacements. The "Set" menu provides semantic behavior for the language (such
as reducing the constructed term). A completed term is shown in Figure 3.11.

The replacement behavior is enhanced such that replacements are not re­
stricted only to the replacement panel. Replacements by vods of appropriate sorts
present in the constructed term are also allowed. This allows the sharing of vods
among different parts of the term as seen in Figure 3.11. The editor generation
is of great importance as it allows the construction and execution of programs
over specified languages. We exploit this generation for defining a VPE generator
which is discussed in the next section.

3.8 Towards a Visual Specification Environment

Thus far we have described a setting where visual notation can be defined for
textual language contructs. This was done in order to obtain visual editors using
the newly defined visual notation. In fact, employing such a method to achieve
visual syntax definition would likely be undesirable and we would prefer have to
an implicit mapping from the visual notation to some underlying representation,
thus, allowing the definition of the syntax of visual languages directly. To obtain
a graphical environment for a VPE generator, which allows the definition of visual
syntax and semantics, we need visual editors for each of these specifications. We

3.8. TOWARDS A VISUAL SPECIFICATION ENVIRONMENT 43

Figure 3.11: A visual term over the Set language representing ({ a, f, y, t, z} U
{a,s,z,g,v})- ({a,f,y,t,z} n {a,s,z,g,v}).

have already described how to specify visual syntax and generate editors for them.
By applying this process to a language-specification language, we get a visual editor
for specifying visual languages. In this chapter, we discuss how visual editors could
be generated for the specification of visual languages. In a way this section paves
the way for the specification environment VASE described in Chapter 5. It is
addressed in this chapter due to its relation to editor generation.

3.8.1 Visual Syntax

We use the ideas described thus far as the starting point, where the general scheme
of generating visual editors is:

Given the (abstract) syntax of a language (La) and a mapping (vL) of the con­
structs in La to visual lexicals, we get the visual language syntax (Lv)- Given Lv
we can generate visual tools such as a structured editor for Lv.

We can now use this approach at a meta-level, for a language that can spec­
ify other languages (language specification language). Doing so would not only
allow direct specification of the visual language syntax, but also provide the ab­
stract language definition as its (underlying) representation as well as the implicit
mapping function between the two.

For the definition of algebraic specifications, we choose the Algebraic Speci­
fication Formalism (ASF) [7], which is a formalism for specifying the syntax and
semantic definitions of languages , albeit abstractly. To support the interactive
specification of visual languages , we need to generate two tools from this formal­
ism: one for syntax definition and one for semantic definition .

44 CHAPTER 3. GENERATING VISUAL EDITORS

In other words, having a visual mapping from the specification formalism of
ASF:

ASF
VASF

VASF

would enable using VASF for directly describing the visual syntax of the language
of interest (Lv)- We then have the diagram:

ASF --------=,.. VASF

where La would serve as the abstract representation of the "visually specified" Lv,
giving us the necessary information for the generation of an Lv editor and other
tools.

Visual syntax can be defined by a signature that consists of a set of syntax
rules, where each rule consists of a collection of lexicals and sorts, an arrow, and
a resulting sort (all having visual representations defined in VODL). For example,
in the following visual signature definition for the Set language:

the function symbol for difference, connectors , and the circle are lexical elements
defined as vods. l~I and lfsetll represents sorts. The first rule states that the
difference function takes two arguments of the sort IISetll and that this function
itself has the sort l!Setll.

Given a syntax definition, we can generate two editors: (1) a visual structure
oriented editor for the language, and (2) a visual equation editor for defining the
semantics of the language.

3.8. TOWARDS A VISUAL SPECIFICATION ENVIRONMENT 45

3.8.2 Visual semantics

The second tool for language specification is the visual semantics editor. The
visual semantics editor is parameterized by the syntax of a language and is used
for defining the 'semantics of that language. The semantics is defined by a set of
conditional equations between terms of the same sort. Thus, the signature of the
semantic specification language for a given language Lv, consists of (1) a signature
of the form sk = sk ➔ Eq for each sort sk in Lv and (2) the signature of Lv . The
sort "Eq" is a sort in the equations language.

For the Set example we have:

along with the rest of the Set syntax. These equation signatures allow the specifier
to write equations over the SET and ELEM sorts. Due to the replacement behavior
of the editor, each of the above sorts can be replaced with corresponding terms
from the Set language. For example, the equation2

(s\
~

specifies the elimination of duplicate items in a set. Since the semantic equations
use the visual representation of the language, they are quite easy to read (see
Section 4.2.2).

3.8.3 Overview of the VPE generation

Figure 3.12 shows the overview of the creation of an interactive VPE generator
environment. The top portion of the figure shows the generation of editors for the
syntax and semantic specification. This is done by defining a visual mapping for
the syntax specification formalism and semantics specification formalism (param­
eterized by a language specification). This allows the generation of visual editors
VASF (for syntax specification) and VEq(L) for semantic specification.

The VASF and VEq(L) along with the editor generator make up a visual VPE
generator environment, by which a visual language is specified visually. Finally,
from the language specification a visual editor for that language is generated.
Programs constructed in the editor are evaluated by term-rewriting as dictated by
the semantic eqations. This forms a small VPE for the specified language. Clearly,

2 The variables could also be mapped to appropriate visual constructs.

46

Syntax

Specification

Formalism·

VSDF

Editor

D
□
0

CHAPTER 3. GENERATING VISUAL EDITORS

· .. ·

VODL

Editor

l==========!J

~

Semantic

Specification ~
Formalism

(L)

VEq

Editor
for L

Visual

Syntal\, B
' ' ' ' ' ' ' '

-
c_ __ __, ----------------

~ Editor generation
Editors

Defined using

Specification - - - -> Parameter input

Visual mapping 8 Editor generator

Figure 3.12: An overview of the visual specification environment

many more tools can be generated based on the language specification for a richer
VPE (see Chapter 6).

3.9 Implementation

In Section 8.2 we report on some implementation experiments regarding the ideas
presented in this chapter. These experiments involve the construction of a simple
editor shell using the graphical user-interface development software Garnet [54],
the definition of a language, mapping it to visual representations and then to
generate corresponding Garnet code for these representations.

3.10. SUMMARY 47

3.10 Summary

Editors form the basis for the interactive tools for end users of languages as well
as language specifiers. We have shown how language specifications can be used in
generating language-specific editors. We have aimed at focusing on the character­
istics of the visual syntax and visual editing, and thus separated the specification
aspects from the implementation of the user-interface of the editors.

In this chapter we have discussed only the end user editors which are generated
from language specifications. We have described this process for the case with an
explicit mapping from a textual language constructs to visual notation. Then
we outlined how to apply the editor constuction to the specification formalism to
yield visual specification editors. Finally, we outlined how such editors could be
generated, using implicit mapping from abstract constructs to visual notation.

For the purpose of defining the visual notation we have defined a visual spec­
ification language called VODL. In this chapter we have used vods for defining the
visual notation for a language. We provided only enough information about VODL

to follow the examples. The next chapter addresses the details of VODL.

48 CHAPTER 3. GENERATING VISUAL EDITORS

Chapter 4

VODL: Visual Object
Definition Language

4.1 lntrod uction

Special purpose languages with rich programming environments have allowed so­
called "non-programmers" to effectively carry out programming tasks. Such lan­
guages are designed to be well suited for particular tasks for end-users and are
typically accompanied by user-friendly graphical interfaces to ease programming
tasks.

Graphics is widely used in programming environments for easing the program­
ming process for the end-user. This use may involve graphical browsers, animation ,
debugging, and other tools. Or it may be that the programming language itself
is graphical (visual language). One of the approaches to make programming more
accessible to novice users is through the use of visual languages which use pictures
to represent programs. One of the interesting research areas in visual programming
is regarding visual programming environments for special purpose languages.

The demand for special purpose languages and their programming environ­
ments has led to research in the generation of language-specific environments
based on formal language specifications. The specification of languages consists
of specifications of syntax, semantics and other language features. Work in pro­
gramming environment generation includes [64, 42] for textual languages, and
[28, 5, 34, 52, 75] for visual languages.

For whatever reason graphics may be used, there is a need for languages which
specify graphical constructs. Such languages must describe pictures appropriate
for some use . There are a variety of such languages used in document prepara­
tion, visualization, pretty printing, visual languages, etc. Some examples include
languages based on attribute grammars such as [30, 5], procedural descriptions

49

50 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

like (41], or constraint-based declarative languages such as (36, 75, 83].

Constraints have been successfully used in graphical interfaces such as (12, 54]
and are very natural in expressing spatial relationships among graphical constructs.
We define a constraint-based declarative picture specification language (YODL),

where each picture is defined in terms of its sub-components along with a set
of constraints expressing the relationship between them. Such descriptions are
easy to define, since the specifier need only describe sub-components and their
relationships. Instead of the specifier describing some procedure to achieve a
certain layout, the underlying system is responsible for finding a solution (via
constraint solving) .

Our intention is to define a language that can itself be visualized, which can
be easily analyzed, which aids in building the picture by accommodating par­
tial evaluation and incremental evaluation; which can be used at an intermediate
level for building tools and for communicating with other tools. We intend to
achieve this with a clear separation of concerns: objects, constraints, attributes
(default/non-defaults). The objects define the structure of a picture composition,
attributes define their qualities and constraints define their relative layout.

There are many powerful graphical toolkits and many environments for devel­
oping special purpose textual languages and programming environments. However,
there are not many attempts to reuse the well developed techniques for textual
languages in a graphics supporting environment. In general, it takes a consider­
able understanding of the internals of the graphical toolkits to attempt using them
in programming environment generation since a (semi) formal description of the
graphical language (that these toolkits are effectively processing) is not available.
Also, it requires a re-examination of the "understanding" whenever a new update
is announced.

There are many tools that could have satisfied our purpose, such as the com­
monly available Xfig (73] or FrameMaker (23], or CSE (80], had they allowed gen­
eral constraint specification and had they provided a well defined (or published)
representation language for interfacing with other tools .

It may be appropriate to clarify that we tried to design VODL expressedly as
a small language with constructs that lend to the definition of graphical entities
and in no way have we attempted to model a sophisticated graphical tool.

By formally specifying a picture specification language, we hope to study its
utility in:

• creating a visual editor for constructing new graphical descriptions

• partial evaluation of pictures

• incremental behavior of pictures

• programming environment generation for visual languages

4.2. EXAMPLE: SET 51

• graphical tools in programming environments such as animators, visualizers,
debuggers, presentation tools such as import graphs and class hierarchies.

4.1.1 The VODL Language

The VODL language specifies visual entities called visual object definitions (vods).
It provides a set of primitive vods along with a set of expressive vod operations
for defining new vods. It has a graphical theory, as suggested in [83], provid­
ing standard graphical operations which are defined on all vods. Such operations
(i.e., overlap) are useful in determining emergent-vods which are discussed in Sec­
tion 4.2.5.

vods specify visual entities having certain attributes and being comprised of
sub-vods, with constraints between these sub-vods. Sub-vods may be: primitives,
composites or emergent objects. Constraints are binary relations among sub-vods,
defining spatial relationships. Attributes define properties of a vod, of which, some
might be inherent in every vod and others specific to certain vods. See section 4.2
for an example that uses various VODL constructs.

Composite vods allow the definition of new vods in terms of other vods (sub­
vods) which may have spatial constraints among them. Sub-vods may be: primi­
tives, composites or emergent objects. Each vod may have attributes which define
their properties.

The following section describes various aspects of VODL and gives a brief
description of the language. The signature of an interesting subset of the VODL

language is shown in Figure 4.1. To assist in describing the language we use a
simple visual Set language, which is described in the following sections.

4.2 Example: SET

The Set language is used as a running example to illustrate the definition of visual
tokens and language specification. Table 4.1 shows some visual lexicals for the Set
language, where :Eleros; denotes a parameter. We will define corresponding vods
while describing various concepts of VODL. We often provide graphical appear­
ances of vods , in discussions, which are representative pictures consistent with the
constraints- there could be other pictures that also conform to the same set of
constraints.

The first vod, V-Set, is parameterized (by elements):

defv V-Set (Elems)
{ cir : circle (),

elems : Elems }
<]

{ cir contains elems }

52 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

sorts

functions

V
.c
C

Pv
N
X
A

VA
NA
£A
Oe
0c
£c
'R:

Vv
p

{.C : V,·· ·}-+V
[l.NA = £A, . . ·] -+ A

{£c 0c £c,· · ·}-+ C
V<lC-+V

V$A-+ V
A_V -+ V
Pv-+ V

.C -+ V
V . .C -+ V

N(V1, · · ·, Vn) -+ V
X -+ V

V ® V-+V
Oe(.C, .C) -+ V

.c1. · · · . .en -+ l

l -+ £c
EA -+ £c
VA -+ £A
NA -+ £A

l.NA -+ £A
'R: -+ £A

defv N(X1, · · · , Xn) V -+ Vv

Vv · · · Vv V-+ P

(vod expressions)
(vod reference labels)
(constraints)
(primitive vods)
(names usable for vod defs)
(names usable for variables)
(attribute definitions)
(attribute values)
(attribute names)
(attribute expressions)
(emergent object operations)
(constraint operators)
(constrainable expressions)
(functions on primitive vods)
(defined vod abstraction)
(voDL program)

(vod ref declarations)
(define attributes)
(binary constraints)
(constrained vod refs)
(set attribute values)
(default attribute values)
(primitive vods)
(vod reference)
(label dereferencing)
(n :2'.: 0 ; vod instance)
(formal arguments)
(vod merge)
(emergent object)
(n :2'.: 1)
(vod ref dereferences)
(dereferenced vod)
(attribute expression)
(attribute values)
(attribute names)
(dereferenced attribute)
(predefined functions)
(n :2'.: 0)
(define abstract vod)
(voDL picture)

Figure 4.1: Signature of VODL Terms

4.2. EXAMPLE: SET

Table 4.1: Some visual lexicals for the Set language.

vod

V-Set

Intersect-Sym

Union-Sym

Diff-Sym

representation

53

This vod describes a circle containing a collection of elements. In this defini­
tion we see the use of the defv abstraction which defines a composite vod consisting
of two sub-vods constrained by the contains constraint.

4.2.1 vod abstraction

Abstraction facilitates the definition of vods with parameters. These can be used
in defining auxiliary vods or to effectively extend VODL by building a vod library.
Abstraction allows the independent definitions of new vods to be used at a later
time. The syntax is given by

defv .N(X1, · · ·, Xn) V -+ Vv
.N(Vr, · · · ,Vn) -+ V
Vv ·· · Vv V-+ P

(define abstract vod)
(vod instance)
(VODL picture)

where a VODL picture is a list of vod-abstractions followed by a vod term that
could be built by their instantiations. The example in Section 4.2 shows the use
of abstraction in defining visual syntax for sets.

4.2.2 Primitives

Primitive vods are the vods that are provided in the basic VODL and can be used
as the basic building blocks for constructing composite vods. There are a number
of primitive vod types, such as Point, Line, Circle, Text , Polygon and Collection.
These types have primitive functions for building useful attribute expressions and
also have various constraint operations defined on them. They also have some
weak constraints (e.g., the elements in a collection are non-overlapping) and some
default attributes.

Furthermore, a collection provides a way of gathering many vods, without
the need for a specific shape in which they have to be contained. A collection is a
set of vods gathered together by an associative and commutative operation1 . The

1 cf>c denotes the empty collection.

54 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

constraints defined over collections are abbreviations for constraining all vods in a
collection. Thus many constraint operations are meaningless when both operands
of a constraint happen to be collections.

Textual specification languages generally include a list construct for this use [35].
Since visual syntax is often unordered, collections are more appropriate. However,
visual lists are useful with visual languages as well. For example, Holt uses them
for argument sequences (38], and Wang [83] defines a list to be a pictorial concept
which is used in defining complex pictures. A finite list is easily defined, in VODL,

since VODL is based on records - albeit not an arbitrary but finite list .

4.2.3 Composites

Composite vods are constructed from sub-vods and sets of constraints among the
sub-vods. The basic construction involves declaring a set of vod-references (vod­
refs) that refer to other vods, and then specifying the constraints between these
vods using the vod-refs. Any specific attributes and their values can also be
specified (with the Ell). See Section 4.2. 7 for operations defined over (composite)
vods.

The basic structure of a composite vod can be characterized by the signature:

{.C: V, · ··} ➔ D (vod ref declarations)
{Ee 0c Ee, ···} ➔ C (binary constraints)

D <J C ➔ V (constrained vod refs)
V EB [l.A = £A, . . ·] ➔ V (set attribute values)

The constructor vod forms are the cases:

{.C : V,···} <J {EcOcEc,···}
({.C:V,···} <J {EcOcEc,···})Ell [A

and
VA,···]

The attributes (A) differ from one primitive type to another. However, certain
attributes are inherent to all vods, such as width and height.

4.2.4 Constraints

Constraints, 0c E {contains,over, · · ·, =, ::/;, <, ~}, are binary relations among
vods. They are based on the geometric properties and the attributes of vods . Ge­
ometric constraints deal with the relative sizes and positions of vods. For example,
the constraint over concerns the relative positions of vods (the left one must be
positioned over the right one), and contains which concerns the size of vods (the
left one must be greater than the right one). Other kinds of constraints are defined
in terms of the attributes of vods, such as width, and color.

4.2. EXAMPLE: SET 55

4.2.5 Emergent objects

The sub-vods can be special vods which are emergent objects as in (83]. Emergent
objects are the new vods that appear as a result of composing vods where some
overlap occurs. For example, consider a vod which consists of two overlapping
circles, C[). This composition results in the emergence of the four sub-vods: ~­
The recognition and access to such emergent objects can be very useful in the
specification of constraints (see Section 4.2). The emergent objects are identified
when Oe E { overlap,difference, · • •} operations are used in the specification.

Returning to the Set example, when considering the function symbols in the
table, it is apparent that there are considerable similarities between all of them.
Each function symbol shares the same graphical representation. By defining the
auxiliary vod, Two-Sets, corresponding to this representation, the repetition of
this definition in each function symbol can be avoided.

defv Two-Sets ()
{ setl : V-Set (<Pc),

set2 : V-Set (<Pc),

<l

inter : overlap(setl,set2),
diffl : difference(setl,set2),
diff2 : difference(set2,setl),
border : rectangle () }

{ set2.top = setl.top,
set2.left = setl.left + setl.width * 2 / 3,
border contains setl,
border contains set2 }

The definition of Two-Sets consists of six sub-vods, three of which (setl, set2
and border) are ordinary predefined sub-vods and the remaining three vods (inter,
diffl, and diff2) are emergent-vods identified by using the overlap and difference
graphical operations defined in VODL. These emergent-vods are used in subsequent
vod definitions (Intersect-Sym, Union-Sym, Diff-Sym).

4.2.6 Attributes

Attributes for vods can be specified with the EB operation. Some attributes such
as width and height are 'defined over all vods, whereas others are specific to vods .

The auxiliary parameterized vod Fsym-ports attaches two small rectangles on
top of a vod 2 to represent input ports for functions.

2 The vod is visually represented as C.-f j .

56 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

defv Fsym-ports (Fsym)
{ func : Fsym,

<l

portl : rectangle () EB
[height = 5, width = 5],

port2 : rectangle () EB
[height= 5, width= 5] }

{ portl.bottom = func.top,
portl.left = func.left + func.width / 3,
port2.bottom = func.top,
port2.left = func.left + 2 * func .width / 3 }

4.2. 7 vod operations

-• _■. 1 IX I

~---J

New vods can be defined as described in Section 4.2 .3 or by using vod operations.
The vod operations define new vods based on existing ones by extending them with
attributes and/or constraints, or by merging two existing vods . These operations
are described below. Our intention is to realize a vod from its seamingly different
descriptions by identifying some syntactically differing forms. For instance, "color
parent red" is the same as traveling to the parent with "color red". The equa­
tions are not complete and thus are only indicative of the semantics. We use the
following variable declarations and abbreviations3 :

v ➔ V l-+£ a-+NA o-t{}
e -+ £z (z = A or z = C)
i l1 : V1 , · · · , ln : Vn

f l1 . ··· .ln

X l~.a1 = e1, · · · ,1: .an = en
C e1 01 e~, ···,en On e~

(n ~ 0)
(n ~ 0)
(n ~ 0)
(n ~ 0)

Also, "v[l : v1]" is an abbreviation for "v has a vod-ref l with an associated vod
V1", i.e. :

v = ({ d~, l : v1 , d;} <l c) or

v=({d~,l:v1 ,d~} <l c) EB[x]

Given this notation we will now define the operations attribute-set, constraint­
add, and vod-merge.

3 Note that the equals symbol(=) is overloaded. We use

1. a meta-level "=" for identifying equal terms (semantics) ,

2. an "=" for setting attribute values, and

3. an "=" for indicating a binary constraint.

4.2. EXAMPLE: SET 57

attribute-set

The attribute-set operation

VEB[l.NA = £A,···] -+ V (set attribute values)

is defined over a vod and a list of attribute-value pairs. Its intended meaning is
to assign values to some attributes of a given vod and it can be formally defined
as follows.

vEB0
v[l : vi]EB[l.fa = a]

(vEB[£i])EB[x2]
(vi[l: v2].l.[)EB[x]

V

v[l : (vi EB[fa = al)]
vEB[x1, x2]
v1[l: (v2.Zffi[x])] .l.i)

(AO)
(Al)
(A2)
(A3)

The equation (Al) specifies that the attribute is to be defined on a sub-vod of
v, the equation (A2) indicates merging the attribute lists (assume left-prefer) and
the equation (A3) shows the travel4 to a sub-vod.

As an example consider a definition of a function symbol for intersection using
the EB vod-operation, which redefines Two-Sets by altering the highlight attribute
of the inter component. Note that vod-refs are accessible from outside of the
defining vod.

defv Intersect-Sym () J(OI
Two-Sets () EB [inter.filled = true]

Similarly, the function symbol for union is defined by altering the highlight
attributes of the components setl and set2.

defv Union-Sym ()
Two-Sets () EB

[setl.filled = true, set2.filled = true]

Also, the function symbol for difference is defined by altering the highlight
attribute of the diffl component.

defv Diff-Sym ()
Two-Sets () EB [diffl.filled = true]

constraint-add

The constraint-add operation

V <J {l"c Oc l"c,···}-+ V (add constraints)

4 Note that the equation v1 [I : vz]. l = v2 does not exist. We do not want to say that a vod
with "color parent red" is same as the parent vod with "color red" , but we want to capture that
a vod with "color parent red" is same as traveling to the parent vod with "color red" .

