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Abstract. We consider the following natural scheduling problem: Given
a sequence of jobs with weights and processing times, one needs to assign
each job to one of m identical machines in order to minimize the sum
of weighted completion times. The twist is that for machine the jobs
assigned to it must obey the order of the input sequence, as is the case
in multi-server queuing systems. We establish a constant factor approxi-
mation algorithm for this (strongly NP-hard) problem. Our approach is
necessarily very different from what has been used for similar scheduling
problems without the fixed-order assumption. We also give a QPTAS for
the special case of unit processing times.

1 Introduction

We consider an extremely simple, yet challenging, scheduling principle that arises
in many logistic and service applications. Given a sequence of jobs and a set of
machines, we need to dispatch the jobs one by one over the machines, where
for each machine the ordering of the original sequence is preserved. Hence, each
machine must handle the jobs in a first-in first-out (FIFO) order. Each job has a
processing time pj and weight wj and the goal is to minimize the weighted sum
of completion times, where the completion time of a job j is the total processing
time of the jobs preceding j (including j) on the same machine.

The FIFO-ordering restriction is common in queuing theory, where the task
assignment problem [5,8,9] is concerned with the same question, except that
jobs arrive stochastically over time. Our problem can be seen as asking for the
optimal way of dispatching jobs from a single queue over m server queues under
complete information of the processing times, essentially unzipping a single queue
into m queues. The reverse problem of zipping m queues into a single queue, is
the classic single machine scheduling problem: 1|chains|∑ wjCj (in the 3-field
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notation by Graham et al. [7]) and can be solved efficiently by greedily selecting
a prefix of jobs with largest ratio of total weight over total processing time [12].

In the scheduling literature, the fixed-ordering scheduling problem can be
seen as a special case of scheduling problems with sequence dependent setup times,
where for each pair of jobs there is a changeover cost cij that is paid if job j is the
immediate successor of job i on a machine. Such setup times occur naturally in
many industrial applications [1]. Our problem is precisely this, in the special case
where cij = ∞ if i is later than j in the ordering, and cij = 0 otherwise. While
the problem has received substantial attention (see [1–3] for a comprehensive
literature review), almost nothing is known from a theoretical perspective (an
exception is [10], but this is concerned with a rather unusual objective function).
We believe our work may shed light on this more general problem.

We remark that the online version of the problem, where we need to assign a
job before we get to know the next job in the sequence, does not admit a constant-
competitive algorithm. Consider, for example, two machines and a sequence of
three jobs (where job 1 should be completed first and job 3 last on any machine)
with p1 = k2, p2 = k, p3 = 1 and w1 = 1, w2 = k and w3 is either zero or k3,
depending on the schedule of the first two jobs. Here, k is an arbitrarily large
number. It is easy to see that a good schedule requires knowledge of the weight
of job 3 before deciding whether to put jobs 1 and 2 on the same machine.

Our Contribution. Scheduling problems with weighted completion times objec-
tive without ordering constraints typically admit good approximations algo-
rithms. For identical machines there is a PTAS [19], while a slightly better
than 3

2 -approximation [4] for unrelated machines is known. But even simpler
approaches yield a constant factor approximation. On identical machines, it
is a classic result due to Kawaguchi and Kyan [11] (see [17] for a modern
proof) that scheduling greedily according to Smith ratio (see Sect. 2) is a 1+

√
2

2 -
approximation. For unrelated machines, independent rounding of both a natural
time-indexed LP [16] and a (nontrivial) convex quadratic program [18] works,
and achieve approximation ratios of 3

2 + ε and 3
2 respectively. Another approach

is α-point scheduling [15], where jobs are sorted according to the time by which
an α fraction of the job has been processed in some LP relaxation. The jobs are
then scheduled greedily in that order. This method has enabled many algorith-
mic improvements in scheduling, since it can be modified to deal with additional
complications, such as precedence constraints and release times [13].

Fixed-order scheduling appears highly resistant to all these techniques. A big
obstacle is that moving even a single pair of jobs onto the same machine can
have a catastrophic effect on the objective function if the order is fixed: think of
a job with large processing time but minuscule weight, followed by a job with
large weight and minuscule processing time. Thus in order to have any hope
of a non-trivial performance guarantee, jobs must be assigned to machines in
a highly dependent way. To achieve this, our approach radically departs from
earlier ones.

