
 Electronic copy available at: https://ssrn.com/abstract=3093846 

December 29, 2017 XXXXX Finance Rolling˙Adjoints

To appear in XXXXX Finance, Vol. 00, No. 00, Month 20XX, 1–29

Rolling Adjoints : fast Greeks along Monte Carlo

scenarios for early-exercise options

Shashi Jain ∗ † and Alvaro Leitao‡ and Cornelis W. Oosterlee§

†Department of Management Studies, Indian Institute of Science, Bangalore, India
‡Riskcenter Group, University of Barcelona, Barcelona, Spain

§ Centrum Wiskunde and Informatica, Amsterdam, the Netherlands.

(v1.0 released December 2017)

In this paper we extend the stochastic grid bundling method (SGBM), a regress-later based Monte Carlo
scheme for pricing early-exercise options, with an adjoint method to compute in a highly efficient manner
sensitivities along the paths, with reasonable accuracy. With the ISDA standard initial margin model
being adopted by the financial markets, computing sensitivities along scenarios is required to compute
quantities like the margin valuation adjustment.
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1. Introduction

The efficient calculation of financial instrument sensitivities by Monte Carlo methods is a prob-
lem of practical importance. The ISDA standard initial margin model (SIMM) for non-standard
derivatives, such as callable exotic options, is based on sensitivities of financial derivatives to de-
termine today’s initial margins. To compute the margin valuation adjustment (MVA) to manage
the funding costs for posting initial margin over the lifetime of a derivative, sensitivities along the
paths need to be computed. Computing sensitivities along the paths, for all the underlying risk
factors, for all non-standard derivatives, for each monitoring date1, will pose significant computa-
tional challenges. Additionally, if the non-standard derivative is defined by embedded early-exercise
features, computing sensitivities along the paths poses additional challenges.

The simplest approach for estimating a price sensitivity with respect to a parameter is based on a
finite difference approximation that is commonly known as the bump-and-revalue (BR) approach.
It is based on performing the Monte Carlo technique multiple times with respect to shifted (i.e.,
bumped) up and down values of the concerned parameters. The wide acceptance of the method is

∗Corresponding author. Email: shashijain@iisc.ac.in
1we use the term monitoring date for the subset of forward dates on which the corresponding option values and their sensitivities
need to be computed along the scenarios, for instance, for the purpose of exposure calculation or future SIMM based initial
margin estimations
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attributed to the ease of implementation and its suitability for parallel computing. The drawbacks
however are that the bias and variance properties of finite difference estimates can be poor, the
computational costs may grow significantly with the number of input parameters for which the
sensitivity is required, and the scheme is not suitable for computing sensitivities along the scenarios,
that are required for instance to calculate the MVA.

Advanced methods for estimating sensitivities include the path-wise 1 and likelihood ratio methods,
as described in Chapter 7 of Glasserman (2003)(13). The path-wise method employs differentiation
of the payoff and the underlying assets or state variables along each path. The method requires
the payoff to be smooth, although there are techniques to handle non-smooth payoffs such as for
digital or barrier instruments. The likelihood ratio method differentiates the transition density of
the underlying assets or state variables. In comparison to BR, the path-wise and likelihood methods
produce better quality sensitivity estimates, although their implementation is often non-trivial and
depends on the underlying process and payoffs.

Path-wise sensitivities can be computed either in an ordinary manner, i.e., forward in time, or by
adjoints, i.e., backwards in time. The forward and adjoint methods provide the same sensitivity
estimates, however, the difference between the two is mainly in the computational effort. As pointed
out in the original Smoking Adjoints by Giles and Glasserman (2006)(12) the adjoint method is
advantageous for calculating the sensitivities of a small number of securities with respect to a large
number of parameters, while the forward method is advantageous for calculating sensitivities of
many securities with respect to a small number of parameters.

Adjoint differentiation (AD) is technically non-trivial to implement in an existing library and is
often achieved by introducing automatic differentiation (aka algorithmic differentiation), where
differentiation is performed using derivatives defined at the operator level. It has been shown
that the computational complexity of AD is no more than four times the complexity of the original
algorithm. The adjoint is calculated after the pricing computations, which implies that information
generated during the pricing should be stored for the calculation of the adjoint. The terminology
for the structure in which the relevant pricing operations are recorded is known as the tape, which
is played back to perform the differentiation using the recorded information. The tape often leads
to memory issues and complexity in coding. It should be noted that computing sensitivities along
scenarios using the path-wise approach is also non-trivial.

Valuation of financial options with early-exercise features by Monte Carlo methods often involve
regression techniques. The least squares Monte Carlo method (LSMC), proposed by Longstaff and
Schwartz (2001)(24) is one of the most widely used methods for pricing such options. Briefly, the
method approximates recursively, moving backwards in time, the continuation value (a conditional
expectation) function by regressing the future optimal discounted cashflows against a set of basis
functions of the underlying state variables at that time epoch.

Some other Monte Carlo based schemes for pricing American options are the stochastic mesh
method proposed by Broadie and Glasserman (2004)(5), where the involved conditional expecta-
tions are approximated, recursively, moving backwards in time, as weighted sums of the future
option values at discrete mesh points. In Glasserman and Yu (2004)(14) a variant of LSMC is pro-
posed, where the basis for regression is constructed using the state variables at the next time step,
as opposed to the current time step. This approach has commonly been referred to as regression
later (or, regress-later), or also, as in Beutner et al. (2015)(3), as replicating portfolio. An extensive
comparative analysis of the regress-now (the usual LSMC) versus portfolio replication scheme can
be found in Beutner et al. (2013)(4) and Pelsser and Schweizer (2016)(25).

1The terminology path-wise is used here for the approach where the option sensitivity at time t0 is calculated using the
expectation of the path-wise sensitivities at the expiration date. This should not be confused with sensitivities along the path
or scenario, a terminology we use here for the conditional option sensitivities on the monitoring dates along the simulated
paths.
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Application of AD for regress-now Monte Carlo methods has been proposed, amongst others, by
Antonov (2017)(1) and Caprioti (2016)(6). In Antonov et al. (2015)(2) a scheme called backward
differentiation is proposed, which circumvents the use of tapes for AD methods.

In Wang and Caflisch (2010)(27) an extension of LSMC is proposed to estimate Delta and Gamma
based on an initial state dispersion scheme. It is shown by Letourneau and Stentoft (2016)(23) that
for the above method a bias, which is not only a function of the order of the polynomial but is also
related to the size of the initial dispersion, is introduced, and it is not possible to propose a method
for the initial dispersion which is generally applicable using this methodology. In Letourneau and
Stentoft (2016)(23), more structure is brought into the initial sample dispersion scheme. However,
the above methods are not suitable for computing parameter related sensitivities such as the option
Vega.

There is a growing literature on sensitivity estimators using Malliavin calculus. This line of work
originated in Fournie et al. (1999)(11), and includes Gobet and Kohatsu-Higa (2003)(15), Kohatsu-
Higa and Montero (2004)(20), and many others. Chen and Glasserman (2007)(20) study the link
between Malliavin calculus based approaches to the path-wise and likelihood ratio methods. In
Leitao et al. (2017)(22) a data-driven approach to infer the unknown characteristic functions is
proposed which can then be used to estimate option Greeks.

It was shown in Jain and Oosterlee (2015)(17) that efficient approximations of the t0 option Delta
and Gamma can be obtained using SGBM. However, computing model parameter based sensitivi-
ties, and the sensitivities along the paths is nontrivial using the original SGBM. In this paper we
extend the SGBM method to efficiently compute model parameter sensitivities and Greeks along
the paths, using a combination of differentiation of regression coefficients and adjoint differentia-
tion between monitoring dates. The resulting sensitivities at the end of the monitoring period from
adjoint differentiation is implicitly rolled over into the sensitivities of the regression coefficients of
the previous monitoring date. For this reason we call the method Rolling Adjoints, which facilitates
Smoking Adjoints (2005)(12) to compute conditional sensitivities along the path for options with
early-exercise features.

This paper is structured as follows. In Section 2 we formulate the problem and set the notation; in
Section 3 we briefly summarize SGBM. In Section 4 we discuss the extension of SGBM to compute
sensitivities along paths. In Section 5 we provide extensive numerical examples. In Section 6 we
discuss some of the conclusions.