58 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

is defined over a vod and a set of constraints and is intended to add constraints
to a given vod. The semantics is given by rules:

V <J V = (CO)
(v <J { ci }) <J { Cz} = v <J { ci , Cz} (C 1)

(v1 [l: v2).l.Z) <J c = vi[l: (v2.f <J c)].l.l (C2)
(vEB[i]) <J c = (v <J c) EB[i] (C3)

The equation (Cl) indicates the merge of constraints; (C2), the travel to a
sub-vod and (C3), the commuting of the <J and the EB operations.

To represent the binary functions, in our Set example, two vods are defined.
Comm/represents commutative and Non-Comm/represents non-commutative func­
tions. Comm/ is defined using the constraint-add operator, whereas the definition
of Non-Comm/ will follow shortly.

defv Commf (Fsym, Vodl, Vod2)
{ func : Fsym-ports (Fsym),

vl: Vodl,

<J

v2: Vod2,
conl : Connector (vl, func.portl),
con2 : Connector (vl, func.port2) }

{ vl over func,
v2 over func }

where Connector is defined as:

defv Connector (Vodl, Vod2)
{ first : Vodl,

vod-merge

second : Vod2,
cl : line () }

<J
{ cl.left touches first,

cl.right touches second }

The vod-merge operation

V ® V -+ V (vod merge)

is defined over two (composite) vods. The semantics is given by:

({ d~ } <J { ci })
® ({ d~} <J { Cz})
(vi[l: vz] .l.Z) ® V3

V1 EB[ij ® Vz

{ d~' d~} <J { ci ' Cz}
vi[l: (v2.l ® v3)].l.l
(v1 ® v2) EB[i]

(Vl)

(V2)
(V3)

::r
:vod2;
- - - - J

4.3. VODL EDITOR 59

The equation (V2) indicates the travel to a sub-vod and the equation (V3) indicates
the commuting of 0 and the EB operations. The effect of (V3) is to make the
attributes defined in v2 preferred over that of v1- assuming a left-prefer rule.

Continuing our Set example, Non-Comm/ is defined by adding a strip on the
left side of a function symbol5 :

defv Non-Commf (Fsym, Vodl, Vod2)
Commf (Fsym, Vodl, Vod2)June 0

{ tag : rectangle () EB
[filled = true, width = 5] }

<]

{ tag.right = func.left,
tag.top= func.top,
tag.height = func.height }

This definition uses the vod-merge operation to redefine the Comm/ vod.
Note that the effect of this definition is analogous to inheritance in object oriented
languages, where an earlier definition is extended. Here, Comm/ is extended with
an additional vod-ref (tag) and some additional constraints.

4.3 VODL editor

We have defined the VODL language as a textual language. It would likely be useful
to have visual vod editors which would allow the graphical interactive construction
of vods. In defining vods as such we have to take some things into account. First of
all, as we have seen, there are usually numerous representations that correspond to
each vod. Graphical representations, by their nature, are highly concrete and not
very good at representing abstractions such as in definitions. However, it is still
useful to have visual feedback that corresponds to the vods that are being defined.
On the other hand most of the details of the definition will be invisible - such as
the precise structure of the composite vods and the constraints. Thus, we would
need at least one more editing view that reveals the particulars of the vod. For
example, Figures 4.2 and 4.3 indicate possible visual editor views corresponding
to the vods Two-Sets and lntersect-Sym defined earlier.

The view in Figure 4.2 shows a graphical definition (defv) of the vod lntersect­
Sym where Two-Sets is extended by altering an attribute (filled = true) of the
overlapping vod ("inter,"· in the textual definition). The vod that is being extended
is above the new vod being defined, which are connected with the attribute-set
operation. The specifier has chosen the define vod from the Operations menu to
define a new vod and then chosen the attribute-set operation, which requires a vod
and a set of attributes.

5 The black strip on the left side is for representing orientation , which is similar to dog ears in
Holt's [38) viz language.

60 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

VODS Constraints Operations

(])

+ Attributes
color

CD
filled

height Define Attribute

width
Attribute: filled

Value: true

Figure 4.2: VODL editor: Defining the vod Intersect-sym

Operations VODS Constraints

two-sets

I 1 l
vods constraints attributes

I I I I

I o~e'.lapl ldoffere?ce l ldoffer~ncel Q Q D l c~~tainsl l ~on
1
tainsl ~ width height

" ' ' '' I/ II ~?--.:--,

\\, \, \, \,_-----_,_, ~:~,~,'-- ' - -:_-_-:;.,l-
1

-:_:.-:_., .'~lcft~L;.Jllr+ ' ~
'\ ',,,__ ' ., , ,, , ' - - :. :. -=-:.:. - ,,,

'------~~-----~~~-,_<_-_-_-_'. ••.,-..' - - - - - / / left • • •

I I I I I I I

emergent vods predefined vods

Figure 4.3: VODL graph view editor: Definition of Two-sets

4.4. IMPLEMENTATION 61

The editor in Figure 4.3 shows a different view of the Two-Sets vod which
shows the relationships among the components using a graph representation and
reveals much more information about the structure of the vod as opposed to the
previous editor which presents its visual appearance. Such an editor is useful
in understanding the relationships among the components and can be useful in
accessing some components that may be difficult to access by pointing and clicking
(i.e. due to overlapping, layering etc.). It may be useful to hide uninteresting
components and their relations from the view in order to be able to concentrate
only on the components of interest.

4.4 Im plementation

In Section 8.2.2 and Section 8.3.1 we describe implementation experiments regard­
ing vods. In Section 8.2.2 the vods are specified and their translation is defined
for graphical objects in Garnet [54] . In Section 8.3.1 we show an interactive editor
for defining vods as defined in this chapter.

4.5 Summary

We have presented a picture specification language (VODL) and discussed its role
in generating programming environments for visual languages. VODL supports
the easy definition of graphical elements by providing composition, extension and
abstraction in defining new vods.

VODL has been introduced for the purpose of defining the necessary vod­
types (lexicals) required for specifying visual syntax. In order to incorporate these
lexicals in a language definition, we can relate them with the abstract syntax of
a language via a mapping as was discussed in Section 3.4.4. Alternatively, we
could incorporate vods into a visual specification formalism as will be described in
Chapter 5. In this formalism the vods defined are directly used when specifying
the language syntax which makes an explicit mapping unnecessary.

62 CHAPTER 4. VODL: VISUAL OBJECT DEFINITION LANGUAGE

Chapter 5

The VAS Formalism in
VASE

5.1 Introduction

Specifications of languages are on the one hand desirable for the purposes of analy­
sis and tool generation but are on the other hand they are intimidating and cryptic
and difficult to comprehend. This is often caused by the use of a fixed specifica­
tion language burdened with expressing complex languages features [71, 48]. This
problem is further magnified in the case of visual languages as the specification
language must also deal with the complex visual notation and spatial relationships
- yielding very complicated specifications. The fact is, to promote the use of spec­
ifications we need formalisms and tools that ease both writing and understanding
them.

We advocate a specification formalism, VAS, for specifying visual language
syntax and the language semantics in terms of that syntax. The specification
formalism is claimed to be easier to use and understand because of its use of
concrete syntax which raises the level of specification to the syntax of the language
being defined rather than being at a level of a fixed language. Thus, the specifier
is allowed to remain at the level of the language being specified and not forced to
map onto another representation.

We also define an interactive environment VASE for developing VAS specifica­
tions and generating end-user environments to construct and execute terms of the
specified · languages. The syntax definition is used to generate a syntax directed
editor for constructing terms and the semantic definition is used to generate a
rewriting engine to evaluate (execute) the terms.

The focus of this chapter is the demonstration of how visual languages can be
specified using VAS with the support of an interactive environment. First the VAS

63

64 CHAPTER 5. THE VAS FORMALISM IN VASE

formalism is introduced in Section 5.2, followed by the VAS Environment in Sec­
tion 5.3. Section 5.4 gives a brief description of the generated visual programming
environment. Section 5.5 provides an example detailing both the specification
formalism and the environment.

5.2 The VAS formalism

The Visual Algebraic Specification Formalism (VAS) is an algebraic specification
formalism for the visual specification of syntax and semantics of visual languages.
For textual languages, algebraic specifications have proven to be desirable due
to their simplicity. In practice, most algebraic specifications can be executed by
orienting them as rewrite rules. Also, tools such as compilers, program analyzers,
type-checkers, program slicers, and language specific editors can be generated from
algebraic specifications [6, 18] which renders them useful for prototyping languages.

The VAS formalism finds its roots in the ASF formalism [6] which has been
extended for dealing with visual languages. VAS separates the various aspects of
language specifications (lexical, context-free syntax and semantic) . VAS formalism
consists of two specification languages: one for the syntax and the other for the
semantics. The latter uses the former utilizing the concrete syntax of a language
in the semantic definition. In other words the semantic specification language is
parameterized by the syntax of the language. This supports the specification of
semantics at the level of a specific language rather than at a fixed specification
language, yielding more comprehensible specifications.

VAS relies on VODL (Visual Object Definition Language) (Chapter 4) for defin­
ing the lexical elements to support the use of visual notation in specifications.
VODL is a declarative constraint-based language for defining visual elements which
are called vods (visual object definitions) which consist of a set of sub-vods with
possible spatial constraints among them. It supports abstract definitions with
parameterized vods which are highly utilized by the VAS formalism. Note that
VODL only defines pictures and it is at the level of VAS that they get a special
interpretation as language elements.

Languages are specified in modules which have the following syntax:

module NAME
imports NAME-LIST
exports

sorts SORT-LIST
functions FUN-LIST
variables VARDEC-LIST

hiddens
sorts SORT-LIST
functions FUN-LIST

5.2. THE VAS FORMALISM

variables VARDEG-LIST
equations

EQUATION-LIST

65

where the notation x-LISTis used to indicate a (sometimes "," separated) list of xs.
The next two sections discuss the syntax definition and the semantic specification
by defining the sorts FUN and EQUATION respectively. The hiddens section is
optional.

5.2.1 Specifying syntax

This section presents the highlights of the VAS syntax formalism. Syntax spec­
ification involves the definition of the syntax of the functions of the language
(signature). The sort FUN (as appearing in FUN-LIST) declares the functions of
the signature1 whose syntax is defined as follows:

LHS "➔" SORT
SVL
SORT
vod1;b(SVL1, · · ·, SVLn)

➔ FUN
➔ LHS
➔ SVL
➔ SVL n 2: 0

The right hand side of a function declaration is a sort name (SORT) and the
left hand side defines the function syntax which may be any combination of sorts
and visual lexicals (SVL), and collections.

SVL

The predefined vods (defined with VODL) are denoted by vod1;b(· · ·). Having SVLs
as arguments to parameterized vods allows complex functions to be defined in
terms of other vods and/or sorts - the latter representing the arguments of the
function.

The following is an example of a syntax rule using visual lexicals:

I LABEL I G ➔ LEG

where D is a lexical and LABEL, G and LEG are SORTs. This rule defines a
function of sort LEG with first argument of sort LABEL and second argument of
sort C. The abstract representation of this function is: !(LABEL, G) ➔ LEG. In the

concrete (visual) syntax the function symbol D along with any spatial properties
corresponds to f . The construction of such rules and equations is discussed in
Section 5.3.1.

1 Note that the arrow (-+), used in the mix-fix signature rules is the reverse of BNF style.
Also, sorts correspond to non-terminals and lexicals correspond to terminals.

66 CHAPTER 5. THE VAS FORMALISM IN VASE

Collection Sort

Collections correspond to lists in one-dimensional (1D) syntax specification lan­
guages. Lists, as primitives, are available in many languages. In algebraic specifi­
cation languages the analogous facility is the ability to express that an operation
is associative. We have built our collection syntax based on the list syntax used
in ASF+SDF. Briefly, what one desires from an associative list are the following:

• The ability to construct an empty list. When using an associative operator,
one might declare a particular element as the identity element.

• Every two adjacent elements are related, either by an adjacency operator or
by the declared associative operator. Another way to think of this is that
two adjacent operators share an element.

• The editor provides support to construct this list in a natural manner, while
constructing the intended abstract structure (for example, a flattened struc­
ture) for the underlying machine.

• Associativity is understood by the underlying machinery. For algebraic spec­
ifications, this implies that the underlying rewriting machinery uses associa­
tive matching so that the user is not worried about the manner in which the
term was constructed. This is referred to as rewriting modulo associativity.

Our desire is to experiment with an analogous facility for the two-dimensional
(2D) case. The problems that we have to consider for the 2D case are:

• What is an appropriate ordering of the elements in 2D? Adjacency was used
in the case of 1D to construct the ordering. A related question is, how do
we identify the elements? Ordering was used implicitly in the 1D case-say,
to traverse a list.

• How can we help the user construct such a term in an editor?

• What is the abstract representation of this term? Also, how can the editor
term be rebuilt from it?

• How do we do 2D matching? Or what is the intended interpretation, during
rewriting?

The VAS formalism supports associative matching of collection items. This
means that the items in the collection will match other collections irrespective of
the order in which they are constructed. This is very useful in writing rewrite
rules. Visually, the collection is basically a multi-set which allows the definition
of general constraints over its elements. In its simplest form the collection items
have no constraints. This could, for instance, be a collection representing windows,
where there is no particular constraint among the windows.

5.2. THE VAS FORMALISM 67

The VAS formalism provides a collection primitive which is used to conve­
niently define an arbitrary set of language constructs in a signature definition.

In this chapter we examine the use of collections in specifying visual syntax.
The list collection is commonly used in textual language specification for defining
language constructs consisting of arbitrarily many repetitions (such as statement
lists in a standard procedural language). The multi-dimensional nature of visual
syntax renders the use of lists, for similar purposes, in most cases not useful. To
specify such languages we need a specification construct that is not ordered, but
yet groups a set of language constructs. For this, we define the collection primitive
which serves as a primitive for grouping items.

It is introduced to provide flexibility for the language specifier in defining
language constructs consisting of arbitrarily many items. Such language constructs
are very common in practice.

Without the existence of such constructs the specifier is forced to define these
constructs in an elaborate manner. This forces the specifier to be painfully aware
of the manner in which the terms could be built. More importantly, the specifier
now has to take care of detecting the potentially shared terms in order to handle
the intended semantics, while defining operations over these items. Suppose one
specifies the sort C as follows:

A _ B -+ B
A -+ B

I
B

A

I
B

Now lets say a term is built like:

A -+ B
B -+ B

-+ C
B -+ C

where A, is of sort A. This term can be constructed with pseudo-sharing by causing
the Bs that are eventually replaced with A4 to be shared. As this is pseudo-sharing,
it is equivalent to terms where sharing does not exist. Thus, the term above is the
same as:

5.2.2 Collections and VAS

The idea behind collections is to provide an easy manner for defining a collection
of program units and to provide operations on them that make it easy to define

68 CHAPTER 5. THE VAS FORMALISM IN VASE

the semantic rules as well as defining end-user tools. These will be explained along
with the example presented in Section 5.5.

The VAS formalism provides a collection primitive which is used to conve­
niently define an arbitrary set of language constructs in a signature definition. It
serves a similar purpose as lists in a specification formalism for textual languages.
The LHS of a function (FUN) can also be a collection of the form:

SORT "*" "<J" "{" COP-LIST'}"
Vod . (" " " ") lib □ , □

-+ .LHS
-+ COP

Collections define of a group of items of a sort (SORT*) "constrained" by
the spatial properties as given by the COPs in COP-LIST. COPs are constraint
operators and the symbol "o" is used to indicate the parameters of the constraint
operations. The arguments to these operators are of the sort given in the collection
definition - one for each parameter of vod. For example, a collection signature of
the form

T* <J {□ v1□ ,□ v2□} -+ S

means that two visual operations T v1 T -+ Sn and T v2 T -+ Sn are defined
over a hidden sort Sn. A collection for the problem introduced in the previous
section is:

A* <J {oo , ~} -+ S

the v operator does not show here and instead its effect is displayed by using the
o as arguments.

The VAS formalism supports associative matching of collection items. This
means that the items in the collection will match other collections irrespective
of the order in which they are constructed. Visually, the collection is basically
a multi-set which allows the definition of constraints over its elements. In its
simplest form the collection items have no constraints.

For representation and semantics of the collection, we use the relational gram­
mar representation of Wittenburg [86] . A collection is converted into an in­
dexed multidimensional multi-set which is of the form (I, R 1 ·· · Rn) where I is
an indexed-set of elements and the R 1 · · · Rn are binary relations over these in­
dices. This implies that every instance of v1 or v2 , in the example above, would be
an Ri (1 :Si :Sn); and every instance of Tin the collection would be an indexed
element of I .

Section 5.5 provides an example discussing how such a structure is built using
structure editing and how equations that use this structure are interpreted. Such
a special sort also calls for a special kind of variable declaration so that special
treatment could given to equations that rewrite parts of a collection. We choose
a second-order style [18, chapter 8] of variable declaration that could be used
to help match parts of a collection and help rewrite in context. Equations that
deal with collections are translated to conditional equations over the underlying

5.3. VASE 69

multidimensional multi-set. By using an indexed multi-set during rewriting we
can realize sharing.

5.2.3 Specifying semantics

The semantics of a language is given by a set of equations relating the equivalent
terms of the language. The rules use the concrete syntax defined for the language.
For every sort in the language there is a corresponding equation as follows:

"[" ID"]" S "=" S ➔ EQUATION

where ID is a label identifying it. For example, the equation:

[ll] §JO= 00
is a semantic rule stating that algebraically the terms on the left and right of "="
are equal. The syntax follows from the definition given in Section 5.2.1 for LBC
where C is a circle and LABEL is 'aa' and 'a' on the left and the right hand side
respectively . For the purpose of term rewriting, this is interpreted as a rule to
rewrite a term matching the left hand side with the one on the right hand side
resulting in rewriting the label with two 'a's to one with a single 'a'.

In the above equation, the spatial layout of the rectangle and circle are al­
ways consistent with their syntactic definitions. This rule will only match terms
possessing the same relations. Terms that may appear similar but do not have the
same spatial relations will not match. Thus, the interpretation [83] of language
constructs is always consistent with their syntactic definition.

5.3 VASE

The Visual Algebraic Specification Environment (VASE) is the interactive environ­
ment for developing VAS specifications. It consists of editors for the definition of
lexicals, syntax, and semantics of visual languages based on the VAS formalism .
Figure 5.1 shows the editors of VASE.

The VODL editor is used to define vods, which are utilized by the VAS syntax
editor in defining the signature of a language. The signature, in turn, used by
the VAS equation editor for defining the semantics of that language. This implies
that the necessary lexical definitions must exist before the syntax is defined and
the syntax definition must precede the definition of the semantics. The example
presented in Section 5.5 demonstrates these relationships.

All the editors are syntax directed editors. The terms are constructed by
selecting meta-variables (place-holders in terms) which can be replaced by permit­
ted replacements as defined by the syntax. The replacement can be selected from
a panel of permitted choices or, alternatively, from the term (a subterm) that is

70

VODL
Editor

CHAPTER 5. THE VAS FORMALISM IN VASE

VAS . CT
Syntax ~

~~
VAS

Equations g
Editor

Figure 5.1: The VASE editors and their relations to various specifications.

being constructed. The latter option allows sharing, which is true sharing when
constructing a collection, otherwise it is pseudo sharing (Chapter 6).

The editors use a constraint solver for placement as dictated by the constraints
present in the syntax. Recall that lexicals may have constraints in their definitions.
The user of the editor is allowed to move subterms around as long as the constraints
permit.

5.3.1 VAS syntax editor

The VAS syntax editor supports the syntax of a visual language according to the
grammar defined in Section 5.2.1. Here the construction of a single function spec­
ification is shown. The goal is to specify the function: Ira] ➔ B. Figure 5.2 shows
a possible construction sequence. The first two steps simply follow from the VAS

grammar. Recall that VAS relies on vod definitions for its lexical elements. In this
case we could use the vod inbox:

defv inbox(X){
v1 : rectangle() , v2 : X }
<J { v 1 contains v 2 }

The behavior of the VAS editor when replacing an (SVL) with a lexical is to
use (SVL) as arguments (one for each parameter) to the vod, which in this case
results in KSVLi

5.3.2 The equation editor

The semantics of a language is defined with equations using the language's own
syntax. The editor is parameterized by the syntax of the language as discussed in
Section 5.2.3. The syntax of the equations is generated from the syntax definition.

5.4. VPE FOR SPECIFIED LANGUAGES

(1) ~FUN/ (5)
1~1

➔ (S)
(2) (sVt, ➔ (s)
(3) ~ ➔ (s) (6) [DJ ➔ K$I .

(4) l1($yqll ➔ (s) (7) [DJ ➔ B

Figure 5.2: A syntax rule construction sequence.

[(lb}] (B)

[el] {§}/

[el] 11 (A) 11

[el] [ill!]
[el] 11 ~ 11

[el] 11 ~ I/

(B)

(B)

{B)!

l[E]I
IIBIDI
m]

Figure 5.3: Equation construction sequence.

71

Figure 5.3 shows the construction of an equation for the function defined in

the previous section. Here, "goofy" (Q) is a constant and ~ is a variable,

both of sort A. A rewriting system generated from equations including the above
would rewrite all terms of sort A which are contained within a double-box to a
double-box containing the "goofy" character. It should also be mentioned that
this equation causes rewriting to loop as the "goofy" character is itself of sort A.

5.4 VPE for sp ecified languages

The intention of specifying languages is for generating language specific tools.
Figure 5.4 shows the use of specifications in generating programming environments
for languages. Note that it is not necessary to have a semantic definition - in
which case the end environment will have only an editor allowing the construction
of terms.

