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Abstract. We present an upper bound on the exponent of the asymp-
totic behaviour of the tensor rank of a family of tensors defined by the
complete graph on k vertices. For k ≥ 4, we show that the exponent per
edge is at most 0.77, outperforming the best known upper bound on the
exponent per edge for matrix multiplication (k = 3), which is approx-
imately 0.79. We raise the question whether for some k the exponent
per edge can be below 2/3, i.e. can outperform matrix multiplication
even if the matrix multiplication exponent equals 2. In order to obtain
our results, we generalize to higher-order tensors a result by Strassen
on the asymptotic subrank of tight tensors and a result by Coppersmith
and Winograd on the asymptotic rank of matrix multiplication. Our
results have applications in entanglement theory and communication
complexity.
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1. Introduction

A famous open problem in algebraic complexity theory is the prob-
lem of determining the tensor rank of large tensor powers of the 2×2
matrix multiplication tensor. Let V1, . . . , Vk be finite-dimensional
complex vector spaces and let φ ∈ V1 ⊗· · ·⊗Vk be a k-tensor. The
tensor rank R(φ) of φ is the smallest number r such that φ can be
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written as a sum of r simple tensors v1 ⊗ · · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk.
We define the Nth tensor power φ⊗N as the k-tensor obtained by
taking the tensor product of N copies of φ and grouping such that
φ ∈ (V ⊗N

1 ) ⊗ · · · ⊗ (V ⊗N
k ). For any n, let b1, . . . , bn denote the

standard basis of C
n. The 2×2 matrix multiplication tensor is the

3-tensor
∑

i∈{0,1}3

(bi1 ⊗ bi2) ⊗ (bi2 ⊗ bi3) ⊗ (bi3 ⊗ bi1) ∈ (C2 ⊗ C
2)⊗3.

This paper is motivated by the study of the tensor rank of powers of
tensors that are generalizations of the matrix multiplication tensor.
Consider a graph with two vertices connected by a single edge. We
define the corresponding 2-tensor as

T
( )

=
∑

i∈{0,1}
bi ⊗ bi ∈ C

2 ⊗ C
2.

Let G be any graph. Then we define T(G) to be the |V |-tensor
obtained by taking the tensor product of the tensors corresponding
to the edges of G, grouping corresponding vertices together (the
full definition is in Definition 1.2). For example, for the complete
graph on four vertices K4 we have

T
( )

= T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

⊗ T
( )

=
∑

i∈{0,1}6

(bi1⊗bi4⊗bi5) ⊗ (bi2⊗bi4⊗bi6) ⊗ (bi3⊗bi5⊗bi6)

⊗ (bi1⊗bi2⊗bi3)

living in (C8)⊗4. We can ignore the dependence of this tensor on
the order of the edges, since tensor rank is invariant under this
choice. Let Kk be the complete graph on k vertices. The 2 × 2
matrix multiplication tensor is the tensor T(K3).

The main result of this paper is an upper bound on the tensor
rank of large tensor powers of T(Kk): for any k ≥ 4 and large N ,

(1.1) R(T(Kk)
⊗N) ≤ 20.772943(k

2)N+o(N).
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We say that the exponent ω(T(Kk)) is at most 0.772943
(

k
2

)
and

we say that the exponent per edge τ(T(Kk)) is at most 0.772943.
This improves, for k ≥ 4, the bound τ(T(Kk)) ≤ 0.790955 that can
be derived from the well-known upper bound of Le Gall (2014) on
the exponent of matrix multiplication ω := ω(T(K3)). Note that
τ(T(K3)) = ω/3.

By a “covering argument”, we can show that τ(T(Kk)) is non-
increasing when k increases (Proposition 1.31). On the other hand,
a standard “flattening argument” (see Definition 1.22) yields the
lower bound τ(T(Kk)) ≥ 1

2
k/(k − 1) if k is even and τ(T(Kk)) ≥

1
2
(k + 1)/k if k is odd. As a consequence, if the exponent of ma-

trix multiplication ω equals 2, then τ(T(K4)) = τ(T(K3)) = 2
3
. We

raise the following question: is there a k ≥ 5 such that τ(T(Kk)) <
2
3
? More open questions are discussed in Section 1.3.

Our method to prove (1.1) is a generalization of a method
of Strassen, and Coppersmith and Winograd for obtaining upper
bounds on the exponent of the matrix multiplication tensor. To
use the generalized Coppersmith–Winograd method, we have to
get a handle on the monomial subrank of tensor powers of yet an-
other type of combinatorially defined tensors. The definition of
rank given above is equivalent to saying that the rank R(φ) of a
tensor φ ∈ V1 ⊗ · · · ⊗ Vk is the smallest number r for which there
exist linear maps A1 : C

r → V1, . . . , Ak : C
r → Vk such that

φ = (A1 ⊗· · ·⊗Ak) Tr(k), where Tr(k) =
∑r

i=1(bi)
⊗k is the rank-r

unit k-tensor. The subrank Q(φ) of φ is the largest number s for
which there exist linear maps A1 : V1 → C

s, . . . , Ak : Vk → C
s

such that Ts(k) = (A1 ⊗ · · · ⊗ Ak)φ. In fact, we need a slightly re-
stricted notion. A monomial matrix is a matrix such that any row
or column has at most one nonzero entry. Let φ ∈ V1⊗· · ·⊗Vk be a
tensor in a fixed basis. The monomial subrank QM(φ) is the largest
number s for which there exist monomial matrices A1, . . . , Ak such
that Ts(k) = (A1⊗· · ·⊗Ak)φ. We are interested in lower bounding
QM(φ⊗N) for large N . In particular, in the course of proving (1.1)
we face the problem of computing QM(D⊗N

(2,2)), where

D(2,2) = b1 ⊗ b1 ⊗ b2 ⊗ b2 + b1 ⊗ b2 ⊗ b1 ⊗ b2 + b1 ⊗ b2 ⊗ b2 ⊗ b1

+ b2 ⊗ b1 ⊗ b1 ⊗ b2 + b2 ⊗ b1 ⊗ b2 ⊗ b1 + b2 ⊗ b2 ⊗ b1 ⊗ b1
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is the weight-(2, 2) Dicke tensor.

Our second result solves this problem. Namely, we prove a
general asymptotic lower bound on the monomial subrank of tensor
powers of so-called tight tensors (Theorem 1.52). These are tensors
φ ∈ V1 ⊗ · · · ⊗ Vk for which there is a choice of bases B1, . . . , Bk

for V1, . . . , Vk, respectively, and injective maps α1 : B1 → Z, . . . ,
αk : Bk → Z such that

∀ (b1, . . . , bk) ∈ suppB(φ) α1(b1) + · · · + αk(bk) = 0.

For example, applied to the tensor D(2,2), which is a tight ten-
sor, our result yields the monomial subrank QM(D⊗N

(2,2)) = 2N−o(N),
which is asymptotically optimal. We say that the monomial subex-
ponent qM(D(2,2)) equals 1. This solves a conjecture posed in Vrana
& Christandl (2015) for the special case D(2,2).

In quantum information theoretical terms, the tensor T(Kk) en-
codes a k-partite quantum state in which each two systems share
an Einstein–Podolski–Rosen (EPR) pair. The tensor T2(k) en-
codes the k-partite Greenberger–Horne–Zeilinger (GHZ) state. If
the rank of T(Kk) is r, then �log2 r	 copies of the state T2(k) are
needed to generate T(Kk) by stochastic local operations and classi-
cal communication (SLOCC). See Dür et al. (2000) for a discussion
of SLOCC. Asymptotically, we can generate N copies of T(Kk) us-
ing ω(T(Kk))N + o(N) copies of T(k).

In the next subsection, we discuss preliminary definitions and
known results. After that we state our results and discuss open
questions.

1.1. Preliminaries Let U1, . . . , Uk and V1, . . . , Vk be complex
finite-dimensional vector spaces. For any number n ∈ N, define
the set [n] := {1, 2, . . . , n}. All our graphs will be simple graphs,
that is, they are unweighted, undirected, containing no self-loops
or multiple edges.

We first define the two families of tensors that play an impor-
tant role in this paper, namely the tensors T(G) with G a graph
and the tensors Dλ with λ a partition. We start with T(G).

Definition 1.2. Let G = (V,E) be a graph and let n be a natural
number. Let b1, . . . , bn be the standard basis of C

n. We define the
|V |-tensor Tn(G) as
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Tn(G) :=
∑

i∈[n]E

⊗

v∈V

(⊗

e∈E:
v∈e

bie

)
,

where the sum is over all tuples i indexed by E with entries in [n].
Equivalently, one can define Tn(G) as a tensor product over edges
of G, as follows, letting subscripts denote the position of tensor
legs,

Tn(G) =
⊗

e∈E

∑

i∈[n]

(bi ⊗ bi)e ⊗ (1 ⊗ · · · ⊗ 1)V \e.

Here, the element 1 should be regarded as an element of C and the
large tensor product inputs and outputs |V |-tensors by the natural
regrouping. We will denote T2(G) by T(G). The definition natu-
rally generalizes to hypergraphs, see Vrana & Christandl (2017).

Note that the tensor Tn(G) behaves as follows under the tensor
Kronecker product: Tn(G) ⊗ Tm(G) ∼= Tnm(G).

We can ignore the fact that the tensor in the above definition
depends on the choice of order of the edges and vertices of the
graph G, since tensor rank and subrank do not depend on this
order.

Let Kk be the complete graph on k vertices and let Ck be the
cycle graph on k vertices.

Example 1.3. We give some examples of tensors of type Tn(G).
Let n ∈ N. For any j1, j2, j3 ∈ [n], we define bj1j2 := bj1 ⊗ bj2 and
bj1j2j3 := bj1 ⊗ bj2 ⊗ bj3 . Then

Tn(K2) =
∑

i∈[n]2

bi1 ⊗ bi1 ∈ C
n ⊗ C

n

Tn(K3) =
∑

i∈[n]3

bi1i2 ⊗ bi2i3 ⊗ bi3i1 ∈ C
n2 ⊗ C

n2 ⊗ C
n2

Tn(K4) =
∑

i∈[n]6

bi1i2i5 ⊗ bi2i3i6 ⊗ bi3i4i5 ⊗ bi1i4i6 ∈ (Cn3

)⊗4

Tn(C5) =
∑

i∈[n]5

bi1i2 ⊗ bi2i3 ⊗ bi3i4 ⊗ bi4i5 ⊗ bi5i1 ∈ (Cn2

)⊗5
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In algebraic complexity theory, the tensor Tn(C3) is called the n×n
matrix multiplication tensor, since it encodes the bilinear map that
multiplies two n × n matrices. It is usually denoted by 〈n, n, n〉.
For k ≥ 3, Tn(Ck) is the iterated matrix multiplication tensor;
it encodes the multilinear map that multiplies k matrices of size
n×n. Note that C3 = K3, so any results on Tn(Kk) or Tn(Ck) are
generalizations of results on the matrix multiplication tensor. ♦

We now introduce the second family of tensors, Dλ.