2. Problem Formulation

This section defines the Bermudan option pricing problem and sets up the notations used in this
paper. We assume a complete probability space (Ω,F ,P) and finite time horizon [0, T ]. Ω is the set
of all possible realizations of the stochastic economy between 0 and T . The information structure
in this economy is represented by an augmented filtration Ft : t ∈ [0, T ], with Ft the sigma field of
distinguishable events at time t, and P is the risk-neutral probability measure on elements of F . It
is assumed that Ft is generated by Wt, a d-dimensional standard Brownian motion, and the state
of economy is represented by an Ft-adapted Markovian process, Xt = (X1

t , . . . ,X
d
t ) ∈ R

d, which
has dependence on model parameters θ = {θ1, . . . , θNθ

}, where t ∈ [t0 = 0, . . . , tm, . . . , tM = T ].
Let ht := h(Xt) be an adapted process representing the intrinsic value of the option, i.e. the holder
of the option receives max(ht, 0), if the option is exercised at time t. With the risk-less savings

account process, Bt = exp(
∫ t

0 rs ds), where rt denotes the instantaneous risk-free rate of return, we
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define

Dtm−1
=

Btm−1

Btm

.

We consider the special case where rt is constant. The problem is then to compute

Vt0(Xt0)

Bt0

= max
τ

E

[
h(Xτ )

Bτ

]
, (1)

where τ is a stopping time, taking values in the finite set {0, t1, . . . , T}.

The dynamic programming formulation to solve this optimization problem is then as follows. The
value of the option at the terminal time T is equal to the product’s pay-off,

VT (XT ) = max(h(XT ), 0). (2)

Recursively, moving backwards in time, the following iteration is then solved, given Vtm has already
been determined, the continuation or hold value Qtm−1

is given by:

Qtm−1
(Xtm−1

) = Btm−1
E

[
Vtm(Xtm)

Btm

∣∣∣∣Xtm−1

]
. (3)

The Bermudan option value at time tm−1 and state Xtm−1
is then given by

Vtm−1
(Xtm−1

) = max(h(Xtm−1
), Qtm−1

(Xtm−1
)). (4)

The sensitivity of interest might be either with respect to Xtm−1
, i.e.,

∂Vtm−1
(Xtm−1

)

∂Xtm−1

, or with respect

to the model parameters θ, i.e.
∂Vtm−1

(Xtm−1
)

∂θ
.

Assuming minimal smoothness of the option value function V, the following holds true

∂

∂θ

(
E

[
Vtm (Xtm)

Btm

∣∣∣∣Xtm−1

])
= E

[
∂

∂θ

(
Vtm (Xtm)

Btm

)∣∣∣∣Xtm−1

]
,

with the conditions for the interchange as discussed in Glasserman (2003)(13).

In a Monte Carlo simulation, the time evolution of the process X is approximated using some
discretization scheme. We define a general Markov discretization scheme as

Xtm = Fm−1(Xtm−1
,Ztm−1

, θ), (5)

where Ztm−1
is a d-dimensional standard normal random vector, and Fm−1 is a transformation from

R
d to R

d.
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3. Stochastic grid bundling method

In this section we briefly describe the main aspects of SGBM, since a detailed description and
convergence study of the method can be found in (17).

SGBM is based on N independent copies of sample paths, {Xt0 , . . . ,XtM }, of the underlying process
obtained using the recursion, Xtm(n) = Fm−1(Xtm−1

(n),Ztm−1
(n), θ), where n = 1, . . . , N is the

index of the path. The method then computes the option value at terminal time as VtM (XtM ) =
max(h(XtM ), 0).

The following SGBM components are employed within each time step, tm, m ≤ M, moving back-
wards in time, starting from tM .

Bundling The grid points at tm−1 are bundled into Btm−1
(1), . . . ,Btm−1

(ν) non-overlapping sets
or partitions using, for instance, any of the following schemes:

• k-means clustering algorithm,

• recursive bifurcation,

• recursive bifurcation of a reduced state space.

A mapping Iβtm−1
: N[1,Nβ] 7→ N

[1,N ], is defined which maps ordered indices of paths in a bundle
Btm−1

(β) to the original path indices, where Nβ := |Btm−1
(β)| is the cardinality of the β-th bundle,

β = 1, . . . , ν.

Within each bundle Btm−1
(β), β = 1, . . . , ν, the following operations are performed

• Regress-later within each bundle

Corresponding to each bundle Btm−1
(β), β = 1, . . . , ν, a parameterized value function G̃ :

R
d ×R

K 7→ R, which assigns values G̃(Xtm , α
β
tm
) to states Xtm , is computed. Here α

β
tm
∈ R

K

is a vector of free parameters. The objective is to choose, for each tm and β, a parameter

vector αβ
tm

so that

G̃(Xtm , α
β
tm
) = Vtm(Xtm).

Assuming the square-integrability of the option value function, it is well-known that under
certain conditions (see (4)) the option value function can be expressed as a linear combination

of a countable number of orthonormal basis functions. Therefore, one may choose Ĝ ≈ G̃ to
be:

Vtm(Xtm) = Ĝ(Xtm , α
β
tm
) =

∞∑

k=1

α
β
tm
(k)φk(Xtm), (6)

although in practice the orthonormal basis is restricted to a finite set, i.e. k ≤ K, and thus

Vtm(Xtm) ≈ G(Xtm , α
β
tm
) =

K∑

k=1

α
β
tm
(k)φk(Xtm), (7)
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The economic interpretation of this step is that, conditional on a path ending up in a partic-
ular bundle at tm−1, a static portfolio is set up to replicate the option value at tm. The K

basis functions chosen then represent the payoffs of the hedge instruments, and α
β
tm

are the
corresponding weights of these instruments in the portfolio. All paths within a bundle would
then have the same set of hedge instruments and portfolio weights.

The portfolio weights are approximated using a least squares approach, i.e.,

argmin
α̂

β
tm

Nβ∑

n=1

(
Vtm

(
Xtm

(
Iβtm−1

(n)
))
−

K∑

k=1

α̂
β
tm
(k)φk

(
Xtm

(
Iβtm−1

(n)
)))2

. (8)

Given a finite number of sample paths used for the least squares regression, the coefficients

α̂
β
tm

represent the approximation for αβ
tm
.

In Appendix A we illustrate by means of a basic example the importance of bundling for the
regress-later scheme, which otherwise can have a significant bias for path-dependent options.

• Computing the continuation and option values

The continuation values for Xtm−1
(n) ∈ Btm−1

(β), n = 1, . . . , N, β = 1, . . . , ν, are approxi-
mated by,

Q̂tm−1

(
Xtm−1

(n)
)
= E

[
G
(
Xtm , α

β
tm

)
| Xtm−1

(n)
]
.

Exploiting the linearity of the expectation operator, using Equation (7), it can be written as:

Q̂tm−1
(Xtm−1

(n)) =

K∑

k=1

α̂
β
tm
(k)E

[
φk(Xtm) | Xtm−1

(n)
]
. (9)

The vector of basis functions φ should ideally be chosen such that the expectations

E
[
φk(Xtm)|Xtm−1

]
are known in closed-form, or have analytic approximations.

The option value at each exercise time is then given by:

V̂tm−1

(
Xtm−1

(n)
)
= max

(
h
(
Xtm−1

(n)
)
, Q̂tm−1

(
Xtm−1

(n)
))

.

SGBM has been applied to a wide range of problems, high-dimensional Bermudan options with
different payoffs in (17), models with jumps in Cong and Oosterlee (2015)(7), for Bermudan swap-
tions under the Libor market model in Karlsson et al. (2016)(19). SGBM has been used for CVA
calculations in de Graaf et al. (2014)(8) for exposure and potential future exposure calculation, in
Qian and Oosterlee (2016)(10) where the underlying follows the Heston Hull-White dynamics, and
in Karlsson et al. (2016)(18) to compute CVA of Bermudan swaption when the underlying follows
Hull-White dynamics. In Qian et al. (2017)(9) the suitability of SGBM when different measures are
simultaneously used for pricing and risk estimation has been proposed. In Jain et al. (2016)(16) the
effectiveness of SGBM for hedging KVA, while avoiding nested simulations, has been demonstrated.
Leitao and Oosterlee (2015)(21) discuss the approach of massive parallelization using GPUs for
SGBM.
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4. Sensitivities along paths using SGBM

In this section we describe the approach to compute sensitivities along scenarios with respect to
the underlying states and model parameters using SGBM. As the basic regress-later Monte Carlo
scheme can be seen as a special case of SGBM, where the number of bundles chosen at each time
step is equal to one, the approach described here will also be applicable for this scheme.

