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Abstract: Recently we have shown that light-field photography images can be interpreted as
limited-angle cone-beam tomography acquisitions. Here, we use this property to develop a
direct-space tomographic refocusing formulation that allows one to refocus both unfocused and
focused light-field images. We express the reconstruction as a convex optimization problem,
thus enabling the use of various regularization terms to help suppress artifacts, and a wide class
of existing advanced tomographic algorithms. This formulation also supports super-resolved
reconstructions and the correction of the optical system’s limited frequency response (point
spread function). We validate this method with numerical and real-world examples.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Portable plenoptic cameras offer unique features which do not exist with traditional cameras,
such as the possibility to refocus on different planes of the scene after acquisition [1, 2], and the
ability to extract depth information regarding the photographed objects [3]. These features come
at the cost of a greatly reduced spatial resolution. As a result, researchers and developers have
invested a considerable effort on developing custom and sometimes very specialized algorithms
for computational photography techniques, in particular for super-resolution applications.

Higher light-field refocusing quality and resolution are prerequisites for important applications
that can benefit from the ability to refocus on multiple distances after acquisition, depth estimation
and volume rendering, all from a single light-field. Examples of these applications can be found
in fields ranging from industrial quality control and automation processes to autonomous driving.
As light-field imaging will be increasingly adopted by these applications, greater importance will
be given to quality and richness of details of the refocused images.

Many approaches attempt to obtain spatially super-resolved light-fields from lower resolution
acquisitions [4–9]. The resulting super-resolved light-fields contain finer detailed structures that
can deliver higher quality depth-estimation (distance from the camera) of the objects in the scene,
and deliver higher quality image reconstruction with traditional refocusing algorithms. These
approaches need strong a priori information to work properly, like a map of the distances from
the camera of all the objects in the scene, or the knowledge of their composing structures, which
limits their applicability.
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A different approach is taken in [10] for a compound-eye imaging system, and in [11] for the
light-field microscope, where the authors use the redundancy of the acquired data to super-resolve
the refocused images, instead of creating new information in the data. In both [10] and [11],
the image formation process is modelled as a linear process, and the high-resolution image
reconstruction is formulated as the solution to a minimization problem. The limited frequency
response of the optical system, modelled as a point spread function (PSF), is taken into account
in the image formation model.

As specified in [11], the traditional light-field acquisition scheme, called unfocused light-field
(ULF), does not allow to super-resolve images at the acquisition focal distance. In [12] the authors
propose a deconvolution-like solution to the problem, while in [13,14], the authors propose a new
popular acquisition scheme, which is known as focused light-field (FLF). Traditionally, the ULF
and FLF have been treated as two different acquisition setups that needed different algorithms for
similar tasks like refocusing. In the ULF case, notable examples of refocusing approaches are:
the integration method [15], the Fourier-space method based on the Fourier slice theorem [16],
and a volumetric filtered version of the latter [17]. In the FLF case, we have mainly the patch
method [14], and a more sophisticated super-resolution method that explicitly takes into account
the positioning of the pixels on the sensor [18]. Recently, in [19], the authors have demonstrated
that the algorithms developed for one camera setup can be applied to the other setup. However,
the resulting image resolutions and quality depend on the chosen algorithm.

In a recent paper, we described a framework in which a light-field photography image can be
interpreted as limited angle cone-beam tomography acquisition, [20]. The framework presents
an in-depth analysis of how different parametrizations of the ray-tracing model can be formulated
so that the well-known back-projection methods for cone-beam tomography can be used to solve
the refocusing problem.
In this paper, we propose to replace the back-projection approach introduced earlier by an

algebraic model of the cone-beam tomography problem. This new formulation exposes a broad
range of more sophisticated tomographic reconstruction techniques, introducing a number of
powerful modelling and computational formulations for light field reconstruction. Specifically:

• We extend the formulation by unifying the treatment of unfocused light-field (ULF) and
focused light-field (FLF) images.

• We formulate the refocusing reconstruction as a convex optimization problem, introduce
additional regularization terms to cope with artifacts, and show how advanced iterative
algorithms can be used to solve the problem.

• We show how super-resolved refocused images can be computed.

• We correct for the limited frequency response of the optical system (point spread function).

Each of these extensions contributes to a measurable improvement of the refocusing reconstruction
quality.

1.1. Detailed content description

The introduction of tomographic projection operations naturally allows to express the image
formation process as a linear system, similarly to [10,11], where the forward operator is composed
for both geometries of: a tomographic forward-projection operator; a down-sampling operator
in the case of super-resolved images; and a blurring operator. The blurring operator takes into
account the effects of Fraunhofer diffraction on the lenslets [10,12] and the Nyquist limitation on
the refocusing resolution [16].
We propose the use of regularizations like the Total Variation minimization (TV-min) or the

stationary wavelet transform (SWT) [21,22], instead of the traditional smoothness constraints [23].
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(a) ULF (b) FLF

Fig. 1. Comparison of the two light-field setups, and their naming conventions: (a) unfocused
light-field (ULF); (b) focused light-field (FLF).

These advanced constraints allow to effectively suppress artifacts related to the super-resolution
reconstruction, while enforcing prior knowledge in the reconstruction, like sharpness of the
in-focus objects, or its compressibility in the wavelet domain. We also demonstrate the use of
both established and recent customizable algorithms, which are widely used in the tomography
community and include the Simultaneous Iterative Reconstruction Technique (SIRT) [24,25], and
the Chambolle-Pock (CP) algorithm instances [26,27]. The use of consolidated algorithms allows
to re-use existing high-performance solutions, while the use of CP algorithm instances allows to
have tailored algorithms for the most popular regularization functionals in a straight-forward
manner.
The rest of the article is structured as follows. In section 2 we introduce the used formalism,

explain the geometric adjustments needed for the ULF and FLF cases, construct the minimization
problem, and present the used reconstruction techniques. In section 3 we present the results of the
reconstruction methods detailed in section 2 on simulated and real-world examples, and compare
them against a representative selection of existing methods. In section 4 we conclude the paper.

2. Methods

In this section we introduce and discuss the mathematical tools used in the paper. In section 2.2
we establish the relationship between the projection geometry, the optical system’s point spread
function (PSF) and the image formation. Then in section 2.3 we express the refocusing as a
convex optimization problem. Finally in section 2.4 we introduce the regularization terms used
in this article.