Definition 1.4 (Dicke tensor Dicke 1954; Stockton et al. 2003;
Vrana & Christandl 2017). Let k be a positive integer and let
λ = (λ1, . . . , λn) n k be a partition of k of length at most n. Let
b1, . . . , bn be the standard basis of C

n. Define the weight-λ Dicke
tensor Dλ as

Dλ :=
∑

i∈[n]k:
type(i)=λ

bi1 ⊗ · · · ⊗ bik ∈ (Cn)⊗k

where type(i) = λ means that i is a permutation of the tuple

(1, . . . , 1︸ ︷︷ ︸
λ1

, 2, . . . , 2︸ ︷︷ ︸
λ2

, . . . , n, . . . , n︸ ︷︷ ︸
λn

).

Example 1.5. We give some examples of tensors of type Dλ.

D(2,1) = b1 ⊗ b1 ⊗ b2 + b1 ⊗ b2 ⊗ b1 + b2 ⊗ b1 ⊗ b1,

D(1,1,1) = b1 ⊗ b2 ⊗ b3 + b1 ⊗ b3 ⊗ b2 + b2 ⊗ b1 ⊗ b3

+ b2 ⊗ b3 ⊗ b1 + b3 ⊗ b1 ⊗ b2 + b3 ⊗ b2 ⊗ b1.

In quantum information theory, the tensor D(2,1) encodes a quan-
tum state known as the W-state, and D(k−1,1) encodes a generalized
W-state on k systems. ♦

We now wish to define the exponent and (monomial) subexpo-
nent of a tensor, which should be thought of as our complexity
measures for tensors. First we define (monomial) restriction, de-
generation and asymptotic conversion rate.

Let φ ∈ U1 ⊗ · · · ⊗ Uk and ψ ∈ V1 ⊗ · · · ⊗ Vk be k-tensors.
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Definition 1.6. We say φ restricts to ψ, written φ ≥ ψ, if there
exist linear maps Ai : Ui → Vi such that ψ = (A1 ⊗ · · · ⊗ Ak)φ.
We say φ is isomorphic to ψ if both φ ≥ ψ and φ ≤ ψ. We will
often tacitly treat isomorphic tensors as being equal. We say φ
degenerates to ψ, written φ � ψ, if ψ is in the orbit closure Gφ in
the Zariski topology, where G = GL(U1) × · · · × GL(Uk).

A matrix is a monomial matrix if on any of its rows or columns
there is at most one nonzero entry. Fix bases for U1, . . . , Uk and
V1, . . . , Vk. We say that there is a monomial restriction from φ to
ψ, written φ ≥M ψ, if there exist monomial matrices A1, . . . , Ak

such that ψ = (A1 ⊗ · · · ⊗ Ak)φ in the chosen basis. We say that
there is a monomial degeneration from φ to ψ, written φ �M ψ, if
ψ is in the orbit closure Mφ in the Zariski topology, where M is
the subgroup of G consisting of k-tuples of monomial matrices.

Monomial degeneration has a nice combinatorial description for
which we refer to Theorem 6.1 in Strassen (1987). It is clear from
the definition that φ ≥M ψ implies φ �M ψ. We refer to Strassen
(1987) for other basic properties of ≥M and �M.

Definition 1.7. Define the asymptotic conversion rate from φ to
ψ as

(1.8) ω(φ, ψ) := lim
n→∞

1

n
min{m ∈ N | φ⊗m ≥ ψ⊗n},

and the asymptotic monomial conversion rate from φ to ψ as

(1.9) ωM(φ, ψ) := lim
n→∞

1

n
min{m ∈ N | φ⊗m �M ψ⊗n}.

The minimum of the empty set is considered to be ∞.

Proposition 1.10. The limit in Equation (1.8) exists and equals
the supremum supn

1
n

min{m ∈ N | φ⊗m ≥ ψ⊗n}. The limit in
Equation (1.9) exists and equals the supremum supn

1
n

min{m ∈
N | φ⊗m �M ψ⊗n}.

Proof. See Lemma 1.1 in Strassen (1988). �
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Theorem 1.11. Restriction and degeneration are asymptotically
equivalent, in the sense that

ω(φ, ψ) = lim
n→∞

1

n
min{m ∈ N | φ⊗m � ψ⊗n}.

Proof. See Strassen (1987). A proof can also be found in Vrana
& Christandl (2015). �

Remark 1.12. We do not know whether in (1.9) one may equiv-
alently replace �M by ≥M. We, therefore, defined ωM using the
more powerful �M.

Strassen introduced the asymptotic study of restriction in the
context of the algebraic complexity of bilinear maps (Strassen 1988,
1991). In quantum information theory, if φ and ψ are pure quan-
tum states, then φ ≥ ψ means precisely that ψ can be obtained
from φ by means of stochastic local operations and classical com-
munication (SLOCC). We refer to Vrana & Christandl (2015) and
Vrana & Christandl (2017) for general properties of ω(φ, ψ).

Restriction and asymptotic conversion rate can be used to com-
pare any two k-tensors. In this context, the following tensor will
serve as an absolute reference tensor.

Definition 1.13 (GHZ tensor or unit tensor). Let k, r ∈ N, and
let b1, . . . , br be the standard basis of C

r. Define Tr(k) as the
k-tensor

Tr(k) :=
∑

i∈[r]

bi ⊗ · · · ⊗ bi ∈ (Cr)⊗k.

We will denote Tr(k) by Tr when the order k is understood and
we will denote T2(k) by just T(k) or T. In quantum information
theory, the tensor Tr(k) encodes the Greenberger–Horne–Zeilinger
(GHZ) quantum state of rank r on k systems. In algebraic com-
plexity theory, for k = 3 this tensor is called the rank-r unit tensor
and is denoted by 〈r〉. Note that Tr(k) equals the hypergraph ten-
sor Tr(H) where H is the hypergraph on k vertices with a single
hyperedge containing all vertices. We refer to Vrana & Christandl
(2017) for the definition of hypergraph tensor.
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Definition 1.14. The rank of ψ, denoted R(ψ), is the smallest
number r such that ψ ≤ Tr. Equivalently, it is the smallest number
r such that ψ can be written as a sum of r simple tensors v1 ⊗
· · · ⊗ vk ∈ V1 ⊗ · · · ⊗ Vk. The border rank of ψ, denoted R(ψ) is
the smallest number r such that ψ � Tr.

Definition 1.15. The subrank of φ, denoted Q(φ), is the largest
number s such that Ts ≤ φ. The monomial subrank of φ, denoted
QM(φ), is the largest number s such that Ts ≤M φ. In the same
way, one defines the border subrank Q(φ) and the monomial border
subrank Q

M
(φ) using � and �M, respectively.

Definition 1.16. The exponent of ψ is defined as the asymptotic
conversion rate from T to ψ and is denoted by ω(ψ),

ω(ψ) := ω(T, ψ).

Definition 1.17. The subexponent of φ is defined as the inverse
of the asymptotic conversion rate from ψ to T, and is denoted by
q(φ),

q(φ) := ω(φ, T)−1.

Definition 1.18. Let φ ∈ U1 ⊗ · · · ⊗ Uk be a k-tensor in a fixed
basis. The monomial subexponent of φ is defined as the inverse
of the asymptotic monomial conversion rate from ψ to T, and is
denoted by qM(φ),

qM(φ) := ωM(φ, T)−1.

The parameters ω, q and qM have the following two useful de-
scriptions in terms of R, Q and Q

M
.

Proposition 1.19. Let φ and ψ be k-tensors. Then,

ω(ψ) = lim
n→∞

1
n

log2 R(ψ⊗n),

q(φ) = lim
m→∞

1
m

log2 Q(φ⊗m),

qM(φ) = lim
m→∞

1
m

log2 Q
M

(φ⊗m).
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Proof. To prove the first equality, we have

ω(T, ψ) = lim
n→∞

1

n
min{m ∈ N | T⊗m ≥ ψ⊗n}

= lim
n→∞

1

n
�log2 R(ψ⊗n)	

= lim
n→∞

1

n
log2 R(ψ⊗n).

To prove the second equality, we have

ω(φ, T) = lim
n→∞

1

n
min{m ∈ N | φ⊗m ≥ T⊗n}

= lim
m→∞

max{n ∈ N | φ⊗m ≥ T⊗n}−1 m

= lim
m→∞

�log2 Q(φ⊗m)�−1 m

= lim
m→∞

(
log2 Q(φ⊗M)

)−1
m

= q(φ)−1.

The statement for qM follows from a similar proof. �

Proposition 1.20. Let φ and ψ be k-tensors. Then,

ω(ψ) = inf{β ∈ R | R(ψ⊗N) ≤ 2βN+o(N)},

q(φ) = sup{β ∈ R | Q(φ⊗N) ≥ 2βN−o(N)},

qM(φ) = sup{β ∈ R | Q
M

(φ⊗N) ≥ 2βN−o(N)}.

Proof. If R(ψ⊗N) ≤ 2βN+o(N), then

ω(ψ) ≤ lim
N→∞

β + o(N)/N = β,

by Proposition 1.19. Conversely, suppose that ω(ψ) < β. Then
R(ψ⊗N) ≤ O(2βN), by Proposition 1.19, so R(ψ⊗N) ≤ 2βN+o(N).
The statement for q and qM follows similarly from Proposition 1.19.

�

For tensors of type T(G) we have the following characterization
of ω, q and qM.
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Proposition 1.21. Let G be a graph. Then,

ω(T(G)) = inf{β ∈ R | R(Tn(G)) = O(nβ)},

q(T(G)) = sup{β ∈ R | Q(Tn(G)) = Ω(nβ)},

qM(T(G)) = sup{β ∈ R | Q
M

(Tn(G)) = Ω(nβ)}.

Proof. Suppose that R(Tn(G)) = O(nβ). Then,

R(T2(G)⊗N) = R(T2N (G)) = O(2Nβ).

so ω(T(G)) ≤ β by Proposition 1.19. Here we used T2(G)⊗N ∼=
T2N (G). On the other hand, suppose that ω(T(G)) < β. Then,

R(T2N (G)) = R(T2(G)⊗N) = O(2βN)

by Proposition 1.19, so

R(Tn(G)) ≤ R(T2N (G)) = O(2βN) = O(nβ)

where N = �log2 n	.
The proofs for q and qM follow similarly from Proposition 1.19.

�

Note that ω(Tr(G)) = ω(T(G)) log2 r.

Definition 1.22. Let φ ∈ U1⊗· · ·⊗Uk be a k-tensor. A flattening
of φ is a 2-tensor (a matrix) obtained by any grouping of the tensor
legs U1, . . . , Uk into two groups.

Flattenings are useful for obtaining bounds on tensor rank and
related notions.

Proposition 1.23. Let φ be a k-tensor and let Aφ be any flatten-
ing of φ. Then R(Aφ) ≤ R(φ) and Q(φ) ≤ Q(Aφ). On the asymp-
totic level, we have the inequalities q(φ) ≤ q(Aφ) = log2 Q(Aφ) =
log2 R(Aφ) = ω(Aφ) ≤ ω(φ).

Proof. A flattening of a simple k-tensor is a simple 2-tensor
(a rank-1 matrix), and hence for an arbitrary k-tensor φ we have
R(Aφ) ≤ R(φ). Similarly, Q(φ) ≤ Q(Aφ).



68 M. Christandl, P. Vrana and J. Zuiddam cc 28 (2019)

For matrices, rank is multiplicative under tensor product and
coincides with subrank. Therefore, for any n ∈ N,

Q(A⊗n) ≤ Q(A⊗n
φ ) = Q(Aφ)n = R(Aφ)n = R(A⊗n

φ ) ≤ R(φ⊗n).