72 CHAPTER 5. THE v'.AS FORMALISM IN VASE

Syntax directed

Term Editor

for L

Rewriting

System

L environment

Figure 5.4: Generated L environment.

g

The components shown in the dotted region are generated from the specifica­
tions indicated with an arrow. The editor allows the construction of terms of the
language in a syntax directed manner. The rewriting system makes the specifica­
tions executable. These components are united in a single interface (75] where the
rewriter "evaluates" the term constructed in the editor (see Section 5.5.4). Func­
tions are bound to interface components which pass the term with the function to
the rewriter. The term resulting from execution may replace the term in place or
be placed in another editor. The example presented in Section 5.5 discusses such
an environment.

5.5 Example

The move-about language is used as an example to demonstrate the VAS formalism
and the supporting environment VASE. Each of the following sections assumes
that VASE is used for defining the specifications. All lexicals used are predefined in
VODL. The move-about language is a simple language which consists of a collection
of squares which contain game objects (GOs). Given a direction, the player can
move in that direction only if the game piece in that direction is an empty square.
We show how the syntax is specified (using the collection primitive) and how the
semantic equations are written to specify its behavior as well as perform some
static checking of initial game conditions.

5.5.1 Syntax definition

Figure 5.5 shows the syntax of this language. The first eight functions are nullary
functions (first of which is simply an empty vod). I GOI is constructed from a unary
vod that constrains its parameter to be contained within a square. Finally, PIECE
* <l {~, 0 0 } is a collection of PIECEs constructed with the binary vods included
in the bracket. The first vod defines 'above' and 'touches' and 'aligned ' constraints
over its parameters. The second one does the same but with 'right-of' instead of
'above'. The notation seen here is the vod applied to the placeholder symbols (□

). This collection is used to define the sort GAME.

5.5. EXAMPLE 73

functions
➔ GO

Q ➔ GO

§ ➔ GO

~ ➔ GO

~ ➔ DIR

B'=] ➔ DIR

[ill ➔ DIR

rm ➔ DIR

B ➔ PIECE

PIECE* <] n~i, DD } ➔ GAME

GAME

GAME DIR ➔ GAME

Figure 5.5: Syntax definition using VAS formalism.

74 CHAPTER 5. THE VAS FORMALISM IN VASE

The variables that will be used in equations must be declared. ~ ➔ GAME
and II o;, II ➔ DIR are used in the equations in the following sections.

Higher order variables [18, chapter 8] are used for defining variables for the
collection. These variables have a special interpretation during rewriting with re­
spect to matching. The syntax of which is given by: vodlib(SORT* <J {COP-LIST})
➔ SORT. Using this, we define the collection variable used in the equations:

(PIECe,, <l fc:, □□ }) ➔ GAME

Here, the outer container matches the context in which a specific pattern is
looked for. This allows only the relevant items of the collection to be specified
in the equations. Note that the spatial layout of the constraint operators in the
above rule comes from its corresponding vod definition. The placeholders serve as
arguments to provide visual feedback.

5.5.2 The move-about editor

From the syntax definition of the move-about language, a term editor is generated.
Figure 5.6 shows a representative term of the move-about game. The term is
constructed by expanding the GAME sort, which is a collection. The expansion of
collection sorts needs some explanation.

For the collection T * <J {□ v1□, ~} ➔ S, the term construction is defined
D

using an example. The "⇒i'' indicates the ith modification of the term after a
replacement.

(T)v1[(f~~/ (T)
r----, (T) V1 (T*) v2 v2

L(§)J ⇒ 1 .".'.~---- ⇒2 (T) vi(T*) ⇒3 (T) v1 (T*)
KI!1J v2 v2

(T*) (T*)

Collections are represented by the sort name followed an* . The meta-variable
(T*) can be replaced with:

1. nothing

2. (T)

3.
(T)vi(T*)
V2

(T*)

The editors try to maintain the constraints as much as possible during the
construction of the term. But, while there are still meta-variables in the term -
even for eventually correct terms - constraints may be violated. These cases are

5.5. EXAMPLE 75

handled as an exception, where the term to be expanded that causes the violation
is presented on the side, from where its relationships to the remaining term may
defined.

5.5.3 Evaluation semantics

The evaluation semantics defines the behavior of the game. The following equa­
tions, define how the 'player' is moved from one scene part to the next given a
direction.

[d] ([QC])~ =(c@)

[s3]

Q
[s4] 1~1 otherwise

Q

[s5] ~l~I=~ otherwise

76 CHAPTER 5. THE VAS FORMALISM IN VASE

The rules [s4] and [s5] above are default rules (42] which are indicated with the
keyword otherwise. The default rules are ordered with respect to the specificity
of the left-hand sides-in this case [s4] has a higher priority than [s5].

5.5.4 Specification of interaction

The equations of the previous section describe how the player moves between
scenes, given a direction. One or more directions for the· game can be provided
in the initially constructed term. Each of these directions, will cause one of the
equations to be evaluated resulting in a (possibly) new game configuration.

Alternatively, the directions could be provided interactively during term rewrit­
ing [21) 2 • Here the latter choice is considered. We use meta-variables to so­
licit values interactively. D is a function which returns the value that replaced
the meta-variable. Other terms inside the D provide the user with the context
for interaction. For the value needed a meta-variable of that sort is presented,
prompting the user to provide a value (as usual only syntactically correct choices
are presented) . After the input is obtained, the rewriting resumes. Figure 5.6
shows a typical interaction window. We define this interaction using the function
play(GAME) -+ GAME. Interaction is specified as:

(pl] play(~) play (~f [fgll(DIR)D

which causes a direction to be repeatedly requested during rewriting.

5.5.5 Static checking

Finally, we define some checking for GAME terms so that the game has only one
player. To do this, we define a function 1? GAME-+ NAT which returns true when
the game has only one player. An auxiliary function n(GAME) -+ NAT is used to
count the number of players. Sorts NAT and BOOL are imported sorts.

equations

[tl]n(~ l =l+n((□) l
[t2] n(~) = 0 otherwise

2 Defining sub-terms externally, during rewriting, is uncommon for a lgebraic specifications.
This is a recent extension to the VAS formalism to accommodate the high demands of interaction
of visual languages (See Chapter 7).

5.6. RELATED WORK 77

File

R

Figure 5.6: The game with interaction. The user selects the direction from the
selection panel on the left.

(t3] 1?~ = true when n(~) = 1

(t4] l?[fgj] = false when n(~) f. 1

It is intended to have a token of sort GO marking a finish location, where
the game would terminate. Several other consistency checking equations, such as
for the existence of a valid path from the player's location to the finish and the
existence of the finish token. These are all very straightforward equations.

5.6 Related work

VASE is inspired by the ASF+SDF Meta-Environment (42] and uses many concepts
and tools that are developed in its setting. The ASF+SDF formalism also has
directly influenced some of the syntax and equation specification styles . The syntax
specification is able to use visual lexicals in the construction of the signature.
Our approach separates the constraint specification of visual lexicals from that of
function specification. Thus we can define and use visual functions that are close
to the intended interpretation. This is in contrast to that of many visual language
syntax specification approaches (E.g., (29]). We have extended the term rewriting

78 CHAPTER 5. THE VAS FORMALISM IN VASE

used in this context to include the collection sort which can be used for "graph
rewriting" semantics.

The collection sort has been influenced by graph grammar formalisms. The
Relational Grammars work [86] has influenced the selection of the underlying rep­
resentation for the collection sort . The PROGRES graph rewriting approach [71]
uses attributed graphs with explicit directives for manipulating attributes. The
conditional set-rewriting [56] is more general than these approaches, but for rep­
resenting collections, we think Relational Grammars are better suited.

Programming environments such as VAMPIRE [52], PROGRES (71] use a
mix of pictures and text to define the intended semantics. They also use rewriting
as the basic underlying operation. In our work rather than recognizing pictures,
we have focused on the construction and working with correct terms. There is no
parsing of pictures and rewriting is used to facilitate "execution" of a specified
visual language. We have also concentrated on the use of concrete syntax in our
tools.

In general many formalisms developed for visual language specifications are
context-sensitive (49]. The VAS formalism allows basically context-free syntax def­
initions where the 2D lexicals are defined using VODL . The context-sensitive as­
pects are handled by a separate specification that serves as a "type-checker" (see
Section 5.5.5).

5. 7 Discussion

The use of concrete syntax to specify the visual syntax of a language requires
proper tool support that can help a user (specifier) who could get confused by
a mix of over-loaded operation definitions and/or visual lexicals. This may seem
irritating at first as we could have terms that appear to be as we desire but never
match the rule we expect. However, this is important for the purpose of being able
to define the intended semantics and get the intended interpretation [83]. Syntax
directed editing is already helpful since the editor can help traverse the structures
(being) constructed. There is a need for tools which present alternative views
of the syntax definitions. There are many other user interface issues- such as
improvement of interface specification and construction of collection terms- that
need to be further studied.

The use of concrete syntax at the specification language level is an inter­
esting approach. In the cases of language constants it is much more expressive.
However, when representing abstractions it becomes much more of a challenge to
find good representations. For example, in this chapter we represented sorts and
meta-variables with text, which makes it difficult to represent spatial relationships
that involve overlapping. This problem arises from the clear conflict between the
concreteness of visual notation and abstract representations.

5.8. SUMMARY 79

Another problem caused by using concrete syntax is that sometimes the func­
tion definitions might look different than when used. This is usually caused by the
need for abstractness in the specifications. For specifications to be comprehensible
they should be reasonably compact. Thus, the concrete syntax used must prefer
representations that are small yet clear enough to represent the desired relations.
At the same time care must be taken not to choose misleading representations that
suggest relationships that are not part of the language. There are some interesting
points in (84, 33] regarding consequences of representation choices. Analysis and
detection of some spatial properties that could be misleading should be investi­
gated at least for diagnostic purposes.

The well-definedness of the algebraic semantics of the specification in this
case would assume certain well-behavedness of the function definitions. This well­
behavedness would mean that, for any term that can be constructed during rewrit­
ing, the corresponding pictures do exist - a criterium that might be useful is the
partial computability of the completion of a picture (16, Chapter 11].

During the process of rewriting, new terms are introduced that ultimately have
to be presented to a user. This requires some smart analysis of the specification to
realize a natural presentation. We are hoping that "origin-tracking" techniques (18,
chapter 9] will be of use here. We have effectively graph rewriting, with collections,
that has a notion of how the sharing of terms in a collection is preserved. We
also have the case where a term is shared with another one by the manner in
which it was constructed in a term editor (Chapter 6). This pseudo-sharing might
mean that during rewriting the sharing is not considered. However, allowing this
pseudo-sharing means that we can construct the desired visual syntax using the
VAS formalism.

5.8 Summary

The VAS formalism specifies visual language syntax and semantics. We have de­
fined tools to interactively support VAS specifications, which in turn are used to
generate language specific environments. The use of concrete syntax in these tools
is investigated where visual notation is used both during the specification process
as well as in the generated VPE.

80 CHAPTER 5. THE VAS FORMALISM IN VASE

Chapter 6

Share-Where Maintenance

6.1 Introduction

The interactive construction of terms was discussed in Chapter 4, without much
insight into the abstract representation or how rewritten terms are presented back
to the user. In this chapter, we focus on the presentation of visual languages which
involves the interaction with constructed sentences. This chapter discusses how
we pretty print rewritten terms. In the next chapter we cover another aspect of
interactive behavior which is input and output during term execution.

Until now we have examined how the syntax and semantics of two dimensional
visual languages can be specified. The goal of specifying languages was for the
generation of visual programming environments. We have introduced the VAS

formalism for specifying visual languages. This formalism relies on abstract syntax
trees for the underlying representation of visual sentences. Visual sentences are
executed by rewriting their corresponding abstract syntax trees.

The result of a rewritten visual sentence is a term which must be pretty printed
before it is presented back to the user. There are two main problems that arise
when we want to pretty print the resulting terms. The first problem is that the
information regarding the precise concrete properties of the visual representation
are missing in the abstract syntax tree. The visual definition of the constructs
is given in the language syntax specification, so we can always construct some
correct visual sentence for presentation. However , there are typically numerous
syntactically correct representations possible.

How should we select among permitted visual representations of terms? Fur­
thermore, even if we could choose some arbitrary representation by some means,
would that be acceptable? What if there are sub-sentences both in the initial and
final sentences that represent identical terms? If the visual representations signifi­
cantly differ there is a considerable risk that the observer will not be able to make

81

82 CHAPTER 6. SHARE-WHERE MAINTENANCE

the connection between them. Should the appearance of a picture change (even
not so) significantly, it can lead the user to perceive identical sentences as differ­
ent. This would defeat the use of visual notation as it is the recognition of visual
patterns and relationships which we try to capitalize on in using such notation. In
order to convey the same information we must maintain a certain stability in vi­
sual representations. For this reason we must try to maintain as much as possible
of the visual appearances of sub-sentences that represent the same terms.

The second problem is related to sharing in terms. In order to represent
two-dimensional syntax with conventional trees we extended the usual notion of
structured editors by allowing sharing of sub-sentences (Section 3.6.2). Such shar­
ing is reflected in the abstract syntax tree as copies. While this solves the problem
of two dimensional sentence construction, it does not address how to present terms
that have been rewritten so that the sharing present in the input sentence is re­
flected in the resulting sentence. Simply pretty printing such a term will result in
each copy having its own separate visual representation rather than being shared.
Both problems of pretty printing are most relevant when there are common sub­
terms in initial and final terms so as to maintain the presentation of similar parts.
However, the technique we will introduce also applies to terms with no common
terms by providing a default visual presentation for newly constructed terms which
are created by means of equations.

We will provide an example of a specification of the syntax and semantics
of a visual language and its abstract syntax. Then we show how certain "Share"
information that is produced by sharing certain sub-terms in an editor can be
maintained and then used for pretty-printing the resulting term using the "Where"
information.

6.1.1 Approach and Aim

We consider "context-free" specification of visual syntax - with the aid of visual
(i.e., 2-dimensional and user-defined) "lexicals". This style is analogous to the
classical BNF and SDF [42] approach used for 1-dimensional (textual) languages
and gives a specification of allowable visual terms that are context-free. We have
extended the classical notion of term building by allowing sharing of terms on user
demand, in a syntax directed editor, so long as the constraints of the governing
visual lexicals are not violated. We will demonstrate the power and limitations of
this kind of sharing with the aid of examples.

Our basic approach to the pretty printing problem is to annotate the abstract
syntax tree with information which allows the editor to construct output sentences
using the information present in either or both of the input sentence and the se­
mantic equations. In Figure 6.1 this process in shown with a finite state automata
and character string as an input sentence and the result of its evaluation as an
output sentence. We will consider this example in detail in Section 6.2. In the
figure, A;nput is the abstract term corresponding to the input sentence and Aouput

6.1. INTRODUCTION

input sentence

⇒v.B
C b

© abcaE

AST input

rewrite -----

output sentence

⇒~a ';'
C b

©
reject

I
(-

>

AST output

Figure 6.1: An input and output term with sharing.

83

E

is the abstract syntax of the rewritten term. The output sentence contains all of
the sub-sentences of the input term plus a current state marker and a "reject"
string.

Constraints present in the syntax definition govern the valid representations,
which are a great many. In order to choose from these representations we will
use the information that is provided by the user when the initial sentence was
constructed. In the cases where sub-sentences are created by virtue of an equation
during rewriting, we will use the representations from the equation which created
it. Recall that the equations are also created in visual editors just like input
terms. The information obtained from these sources will be used as a preferred
appearance and location of the constructs and will be used by the constraint solver
in attempts to reduce their search space.

For the purpose of maintaining the sharing in a term we introduce a method
called Share-Where maintenance which annotates the abstract syntax tree with
information regarding which terms are shared and where the shared term resides.
The Share-Where annotations present both in terms constructed in end-user visual
editors as well as in equations.

The annotations described in this chapter are used only for the purposes of
presentation and have not been exploited for other purposes, such as to affect
the rewriting. Other possible uses of Share-Where annotations will be mentioned
in Chapter 9. Our aim is to examine how far we can push the utility of term
representations. We have aimed at leaving the abstract representation unchanged
as far as the term rewriting machinery is concerned and have annotated the tree
for the sole purpose of presentation of terms. This is done by maintaining the
sharing information that is created in the editor in terms of annotations which
are only used by the editors when presenting and have no further impact on the

84 CHAPTER 6. SHARE-WHERE MAINTENANCE

formalism.

6.2 VAS specification

A VAS specification consists of three phases. The first is building the visual lexicals
of interest using VODL which was presented in Chapter 4. The second uses these
lexicals to define the context-free syntax of the visual language of interest . This
phase constructs a mapping from abstract syntax constructs to the vods. The third
phase consists of defining the properties of interest, such as dynamic semantics, of
the visual language using the visual syntax defined in the previous phase. Here we
consider an example of a VAS specification, a deterministic finite state automata
(FSA) .

6.2.1 Visual lexicals

Figure 6.2 shows some of the vods we use for defining the syntax of our FSA
language. These vods are all parameterized composite vods, where a parameter
is represented with a possibly subscripted v. The first five vods will be used to
represent some syntactic construct of an FSA: 1) normal state; 2) final state; 3)
start state; 4) transition; 5) transition set and a start state. The fifth vod in fact
defines a vod consisting of two vods with no constraints between them, thus it is
used only for relating them together. The last two vods are used in the definition
of the dynamic semantics of the language: 6) used in defining vod 7 and defining
the output configuration of the fsa (FSA-OUT-CONF in Figure 6.5); 7) current
state; 8) variable definition. These vods are used in the next two sections where
sorts serve as the parameters for these vods.

6.2 .2 Sy ntax definition

The syntax of finite state automata is defined in the module FSA which is shown
in Figure 6.3. An automaton consists of a set of transitions along with a starting
state and a collection of final states. The imported module Strings defines upper­
case characters (UChar) and lower-case characters (LChar). Upper case letters are
used as state labels and lower case letters are used for input characters. The sort
Lis a parameter for vods 1 and 2 (see Figure 6.2). The sort STATE is a parameter
for vods 3 and 4 (twice for 4). The sort ALPHA is a parameter for vod 4. The
TRAN-C defines a collection of transitions, which is used in the definition of FSA
along with a SSTATE. Note that these representations follow from the constraint
definitions which, themselves, have no physical appearance. For example, the fifth
vod is shown as two vods that are horizontally next to each other which is purely
coincidental and results from making some arbitrary choice in order to present.

6.2. VAS SPECIFICATION 85

vod Description

1 0 a vod contained within a circle.

2 0 a vod contained within double circle.

3 ⇒v arrow followed by a vod.

V2
4 V1-V3 an arrow connected to two vods

with a vod above.

5 V1 V2 two unconstrained vods

V1
6 V2 one vod above another vod. -7 V a vod with a rectangle above it.

8 ill] vod in a rectangle.

Figure 6.2: Some of the vods used in defining the FSA language.

86 CHAPTER 6. SHARE-WHERE MAINTENANCE

module FSA

imports Strings

sorts L FSA STATE SSTATE FSTATE TRAN TRAN-C ALPHA

functions
UChar ➔ L

LChar ➔ ALPHA

0 ➔ STATE

0 ➔ FSTATE

⇒STATE ➔ SSTATE

ALPHA
STATE , STATE ➔ TRAN

FSTATE ➔ STATE

TRAN* <l {} ➔ TRAN-C

TRAN-C SSTATE ➔ FSA

Figure 6.3: The syntax specification for FSA language.

Such representations may lead one to assume there is some constraint that leads
to such a presentation, whereas there are none.

In this module we find the syntactic description of the FSA language. This syn­
tax will be used in term construction as well as semantic specification in the next
section. Each such definition has a corresponding abstract syntax with an associ­
ation between the two, permitting moving from one level to the other. All term
rewriting is done at the abstract level. The abstract syntax is shown in Figure 6.4.

Abstract function names represent the concrete visual syntax used in module
FSA. Here we use mnemonic names such as "st" to represent the circle with a
label L and "ss" to mean start state. The functions are listed in the same order
as in the module FSA. The Collection variable has no direct analog in ASF+SDF.
Here we translate it into ASF+SDF lists. Such a direct translation is possible
since these collections have no COPS constraining the elements in the collection
(see Section 6.2.3).

6.2. VAS SPECIFICATION

The abstract syntax that would be produced by the visual syntax is given
here.
imports AS-Strings
exports

sorts L FSA STATE SSTATE TRAN TRAN-C ALPHA
The abstract syntax names are arbitrarily choosen except for "list" and
"coll" names that represent a pre-defined data type that the underlying
rewriting machine is aware of.

context-free syntax
lab(UChar) --+ L
ip(LChar) --+ ALPHA
st(L) --+ STATE
fs(L) --+ FSTATE
ss(STATE) --+ SSTATE
tr(STATE, ALPHA, STATE) --+ TRAN
i(FSTATE) --+ STATE
coll(TRAN*) --+ TRAN-C
fsa(TRAN-C, SSTATE) --+ FSA

Figure 6.4: The abstract syntax of the FSA module.

6.2.3 FSA Evaluation

87

To specify the dynamic semantics of FSA we first specify a syntax for the evalu­
ation functions. Figure 6.5 shows the chosen syntax for FSA and defines a set of
variables that may be used in the equations. The current state is represented by a
rectangle above a state. The input stream consists of zero or more ALPHAs. The
eval function takes an FSA and an input list (ALPHA-L) and steps through the
automaton returning either accept or reject depending on whether it succeeds to
end in a final state. The function evit iteratively processes the input string. This
function uses a sort FSA-CONF as an FSA configuration which consists of an FSA,
a CSTATE, and an ALPHA-L which are all needed to perform a single step.

Figure 6.6 shows the semantic equations for evaluating an FSA which takes
an FSA and a character list and steps through it according to the transitions. The
current state is represented by a black box above it. The semantics are defined by
three functions that process the input string until there is no possible move left or
the input string is consumed. After that, they examinesif that configuration is an
accept of reject state.

The declarations involving TRAN* <J {} are about using the collection data
type as defined in Section 4.2.2. TRAN-C is a collection of zero or more transitions
(TRAN*) with no constraining operations between the items in the collection (<J

{}). A collection variable matches a collection. Here for example, [ID matches

88 CHAPTER 6. SHARE-WHERE MAINTENANCE

a collection with at least one transition Tr, where D matches the rest of the
collection other than Tr.