2.1. Conventions

We schematically represent the two typical plenoptic acquisition setups in Fig. 1. They are
composed of a main lens (ML), a micro-lenses array (MLA), and a sensor. The camera array
setup is not considered explicitly here, but it is equivalent to the setup in Fig. 1(a), with the only
difference being that it lacks the ML [20].
We adopt the conventions and representations from [20]. In both Figs. 1(a) and 1(b) the ML

divides the space into the object space which is the photographed scene (left side) and the image
space which is the inside of the camera (right side).

The focal lengths of the ML and the lenslets in the MLA are called f1 and f2 respectively, and
the distance between the natural focal plane in the object space and the ML is called z0. In the
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ULF case (Fig. 1(a)), the MLA-to-sensor distance is called z2 and is usually set to f2, while the
ML-to-MLA distance is z1. Given the fact that f2 << z1, the ML is considered in this case to be
at the optical infinity of the lenslets in the MLA. In the FLF case, we can have two configurations:
“Keplerian” and “Galilean” [28]. For simplicity, throughout this paper, we only work with a
Keplerian setup (represented in Fig. 1(b)), but our approach equally works for the Galilean setup.
In Keplerian mode, the image from the ML is formed in front of the MLA, at the distance z1,
and that has a ML-to-MLA distance equal to z1 + a, with a > 0. In Galilean mode, the image
from the ML is virtual and it is formed behind the MLA, which is placed again at a distance of
z1 + a from the ML, but with a < 0. For an FLF in Keplerian configuration, the MLA-to-sensor
distance is called b and satisfies the thin lens equation: 1/ f2 = 1/a + 1/b.
In the ULF configuration, the coordinates (u, v) define the positions on the main lens, while

the coordinates (s, t) define the positions of each lenslet on the MLA. For the pixels behind each
lenslet, we use coordinates (σ, τ), whose origin is on the center of the lenslet footprint. In this
setup, there is a one-to-one correspondence with coordinates (u, v) on the main lens, given by:

uULF =
z1
f2
σ , (1)

vULF =
z1
f2
τ . (2)

We refer to the collection of pixels behind a lenslet as the micro-image. The pixels sharing the
same (σ, τ) position under each lenslet form a sub-aperture — or pinhole — image. This is due
to the fact that their intensities originate from the same point (u, v), as if there were a pinhole in
that position. The corresponding pinhole is indicated by the yellow apertures in Fig. 1(a).

Compared to the ULF case, we showed in [20] that in the FLF case, we observe a shift in the
(s, t) coordinates of each sub-aperture image, which depends on its associated (σ, τ) coordinates:

sFLF = sMLA +
a
b
σ , (3)

tFLF = tMLA +
a
b
τ , (4)

where sMLA and tMLA are the coordinates of the center of the lenslets on the MLA, while the
(u, v) coordinates become:

uFLF =
z1 + a

b
σ , (5)

vFLF =
z1 + a

b
τ . (6)

2.2. Forward model

In [20] we derived the tomographic volumetric forward-projection and back-projection formulas
for the ULF, which relate lines in the considered volume of the photographed scene to points in
the light-field and vice versa. The complete forward-projection formula is:

L ′ (si, ti, u, v) =
∫
Ωo

δ

(
z
z0

so +

(
1 −

z
z0

)
u − Msi,

z
z0

to +
(
1 −

z
z0

)
v − Mti

)
× E (so, to, z) dso dto dzo , (7)

where M = z0/z1 is the magnification of the recorded pixels in the photographed scene, (so, to)
are the transverse coordinates in the object space, (si, ti) are the transverse coordinates in the
image space, L ′ (si, ti, u, v) is the computed light-field, E (so, to, z) is the function describing the
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photographed scene, with support Ωo = Ωso × Ωto × Ωz , where Ωso = [−So, So], Ωto = [−To,To],
and Ωz = [−Z, Z]. The back-projection (integration refocusing) formula is instead:

E ′ (so, to, z) =
∫
Ωi

δ

(
z
z0

so +

(
1 −

z
z0

)
u − Msi,

z
z0

to +
(
1 −

z
z0

)
v − Mti

)
× L (si, ti, u, v) dsi dti du dv , (8)

where E ′ (so, to, z) is the produced focal stack, L (si, ti, u, v) is the recorded light-field, with
support Ωi = Ωsi × Ωti × Ωu × Ωv , where Ωsi = [−Si, Si], Ωti = [−Ti,Ti], Ωu = [−U,U], and
Ωv = [−V,V]. |U | and |V | are the largest sampled coordinates on the ML.

Equations (7) and (8) are also valid for the FLF case when considering the coordinates (si, ti)
on the plane at distance z1 inside the camera. From Eqs. (3) and (4), we deduce that each
recorded sub-aperture image presents a displacement equal to ∆si = (a/b)∆σ and ∆ti = (a/b)∆τ,
respectively. Using Eqs. (5) and (6), we can compute the displacements of the recorded
sub-aperture images in the image space, as functions of the (u, v) coordinates:

∆si,∆u = a/(z1 + a)∆u , (9)
∆ti,∆v = a/(z1 + a)∆v . (10)

In the object space, the shifts become:

∆so,∆u = M∆si,∆u = Ma/(z1 + a)∆u , (11)
∆to,∆v = M∆ti,∆v = Ma/(z1 + a)∆v . (12)

The resulting forward-projection equation for the FLF case is simply:

L ′ (si, ti, u, v) =
∫
Ωo

δ

(
z
z0

so +

(
1 −

z
z0
+

Ma
z1 + a

)
u − Msi,

z
z0

to +
(
1 −

z
z0
+

Ma
z1 + a

)
v − Mti

)
× E (so, to, z) dso dto dzo , (13)

and the back-projection equation is:

E ′ (so, to, z) =
∫
Ωi

δ

(
z
z0

so +

(
1 −

z
z0
+

Ma
z1 + a

)
u − Msi,

z
z0

to +
(
1 −

z
z0
+

Ma
z1 + a

)
v − Mti

)
× L (si, ti, u, v) dsi dti du dv . (14)

From a tomographic perspective, in the object space, both Eq. (7) for the ULF and Eq. (13) for
the FLF compute the line integral for the pixel (so, to, z0) of a projection having source in (u, v, 0),
in a cone-beam geometry acquisition. The only difference between the two resides in the definition
of the pixel (so, to, z0), which is shifted by the amounts (∆so,u,∆to,v, 0) in the FLF configuration.
Due to this, they can be both re-interpreted as the application of the integral forward-projection
operator A [· (so, to, z)] (si, ti, u, v) : R3 7→ R4 (which we call A (si, ti, u, v; so, to, z) with a small
abuse of notation) to the function E (so, to, z), transforming Eqs. (7) and (13) into:

L ′ (si, ti, u, v) = A [E (so, to, z)] (si, ti, u, v) , (15)

where the integration is over the coordinates (so, to, z), and the details of the geometry are
absorbed into the operator A (si, ti, u, v; so, to, z). Equations (8) and (14) are the adjoint operations
of Eqs. (7) and (13), respectively. So, Eqs. (8) and (14) can also be re-interpreted both as the
application of the integral back-projection operator A† [· (si, ti, u, v)] (so, to, z) : R4 7→ R3 (or
A† (so, to, z; si, ti, u, v), as before), to the function L (si, ti, u, v):

E ′ (so, to, z) = A† [L (si, ti, u, v)] (so, to, z) , (16)
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(a) ULF (b) FLF

Fig. 2. Projection geometry of the two light-field acquisition geometries: (a) unfocused
light-field (ULF); (b) focused light-field (FLF). At the distance z0 all the sub-aperture images
coincide on the (s, t) axes for the ULF case, while they experience shifts ∆s = (a/b)∆σ and
∆t = (a/b)∆τ for the FLF case.

where the integration is over the coordinates (si, ti, u, v), and A† is the adjoint of A. The
forward-projection matrix A is the matrix representation of the operator A (si, ti, u, v; so, to, z),
where the rows are selected by the set of indexes {si, ti, u, v}, and the columns are selected by the
set of indexes {so, to, z}. The back-projection matrix AT is then the matrix representation of the
operator A† (so, to, z; si, ti, u, v) where the rows are selected by the set of indexes {so, to, z}, and
the columns are selected by the set of indexes {si, ti, u, v}. The matrices A and AT are sparse,
and have real non-negative values [29].
In this article, we restrict ourselves to refocusing at a single distance, as opposite to recon-

structing an entire volume from one light-field image. This turns Eq. (7) into the projection from
a slice at position z in the volume to the light-field:

L ′ (si, ti, u, v) =
∫
Ωo,z′

δ (αso + (1 − α) u − Msi, αto + (1 − α) v − Mti)

× E (so, to, z′) dso dto , (17)

and Eq. (8) into the projection from the light-field to such slice at position z:

E ′ (so, to) =
∫
Ωi

δ (αso + (1 − α) u − Msi, αto + (1 − α) v − Mti)

× L (si, ti, u, v) dsi dti du dv , (18)

where α = z′/z0, and the support Ωo,z is the slice at position z = z′. In Fig. 2(a) we show the
geometric representation for Eqs. (17) and (18) and α = 1. For α , 1, the dotted lines remain the
same, but the image grid is shifted to the corresponding z = αz0 position.
For the FLF case, Eq. (13) becomes:

L ′ (si, ti, u, v) =
∫
Ωo,z′

δ

(
αso +

(
1 − α +

Ma
z1 + a

)
u − Msi, αto +

(
1 − α +

Ma
z1 + a

)
v − Mti

)
× E (so, to, z′) dso dto , (19)

and Eq. (14) becomes:

E (so, to) =
∫
Ωi

δ

(
αso +

(
1 − α +

Ma
z1 + a

)
u − Msi, αto +

(
1 − α +

Ma
z1 + a

)
v − Mti

)
× L (si, ti, u, v) dsi dti du dv . (20)
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Figure 2(b) gives a representation of the projection geometry of different sub-aperture images,
for the FLF case.
Without loss of generality we can identify again Az as the matrix representation of both the

forward-projection operators in Eqs. (17) and (19), and AT
z as the matrix representation of the

back-projection operators in Eqs. (18) and (20).
If we now consider the discretization of the functions L (si, ti, u, v) and Ez′ (so, to) as the vectors

b and xz respectively, the image formation process for one slice is represented by the following
linear system:

Az x̄z = b , (21)

where x̄z is the vector representation of the considered slice in the photographed scene, and b is
the vector representation of the recorded light-field. In Eq. (21) we assume that all the recorded
light comes from the chosen slice at distance z.
Any object outside the slab defined by the acquisition depth-of-field (DoF) around z, is not

reconstructed correctly and appears out of focus in the refocused images. The acquisition DoF is
the sum of two factors: a geometric and a diffractive component. The former was also considered
in [20] from the point of view of a tomographic acquisition. It is linearly proportional to the
lenslet diameter and inversely proportional to the ML numerical aperture (NA). The latter has
instead an inverse quadratic proportionality to the ML NA, and it is proportional to the detected
photon wavelength. For a more in depth explanation and derivation of the DoF we refer to [30].
For translucent objects, this means that if they are in-focus, their shape is correctly refocused, but
the objects outside of the DoF that are visible through them are imaged out of focus.

In case of super-resolved reconstructions, we assume that the refocused slice in the photographed
scene has a smaller pixel size than the recorded light-field in the (s, t) coordinates. Equation (21)
can be modified to remove this discrepancy, by adding a down-scaling operation after the
projection of the matrix Az . The down-scaling matrix Un bins the value of n × n neighbouring
pixels into a single value, where n is the ratio between the recorded light-field resolution and the
slice resolution in the (s, t) coordinates. The resulting image formation process from Eq. (21)
becomes:

UnAz x̄z = b . (22)

The optical system’s limited frequency response is also introduced in the form of a convolution
matrix Pz (Toeplitz matrix), applied to the binned images [31]. This matrix performs the
convolution of the binned images with the total PSF of the optical system. This PSF itself is the
convolution of the PSFs generated by the lenses’ limited size and the Nyquist limitation on the
resolution. The ML and lenslet’s PSFs correspond to the Airy functions defined by their size and
the captured light wavelength [2, 11, 32]. They do not depend on z, and they are applied over the
(si, ti) and (u, v) coordinates respectively. The Nyquist limitation on the resolution corresponds
to the integration over the corresponding portion to a given sub-aperture image on the ML [16].
It has the shape of a flat disk whose width depends on the distance z, refocusing distance z0 and
(u, v) resolution, and it is applied over the (si, ti) coordinates.