We define an important partial order ≺: essentially, j ≺ k means that not
only is j earlier than k in the FIFO ordering, but also this ordering is opposite
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to what would be preferred according to Smith’s rule. Thus as alluded to earlier,
if j ≺ k we should be particularly careful about assigning j and k to the same
machine. Order the machines arbitrarily. A key idea is that at only a constant
factor loss, we can restrict our attention to a class of schedules we call Smith-
monotone, meaning that if j ≺ k, then j is assigned to an earlier machine
(or the same machine) as the one that k is assigned to. Next, we relax the
problem by computing each job’s completion times partially, based only on jobs
preceding it in the partial order ≺. While this potentially distorts completion
times a lot, we can ensure the amortized effect is not too large by appropriately
rounding weights and processing times. Finally, we formulate a new LP using
these partial completion times and enforcing the strong structure imposed by
Smith monotonicity. This LP can be rounded in a way that completely respects
the pairwise probabilities of jobs being assigned to the same machine; Smith
monotonicity is crucial here. The rounding is very appealing and natural, and
can be seen an analog of α-point scheduling with respect to machine index rather
than time.

Finally, we remark that for the case of unit processing times, the complexity
of the problem is unknown, but it is unlikely to be APX-hard: we present a
QPTAS in Sect. A of the appendix.

2 Problem Definition, Notation and NP-Hardness

We have a set of identical machines M = {1, . . . , m}, each of which can process
one job at a time, and a totally ordered set of jobs J = 1, ..., n, where each job
j ∈ J has weight wj ∈ N and processing time pj ∈ N. Because of its frequent
use we also define notation for the so called Smith ratio sj := wj

pj
of job j.

A feasible schedule μ : J → M assigns to every job j a machine μ(j). Each
machine processes the jobs assigned to it in order of their number. The cost of
the schedule μ is the sum of weighted completion times, i.e.,

Γ (μ) =
∑

k∈J

∑

j∈J:j≤k,
μ(j)=μ(k)

pj · wk. (1)

The objective is to minimize the cost of the schedule. We denote by opt the
optimal cost, by σμ : J → N the function that maps every job to its completion
time under μ and by ≺ a partial order on J such that j ≺ k if and only if j < k
and sj ≤ sk.

Note that we explicitly disallow pj = 0. This is for convenience, and ensures
that the Smith ratio wj/pj is always well defined. Our results easily extend to
the case where jobs with zero processing time are allowed.

The problem of minimizing the sum of weighted completion times with-
out ordering constraints is a classic problem that has long been known to be
strongly NP-hard [6]. This result extends to fixed-order scheduling as well: given
an assignment of jobs to a machine, it is always optimal to schedule them in
decreasing order of Smith ratio, so the ordering constraints become redundant
if s1 ≥ s2 ≥ · · · ≥ sn.
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3 Structural Properties of Optimal Solutions

In this section we will provide a characterization of an optimal solution which
will help us construct a constant-factor approximation algorithm in Sect. 4.

Unit Processing Times
Suppose all jobs have equal processing time and hence that the relation j ≺ k
indicates that j < k and wj ≤ wk. W.l.o.g. we may then as well assume that
the processing times are 1. An initial simplification is that we will assume that
schedules are staircase shaped, in the sense that for every prefix of the jobs
1, . . . , k, the number of jobs assigned to each machine decreases monotonically
with the machine index. We will use the following equivalent definition.

Definition 1. A schedule μ is staircase shaped if for each job k, μ(k) = |{j <
k : σμ(j) = σμ(k)}| + 1.

Given any schedule μ, we can clearly turn it into a staircase shaped schedule
without changing the completion time of any job.

Clearly we want jobs with high weights to be completed early, but this may
not always be possible because of the ordering on the jobs. Intuitively, it seems
like a good idea to ‘reserve’ some of the good spots early in the schedule, for
higher weight jobs later in the sequence. In staircase shaped schedules this means
that early and low weight jobs should be put on low index machines as much as
possible. Lemma 1 below makes this more precise.