The method follows a backward iteration, starting from the final expiration time T, where the option
value and the sensitivities are trivial to calculate. We emphasize again here that a key difference
between SGBM and LSMC is that for SGBM the continuation value is directly computed using the
backward iteration as described in Section 2, while LSMC computes it by discounting cashflows
as a result of following a (quasi)optimal policy. An outcome is that in the case of SGBM, the
differentiation of regression coefficients is essential, as it is directly involved in the approximation
of the value function, while in the case of LSMC it is not so important as regression is used only
to determine the optimal policy.

4.1. Model parameter-based sensitivities

The sensitivity of the option value at tm−1 with respect to the model parameter θ is given by

∂

∂θ
Vtm−1

(Xtm−1
) =

(
∂

∂θ
h
(
Xtm−1

))
1

Qtm−1
<h(Xtm−1)

+

(
∂

∂θ
Qtm−1

(
Xtm−1

))
1

Qtm−1
≥h(Xtm−1)

.

The first term at the right-hand side, the sensitivity of the immediate payoff, is usually trivial
to compute. Computing the sensitivity of the continuation value is discussed in detail here. As
described in Section 3, the continuation value in SGBM is approximated using Equation (9).
The sensitivity of the continuation value for the simulated state Xtm−1

(n) in bundle Btm−1
(β) is

computed as

∂

∂θ
Q̂tm−1

(Xtm−1
(n)) =

∂

∂θ

(
K∑

k=1

α̂
β
tm
(k)E

[
φk(Xtm) | Xtm−1

(n)
]
)

=
K∑

k=1

((
∂

∂θ
α̂
β
tm
(k)

)
E
[
φk(Xtm) | Xtm−1

(n)
]

+ α̂
β
tm
(k)

∂

∂θ
E
[
φk(Xtm) | Xtm−1

(n)
])

(10)

In practice, the basis functions are selected such that their conditional moments are either known
or can be readily approximated using a numerical scheme. As a result the last term in Equation
(10), i.e.

7
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∂

∂θ
E
[
φk(Xtm) | Xtm−1

(n)
]
,

can also be readily evaluated.

To arrive at the sensitivities of the regression coefficients, let us first define matrix Aβ
tm

as

Aβ
tm

:=





φ1(Xtm(Iβtm−1
(1))) φ2(Xtm(Iβtm−1

(1))) . . . φK(Xtm(Iβtm−1
(1)))

φ1(Xtm(Iβtm−1
(2))) φ2(Xtm(Iβtm−1

(2))) . . . φK(Xtm(Iβtm−1
(2)))

...
...

. . .
...

φ1(Xtm(Iβtm−1
(Nβ))) φ2(Xtm(Iβtm−1

(Nβ))) . . . φK(XtmIβtm−1
((Nβ)))





, (11)

where Xtm(Iβtm−1
(1)), . . . ,Xtm(Iβtm−1

(Nβ)) are the realized states at tm of the paths in bundle
Btm−1

(β). Let the corresponding vector of option values at tm for these paths be defined as

Vβ
tm

:=




V̂tm(Xtm(Iβtm−1
(1)))

V̂tm(Xtm(Iβtm−1
(2)))

...

V̂tm(Xtm(Iβtm−1
(Nβ)))



. (12)

The least squares coefficients for Equation (8) are computed as:

α̂
β
tm

= (Aβ
tm

⊤
Aβ

tm
)−1(Aβ

tm

⊤
)Vβ

tm
. (13)

The derivative of the regression coefficients using the relation from Equation (13) is then given by:

∂α
β
tm

∂θ
=

∂(Aβ
tm

⊤
Aβ

tm
)−1

∂θ
(Aβ

tm

⊤
)Vβ

tm

+ (Aβ
tm

⊤
Aβ

tm
)−1 ∂A

β
tm

⊤

∂θ
Vβ

tm

+ (Aβ
tm

⊤
Aβ

tm
)−1(Aβ

tm

⊤
)
∂Vβ

tm

∂θ
, (14)

where the derivative of the matrix inverse in Equation (14) can be further expanded as

∂(Aβ
tm

⊤
Aβ

tm
)−1

∂θ
= −(Aβ

tm

⊤
Aβ

tm
)−1


∂Aβ

tm

⊤

∂θ
Aβ

tm
+Aβ

tm

⊤∂Aβ
tm

∂θ


 (Aβ

tm

⊤
Aβ

tm
)−1.
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In order to compute the regression coefficient sensitivities, following the expression in Equation

(14), one has to compute, conditional on Ftm−1
, the quantities

∂A
β
tm

∂θ
and

∂V
β
tm

∂θ
.

Here,

∂Aβ
tm

∂θ
=





∂φ1(Xtm (Iβ
tm−1

(1)))

∂Xtm

∂Xtm (Iβ
tm−1

(1))

∂θ
. . .

∂φK(Xtm (Iβ
tm−1

1)))

∂Xtm

∂Xtm (Iβ
tm−1

(1))

∂θ

∂φ1(Xtm (Iβ
tm−1

(2)))

∂Xtm

∂Xtm (Iβ
tm−1

(2))

∂θ
. . .

∂φK(Xtm (Iβ
tm−1

(2)))

∂Xtm

∂Xtm (Iβ
tm−1

(2))

∂θ
...

. . .
...

∂φ1(Xtm (Iβ
tm−1

(Nβ)))

∂Xtm

∂Xtm (Iβ
tm−1

(Nβ))

∂θ
. . .

∂φK(Xtm (Iβ
tm−1

(Nβ)))

∂Xtm

∂Xtm (Iβ
tm−1

(Nβ))

∂θ





,

where, conditioned on Ftm−1
, when the monitoring dates tm are the same as the discretization

steps, then using the discretization scheme in Equation (5) ,

∂Xtm(Iβtm−1
(n))

∂θ
=

∂

∂θ
Fm−1(Xtm−1

(Iβtm−1
(n)),Ztm−1

(Iβtm−1
(n)), θ),

n = 1, . . . , Nβ. (15)

Remark 1 When the monitoring dates are different from the discretization time steps, for in-
stance, when an exact discretization is not available, the sensitivities in Equation (15), i.e.

∂φk(Xtm(Iβtm−1
(n))))

∂Xtm

∂Xtm(Iβtm−1
(n))

∂θ
, k = 1 . . . ,K, n = 1, . . . , Nβ, (16)

can be computed as follows. Let the discretization between tm−1 and tm be denoted by tm−1 =
tm0

, . . . , tml
, . . . , tmL

= tm. Denote

Θml−1
(Iβtm0

(n)) =
∂Xtml−1

(Iβtm0
(n))

∂θ
,

=
∂

∂θ
Fml−1

(Xtml−1
(Iβtm0

(n)),Ztml−1
(Iβtm0

(n)), θ),

where n = 1, . . . , Nβ. For ease of notation we drop the path index and write,

Θml−1
:= Θml−1

(Iβtm0
(n))

∂

∂θ
Fml−1

(Xtml−1
(Iβtm0

(n)),Ztml−1
(Iβtm0

(n)), θ) :=
∂

∂θ
Fml−1

(Xtml−1
, , θ),

then
∂XtmL

∂θ
is computed using the recursion,

Θml
=

∂Fml−1
(Xtml−1

, , θ)

∂Xtml−1

Θml−1
+

∂Fml−1
(Xtml−1

, , θ)

∂θ
, (17)

9
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where l = 1, . . . , L, with initial condition Θm0
= 0. The recursion in Equation (17) can be computed

either in the forward or in the adjoint mode, as described in Giles and Glasserman (2005)(12),
with the difference that the recursion is restricted between tm, and tm−1 in Rolling Adjoints rather
than between tM , and t0, in Smoking Adjoints.