By introducing the optical system’s limited frequency response and super-resolution capabilities,
the complete image formation process for one slice from Eq. (22) becomes:

PzUnAz x̄z = b , (23)

where Un is the binning matrix for the chosen n super-resolution, Pz is the convolutional matrix
that applies the optical system’s PSF.
The matrices Az and AT

z can be computed explicitly by using the sets of unit vectors
Eo = {eo,1, eo,2, . . .} and Li = {li,1, li,2, . . .} respectively. The unit vectors Eo correspond each to
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a volume in the (so, to, z) coordinates, where every value is zero, except for the selected point of
position (so,k, to,k, zk), which is one. The same goes for the unit vectors Li in the coordinates
(si, ti, u, v). These vectors are used in Eqs. (17)-(20) to compute a volume in the adjoint space.
These resulting volumes are the columns of Az and the rows of AT

z when using unit vectors Eo,
while they are the rows of Az and the columns of AT

z when using the unit vectors Li. While
this procedure can give mathematical insight about the projection operations, for practical
applications, it is better to use existing efficient tomographic implementations, like the ASTRA
toolbox [33].

2.3. Refocusing as a minimization problem

Refocusing is the procedure of retrieving a photograph Ez (so, to) for a given refocusing distance
z = αz0, from the light-field acquired at z0. It was proven in [20] that the simple back-projection of
the sub-aperture images corresponds to the integration method for non super-resolved photographs
described in [1]. According to Eq. (21), we obtain the stack of refocused images x̂z , from Eqs. (18)
and (20), as follows:

x̂z = AT
z b , (24)

where b is again the vector representation of the recorded light-field. For super-resolved images,
based on the forward model from Eq. (22), we update Eq. (24) to:

x̂z = AT
z U

T
nb , (25)

where UT
n is the up-sampling matrix, transpose of the Un down-sampling matrix.

The Fourier slice theorem method from [16] uses an approximation Ã
T
z to the back-projection

matrix AT
z which is computationally less expensive, resulting in a very similar refocusing problem:

x̂z = Ã
T
z U

T
nb . (26)

When refocusing to only one slice, the method from [17] is equivalent to the one from [16], in the
sense that it performs a Gaussian re-sampling of the Fourier space instead of using Kaiser-Bessel
functions. This results in just a slightly different approximation matrix Ã

T
z for Eq. (26).

In this article, we formulate the refocusing reconstruction as a convex minimization problem,
similarly to the high resolution image reconstruction from [10, 11]. We minimize the residual on
the captured light-field, using Eq. (23):

x̂z = argmin
x

{
| |PzUnAzx − b| |22

}
subject to: x � 0 , (27)

where the non-negativity constraint imposes the fact that there cannot be negative light scattering.
This representation can be solved by existing iterative algorithms like SIRT and Conjugate
Gradient Least-Squares (CGLS) [25]. The SIRT implementation for the solution of Eq. (27) can
be found in Appendix A.

2.4. Regularization

The recent introduction of reconstruction algorithm classes like Chambolle-Pock [26, 27], offers
the ability to generate algorithm instances that solve arbitrary problems characterized by convex
and possibly non-smooth terms, in a straight-forward manner. This allows to surpass the
implementations from [23] and [10], and to augment Eq. (27) with non-smooth convex terms
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like the following:

x̂z = argmin
x

{
| |PzUnAzx − b| |22 + λ | |Ox| |1

}
subject to: x � 0 , (28)

where λ is a weighting parameter, and O is an operator.
The l1-norm promotes sparsity [34], and we can chose an operator O that returns a sparse

representation of the solution vector x when it presents certain characteristics. This can be used
to impose prior knowledge on the reconstruction. For instance, natural images present a sparse
wavelet decomposition, while this is not the case for white noise [34]. Thus, reducing the l1-norm
of the wavelet decomposition for natural images, reduces the impact of white noise and possibly
other sources of noise, like pixel value quantization and pixel surface integration.
Another popular choice for O is the modulus of the point-wise gradient, whose l1-norm is

known as Total Variation: TV(·) = | |(|∇ · |)| |1. The TV term promotes isotropic gradient sparsity
in the reconstructed images, thus favouring flat regions with sharp boundaries [27].
In this article, we propose to use either the TV term or the translation-invariant wavelet

transform (SWT) [21, 22]. The SWT is an overcomplete wavelet decomposition, that allows
to remove the well-known block artifacts that characterize high compression levels of the
traditional discrete wavelet transform (DWT), while preserving its sparsity properties. The
CP implementation for the solution of Eq. (28) with a TV regularization term can be found in
Appendix A.

2.5. Practical limitations

The model presented in section 2.2 suffers from a few practical limitations. Three main limitations
are: lenslets are usually not perfectly aligned with the underlying sensor pixel grid; the ML
does not have real pinholes, but it integrates over a finite region; and the ML causes geometric
distortion.

The first limitation implies a mismatch of the (σ, τ) coordinates between the pixels under each
lenslet. As a result, none of the presented methods, including the one from the literature can be
directly applied to the collected data. This is routinely solved by a re-interpolation of the pixel
grid from the area underneath each lenslet (lenslet footprint). The resulting re-sampled grid
has the desired matching of (σ, τ) coordinates, but it suffers from a small penalty in directional
resolution, as large as half of the (u, v) pixel-size.

The second corresponds to the Nyquist limitation on the resolution discussed in section 2.2. It
results in a disk blur dependent on the refocusing distance from the original focal distance z0,
and it can be mitigated through the inclusion of such blurring term in the projection model, as
discussed in section 2.2.

The third limitation causes straight lines to be reconstructed as curved lines. This a well-known
problem in computer vision, and it is routinely solved by a check-board calibration of the camera,
which returns a map of its distortion. Once the camera has been calibrated, the acquired images
can be rectified through a common image distortion correction procedure. Reliable software for
carrying out this procedure already exists. An example is the “Light Field Toolbox for Matlab”
(LFT: http://dgd.vision/Tools/LFToolbox/) from Donald G. Dansereau.

For a more in depth analysis of lenslet alignment with the underlying sensor, and the geometric
distortion introduced by the ML, we refer to [35].

3. Reconstructions

We now address the reconstruction performance and applicability of the proposed methods. We
first use a known phantom from [20] (the “logos” test case) to test the reconstruction fidelity of
the refocused objects, for different up-scaling factors (Fig. 3). For brevity we only reconstruct the
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z

110 mm
100 mm

90 mm

(a) Phantom (b) Data

Fig. 3. Description of the logos synthetic case: (a) phantom used to simulate light field data,
having a VOXEL logo at the acquisition focal distance z = 100 mm, and two CWI logos at
the distances of 110 mm, and 90 mm; (b) simulated data, with two sub-aperture images for
clarity.

Fig. 4. Raw data from the Tarot Cards dataset. The data has been downscaled by a factor 4
in the (s, t) coordinates, and blurred with a known PSF.

logos example for an ULF camera geometry. We then demonstrate the ability of our approach to
reconstruct real-data for both ULF and FLF camera configurations.