Definition 2. A schedule μ is Smith-monotone if, for every j ≺ k, it holds
that μ(j) ≤ μ(k).

Lemma 1. For unit processing times, there exists an optimal schedule that is
Smith-monotone and staircase shaped.

Proof. Let us define the potential function
∑

j∈J μ(j)j. Let μ be a solution
maximizing this potential function among those that are optimal and staircase
shaped. Suppose μ is not Smith-monotone. We obtain a contradiction by showing
there is a staircase shaped schedule with a higher potential but no higher cost.

Since μ is not Smith-monotone, there exists a pair j ≺ k that violates Smith
monotonicity. Pick j, k so that there is no other violating pair j′ ≺ k′ between
it, i.e with j ≤ j′ and k′ ≤ k and at least one of the inequalities strict. We call
such a pair tight. For g = j, k, let Sg = {h ∈ {j + 1, . . . , k − 1} : μ(h) = μ(g)}
be the set of jobs between j and k on the machine of job g. It follows that
h ∈ Sk =⇒ wh ≤ wj and that h ∈ Sj =⇒ wh ≥ wk as, otherwise, the pair
j ≺ k would not be tight. (In fact, < holds.) By assigning j to the machine of
k and vice-versa we get a schedule μ′ that improves our potential function. We
first show is that the new schedule μ′ does not incur a higher cost than μ.

Since only the starting times (whence completion times) of j, k and jobs in
Sj and Sk may change, all others remaining equal, it follows that

∑

h∈{j}∪Sk

σμ′(h) +
∑

h∈{k}∪Sj

σμ′(h) =
∑

h∈{j}∪Sk

σμ(h) +
∑

h∈{k}∪Sj

σμ(h),



92 T. Bosman et al.

hence ∑

h∈{j}∪Sk

(σμ′(h) − σμ(h)) =
∑

h∈{k}∪Sj

(σμ(h) − σμ′(h)). (2)

Now note that the completion times of jobs j and Sk increase, while those of k
and Sj decrease, since the schedule was staircase shaped. Combining this with
the fact that wh ≤ wj for h ∈ Sk and wh ≥ wk for h ∈ Sj , we can bound the
increase in the cost as follows:

∑

h∈{j,k}∪Sj∪Sk

wh(σμ′(h) − σμ(h)) =

∑

h∈{j}∪Sk

wh(σμ′(h) − σμ(h)) −
∑

h∈{k}∪Sj

wh(σμ(h) − σμ′(h)) ≤

wj

∑

h∈{j}∪Sk

(σμ′(h) − σμ(h)) − wk

∑

h∈{k}∪Sj

(σμ(h) − σμ′(h)) ≤ 0 by (2).

So the new schedule has a higher potential function and no higher cost. The
schedule may not be staircase shaped, however. But simply sorting the jobs
fixes this without undoing our work. To see this, note that the set of timeslots
occupied on each machine did not change when we modified the schedule. So the
fact that the old schedule was staircase shaped, implies that the new schedule
still has the following weaker property: if exactly k jobs are scheduled at time t,
they are scheduled on the first k machines. By sorting all the jobs assigned to
one timeslot by number and assigning them to the first available machine in that
order, the potential function can only increase further, while completion times
stay the same. Hence, we have found an optimal staircase shaped schedule with
higher potential function than we started with, contradicting our choice of the
original schedule and concluding the proof.

General Processing Times
Unfortunately, for general processing times we cannot hope for an equally nice
structural result. Indeed, there may not be an optimal schedule that is Smith-
monotone. However, as we will now show, we may impose this structure with
the loss of only a constant factor in the objective.

The proof works by reducing a general instance to one with unit processing
times, finding an optimal Smith-monotone schedule, and then rounding it back.
Although this reduction is not polynomial time, it will suffice to prove the bound
on the optimality ratio. Instead, in the next section we will find that we can
bypass the reduction, and approximate such a schedule directly.