The eval function starts the input string processing by replacing the start
state by the current state. It then applies the evit function, the result of which is
combined with the start state again. The reason for putting back the start state is
to present it back in the result of evaluating the FSA. Otherwise it is not necessary.
The accept? function decides whether the FSA configuration is in an acceptable
state. The resulting term consists of the FSA configuration along with the string
accept or reject positioned below the FSA. The intention is that seeing the state
of the FSA is useful to observe, especially when the input string is rejected.

In equation (stJ the evaluation of the FSA begins by setting up an FSA-CONF
by making the start state a current state with a current state marker that will be
used to step through the FSA according to the provided input string. The resulting
term is constructed in a manner to convey some useful visual information. Instead
of only indicating a result as accept or reject a visual term consisting of the
FSA 1 , the current state, the remaining input string, and the resulting status is
constructed.

The equations [el] and (e2] step through the input string moving the current
state marker when a transition occurs. FSA-CONF does not have a SSTATE as it
is not needed for the evaluation, furthermore it allows the demonstration of the
Share-Where maintenance when ⇒St0 is put back in the resulting term.

In (e2] and (a2] we have used the variable FsaCon, we could have alternatively
used a visual term like:

~ or equivalently □-
~ Sto

where the collection D matches any TRAN-C collection. Or we could have
created a more visua vana e representation for the variable instead of relying
on a textual name. We chose this represenation here to provide some abstraction
in terms of using a variable in the specification and avoid a visual variable repre­
sentation for lack of finding an appropriate representation that is distinguishable
from the terms. That is not to suggest that such represenations would not be
appropriate. This is simply a choice of the language specifier.

Again, we provide the abstract syntax module (Figure 6.7) which Section 6.3.l
isi used to explain how this is further transformed into a specification that aids in
displaying the result.

The FSA specification should be accompanied by another module that specifies
what are type-correct FSAs. In our case, one can imagine checking for existence

1 Actually the FSA here is represented with the FSA-CO NF and the SSTATE is added.

6.2. VAS SPECIFICATION

module FSA-eval

imports FSA

sorts CSTATE RESULT ALPHA-L FSA-CONF

functions -STATE

ALPHA*
accept
reject

TRAN-C CSTATE ALPHA-L

SSTATE FSA-CONF
RESULT

eval (FSA ALPHA-L)
evit (FSA-CONF)

accept? (FSA-CONF)
variables

St
i
L

Cst
i*

TRAN* <J {}

Fsa
FsaCon

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

➔

CSTATE

ALPHA-L
RESULT
RESULT
FSA-CONF

FSA-OUT-CONF

FSA-OUT-CONF
FSA-CONF
RESULT

STATE
LChar
L
CSTATE
ALPHA-L

TRAN-C

FSA
FSA-CONF

89

Figure 6.5: The specification of the syntax for the evaluation semantics of a de­
terministic FSA.

90 CHAPTER 6. SHARE-WHERE MAINTENANCE

equations

FsaCan evit(I

[st]
eval(I = ⇒St0 FsaCan

accept?(FsaCan)

[el] evit evit

[e2] evit(FsaCan) F saC an otherwise

-[al] accept? 0 accept

[a2] accept?(FsaCon) reject otherwise

Figure 6.6: The specification of the evalution semantics of FSA.

6.2. VAS SPECIFICATION

module AS-FSA-eval
imports AS-FSA
exports

sorts CSTATE RESULT ALPHA-L FSA-CONF FSA-OUT-CONF
context-free syntax

cs(STATE) ➔ CSTATE
list(ALPHA*) ➔ ALPHA-L
ace() ➔ RESULT
rej() ➔ RESULT
fc(TRAN-C, CSTATE, ALPHA-L) ➔ FSA-CONF
foc(SSTATE, FSA-CONF, RESULT) ➔ FSA-OUT-CONF
ev(FSA, ALPHA-L) ➔ FSA-OUT-CONF
evi(FSA-CONF) ➔ FSA-CONF
ac(FSA-CONF) ➔ RESULT

variables
"St"[012] ➔ STATE
"i" ➔ ALPHA
"L" ➔ L

"Cst" ➔ CSTATE
"i*" ➔ ALPHA*
"T1'*"[012] ➔ TRAN*
"Fsa" ➔ FSA
"FsaCon" ➔ FSA-CONF

equations

FsaCon = evi(fc(coll(Tr~), cs(Sto), list(i*)))

ev(fsa(coll(Tr~), ss(Sto)), list(i*))
foc(ss(Sto), FsaCon, ac(FsaCon))

evi(fc(coll(Tr; tr(St1, i, St-i) Tr;), cs(St1), list(i i*)))
= evi(fc(coll(Tr; tr(St1, i, St-i) Tr;), cs(St-i), list(i*)))

evi(FsaCon) = FsaCon otherwise

ac(fc(coll(Tr~), cs(inj(fs(L))), list()))= ace ()

ac(FsaCon) = rej () otherwise

Figure 6.7: The abstract syntax of the FSA-eval module.

91

[stl]

[el]

[e2]

[al]

[a2]

92 CHAPTER 6. SHARE-WHERE MAINTENANCE

of at least one final state and for checking that no non-final state has the same
label as some final state.

6.2.4 FSA Term Construction

FSA terms are constructed by providing a collection of transitions and a start
state:(TRAN-C} (SSTATE}. According to the syntax definition the start state,
SSTATE, may appear anywhere since it is unconstrained. We can, however, choose
to make it share the representation of a particular state in the FSA. Figure 6.8
shows a construction sequence where such a sharing is chosen. The sharing choice
is made in step f. Alternatively, (SSTATE} could have been replaced with a new
state. Provided that the state was @, they would abstractly represent the same
term. We do not allow a subterm to share its ancestor (no vertical sharing). In
fact a type-checker would be needed to check whether the start state is one of the
states of FSA . The type-checking issues are out of the scope of this paper.

6.3 Pretty Printing Issues

There are several general criteria to adhere to when displaying terms. We assume
that visual representations were used in the first place to provide its user some
information which benefits from graphical presentation. It would make no sense
to present information in a manner which is incomprehensible such as say by
obscuring the presented picture by overlapping sub-sentences. Similarly to this
point there are many displaying principals which should be adopted to have a
presentable pretty printed term. We are not addressing these general principles in
this work. Graphic design principles should also provide many sound guidelines
regarding these criteria.

One of the main advantages of multi-dimensional syntax is the ability to use
shared representation in term presentation in depicting multiple relations that exist
on a (sub)term. We have already demonstrated how such terms can be constructed.
When we rewrite terms we use the abstract syntax of the term constructed in the
editor. After rewriting the term we are left with an abstract syntax term that
must be pretty printed for presenting back to the user.

The syntax definition of the language provides us with the information we need
to obtain a visual term corresponding to the abstract term. However, there are
some problems. First of all the vod definitions are typically under constrained and
thus correspond to a great many pictures. Even if we choose some criteria to select
among these pictures, it is likely that what we present will bear little similarity to
the initial term. In fact this is sometimes fine since the resulting term has nothing
common with the initial term. However, it is often the case that parts of initial
terms remain in the resulting term. If the appearances of these common terms are
significantly changed the observer will likely loose the connection between these

6.3. PRETTY PRINTING ISSUES

a)

b)

c)

d)

(TRAN) (SSTATE)
e)

(TRAN-C)

(SSTATE)
(ALPHA)

(STATE) (STATE) f)

(TRAN-C)

(SSTATE}
(ALPHA}

~(STATE) g)

(TRAN-C)

~ =>(STATE) h)

(TRAN-C)

93

~
=>(STATE)

)

(TRAN-C)

=> ~
(TRAN-C)

=> ~
(TRAN-C)

(TRAN-C)

Figure 6.8: Initial steps of the construction of an FSA sentence. Note that in step
f) the sharing of the initial (STATE) is established.

terms - which is unacceptable. We will focus on this aspect and propose a method
whereby we maintain information from the the initial term and instance at which
they were created during rewriting, to aid in the presentation of the final term.

The effect of pseudo sharing can be illustrated by the following equation:

and the following term represented in a visual form that emphasizes sharing:

94 CHAPTER 6. SHARE-WHERE MAINTENANCE

C

(a) Pseudo (b) Real (c) Identity

Figure 6.9: Various sharing possibilities resulting from the application of equation
[pl).

Applying the equation to this term results in a term where @ is replaced by
@. Depending on the underlying representation and interpretation there are

choices to be made as how to present the term. Should @ replace @? Should
states be considered unique and thus have a single representation? The resulting
term could be, among others, any of the terms shown in Figure 6.9. In this
work we only consider pseudo sharing which represents each shared construct
with a copy of it in the tree. Graph grammars [71) use real sharing which use
graphs as underlying representations and shared presentations also are shared in
the underlying representation. Identity sharing, where some criteria (say state
label) determines the uniqueness of constructs, and its presentation is shared by
giving a meta-level directive that all similar states should be shared. The sub­
figure (a) illustrates the effect of pseudo-sharing and the application of function f.
This rewrites a transition labeled "c" and ending in some state St-i to a transition
labeled "c" that begins in state @ and ends in St2 . Note that all @ states are

not affected but only the one which matched the rule is rewritten into@· After

the rewrite it is not clear where to print the@ state created by the application

of the rule. Using the approach we discuss below, it would be possible to print it
close to @ with an appropriate constraint solver.

6.3. PRETTY PRINTING ISSUES 95

6.3.1 Share-Where maintenance

This method annotates terms and propagates created annotations as a result of
applying rewrite rules to the term. The underlying rewriting semantics is itself
not influenced, since the annotations are not used for determining when a term
matches another except for the shared variable case. Each term f (x) is annotated
as f[i,t,:p](x) where f is an abstract syntax function name, l is a label, ti is an
identifier of a term editor or an equation editor, and p is a path in ti. When a
term is initially created by a user, each node gets a unique label, ti is the name
of the term editor that created the term and pis the path to the node. However,
when certain sub-terms are shared the share annotation of the sharer is copied to
the sharee. The Share-Where annotation uniquely identifies the sub-terms modulo
sharing. This allows the (re)creation of shared representation when displaying the
term.

The idea is to maintain information regarding how terms are created and
where the creator resides. Having this information allows us to have a starting
point for presenting terms as close as possible to how they were constructed. One
of the major problems in pretty printing is how to treat newly created sub-terms.
This is addressed by preserving references to the equations that create the terms.
Thus, newly introduced terms will appear as they appeared as much as possible
in the equations that introduced them. Such information provides good starting
points for presenting the term. We say starting point, since clearly, the chosen rep­
resentations may result in constraint violations in a larger term. However, they still
give good starting points or "hints" to the solver indicating where approximately
they should be placed.

Initially, we will introduce "primitive" Share-Where maintenance. This con­
sists of analyzing the equations for propagation of Share-Where information in the
following four cases in order of preference (Figure 6.10 may be used as a reference
example):

l. Common Sub-term in maximal common sub-context: Relate corresponding
nodes of the common sub-terms, i.e. terms common to both left hand side
and right hand side of an equation. If a sub-term on the right hand side can
be related to more than one of the left hand side (i.e. Ji (x)) then look for
the maximal sub-context in which they appear, in order to arbitrate.

2. Common sub-context (maximal): Look for sub-contexts on the right hand
side that correspond to similar sub-contexts on the left and relate them by
giving priority to larger matches.

3. Introduced symbols: The new symbols introduced on the right hand side get
new share annotations. If these are explicitly shared in the editor then they
get the same annotation (i.e. the function g).

96 CHAPTER 6. SHARE-WHERE MAINTENANCE

[Eg]

CD@
®
@

common sub-term
common sub-term in a common sub-context

common sub-context (maximal)

@ introduced symbols

® arbitrary choice (common sub-context)

Figure 6.10: Various Share-Where relations in an equation.

4. Trivial arbitration: These are common variables and function symbols that
remain unrelated by the above rules . These could then be arbitrarily related
to one of the choices on the left2

•

In the above we have used the some terminology that should be explained:

• sub-term: is a term that is a part of another term.

• common sub-term: is a sub-term that is both on the left and the right hand
side of an equation.

• context: is a term with one or more 'holes'.

• sub-context: is a context that yields a sub-term when its 'holes ' are filled.

• common sub-context: is the case when a sub-context is common to both the
left and right hand sides of an equation.

• maximal common sub-context: are the largest possible sub-context that is
common to both the left and the right hand side of an equation.

2For function symbols (the Ji case in figure) this could lead to same share information between
a parent (ancestor) and a child, however this does not imply pseudo sharing. These cases could
also be better handled by dependence labeling.

6.3. PRETTY PRINTING ISSUES 97

g . · · ····· · · f
[Lo,to:t] [Ls,jl:n]

J. -··· ···· .. I
TRAN ... •····:::.·.······.· ·· ··· · ··•,,::····• .. TRAN

[L1!to.:.1J_-_·.·: ... ·. ·.·.·:.:::•·· ·. .. ··· ·[L-r,-to.:.1]
~~ ·. ~

STATE ALPHA STA.TE: : ,.:.·.•·····•·.·.· ... ·~·TATE ~LPHA ... STATE
[L2 , to : 11] [L4,.t.o: l-?J.".l4rto·:•far ·.· 1L2; to.)lf 1L-i; to.)2] [L2, to: 11]

L. -···········.-.-.-. ·~ ·.·_ .. · .. I ····· .. I •. · · ·· I .. · · · · ·· .. I
A C B A C A

[L3,to:lll] [Ls,to :121] [L1,to :131] [£3,to : lll} [Ls,to : 121} [L3, to:lll]

Figure 6.11 : Share-Where annotations for a term and propagation after rewriting.
The Where information "to : 12" means that the node was created in term t0 at
occurrence 12 (second child of first child of top node).

6.3.2 Share-Where maintenance during evaluation

To see how the Share-Where information is determined and propagated we consider
the simple term:

and a simple equation:

[ill g(s,_i__s2)

Figure 6.11 shows the Share-Where annotations for the initial term and equa­
tion [jl) is used to rewrite it. The dotted lines show how the shared sub-terms
on the right-side have the same origin for their representations. The Where in­
formation "to : 12" means that the node was created in term t0 at occurrence 12
(second child of first child of top node). The ALPHA and STATE sub-terms are un­
changed and thus have their Share-Where annotations from the left side (common
variable rule). The "TRAN" node also has the same annotation due to common
sub-context rule. The symbol f is a new symbol created by the equation. The new
annotation [new(), jl : n] says: a unique label3 is generated (by function uid) for
the Share part and the Where part tells that this f was created in equation [j 1]
at the right-hand side (r) top (t) occurrence. Note that if instead of the shared
S1 s on the right, they were introduced constants, they would both share the same
new()s every time the rule is applied.

The annotations are determined by the translation of equation [jl) to one
that is appropriately decorated with Share-Where annotations as follows:

3 New Share annotations need an unique identifier, otherwise too many symbols would be
shared while rewriting. However, unique identifiers cause too many symbols being non-shared.
See Section 6.3.3.

~
~
~
~
~
~
~
ls

~
~
U')

IQ

i:x::
~
~

~
l)

00
Ol

I
STATE

(10 , , 0 ,1111)

i
(16 , , 0 ,11111)

TR
(7, , 0 ,111)

t
(11, , 0 ,1112)

STATE
(12, , 0 ,1121)

k
(17 . , 0 ,11211)

1
STATE

(12, , 0 ,1113)

k
(17 , , 0 ,11131)

a

eval
1°, 'o"l

1:
(20, , 0 ,21) (21 , , 0 ,22)

'SA

11 , •0 ,1)

f TR,
(4 , , 0 ,11]

'R
(8, , 0 ,112)

t
(13 , , 0 ,1122)

STATE
(14, , 0 ,1123)

I
FSTATE

(18, , 0 ,11231)

t
(19 , , 0 ,112311)

STATE
(14, , 0 ,1131)

I
FSTATE

(18, , 0 ,11311)

t
(1s, , 0 ,113111)

ALPHA-L
(2, , 0 ,2J

l
C a 1:

(22, , 0 ,23) (23, , 0 ,24) (24 , , 0 ,2sJ

TR
(9, , 0 ,113)

C
(1s, , 0 ,1132)

ssJATE
(3, , 0 ,12)

S)ATE
(10, 10 ,121)

l
(16, , 0 ,1211)

STATE
110, , 0 ,1133)

i
110, , 0 ,11331)

I;

12s , , 0 ,26)

Figure 6.12: Annotated abstract syntax tree of the function eval applied to an FSA term.

6.3. PRETTY PRINTING ISSUES 99

where the variables £; match the Share-Where annotations. All annotations in i
and S1 are propagated (common-variables) and a new annotation is created for
the transition created on the right-hand side. The new annotation [uid(),jl: n,]
says: a unique label is generated (by function uid) for the Share part and the
Where part tells that this transition was created in equation (jl] at the right-hand
side (r) top (t-:) occurrence.

Now we can look at an FSA-OUT-CONF term. Consider the following
FSA-CONF-OUT term:

abcabt-:

The abstract syntax tree representation of this term is shown in Figure 6.12.

Figure 6.13 shows how the term is rewritten and some of the annotations of
the nodes resulting from the rewriting. These annotations are shown with the
names of nodes. For example, the first set of annotations corresponds to the four
states labeled A (two under transitions, one under start state, and one under
current state) and the CSTATE node. In all annotations for the state A the labels
are identical denoting that they all share the same representation. All nodes in the
term are created in the term editor except for CSTATE which is created by equation
[el] of the FSA-eval module. The annotation could use full names (including the
module information) in practice, but here we use the short names. Note that
the paths seen here are also identical which may lead one to think that the path
information alone is sufficient to indicate sharing. This is, however, not the case
as application of the same rule always results in the same path in an annotation
and does not imply the presence of any sharing.

6.3.3 Dependence labeling

"Primitive" Share maintenance does not accommodate sharing of the symbols
introduced in the equations (unless they are shared in the equations editor). This
often results in undesirable effects in the output picture. For example, Figure 6.14-
b shows what happens when the equation

[egl] b c

is applied to the sentence in Figure 6.14-a. Whereas one would desire that the
generated "c" symbols are also shared in the output picture as in Figure 6.14-c.

100 CHAPTER 6. SHARE-WHERE MAINTENANCE

On the other hand if the newly introduced symbols get the same share labeling
(instead of a new label on the fly) there would likely be unintended symbols shared.
For example, observe what happens when the equation (egl] is applied to (a):

*

a b

(a)

/
()

A
a C

(b)

To address this problem, we introduce dependence labeling, where the share
labeling in the introduced symbols depend on certain labels of some symbols on
the left-hand side. In (egl] the labeling of c could be made to depend on the label
of b . Instead of 'c' getting a new() share annotation, a unique identifier, the share
annotation for 'c' could be generated using the share annotation of 'b' and the
where annotation of 'c' - e.g. new(share(b), share(c)). Thus generating identical
annotations for the desired 'e's. Then the following (a) term, could after rewriting
be presented as (b):

/+~ /+~
* b * () () C

*

A A
a b a C

(a) (b)

Dependence labeling appropriately replaces the "introduced symbols" rule
above with two new cases:

• redex-contractv.m case: the labeling of the introduced symbols depend on
the labeling of the top symbol of the redex and a label associated with the

6.3. PRETTY PRINTING ISSUES 101

occurrence of the symbol. If an occurrence is shared, then the associated
labels are identical. In

[eg3] /\
a O

the labels of * and 1 depend on the label of +.

()
A
a 0

*

/\
a J

◊
A
a 1

• If the common sub-context can narrow down the dependency to a more
specific sub-term then the labeling of the introduced symbol depends on
that sub-term. For example, in the equation

[eg4]
;\

a s

I
X

the label of O depends on the label of s. Thus:

!\jJ
I
s

I
0

*

/\
a O

102 CHAPTER 6. SHARE-WHERE MAINTENANCE

Dependency labeling assures that when the term-rewriting system 1s non­
overlapping, shared parents implies shared children.

• Shuffling a picture is okay. When no new symbols exist then no sharing is
destroyed.

• New nodes are okay. Share annotations in new nodes depend on the anno­
tations of the nodes that are responsible for their creation.

6.3.4 Discussion

Now let's consider a case which introduces complications. Let an equation j2 be
defined as follows:

[j2) =
i.7)il
~

Figure 6.15(a) shows the initial term and the parts (b) and (c) show two
possible pretty printing results depending on which S1 from left-hand side passes
the Share-Where annotations to the S1 on the right. Although these two terms
look considerably different their abstract syntax is equivalent and thus share the
same semantic behavior. We may consider the representation in Figure 6.15(c)
visually undesirable as it gives the appearance of a disconnected FSA although

its behavior is correct. The problem here comes from determination of which@
from the left side is to be chosen as being the representation corresponding to the

@ on the right side.

One approach to deal with this could be to collect a set of labels rather than
choosing only one. Examining the subset relation could allow the determination
of "identity" sort sharing. However, one would still need to figure out which one
to chose among the set as the representation and different choices would result
in different looking pictures. We consider this approach as an extension to the
"primitive" Share-Where, which only concerns itself with a simple propagation of
Share-Where information for gaining the ability to pretty print terms with shared
sub-terms.

Clearly, the Share-Where information could be used more extensively (i.e.
during matching) and more sophisticated Share-Where information can be col­
lected for better pretty printing results. One of the immediate applications of this
information is their use in pretty printing rules which could be specified by the
language designer as a separate module and could be used to pretty print the terms
in a language-specific preference. The pretty printing issues addressed in this pa­
per would then be considered as default pretty printing. Such a pretty printer
would be able to track colored (marked) input constructs and help in debugging
specifications by indicating where a certain part of the output term originated
from .