Vβ
tm

is explicitly dependent on the state and model parameters, i.e., Vβ
tm

:= Vβ
tm
(Xtm , θ). The state

Xtm |Ftm−1
itself is again dependent on the model parameters as given by the relation in Equation

(5). Therefore,

∂Vβ
tm

∂θ
|Ftm−1

=
∂Vβ

tm

∂Xtm

∂Xtm

∂θ
+

∂Vβ
tm

∂θ
, (18)

where ∂Xtm

∂θ
|Ftm−1

is given by Equation (15). When the monitoring dates are not the same as the
discretization steps, then

∂Vβ
tm

∂Xtm

∂Xtm

∂θ
|Ftm−1

can be computed in a forward or an adjoint mode following a methodology analogous to the

description in Remark 1. Computing
∂V

β
tm

∂Xtm

is detailed in Section 4.2.

4.2. Computation of Delta along the paths

The sensitivity of the option value at tm−1 with respect to the Xtm−1
is given by

∂Vtm−1
(Xtm−1

)

∂Xtm−1

=

(
∂h
(
Xtm−1

)

∂Xtm−1

)
1

Qtm−1
<h(Xtm−1)

+

(
∂Qtm−1

(
Xtm−1

)

∂Xtm−1

)
1Qtm−1

≥h(Xtm−1)
.

The derivative of the immediate payoff h with respect to the state space is usually trivial to
compute. Of interest is the computation of the sensitivity of the continuation value function, i.e.,

∂Q̂tm−1
(Xtm−1

(n))

∂Xtm−1

=
∂

∂Xtm−1

(
K∑

k=1

α̂
β
tm
(k)E

[
φk(Xtm) | Xtm−1

(n)
]
)

=
K∑

k=1

(
∂α̂

β
tm
(k)

∂Xtm−1

E
[
φk(Xtm) | Xtm−1

(n)
]

+ α̂
β
tm
(k)

∂

∂Xtm−1

E
[
φk(Xtm) | Xtm−1

(n)
])

, (19)

10
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where, again,

∂

∂Xtm−1

E
[
φk(Xtm) | Xtm−1

(n)
]

is either known in closed-form, or can be readily approximated using a numerical scheme.

Following the notation and definitions from Section 4.1, we can write

∂α
β
tm

∂Xtm−1

=
∂(Aβ

tm

⊤
Aβ

tm
)−1

∂Xtm−1

(Aβ
tm

⊤
)Vβ

tm

+ (Aβ
tm

⊤
Aβ

tm
)−1 ∂A

β
tm

⊤

∂Xtm−1

Vβ
tm

+ (Aβ
tm

⊤
Aβ

tm
)−1(Aβ

tm

⊤
)
∂Vβ

tm

∂Xtm−1

, (20)

where the derivative of the matrix inverse in Equation (20) can be further expanded as

∂(Aβ
tm

⊤
Aβ

tm
)−1

∂Xtm−1

= −(Aβ
tm

⊤
Aβ

tm
)−1


 ∂Aβ

tm

⊤

∂Xtm−1

Aβ
tm

+Aβ
tm

⊤ ∂Aβ
tm

∂Xtm−1


 (Aβ

tm

⊤
Aβ

tm
)−1

with

∂Aβ
tm

∂Xtm−1

=





∂φ1(Xtm (Iβ
tm−1

(1)))

∂Xtm

∂Xtm (Iβ
tm−1

(1))

∂Xtm−1

. . .
∂φK(Xtm (Iβ

tm−1
1)))

∂Xtm

∂Xtm (Iβ
tm−1

(1))

∂Xtm−1

∂φ1(Xtm (Iβ
tm−1

(2)))

∂Xtm

∂Xtm (Iβ
tm−1

(2))

∂Xtm−1

. . .
∂φK(Xtm (Iβ

tm−1
(2)))

∂Xtm

∂Xtm (Iβ
tm−1

(2))

∂Xtm−1

...
. . .

...
∂φ1(Xtm (Iβ

tm−1
(Nβ)))

∂Xtm

∂Xtm (Iβ
tm−1

(Nβ))

∂Xtm−1

. . .
∂φK(Xtm (Iβ

tm−1
(Nβ)))

∂Xtm

∂Xtm (Iβ
tm−1

(Nβ))

∂Xtm−1





,

where, conditioned on Ftm−1
and using the discretization scheme in Equation (5),

∂Xtm(Iβtm−1
(n))

∂Xtm−1

=
∂Fm−1(Xtm−1

(Iβtm−1
(n)),Ztm−1

(Iβtm−1
(n)), θ)

∂Xtm−1

,

n = 1, . . . , Nβ . (21)

Remark 2 When the monitoring dates are not the same as the discretization time steps (as a
result of a Taylor-based discretization scheme), then the individual sensitivities in Equation (21),

11
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i.e.

∂φk(Xtm(Iβtm−1
(n)))

∂Xtm

∂Xtm(Iβtm−1
(n))

∂Xtm−1

, k = 1, . . . ,K, n = 1, . . . , Nβ,

can be computed as follows. Given the discretization tm−1 = tm0
, . . . , tml

, . . . , tmL
= tm. Denote

∆ml
(Iβtm0

(n)) =
∂Xtml

(Iβtm0
(n))

∂Xtml−1

,

=
∂Fml−1

(Xtml−1
(Iβtm0

(n)),Ztml−1
(Iβtm0

(n)), θ)

∂Xtml−1

,

where n = 1, . . . , Nβ. For ease of notation we again drop the path index and write

∆ml
:= ∆ml

(Iβtm0
(n))

then
∂φk(XtmL

)

∂XtmL

∂XtmL

∂Xtm0

is computed using the recursion,

∂φk(XtmL
)

∂XtmL

∆mL
∆mL−1

. . .∆m0
, (22)

with the initial condition of ∆m0
being an identity matrix. The expression in Equation (22) can be

computed either in the adjoint mode, i.e. from left to right,

Adjoint−−−−−−−−−−−−−−−−−−→
∂φk(XtmL

)

∂XtmL

∆mL
∆mL−1

...∆m0

or the forward mode, i.e. solving from right to left,

Forward←−−−−−−−−−−−−−−−−−−
∂φk(XtmL

)

∂XtmL

∆mL
∆mL−1

...∆m0

Again the adjoint or forward here needs to be computed at a stretch only between tm−1, and tm.

Following the arguments in Section 4.1,
∂V

β
tm

∂Xtm−1

is given by

∂Vβ
tm

∂Xtm−1

=
∂Vβ

tm

∂Xtm

∂Xtm

∂Xtm−1

. (23)

with ∂Xtm

∂Xtm−1

computed as in Equation (21) when the monitoring dates and discretization steps are

the same, or else
∂V

β
tm

∂Xtm

∂Xtm

∂Xtm−1

is computed following the description in Remark 2.

12
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4.3. General algorithm

Here, we describe the steps of the extended SGBM algorithm for computing the sensitivities along
the paths.

Step I: Generating grid points Simulate N independent copies of the sample paths
{Xt0 , . . . ,XtM } of the underlying process using the recursion:

Xtm(n) = Fm−1(Xtm−1
(n),Ztm−1

(n), θ),

where n = 1, . . . , N is the index of the path. We also store the corresponding noise for each path,
i.e. Ztm−1

(n).

Step II: Option value, parameter and sensitivities at terminal time Compute the option
value at terminal time by,

VtM (XtM ) = max(h(XtM ), 0),

the sensitivity with respect to the state space, i.e.,

∂VtM (XtM )

∂XtM

=
∂h(XtM )

∂XtM

1h(XtM
)>0 + 01h(XtM

)≤0,

and sensitivity with respect to the model parameters, i.e

∂VtM (XtM )

∂θ
=

∂h(XtM )

∂θ
1h(XtM

)>0 + 01h(XtM
)≤0.

Backward recursion The following steps are subsequently performed for each time step, tm, m ≤
M, recursively, moving backwards in time, starting from tM .

Step III: Compute the conditional sensitivities of the state space Compute the sensitivity
of Xtm(n) given Xtm−1

(n), with respect to the model parameters using the discretization relation,
i.e.

∂Xtm

∂θ
=

∂Fm−1(Xtm−1
(n),Ztm−1

(n), θ)

∂θ
.