Taking the nth root, taking the logarithm log2 and letting n go to
infinity, gives

q(φ) ≤ q(Aφ) = log2 Q(Aφ) = log2 R(Aφ) = ω(Aφ) ≤ ω(φ),

by Proposition 1.19, finishing the proof. �

Example 1.24. A cut of a graph G = (V,E) is a partition of V
into two disjoint nonempty sets. A max-cut is a cut with maximal
number of edges crossing these two sets. A min-cut is a cut with
minimal number of edges crossing these two sets. For any graph
G, let f(G) denote the size of a max-cut of G, and g(G) the size
of a min-cut. Flattening along the appropriate cuts yields

Q(T(G)) ≤ 2g(G) ≤ 2f(G) ≤ R(T(G))

and thus

(1.25) q(T(G)) ≤ g(G) ≤ f(G) ≤ ω(T(G)).

While for a 2-tensor φ, we have Q(φ) = R(φ) and q(φ) = ω(φ), the
above observation gives us many examples of higher-order tensors
for which this is not the case. For example, let φ = T(Ck) for an
odd k ≥ 5. Then g(Ck) = 2 and f(Ck) = k − 1 > 2. ♦

Let us discuss the exponent in more detail.

Definition 1.26. Define the real number ω := ω(T(C3)). This
number is called the exponent of matrix multiplication.

In algebraic complexity theory, the number ω is a measure for
the asymptotic complexity of multiplying two n × n matrices, and
has been receiving much attention since the discovery of Strassen’s
matrix multiplication algorithm (Strassen 1969). See also the stan-
dard reference for algebraic complexity theory Bürgisser et al. (1997).
The following bounds on ω are the state of the art. The upper
bound is by Le Gall (2014) and the lower bound is by a standard
flattening argument (Example 1.24).
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Theorem 1.27. 2 ≤ ω ≤ 2.3728639.

Computing ω(T(G)) will be a hard task in general, since it in-
cludes computing the matrix multiplication exponent ω. One may,
however, try to prove bounds on ω(T(G)) in terms of the matrix
multiplication exponent ω or the dual exponent α. The number α
is defined as sup{γ ∈ R | ω(1, 1, γ) = 2}, where ω(1, 1, γ) is defined
as inf{β ∈ R | R(〈n, n, �nγ�) = O(nβ)} and for n1, n2, n3 ∈ N the
tensor 〈n1, n2, n3〉 is the rectangular matrix multiplication tensor

〈n1, n2, n3〉 :=
∑

i∈[n1]×[n2]×[n3]

(bi1 ⊗ bi2) ⊗ (bi2 ⊗ bi3) ⊗ (bi3 ⊗ bi1)

∈ (Cn1 ⊗ C
n2) ⊗ (Cn2 ⊗ C

n3) ⊗ (Cn3 ⊗ C
n1).

The state-of-the-art bounds on α are 0.3029805 < α ≤ 1 (Le Gall
2012). In Christandl & Zuiddam (2018) we used a technique called
tensor surgery to obtain such a result for cycle graphs Ck. Namely,
let k ∈ N≥1. Then

ω(T(Ck)) = k when k is even,(1.28)

k − 1 ≤ ω(T(Ck)) ≤ k − 1

2
ω when k is odd.(1.29)

Also, in terms of the dual exponent α, for odd k,

ω(T (Ck)) ≤ k − α
(
1 +

1 − α

k − 1 + α

)
≤ k − α.

In particular, if ω = 2 (equivalently α = 1), then ω(T(Ck)) = k −1
when k is odd. We will see a similar type of result for complete
graphs in the next subsection, see (1.49). We note that tensor
surgery seems to work well for sparse graphs like cycle graphs, and
not so well for dense graphs like the complete graph. However, one
could use the complete graph tensors as starting tensors in a tensor
surgery procedure.

Definition 1.30. For any graph G = (V,E), we define the expo-
nent per edge

τ(T(G)) := ω(T(G))/|E|.
The letter τ is borrowed from the Schönhage asymptotic sum in-
equality, also known as the τ -theorem.
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For complete graphs, the exponent per edge has the following
monotonicity property.

Proposition 1.31. Let k ≥ 
 ≥ 2 be integers. Then τ(T(Kk)) ≤
τ(T(K�)).

Proof. Let τ� = τ(T(K�)). Label the vertices of Kk by 1, . . . , k.
Then, for any subgraph G in Kk isomorphic to K� we have, with
subscripts denoting tensor leg positions,
(
(T(G))V (G) ⊗ (1 ⊗ · · · ⊗ 1)[k]\V (G)

)⊗N ≤ T⊗
(
(�
2)τ�N+o(N)

)

and so
⊗

G⊆Kk:
G∼=K�

(
(T(G))V (G) ⊗ (1 ⊗ · · · ⊗ 1)[k]\V (G)

)⊗N ≤ T⊗
(
(�
2)τ�N+o(N)

)
(k

�),

the tensor product taken over all subgraphs G in Kk isomorphic to

K�. The left-hand side is isomorphic to T(Kk)
⊗N(k−2

�−2). Therefore,

we have the upper bound ω(T(Kk)) ≤ (
�
2

)(
k
�

)(
k−2
�−2

)−1
τ� =

(
k
2

)
τ�, so

τ(T(Kk)) ≤ τ�. �
Having discussed the exponent, we now wish to focus on the

(monomial) subexponent, and primarily on an important result
about the (monomial) subexponent of so-called tight 3-tensors.

Definition 1.32. Let φ be an element of V1 ⊗ · · · ⊗ Vk. Let
B1, . . . , Bk be bases for V1, . . . , Vk, respectively. Write φ in terms
of these bases,

φ =
∑

bi∈Bi

φ(b1, . . . , bk) b1 ⊗ · · · ⊗ bk with φ(b1, . . . , bk) ∈ C.

Then the support of φ with respect to B = (B1, . . . , Bk) is defined
as the set of k-tuples

suppB φ := {(b1, . . . , bk) ∈ B1 × · · · × Bk | φ(b1, . . . , bk) �= 0}.

When the basis is clear from the context, we will simply write
supp φ. It is often convenient to identify each Bi = {b1, b2, . . . , b|Bi|}
with its index set {1, 2, . . . , |Bi|} by bj �→ j so that suppB φ be-
comes a set of tuples of natural numbers. (Sometimes the index
set starts at 0 instead of 1.)
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Definition 1.33. Let B1, . . . , Bk be bases for V1, . . . , Vk, respec-
tively and let α1 : B1 → Z, . . . , αk : Bk → Z be injective maps
such that

α1(b1) + · · · + αk(bk) = 0 for each tuple (b1, . . . , bk) ∈ supp φ.

Then we say φ is tight with respect to α = α1 × · · · × αk. We say
φ is tight if it is tight with respect to α = α1 × · · · × αk for some
αi : Bi → Z.

The following lemma is easy to prove.

Lemma 1.34. Tensor products of tight tensors are tight in the
tensor product basis. Therefore, any graph tensor T(G) is tight in
the standard basis.

Example 1.35. T(Ck) =
∑

i∈[2]k(bi1 ⊗bi2)⊗(bi2 ⊗bi3)⊗· · ·⊗(bik ⊗
bi1) is tight for any k by Lemma 1.34. Explicitly, let

α1 : bi1 ⊗ bi2 �→ i1 − 2(i2 − 1),

α2 : bi2 ⊗ bi3 �→ 2(i2 − 1) − 4(i3 − 1),

...

αk : bik ⊗ bi1 �→ 2k−1(i1 − 1) − i1.

These maps are injective and α1(bi1 ⊗ bi2) + · · · + αk(bik ⊗ bi1) = 0
for any i ∈ [2]k. ♦

Example 1.36. For any partition λ d k, the Dicke tensor Dλ is
a tight tensor. Namely, let s =

∑d
j=1 λj · j, and let

α1 : bi �→ i,

α2 : bi �→ i,

...

αk : bi �→ i − s.

Then α1(b1) + · · · + αk(bk) = 0 for any (b1, . . . , bk) ∈ supp Dλ. ♦
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For tight 3-tensors, Strassen proved the following theorem. For
a discrete probability distribution P = (p1, . . . , pn), let H(P ) be
the Shannon entropy of P , which is defined by H(P ) :=
−∑n

i=1 pi log2 pi. Recall that if P is a probability distribution on
a set X consisting of k-tuples (x1, . . . , xk), then the marginal dis-
tribution Pi on the ith component Xi = {xi | x ∈ X} is defined by
Pi(y) :=

∑
x∈X: xi=y P (x).

Theorem 1.37 (Strassen 1991). Let φ be a 3-tensor which is tight
in some basis B. Then

(1.38) qM(φ) = q(φ) = max
P∈PΦ

min{H(P1), H(P2), H(P3)},

where PΦ consists of the probability distributions P on suppB φ,
and Pi is the marginal distribution of P on the ith component of
suppB φ.

Interestingly, Theorem 1.37 says that if φ is a tight tensor in
basis B, then the subexponent q(φ) is a function of suppB φ, that
is, q(φ) is independent of the coefficients of φ in basis B. This is
not in general the case for higher-order tight tensors as we will see
in Example 1.45.

Example 1.39. From Example 1.36 we know that D(1,1,1) is tight.
Let P be the uniform distribution on the support of D(1,1,1). Then
each marginal Pi is uniform on {b1, b2, b3}. Therefore by Theo-
rem 1.37, we have q(D(1,1,1)) ≥ qM(D(1,1,1)) ≥ log2 3. On the other
hand, q(D(1,1,1)) ≤ log2 3, because the tensor D(1,1,1) has a flatten-
ing of rank 3. ♦

Example 1.40. From Lemma 1.34 and Example 1.35, we know
that φ = T(C3) is tight. Let P be the uniform distribution on

supp φ = {((bi ⊗ bj), (bj ⊗ bk), (bk ⊗ bi)) | i, j, k ∈ [2]}.

Then the marginals Pi are uniform on {bi ⊗ bj | i, j ∈ [2]}, and
hence the Shannon entropy of each marginal is H(Pi) = log2 4 = 2.
Therefore, by Theorem 1.37, q(T(C3)) ≥ 2. On the other hand,
q(T(C3)) ≤ 2, because the tensor T(C3) has a flattening of rank 4.

♦
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There are two extensions of Theorem 1.37 to certain higher-
order tensors, namely to W-state tensors (Theorem 1.41) and to
(hyper)graphs with a certain connectedness property
(Theorem 1.44), which includes cycle tensors. We begin with the
extension to W-state tensors, obtained by generalizing a construc-
tion of Coppersmith and Winograd and generalizing Strassen’s
support functionals. Define the binary entropy function h(p) as
−p log2(p) − (1 − p) log2(1 − p) with h(0) = h(1) = 0.

Theorem 1.41 (Vrana & Christandl 2015). Let k ≥ 2. Then the
subexponent of D(1,k−1) satisfies q(D(1,k−1)) = qM(D(1,k−1)) =
h(1/k).

(The original proof contained a small mistake for which we pro-
vide a fix in Section 3.5.) It is conjectured in Vrana & Christandl
(2015) that in general q(Dλ) = qM(Dλ) = H(λ/k), see also Ques-
tion 1.58.