6.4. IMPLEMENTATION IDEAS 103

6.4 Implementation Ideas

The implementation of Share-Where maintenance can be done by transforming the
original TRS (R) to another TRS (Rsw) that reduces a Share-Where annotated
term. Such a transformation would preserve the essential properties of the original
TRS R. If a term t reduces tot' by R the term t with Share-Where annotations
tsw would be reduced tot' sw by Rsw and removing the Share-Where annotations
would yield t':

add sw R[--r:,.
remove sw

t'------- t' SW

In (79) van Deursen specifies a library of functions necessary for such transfor­
mations of TRSs. He uses these functions to implement origin tracking. We need
some additional functionality to detect maximal sub-contexts (see Section 6.3.1)
to implement Share-Where maintenance proposed in this chapter. Such a trans­
former would transform the abstract syntax shown in Figure 6. 7 to the transformed
module. This work transforms a term rewriting system into another one with an­
notations.

In our case the origin relation would be defined for the Share-Where annota­
tions. For the abstract syntax shown in Figure 6. 7 the transformed module would
have the annotations shown in Figure 6.16.

6.5 Related Work

Typically visual languages are syntactically very complex. The sharing of terms
among several terms leads one to consider context-sensitive grammars for spec­
ifying visual languages. Most approaches to syntax specification have adopted
context-sensitive formalisms considering context-free specifications not useful in
dealing with realistic languages. This point can be observed in (50] which details
formal approaches to visual language specification. These approaches tend to de­
fine other language aspects such as type-checking and semantics along with the
syntactic definition. Contrary to this approach we wish to examine language spec­
ification style which separates these two aspects clearly and pushes the definition
of the semantics, type-checking and so on to the domain of semantic specification.

The work of constraint multi-set grammars (50] and graph grammars (71] are
alternative approaches to the algebraic specification approach we have considered.
Our approach is an exercise in using the traditional algebraic specification for­
malisms to define visual languages by allowing two-dimensional lexicals where as

104 CHAPTER 6. SHARE-WHERE MAINTENANCE

both the constraint multi-set grammars and graph grammars attempt to define
context-sensitive language formalisms for the purposes of defining visual syntax.

The ASF+SDF Meta-environment [42] has been the source of many inspira­
tions for our work on VAS formalism. The work on origin-tracking [18, Chapters 7
and 9] and error reporter generation (18, Chapter 4] in the ASF+SDF context has
further inspired the maintenance of Share-Where information. Our Share-Where
information is in some ways more general than origin-tracking due to the presence
of the Where information; as the labels used in Share annotations could help pro­
vide "primitive" origins in the absence of sharing. These techniques are related to
residuals and descendants as can be found in (43, Chapter 8] and subject-tracking
defined by (10].

Our dependence labeling is simpler than the dependence tracking [22], since
we are only interested in the dependence of labels on other labels and not on the
function symbols.

6.6 Summary

In this chapter, we have, by means of an example, elaborated on the utility of visual
algebraic specifications for defining visual languages. We have introduced Share­
Where, with which we can use the information about the initial term construction,
in the style of "programming by example", to present the result of computation
back to the user.

6.6. SUMMARY

Term

abcabt

evit

abcabt

accept E

Eq Match

[st] Sto =®
i* = abcabt

St 1 =®
[el] St2 = ®

i = a
i* = bcabt

105

Annotations
A AB:[10, t0:llll]
A cx[IO, t0 :1133]
Ass:[10, t0 :121]
Acs:[10, to:1111]
cs:[£1 , el :cl:rl2]
ss:[3, to:12]
list:[2, t0 :2]

A AS:[10, to:1111]
B AS:[12, t0 :1113]
B sc-(12, to:1121]
Bcs:[12, to:1113]
cs:[£1 , e1:c1:rl2]

C sc-(14, to:1123]
Ccx[14, t0 :1131]
Ccs:[14, t0 :1123]
cs:[£1 , e1 :c1:rl2]
ss:[3, t0 :12]

Fi,gure 16.il.3~ Some annotations during the evaluation of an FSA term

Sxy stands either for the state @ in the transition from state x to state y or
th-e start state or the current state it belongs to . Some interesting annotations
(in reduct) are listed in the "Annotations" column. Note that all As, Bs and Cs
maintain their input-term annotations. The annotations of current state marker
(indicated by "cs") is provided by the right-hand side of equation [e2], but the
annotation of its STATE sub-term (indicated by subscript cs) is obtained from
the match information. Also see Figure 6.7. £ 1 is a label generated during the
application of equation [st].

106 CHAPTER 6. SHARE-WHERE MAINTENANCE

* * * () I\ ()
)\ X\)\

a b a C C a C

(a) initial. (b) resulting. (c) desired .

Figure 6.14: Terms with shared parents and children.

(~1 id~

(a) initial term.

b

C

(b) left prefer. (c) right prefer.

Figure 6.15: Pretty printing results based on two different Share-Where annota­
tions of same term.

6.6. SUMMARY 107

equations
These are the transformed equations of AS-FSA-eval to contain Share-Where
information.

£5 = [new (), FSA-eval: st1 : cr1 : r 1),
£6 = [new (), FSA-eval: st1 : cr1: r 11),
£7 = [new (), FSA-eval : st1 : cr1 : r 12],

is= [new (), FSA-eval : st1 : r OJ,
£9 = [new (), FSA-eval : st1: r 12],

FsaCon = evi£5 (fc£6 (coll£2 (Tr*), CS£7 (St.o), list£4 (i*)))

ev£0 (fsa£1 (coll£2 (Tr*), sst3 (St.o)), listt4 (i*))
foct8 (ssl'3 (St.o), FsaCon, acl'9 (FsaCon))

(stl]

In the AS-FSA-eval [el], Stl and i are repeated on the left hand side in order
to transform this in a way that Share-Where does not affect matching, we
duplicate the variables referring to Stl (and similarly i) and check that their
abstract syntax without Share-Where matches using the function AS-eq.

TranCo = collt2 (Tr; trt3 (St11, i11, St-i) Tr;),
AS-eq(St11 , St12) = true,

AS-eq (iu , i12) = true

evit 0 (fct1 (TranCo, CSf4 (St12), listt5 (i12 i*)))
evit

0
(fct

1
(TranCo, CSf

4
(St-i), listt

5
(i*)))

evit
0

(FsaCon) = FsaCon otherwise

£6 = [new (), Fsa-eval: a1 : r 1]

£1 = [new (), FSA-eval : a2: r 1]
aclo (FsaCon) = rek ()

otherwise

(el]

(e2]

(al]

(a2]

Figure 6.16: Equations of the module SW-FSA-eval which is a transformation of
module FSA-eval to Share-Where annotated abstract syntax. Some conditions used
here are only to make the equations fit in the page. Also, here module names are
indicated in the annotations.

108 CHAPTER 6. SHARE-WHERE MAINTENANCE

Chapter 7

Interaction Specification

7.1 Introduction

The term rewriting described so far lacks the possibility of interaction. This is
a serious drawback for specifying languages that are interactive by nature, which
includes most practical languages in general and most visual languages in particu­
lar. The usual manner of executing a sentence, which is constructed in an editor,
is to take its corresponding term and to rewrite it until it reaches a normal form.
The resulting term is pretty printed in order to present it back to the user. One
aspect that is strongly missed is interaction during the rewriting of a term. We
address this problem, with a simple operational model of interaction. Note that
we will only describe our interaction model as an extension of term rewriting and
that we don't attempt to give an algebraic interpretation to it.

The aim of the work presented in this chapter is hence to examine the utility
of extending term rewriting in a way to support interaction. The extension of the
visual specification formalism for input and output not only permits interaction
during execution, but als makes a user definable specification of a language inter­
face itself possible. We examine the utility of a such an extension in the presence
of the generated visual term editors by using only the generic features of these
term editors.

We argue that the input part of interaction with a user is nothing but con­
structing terms in editors. Thus, during execution, the user will be presented with
terms whose construction must be completed. The particular appearance of such
editors is delegated to a separate user-interface specification.

We will first describe the extension with interaction by means of a toy spec­
ification. Section 7.2 provides an algebraic specification highlighting two of the
concepts used in our extension. Section 7.3 describes the extension for interac­
tion. Then we will demonstrate its utility with two examples. In Section 7.4, we

109

110 CHAPTER 7. INTERACTION SPECIFICATION

give a detailed example of a simple calculator that demonstrates our approach .
In Section 7.5 we revisit the FSA language, which was discussed in Chapter 6,
by specifying an interactive animator that illustrates the use of Share- Where for
presentation of terms during input and output. We conclude this chapter with
related work in Section 7. 7.

7.2 Rewrite Systems

Consider the following signature that describes a language:

sort B
functions

zero -+ B
one -+ B

BoB-+ B

One can think of these as BNF rules (reading right to left) where B denotes
a non-terminal and zero, one and ◊ denote terminals. With the above signature
we can construct terms of the form 1 zero, one, (zero ◊ one) ◊ zero, • • •.

7.2.1 Conditional Rewrite Rules

A conditional equation has the form

S1 = t1, ... 'Sn = tn

so= to

with n ~ 0, ands;, t; (0 :Si :Sn) terms. Such an equation can also be read as a
conditional rewrite rule by considering that s0 rewrites to t0 when the conditions
are satisfied, i.e., whens; and t; can rewrite to the same (normal) form (1 :Si :Sn).
Usually, some well-definedness constraints are imposed on the variables of the
conditions in order to ensure their definedness during the execution.

For example, the following oriented (unconditional) rules describe the seman­
tics of the language B .

zero ◊ x = zero

one◊ x = x

where x is a variable over the sort B, which we sometimes write as: x-+ B.

1The parentheses are not a part of the syntax but are used to indicate the underlying structure.

7.3. INTERACTION 111

7.2.2 Meta-variables

Meta-variables are placeholders available during syntax-directed editing. They
represent the holes in incomplete terms. A hole of sort S is represented by (S)
and can be replaced with any term of the sort S. They allow interactively building
the intended term by choosing among permissible substitutions of the language
constructs. In a syntax directed editor, multiple occurrences of place-holders of
the same sort are independent of each other. E.g., in an editor for building a
B term, (B) o (B) is a B term under construction where the two (B)s represent
separate (unrelated) place-holders. In our explanation of interaction below, we
use constants that look like meta-variables, but any (introduced) constant would
suffice.

7.3 Interaction

We describe how an algebraic specification formalism, interpreted as a term rewrit­
ing system, can be extended to accommodate interaction. Briefly,

1. we introduce "x-terms" for the purpose of interaction,

2. terms are rewritten using multi-stage rewriting, where each stage uses ordi­
nary rewriting, and

3. between stages, an external process helps remove the "x-terms" by filling-in
some holes - thus modeling interaction.

7.3.1 Motivation

The situation and the extension are illustrated by a toy example. Consider the
following set R of oriented (conditional) equations (i.e., rules):

zero o one = zero

zero o zero = zero o y

where y is a variable over the sort B.

This is not a term rewriting system in the usual sense as the second rule
introduces y, a new variable on the right-hand side. However, as we will show,
this extension (in some form or other) of the notion of term rewriting systems
is essential in our case. If we start reducing a term zero o zero, . it matches the
left-hand side of the second rule and this term will be rewritten to say zero o y',
where y' is a renaming of variable y - different from other existing variables.
Now, for further reduction of this term, it has to match one of the left-hand sides

112 CHAPTER 7. INTERACTION SPECIFICATION

again2 . The unbound variable y' matches neither one (in the first rule) nor zero
in the second rule. Therefore, the term zero o zero reduces to zero o y' and the
reduction stops. It can be restarted by concretizing y' to any valid term (any term
of sort B). This narrowing substitution that happens external to the rewriting
essentially models input.

In this case, rewriting continues as long as zero is entered inter~ctively and
stops as soon as one is entered, terminating the interactive reduction process. We
can denote such a situation by:

zero o zero zero*
R

onk zero

where zero o zero is the initial term, ~ denotes the multi-step reduction relation
over R, zero * one is a regular expression describing the input sequence, and zero
is the resulting normal form .

7.3.2 Input

We will use a notation that helps capture the need for input explicitly (instead
of the unbound y discussed earlier). A term of form x((B)) is used in place of y.

This is defined by additional syntax3 :

functions
"(B)" ➔ B
x(B) ➔ B

The "x" captures a desire that only an "external" process can narrow its
contents - which one could interpret as what happens in an interaction.

We write the above rules as follows:

zero o one = zero

zero o zero = zero o x((B))

Note the use of x((B)) in place of y . Since y was declared to be of sort B,
(B) indicates a place holder which needs to be filled in. The semantics of term

2 Since y' is an unbound variable, the occurance of y' in term zero ◊ y' could unify with either
one in the first rule or with zero in the second rule . Taking into account both these possibilities
is the subject of narrowing based term rewriting systems. However, in a typical term rewriting
system only matching and no narrowing is present.

3 (B) is a constant in the domain of specification, but a meta-variable in the domain of editors.

7.3. INTERACTION 113

rewriting is unchanged resulting in a normal form of the term with occurrences of
x((B)) in it.

The function x projects the term that was used as a replacement for the place­
holder in its argument, after an interaction. Thus the narrowing substitution rule

x((B)) = zero

would result when the place-holder (B) is filled by zero. In the example above,
after the interaction, the rule would rewrite all occurrences of x((B)) to zero and
the process of reducing the resulting term continues using the rules R.

Given a term t and a set of rules R, let reduce(R, t) denote the normal form
of the term t obtained by rewriting the term t using the rules R until no further
reduction is possible. An interactive reduction of a term t, given a set of rules R
is then defined as:

interact(R, t) = reduce(R, t) when x-free(reduce(R, t)) = true

interact(R, t) = interact(R, reduce(Ii, reduce(R, t))) otherwise

where Ii denotes the ith interaction and the predicate x-free(t) checks if the term
t has any x-terms.

Note that according to the above definition, regardless of the point in which
a request for interaction arises, all similar x-terms are replaced at once. For
example, consider the reduction of the term (zero o zero) o (zero o zero). We
comment on why this by itself is not very limiting in the next subsection. Also,
we do not consider it as a problem in this thesis and expect that the specification
could be written differently, possibly using auxiliary functions or by imposing some
conditions on the terms that are to be rewritten interactively.

7.3.3 Output

Until now, we have considered input but what is interactive output in such a
rewriting environment? We can put additional constraints on the nature of val­
ues expected from an external process. For instance, we can require that the
replacements for the place-holder matches certain patterns. In the above, instead
of allowing all B values, one could restrict the possible substitutions for (B) to
values that are of the form one o · · ·. Consider the alternate set R 1 of rules:

zero o one = zero

zero o zero = zero o x(one o (B))

114 CHAPTER 7. INTERACTION SPECIFICATION

Here the constraint on the input is that it should not only be of the sort B,
but should also have the form one o • • •. Thus a user can provide a term that
narrows the contents of x and then the projection of the term that replaced the
place-holder would be the value of the x term. Thus the rule

x(one o (B)) = zero o one

results as the effect of an interaction that provides a term one o jzero o onej. A
term zero o zero reduces to a term of the form zero o x(one o (B)) which could
further reduce to zero o e (for some B term e) when a user provides the term
one o e. For our purposes, we allow in every x term only one place holder -
the sort of which is the sort of the term it projects to. In an interactive sense,
this means that a user is constrained to provide a term of the form one o · · ·
for the reduction to proceed further. The "one o " provides to the user context
information while inputing a value for (B) . The context information can in turn
be perceived as output. Note that, this results in requesting specific patterns.
Thus:

• R,

zero o zero (one ◊ zero) * (one ◊ one~ zero

Alternatively, x(one o (B)) in the second rule could be x(enter value: (B))
where "enter value : (B)" is a valid term over some sort. One could also give
better context like "enter value i : (B)", which depending on the value of i could
result in queries of the form: "enter value 1 : (B) ", "enter value 2 : (B)" , · · ·,
thereby avoiding some of the problems that seem to appear as a result of not
distinguishing the source of an "interaction request" .

7.3.4 In Practice

The rewriting starts as usual and when a normal form is obtained, the term is
checked for existence of x-terms. If there are no x-terms, we are done and the
result is presented using its visual syntax. Otherwise, a x-term, which does not
have an occurrence of another x-term, is chosen arbitrarily and the contents4 of
the x-term are presented to a user in a (visual) editor. The constant "(B)" is
treated as a meta-variable that should be filled in with an allowed substitution in
the editor window. When done, this results in substituting in the normal form the
value entered by the user for all occurrences of the same x-term and the rewriting
starts again depending on the value substituted.

We have ignored the issues of fairness here. One could, alternately choose to
eliminate all x-terms via interaction before restarting the rewriting process. Also,
we could set some guidelines on the use of x-terms in a specification, such that it

4 The term under the X·

7.4. CALCULATOR EXAMPLE 115

adheres to an intuitive notions of interaction. One such guideline could be that the
occurrence of x-terms in conditions is limited to (or should be equivalent to) them
appearing only on the right-hand side of the equations. This guideline helps one
not to worry about backtracking in conditions. Also one could use Share-Where
like annotations to identify where two independent occurrences of an interaction
might coincide. This would distinguish identically looking x-terms, depending on
when and where they were created.

7.4 Calculator Example

In order to demonstrate how we address interaction we provide a very simple
example of a calculator. Albeit small, this example describes a graphical language
with semantics requiring human interaction. This example is not fine tuned for
any specific interaction style and thus only the default interaction behavior is
discussed.

Building a user interface is done in two phases. The first phase is to specify
the look of the interface. This is similar to many common user interface builders
available today. The additional flexibility we provide is that certain syntactic
constructs can be grouped together by using a small constraint language for layout
of the interface look. The details of the visual syntax specification of the calculator
is not provided here. But rather, the focus is on aspects related to input and output
and their specification. However, the following sort definitions are needed to follow
the forthcoming specifications.

IEnterl ➔ OP

[±] ➔ OP

~ ➔ OP

L&.tlM] ➔ DISPLAY
OP
OP
OP ➔ OPS

DISPLAY
OPS ➔ CALC

The Calculator language defines three operations: IEnterl for resetting the
current value of the calculator; [±] for adding a new value to the running total
of the calculator; and ~ for displaying the total. The sort OPS describes that
three OPs are placed in vertical alignment and the sort CALC describes that a
DISPLAY and OPS are laid out such that the OPS is centered and below the
DISPLAY. This is s~eoified by constraining these appropriately (Chapter 4). A
visual term of the ca1cu1ator cotl.'ld b-e, depending ,on th.e nature of the constraints
specified:

116 CHAPTER 7. INTERACTION SPECIFICATION

o/

7.4.1 Calculator Query Syntax

The calculator requires two input functions: one for retrieving an "OP" selection
and one for retrieving values. The values in question are numbers, the definition
of which is imported (predefined).

In order to interact we need to define syntax for queries, which would generally
be an extension to the Calculator syntax itself. Queries can be as simple or
complicated as desired. The simplest queries are just meta-variables appearing in
a term window without indicating any context. In essence the goal of a query is
to fetch some value and the manner in which the input is retrieved only bears on
interface aspects. The point is that the language designer can simply define input
prompts (which are in fact the outputs) in a uniform and convenient manner. The
utility of these definitions can be seen in Section 7.4.2. The following defines a
query syntax for the Calculator language:

CALC NUM -+ CALC-Q

CALC OP -+ CALC-Q

Terms of sort CALC-Q will be used to present the current state of the cal­
culator as well as demand input from a user who must respond by "building" an
input term. In this case, depending on the context, the input requested will either
of the sort NUM or the sort OP.

7.4.2 Evaluation Semantics

After the first stage which is specifying the desired user interface components and
the layout, the second stage involves specifying the semantic component of the
user interface. This is done using equations. Note that one might need to specify
additional syntax during this stage that need not be part of the user interface
itself. For the syntax of the calculator evaluation we use the additional syntax of
the eval and eval-op functions and define their functionality.

eval{CALC,NUM) -+ NU M

eval-op{CALC,OP,NUM) -+ NUM

7.4. CALCULATOR EXAMPLE 117

The semantics is defined using conditional equations as explained m Sec­
tion 1.4.3. These equations make use of the following variables:

Cale -+ CALC

Ops -+ OPS

TheOp -+ OP

Store, N um, N um' -+ NUM

For example, Cale could be bound to any calculator (visual) term that can be
composed from the above syntax specification for the sort CALC. Furthermore, in
this example, we use the notation j,terml instead of the x(term) used in Section 7.3.
We provide a brief explanation for each equation below.
equations

Evaluating a CALC term with a given store, is to query for an operation and then
evaluate the term using the result of this query. The variable TheOp represents the
result of interaction that would be obtained after interactively binding the variable
to an operation. Note that the current Cale contents are displayed to the user in
order to provide the context for interaction. The right hand side of the equation gets
the user desired operation which is bound to the variable TheOp which guides the
interface to the next interaction caused by eval-op.

TheOp fCalc (OP)I
[1]

eval(Calc, Store) eval-op(Calc, TheOp, Store)

Evaluating a Cale when the operation is IEnterl is to query for a new number which
will be displayed in the calculator.

[2] eval-ap (~ , IEnt .. l, s,~,)
eval (j £NUM)I I , a)

Ops

118 CHAPTER 7. INTERACTION SPECIFICATION

Evaluating the operation El amounts to displaying the current value in the Store .

(3] eval-ap (ffi , '=l, Stm-e)

eval (I Sfore I , Store)

Ops

Evaluating the operation [±] means to query for a number and display the result of
the query, as well as storing the sum of the new number and the old store as the new
store. Note that one interaction results in spite of Num' appearing twice on the right
hand side.

Num' f(NUM)I
(4]

eval ap (11
0
:•m 11 , rn, Stm-e)

eval (11
0
:~m• 11 • Stm-e + Num')

7.4.3 Interaction issues

Thus far , we have touched upon the syntax and semantic aspects of the calculator.
In this section, we discuss how all these specifications can be brought together to
yield a practically useful set of tools for an end user environment for this language.

The term editor

The term editor, which is generated from the syntax specification of a language,
allows the creation of terms of that language. For the Calculator language, the
Calculator Term Editor allows the creation, for example, of the following term:

7.4. CALCULATOR EXAMPLE 119

al

Input and output representation

When an input request is presented the user can replace the meta-variable with a
permissible replacement as dictated by the language syntax, which is always type
correct and represented just as the syntax is defined (graphical input). Thus, the
variable which was unbound becomes bound after the user interaction. In the case
of human interaction we may very well prefer to present the input request in a
more user-friendly manner. For example, we may prefer to have: "Please enter an
operation: (OP)".