For theULF case, we first show reconstructions of two versions of the “Tarot Cards” dataset from
the Stanford Light-Field Archive (http://lightfield.stanford.edu/lfs.html),
originally acquired by Andrew Adams (data: Fig. 4). The two versions are used for different
purposes: one is downscaled and blurred to simulate an MLA-based acquisition setup, and assess
the PSF correction and super-resolution performance; the other is the original full-resolution
version, which is used to show that the developed methods can work with full-resolution gantry
setups. To further test the ULF case, we then show reconstructions of the “Tea” dataset, acquired
with the setup in Fig. 5(a) using the Lytro Illum plenoptic camera (data: Fig. 6).

For the FLF case, we show the reconstruction of two datasets called “Letters” (micro-images:
Fig. 7(a), sub-aperture images: Fig. 7(b)) and “Flower” (micro-images: Fig. 8(b), sub-aperture
images: Fig. 8(c)), that we acquired experimentally with the dedicated setup in Fig. 5(b). The Let-
ters dataset depicts vector art, that is easily recognizable by the human eye, and that is favoured by
the TV-min constraint. The Flower dataset depicts natural imagery (https://github.com/
pratulsrinivasan/Local_Light_Field_Synthesis), which is more complex and
favoured by the SWT-min constraint.
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(a) ULF setup (b) FLF setup

Fig. 5. Experimental setups used for the acquisition of the ULF and FLF datasets “Tea”,
“Letters”, and “Flower”: (a) ULF setup, using the Lytro Illum plenoptic camera; (b) FLF
setup, built at Imagine Optic in Bordeaux (France).

Fig. 6. Raw data from the Tea dataset acquired using a Lytro Illum plenoptic camera, with
the setup from Fig. 5(a).
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(a) Micro-images (b) Pinhole images

Fig. 7. Raw data for the Letters case: (a) Micro-image representation; (b) Sub-aperture
representation. In both cases, two zoomed insets have been shown for clarity. The observed
inversion between (a) and (b) is due to the fact that FLF data mixes spatial information with
angular information at the micro-images [36], and that the lenslets perform an image space
inversion of the images that form on their object space focal plane.

(a) Original (b) Micro-images (c) Pinhole images

Fig. 8. Raw data for the Flower case: (a) Original (high resolution) image used for this test
case; (b) Micro-image representation; (c) Sub-aperture representation. In both cases, two
zoomed insets have been shown for clarity.
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3.1. Data description

The logos scene is composed of three different objects positioned at 90, 100 and 110 mm
respectively from the ML, as displayed in Fig. 3(a). The dataset is composed of 16 × 16
sub-aperture images, each composed of 512 × 256 pixels. The sub-aperture images for this
case are presented in Fig. 3(b). The diameter d1 of the main lens is 10 mm, while each lenslet
has a diameter d2 = 16 µm. The distance z2 is 50 µm, and the detector pixel size 1µm. The
ML-to-MLA distance z1 is 25 mm, so that the focal plane in the object space is at 100 mm
(|M | = 4). In the creation of this dataset we applied the two PSFs due to Fraunhofer diffraction
for the ML and the lenslets in the MLA. These PSFs were generated by computing the Fraunhofer
diffraction pattern predicted for the lens aperture (d1 and d2 for ML and MLA respectively),
detected light wavelength, and lens-to-target distance (z1 and z2 for ML and MLA respectively).
This diffraction pattern was then integrated in steps equal to the underlying pixel size (16 µm and
1µm for ML and MLA respectively).

To enable the evaluation of the up-sampling refocusing reconstruction quality for the logos
case, we also created two additional versions of such test case, where we binned (down-sampled)
the sub-aperture images along the (s, t) coordinates by 2 and 4. The reconstruction of these
down-sampled datasets was performed at the original dataset (s, t) resolution, turning it into
a super-resolved reconstruction problem with corresponding up-sampling factors of 2 and 4,
respectively. The resulting up-sampled refocused images could then be compared to the original
(high resolution) phantom. In general, this means that for increasing sampling factors, the
available data (s, t) resolution becomes worse, less data is available, and more operations are
needed to produce images with the original (s, t) resolution. This procedure also resulted in the
re-scaling of the expected lenslet sizes, detector pixel sizes, and PSF widths, according to the
sampling factors.
The Tarot cards dataset has been acquired using a gantry setup (analogous to a camera array

setup), which was built using Lego Mindstorms, and a Canon Digital Rebel XTi, with a Canon
10-22 mm lens. The cropped and registered dataset from the archive comes as a collection of
17 × 17 sub-aperture images, with a relatively high (s, t) resolution (1024 × 1024). The focal
length of the main lens f1 was set to 20 mm. We binned the sub-aperture images to a resolution
of 256 × 256, and blurred the light-field in the (u, v) coordinates using a different PSF per color
channel. The three PSFs have been computed as the result of the Fraunhofer diffraction effects due
to the lenslets, with the following parameters: lenslet diameter d2 = 20 µm, distance z2 = 37 µm
and detector pixel size 1.4 µm. The parameters for the lenslets are the same as the ones in a well
known plenoptic camera, commercially available under the name of Lytro ILLUM. The modified
Tarots cards dataset is displayed in Fig. 4.

The Tea dataset (Fig. 6) has been acquired using a Lytro Illum plenoptic camera, with the setup
in Fig. 5(a). Being the Lytro Illum a proprietary camera, we do not have the complete acquisition
parameters. The raw data and metadata were extracted using the proprietary software “Lytro
power tools”, property of Lytro. This software already performs the rectification and lenslet
re-sampling procedures discussed in section 2.5.
The Letters and Flower datasets (Figs. 7 and 8) represent printed vector art and natural

imagery, that was then photographed with the dedicated setup in Fig. 5(b), in the laboratories
of Imagine Optic (Bordeaux, France). In this setup, we used the AC254-200-A-ML ML and
MLA300-14AR-M MLA from Thorlabs, and the Stingray F-145 sensor from Allied Vision. The
ML has focal distance f1 = 200 mm, and the MLA is composed of ∼ 30 × 30 lenslets with
f2 = 18.6 mm, diameter d2 = 300 µm, and built-in f -number equal to 62. The detector pixel size
is 6.45 µm. We chose a z1 distance of 400 mm, which gave a z0 distance of 400 mm and |M | = 1.
We also chose a distance b = 20.93 mm, which corresponded in a distance a = 167.4 mm. The
field-of-view (FoV) of the scene is 7.2mm × 4.8mm, while the DoF is ' 2.5mm [30]. The
degradation of the micro-image quality observed in both Figs. 7 and 8 is due to the PSF of the
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imaging system, and in particular to the large lenslet f -number, which negatively correlates to the
imaging system spatial resolution [30].
For the reconstruction of all these test cases, the chosen regularization weight λ values have

been selected empirically by trial and error. In the case of multi-channel data (e.g. RGB), we
performed a single-channel reconstruction, where each channel has been reconstructed separately.
However, the same λ value was used for the reconstruction of all the channels.