Remark 1.42. In Fu & Kleinberg (2014) the Coppersmith–Wino-
grad construction for k = 3 was used to prove lower bounds on the
query complexity of testing triangle-freeness of Boolean functions.
This construction was later extended to cover odd-cycle-freeness
(Haviv & Xie 2015), thus independently proving part of the state-
ment of Theorem 1.41.

Example 1.43. Let φ ∈ (C2)⊗3 be nonzero. Then one of the
following statements holds.

(i) φ ∼= T and q(φ) = 1.

(ii) φ ∼= D1,2 and q(φ) = h(1/3).

(iii) φ ∼= T
( )

, T
( )

, T
( )

or T
( )

and q(φ) = 0.

Indeed, it is well-known that any element φ ∈ (C2)⊗3 is equiva-
lent to precisely one of the six tensors listed above, see Dür et al.
(2000) where ∼= is called “equivalence under SLOCC”. In the ter-
minology of the reference, the first tensor is in the GHZ-class, the
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second tensor is in the W-class and the remaining classes are called
A-BC, AB-C, AC-B and A-B-C. In the first case, by definition
q(φ) = ω(T, T)−1 = 1. In the second case, q(φ) = q(D1,2) = h(1/3)
by Theorem 1.41. In the third case, every representative corre-
sponds to a graph with min-cut of size 0, so q(φ) ≤ g(φ) = 0 (see
Example 1.24). ♦

Recall that we defined g(G) to be the size of a minimum cut
of G in Example 1.24. The following theorem is a special case of
the result proved in Vrana & Christandl (2017).

Theorem 1.44 (Vrana & Christandl 2017). Let G be a graph.
Then

qM(T(G)) = q(T(G)) = g(G).

In particular, if k ≥ 3, then the subexponent of T(Ck) satisfies
q(T(Ck)) = 2.

Example 1.45. Strassen’s Theorem 1.37 does not generalize to
k ≥ 4 by simply replacing the right-hand side of (1.38) by

max
P

min{H(P1), . . . , H(Pk)}

as the following example shows. Let φ be the 4-tensor

φ = T
( )

= (b0⊗b0 + b1⊗b1) ⊗ (b0⊗b0 + b1⊗b1)

= b0⊗b0⊗b0⊗b0 + b0⊗b0⊗b1⊗b1

+ b1⊗b1⊗b0⊗b0 + b1⊗b1⊗b1⊗b1.

This tensor is tight. Take for example

α1 : bi �→ i, α3 : bi �→ i,

α2 : bi �→ −i, α4 : bi �→ −i.

Let P be the uniform distribution on suppφ. Its marginals Pi are
uniform on {b0, b1} so H(Pi) = 1. However, q(φ) = 0, since φ by
construction has a flattening of rank 1.
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This example also shows that q(φ) cannot simply be a function
of the support of φ, since, for 0 < p < 1, the tensor

p(b0⊗b0⊗b0⊗b0 + b0⊗b0⊗b1⊗b1) + b1⊗b1⊗b0⊗b0 + b1⊗b1⊗b1⊗b1

has no flattenings of rank at most 1, and hence q(φ) is strictly
positive (see Lemma 4 in Vrana & Christandl (2015)). ♦

Remark 1.46. Example 1.45 suggests that to generalize Theo-
rem 1.37 to k-tensors φ one either has to find a stronger condition
when k ≥ 4 to guarantee that q(φ) = maxP min{H(P1), . . . , H(Pk)},
or find a different lower (and possibly upper) bound on the subex-
ponent q(φ). Our Theorem 1.52 is a result of the second type.

1.2. Our results. This paper is motivated by the following
problem on complete graph tensors. Recall that we defined the
exponent per edge for the complete graph tensor as τ(T(Kk)) =
ω(T(Kk))/

(
k
2

)

Problem 1.47. For k ≥ 4, what is the value of τ(T(Kk))?

First of all, it is not hard to prove the following bounds on
τ(T(Kk)). For the complete graph Kk, the maximum cut size
f(Kk) is k2/4 for even k and (k − 1)(k +1)/4 for odd k (maximum
cut is defined in Example 1.24). Then, flattening T(Kk) along
a max-cut yields a matrix of rank 2f(Kk) and therefore (Proposi-
tion 1.23)

(1.48) τ(T(Kk)) ≥ f(Kk)(
k
2

) =

{
1/2 + 1/(2k) for odd k

1/2 + 1/(2(k − 1)) for even k.

On the other hand, τ(T(K3)) = ω/3 and thus by Proposition 1.31
we have τ(T(Kk)) ≤ ω/3 for all k ≥ 3. Plugging in the Le Gall
upper bound ω ≤ 2.3728639 (Theorem 1.27), yields the “triangle
covering” upper bound

(1.49) τ(T(Kk)) ≤ 0.790955.

Our aim is to improve on this upper bound.
Our main result is an upper bound on the exponent per edge

of T(Kk) that is independent of ω.
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Theorem 1.50. Let k ≥ 2. For any q ≥ 1,

τ(T(Kk)) ≤ logq

( q + 2

2qM(D(2,k−2))

)
.

Our second result is a lower bound on the monomial subexpo-
nent qM(φ) of any tight tensor φ.

Definition 1.51. Let φ be a k-tensor, B a basis, Φ the corre-
sponding support as in Definition 1.32. Suppose φ is tight with
respect to α. For R ⊆ Φ × Φ, define rα(R) to be the rank of the
matrix with rows

{α(x) − α(y) | (x, y) ∈ R}.

We will denote rα(R) by r(R) when the actual α is clear or not
important. For any i ∈ {1, . . . , k}, define

Ri := {(x, y) ∈ Φ × Φ | xi = yi}.

Theorem 1.52. Let φ be a k-tensor, B a basis, Φ the correspond-
ing support. Suppose φ is tight with respect to α. Then,

(1.53)

qM(φ)≥ max
P∈PΦ

(
H(P )−(k−2)max

R∈RΦ

maxQ∈QΦ,(P1,...,Pk),R
H(Q)−H(P )

rα(R)

)
,

where

◦ PΦ consists of all probability distributions P on Φ; and
P1, . . . , Pk are the marginal distributions of P on the k com-
ponents, respectively;

◦ RΦ consists of all subsets R ⊆ Φ × Φ that are not contained
in the diagonal set ΔΦ := {(x, x) | x ∈ Φ}, and such that
R ⊆ Ri for some i ∈ {1, . . . , k}.

◦ QΦ,(P1,...,Pk),R consists of all probability distributions Q on R
whose marginals on the 2k components of R satisfy

Qi = Qk+i = Pi

for i ∈ {1, . . . , k}.
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(The symbols P, R, Q are script versions of the letters P , R
and Q.)

The lower bound in Theorem 1.52 extends the lower bound in
Theorem 1.37. We will prove this in Section 3.5.

We will use Theorem 1.52 to compute the (monomial) subex-
ponent of the weight-(2, 2) Dicke tensor D(2,2). We give the proof
in Section 3.5.

Corollary 1.54. qM(D(2,2)) = q(D(2,2)) = 1.

Proposition 1.31, Theorem 1.50 with k = 4 and Corollary 1.54
together directly imply the following upper bound on the exponent
per edge of the complete graph tensor T(Kk) for any k ≥ 4.

Corollary 1.55. For k ≥ 4,

τ(T(Kk)) ≤ min
q≥2

logq

(q + 2

2

)
= log7(9/2)

which is approximately 0.772943.

Note that 0.772943 is strictly smaller than the triangle cover
upper bound 0.790955 from (1.49).

In the following table, we summarize for small k: the flattening
lower bound on ω(T(Kk)); the upper bound from Corollary 1.55
on ω(T(Kk)) (and Le Gall’s upper bound for k = 3); the trivial
upper bound on ω(T(Kk)) given by the number of edges; and the
resulting bounds on τ(T(Kk)).

k ω(T(Kk))
(

k
2

)
τ(T(Kk))

Lower Upper Lower Upper

3 2 2.37287 3 0.666666 0.790955
4 4 4.63766 6 0.666666 0.772943
5 6 7.72943 10 0.6 0.772943
6 9 11.5942 15 0.6 0.772943
7 12 16.2319 21 0.571428 0.772943
8 16 21.6425 28 0.571428 0.772943
9 20 27.8260 36 0.555555 0.772943
10 25 34.7825 45 0.555555 0.772943
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1.3. Questions We discuss three open questions related to
our results. Our first question is about complete graph tensors.
From (1.48) we know that

τ(T(Kk+1)) ≥ τ(T(Kk)) ≥ (k − 1)(k + 1)

4
(

k
2

)

holds for all odd k. The lower bound goes to 1
2

when k goes to
infinity. On the other hand, if ω = 2, then τ(T(Kk)) ≤ 2

3
holds

for all k ≥ 3 (Proposition 1.31), and in particular τ(T(K3)) =
τ(T(K4)) = 2

3
. We thus ask the following question.

Question 1.56. Is there a k ≥ 5 such that τ(T(Kk)) < 2
3
?

Our second question is a more precise version of the above ques-
tion for general graph tensors.

Question 1.57. Is it true that for every graph G, we have

ω(T(G)) = f(G)?

The answer is known to be yes only for bipartite graphs. (This
follows directly from the lower bound in (1.25).) If the answer
to Question 1.57 is yes, then the answer to Question 1.56 is yes.
For G = C3, this question specializes to the long-standing open
question whether the exponent of matrix multiplication ω equals
2. It might therefore be interesting to ask Question 1.57 with the
additional assumption that ω = 2. The answer is then known
to be yes for all odd cycles (see (1.29)), the bipartite graphs, the
complete graph K4 and graphs that are composed of these in a
certain (natural) way, namely by taking the disjoint union and
then identifying pairs of nonadjacent vertices of choice.

Our third question is about the (monomial) subexponent of
Dicke tensors. In Vrana & Christandl (2017) the upper bound
q(Dλ) ≤ H(λ/k) was proven for any λ  k, and the following
problem was posed.

Question 1.58. Is it true that for every partition λ  k,

(1.59) qM(Dλ) = q(Dλ) = H(λ/k)?
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For k = 3, this question was affirmatively answered in Strassen
(1991) (see Theorem 1.37 above), and for λ = (k − 1, 1) and any
k ≥ 3 this question was affirmatively answered in Vrana & Chri-
standl (2017) (see Theorem 1.41 above). Theorem 1.52 extends
both results and covers more cases, including λ = (2, 2), see Corol-
lary 1.54. We also numerically confirmed (1.59) for λ = (
, 
) and
2 ≤ 
 ≤ 1000 using Theorem 1.52. We conjecture that Theo-
rem 1.52 is strong enough to prove the lower bound qM(Dλ) ≥
H(λ/k) for any λ  k.

1.4. Outline The rest of this paper is organized as follows.
In Section 2, we will prove Theorem 1.50 on the exponent of T(Kk).
In Section 3, we will prove Theorem 1.52 on the monomial subex-
ponent of tight tensors and we will compute the monomial subex-
ponent of the weight-(2, 2) Dicke tensor.

2. Upper bound on the exponent of the complete
graph tensor

The main structure of the proof of Theorem 1.50 is a generalization
of a construction of Strassen (1986) which was improved by Cop-
persmith & Winograd (1987), which involves finding a “cheap”
starting tensor, generalizing Schönhage’s asymptotic sum inequal-
ity (Schönhage 1981) and choosing a good block decomposition.