Term reduction

After a visual program (a term) is constructed we want to execute it using the
semantics. To do so, we apply the eval function defined in Section 7.4.2.

To start the scenario, first a calculator term must be created. This is done in
a term editor over CALC:

eval
I al

IEnterl
[±]

~

In this editor , the eval button is defined to apply the "eval" function to the

120 CHAPTER 7. INTERACTION SPECIFICATION

CALC term constructed in it5
:

ol

eval ,0

Now let us follow a scenario to see how the equations deal with input and
output during evaluation. Note that at the time of evaluation the exact appearance
of the calculator is determined. The actual ordering of the operations is determined
when the calculator term is constructed. The syntax, in fact, permits any ordering
or even repeated occurrences of the operations as long as there are three operations.
After the evaluation is requested, this calculator term is continually rewritten
driven by the input received.

The rest of the scenario shows the term in the editor as it is rewritten. The
equation number references are from Section 7.4.2. Applying the eval function
to the term, invokes an external-match due to the~ (i.e., x term) present in
equation [1], which presents the term to a user:

ol

(OP)

The meta-variable demands input from the user , who can syntactically choose
from a menu which presents the permitted operation or select an appropriate sub­
term from the existing term. The latter choice means that the user can select
any operation from the calculator term. If the user selects IEnterl then the term
becomes the one on the left below, using which the eval-op function matches
equation [2] which invokes yet another I/O (the right term):

5 The term editor supports the binding of a function from a language specification to a button.

7.5. SPECIFICATION OF FSA ANIMATION 121

ol

(NUM)

Now, in order to continue, a number must be provided. Considering that the
number 5 is entered, the rewrite of equation [2] can be completed, which is another
eval function matching equation [l] again.

5 (OP)

Notice that the terms driven by input and output are presented in a window.
In Chapter 6 we investigated how information could be maintained (called Share­
Where maintenance) so that the initial look of the calculator is preserved through
the interaction. We have not discussed the issue of how certain window control
information can be incorporated.

7.5 Specification of FSA Animation

In this section we will examine input and output during the execution of an FSA
sentence, which was introduced in Section 6.2. Here, we provide a specification
that interactively requests an input alphabet from the user and does an animation
step. We also show how Share-Where is used in displaying animation steps.

First, we need to define a new syntax for an animation language. Figures 7.1
and 7.2 show the syntax and semantic equations of FSA-anim which defines a query
syntax and the semantic rules to be used for interactive animation.

The interaction is defined in terms of soliciting a character from the user as
part of the input string while presenting the state of the FSA configuration (FSA-Q)
as feedback. In fact, it is created with an FSA-CONF and an SSTATE visual term.
This way, we get both the current state as well as the start state in the presented

122 CHAPTER 7. INTERACTION SPECIFICATION

picture - due to the influence of Share-Where during pretty printing. Recall that
D projects the value of the meta-variable, which in this case is (ALPHA). The
conditions in each equation result in retrieving a character from the user.

The query is presented with the FSA , a prompt for input , and the alphabet
sequence that has been provided to reach this state. The evit function defined
in Section 6.2.3 for the FSA-eval is used to process the character retrieved from
the user according to the state of the sentence. If the character retrieved allows
a transition the current state is updated appropriately and the user is asked for
another character. If the character does not allow a transition the user is informed
of this condition and is asked for another character.

Equation (el] creates an FSA-CONF visual term which is used by the evi t
function. Unlike in the FSA-eval language, where the entire input string is given
to start with , here the input string is constructed according to the user input.
Accordingly, the evit function is given an FSA-CONF visual term consisting of an
ALPHA-L with only a single character. If the transition is allowed this character is
consumed, otherwise it remains . Thus, we can differentiate among the cases when
a query should inform the user that the transition was not valid with the given
character and request for another choice. Also, the input string is constructed
only with the characters that result in transitions. This goes on until doomsday
(the sort CIAO has no constructors). We could have alternatively chosen to stop
it with an empty character and give the resulting state of accept or reject as in
Section 6.2.

7.6 Interaction

Figure 7.3 shows an FSA instance in a term editor. After such a visual program
is constructed we want to execute it using the specified semantics. The "anim"
button is defined as to apply the "anim" function which is defined in the FSA-anim
module.

Now, let us follow part of a scenario to see how the equations result in input
and output during evaluation. The equation labels used in the explanations corre­
spond to the labels of the equations in the module FSA-anim. As a difference from
the specification of FSA-eval which did not use the start state during evaluation
(evit function), during animation, for displaying intermediate steps, we need to
put back the start state. If we did not the FSA picture would appear different to
the observer. During the animation, we will display the start state, the current
state, the input string retrieved so far from the user and the input request query.

Applying the anim function to the term, results in input request due to equa­
tion (i2] - which gets called by the equation (il] which defines the "anim" function .
The resulting term is seen in Figure 7.4. The unbound variable i is replaced with
(ALPHA). The remainder of the query provides context and feedback during the
animation . The FSA term provides the context by showing the FSA with current

7.6. INTERACTION

module FSA-anim

imports FSA-eval

sorts FSA-CIO CIAO FSA-Q

functions

anim (FSA)
astep (FSA-CIO)

FSA-CONF, ALPHA-L , SSTATE

Choose an character: ALPHA
FSA-CONF SSTATE

~IA~L~P~H=A~-L~I used to reach current state

No valid transition exists for:
"ALPHA" from current state!

Choose another character: ALPHA
FSA-CONF SSTATE

/~A~L~P~H=A~-L~I used to reach current state

variables

i
i'
Ss

-+
-+
-+

-+

-+

CIAO
CIAO
FSA-CIO

FSA-Q

FSA-Q

-+ ALPHA
-+ ALPHA

-+ SSTATE

123

Figure 7.1: The syntax specification for a query language for FSA-anim language.

124

equations

[il]

anim(I ⇒Stol)

[i2]

i'

[i3]

CHAPTER 7. INTERACTION SPECIFICATION

Choose an character: (ALPHA)

I Sto I ⇒Sto
[fl used to reach current state

- I

astep (evit(I Sto Ii) ,i ,⇒Sto)

Choose an character: (ALPHA)

I Sto I Ss

[El used to reach current state

No valid transition exists for:
"i" from current state!

Choose another character: (ALPHA)

I Sto I Ss

[El used to reach current state

astep (I Sto I i ,i*i ,Ss)

Figure 7.2: The specification of FSA-anim semantic rules for the animation.

7.6. INTERACTION 125

File . . .
amm

B
a

⇒

~ b

Figure 7.3: Term editor for the FSA language.

state as well as the valid string entered to reach this state.

The meta-variable (ALPHA) demands input from the user, who can syntac­
tically choose from a menu which presents the permitted operations or select an
appropriate sub-term (transition labels) from the existing term. If the user selects
"a" then the term matches equation (i2) again which updates the current state and
the input sequence and combines these in the next query for input (Figure 7.5-a).
To continue, another character must be entered. Consider that the character "a",
say, is selected again. This time the equation (i3) matches which outputs a message
that such a transition is invalid and solicits for a new character (Figure 7.5-b).

Notice that the terms seen in the editor are the ones resulting from input
and output. No other intermediate terms are presented. It is not the case that
each rewrite changes the term in the editor. This model extends it to present
intermediate terms identified by input and output. Clearly, several user interface
issues need to be investigated to address the various ways that intermediate terms
as well as the input and output could be presented. Among these choices are to
replace terms in place, present new terms in separate windows or in separate places
of the same window, or hiding parts of the term that are not relevant to the user
etc.

7.6.1 Share-Where for IO

We have already explained in Section 6.3. l how Share-Where information is used
to construct desirable output terms that correspond, to some extent, to the input
terms or the terms responsible for the production of the output term.· This tech­
nique can be used in a straightforward manner to handle IO. During execution, in
the presence of IO, there could be many terms that are created or manipulated by

126 CHAPTER 7. INTERACTION SPECIFICATION

File

a Choose a character: (ALPHA)
b
C

d B - a
e

~
f ⇒ b
g
h
i
j [fl used to reach current state

I■ -
Figure 7.4: First interaction after "anim" is pressed.

a user which have a bearing on the final term. The following observations help in
proper implementation of Share-Where in the presence of IO.

• The Where information necessitates that all creations be available for lookup
if necessary. This means that all versions of IO windows which created any
term should be accessible when presenting a new term.

• When a term is displayed in an IO window it preserves the Share-Where
information from before. The Share-Where information originates from an
IO window for input (sub)terms only.

• Any sub-term that is created in an IO window gets new Share-Where anno­
tations, unless it is shared with an output (sub)term. If it is shared, it gets
the annotation of the sharer.

7.6.2 Share-Where properties for FSA animator

We can claim the following properties for the module FSA-anim.

• The FSA animator preserves the look of the FSA input term.

• The FSA animator moves the current state marker without surprises, when
in the FSA term each state has a unique presentation (i.e., no state looks
repeated). Should they not have a unique presentation, a transition could
appear to "fire" from a current state with no transition that matches the
input. The FSA-anim semantics specifies that all states that appear the
same are considered the same at the abstract level.

7.6. INTERACTION 127

File

a Choose a character: (ALPHA)
b -C

d B
a

e

~
f ⇒

b
g
h
i
j [ill used to reach current state

'■

(a) Input request after successful transition.

File
No valid transition exists for

"a" from current state!
a Choose an character: (ALPHA)
b -C

d B
a

e

~
f ⇒

b
g
h
i

J [ill used to reach current state

(b) Input request after unsuccessful transition.

Figure 7.5: Some FSA term configurations during animation.

128 CHAPTER 7. INTERACTION SPECIFICATION

7.7 Related Work

Monads [39] and unique types [59) are two examples that allow extension of func­
tional languages with input/output. Monads are higher order constructions and
thus are not directly useful for us. Also monads are basically used to more or less
transparently thread different input and output streams through a program. We
on the other hand support interaction as a notion independent of input and output
streams. Unique types are used to type-check a program so that non-determinism
is limited when one reads or writes from a stream. We do not have the same
problem, but we could also use such a typing for warning a specifier of potentially
different "interaction requests" that may collapse into one interaction phase.

Koorn [45) has developed a language called SEAL that provides the necessary
interaction and window management constructs in a context of algebraically spec­
ified rewriting. SEAL is a separate language used for coordinating the different
terms in various windows that are involved in interaction. One cannot use the
same (visual) syntax like one does in an equations editor, instead one is forced to
work with focus movement operations. SEAL also provides for other operations
that manipulate a user interface which could also be captured by extending our
notion of interaction appropriately.

Walters and Kamperman [82) have indicated how a term rewriting system
can be viewed as a specification with input and output variables, by transforming
a specification into another one that is suitable for constraint narrowing. Their
intention is to determine when part of a term can be output (say written to a
file) and thus need not be carried around by the rewriting machinery until the
whole term is computed. The motivation for their work is to be able to make a
term rewriting system deal with huge terms efficiently- when space is a problem,
although it is not very clear how one can use their approach to provide interaction.
Here we consider the dual problem of allowing explicit input and output in a term
rewriting system so that interaction with a user is possible.

The language Prograph [58] (not a functional language) is a popular visual
language but it provides only limited support for user definable visual data types
that could be used for input and output. In our setting, a user can define arbitrary
visual terms can could be used during interaction.

7.8 Summary

In this chapter we have introduced a simple model for supporting interaction
during term rewriting. The nature of visual languages demands highly interactive
environments. Having support for interaction addresses this need and presents the
possibility of animation and debugging driven by users. The model presented is
very basic and could be further developed in regards to both the graphical user
interface and the sophistication at which input is demanded. Right now it demands
one input per query request.

Chapter 8

Implementation
Experiments

This chapter reports on experimental implementations conducted to test the ideas
discussed in this thesis as well as describe a proposed implementation for the new
ASF+SDF Meta-Environment. In Section 8.1 we provide some context and history
of the implementation. In Section 8.2 we describe some of the early implementa­
tion efforts related to Chapter 3. In Section 8.3 we describe the new architecture
of the ASF+SDF Meta-Environment and two tools that were built for this new ar­
chitecture. Finally, in Section 8.4 we conclude with describing the implementation
required to implement VASE as discussed in Chapter 5.

8.1 History of the Implementation Ex periments

The aim of the work on VASE was to eventually integrate it within the ASF+SDF
Meta-Environment. At the time that this work was initiated the ASF+SDF Meta­
Environment was a system whose user-interface consisted of simple textual editors.
It was a monolithic application consisting of a variety of components handling
various aspects of language specification and term execution. The monolithic
nature of the system made it difficult to extend it with graphical editors.

Our initial efforts were geared towards finding public-domain software1 for
constructing graphical editors and for solving numerical constraints. After some
investigation and testing we settled upon Garnet [54] as it supported both these
needs and was reasonably mature software. Using Garnet we experimented with
ideas described in Chapter 3. These experiments are described in Section 8.2.

1 We are constrained to using public-domain software not only from our own financial con­
straints but also from the point of view of distributing any resulting software.

129

130 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

We gained considerable insight from these initial efforts. However, we aban­
doned this path for two main reasons. The first and most significant reason was
motivated by the major redesign of the ASF+SDF Meta-Environment which is
switching from a monolithic architecture to one consisting of a dynamically con­
figured set of cooperating tools based on ToolBus (9). We, thus, wanted to de­
couple the constraint solver and the graphical editor to have two separate tools
which could be used independently. The second reason was to move to a graphical
platform that was smaller, more stable, and better supported. The architecture
of the proposed implementation for VASE is discussed in Section 8.4.

We proceeded building separate tools for our work. We focused on the VODL

editor and the constraint solver. As for a new graphical platform we initially
experimented with Tcl/Tk (57) which was also the graphical interface-builder for
the new Meta-Environment. We were quickly frustrated with the lack of structur­
ing facilities of Tel. This prompted us to switch to Python/Tk (66) which is an
object-oriented interpreted language offering excellent structuring facilities. We
found this essential as we wanted to deal with composite graphical objects which
we generate from vods. Without appropriate structuring mechanisms the main­
tenance and comprehensibility of any resulting code would be very difficult. In
Tcl/Tk all graphical objects exist at the same level in a canvas (a Tk component
where graphical objects are drawn) where imposing and maintaining structure over
these to get the effect of composite graphical objects was quite unpleasant. The
VODL editor developed using Python is described in Section 8.3.l.

As for the constraint solver we constructed tools based on the solvers DeltaBlue
(69) and then on Sky Blue [68). The tool created using DeltaB!ue is briefly described
in Section 8.3.2. We have not really found a satisfying solution for our constraint
solving problem yet. The software we used, in fact, maintains (not necessarily
solves) constraints via value propagation. This is suitable for cases where we are
interested in maintaining graphical relationships for well defined pictures since the
constraints and defaults can be specialized for these cases. However, in our case,
we have a different problem, where we are interested in instantiating graphical
objects based on vods which are continuously being defined. This would require
that values have to be automatically generated for attributes of the vods that are
not defined explicitly. But DeltaB!ue does not deal with undefined variables. So in
our experiments we had to define default values for attributes. For the graphical
editor case, from the user-interface point of view, we need to select appropriate
values from the generated set of solutions. For example, we would want the picture
to remain as stable as possible avoiding unnecessary movements or resizing.

We would ideally want to have a solver that produces appropriate values
according to the definitions. We have been particularly interested in using the
constraint solver being developed by the visual languages and CLP(R) research
group at Monash University. The best description of the nature of this solver can
be found in [37).

8.2. GENERATING VISUAL EDITORS 131

8.2 Generating Visual Editors

In this section we discuss some early work regarding the generation of editors as
described in Chapter 3. This work consists of two parts: (a) the specification of
languages, their mapping to visual representations and editor generation; and (b)
the basis of the structured visual editor (see Figure 3.1).

8.2.1 Editor Shell

Using Garnet we created a very simple shell for the editor as explained in Sec­
tion 3.5.4. Basically, this editor consists of:

• A replacement panel: which contains the valid replacements for the currently
selected placeholder. A list of valid replacements for each sort of the language
is constructed into a menu, where only one of the items in the menu can
be selected at a time. The menu is constructed based on the generated
replacement behavior as described in Section 3.5.l. The menu present in the
replacement panel depends on the sort of the most recently selected item
in the visual term, containing the replacement menu for that sort. In the
initial configuration the replacement menu consists of a list of all sorts of the
language.

• A work space: which allows the creation of visual terms of the language. The
user can interactively select and create syntactically correct visual terms by
selecting items from the replacement panel. Figure 8.1 shows an instance of
such an editor for binary trees where the leaves are boxed numbers. Place­
holders are presented here by "(sort-name)".

8.2.2 Definition of vods

The definition of the vods as well a translation to garnet code is specified using
the ASF+SDF Meta-Environment. Figures 8.2 and 8.3 show the syntax of the
translation and some of the equations transforming the vod definitions to garnet­
vods respectively. In Figure 8.3 equation [rvod] creates a rectangle graphical object
and equations [comp-vodl] and [comp-vod2] create a composite graphical object
referred to as aggregadgets in Garnet by first creating an aggregate object and then
adding the sub-vods to the aggregate. For example, the following vod definition:

garnet-vod(text() EB [name = "Hello! 11
])

yields the following garnet code (which we refer to as a garnet-vod):

(create-instance' TEXT-VDD opal:cursor-text
(:known-as :text-label)
(:right (o-formula (+ (gvl :left) (gvl :width))))

132 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

[!l Binary Tree Editor

1 Quit•

- <NODE>

<LEAF>

Figure 8.1: Snapshot of a binary tree editor, where Garnet is the graphical plat­
form.

Garnet-VOD Module
imports Lisp VOD Garnet-Constraints
exports

sorts GARNET-VOD GARNET-VOD-LIST
context-free syntax

garnet-vod(VOD) -+ GARNET-VOD-LIST
LISP-C -+ GARNET-VOD
GARNET-VOD-LIST "&" GARNET-VOD-LIST-+ GARNET-VOD-LIST
GARNET-VOD+ -+ GARNET-VOD-LIST
make-agg(VODNAME, GARNET-VOD-LIST) -+ GARNET-VOD-LIST
vl2cl(GARNET-VOD+) -+ LISP-C
vodname2lisp(VODNAME) -+ LISP-C

hiddens
variables

Name [0-9]* -+ STRING

Garnet-Vod [0-9]* -+ GARNET-VOD
Garnet-Vod [0-9]*"*" -+ GARNET-VOD*
Garnet-Vod [0-9]*"+" -+ GARNET-VOD+
Garnet-Vod-list [0-9]* -+ GARNET-VOD-LIST
CType [0-9']* -+ CTYPE
v[0-9]*"*" -+ CHAR*

Figure 8.2: The syntax definition of the module Garnet-VOD.

8.2. GENERATING VISUAL EDITORS

equations

default-height= (:height 40)

[AttrPt] = prep-comp([AttrP+]),
[AttrP{] = prep2([AttrPt])

garnet-vod(rectangle() EB [AttrP+]) =
(create-instance ' str-to-lisp2(11 RECT-VOD 11

)

opal:rectangle
(: right (o-formula (+ (gvl : left) (gvl : width))))
(:bottom (o-formula (+ (gvl : top) (gvl :height))))
(: known-as : rectangleref) garnet-constrs(AttrP{))

Str1 = 11
:

11 II Str,
[AttrP+] = prep2([Attrp;', name= Str, AttrF;])

garnet-vod(text() EB [Attrp;', name= Str, AttrF;]) =
(create-instance ' str-to-lisp2(11 TEXT-VOD 11

) opal: cursor-text
(: known-as : text-label)
(:right (o-formula (+ (gvl :left) (gvl :width))))
(: bottom (o-formula (+ (gvl : top) (gvl : height))))
garnet-constrs (A ttr P +))

Garnet- Vod-list = garnet-vod(Vod)

133

[ht-def)

[rvod)

[tvod)

& garnet-vod(defv VodName(X*) { VodDec*}
EB [AttrP+])

---------------------------1('.omp-vl)
garnet-vod(defv VodName(X*)

{ VRef: Vod, VodDec*} EB [AttrP+])
make-agg(VodName, Garnet- Vod-list)

vl2cl(Garnet- Vod+) = lisp-code,
lisp-code2 = vodname2lisp(VodName)

make-agg(VodName, Garnet- Vod+) =
(create-instance ' lisp-code2 opal: aggregadget)
(opal: add-components lisp-code2 lisp-code)

vodname2lisp(vodname(v *)) = lisp-c(v *)

[comp-v2)

[v2str)

Figure 8.3: Some of the equations transforming vods into garnet-vods.

134 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

Too!Bus

~® msg ••• ~
II /\ I~

v \I \I

Tl T2 ••• Tn

Figure 8.4: The ToolBus architecture. Pi, ... , Pn are processes and T1, ... , Tn are
tools which communicate via the ToolBus.

(:bottom (o-formula (+ (gvl :top) (gvl :height))))
(:left (o-formula (gvl :parent :left)))
(:top (o-formula (gvl :parent :top)))
(: string "Hello!"))

The values for the : left and : top slots result from the vod shown above
being pre-processed prior to begin translated to a garnet-vod. This is necessary
since the presence of some slots is required for garnet to render as well as deal
with formulas2 . Thus prior to translating any vod to a garnet-vod we pre-process
them to assure they have all the required values. The translation definitions for
constraints are defined in the module (imported) Garnet-Constraints.

8.3 The new ASF+SDF Meta-Environment

The ASF+SDF Meta-Environment is near completion and with its new architecture
it will be much easier to incorporate our tools. It is based on the ToolBus [9] ar­
chitecture which supports the interconnection of distributed, heterogeneous, tools.
The asynchronous communication among the components is carried out with mes­
sages that pass data called 'terms'. Adapters are required to translate from the
data types of the ToolBus and the data types of the tools. Figure 8.4 shows the
architecture of the ToolBus.

2 Formulas are slot values that are defined as constraints.

8.3. THE NEW ASF+SDF META-ENVIRONMENT 135

~ DemoVod.def

Tm.: I
,.:.TU I
others I

':)
I_,?

Figure 8.5: Snapshot of a the vod editor editor. Here the graphical platform is
Python/Tk.