3.2. Performance analysis

To evaluate the reconstruction fidelity of the logos test case, we can directly compare the refocused
regions with the phantom, and compute the root mean square error (RMSE) of each refocused
image using the formula:

RMSE(xz) =

√∑N
n ((xz)n − (x̂z)n)

2

N
(29)

where the summation is over the selected N pixels, and the vector x̂z represents the expected
solution at the given depth z. Lower values of the RMSE correspond to better refocusing
performance.

3.3. Logos refocusing

The logos test case is a benchmark on the impact of both the PSF correction and the regularization,
with respect to different up-sampling parameters. We compare the refocusing reconstruction re-
sults between a few different reconstruction approaches: integration (known also as “shift&sum”),
the mathematically equivalent tomographic simple back-projection, Fourier slice theorem, SIRT
with and without PSF correction, and CP using the Least Squares (l2) data-divergence term
and TV penalization (abbreviated to CP-LS-TV), both with and without PSF correction. The
refocusing was performed on the CWI logo at distance 90 mm from the ML, corresponding to
α = 0.9 (as defined in section 2.3).
As mentioned in section 2.3, the choice of a simple Fourier slice theorem implementation

from [16], over a filtered version from [17] is due to the fact that the two versions, for planar
refocusing only differ by the introduction of a filtering step that is equivalent to a Gaussian
resampling, instead of the Kaiser-Bessel resampling proposed in [16]. This means that on a
noiseless phantom, the two methods should behave very similarly.
In Fig. 9 we present all the different reconstructions against the all-in-focus phantom, at the

original phantom resolution (sampling factor = 1: down-sampling of sub-aperture images = 1,
up-sampling of reconstruction = 1). It is apparent from the comparison of Figs. 9(b) to 9(d)
against Figs. 9(e) to 9(h) that iterative methods can define better sharp transitions than traditional
one-step refocusing methods, even in the presence of blurring. Then, from the comparison
between Figs. 9(e) to 9(f) and Figs. 9(g) to 9(h), we see that the PSF correction greatly improves
the recovery of sharp boundaries. From the comparison between Fig. 9(g) and Fig. 9(h), by
looking close to the edge of the CWI target in the left inset of each figure, it is possible to notice
that the additional regularization term helps in reducing the wavy type of artifacts due to the PSF
reconstruction.
Figure 10(a) quantifies the performance of the different methods, by plotting the RMSEs of

each reconstruction method for the down-sampling factors 1, 2 and 4 of the sub-aperture images
in the original light-field, and corresponding up-sampling of the refocusing reconstructions. As
also observed for Fig. 9, the one-step refocusing methods present similar reconstruction accuracy
across the board, with the difference between the integration and the back-projection approach
simply being due to the different interpolation method used in their implementations. Among
the iterative methods, the PSF correction can improve the reconstruction accuracy by almost
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(a) Phantom (b) Integration (c) Back-projection (d) Fourier

(e) SIRT w/o PSF (f) CP-LS-TV w/o PSF (g) SIRT w/ PSF (h) CP-LS-TV w/ PSF

Fig. 9. Performance comparison of different refocusing approaches for the “logos” synthetic
test case: (a) Phantom; (b) Integration; (c) Back-projection; (d) Fourier slice theorem;
(e) SIRT without PSF; (f) Chambolle-Pock without PSF, with l2 data-divergence term and
TV regularization term with λ = 1; (g) SIRT with PSF; (h) Chambolle-Pock using PSF, l2
data-divergence term, and TV regularization term with λ = 1.

an order of magnitude at the highest resolutions, while it becomes less important with higher
detector binning factors, because the PSF effect tends to be substantially reduced [10]. This
can be observed in particular for the sampling factor equal to 2, where the SIRT and CP-LS-TV
reconstructions without PSF correction improve their refocusing performance with respect to
the original dataset, because of a reduction in size of the lenslet PSF. The choice of the correct
regularization (in this case TV-min) improves the result over non-regularized reconstructions,
and it becomes relatively more important at higher sampling factors and with smaller PSFs.

Finally, in Fig. 10(b) we can observe the computational time required for every tested method
at each down-sampling factor. Even if the focus of this article is not on the computational
performance of the proposed method, we believe that it is worth giving an understanding of
the performance penalties associated with each addressed aspect. These tests were carried out
on a machine equipped with an Intel i7-6700K CPU, 64GB of DDR4 memory, and a NVIDIA
GeForce GTX 970 GPU. The fastest method is the back-projection because it is performed
using the ASTRA toolbox, which uses GPU acceleration. All the iterative methods also use
the GPU acceleration offered by ASTRA for the forward and back-projection, but perform
the rest of the operations on the CPU. This imposes data transfers across the PCIe bus (from
GPU to CPU and vice versa) at each iteration. We expect to see substantial improvements by
running these refocusing routines entirely on the GPU, by both avoiding bottlenecks due to the
data transfers, and allowing to accelerate every other operation, including the PSF application.
For the same number of iterations, the addition of the TV minimization term has a negligible
impact on the refocusing performance. The PSF addition causes the highest performance penalty,
which however depends on the size of the PSF: for increasing down-scaling factors, it has a
progressively lower impact. The Fourier method is also showing better performance with higher
down-sampling factors, because the initial 4D-FFT is performed on smaller data sizes [16].
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(a) RMSE (b) Computational time

(c) Sampling factor scaling

Fig. 10. Root-Mean-Square-Errors (RMSEs) and computational time for each reconstruction
approach from Fig. 9 for the down-sampling factors 1, 2, and 4 of the sub-aperture images
(the (s, t) coordinates of the light-field): (a) RMSE; (b) Computational time; (c) Scaling of
sub-aperture image resolution and reconstruction up-sampling factor against the sampling
factor.

3.4. Tarot cards refocusing

The Tarot cards test case shows the super-resolution and artifact correction potential of the
proposed methods, over real-data, and in particular over a well understood and widely used
dataset.