Given an instance I to the general problem, let Iunit be the instance with
unit processing times obtained from I by replacing every job j ∈ J with a set
U(j) = {j1, . . . , jpj } of pj consecutive jobs, each having unit processing time and
weight wj/pj . Let Junit be the set of jobs of Iunit and optunit be the optimal
cost for Iunit.
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Lemma 2. optunit ≤ opt − ∑
j∈J

1
2 (pj − 1)wj

Proof. The statement follows for the schedule μunit obtained from the optimal
schedule for I by putting all the jobs in U(j) on the machine μ(j), for all j ∈ J .
The completion times of the jobs in U(j) run from σ(j) − pj + 1 to σ(j), and
hence the average completion time is σ(j) − 1

2 (pj − 1). The proof follows from
multiplying by the total weight of the jobs in U(j).

Lemma 3. An optimal Smith-monotone schedule for I has cost at most
optunit +

∑
j∈J(pj − 1)wj.

Proof. Given an optimal schedule μunit for Iunit, we can create a schedule for I by
putting job j on machine i with probability |{h ∈ U(j) : μunit(h) = i}|/|U(j)|,
for all j ∈ J . The expected time spent processing job j ∈ J on machine i is
exactly |{h ∈ U(j) : μunit(h) = i}|. As a consequence, the expected starting
time of a job j ∈ J is at most the average starting time of the jobs in U(j), and
thus the expected completion time is at most the expected completion time of
jobs in U(j) plus pj − 1 (which is the difference between the processing time of
job j and any job in U(j)).

What remains to show is that μ is Smith-monotone. By Lemma 1 we can
assume, w.l.o.g., that the optimal solution of Iunit satisfies Smith monotonicity.
Consider an arbitrary pair j ≺ k. We have that j′ ≺ k′ for all jobs j′ ∈ U(j), k′ ∈
U(k). This implies that, if any job in U(j) is scheduled on machine i, all jobs in
U(k) are scheduled on machines with index not smaller than i. Hence it holds
that the machine with highest index to which j may be assigned cannot have
index larger than any machine to which k may be assigned. Therefore, for every
possible realization of the random schedule, Smith monotonicity is satisfied,
completing the proof.

Lemma 4. An optimal Smith-monotone schedule has cost at most 3
2opt.

Proof. By Lemma 3, we have that an optimal Smith-monotone schedule has cost
at most optunit +

∑
j∈J(pj − 1)wj , which in turn, by Lemma2, is at most

opt + 1
2

∑
j∈J(pj − 1)wj ≤ 3

2opt.

Though the bound in Lemma4 is unlikely to be tight, it cannot be improved
much further. The Kawaguchi-Kyan bound of 1+

√
2

2 ≈ 1.207 is known to be
tight [11,17], and this lower bound carries over to fixed-order scheduling: the
worst-case example uses jobs with equal Smith ratios, and in that case reordering
the jobs assigned to a machine does not change the cost.

4 A Constant Factor Approximation Algorithm

In this section we will describe an algorithm that proves our main result: Theo-
rem 1. Our approach is as follows: first we round the instance such that all Smith
ratios are powers of 1

3 (by rounding up the weights as appropriate). Given that, we
show that a certain relaxed objective function is always within a constant of the
original objective function. We then use LP rounding to find a Smith-monotone
schedule that is optimal with respect to the relaxed objective function.
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Theorem 1. Fixed-order scheduling can be approximated to within a factor 27
2 +

9
√

3 < 29.1 .

From hereon assume that all Smith ratios are powers of some fixed γ ∈ (0, 1).
Suppose we relax the objective function (1) to disregard the contribution of
processing times of jobs with j < k and wj > wk (hence, j �≺ k) in the completion
time of job k. We claim this relaxation loses only a factor ( 4

1−√
γ − 3).

Definition 3. The partial completion time of a job k ∈ J under a schedule
μ is

c̃k =
∑

j�k:μ(j)=μ(k)

pj .

The partial cost of a schedule μ is Γ̃ (μ) =
∑

k∈J wk c̃k.

It is crucial that the Smith ratios are powers of γ; this ensures that either j � k or
wj is relatively large compared to wk. Intuitively, in the latter case we don’t care
too much about the effect of j’s processing time on the lighter-weight job k.

Theorem 2. Take an instance where all Smith ratios are positive powers of
γ ∈ (0, 1). Consider any schedule μ and denote its cost by Γ (μ). It holds that

Γ̃ (μ) ≤ Γ (μ) ≤
(

4
1 − √

γ
− 3

)

· Γ̃ (μ).