8.3.1 VODL Editor

The VODL editor is currently being implemented3 with Python/Tk as the graphical
platform. Figure 8.5 shows a snapshot of the editor which defines a composite vod
consisting of a rectangle containing the text "Hello!". It provides a set of primitive
vods to construct composite vods.

The definition consists of interactively selecting from a set of primitive and
predefined vods (accessed with the others button) which identify the sub-vods and
a set of constraints governing the sub-vods. This editor is an interactive editor
where the sub-vods are drawn on the panel. For each vod that is being created,
a label has to be entered (via a dialog box) that will serve as a vod-reference.
This is to keep the correspondence with the vod syntax presented in Chapter 4.
These labels could alternatively be generated automatically. However, it is rather
useful to have user defined labels for sub-vods which often correspond to something
meaningful to the creator. Since sub-vods may be referenced in other vods, labels
that make sense to the user are also preferable.

The definition that is saved for this vod is:
3 The implementation work for the VODL editor is being carried out by Harold Breebart as part

of his masters thesis project. The full description of this editor will be available in his upcoming
masters thesis.

136 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

defv DemoVod()
{ hi: text() _wa [name= ''Hello!''],

border: rectangle()}
{ border contains hi}
{ hi : 67 . 0, 47.0

border : 37 .0, 27.0, 128 . 0, 77.0}

The first and second group are the sub-vods and constraints sections that we
are familiar with. The third group are values that are used to present the vod
when retrieved into the VODL editor.

8.3.2 Constraint Solving

A constraint solver tool (74] based on DeltaBlue (69) was developed for the pur­
poses of attaching it to the ToolBus. It has already been interfaced with the
ToolBus. The DeltaBlue constraint solver was specialized for our needs of graph­
ical constraints. Then an interface language for the solver was developed which
allowed the constraints to be expressed as simple equations such as:

rl.x := 50,
rl.x + 100 = r2.x,
rl.y = r2.y,
rl.y := 50

where rl.x, r2.x, rl.y, and rl.y are variables. The operation := is used for a
temporary assignment and = as the equality constraint. The coordinates of vods
can easily be defined where "." serves as a separator between vod names and
attributes.

We are not very satisfied with the solver as it often gets into loops due to cyclic
references which are commonly defined for graphical objects. Also, with DeltaBlue,
the constraints can only be defined with equalities. Having inequalities, ranges
and domains would be most useful. We simulated results using only equations,
but this is quite limiting. In order to get values at all we were obliged to define
many default values. However, for prototyping purposes this was still satisfactory.
We are presently pursuing other options for a new constraint tool.

8.4 Future implementation directions

Both our specification environments (VASE), and language-specific, generated, vi­
sual environments can re-use various tools and components of the new ASF+SDF
Meta-Environment. We briefly discuss their implementation in the following two
sections .

8.4. FUTURE IMPLEMENTATION DIRECTIONS

VODL
Editor

Visual Syntax

Definition
Editor

Visual Semantics
Definition

Editor

Constraint

Solver

Visual

Editor

Generator

Figure 8.6: Tools in the visual language specification environment.

8.4.1 A VPE for VASE

137

Some of the tools comprising VASE as described in Chapter 5 are shown in Fig­
ure 8.6. The tools seen above the ToolBus handle the definition and presentation
of the visual lexicals. The VODL editor (Section 8.3.1) is used to define vods and
the constraint solver assures that the lexicals abide by the constraints present in
their definitions.

The VODL editor and the constraint solver tools were already described in
Section 8.3.1 and 8.3.2. To facilitate structured editing we need to implement
a graphical editor shell using Python/Tk similar to the one described in Sec­
tion 8.2.1. The next step would be to define visual mappings from the syntax def­
inition and for the equations definition languages providing visual representations
for these formalisms. The editor generation process applied to these languages pro­
vides us with the corresponding visual editor for defining the syntax and semantics
of visual languages. Recall also that the equation editor is parameterized by the
syntax definition of the language for which it is specifying the semantics. So it is
affected both by the syntax defined for general equations as well as the syntax of
a particular language. Thus, a language definition consisting of both these syntax
definitions needs to be constructed before generating an editor for the equation
editor. The concepts related to these editors were described in Section 5.3.

By applying the visual mapping and editor generation we can obtain the
editors needed to specify visual languages. Once these editors are present the
syntax and semantics of the visual languages are defined visually. In these editors
the visual mappings must, of course, be obtained implicitly and not defined by the
user. The language syntax is defined by the user who defines the lexicals using the
VODL editor and the language syntax with the syntax definition editor. In order
to maintain the visual presentation of the syntactic constructs we need to save the
vods used to construct the signature of the language. This information is present

138 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

in the editor and must be maintained as part of the signature since it is necessary
to access this information for pretty printing and any future retrievals .

In order to describe where such information will be retained we need to know
how the abstract syntax is represented in the new ASF+SDF Meta-Environment.
The abstract syntax is represented using a language called Asfix (78] which uses
prefix notation and unique names for each context-free function of the language. It
also allows arbitrary annotations to be included along with each function definition.
The visual presentation of each function is maintained as an annotation.

The annotation is nothing but the vod instantiation used to construct the left
hand side of the function. Such a vod could simply be a predefined vod representing
a constant function. It would more likely be a parameterized vod allowing sorts
to be part of the signature. Also, recall that vods can be created on the fly during
syntax definition since other vods can serve as arguments to parameterized vods
as was discussed in Section 5.3.l. The sorts present in the function definition
represent the arguments to the function.

To support the Share-Where maintenance discussed in Chapter 6, whose im­
plementation was discussed in particular in Section 6.4, each specification would
need to be transformed into one with Share-Where annotations. Thus, after the
language is specified it would be transformed into another specification having
Share-Where annotations and then its abstract syntax would be annotated with
vod descriptions to maintain its visual presentation.

8.4.2 A VPE for the specified language

Some of the relevant tools for a visual programming environment for a specified
language are shown in Figure 8.7. The structured visual editor is again generated
from the syntax description of the language and allows the construction of syn­
tactically correct sentences of the language. Share-Where maintenance is used for
tracking relevant information for presentation.

The term rewriter executes (reduces) the constructed program as given by the
semantic definition of the language. The abstract syntax processor maintains the
abstract syntax of the constructed term which is used by the term rewriter and
pretty printer. Results of rewriting (execution of a program) are pretty printed
and displayed in a result window.

8.5 Concluding remarks

There has been quite some work and thought exercised regarding the implementa­
tion aspects of VASE. However , the implementation remains far from completion.
It would have indeed been very interesting to put these ideas to a practical test as
to the author's knowledge there is no such approach tested for visual languages.

8.5. CONCLUDING REMARKS

Abstract
Syntax

Processor

Visual

Editor

Constraint

Solver

Term

Rewriter

Pretty

Printer

Result

Window

139

Figure 8. 7: Tools in a visual programming environment for a specific language.

140 CHAPTER 8. IMPLEMENTATION EXPERIMENTS

Chapter 9

Conclusions

In this chapter we make our final remarks by expressing what we feel are the
contributions of this work as well as discussing the limitations of the proposed
approach. We also comment upon possible future directions.

9.1 Contributions

This work was born out of the desire to extend a textual language specifica­
tion formalism (ASF+SDF) and its supporting environment (ASF+SDF Meta­
Environment) for dealing with visual languages. We conducted our explorations
within the framework of context-free specifications with term representations and
examined what we could achieve within these boundaries. With this as our starting
point, we began investigating how we could specify visual languages and gener­
ate visual editors from languages specified with this formalism such that desired
sentences could be constructed.

Our approach separates the definition of syntax and semantics. Many other
approaches combine these definitions into a single definition like in the attribute
grammars of (5, 34, 29, 48]. We believe that our approach allows the distribution of
concerns in language definition and improves the comprehension of these different
aspects of languages.

In order to build visual terms, we needed a language to specify the graphical
language constructs. For this we introduced the picture definition language VODL

(Chapter 4). Using graphical notation defined with this language we describe
how we could define visual languages. Initially, we considered language definition
with explicit mappings of visual notation to language constructs as discussed in
Chapter 3. Then, we presented a visual specification formalism that rendered the
mapping implicit and used visual notation in the specification itself (Chapter 5).
In Chapter 4 we described how a structure-oriented editor could be generated

141

142 CHAPTER 9. CONCLUSIONS

for constructing visual terms. In order to accommodate multi-dimensional syntax
common in visual languages, we extended the usual notion of editing by allowing
sharing of similar sub-sentences (of appropriate sorts). In order to preserve the
appearances after rewriting, we introduced Share-Where maintenance which an­
notates terms with information that is used in constructing output terms (Chap­
ter 6). Finally, in Chapter 7 we introduced an extension of the term rewriting
system model to support interaction.

Constructing visual terms with the structure-oriented editor, would in fact,
be quite cumbersome. Such editors have proven to be unsuccessful in the case of
textual languages. With visual languages they may be somewhat more acceptable
due to the complexity of visual syntax and the lack of a standard set of repre­
sentations like a character set as in textual languages. Nevertheless, we have not
been so concerned with the efficiency of how visual terms could be constructed in
as much as that they could somehow be constructed. Our focus was on how vi­
sual languages could be specified and what could be done with constructed visual
terms, such as rewriting and pretty printing. It is on these points that this work
has attempted to make some contributions. This having been said, we feel that
the most interesting aspects of this work can be summarized as:

• VODL: a language for defining parameterized visual objects.

• A visual specification formalism for visual languages.

• Use of domain specific syntax in language specification.

• Pretty printing of rewritten terms with Share-Where.

• Specification of interaction.

We have striven to advocate the use of visual methods during the specification
process as well as in end-user environments in the spirit of [46, 24, 51]. Note that
most of the above points can be considered orthogonal to the underlying choices
of language formalism. They are methods that could also be employed by other
formalisms .

9.2 Discussion

In this section we present some observations regarding our formalism and approach
and outline some limitations.

9.2.1 Limitations

Our approach relies on handling context-sensitive aspects of languages, such as
type-checking, with equations as part of the language semantics. Dealing with

9.2. DISCUSSION 143

hd

•
100 100

hd

• 53 5 53

16 16

Figure 9.1: Desired visual representation for circular lists.

context-sensitive syntax in a similar manner is not necessarily ideal. We will try
to explain this using an example of circular lists. Figure 9.1 shows a possible

hd
desired visual representation for circular lists. The graphical notation t is used
to show the head of the list marker. The list on the left shows a configuration of
the circular list and the list on the right shows the effect of a 'rotate right' function
applied to the list. The intended meaning is clear in these pictures. But, how can
we i) construct such a visual representation, ii) keep the head marker properly
adjusted over the head of the circular list and iii) define the desired layout for
circular lists.

In order to examine these problems, let us first consider the module in Fig­
ure 9.2, which defines a straight forward specification of a circular-list data-type.
While we can define syntax that allows the creation of circular lists, we can not
easily define the needed checking that assures that the head pointer is spatially
appropriately related to the list. Furthermore, we also run into problems when
pretty printing circular lists as we shall explain.

The Figure 9.3 shows a constructed circular list term using this syntax. Fig­
ure 9.4 shows the result of applying the >> on the circular list shown in Figure 9.3.
The resulting presentations can be different depending on how the editor chooses
to use the Share-Where information. In the figure, the different presentations
r_esult from the choice of attempting to maintain the head marker or the arrow
properties stable. The circular list on the left is certainly misleading.

We will now specify an alternate syntax (shown in Figure 9.5) in a way that the

hd
empty-list marker ("tail-end of list") denoted by t can share the head ("beginning

of the list"). With this specification we will force the head marker to be linked
and move along with an item that belongs to the circular list. Again, no particular
layout for the circular list considered in the specification. Then we appropriately
enhance the semantics of such a circular list so that some head-adjustment can be
done before pretty-printing the picture. We intend to make the tail-end marker

144 CHAPTER 9. CONCLUSIONS

imports Integers
sorts ITEM CL
functions

[M -+ ITEM

hd

+ -+ CL

ITEM--+CL -+ CL

head(CL) -+ ITEM

»(CL) -+ CL

variables
I , Io, Ii, I2 -+ ITEM

C -+ CL

equations
hd hd

[cl] »(+) +
hd hd

[c2] »(I--+ +) I--++

[c3] »(I1 --+12--+C) l2--+»(I1 --+C)

[c4] head(! --+C) I

Figure 9.2: The specification for CList language.

hd

~

100

5

16

Figure 9.3: A circular list constructed with syntax shown in Figure 9.2.

9.2. DISCUSSION 145

hd

~ 100

100

hd

~
5 5

16 16

Figure 9.4: Two of the possible pretty printed terms after applying >> to the
circular list shown in Figure 9.3.

share an item of the list. The semantics will ensure that the sharing will only
hd

share the head of the list if any. An empty circular list is denoted by ~-

The rules [cl']-[c4'] are very similar to the rules [cl]-[c4]. The additional rules
specify the semantics of head-adjustment function headadj. These equations are
used to re-adjust the circular list to maintain the head adjustment. The equation
[c5'] assures that if there is only one item in the list that it is the empty item
(a circular list has at least two items one of which is the empty item). Equation
[c6'] causes the first item and the last item to be the one and the same using the
function sharehd. The function sharehd is defined in two equations, one considering
the case of traversing to the end of the list ([c8']) and the other defining the head
marker to be over the last item (also the first item).

This specification allows pictures like the desired ones shown in Figure 9.1 to
be presented. The assumption is that the head-adjustment function headadj will
be used before presenting a modified circular list. Such an approach forces the
specifier to consider the presentation problems and define a method that results
in the appropriate picture. Note that some such specification is essential in any
formalism to cause the head marker to move over another item as a result of the
application of an equation and thus the sharing of the tail-end with head-end as
desired.

Another problem is that the given syntax definitions permit other various
sentences with strange appearances to be constructed, since the arrows are, in
fact, connecting an item to another circular list. This could lead to highly con­
fusing pictures as it would be possible to attach the arrow to any place that is
considered as part of the list . This problem could be alleviated using collections
instead of the list constructed in these specifications. Another approach could be
to extend the VODL language by denoting a sub-vod as a reference vod to indicate
attachment vods (see first point of future work in Section 9.3). In this example,

146 CHAPTER 9. CONCLUSIONS

imports Integers
sorts ITEM' CL' Int
functions

Int --+ Int

181 --+ Int

11ntl --+ ITEM'

hd

+
ITEM' --+ CL'

ITEM'--+ CL' --+ CL'

head(CL') --+ ITEM'

»(CL') --+ CL'

headadj(CL') --+ CL'

sharehd(CL', ITEM') --+ CL'

variables
I, Io, 11, 12 --+ ITEM'

C --+ CL'

Figure 9.5: The syntax specification for CList language.

9.2. DISCUSSION 147

equations
hd hd

[cl'] »(L) + = Io

hd hd

[c2'] »(I-+L) = I-++
Io

[c3'] »(I1 -+I2-+C) = h-+»(I1 -+C)

[c4'] head([-+C) = I

hd hd

[c5'] headadj(}) + =
~

[c6'] headadj (I -+C) = sharehd(I-+C, I)

hd hd

[c7'] + + sharehd(I1 -+ I, Io) = I1-+ Io

[c8'] sharehd(li-+I2-+C, Io) = li-+sharehd(I2-+C,lo)

Figure 9.6: The semantics specification for CLisf language.

148 CHAPTER 9. CONCLUSIONS

we have not used collections to avoid taking advantage of the special properties
of the collection primitive in order to fully demonstrate the difficulties presented
regarding limitations under consideration.

9.2.2 Use of visual notation in specification

The use of visual syntax leaves room for misinterpretation by the reader. Some
people find it rather difficult to read visual visual specifications. Frequently, but
certainly not exclusively, these people are more formally oriented and feel the
need to understand the precise correspondence between the chosen notation of the
specification and the formalism. The problem stems from inferring unintended
relations from a picture.

Typically, there are many visual representations for the same specification or
program. It could be difficult for a reader to distinguish among the physical aspects
that are semantically relevant from those that are incidental. Often arbitrary
decisions are needed to be made for graphical attributes for the sole purpose of
rendering - such as the use of a color. On the other hand, in some cases, the use
of a color could be quite intentional and semantically relevant. Such a relevancy

. is part of the definition of the language syntax and is reflected in the abstract
syntax. So, even if there is no problem regarding the formalism, it may very well
pose a problem for the user's perception.

The motivation for having domain specific (in this case visual) syntax in se­
mantic specification is for providing a connection between the definitions and what
they are defining by using familiar notation. This allows an immediate recogni­
tion and connection between our mental representation and how the specification
looks. But clearly caution needs to be exercised when choosing representations to
avoid undue confusion.

One of the big challenges in using visual syntax is when we need to represent
abstractions. For example, in our specifications we use variables to represent some
arbitrary visual terms of a given sort. The question of how to represent these
variables arises. Our approach allows any arbitrary representation, however, we
have usually chosen to rely upon textual variable names to reduce the overhead of
more visual notation. When we use visual notation we run a greater risk that the
reader would not distinguish this as a variable. There could be some appropriate
visual notation that could be used as a convention. Due to the clear conflict
between the concreteness of visual languages and abstraction, such representations
must be chosen carefully. This is an issue of further investigation.

The choice of which visual notation and what kind of spatial relations to use
is very important. While visual syntax can be very powerful in relaying concepts
or objects and their relations effectively, when the chosen notation is confusing it
can do quite the opposite. Wang, in her thesis [83] has some nice discussions and
suggestions regarding some criteria to adhere to.

9.2. DISCUSSION 149

The use of visual notation in computer languages is still rather new although
rapidly gaining speed. With time we shall see if getting accustomed to visual
notation will bring about useful standards and styles leading to good design and use
of visual notation. There are some attempts to harvest knowledge from graphics
design such as [47] and cognitive aspects such as in [31, 83, 84, 32] of perception
to meet this end. We certainly claim no expertise in this area and are interested
in tools we may be able to offer such experts.

9.2.3 Application of Share-Where maintenance

We developed a technique called Share-Where maintenance to be used in displaying
terms (Chapter 6). This technique maintains information regarding shared sub­
terms created by the user during editing and where these visual terms were created.
Share-Where is used to get the needed information regarding the original visual
term responsible for each (sub)term's creation, which can either be during initial
visual term creation in an end-user editor or in an equation editor. The latter
comes into play during term rewriting. The goal was to get pictures that are
similar in the appearance to the initial picture when the same sub-pictures are
present in both. In the case that the sub-picture is created during rewriting then
the appearance in the equation that creates it is used since that is the only possible
preference that exists in the system. This technique is used in order to produce
fairly similar pictures when this is applicable. Ignoring this would likely lead to
arbitrary representations of visual terms where the connections are lost.

Share-Where annotations are employed only in pretty printing terms. They
could also be exploited for other purposes such as the use of the Share information
in matching to recognize cases where sharing occurs in a picture graph. This would
enable one to specify when a picture graph is considered acceptable. This kind
of use would be for simulating graph rewriting as found in graph grammars. See
Figure 9.7 for a specification which checks whether a circular list is acceptable
using a predefined share predicate, by checking if the head and the tail-end items
are shared. As this was not our aim we have not considered its use in this work
so as not to disturb the underlying formalism.

For example, Share-Where could be extended with another case called Shared
Variables/sub-terms. When variables (non-left linear case) are shared on the left
hand side or sub-terms are shared on the left hand side then the rule is transformed
to a conditional rule that checks for the sharing of these. For the left hand side we
can check for sharing and for the right hand side introduce sharing. For example,
consider the following function definitions for f and g :

[Sl] !(Q)
[S2] g(Q)

where I is a variable of sort INT. In the equation [Sl], we may want to check

150

imports CList'
sorts CL Okay
functions

check(CL') -+

okay -+

tailitem(CL') -+

variables
I -+ ITEM'

C -+ CL'

equations

CLOkay

CLOkay

ITEM'

CHAPTER 9. CONCLUSIONS

[chi] ,heck(l) okay
[ch2] check(! --+C) okay

[ch3]

[ch4]

when share(!, tailitem(C)) true

tailitem(I --+C)

hd

tailitem(;)

tail item(C)

I

Figure 9.7: A specification that does share-checking for CList language.

for sharing using the share predicate so that the equation will match a term
only when there is sharing. And in the equation [S2] sharing could be introduced
giving the same share annotations for both Is. Share annotations could be further
exploited and created in such cases. Such extension, however, would be changing

· the rewriting model.

9.3 Future directions

There are numerous future directions for this work. Along with the completion
of a prototype implementation, there are also other extensions and features to be
considered. In this section we will mention some of these considerations.

• Considering the vod language, in order to be able to have more general
definitions it would be useful to have ranges of values. The vods considered so
far are two-dimensional. Two and a half and three dimensional vods should
be examined as well. Also, when there is a spatial relation defined between

9.3. FUTURE DIRECTIONS 151

sub-vods which themselves are composite, it may be useful to denote a vod
within a sub-vod as a reference vod to which the relation will be applied.
For example, in the following vod definition:

defv Vod1{}
{ a: rectangle() {ref-vod},

b : oval() EB (width = 20]
} <J {

a followed-by b }

the sub-vod labeled 'a' is marked as the refence vod with the ref-vod marker.
When the vod Vod1 is used in another definition such as:

defv Vod2{}
{ vl : Vod1(),

v2 : oval()
} <J {

vl touches v2 }

the touches relation would be applied to the rectangle sub-vod of vl rather
than the entire composite vod. This would allow denoting a general property
of the vod as an attachement place. Of course, if we wanted to define it more
specifically, we could have defined the touches relationship with the rectangle
in the constraints.

Finally, regarding VODL, the specification of constraints needs to be analised
further both for the necessary restrictions in reality and for its limited ex­
pressive ability (e.g., there is no disjunction or negation operation in it). The
use of spatial graphs (see Section 1.4.2) of graph grammars instead of VODL

is worth investigating.

• Alternate editors for specifications that reflect the structure and spatial re­
lationships of the syntax. Although our visual editors can build graph-like
structures (as shown in figure 3.10), our choice of ASF for the meta level
leads to an underlying tree representation and tree processing. Although
effectively working with trees could limit the extent to which such an envi­
ronment could be useful, the approach itself is independent of a tree based
underlying formalism and could be used in a similar manner with a graph
based underlying formalism.