We first analyze the results of the downscaled and blurred dataset. In Fig. 11, we can observe
the refocusing performance of the most significant reconstruction methods, for the two different
up-sampling parameters of 1 and 4. For this test case, we chose to use: back-projection, Fourier
slice theorem, SIRT with PSF, and CP-LS with SWT penalization based on Haar wavelets (CP-
LS-SWT) and PSF. Again, the back-projection and Fourier based methods deliver comparable
refocusing and feature-resolving performance. In Fig. 11(c), for up-scaling equal to 4, the SIRT
reconstruction presents a better feature resolving performance than the one-step approaches, but
also visible artifacts in the reconstruction. The SWT penalized reconstruction from Fig. 11(d)
visibly preserves the higher feature resolving performance of the SIRT approach, while strongly
reducing the said artifacts. The choice of the SWT penalization term over the TV term can be
understood through the same reasoning detailed in section 2.4. The Tarot Cards dataset presents
a variety of features, including shaded regions. These regions break the assumption of sharp
boundaries associated to the TV minimization.

We now consider the reconstruction of the unmodified Tarots Cards dataset. It can be deduced
from Fig. 12 that the approaches presented in this article allow to correctly reconstruct high
resolution gantry data. By comparing the results of the different methods in Fig. 12, no difference
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(a) Back-projection (b) Fourier (c) SIRT w/ PSF (d) CP-LS-SWT w/ PSF

Fig. 11. Performance comparison of different refocusing approaches, at different levels of
up-scaling (super-resolution) for the Tarot Cards case. First row shows reconstructions at
up-sampling = 1, and second row up-sampling = 4. In the columns, instead, we have the
different approaches: (a) Back-projection; (b) Fourier slice theorem; (c) SIRT with PSF;
(d) Chambolle-Pock using PSF, l2 data-divergence term, and SWT Haar regularization with
λ = 3.

(a) Sub-aperture image (b) Back-projection (c) SIRT w/ PSF (d) CP-LS-SWT w/ PSF

Fig. 12. Performance comparison of different refocusing approaches, for the full-resolution
Tarot Cards case. We show one of the sub-aperture images on the side of different
reconstruction approaches: (a) Central sub-aperture image; (b) Back-projection; (c) SIRT;
(d) Chambolle-Pock using l2 data-divergence term, and SWT Haar regularization with λ = 3.
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(a) Back-projection (b) Fourier (c) SIRT w/ PSF (d) CP-LS-SWT w/ PSF

Fig. 13. Performance comparison of different refocusing approaches, at different levels
of up-scaling (super-resolution) for the Tea case. First row shows reconstructions at up-
sampling = 1, and second row up-sampling = 4. In the columns, instead, we have the
different approaches: (a) Back-projection; (b) Fourier slice theorem; (c) SIRT with PSF;
(d) Chambolle-Pock using PSF, l2 data-divergence term, and SWT Haar regularization with
λ = 1.

is visible between the reconstructions. This is due to the fact that, in this case, the back-projection
method already returns a correct reconstruction. In fact, the blur visible in the reconstructions is
also present in the sub-aperture images (Fig. 12(a)).
These high resolution gantry data reconstructions can be used to quantify the quality of the

super-resolved refocusing reconstructions that used the modified Tarots Cards dataset. The
measured RMSE values for the reconstructions in Fig. 11, against Fig. 12(b) are the following:
0.0363353, 0.103504, 0.0382393, 0.0169782 for the back-projection, Fourier, SIRT with PSF,
and CP-LS-SWT with PSF respectively. These results confirm the visual interpretation carried
out earlier in this section.

3.5. Tea refocusing

The Lytro Illum plenoptic camera is a popular commercially available compound camera, that
allows to easily acquire and extract single-shot light-fields, while maintaining a portable format.
In Fig. 13, we show the reconstruction of the Lytro Illum data acquired with the setup in Fig. 5(a).
As it was done for the Tarots Cards dataset, we performed reconstructions with up-sampling of 1
and 4, for the following methods: back-projection, Fourier slice theorem, SIRT with PSF, and
CP-LS with SWT penalization based on Haar wavelets (CP-LS-SWT) and PSF.
This example shows that the methods developed in this article can be applied to the data

acquired with this popular camera. It can be seen from the leaf and castle insets that once
again both iterative approaches present a better feature resolving performance than the one-step
approaches. Moreover, the SWT regularization is well behaved for the refocusing of natural
images, and it helps in reducing artefacts.

In this example, we also focus our attention to the out-of-focus regions of the refocused image.
In particular, we refer to the bottom inset, which magnifies an edge from the background. The
super-resolved back-projected reconstruction (bottom of Fig. 13(a)) of this region is similar to
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(a) Back-projection (b) SIRT w/o PSF (c) CP-LS-TV w/ PSF

Fig. 14. Performance comparison of different refocusing approaches, at different levels
of upscaling (super-resolution) for the Letters case. First row shows reconstructions at
up-sampling = 1, and second row up-sampling = 2. In the columns, instead, we have the
different approaches: (a) Back-projection; (b) SIRT without PSF; (c) Chambolle-Pock with
PSF, l2 data-divergence term, TV regularization, and λ = 100.

the corresponding Fourier version (bottom of Fig. 13(b)), but it also presents traces of a wavy
pattern. The iterative methods used in Figs. 13(c) and 13(d) present a stronger artifact because
they use the same back-projection operation as in Fig. 13(a), but iterate it multiple times. The
observed artifact is due to inaccuracies in the numerical interpolation of the used back-projection
implementation, which is more apparent for higher relative distances from the acquisition focal
distance. In fact, this effect is not visible for the Tarot Cards test case (Fig. 12), and it deviates
from the expected bokeh effect for out-of-focus regions. To remove it, the back-projection
operation could be substituted by a Fourier type of back-projection.

3.6. Letters and Flower refocusing

The Letters and Flower test cases assess the ability of our approach to handle real-data produced
with the FLF camera geometry. We show that every aspect of our approach, including super-
resolution and regularization, can be carried over to this case.
In Fig. 14, we present the reconstruction of the FLF data from Fig. 7 for the following

approaches: back-projection, SIRT without PSF and CP-LS-TV with PSF. For this case, the
choice of the TV term is justified by the properties of the imaged objects: the printed letters,
with sharp boundaries over a plain background, explicitly satisfy the prior knowledge of the TV
minimization. We present both reconstructions with up-sampling equal to 1, and 2. From Fig. 14,
it is clearly visible that the use of super-sampling and regularization techniques can improve the
reconstruction of the smallest features.