Step IV: Compute the option sensitivity to model parameters Compute the sensitivity
of the option value at tm given Xtm−1

(n), with respect to the model parameters, i.e.,

13
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∂Vtm(Xtm(n))

∂θ
|Ftm−1

=
∂Vtm(Xtm(n))

∂θ
|Ftm +

∂Vtm(Xtm(n))

∂Xtm

∂Xtm

∂θ

=
∂Vtm(Xtm(n))

∂θ
|Ftm +

∂Vtm(Xtm(n))

∂Xtm

∂Fm−1(Xtm−1
(n),Ztm−1

(n), θ)

∂θ
.

Step V: Bundling The grid points at tm−1 are bundled into Btm−1
(1), . . . ,Btm−1

(ν) non-
overlapping partitions. This step is similar to the one described in Section 3. For each bundle
Btm−1

(β), β = 1, . . . , ν, the following steps are performed.

• Step V(a): Regress-later for each bundle

This step is as described in Section 3. Corresponding to each bundle Btm−1
(β), β = 1, . . . , ν,

a parameterized value function is obtained using least squares regression, i.e.,

Vtm(Xtm) ≈ G(Xtm , α
β
tm
) =

K∑

k=1

α
β
tm
(k)φk(Xtm),

The coefficients from the least squares regression are determined by solving:

α̂
β
tm

= (Aβ
tm

⊤
Aβ

tm
)−1(Aβ

tm

⊤
)Vβ

tm
,

where Aβ
tm

and Vβ
tm

are defined as Equations (11) and (12), respectively.

• Step V(b): Compute conditional sensitivities for matrix Aβ
tm

Compute the sensitivity of Aβ
tm

conditioned on the information at tm−1, with respect to the
state space at tm−1 as in Equation (21) and with respect to the model parameters as in
Equation (15).

• Step V(c): Compute regression coefficient sensitivities

Compute the sensitivity of the regression coefficients, α̂β
tm
, with respect to the state space

using Equation (20) and with respect to the model parameters as given by Equation (14).

• Step V(d): Compute the continuation and option values at tm−1

As described in Section 3, the continuation values for Xtm−1
(n) ∈ Btm−1

(β), n = 1, . . . , N, β =
1, . . . , ν, are approximated using Equation (9).

The vector of basis functions φ should ideally be chosen such that the expectation
E
[
φk(Xtm)|Xtm−1

]
is known in closed-form, or has an analytic approximation.

The option value is then given by:

V̂tm−1

(
Xtm−1

(n)
)
= max

(
h
(
Xtm−1

(n)
)
, Q̂tm−1

(
Xtm−1

(n)
))

.

• Step V(e): Compute the sensitivity of the continuation values at tm−1

14
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The sensitivity of the continuation value with respect to the model parameters for the paths
at tm−1 is computed using the relation in Equation (10) and with respect to the state space
is computed using the relation in Equation (19), where

∂

∂θ
E
[
φk(Xtm) | Xtm−1

(n)
]
,

and

∂

∂Xtm−1

E
[
φk(Xtm) | Xtm−1

(n)
]

are approximated analytically or by means of a numerical scheme.

• Step V(f): Compute the sensitivity of the option values at tm−1

The sensitivity of the option values at tm−1 for the n-th path with respect to the model

parameters, i.e.,
∂Vtm−1

(Xtm−1
)

∂θ
|Ftm−1

, is then computed as:

∂

∂θ
Vtm−1

(Xtm−1
(n)) =

(
∂

∂θ
h
(
Xtm−1(n)

))
1Qtm−1

(Xtm−1
(n))<h(Xtm−1

(n))

+

(
∂

∂θ
Qtm−1

(
Xtm−1

(n)
))

1

Qtm−1
(Xtm−1

(n))≥h(Xtm−1
(n)),

while, similarly, the derivative with respect to the state space is computed as

∂Vtm−1
(Xtm−1

(n))

∂Xtm−1

=

(
∂h
(
Xtm−1(n)

)

∂Xtm−1

)
1

Qtm−1
(Xtm−1

(n))<h(Xtm−1
(n))

+

(
∂Qtm−1

(
Xtm−1

(n)
)

∂Xtm−1

)
1

Qtm−1
(Xtm−1

(n))≥h(Xtm−1)
.

The recursion continues until we reach t0.

Remark 3 A lower bound for the option value can be obtained by means of the so-called SGBM
path estimator formulation, as described in (17). The path estimator value is the expected discounted
cashflow resulting from a ( quasi-)optimal policy. In the SGBM setting, the policy is in the form of
the regression functions G, as in Equation (7). For an out-of-sample set of paths1, the continuation
value is implicitly obtained using the G functions. The continuation value, in turn, is used to
determine the first early-exercise time step for each out-of-sample path. The expectation of resulting
discounted cashflows would then be a lower bound for the option price. The path estimator based
on the t0-Greeks is the expected pathwise sensitivity of the discounted cashflows resulting from the
(quasi)optimal policy. A brute force computation would be to apply the bump-and-revalue approach
to the path estimator, where a fixed (quasi)optimal policy from un-bumped scenarios would be used
to determine the early-exercise cashflows for the bumped scenarios. Unlike the option values, the
t0 sensitivities obtained using the path estimator are not necessarily lower or upper bounds of the
true sensitivities, though.

1not the same set of paths used to obtain the G functions

15
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5. Numerical examples

In order to illustrate the performance of the method we start with a very basic example of a
European put option on a stock index that follows a Geometric Brownian Motion (GBM). As the
option values and their sensitivities for this case are known in closed-form, we can numerically
study the error along the paths for SGBM. We then consider the corresponding Bermudan option
case, for which reference sensitivities at t0 are also computed using the COS method. We then
consider high-dimensional payoffs, in particular, a Bermudan spread option on two assets for which
reference values are computed using a BR approach.

5.1. European option on a single asset

To validate the method, we look at a case where the option sensitivities are known in closed-form
to compare against SGBM generated sensitivities along a path. The stochastic differential equation
(SDE) for the risk neutral asset price dynamics following the GBM process is given by:

dXt = rXtdt+ σXtdWt (24)

where r is the risk free rate of return, σ is the annualized volatility (both chosen to be constant)
and Wt is the standard Brownian motion. In order to simulate the above process, one can either
use an Euler discretization or an exact simulation scheme. For our numerical analysis we use the
exact discretization scheme, i.e.,

log(Xtm(n)) = log(Xtm−1
(n)) +

(
r − σ2

2

)
∆t+ σ

√
∆tZtm−1

(n), (25)

where n = 1, . . . N, gives the path index, t0, . . . , tm, . . . , tM = T, is the set of equally spaced
monitoring dates with T being final expiration time, and ∆t = tm − tm−1. For regression we use
polynomials of the logarithm of the asset values up to order three, i.e.

φk (Xtm(n)) = (log (Xtm (n)))k−1 , k = 1, . . . ,K = 4. (26)

Note that the conditional expectations of the basis functions are known as the conditional distri-
bution log(Xtm)|Xtm−1

(n) is normal with mean log(Xtm−1
(n))+(r− σ2

2 )∆t, and standard deviation

σ
√

(∆t).

For the European option case, as intermediate exercise is not allowed, the approximated option
values at the monitoring dates is equal to the approximated continuation value, i.e.

V̂tm−1

(
Xtm−1

(n)
)
= Q̂tm−1

(
Xtm−1

(n)
)
,

as opposed to maximum of continuation value and the intrinsic value.

5.1.1. Delta along the paths. For the set of simulated scenarios, we compute the Delta along
the scenarios of a European put option using the SGBM, as described in Section 4.3, and compare

16
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Set I

Xt0 36, 40, 44
σ 10%, 20%,40%
r 0.06

Strike K 40
M 50
T 1 year

Set II

Xt0 := {S1
t0
, S2

t0
} [100, 100]

σ := {σ1, σ2} [15% 15%]
r 0.03

Strike K 5
M 8
ρ12 0.5
T 1 year

Table 1. Parameters used for the different experiments in Section 5.

against the closed-form Black-Scholes (BS) Deltas. We consider different moneyness levels, and
study the convergence for varying numbers of bundles and basis functions. The parameter set used
for this case is provided in Table 5.1.1. For all examples we use 90,000 scenarios.