2.1. Preliminaries We start by discussing border rank in more
detail, then we introduce the generalized asymptotic sum inequality
and finally we review block decompositions of tensors.

Let φ ∈ V1 ⊗ · · · ⊗ Vk be a tensor.

Definition 2.1. Let Rh(φ) be the smallest number r such that
there are matrices A1(ε) : C

r → V1, . . . , Ak(ε) : C
r → Vk with

entries in C[ε], such that (A1(ε)⊗· · ·⊗Ak(ε)) Tr = εhφ+O(εh+1).
Here, O(εh+1) denotes any expression of the form

∑�
i=1 εh+iφi with

φi ∈ V1 ⊗ · · · ⊗ Vk for some 
.



80 M. Christandl, P. Vrana and J. Zuiddam cc 28 (2019)

Theorem 2.2 (Bürgisser et al. 1997, Theorem 20.24).

R(φ) = min
h

Rh(φ).

It is well-known that rank and border rank are related as fol-
lows.

Proposition 2.3. Let k, h ∈ N. Let ch =
(

h+k−1
k−1

)
. For all

m1, . . . ,mk ∈ N and all tensors φ ∈ C
m1 ⊗ · · · ⊗ C

mk , we have
R(φ) ≤ ch Rh(φ). Note that for fixed k, the number ch is upper
bounded by a polynomial in h; ch ≤ (h + 1)k−1.

Proof. Let φ be a tensor in C
m1 ⊗ · · · ⊗ C

mk with Rh(φ) = r.
Then there are vectors vj

i ∈ (C[ε])mj such that

r∑

i=1

v1
i ⊗ · · · ⊗ vk

i = εhφ + O(εh+1).

Without loss of generality the highest power of ε in each vj
i is h.

Decomposing every vj
i into ε-homogeneous components

vj
i =

h∑

aj=0

εajvj
i (aj),

and collecting powers of ε gives

r∑

i=1

∑

a∈[h]k

εa1+···+ak v1
i (a1) ⊗ · · · ⊗ vk

i (ak) = εhφ + O(εh+1).

Taking only the summands such that a1 + · · ·+ak = h gives a rank
decomposition of φ. There are

(
h+k−1

k−1

)
r such summands. There-

fore, the statement of the proposition holds for ch =
(

h+k−1
k−1

)
which

is at most (h + 1)k−1. �

As a consequence of Proposition 2.3 we can upper bound the
exponent of a tensor by the border rank of that tensor. (The follow-
ing proposition also follows from the more general Theorem 1.11.)
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Proposition 2.4. Let ψ be a tensor. Then

ω(ψ) ≤ log2 R(ψ).

Proof. Suppose R(ψ) = r. Let h ∈ N such that Rh(ψ) = r
(Theorem 2.2). Then for all s ∈ N, Rhs(ψ

⊗s) ≤ rs. Therefore,
R(ψ⊗s) ≤ chsr

s (Proposition 2.3). Thus the exponent ω(ψ) is at
most 1

s
log2 rs + 1

s
log2 chs, which converges to log2 r when s goes to

infinity. �

Let G = (V,E) be a graph and let f : E → N be a function that
assigns to every edge a natural number. We define a “nonuniform”
version of T(G) as follows. Define Tf (G) by

Tf (G) :=
⊗

e∈E

∑

i∈[f(e)]

(bi ⊗ · · · ⊗ bi)e ⊗ (1 ⊗ · · · ⊗ 1)V \e.

Here, the large tensor product inputs and outputs |V |-tensors.
In algebraic complexity theory, the tensor Tf (C3) with f(1) =
n1, f(2) = n2, f(3) = n3 is denoted by 〈n1, n2, n3〉. This tensor
corresponds to the bilinear map that multiplies an n1 × n2 matrix
with an n2 × n3 matrix. We view the set {f : E → N} as a group
under pointwise multiplication, so that we can write

(2.5) Tf (G) ⊗ Tg(G) ∼= Tfg(G).

Equation (2.5) generalizes the self-reducibility property of matrix
multiplication tensors:

〈m1,m2,m3〉 ⊗ 〈m1,m2,m3〉 ∼= 〈m1n1,m2n2,m3n3〉.

Recall that an automorphism of a graph G = (V,E) is a permu-
tation σ of V such that for all u, v ∈ V the pair (u, v) is in E if and
only if σ · (u, v) := (σ(u), σ(v)) is in E. The automorphisms form
a group Γ under composition. The group Γ thus acts on V and on
E. We say G is edge-transitive if the action of Γ on E is transitive,
meaning that for any two edges e1, e2 ∈ E there is a permutation
σ ∈ Γ such that σ · e1 = e2.
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Example 2.6. The automorphism group of the cycle graph Ck is
the dihedral group with 2n elements. The automorphism group of
the complete graph Kk is the symmetric group Sk. Both graphs
are edge-transitive. ♦

Theorem 2.7 (Generalized asymptotic sum inequality). Let G =
(V,E) be an edge-transitive graph. Suppose r > p. Suppose
φ1, . . . , φp are tensors from {Tf (G) | f : E → N;

∏
e∈E f(e) ≥ 2}

such that

R(φ1 ⊕ · · · ⊕ φp) ≤ r.

Define τ by
∑p

i=1(
∏

e∈E fi(e))
τ = r. Then τ(T(G)) ≤ τ .

In particular, if

φ1, . . . , φp ∈
⎧
⎨

⎩Tf (G) | f : E → N;
∏

e∈E

f(e) = q

⎫
⎬

⎭

for some integer q ≥ 2, then we have

τ(T(G)) ≤ logq(R(φ1 ⊕ · · · ⊕ φp)/p).

Our proof of Theorem 2.7 follows the structure of the proof for
the cycle graph case in Buhrman et al. (2017) which builds upon
the exposition in Bläser (2013).

Proposition 2.8. Let G = (V,E) be an edge-transitive graph.
Let f : E → N be a function and N =

∏
e∈E f(e). Assume that

N ≥ 2. Then,

τ(T(G)) ≤ logN R(Tf (G)).

Proof. Let Γ be the automorphism group of G. For any edge
e ∈ E define the stabilizer subgroup Γe := {σ ∈ Γ | σ · e = e}.
Since G is edge-transitive, all subgroups Γe are conjugates and
thus have the same cardinality, say C. This implies that, for any
e1, e2 ∈ E, the set {σ ∈ Γ | σ · e1 = e2} has cardinality C. By the
orbit-stabilizer theorem the number C satisfies |Γ| = C|E|. The
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group Γ acts naturally on Tf (G) by permuting tensor legs. The
tensor product of all elements σ · Tf (G) for σ ∈ Γ equals TNC (G).
We thus have, using Proposition 2.4,

ω(T(G)) =
ω(TNC (G))

C log2 N

≤ |Γ| log2 R(Tf (G))

C log2 N

= |E| log2 R(Tf (G))

log2 N

finishing the proof. In the above, we used ω(Tr(G)) =
ω(T(G)) log2 r. �

We need the following upper bound on the rank of the a-fold
direct sum of the sth tensor power of a tensor.

Lemma 2.9. Let a, b ∈ N≥1. Let φ be a tensor and R(φ⊕a) ≤ b.
Then for all s ∈ N, R((φ⊗s)⊕a) ≤ �b/a	sa.

Proof. We prove the lemma by induction over s. The base case
s = 1 follows from the assumption. For the induction step, we have

(φ⊗(s+1))⊕a = φ⊗s ⊗ φ⊕a ≤ φ⊗s ⊗ Tb = (φ⊗s)⊕b,

and thus, by the induction hypothesis,

R((φ⊗(s+1))⊕a) ≤ R((φ⊗s)⊕b)

≤ R((φ⊗s)⊕(a
b/a�)) = R(((φ⊗s)⊕a)⊕
b/a�)

≤ � b
a
	sa� b

a
	 = � b

a
	s+1a,

proving the lemma. �
Lemma 2.9 can equivalently be phrased as follows. Let φ be

a tensor such that φ ⊗ Ta ≤ Tb. Then for all s ∈ N we have
φ⊗s ⊗ Ta ≤ (T
b/a�)⊗s ⊗ Ta.

Formulated in the language of Strassen’s semiring of k-tensors,
Lemma 2.9 says: a · φ ≤ b ⇒ ∀s a · φs ≤ �b/a	s · a.

Proposition 2.8 generalizes to the following inequality relating
upper bounds on the exponent of a direct power Tf (G)⊕a to upper
bounds on the exponent of T(G).
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Proposition 2.10. Let G = (V,E) be an edge-transitive graph.
Let f : E → N be a function and N =

∏
e∈E f(e). Assume that

N ≥ 2. Then, τ(T(G)) ≤ logN�R(Tf (G)⊕a)/a	, for any a ≥ 1.

Proof. Let b = R((Tf (G))⊕a). Then by Lemma 2.9, we have
the inequality R((Tfs(G))⊕a) ≤ �b/a	sa, where f s denotes taking
the pointwise sth power. Therefore, by Proposition 2.8,

τ(T(G)) ≤ logNs R(Tfs(G))

≤ logNs R((Tfs(G))⊕a)

≤ logNs�b/a	sa

=
s log2� b

a
	 + log2(a)

s log2(N)
,

which goes to logN�b/a	 when s goes to infinity. �

Proof (Theorem 2.7). Suppose r = R(
⊕p

i=1 Tfi
(G)). This im-

plies that there is an h ∈ N such that Rh(
⊕p

i=1 Tfi
(G)) = r. Taking

the sth power gives Rhs

(
(
⊕p

i=1 Tfi
(G))⊗s

) ≤ rs. We expand the
tensor power to get

Rhs

(⊕

σ

(
Tf

σ1
1

(G) ⊗ · · · ⊗ Tf
σp
p

(G)
)⊕(s

σ)) ≤ rs,

where the first direct sum is over all p-tuples σ = (σ1, . . . , σp) of
nonnegative integers with sum s (this is by the multinomial theo-
rem). We can also write this inequality as

Rhs

(⊕

σ

(
Tf

σ1
1 ···fσp

p
(G)

)⊕(s
σ)
)

≤ rs.

By Proposition 2.3 there exists a number chs which is at most a
polynomial in h and s such that

(2.11) R
(⊕

σ

(
Tf

σ1
1 ···fσp

p
(G)

)⊕(s
σ)
)

≤ chsr
s.

Define τ by
∑p

i=1

(∏
e∈E fi(e)

)τ
= r. Then

(2.12)
∑

σ

(
s

σ

)(∏

e∈E

∏

i∈[p]

fi(e)
σi

)τ

= rs,
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by the multinomial theorem again. In this sum, consider the maxi-
mum summand and fix σ to be the corresponding σ for the remain-
der of the proof.

Define f : E → N by f(e) :=
∏

i fi(e)
σi . Let a :=

(
s
σ

)
and

let b := chsr
s. Equation (2.11) implies R(Tf (G)⊕a) ≤ b which by

Proposition 2.10 implies

(2.13) τ(T(G)) ≤ logN

⌈
R(Tf (G)⊕a)/a

⌉ ≤ logN

⌈ b

a

⌉
,

where N :=
∏

e f(e). There are
(

s+p−1
p−1

) ≤ (s+1)p−1 p-tuples σ with

sum s, so there are that many summands in (2.12). We thus lower
bound the maximum summand by the average of the summands
as follows,

(2.14) aN τ ≥ rs

(
s+p−1
p−1

) ≥ rs

(s + 1)p−1
.