The PSF used for this case is the result of both the theoretically predicted PSF due to Fraunhofer
diffraction of the lenslets, and the Nyquist limitation on the resolution for the given refocusing
distance (as seen in section 2.2). To compute the Nyquist PSF size, we used a computed
refocusing distance z ' 430 mm, an acquisition focus distance z0 = 400 mm, and (u, v) resolution
of ∼ 0.175 mm. Figure 14(c), despite looking overall sharper than Fig. 14(b), still presents
some blur. This is due to the fact that the PSFs were only theoretically computed, based on
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(a) Ideal (b) Back-projection (c) SIRT w/o PSF (d) CP-LS-SWT w/ PSF

Fig. 15. Performance comparison of different refocusing approaches, at different levels
of upscaling (super-resolution) for the flower case. First row shows reconstructions at
up-sampling = 1, and second row up-sampling = 2. In the columns, instead, we have the
different approaches: (a) Expected reconstruction for an ideal camera with infinite bandwidth
optical system response; (b) Back-projection; (c) SIRT without PSF; (d) Chambolle-Pock
with PSF, l2 data-divergence term, SWT regularization, and λ = 5.

the estimated distances z, z0, and the measured b (which in turn determines a, and the (u, v)
resolution). For higher reconstruction accuracy, a thorough calibration of the acquisition setup is
required (section 2.5), including the experimental determination of the camera PSF.
In Fig. 15, we present the reconstruction of the FLF data from Fig. 8. Similarly to what was

done for the Letters test case, we used the following: back-projection, SIRT without PSF and
CP-LS-SWT with PSF. The notable difference from the Letters case is the choice of the SWT
regularization term, over the TV term. As previously mentioned, natural imagery generally
breaks the assumption of flat and sharp regions in the reconstructed images.
In Fig. 15(a), we can see the expected reconstruction with an ideal camera (with infinite

bandwidth). However, in practice, as stated in [16], the acquired light-field is convolved with a low
pass filter, which has the form of a 4D sinc function. This results in lower than ideal performance
for each reconstruction method, but an increasing similarity to Fig. 15(a) indicates increasing
reconstruction quality. Moreover, the images in Fig. 15(a), were obtained by downscaling the
high resolution image from Fig. 8(a), and not by taking a picture of a printed version, as it
was done for Figs. 8(b) and 8(c). As a consequence, especially the higher resolution version
represents a purely ideal case, because it was not upsampled from its lower resolution version.
Despite requiring a more thorough calibration of the images and PSF, also in this case, the

proposed methods improve on the back-projection approach. In particular, the super-resolution
reconstruction using the theoretical PSF and SWT regularization allows to visibly recover more
of the expected features, than the other considered approaches.

4. Conclusions and outlook

The proposed tomography based light-field refocusing method is defined in the direct-space, as
opposed to previously proposed Fourier space tomography methods. We have shown that this
formulation is applicable to both the ULF and FLF camera configuration, and it allows to both
easily introduce advanced forward operator modeling, and advanced regularization techniques.
This is due to the fact that it reduces the different camera geometries to small differences in the
projection implementation, resulting in a unified refocusing strategy for all the available plenoptic
acquisition schemes. One of the main results of this aspect is that it provides greater and wider
applicability for future developments in the field. As an example, we showed that the introduction
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of regularization terms in the refocusing reconstruction could be applied to both the ULF and
FLF cases.

The TV and SWT regularization techniques also proved to be powerful tools for reducing the
artifacts due to super-resolution reconstructions and PSF corrections. Newer and more advanced
regularizations could help to further improve the reconstruction quality and push for higher
super-resolution refocusing.
The proposed approach will allow in the future to introduce the optical system’s aberration

modeling in the forward projection operator, in the same fashion as for the PSF. This would result
in yet higher refocusing accuracy and super-resolution. We believe that further effort could be
devoted to determining the theoretically best achievable super-resolution for the light-field data
and geometry at hand, once the PSF and aberrations have been taken into account. On another
note, this article further confirms that computational improvements can help to minimize the
impact of physical limitations imposed by the manufacturing of smaller optics and detectors with
smaller pixel sizes.

Finally, we showed that the proposed method allows to tune the refocusing problem based on
the available prior knowledge, but also that multiple advanced algorithms could be used to solve
these problems. This means that the newest developments in the reconstruction algorithms could
be ported to light-field refocusing from other fields like computed tomography, alongside with
the newest developments in convex optimization and regularizations.

Appendix A

SIRT and CP-LS-TV refocusing implementations

Here we first report the operations needed to implement a SIRT algorithm that solves Eq. (27).
Each iteration step can be computed as follows:

x(k+1)
z = pos

(
x(k)z + D2 Ã

T
z

(
b − Ãzx(k)

l

))
(30)

Ãz = PzUnAz ; Ã
T
z = AT

z U
T
nP

T
z

D1 = diag
(

1
| Ãz |1

)
; D2 = diag

(
1

| Ã
T
z |1

)
where the function pos(·) clips all the negative values to 0, k indicates the iteration step, 1 are
vectors composed by only values 1 of the same sizes as the vectors x and b respectively, and the
matrices D1 and D2 are diagonal matrices used to rescale the modified forward and backward
operators Ãz and Ã

T
z respectively.

For the solution of Eq. (28), we use the Chambolle-Pock type of algorithms, which are called
primal-dual algorithms, because they solve two conjugate problems at the same time: the primal,
defined by Eq. (28), and its dual, which is a maximization problem. If the solution exists and it is
unique, it will be the same for both problems once the algorithm has reached convergence [27,37].
We report here a CP preconditioned version of the said CP algorithm with an l2 data divergence
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term (LS), and TV penalization:

x(0)z = 0, x̄(0) = 0, p(0)d = 0, p(0)tv = 0, D2 = diag

(
1

| Ã
T
z |1 + 4λ

)
for l := [0, L)

p(l+1)
d =

p(l)d + D1
(
Az x̄(l) − b

)
diag (1) + D1

p(l+1)
tv =

p(l)tv + 1/2∇x̄(l)

max
(
1, |p(l)tv + 1/2∇x̄(l) |

)
x(l+1)
z = pos

(
x(l) − D2A

Tp(l+1)
d + λ D2div(p(l+1)

tv )

)
x̄(l+1) = x(l+1) + (x(l+1) − x(l)) (31)

where pd and ptv are the detector and gradient terms of the dual problem respectively, the function
div(·) computes the divergence of its input, the matrices Ãz , Ã

T
z and D1 are the same as for the

SIRT algorithm, the matrix D2 has been adapted to also incorporate the TV term rescaling, and x̄
is a modified solution xz that helps in improving the convergence rate of the algorithm [27].
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