Since it is obvious that Γ̃ (μ) ≤ Γ (μ) we prove the upper bound.
To simplify notation assume the instance has only one machine; the result

can be applied to each machine individually. For d ∈ N, let Nd be the set of
jobs j with sj = γd; let Wd and Pd be, respectively, the total weight and total
processing time of jobs in Nd. We denote by Hd = 1

Wd

∑
k∈Nd

wk c̃k the weighted
average of the partial cost in Nd. It follows that

Γ̃ (μ) =
∑

k∈J

wk c̃k =
∑

d∈N

WdHd =
∑

d∈N

γdPdHd. (3)

Our goal is to bound Γ (μ) in the same terms. Since Hd only accounts for
the contribution of jobs with Smith ratio at most γd in the completion time of
jobs in Nd, we need to correct for the other jobs (that are in N1, . . . , Nd−1). In
the worst case, all these jobs are scheduled first and hence their processing times
need to be added. Therefore we get:

Γ (μ) ≤
∑

d∈N

Wd(Hd +
d−1∑

i=1

Pi) ≤
∑

d∈N

γdPd(Hd +
d−1∑

i=1

Pi). (4)

We will prove that this value can be bounded by the desired constant times Γ̃ (μ).
Globally our strategy is to show that every newly introduced term γdPdPi can
be charged to a term in the expression for Γ̃ (μ) such that no term gets charged
more than a 4

1−√
γ − 4 fraction of its value.
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Before we can proceed we will need the inequality in Lemma 5 below. It
says that the average weighted completion time in Nd is at least half the total
processing time in Nd, which can intuitively be seen as follows: think of all jobs
j ∈ Nd as blocks of equal width, length pj and mass wj . So, all blocks have
equal density. Now stack the boxes on top of each other: then Pd corresponds
to the total length, and Hd approximately to the center of mass, which is in the
middle.

Lemma 5. Pd ≤ 2Hd.

Proof.

Hd =
1

Wd

∑

k∈Nd

wk

∑

j≤k∧sj≤sk

pj ≥ 1
Wd

∑

k∈Nd

wk

∑

j≤k∧j∈Nd

pj

︸ ︷︷ ︸
:=Q

Suppose now that Q < Pd

2 . Since Wd = γdPd, it follows that:

Q =
1
Pd

∑

k∈Nd

pk(Pd −
∑

h>k∧h∈Nd

ph) = Pd − 1
Pd

∑

h∈Nd

ph

∑

k<h∧k∈Nd

pk ≥ Pd − Q,

implying that Q ≥ Pd/2, a contradiction. �
Lemma 6. max{γdPdHd, γ

iPiHi} ≥ 1
2 (γdPdPi)γ

1
2 (i−d).

Proof. Suppose that γdPdHd < 1
2γdPdPiγ

1
2 (i−d). This implies that

Hd <
1
2
Piγ

1
2 (i−d). (5)

So we obtain

γdPdPiγ
1
2 (i−d) ≤ γd2HdPiγ

1
2 (i−d)

(5)
< γd−iγiPiγ

1
2 (i−d)Piγ

1
2 (i−d) ≤ 2γiHiPi,

where the first and third inequalities follow from Lemma5. �
We are now ready to prove Theorem 2.

Proof (Theorem 2). We will prove the following inequality, implying the theorem
by (4):

∑

d∈N

γdPdHd

( 4
1 − √

γ
− 4

) ≥
∑

d∈N

γdPd

d−1∑

i=1

Pi.

Applying Lemma 6 and replacing the max by a sum we get:

∑

d∈N

γdPd

d−1∑

i=1

Pi ≤
∑

d∈N

d−1∑

i=1

γ
1
2 (d−i)2max(γdPdHd, γ

iPiHi)

≤
∑

d∈N

d−1∑

i=1

γ
1
2 (d−i)2(γdPdHd + γiPiHi)

≤
∑

d∈N

∞∑

i=1

γ
1
2 i4(γdPdHd) =

∑

d∈N

γdPdHd(
4

1 − √
γ

− 4). �
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Linear Programming Relaxation
Suppose all Smith ratios are positive powers of γ ∈ (0, 1). The following mixed-
integer program captures the problem of finding a Smith-monotone ordering that
minimizes the modified objective Γ̃ (μ).