Manipulating (2.14) gives

⌈ b

a

⌉
≤ chsr

s

a
+ 1 ≤ N τ (s + 1)p−12chs

which we plug into (2.13) to get

τ(T(G)) ≤ τ log2 N + (p − 1) log2(s + 1) + log2(2chs)

log2 N
,

≤ τ +
(p − 1) log2(s + 1) + log2(2chs)

log2 N
,

which goes to τ when s goes to infinity, because (2.14) implies

N τ ≥ rs

(s + 1)p−1a
≥ rs

(s + 1)p−1ps

and therefore log2 N is at least s(log2 r− log2 p)−(p−1) log2(s+1),
and we assumed r > p. �

We are now ready to discuss the final ingredient for the proof
of Theorem 1.50, which is a generalization of block decompositions
of matrices to block decompositions of tensors.
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Definition 2.15 (Set partition and tensor partition). Let A be a
finite set. We define a partition of A as a collection A = {Aj} of
disjoint subsets of A whose union is A. Let B1, . . . , Bk be finite
sets, and let B1, . . . ,Bk be partitions of each set, respectively. Then
we say B = B1 × · · · × Bk is a product partition of B1 × · · · × Bk.

Let φ ∈ V1 ⊗ · · · ⊗ Vk be a tensor and B1, . . . , Bk orthogonal
bases for V1, . . . , Vk, respectively. Let B be a product partition of
B1 × · · · × Bk. Let I ∈ B. Then we define φI as the orthogonal
projection of φ onto the linear space spanned by I. These smaller
tensors φI with I ∈ B we think of as making up the inner structure
of φ with respect to B. We define the outer structure of φ with
respect to B to be the tensor φB with entries indexed by I ∈ B
such that φB has a 1 at position I if φI is not the zero tensor, and
a 0 otherwise.

Definition 2.16. Let B be a product partition of B1 × · · · × Bk

and let C be a product partition of C1×· · ·×Ck. Define the product
partition B ⊗ C of (B1 × C1) × · · · × (Bk × Ck) by

B ⊗ C := {I ⊗ J | I ∈ B, J ∈ C},

where I ⊗ J = {((b1, c1), . . . , (bk, ck)) | b ∈ I, c ∈ J}.

The following proposition follows directly from the definition.

Proposition 2.17. Let φ ∈ U1 ⊗ · · · ⊗ Uk and ψ ∈ V1 ⊗ · · · ⊗ Vk.
Let Bi be a basis of Ui and let Ci be basis of Vi. Let B be a
product partition of B1 ×· · ·×Bk and let C be a product partition
of C1 × · · · × Ck. Then,

(φ ⊗ ψ)B⊗C = φB ⊗ ψC,

and (φ ⊗ ψ)I⊗J = φI ⊗ ψJ for all I ∈ B, J ∈ C.

2.2. Proof of Theorem 1.50 We define a modification of the
“Coppersmith–Winograd tensor”, which is a higher-dimensional
version of the weight-(2, k − 2) Dicke tensor.
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Definition 2.18. Let k, q ≥ 2 be integers. Let b0, b1, . . . , bq be
the standard basis of C

q+1. Let CWk
q be the k-tensor

CWk
q :=

∑

i∈{0,1,...,q}k

bi1 ⊗ · · · ⊗ bik ∈ (Cq+1)⊗k

where the sum goes over all i that contain exactly two identical
nonzero entries. One can also think of this tensor as a sum of
tensors Tq(e) with e going over the edges of the complete graph
Kk, that is, using subscripts to denote the position of tensor legs,

(2.19) CWk
q =

∑

e∈E(Kk)

q∑

i=1

(bi⊗bi)e⊗(b0⊗b0⊗· · ·⊗b0)[k]\e ∈ (Cq+1)⊗k.

Note that in (2.19) the sums runs over i from 1 to q.

The CWk
q -tensor should be thought of as a cheap tensor, in the

following border rank sense.

Lemma 2.20. The border rank of CWk
q is at most q + 2.

Proof. We have

q∑

i=1

ε (b0 + ε2 bi)
⊗k −

(
b0 + ε3

q∑

i=1

bi

)⊗k

+ (1 − qε)b⊗k
0

= ε5CWk
q + O(ε6).

Therefore, R(CWk
q) ≤ q + 2. �

Theorem (Theorem 1.50 repeated). Let k ≥ 2. For any q ≥ 1,

τ(T(Kk)) ≤ logq

( q + 2

2qM(D(k−2,2))

)
.

Proof (Theorem 1.50). Define a product partition B = B1 ×
· · · × Bk of the standard basis of (Cq+1)⊗k by Bj := {{b0},
{b1, . . . , bq}} for all j. Then the outer structure (CWk

q)B equals

(CWk
q)B =

∑

e∈E(Kk)

(b1 ⊗ b1)e ⊗ (b0 ⊗ b0 ⊗ · · · ⊗ b0)[k]\e
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which is the Dicke tensor D(k−2,2). (We implicitly reorder (k − 2, 2)
to (2, k−2) when k ≤ 3.) The inner structure of CWk

q with respect
to B consists of tensors

q∑

i=1

(bi ⊗ bi)e ⊗ (b0 ⊗ b0 ⊗ · · · ⊗ b0)[k]\e with e ∈ E(Kk).

By Proposition 1.20, we have the following monomial degeneration
on the outer structure level:

(2.21) T⊗(qM(D(k−2,2))s−o(s)) �M((CWk
q)

⊗s)B⊗s .

Since the degeneration in (2.21) is monomial, each nonzero entry
in the lowest-degree part of the tensor on the left-hand side corre-
sponds to an inner structure tensor of (CWk

q)
⊗s with respect to B⊗s.

Each such inner structure tensor is a product of s inner structure
tensors of CWk

q with respect to B (Proposition 2.17). Therefore,

φ1 ⊕ · · · ⊕ φp � (CWk
q)

⊗s

with p = 2qM(D(k−2,2))s−o(s) and φi ∈ {Tf (Kk) | ∏e∈E f(e) = qs}.
Then, by Lemma 2.20 we have

R
(
φ1 ⊕ · · · ⊕ φp

) ≤ R((CWk
q)

⊗s) ≤ (q + 2)s

We apply the “in particular” case of the generalized asymptotic
sum inequality Theorem 2.7 with r defined as (q +2)s to the graph
G = Kk to obtain

τ(T(Kk)) ≤ logqs

(q + 2)s

2qM(D(k−2,2))s−o(s)

≤ logq

q + 2

2qM(D(k−2,2))−o(1)
.

Letting s go to infinity yields the required inequality. �

Summary. We wish to give a short summary of the generalized
Coppersmith–Winograd method as employed above, for k = 4. Let
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K4 = (E, V ) be the tetrahedron. We aim to get a good upper
bound on the tensor rank of a tensor power of the goal tensor:

goal tensor = T
( )

=
⊗

e∈E

∑

i∈[2]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}.

To this end, we pick the following starting tensor, for which we
have a good border rank upper bound (Lemma 2.20):

starting tensor = Tq

( )
+ Tq

( )
+ Tq

( )

+ Tq

( )
+ Tq

( )
+ Tq

( )

=
∑

e∈E

∑

i∈[q]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}.

We now choose a product partition of the standard basis for the
space that the starting tensor lives in. This partitions the starting
tensors into blocks (like we can partition matrices into blocks). The
partition we use is {{b0}, {b1, . . . , bq}}×4. The partitioned tensor
has, besides the zero block, the following blocks:

inner structure =
{

Tq

( )
, Tq

( )
, Tq

( )
,

Tq

( )
, Tq

( )
, Tq

( )}

=

⎧
⎨

⎩
∑

i∈[q]

(bi ⊗ bi)e ⊗ (b0 ⊗ b0)V \{e}
∣∣∣ e ∈ E

⎫
⎬

⎭ .

The following outer structure tensor tells us how the nonzero blocks
are positioned, in block coordinates:

outer structure = D(2,2)

=
∑

e∈E

(b1 ⊗ b1)e ⊗ (b0 ⊗ b0)V \{e}.
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We can degenerate D⊗s
(2,2) to

∑
i∈[p] bi⊗bi⊗bi⊗bi for p=2qM(D(2,2))s−o(s)

by a monomial degeneration (Definition 1.18). This implies that
we can degenerate the sth power of the starting tensor to a direct
sum of nonuniform goal tensors, but such that for each nonuniform
goal tensor the product of the edge weights equals qs (by Proposi-
tion 2.17):

Tf1

( )
⊕ Tf2

( )
⊕ · · · .

We then apply the generalized asymptotic sum inequality Theo-
rem 2.7, whose construction consists of the following two steps.
We first restrict a power of the above tensor to a direct power of a
single nonuniform goal tensor

Tf

( )⊕a

.

Second, another tensor power and symmetrization procedure gives
a power of the goal tensor:

T
( )⊗N

.

3. Lower bound on the monomial subexponent
of tight tensors

We first discuss some results on k-average-free sets, linear combi-
nations of independent uniformly random variables and types of
sequences, that we will use in the proof of Theorem 1.52. Then
we describe a basic procedure to restrict any tensor to a tensor of
the form Tr with a monomial restriction. Then, we give the proof
for Theorem 1.52. Next we discuss some computational aspects of
Theorem 1.52. Finally, we give some applications.

3.1. Preliminaries We begin with a result on k-average-free
sets which is essentially due to Salem & Spencer (1942). For a
self-contained proof, see Vrana & Christandl (2015, Lemma 10).
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Definition 3.1. A subset A ⊆ N is k-average-free if a1, . . . ,
ak, y ∈ A and a1 + · · · + ak = ky implies a1 = · · · = ak = y.
For N ∈ N, let νk(N) be the maximum size of a k-average-free set
in [N ] = {1, 2, . . . , N}.

Proposition 3.2. For any fixed k, we have νk(N) = N1−o(1) as
N → ∞.

The following statement about linear combinations of indepen-
dent uniformly random variables is standard.

Proposition 3.3. Let M be a prime. Let u1, . . . , un be inde-
pendent uniformly distributed random variables in Z/MZ. Let
b1, . . . , bm be (Z/MZ)-linear combinations of u1, . . . , un. Then the
vector b = (b1, . . . , bm) is uniformly randomly distributed on the
range of b in (Z/MZ)m.

Proof. Suppose bi =
∑

j cijuj. So b = Cu where u =
(u1, . . . , un) and C is the matrix with entries Cij = cij. For any
y in the image of C, the cardinality of the preimage C−1(y) is ex-
actly the cardinality of the kernel of C. Indeed, if Cx = y, then
C−1(y) = x + ker(C). Since u is uniform, we conclude that b is
uniform on the image of C. �

The method of types classifies sequences of symbols according
to the relative proportion of occurrences of each symbol. We have
used this method before in the proof of the generalized asymptotic
sum inequality. In the proof of Theorem 1.52, it will play a more
important role.