In Figure 1 we compare Deltas along the paths computed using SGBM for different time slices
against their corresponding closed-form BS Delta values. The SGBM Deltas have a highly satis-
factory match with most of the BS Delta values, as can be inferred from the “near one slope”
of the linear fit, the reasonably low value of the y-intercept and the small residual errors. The
non-smooth nature of the option value function at expiry complicates finding a good fit using a
linear regression, the residual errors are (relatively) high towards the expiry.

We next consider the convergence of the option Deltas in relation to the number of bundles. The
bundling scheme used here is recursive bifurcation (see (17) for details), with the number of bundles
varying from 20, . . . , 24. We look at the mean absolute error (MAE) for different monitoring dates,
with increasing numbers of bundles for the same set of paths. The MAE at time step tm is calculated
as:

MAEtm =
1

N

N∑

n=1

abs

(
∂V̂tm(Xtm(n))

∂Xtm

− ∂Vtm(Xtm(n))

∂Xtm

)
,

where ∂Vtm (Xtm (n))
∂Xtm

is the BS Delta calculated in closed-form.

Figure 2 shows the convergence of the errors for different monitoring dates when the given set of
paths is partitioned by an increasing number of bundles in SGBM.

In Figure 3 the effect of increasing the number of basis functions, when all other factors are kept
constant is demonstrated.

As the method converges with increasing numbers of bundles and with the basis functions, we argue
that SGBM has an advantage over a straightforward regress-later scheme which is equivalent to
SGBM however with just one bundle, and plain partitioning schemes that are equivalent to SGBM
with only the constant as the basis function for regression.

In Table 2 we report the t0 Delta values for different moneyness levels and corresponding BS Deltas.

17
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(a) (b)

(c) (d)

Figure 1. SGBM Deltas plotted against BS Deltas with the corresponding residuals from a linear fit at (a) t1 = 0.02 years
(b) t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. Parameters from Table 5.1.1 are used. The basis functions used
are defined in Equation (26) with K = 4, and the number of bundles at each time step is 23. The t0 BS Delta is -0.55045 and
computed using SGBM is -0.55046.

Xt+0 SGBM BS error SGBM BS error SGBM BS error
Delta (s.e.) Delta Vega (s.e.) Vega Gamma (s.e.) Gamma

36 -0.5504 -0.5504 0.1e-4 14.2526 14.2469 0.0057 0.0550 0.0550 -0.03e-4
(0.2e-5) (0.0005) (0.2e-5)

40 -0.3445 -0.3445 0.1e-4 14.7399 14.7308 0.0091 0.0460 0.0460 -0.06e-4
(0.1e-5) (0.0006) (0.2e-5)

44 -0.1903 -0.1903 0.4e-4 11.9702 11.9542 0.0160 0.0309 0.0309 -0.12e-4
(0.4e-5) (0.0007) (0.2e-5)

Table 2. The t0 Delta, Vega, and Gamma values computed using SGBM. The values in brackets are corresponding standard

errors for SGBM for 30 trials. The basis functions for SGBM are as defined in Equation (26) and the number of bundles used

are 23 at each time step.

5.1.2. Vega along the paths. Here we study the quality of the Vegas along the paths com-
puted using SGBM against the closed-form BS Vegas. Figure 4 compares the SGBM Vegas against
the corresponding BS Vegas for different monitoring dates. We see that reasonably accurate ap-
proximations of these Vegas can be obtained, with an improved accuracy as we approach t0.

We study the convergence of the SGBM Vega for this case by looking at the MAE at different
monitoring dates, for a given set of paths, when there is an increasing number of bundles, in Figure
5, and an increasing number of basis functions, in Figure 6, respectively.

In Figure 3 the effect of increasing the number of basis functions, when all the other factors are
kept constant is demonstrated.

Finally, we look at the t0 SGBM Vega values for different moneyness levels and compare them
against the BS values in Table 2. Clearly, the SGBM Vegas are reasonably accurate for the different

18
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Figure 2. The MAE of SGBM for an increasing number of bundles at different monitoring dates (a) t1 = 0.02 years (b)
t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. The basis functions used are given by Equation (26).

moneyness levels.

The combined computational time for the Vega and Deltas along the 90,000 scenarios for 50
monitoring dates was less than 5 seconds on an Intel Quad Core processor with a 4 GB RAM.

With the help of this basic one-dimensional example we were able to give a detailed path analysis
of the Greeks using SGBM. For the remaining problems we look at the t0 Greeks for SGBM, the
reference values of which are computed using a BR approach.

5.1.3. Gamma along the paths. The second order sensitivity with respect to the underlying
state can be computed using SGBM, in a manner similar to the Deltas along the paths. It would
require additionally to compute the second order derivatives of the conditional expectations of the
basis, i.e.

∂2
E
[
φk(Xtm)

∣∣(Xtm−1
(n))

]

∂X2
tm−1

again something that can be done analytically or numerically.

We again look at the Gamma values along the path for different time slices. Figure 7 compares the
SGBM Gamma values against the corresponding closed-form BS Gammas for different monitoring
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Figure 3. The MAE of SGBM for an increasing number of basis functions at different monitoring dates (a) t1 = 0.02 years
(b) t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. The basis functions used are defined by Equation (26), where the
number of basis functions are modified by varying the value of K from 1 to 5.

dates. We see that reasonably accurate approximations of these Gammas can be obtained, with an
improved accuracy as we approach t0.

SGBM is able to compute with high accuracy the t0 Gamma values, as can be seen from the results
in Table 2.

5.1.4. Impact of inexact discretization scheme. We briefly study through numerical ex-
periments the convergence of the method when an Euler discretization scheme is used for the
simulation of the scenarios instead of an exact scheme as given in Equation (25). An Euler dis-
cretization of the SDE given by Equation (24) is

Xtml
(n) = Xtml−1

(n) + rXtml−1
(n)∆t+ σ

√
∆tXtml−1

Ztml−1
(n), (27)

where n = 1, . . . , N, gives the path index, t0, . . . , tm, . . . , tM = T are the monitoring dates, and the
period between each monitoring dates tm−1, and tm is discretized as tm−1 = tm0

, . . . , tml
, . . . , tmL

=
tm. For simplicity we take equally spaced time discretization with ∆t = tml

− tml−1
.

Table 3 gives results corresponding to an increasing number of steps used for the Euler discretiza-
tion, for the option value, Delta , Vega and Gamma at t0, using SGBM extended.

20



December 29, 2017 XXXXX Finance Rolling˙Adjoints

(a) (b)

(c) (d)

Figure 4. SGBM Vegas plotted against BS Vegas with the corresponding residuals from a linear fit at (a) t1 = 0.02 years (b)
t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. Parameters from Table 5.1.1 are used. The t0 BS Vega is 14.2469 and
computed using SGBM is 14.2475

Euler Steps Option Value Delta Vega Gamma
(s.e.) (s.e.) (s.e.) (s.e.)

5 3.8484 -0.5483 14.2638 0.0553
( 0.0015) (0.0003) (0.0228) (0.0001)

10 3.8459 -0.5495 14.2611 0.0551
( 0.0010) (0.0001) (0.0175) (0.0001)

20 3.8449 -0.5500 14.2649 0.0550
( 0.0011) (0.0002) (0.0196) (0.0001)

40 3.8443 -0.5502 14.2527 0.0550
( 0.0011) (0.0002) (0.0218) (0.0002)

Exact (∞) 3.8444 -0.5505 14.2493 0.0549
( 0.0003) (0.0000) (0.0037) (0.0000)

BS 3.8443 -0.5505 14.2469 0.0550
Table 3. The t0 price and Greeks for a European option when an inexact Euler discretization scheme is used for simulating

the Monte Carlo scenarios and SGBM extended is used for pricing and for computing Greeks along the paths. The

corresponding values from an exact discretization and closed for BS is also presented. The initial asset value is 36, and other

parameters are taken from Set I in Table 5.1.1.

5.2. Bermudan option on a single asset

We next consider a Bermudan put option on a single asset with 50 equally spaced exercise op-
portunities. The exercise dates coincide with the monitoring dates specified in Section 5.1. The
parameters used for this case are also specified in Table 5.1.1. The reference Vega for this case can
be computed by the COS method (Ruijter and Oosterlee (2012)(26)).