min
∑

k∈J

wk c̃k

s.t. uk ≥ uj + zjk ∀j ≺ k (6)
uk ≤ m ∀k ∈ J (7)

c̃k ≥ pk +
∑

j≺k

(1 − zjk)pj ∀k ∈ J (8)

uk ∈ N, zjk ∈ {0, 1} ∀k ∈ J, j ≺ k

Here, zjk is the indicator variable for the event that j and k are assigned to
different machines. The variable uk indicates which machine job k is assigned
to. Finally, c̃k represents the partial completion time of job k. The constraint
(6) is valid since we require a Smith-monotone ordering.

Now consider the natural LP relaxation of this mixed-integer program, where
we drop the integrality requirements and instead require 1 ≤ uk ≤ m, 0 ≤ zjk ≤ 1.
Denote this relaxation by (LP). Let (z∗, u∗, c̃∗) be an optimal solution to (LP),
with cost optlp.

Definition 4. For β ∈ (0, 1), the β-point schedule associated to u∗ is the
schedule obtained by assigning job j to machine �u∗

j − β�.
From now on, β will be chosen uniformly at random from (0, 1), making the
β-point schedule a random schedule.

Let Nd be the set of jobs with Smith ratios γd and let C̃k be the (random)
partial completion time of job k under the β-point schedule. The following state-
ments are easy to verify.

Proposition 1. For any pair of jobs j ≺ k, the probability that jobs j and k are
assigned to the same machine under the β-point schedule is at most 1 − z∗

jk.

Proof. This follows immediately from the constraint (6). �
Proposition 2. For any k ∈ J , E[C̃k] ≤ c̃∗

k. Hence

E

[∑

k∈J

wkC̃k

]
≤

∑

k∈J

wk c̃∗
k = optlp.

Proof. This follows from Proposition 1 and (8). �
Note that a β-point schedule can be derandomized in polynomial time: a

job j is always assigned to u∗
j when u∗

j is integral and to either �u∗
j� or �u∗

j�
otherwise. Let bj be the maximum value of β for which �u∗

j − β� = �u∗
j�. It

follows that all possible schedules are the ones obtained by assigning to β the
values in {bj |j ∈ J} ∪ {1}.
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Constant Factor Approximation
We are now ready to complete the main proof of this section.

Proof (Theorem 1). Given an instance I where the jobs have arbitrary Smith
ratios, let Iγ be the instance obtained from I by rounding up the weights such
that the Smith ratios are powers of γ, where γ will be defined later, and then
scaled to be in (0, 1). Let optI and optIγ be the optimal cost for the instances
I and Iγ respectively. Clearly the cost of any schedule μ on Iγ is at most γ−1

times the cost of μ on I and optI ≤ optIγ since the cost of a schedule is linear
in the weights (see (1)) and weights do not affect feasibility.

We denote by μ and optlp, respectively, the β-point schedule and the optimal
cost of (LP) on Iγ . By Lemma 4, Proposition 2 and Theorem 2, the cost of μ on
I is at most

3

2

(
4

1 − √
γ

− 3

)
· optlp ≤ 3

2

(
4

1 − √
γ

− 3

)
· optIγ ≤ 3

2

(
4

1 − √
γ

− 3

)
· optIγ

−1.

Minimizing over γ, this yields an approximation ratio of

min
γ∈(0,1)

3
2

(
4

1 − √
γ

− 3
)

· γ−1 =
3
2
(9 + 6

√
3) =

27
2

+ 9
√

3

when γ = 1/3, concluding the proof. �

5 Epilogue

Our work suggests many further interesting and natural directions. One is to
find a PTAS (or even a polynomial time exact algorithm) for unit processing
times, perhaps expanding on the QPTAS in the appendix. Good approximation
algorithms for all of the following problems remain open questions.

(1) There are k arrival lines that need to be dispatched over m servers, such
that the FIFO ordering in each of the arrival lines is obeyed in each of the
server queues.

(2) An arbitrary partial order on the jobs is given, and we require that if two
jobs are assigned to the same machine, then the partial order is respected.
(1) is exactly this problem, where the partial order is described by k disjoint
chains.