Definition 3.4. Let N ∈ N and let X be a finite “alphabet”
set. The type Px of a sequence x = (x1, x2, . . . , xN) ∈ XN is the
relative proportion of occurrences of each symbol of X. Type is
sometimes called empirical distribution. The possible types for
sequences x ∈ XN are called the N -types on X. If P is an N -type
on X, then the set of sequences x ∈ XN of type P is called the
type class of P and is denoted by TN

P .
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Example 3.5. For X = {0, 1} the type of the sequence x =
(1, 0, 0) is given by Px(0) = 2/3 and Px(1) = 1/3. The possible
3-types are given by P (0) = 0, P (0) = 1/3, P (0) = 2/3, P (0) = 1
(with P (1) = 1 − P (0)). The type class of the 3-type given by
P (0) = 2/3 is T 3

P = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. ♦

Proposition 3.6. Let N ∈ N and let X be a finite set. The num-
ber of N -type classes on X is the binomial coefficient

(
N+|X|−1

|X|−1

)
=

2o(N). Let P be an N -type on X. The number of sequences in the
type class of P = (p1, p2, . . .) is the multinomial coefficient

(
N

Np1, Np2, . . .

)
,

which is lower bounded by 2NH(P )−o(N) and upper bounded
by 2NH(P ).

Proof. The first statement can be proved with the famous stars
and bars argument: count the number of ways to arrange N stars
and |X|−1 bars in a row. For a proof of the second statement, see
Cover & Thomas (2012, Theorem 12.1.3). �

3.2. Restriction procedure We describe a procedure for find-
ing a monomial restriction (see Definition 1.6 for the definition of
monomial restriction) from any tensor ψ to Tr for some r. Despite
its simplicity, this algorithm lies at the heart of the proof of Theo-
rem 1.52. Typically, we will apply the algorithm to a tensor ψ of
the form φ⊗N since we care about the monomial subexponent.

In a graph, a connected component is a maximal connected
subgraph. Each vertex of a graph belongs to exactly one connected
component.

Lemma 3.7. Let G be a graph with n vertices and m edges. Then
G has at least n − m connected components.

Proof. A graph without edges has n connected components.
For every edge that we add to the graph, we lose at most one
connected component. �
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Proposition 3.8. Let ψ be a tensor in V1 ⊗ · · · ⊗ Vk and let
B1, . . . , Bk be bases for V1, . . . , Vk. Let Ψ be the corresponding
support of ψ. Let C be the set {{a, a′} ⊆ Ψ | a �= a′; ∃i ai = a′

i}.
Then ψ ≥M T|Ψ|−|C|.

Proof. Let G be the graph with vertex set Ψ and edge set
C. Let E(Ψ) ⊆ Ψ be a subset of the vertex set that contains
exactly one vertex per connected component of G. Then |E(Ψ)| ≥
|Ψ| − |C| by Lemma 3.7. Moreover, because the vertices in E(Ψ)
are nonadjacent, there is a monomial restriction ψ ≥M T|Ψ|−|C|. �

We illustrate the procedure in Proposition 3.8 with a concrete
example where ψ is of the form φ⊗2.

Example 3.9. Let Dk = D(1k) be the k-tensor
∑

σ∈Sk
σ · b1 ⊗ b2 ⊗

· · · ⊗ bk living in (Ck)⊗k, where the symmetric group Sk acts by
permuting tensor legs. In the standard basis, and identifying bi

with i, the tensor Dk has support

Φ = {(σ(1), σ(2), . . . , σ(k)) | σ ∈ Sk} ⊆ [k]k.

Consider the Nth power D⊗N
k ∈ (CkN

)⊗k. Let Φ⊗N ⊆ ([k]N)k be
its support in the tensor product basis. We write every element in
Φ⊗N as a k-tuple (I1, . . . , Ik) of column N -vectors Ii, so that for
k = 3 and N = 2 we get

Φ⊗2 =
{(

[ 0
0 ], [

1
1 ], [

2
2 ]
)
,
(
[ 0
0 ], [

1
2 ], [

2
1 ]
)
,
(
[ 0
1 ], [

1
0 ], [

2
2 ]
)
,
(
[ 0
1 ], [

1
2 ], [

2
0 ]
)
,(

[ 0
2 ], [

1
0 ], [

2
1 ]
)
,
(
[ 0
2 ], [

1
1 ], [

2
0 ]
)
,
(
[ 0
0 ], [

2
1 ], [

1
2 ]
)
,
(
[ 0
0 ], [

2
2 ], [

1
1 ]
)
,(

[ 0
1 ], [

2
0 ], [

1
2 ]
)
,
(
[ 0
1 ], [

2
2 ], [

1
0 ]
)
,
(
[ 0
2 ], [

2
0 ], [

1
1 ]
)
,
(
[ 0
2 ], [

2
1 ], [

1
0 ]
)
,(

[ 1
0 ], [

0
1 ], [

2
2 ]
)
,
(
[ 1
0 ], [

0
2 ], [

2
1 ]
)
,
(
[ 1
1 ], [

0
0 ], [

2
2 ]
)
,
(
[ 1
1 ], [

0
2 ], [

2
0 ]
)
,(

[ 1
2 ], [

0
0 ], [

2
1 ]
)
,
(
[ 1
2 ], [

0
1 ], [

2
0 ]
)
,
(
[ 1
0 ], [

2
1 ], [

0
2 ]
)
,
(
[ 1
0 ], [

2
2 ], [

0
1 ]
)
,(

[ 1
1 ], [

2
0 ], [

0
2 ]
)
,
(
[ 1
1 ], [

2
2 ], [

0
0 ]
)
,
(
[ 1
2 ], [

2
0 ], [

0
1 ]
)
,
(
[ 1
2 ], [

2
1 ], [

0
0 ]
)
,(

[ 2
0 ], [

0
1 ], [

1
2 ]
)
,
(
[ 2
0 ], [

0
2 ], [

1
1 ]
)
,
(
[ 2
1 ], [

0
0 ], [

1
2 ]
)
,
(
[ 2
1 ], [

0
2 ], [

1
0 ]
)
,(

[ 2
2 ], [

0
0 ], [

1
1 ]
)
,
(
[ 2
2 ], [

0
1 ], [

1
0 ]
)
,
(
[ 2
0 ], [

1
1 ], [

0
2 ]
)
,
(
[ 2
0 ], [

1
2 ], [

0
1 ]
)
,(

[ 2
1 ], [

1
0 ], [

0
2 ]
)
,
(
[ 2
1 ], [

1
2 ], [

0
0 ]
)
,
(
[ 2
2 ], [

1
0 ], [

0
1 ]
)
,
(
[ 2
2 ], [

1
1 ], [

0
0 ]
)}

.
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Order Φ⊗2 as it is written above, and do the procedure as described
in Proposition 3.8. This yields for example a tensor with support

{(
[ 0
0 ], [

1
1 ], [

2
2 ]
)
,
(
[ 1
2 ], [

0
0 ], [

2
1 ]
)}

.

This tensor is isomorphic to T2. We thus have D⊗2
(1,1,1) ≥M T2.

Therefore, qM(D(1,1,1)) ≥M log2(2)/2 = 0.5. In fact, it is not hard
to see that there is a restriction D(1,1,1) ≥M T2, so qM(D(1,1,1)) ≥
log2(2) = 1. The final answer is given by Strassen’s Theorem 1.37:
qM(D(1,1,1)) = q(D(1,1,1)) = H(1

3
, 1

3
, 1

3
) = log2(3) which is approxi-

mately 1.58496. ♦

3.3. Proof of Theorem 1.52 We are now ready for the proof of
Theorem 1.52. In the rest of this section, we will use the following
notation.

Notation 3.10. Let φ be a k-tensor, B a basis, Φ the correspond-
ing support. Suppose φ is tight with respect to α.

◦ PΦ consists of all probability distributions P on Φ; and
P = (P1, . . . , Pk) are the marginal distributions of P on the
k components, respectively;

◦ RΦ consists of all subsets R ⊆ Φ × Φ that are not contained
in the diagonal set ΔΦ := {(x, x) | x ∈ Φ}, and such that
R ⊆ Ri for some i ∈ {1, . . . , k}, where Ri := {(x, y) ∈
Φ × Φ | xi = yi}.

◦ QΦ,P,R consists of all probability distributions Q on R whose
marginals on the 2k components of R satisfy Qi = Qk+i = Pi

for i ∈ {1, . . . , k}.

Recall that for R ⊆ Φ×Φ, we defined r(R) = rα(R) to be the rank
of the matrix with rows {α(x) − α(y) | (x, y) ∈ R} over Q.

Theorem (Theorem 1.52 repeated). The monomial subexponent
of φ is at least,

qM(φ) ≥ max
P∈PΦ

(
H(P ) − (k − 2) max

R∈RΦ

maxQ∈QΦ,P,R
H(Q) − H(P )

rα(R)

)
.
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Proof (Theorem 1.52). Identify Φ with α(Φ) ⊆ Z
k. Let P =

(p1, p2, . . .) be a probability distribution on Φ with rational prob-
abilities pi. Fix a small number ε > 0 and let N be an inte-
ger such that every Npi is an integer (so P is an N -type). Let
P = (P1, . . . , Pk) be the marginal distributions of P on the k com-
ponents of Φ ⊆ Z

k. Let Φ⊗N be the support of φ⊗N in the tensor
product basis. Each element in Φ corresponds to k integers, so
each element in Φ⊗N corresponds to k vectors I1, I2, . . . , Ik ∈ Z

N .
(See Example 3.9.)

Let ψ be the restriction of φ⊗N obtained by keeping only those
elements (I1, . . . , Ik) in the support for which the type of Ii is
Pi for each i ∈ [k]. These include the elements of type P . By
Proposition 3.6, the number of elements remaining can be bounded
as

|Φ⊗N ∩(TN
P1

×· · ·×TN
Pk

)| ≥ |TN
P | =

(
N

Np1, Np2, . . .

)
≥ 2NH(P )−o(N),

where TN
P denotes the type class of length N strings of k-tuples of

integers with type P , and TN
Pi

denotes the type class of length N
strings of integers with type Pi. After the restrictions, the new
support is

Ψ := Φ⊗N ∩ (TN
P1

× · · · × TN
Pk

), |Ψ| ≥ 2NH(P )−o(N).

Let M be a prime between �2μN� and 2�2μN� for some μ > 0
chosen later (this M exists for any μ and N by Bertrand’s Postulate
(Aigner & Ziegler 2014)). Let B ⊆ N be a (k − 1)-average-free set
with

(3.11) max(B) <
M

k − 1
and |B| ≥ M1−ε

with ε as chosen above (such a B exists when N is large enough by
Proposition 3.2). Let v1, . . . , vN , u1, . . . , uk−1 be independent uni-
formly random variables in Z/MZ, and compute a hash as follows:

bi(Ii) := ui +
N∑

j=1

(Ii)jvj for 1 ≤ i ≤ k − 1,

bk(Ik) :=
1

k − 1

(
u1 + · · · + uk−1 −

N∑

j=1

(Ik)jvj

)
,
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with operations understood in Z/MZ (in particular k − 1 is in-
vertible if N and hence M is large enough). By construction of
b1, . . . , bk and since φ is tight,

(3.12) b1(I1) + b2(I2) + · · · + bk−1(Ik−1) = (k − 1)bk(Ik)

holds for every element (I1, . . . , Ik) in the support Ψ. Using re-
strictions again, we keep only those elements such that bi(Ii) ∈ B
modulo M for every i ∈ [k]. Call the remaining tensor ψ′ and its
support Ψ′. Since max(B) < M

k−1
, the equality in (3.12) then holds

in Z for the representatives {0, 1, . . . , M − 1} of Z/MZ. By the
(k − 1)-average-free property of B this implies b1(I1) = b2(I2) =
· · · = bk(Ik). Summarizing, we restricted ψ to ψ′ with a monomial
restriction in such a way that for every (I1, . . . , Ik) ∈ Ψ′ = supp ψ′

we have b1(I1) = b2(I2) = · · · = bk(Ik).
We apply Proposition 3.8 to Ψ′. This yields a monomial restric-

tion

(3.13) ψ′ ≥M TX−Y

where X = |Ψ′| and Y = |C′| for

C′ := {(I, I ′) ∈ Ψ′2 | I �= I ′; ∃i Ii = I ′
i}.