For all the experiments here we simulate 90,000 scenarios, using an exact discretization scheme
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Figure 5. The MAE of SGBM Vega for an increasing number of bundles at different monitoring dates (a) t1 = 0.02 years (b)
t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. The basis functions used were φk(Xtm) = (log(Xtm ))k−1 , k = 1, . . . 4.

Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Delta Delta (s.e.) SGBM Delta (s.e.) LSMC1 Delta (s.e.) LSMC2

36 -0.6959 -0.6957 -0.0001 -0.7118 0.0159 -0.9729 -0.2770
(0.6e-5) (0.0213) (0.227)

40 -0.4040 -0.4044 0.0003 -0.4021 -0.0019 -0.4631 -0.0591
(0.5e-5) (0.0190) (0.033)

44 -0.2136 -0.2145 0.0009 -0.2277 0.0141 -0.2532 -0.0396
(0.9e-5) (0.0080) (0.031)

Table 4. t0 Delta values for Bermudan put option on a single asset for different initial asset prices. The values in brackets

are the standard errors from thirty trials. The reference value is computed by the COS method.

as given by Equation (25). We use a recursive bifurcation scheme for bundling with 23 bundles at
each time step. Similar to the European option case, as basis functions we use the polynomials up
to order three of the log-asset price, as given by Equation (26).

Table 4 reports the SGBM computed Delta for different moneyness levels.

For a comparison we look at the LSMC BR prices. We here use two approaches to compute the BR
sensitivities. The first approach is where the policy (the regression coefficients) is computed for the
non-bumped scenario, and this policy is applied to the bumped up and down scenarios for optimal
early-exercise. We call this approach “LSMC1”. The second approach is where a separate policy (or
regression coefficients) is computed for the bump up and bump down scenarios. While computing
the option price for bumped up we use the corresponding policy to determine the optimal early-
exercise and cashflows thereof. Similarly, the bumped down option price is based on the policy
corresponding to the bumped down scenarios. We represent this approach by “LSMC2” in the
results.
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Figure 6. The MAE of SGBM for an increasing number of basis functions at different monitoring dates (a) t1 = 0.02 years
(b) t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. The number of bundles were fixed to 23 at each time step.

Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

36 10.9550 10.9202 -0.0348 11.0995 0.1445 10.7341 -0.2209
(0.001) (0.070) (0.231)

40 14.7471 14.7520 0.0049 14.8909 0.1438 14.7301 -0.0170
(0.001) (0.099) (0.057)

44 12.5243 12.6167 0.0924 12.5561 0.0318 12.5369 0.0126
(0.003) (0.062) (0.051)

Table 5. t0 Vega values for Bermudan put option on a single asset for different initial asset prices. The values in brackets are

the standard errors from thirty trials. The reference values are computed by the COS method.

It is clear that relative to these approaches, the SGBM Deltas are more accurate with significantly
lower variance in the corresponding results. LSMC1 comes out as a better choice than LSMC2,
especially for in-the-money options. The intuition behind the better performance of LSMC1 in this
case is that the optimal policy ideally should not be affected by the choice of the initial asset price,
which is enforced by design in LSMC1. In the case of LSMC2 we inadvertently capture errors in
the approximated optimal policy while computing the Delta.

In Table 5 we compare the t0 Vega calculated using SGBM against the LSMC BR Vega. The
reference value is obtained by the COS method with an accurate setting. Again the bias and
standard errors for the SGBM Vegas are much lower than those obtained from either the LSMC1
or LSMC2 BR approaches.

For this case both LSMC1 and LSMC2 have similar accuracy, although LSMC1 seems better for the
in-the-money case, while LSMC2 is marginally better for the at-the-money and out-of-the-money
cases.
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Figure 7. SGBM Gammas plotted against BS Gammas with the corresponding residuals from a linear fit at (a) t1 = 0.02
years (b) t20 = 0.4 years, (c) t35 = 0.7 years, (d) t49 = 0.98 years. Parameters from Table 5.1.1 are used. The basis functions
used are defined by Equation (26) and the number of bundles at each time step are 25. The t0 BS Gamma is 0.0550 and
computed using SGBM is 0.0550.

σ COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

10% 13.3607 13.4023 0.0416 13.5261 0.1652 13.2853 -0.0754
(0.002) (0.062) (0.066)

20% 14.7471 14.7505 0.0034 14.9312 0.1841 14.7301 -0.0170
(0.001) (0.084) (0.057)

40% 15.0553 15.0534 -0.0019 15.1889 0.1336 15.1151 0.0598
(0.002) (0.104) (0.087)

Table 6. t0 Vega values for Bermudan put option on a single asset for different asset volatilities. The values in brackets are

the standard errors from thirty trials. The initial asset value is Xt0 = 40. The reference values are computed by the COS

method.

In Table 6 we report the performance of the SGBM Vega against LSMC1 and LSMC2 BR Vega
for different initial volatilities. The SGBM results are more stable for increasing asset volatilities.

For this case the LSMC2 seems a better choice than LSMC1. LSMC in general computes a quasi-
optimal policy, which is implicitly dependent on the asset volatility. Part of the option Vega values
is attributed to the change in cashflows due to a Delta change in the asset volatility with the quasi-
optimal policy held constant, while the other part is attributed to changes in the cashflows due to
the change in the quasi-optimal policy as a result of Delta change in the asset process volatility.
In this regard the approach proposed by both (2) and (6) of differentiating the LSMC regression
coefficients may be an efficient way for computing parameter related sensitivities using LSMC.
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Xt0 COS SGBM Error LSMC1 Error LSMC2 Error
Vega Vega (s.e.) SGBM Vega (s.e.) LSMC1 Vega (s.e.) LSMC2

34.5 6.7944 6.7572 -0.0372 7.0621 0.2677 6.8663 0.0719
(0.0008) (0.212) (0.433)

35 8.3838 8.3425 0.0414 8.6211 0.2374 8.0762 -0.3075
(0.001) (0.119) (0.149)

35.5 9.7714 9.7317 0.0397 10.2243 0.4529 9.4508 -0.3206
(0.001) (0.103) (0.161)

Table 7. t0 Vega values for Bermudan put option on a single asset for a case where the initial asset price is close to the

early-exercise boundary. The values in brackets are the standard errors from thirty trials. The reference values are computed

by the COS method.

5.2.1. Unstable LSMC BR Vegas. We present a test case for which the Vegas computed
using LSMC were not stable. In particular, when the initial asset price is close to the early-exercise
boundary, the BR Vegas using LSMC2 have significant noise. On the other hand, although LSMC1
Vegas have relatively low standard errors, the bias was high in comparison to LSMC2. Therefore one
should apply the bump and revalue scheme for Vega calculation using LSMC with due precaution
when the initial state space is close to the computed early-exercise boundary. The SGBM path
Vegas didn’t face any stability issue for this case.

Table 7 reports the Vegas as the initial asset price gets closer to the early-exercise boundary.
The standard error for Vega, computed from 30 trials with different initial seeds, by LSMC2
“jumps” when the initial asset price is closest to the early-exercise boundary, i.e Xt0 = 34.5, in
our example. The minimum and maximum values of Vega from 30 trials for LSMC2 were 4.64 and
9.96, respectively. Although for LSMC1 we don’t see this in the standard error, the mean of the
trials for LSMC1 seems significantly biased. For the 30 trials the minimum and maximum Vega
were 6.35 and 8.25, respectively. For SGBM the results are not affected by the proximity to the
early-exercise boundary. The minimum and maximum Vegas from 30 trials for SGBM were 6.74
and 6.76. The reference option Vegas are computed using the COS method.

5.3. Bermudan spread option on two assets

We next consider a two-dimensional spread option (based on two assets). The asset prices are
assumed to follow correlated geometric Brownian motion processes, i.e.

dXt

Xt
= rdt+ σdWt, (28)

where Xt := {S1
t , S

2
t } is a two-dimensional process, Wt := {W 1

t ,W
2
t } is a two-dimensional Brow-

nian motion with instantaneous correlation coefficient between W 1
t and W 2

t being ρ, and σ takes
values in R

2.