(3) Instead of requiring that the order is exactly preserved, a natural relaxation
is to allow a reordering buffer (see, e.g. [14]) of limited size. Jobs enter the
buffer in the given FIFO order, but any job in the buffer can be chosen and
assigned to one of the machines.

A A QPTAS for unit processing times

In this section we sketch a simple quasipolynomial time approximation scheme
(QPTAS) for the problem under unit processing times. Note that we do not know
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if this version of the problem remains NP-hard. However, it seems to capture
most of the difficulty, so we feel that tackling this case will help substantially in
improving the upper bound for the general case. The QPTAS works by solving
a relaxed problem by dynamic programming. We round the completion times to
geometric intervals and then we consider schedules in which at any time point
only one machine per completion time can accept jobs. This sufficiently reduces
the solution space to get a quasipolynomial time algorithm.

The first step is to consider only a logarithmic number of distinct completion
times. Let R = {�(1 + ε)i� : i ∈ N} be the set of integers found by rounding
down a geometric series growing with rate 1 + ε. Then order the elements 1 =
R1 < R2 < . . . and take R0 = 0 by convention. Assume that s is the smallest
index such that Rs ≥ n, and note that s = O(log1+ε(n)). Now consider the
objective of minimizing the weighted sum of rounded completion times, where
each completion time is rounded up to the nearest Ri. Call this the rounded
objective; clearly the rounded objective of any schedule is at most 1 + ε times
the actual objective. So, if we can find an optimal segmented schedule for the
rounded objective, we immediately get a (1 + ε)-approximation to the original
problem.

Now we define a restricted type of schedule, which we call a segmented stair-
case schedule. A segmented staircase schedule is similar to a staircase shaped
schedule, except that the “steps” are now defined in terms of the rounded com-
pletion times. When j is assigned to a machine, it is assigned to the leftmost
machine that gives it the same rounded completion time. In other words, if a
job j gets assigned to μ(j) and gets completed at time t ∈ (Ri, Ri+1], then μ(j)
is the lowest index machine for which the number of jobs k < j assigned to it
does not exceed Ri+1 − 1.

Lemma 7. There is an optimal solution to the problem of minimizing the
rounded objective that is a segmented staircase schedule.

Proof. Take μ to be a schedule for which (μ(1), μ(2), . . . , μ(n)) is lexicographi-
cally minimal amongst all solutions that are optimal for the rounded objective.
Notice that μ must be staircase shaped; otherwise, transforming it into a stair-
case shaped schedule would yield a schedule μ′ in which every job has the same
completion time, but which is lexicographically smaller than μ.

Suppose for a contradiction that this schedule is not a segmented staircase
schedule. Let j be the last (maximum index) job that violates the rule for a
segmented staircase schedule: j is assigned to machine h′, but h < h′ is the
smallest index machine that gives it the same rounded completion time, ignoring
all jobs after j. Let k be the first job k > j scheduled on machine h. (If there
is no such job, then moving j to h′ reduces the lexicographical value and does
not increase the total rounded completion time.) Note that since j was chosen
maximally, no job � with j < � < k is scheduled on machine h′. Moreover,
σμ(k) > σμ(j), since μ is staircase shaped, so it must be that j and k are both
in the same segment (Ri, Ri+1] for some i. So we can simply swap k and j to
obtain a lexicographically smaller schedule of the same rounded objective value.
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For segmented staircase schedules, we can compactly describe the loads on the
machines just prior to assigning job j. Let Xj

i be the number of jobs on machines
with load currently in the interval [Ri, Ri+1) just prior to assigning job j. Since
only one of the machines with load in that interval can have strictly more than
Ri jobs on it, this number also completely determines how many machines there
are with loads exactly Ri. For each j, we have nO(log1+ε n) options for the values
of Xj

1 ,X
j
2 , . . . , X

j
s . Once we know the minimum cost of a schedule attaining each

of those options, we can compute the cost of all the schedules up to job j + 1.
Hence, we get the main result of this section.

Theorem 3. For any ε > 0, there is a (1 + ε)-approximation algorithm for
fixed-order scheduling with unit processing times with running time nO(log1+ε n).
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