• We have focused on the interactive construction of programs and examined
how we can preserve the presentations that come about due to the user's
choices. Another consideration is pretty printing the programs according
to some criteria or some predefined description of preferred layout for that
language, such as in (13].

152 CHAPTER 9. CONCLUSIONS

• There are many graphical tools that would be useful in programming envi­
ronments, whose generation would be very attractive: debuggers, animators,
editors for constructing graphical constructs, browsers, viewing hierarchical
structures such as import graphs and class structures in object-oriented sys­
tems, searching for visual constructs in a document, etc.

• It is difficult to define spatial relations among items of collections in a manner
that governs the overall look of a collection. This kind of pretty printing is in
need of context-sensitive information. For example, with the circular lists, it
would be desirable to present the items in a circular fashion, where depending
on the number of items in the list the placement of individual items would be
determined. It may be useful to define separate pretty printing specifications
that could be applied to terms and print them according to the defined
preferences, such as in (14, 15].

• For the maintenance of specifications, the design and development of a de­
bugger and an animator for such an environment generator are also interest­
ing. A debugger would be needed when developing specifications. Also, tools
that help maintain the specification in the face of changes are needed . There
is a need to handle the effects of any changes in the visual syntax of a given
language in such a way that minimal modification of the semantics specifi­
cation is necessary. For example, should a syntax rule be modified then the
corresponding equations that use that syntax must also be modified to match
the new syntax. Such equations should automatically be identified so that
they can be updated. This problem would not be so significant if a parser
generator was available that would generate visual parsers. Availability of a
parser allows both the free form or hybrid construction of programs. Work
in this area that could be influential is, among others, (61 , 48] for context
sensitive languages and (86] for context-free languages.

• The Share-Where maintenance introduced in Chapter 6 was used only in
relation to presentation. The utility and implications of using Share-Where
more extensively should be examined. One possibility was already mentioned
in Section 9.2.3.

• Finally, an assessment of the appropriateness of the VAS formalism is needed.
As we have discussed earlier, visual representations are highly concrete and
powerful in affecting a user 's perception. This can be positive or negative
depending on what this implies for the perception of a user and this may
very well vary from user to user. An assessment study for determining the
usability of the VAS formalism would be very interesting. Such an assessment
should at least cover the understandability of domain specific languages de­
fined using VAS .

Bibliography

[1] A. Aho, B. Kernighan, and P. Weinberger. The Awk Programming language.
Addison-Wesley, 1988.

(2] M. Andries. Graph Rewrite Systems and Visual Database Languages. PhD
thesis, Leiden University, February 1996.

[3] M. Andries, G. Engels, and J. Rekers. How to represent a visual program?
In Workshop on Theory of Visual Languages, May 1996.

[4] B. Backlund. Visual programming languages and how to generate syntax­
oriented environments for them. Technical Report TRITA-NA9003, Royal
Institute of Technology, Sweden, 1990.

[5] B. Backlund, 0. Hagsand, and B. Pehrson. Generation of visual language­
oriented design environments. Journal of Visual Languages and Computing,
1:333- 354, 1990.

[6] J. Bergstra, J. Heering, and P. Klint, editors. Algebraic Specification. ACM
Press Frontier Series. The ACM Press in co-operation with Addison-Wesley,
1989.

(7] J. Bergstra, J. Heering, and P. Klint. The algebraic specification formalism
ASF. In J. Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification,
ACM Press Frontier Series, pages 1- 66. The ACM Press in co-operation with
Addison-Wesley, 1989. Chapter l.

[8] J. Bergstra and J. Klop. Conditional rewrite rules: confluence and termina­
tion. Journal of Computer and System Sciences, 32(3):323- 362, 1986.

[9] J. A. Bergstra and P. Klint. The Discrete Time Too!Bus. In M. Wirsing and
M. Nivat, editors, Algebraic Methodology and Software Technology (AMAST
'96), volume 1101 of Lecture Notes in Computer Science, pages 288- 305.
Springer-Verlag, 1996.

[10] Y. Bertot. A canonical calculus of residuals. In G. Huet and G. Plotkin,
editors, Logical Environments. Cambridge University Press, 1993.

153

154 Bibliography

[11] P. Borenstein and J. Mattson. THINK C User's Manual, 1989.

[12] A. Borning. Graphically defining new building blocks in ThingLab. Human
Computer Interaction, 2:269- 295, 1986.

[13] M. G . J . v. d . Brand and E. Visser. Generation of formatters for context­
free languages. ACM Transactions on Software Engineering and Method­
ology, 5(1):1- 41, January 1996. http://www.acm.org/pubs/toc/TOC/1049-
331X/Vol5.html.

[14] M. v. d. Brand. Prettyprinting without losing comments. Technical Re­
port P9315, Programming Research Group, University of Amsterdam, 1993.
http://www.fwi.uva.nl/research/prog/reports/P93l5.ps.Z.

[15] M. v. d. Brand and E . Visser. From Box to 'JEX: An algebraic
approach to the generation of documentation tools. Technical Report
P9420, Programming Research Group, University of Amsterdam, July 1994.
http://www.fwi.uva.nl/research/prog/reports/1994/P9420.ps.Z.

[16] S.-K. Chang. Principles of Pictorial Information Systems Design. Prentice
Hall , 1989.

[17] A. v. Deursen. Executable Language Definitions. PhD thesis, University of
Amsterdam, 1994.

[18] A. v. Deursen, J. Heering, and P. Klint. Language Prototyping. An Algebraic
Specification Approach, volume 5 of AMAST series in Computing. World
Scientific, 1996.

[19] T. B. Dinesh and S. Uskiidarh. Guiding user-interfaces equationally. In Pro­
ceedings of the ERCIM Workshop on User Interfaces for All, pages 120- 132,
November 1996.

[20] T. B. Dinesh and S. M. Uskiidarh. Visual Object Definition Language. In
R. C. Veltkamp and E. H. Blake, editors, Proceedings of the fifth Eurograph­
ics workshop on Programming Paradigms in Graphics, Eurographics'95, pages
109- 124, Amsterdam, September 1995. CWI. Held in Maastricht, The Nether­
lands.

[21] T . B. Dinesh and S. M. Uskiidarh. Specifying input and output of visual
languages. In Workshop on Theory of Visual Languages, Gubbio, Italy, May
1996.

[22] J. Field and F. Tip. Dynamic dependence in term rewriting systems and
its application to program slicing. In M. Hermenegildo and J. Penjam, edi­
tors, Proceedings of the Sixth International Symposium on Programming Lan­
guage Implementation and Logic Programming, volume 844 of Lecture Notes
in Computer Science, pages 415- 431. Springer-Verlag, 1994.

Bibliography 155

[23] Frame Technology Corp. FrameMaker. Software product of Frame Technology
Corp, e-mail: custserv©fram.com.

[24) G. W. Furnas. New graphical reasoning models for understanding graphical
interfaces. In Proceedings of the CHI '91, pages 71- 78, April 1991.

[25] D. Gelernter. An Integrated Microcomputer Network for Experiments in Dis­
tributed Programming. PhD thesis, SUNY Stony Brook, Department of Com­
puter Science, 1983.

[26] E. P. Glinert, editor. Visual Programming Environments: Applications and
Issues. IEEE Computer Society Press, Los Alamitos, CA, 1990.

[27) A. Goldberg. Smalltalk-BO: The Interactive Programming Environment.
Addison-Wesley, Reading MA, 1984.

[28] E. J. Golin. A method for the specification and parsing of visual languages.
PhD thesis, Brown University, 1990.

[29] E. J. Golin. Parsing visual languages with picture layout grammars. Journal
of Visual Languages and Computing, 2(4):371- 394, 1991.

[30) E. J. Golin and S. P. Reiss. The specification of visual language syntax.
Journal of Visual Languages and Computing, 1:141-157, 1990.

[31) T. R. G. Green and M. Petre. When visual programs are harder to read than
textual programs. In Proceedings of ECCE-6 (6th European Conference on
Cognitive Ergonomics), 1992.

[32) T. R. G. Green and M. Petre. Usability analysis of visual programming
environments. J. Visual Languages and Computing, 7:131- 174, 1996.

[33] C. Gurr. On the isomorphism (or otherwise) of representations. In Workshop
on Theory of Visual Languages, May 1996.

[34] 0. Hagsand. A framework for generating language-oriented environments for
visual programming languages. Technical Report R92:06, Swedish Institute
of Computer Science, March 1992.

[35] J. Heering and P. Klint. The syntax definition formalism SDF. In J. Bergstra,
J. Heering, and P. Klint, editors, Algebraic Specification, ACM Press Frontier
Series, pages 283- 297. The ACM Press in co-operation with Addison-Wesley,
1989. Chapter 6.

[36] R. Helm and K. Marriott. A declarative specification and semantics for visual
languages. Journal of Visual Languages and Computing, 2:311- 331, 1991.

156 Bibliography

[37] R. Helm, K. Marriott, T. Huynh, and J . Vlissides. An object-oriented ar­
chitecture for constraint-based graphical editing. In C. Laffra, E. Blake,
V. de Mey, and X. Pintad, editors, Object-Oriented Programming for Graph­
ics, pages 217- 238. Springer-Verlag, 1995.

[38] C. M. Holt . viz: A visual language based on functions. In Proceedings of
the 1990 IEEE Workshop Visual Languages, pages 221- 226, Skokie, Illinois,
October 1990.

[39] S. P. Jones and P. Wadler . Imperative functional programming. Proceedings
of 20th A CM Symposium on Principles of Programming Languages, pages
71- 84, Jan. 1993.

[40] K. Kahn and V. Saraswat. Complete visualizations of concurrent programs
and their executions. In IEEE 1990 Workshop on Visual Languages, pages
7- 14, 1990. See also Technical Report SSL-90-38 [P90-00099], Xerox Palo
Alto Research Center.

[41] B. W . Kernighan. A Graphics Language for Typesetting: User Manual, May
1991.

[42] P. Klint. A meta-environment for generating programming environments.
ACM Transactions on Software Engineering and Methodology, 2(2) :176- 201 ,
1993.

[43] J. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, Volume 2. ,
pages 1- 116. Oxford University Press, 1992.

[44] J. Koorn. Connecting semantic tools to a syntax-directed user-interface. Re­
port P9222, Programming Research Group, University of Amsterdam, 1992.
Available by ftp from ftp .cwi.nl:/pub/gipe as Koo92a.ps.Z.

[45] J . W . C. Koorn. Generating Uniform User-Interfaces for Interactive Pro­
gramming Environments. PhD thesis, University of Amsterdam, 1994.

[46] F. Lakin. Visual grammars for visual languages. In Proceedings of the 6th
Nat. Conj on Artificial Intelligence, pages 683- 688, Seattle, WA, 1987.

[47] H. Lieberman. The visual language of experts in graphic design. In Proceed­
ings of the 1995 IEEE Symposium Visual Languages, pages 5- 12, September
1995.

[48] K. Marriott. Constraint Multiset Grammars. In Proceedings of the 1994 IEEE
symposium on visual languages, pages 118- 25, St Louis, Missouri USA, 1994.

[49] K. Marriott and B. Meyer. Toward a Hierarchy of Visual Languages. In
Proceedings of the 1996 IEEE symposium on visual languages, pages 196- 203,
Boulder, Colorado, USA, 1996.

Bibliography 157

(50] K. Marriott and B. Meyer. Towards a hierarchy of visual languages. In
Workshop on Theory of Visual Languages, May 1996.

[51] D. W. McIntyre. A Visual Method for Generating Iconic Programming Envi­
ronments. PhD thesis, Rensselaer Polytechnic Institute, Troy, N.Y., 1992.

(52] D. W. McIntyre and E . P. Glinert. Visual tools for generating iconic pro­
gramming environments. In Proceedings of the 1992 IEEE Workshop Visual
Languages, pages 162- 168, Seattle, WA., Sept. 1992.

[53] Microsoft Corporation. Microsoft visual basic white paper. Web page, 1996.
http:/ /www.microsoft.com/VBASIC /vbwhite/vbwhite.htm.

(54] B. A. Myers, D. A. Giuse, R. B. Dannenberg, B. V. Zanden, D. S. Kosbie,
E. Pervin, A. Mickish, and P. Marchal. Garnet: Comprehensive support for
graphical, highly-interactive user interfaces. IEEE Computer, 23(11):71-85,
November 1990.

(55] M. A. Najork. Programming in Three Dimensions. PhD thesis, Dept. of
Computer Science, Univ. of Illinois, 1993.

(56] M. A. Najork and S. M. Kaplan. Specifying visual languages with condi­
tional set rewrite system. In Proceedings of the 1993 IEEE Symposium Visual
Languages, pages 12-18, 1993.

(57] J. K. Ousterhout. Tel and the Tk Toolkit. Addison-Wesley, Reading, MA,
USA, 1994.

[58] Pictorius Incorporated. Welcome to Pictorius. Web page, 1996.
http://www.pictorius.com/pi/welcome/welcome.html.

(59] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel
Graph Rewriting. Addison Wesley, 1993.

[60] S. P. Reiss. Integration mechanisms in the field environment. Technical report,
Brown University, 1988.

(61] J. Rekers and A. Schurr. A parsing algorithm for context-sensitive graph
grammars - short version. In Proceedings of the 1995 IEEE Symposium Visual
Languages, September 1995.

(62] A. Repenning and W. Citrin. Agentsheets: Applying grid-based spatial rea­
soning. In IEEE 1993 Workshop on Visual Languages, pages 77- 82, 1993.

(63] T. Reps. Generating language-based environments . Technical report TR
82-514, Cornell University, Ithaca, 1982. Ph.D. Thesis.

(64] T. Reps and T. Teitelbaum. The Synthesizer Generator: a System for Con­
structing Language-Based Editors. Springer-Verlag, 1989.

Bibliography 159

(78] M. G. J. van den Brand, P. Klint, P. Olivier, and E. Visser. Aterms: repre­
senting structured data for exchange between heterogeneous tools. Technical
report, University of Amsterdam, 1997. to appear.

(79] A. van Deursen. Origin tracking for system renovation. In A. van Deursen,
P. Klint, and G. Wijers, editors, Program Analysis for System Renovation,
Resolver Release 1, chapter 15, pages 15- 1 - 15- 20. CWI, Amsterdam, Jan­
uary 1997.

[80] J. van Wijk and R. van Liere. An environment for computational steering.
Technical Report CS-R9448, Center for Mathematics and Computer Science
(CWI), 1994. Presented at the Dagstuhl Seminar on Scientific Visualization,
23-27 May 1994, Germany, proceedings to be published.

(81] H. Walters. On Equal Terms, Implementing Algebraic Spec-
ifications. PhD thesis, University of Amsterdam, 1991.
ftp:/ /ftp.cwi.nl/pub / gipe/reports/Wal91.ps.Z.

(82] H. Walters and J. Kamperman. A model for 1/0 in equa-
tional languages with don't care non-determinism. Technical Re­
port CS-R9572, CWI, December 1995. Available also at URL:
http:/ /www.cwi.nl/ cwi/publications/index.html#AP.

(83] D. Wang. Studies on the Formal Semantics of Pictures. PhD thesis, University
of Amsterdam, Amsterdam, The Netherlands, January 1995.

(84] D. Wang and H. Zeevat . A syntax directed approach to picture semantics. In
Workshop on Theory of Visual Languages, May 1996.

[85] D. H. D. Warren. Logic programming and compiler writing. Software-Practice
and Experience, 10(2):97- 125, 1980.

[86] K. Wittenburg. Early- style parsing for relational grammars. In IEEE 1992
Workshop on Visual Languages, pages 192- 199, 1992.

The proceedings for the Workshop of the Theory of Visual Languages does
not include global page numbers and hence no page numbers are indicated for
citations from this source.

160 Bibliography

Samenvatting

Steeds meer programmeertalen worden ondersteund door grafische programmeer­
omgevingen, ook wel visuele programmeeromgevingen genoemd, die hulp bieden
bij het schrijven, wijzigen en uitvoeren van programma's in deze talen. Bij het
ontwikkelen van nieuwe omgevingen wil men zoveel mogelijk voortbouwen op eer­
der verworven expertise bij het bouwen van vergelijkbare omgevingen. Een manier
om dit te bereiken is om een dergelijke omgeving automatisch te genereren uit een
specificatie van een taal. Een taal kan gespecificeerd worden met behulp van een
formalisme waarin syntax en semantiek kunnen worden uitgedrukt .

Dit proefschrift behandelt de generatie van programmeeromgevingen voor vi­
suele talen uit specificaties van deze talen. Uitgangspunt is dat het wenselijk is
deze specificaties te schrijven in een formalisme dat (a) het gebruik van visuele
notatie toestaat; en (b) zelf ondersteund wordt door een visuele omgeving. Dit
proefschrift bespreekt een nieuw formalisme dat aan deze eisen voldoet: De vi­
suele specificatietaal VAS (Visual Algebraic Specification), dat ondersteund wordt
door de visuele specificatie-omgeving VASE (VAS Environment) . De omgeving VASE

bestaat enerzijds uit editors om de syntax en semantiek van visuele talen te de­
finieren, en anderzijds uit een editorgenerator. Met behulp van deze generator
worden, gegeven de specificatie van de taal, taal-specifieke editors gegenereerd,
waarmee een eindgebruiker termen over deze taal kan invoeren en evalueren. In
de paragrafen die volgen bespreken we hoe dit in zijn werk gaat, aan de hand van
een voorbeeldspecificatie van zogenaamde rechtslineaire binaire bomen. Dat zijn
bomen waarvan de linkerkinderen uitsluitend uit bladeren bestaan.

Het definieren van syntax

Om de syntax van een taal te definieren moeten we eerst beschrijven hoe de taal­
constructies er uit zien. In VAS doen we dit door aan te geven wat de grafische
lexicale tekens zijn, die we vods noemen (Visual Object Definitions) . Dit kunnen
primitieve grafische objecten zijn zoals rechthoeken en cirkels. Ook kunnen zij op­
gebouwd worden uit andere sub-vods, waarbij grafische voorwaarden aangegeven
kunnen worden, zoals "is bevat in" en "sluit aan op". Een vod wordt beschre­
ven in de taal VODL (Visual Object Definition Language). De volgende figuur is

161

162 Samenvatting

een geparameteriseerde vod die gedefinieerd is met behulp van een VODL-editor.
De parameters zijn aangegeven middels de gestippelde rechthoeken met daarin de
naam van de parameter .

. --A-,
I Nl I I N2 I
l ____ J l ____ J

De syntax voor binaire bomen, die gebruik maakt van deze vod definitie, kan
met behulp van het VAS formalisme alsvolgt beschreven worden:

module RLinear-BTree

imports Integers

sorts LN

functions

INT ➔ L

L ➔ N

K ➔ N

N N

">._ (N) ➔ N
variables

£, ➔ L

N ➔ N

Deze regels definieren zowel de soorten van de taal als hun presentatie. De
derde functiedefinitie gebruikt de eerder gedefinieerde vod-definitie, waarbij beide
parameters nu vervangen zijn door de soort N. De functie ">-,(N) beeldt een argu­
ment van soort N af op een resultaat dat ook van soort N is.

Module RLinear-BTree begint met het importeren van module "Integers"
waarin eenvoudige rekenkundige operaties zijn gedefinieerd. Daarna worden twee
soorten genaamd L en N, respectievelijk voor bladeren en knopen, gei:ntroduceerd.
De twee variabelen £ en N die over deze soorten worden gedefinieerd worden ge­
bruikt in de semantische vergelijkingen.

Samenvatting 163

Het definieren van semantiek

De volgende figuur geeft de definitie van de semantiek voor rechtslineaire binaire
bomen.

equations

[l] ~C,;{N,) -~[N•~J
[2] ~()Q,N) A

£ \(N)

[3] \ (£) £ otherwise

De vergelijkingen gebruiken de visuele notatie van de gedefinieerde taal. Zij
definieren de functie \(N) zodanig dat deze een willekeurige binaire boom omzet
in een rechtslineaire boom. Dankzij de gebruikte visuele notatie is duidelijk te
zien hoe de verschillende vergelijkingen de boomstructuur manipuleren zodat deze
rechtslineair wordt.

Gegenereerde omgevingen

Gegeven de specificatie van een taal wordt een editor gegenereerd waarmee de
eindgebruiker programma's kan schrijven. Deze programma's kunnen worden
geevalueerd (herschreven) met behulp van een termherschrijfsysteem. De volgende
figuur toont een instantiatie van een BTree term editor:

File . . .

~
(N) (N)

(L) rfg
2 [_ (N) _/

■ -

164 Samenvatting

Bij het construeren van termen wordt de eindgebruiker geleid door de syntax,
gebruikmakend van een focus (aangegeven door een gestippeld vierkant). De focus
kan vervangen worden door een van de toegestane expansies, zoals te zien is in het
selectiepaneel in de linkerhelft van de editor.

De op deze manier geconstrueerde term kan vervolgens gereduceerd worden
door de vergelijkingen uit te voeren als herschrijfregels. Voor de hierboven inge-

voe<de te,m 1-
9

2~

2 3 3 9

In <lit proefschrift gaan we dieper in op de problemen die komen kijken bij
het visueel definieren van talen, en bij het afleiden van visuele gereedschappen
uit dergelijke definities. De diverse hoofdstukken bespreken de voordelen van het
gebruik van visuele talen en de technieken die visueel editen mogelijk maken. Er
worden twee nieuwe formalismes voorgesteld: VODL om elementaire plaatjes op te
bouwen, en VAS om visuele talen in te definieren, ondersteund door de omgeving
VASE. In de latere hoofdstukken worden twee moeilijke problemen behandeld: hoe
kan de sharing die in visuele notatie zit behouden blijven tijdens het herschrijven
van termen volgens de gespecificeerde semantische vergelijkingen, en hoe kunnen
vergelijkingen gebruikt worden om interactie met de eindgebruiker te definieren.
Het proefschrift wordt afgesloten met een beschrijving van de belangrijkste pro­
blemen - en mogelijke oplossingen - die een implementatie van de voorgestelde
technieken met zich meebrengt .