The payoff of the spread option is given by:

h(Xtm) = max
(
S1
tm − S2

tm −K, 0
)
,

where K is the strike of the option. The Bermudan option has eight equally spaced early-exercise
opportunities, with the final maturity at T = 1 year. The parameters for this case are taken from
Set 2 in Table 5.1.1.

Specific to the SGBM case we use the recursive bifurcation scheme for bundling, with 43 bundles
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SGBM SGBM LSMC1 LSMC2
extended Delta (s.e) BR Delta (s.e) BR Delta (s.e.) BR Delta (s.e.)

∂Vt0

∂S1
t0

0.4020 0.4021 0.4029 0.4570
(0.2e-4) (0.1e-3) (0.011) (0.083)

∂Vt0

∂S2
t0

-0.3448 -0.3453 -0.3446 -0.3795
(0.2e-4) (0.1e-3) (0.010) (0.085)

Table 8. t0 Delta values for Bermudan spread option on two assets. The values in brackets are the standard errors from

thirty trials. The parameters for this experiment are taken from Table 5.1.1 Set 2.

SGBM SGBM LSMC1 LSMC2
extended Vega (s.e) BR Vega (s.e) BR Vega (s.e.) BR Vega (s.e.)

∂Vt0

∂σ1

20.6082 20.7551 20.4900 20.5136
( 0.016) (0.025) (0.124) (0.198)

∂Vt0

∂σ2

16.8822 17.0611 17.0022 17.1409
(0.013) (0.017) (0.089) (0.155)

Table 9. Vega t0 values for Bermudan spread option on two assets. The values in brackets are the standard errors from

thirty trials. The parameters for this experiment are taken from Table 5.1.1 Set 2.

Case SGBM extended SGBM BR LSMC1 BR LSMC2 BR
Single Asset (50 monitoring dates) 4.5s 10s 2s 4.2s
Two Asset (8 monitoring dates) 3s 12s 4s 7s

Table 10. The computational time for the different approaches for the single asset and the two asset case. The experiments

were run on an Intel Quadcore processor and the code was implemented in Matlab. Note that SGBM extended computes in

total 9 million sensitivities for the single asset case and close to 2.9 million sensitivities for the two asset case.

at each time step. As basis functions we use

φk (Xtm(n)) =
((
S1
tm

(n)− S1
tm

(n)
))k−1

, k = 1, . . . , 4,

φ5 (Xtm(n)) =
(
log
(
S1
tm

(n)
))

, φ6 (Xtm(n)) =
(
log
(
S1
tm

(n)
))2

φ7 (Xtm(n)) =
(
log
(
S2
tm (n)

))
, φ8 (Xtm(n)) =

(
log
(
S2
tm (n)

))2
.

Again the closed-form conditional expectation, as well as the sensitivity of these conditional ex-
pectations with respect to the state space and model parameters are known.

Table 8 compares the SGBM, SGBM BR and LSMC1 and LSMC2 BR Deltas. Note that with the
extended SGBM we are able to compute sensitivities along the paths, although we here compare
only the t0 values. The Delta values from the SGBM extended, SGBM BR and LSMC1 BR are
consistent. LSMC2 is slightly off compared to the other three, a behavior consistent with the
observations for the single asset case discussed in Section 5.2.

Table 9 reports the corresponding Vega values for the above case.

The results for the SGBM extended, SGBM BR, LSMC1 BR and LSMC2 BR are comparable,
although the lowest standard error is for the SGBM extended values. The combined computa-
tional time for SGBM where option Deltas and Vegas are computed along the scenarios on all the
monitoring dates is less than 3 seconds on an Intel Quadcore processor with 4 GB RAM.

Table 10 summarizes the mean computational time for 30 trials for this experiment.
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6. Conclusion

We have presented an approach to compute sensitivities with respect to state space and model
parameters along the path for early-exercise options. The approach is applicable to regress-later
schemes, in particular, to the considered SGBM. Through basic examples we illustrate the approach,
numerically study the convergence of the method and demonstrate the stability of the method. It
was found in our numerical experiments that the BR LSMC Greeks may be unstable when the
initial asset price is close to the early-exercise boundary. The sensitivities along the paths are
computed without significant computational and memory overhead. Based on the quality of the
Greeks along the paths that are computed at significantly low computational costs, we believe the
method is ideal for computing MVA for SIMM based initial margins, where sensitivities along the
paths are required to proxy the initial margin along the scenarios.
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Appendix A: On Regress-later and bundling

The major challenge for regress-later or portfolio replication schemes arises for derivatives that
exhibit strong path dependency, which, as Pelsser and Schweizer (2016)(25) demonstrate, often
implies a higher problem dimensionality. Finding a suitable regression basis for pricing such deriva-
tives, especially one for which the conditional expectations are readily available is therefore chal-
lenging.

The common challenge for partitioning-based schemes is to determine the optimal way to partition
a high-dimensional state space. As usual, a suitable approximation by partition-based schemes is
obtained with a large number of partitions, however, these methods tend to be computationally
intensive. Computing sensitivities along the paths using basic partitioning schemes is also non-
trivial.

In SGBM, as for each partition a functional approximation of the future option value is obtained
for which the conditional expectation is known in closed-form, the need for a rigorous approach
to optimally partition the state space is not essential. Also, because the conditional distribution
is sampled directly, by using the bundling scheme in SGBM, it is not essential to define an ex-
cellent regression fit for the future option value. In short, SGBM benefits from best of both, pure
partitioning based schemes and regress-later schemes.

To illustrate the bias that affects a pure regress-later scheme when the set of basis functions is
not chosen appropriately, we consider the Bermudan option on a single asset from Section 5.2.
We consider the case where the only basis function is a constant, i.e. Φ1(Xtm) = 1. We focus on
computing the continuation value at tM−1. The paths are divided into partitions and we look at
the residual error of the continuation and option values both globally, i.e. combined error of all
the paths, and locally, i.e. the aggregated error for each of the partition. Note that at this time
step the continuation value is known in closed-form, which is equal to the BS price for a European
option at tM−1 which expires in ∆t = tM − tM−1. The closed-form option values are computed as
the maximum of the continuation and intrinsic value at this time step.

In Figure A1 the error in the continuation and option values for the simulated states at tM−1 for the
basic regress-later scheme are displayed. Different colors correspond to different partitions, where
for our analysis the errors are locally aggregated. Regarding the continuation value, although the
combined residual error for all regions is close to zero, the local errors can be significant. With the
option value the maximum of the conditional expectation and the intrinsic value, non-zero local
errors add to the bias, which is visible in the error plot for the option values.
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(a) (b)

Figure A1. The error in (a) continuation values and (b) option value at tM−1 for a basic regress-later scheme, the different
colors indicate different regions for evaluation of local residual errors.

We perform the same exercise for SGBM, where the constant is again the only basis vector for
regression. The local residual errors for the different partitions are displayed in Figure A2. With
bundling the mean of both the local and global residual errors are close to zero. For path-dependent
options it is important that the local residual error of the conditional expectation to minimize the
impact of wrong early-exercise decisions.

(a) (b)

Figure A2. The error in (a) continuation values and (b) option value at tM−1 for SGBM. The different colors indicate different
regions for evaluation of local residual errors.

The squared residual error from regression in regress-later schemes gets closer to zero with a richer
set of basis functions. As the squared residual error gets smaller (approaches zero) the error in the
continuation value approaches zero, both globally and in the local regions, for a basic regress-later
scheme. This can be seen in Figure A3 where we use the basis functions as defined in Equation
(26) with K = 6. However, finding basis functions such that the squared residual is close to zero,
with the additional constraint of closed-form conditional expectations of these functions, is not
always straightforward. Even for a case where a good set of basis functions is used, bundling can
additionally reduce the errors. This can be seen in Figure A3 (c) and (d), where for the same set
of basis functions, 24 bundles are used within SGBM.
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(a) (b)

(c) (d)

Figure A3. The error in (a) continuation values and (b) option value at tM−1 for a pure regress-later scheme when as basis
power upto 5 of log of asset price is used. The correspnding errors for SGBM with 16 bundles are in (c) and (d) respectively.
Different colors indicate different regions for evaluation of local residual errors.
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