(The elements of C′ are ordered pairs. Equation (3.13) also holds if
we take unordered pairs, but ordered pairs will be more convenient
later.) We will now find a lower bound on E[X − Y ] (which will
also be a lower bound on the largest possible value of X−Y ) where
the expectation is taken over the independent uniform choice of the
ui’s and vi’s in Z/MZ. We claim to have the following bounds on
E[X] and E[Y ]:

◦ E[X] = |B||Ψ|M−(k−1) (Claim 1)

◦ E[Y ] ≤ |B| max
R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R)) (Claim 2)

where in the second bound RΦ and QΦ,P,R are as in the state-
ment of the theorem. Intuitively, we want to choose μ small such
that E[X] has a large exponent, but we want to choose μ large such
that E[Y ] has a smaller exponent than the exponent of E[X]. To
make this precise, we put the claimed bounds together with
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◦ |B| ≥ M1−ε

◦ |Ψ| ≥ 2NH(P )−o(N)

◦ M ≥ 2μN−o(N)

and use linearity of expectation, to obtain

E[X − Y ]

= E[X] − E[Y ]

≥ |B|
(
|Ψ|M−(k−1) − max

R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R))
)

≥ M1−ε2NH(P )−o(N)M−(k−1)

·
(
1 − max

R∈RΦ

max
Q∈QΦ,P,R

2N(H(Q)−H(P ))+o(N)M−r(R)
)

≥ 2N(H(P )−(k−2+ε)μ)−o(N)

·
(
1 − max

R∈RΦ

max
Q∈QΦ,P,R

2N(H(Q)−H(P )−r(R)μ)+o(N)
)
.

We want to choose μ small such that the first factor has a large
exponent, but we want to choose μ large such that the second
factor is bounded away from 0. We thus set

μ = max
R∈RΦ

maxQ∈QΦ,P,R
H(Q) − H(P ) + o(1)

r(R)
.

After substituting μ, we get that

qM(φ)

=
1

ωM(φ, T)
=

1

NωM(φ⊗N , T)

≥ 1

N
log2 E[X − Y ]

≥ H(P )

− (k − 2 + ε) max
R∈RΦ

maxQ∈QΦ,P,R
H(Q) − H(P ) + o(1)

r(R)

− o(1).
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We note again that here we used the probabilistic method: the
largest value of X −Y is at least E[X −Y ]. Finally, we let N → ∞
and ε → 0, and take the supremum over P with rational entries. By
continuity, the latter can be replaced by a maximum over arbitrary
real-valued probability distributions P on Φ, finishing the main
argument of the proof. It remains to prove the two claims.

Claim 1. We will prove the claim

E[X] = |Ψ||B|M−(k−1).

Recall that in the main argument we defined Ψ = Φ⊗N ∩ (TN
P1

×
· · · × TN

Pk
) and Ψ′ = {(I1, . . . , Ik) ∈ Ψ | bi(Ii) ∈ B for all i ∈ [k]}.

Recall that for every (I1, . . . , Ik) ∈ Ψ′ we have b1(I1) = b2(I2) =
· · · = bk(Ik). The random variable X is the size of Ψ′ and can be
computed as follows:

E[X] =
∑

I∈Ψ

Pr[b1(I1) ∈ B ∧ · · · ∧ bk(Ik) ∈ B] · 1

=
∑

I∈Ψ

∑

b∈B

Pr[b1(I1) = b2(I2) = · · · = bk(Ik) = b]

=
∑

I∈Ψ

∑

b∈B

Pr[b1(I1) = b2(I2) = · · · = bk−1(Ik−1) = b]

=
∑

I∈Ψ

∑

b∈B

M−(k−1)

= |Ψ||B|M−(k−1),

using that the random variables b1(I1), b2(I2), . . . , bk−1(Ik−1) are
independent uniform in Z/MZ because of the presence of ui in the
definition of bi.

Claim 2. We will prove the claim

E[Y ] ≤ |B| max
R∈RΦ

max
Q∈QΦ,P,R

2NH(Q)+o(N)M−(k−1+r(R)).

The number Y is the size of C′ = {(I, I ′) ∈ Ψ′2 | I �= I ′; ∃i Ii = I ′
i},

whose expectation can be written in terms of C := {(I, I ′) ∈ Ψ2 |
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I �= I ′; ∃i Ii = I ′
i} as

E[Y ] =
∑

(I,I′)∈C
Pr[∀i bi(Ii) ∈ B ∧ bi(I

′
i) ∈ B]

=
∑

(I,I′)∈C

∑

b∈B

Pr[b1(I1) = · · · = bk(Ik)

= b1(I
′
1) = · · · = bk(I

′
k) = b].(3.14)

Fix a pair ((I1, . . . , Ik), (I ′
1, . . . , I

′
k)) ∈ C. The random variables

bi(Ii) and bi(I
′
i) are linear combinations of independent uniform ran-

dom variables, and therefore (b1(I1), . . . , bk(Ik), b1(I
′
1), . . . , bk(I

′
k))

is uniform on the image subspace in (Z/MZ)2k (see Proposition 3.3).
This subspace contains (b, b, . . . , b) for any b ∈ Z/MZ, since u1 =
u2 = · · · = uk = b, v1 = · · · = vN = 0 is a possible assignment. The
probability of the event (b, b, . . . , b) is thus equal to the reciprocal
of the cardinality of the image subspace. This cardinality equals
M to the power the rank of the (N +k − 1)× 2k coefficient matrix

(3.15)

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1
k−1

1 0 · · · 0 1
k−1

0 1 0 1
k−1

0 1 0 1
k−1

...
. . .

...
. . .

...
0 0 · · · 1 1

k−1
0 0 · · · 1 1

k−1

I1 I2 · · · Ik−1 − Ik

k−1
I ′
1 I ′

2 · · · I ′
k−1 − I′

k

k−1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

over Z/MZ, with I1, . . . , Ik, I
′
1, . . . , I

′
k thought of as column vectors.

With column and row operations, this matrix can be transformed
into
⎛

⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 1 0 · · · 0 0
0 0 · · · 0 0 0 1 0 0
...

...
. . .

...
...

...
. . .

...
0 0 · · · 0 0 0 0 1 0

I1 − I ′
1 I2 − I ′

2 · · · Ik−1 − I ′
k−1 Ik − I ′

k 0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎠

Here we used that
∑k

i=1 I ′
i is the zero vector. It follows that the

rank of the matrix in (3.15) is k − 1 plus the rank of the N × k
matrix

A(I, I ′) :=
(
I1 − I ′

1 I2 − I ′
2 · · · Ik − I ′

k

)
.
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Letting rM(I, I ′) denote the rank of A(I, I ′), equation (3.14) thus
becomes

E[Y ] =
∑

(I,I′)∈C

∑

b∈B

M−(k−1+rM (I,I′))

= |B|
∑

(I,I′)∈C
M−(k−1+rM (I,I′)).(3.16)

Again fix a pair ((I1, . . . , Ik), (I ′
1, . . . , I

′
k)) ∈ C. Recall that

C ⊆ Ψ×Ψ ⊆ Φ⊗N ×Φ⊗N . Therefore, each row in A(I, I ′) is of the
form x− y for some (x, y) ∈ Φ×Φ. Namely, the ith row of A(I, I ′)
equals x− y for x = ((I1)i, . . . , (Ik)i) and y = ((I ′

1)i, . . . , (I
′
k)i). We

map every (I, I ′) ∈ C to the sequence of pairs corresponding to the
rows in A(I, I ′),

C → (Φ × Φ)N

(I, I ′) �→ (
((I1)i, . . . , (Ik)i), ((I

′
1)i, . . . , (I

′
k)i)

)
i∈[N ]

.

The image of this map consists of sequences S ∈ (Φ × Φ)N such
that

◦ there is an R ∈ RΦ

◦ there is an N -type Q ∈ QΦ,P,R with supp(Q) = R

◦ S ∈ TN
Q .

This map is injective. In words, S is the sequence of pairs (x, y)
corresponding to the rows in the matrix A(I, I ′), and R is the
(unique) set of pairs occurring in S, and Q is the (unique) empirical
distribution of the elements of R in S. Note that the rank of A(I, I ′)
only depends on the set R. For any R ⊆ Φ × Φ, we thus define
rM(R) to be the rank of the matrix with rows {x − y | (x, y) ∈ R}
over the field Z/MZ and we write (3.16) as

E[Y ] ≤ |B|
∑

R∈RΦ

∑

Q∈QΦ,P,R:
supp(Q)=R
Q is N -type

∑

S∈T N
Q

M−(k−1+rM (R)).
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The number of N -types Q on R is at most
(

N+|R|−1
|R|−1

)
, while the

size of the type class TN
Q is at most 2NH(Q) for any Q ∈ QΦ,P,R

(Proposition 3.6). Therefore,
(3.17)

E[Y ] ≤ |B|
∑

R∈RΦ

(
N + |R| − 1

|R| − 1

)
max

Q∈QΦ,P,R

2NH(Q) M−(k−1+rM (R)).

Recall that we defined r(R) as the rank of the matrix with
rows x − y for (x, y) ∈ R, over Q. The value of rM(R) may be
less than r(R), but only for finitely many primes M . Since there
are only finitely many possibilities for choosing R, there is an N0

such that for N > N0 and for all R we have rM(R) = r(R). In
the following, we assume that N (and thus M) is already large
enough for this to hold. In (3.17), we replace rM(R) by r(R) and
upper bound the sum over R by 2|Φ|2 (a constant) times the largest
summand, to obtain

E[Y ] ≤ |B|2|Φ|2 max
R∈RΦ

(
N + |R| − 1

|R| − 1

)
max

Q∈QΦ,P,R

2NH(Q) M−(k−1+r(R)).

Now use that the binomial coefficient is polynomial in N . This
completes the proof. �

3.4. Computational aspects We use Notation 3.10. Before
discussing applications of Theorem 1.52, let us focus on how to
compute the bound

qM(φ) ≥ max
P∈PΦ

(
H(P ) − (k − 2) max

R∈RΦ

maxQ∈QΦ,P,R
H(Q) − H(P )

rα(R)

)
,

of Theorem 1.52.
Choice of Q. Given P and R, computing maxQ∈QΦ,P,R

H(Q)
is a convex optimization problem (and thus easy) since it amounts
to maximizing a concave function over a convex set for each i ∈ [k].

Choice of R. The set RΦ may be large, but we can greatly
reduce its size as explained in the following two lemmas.

Lemma 3.18. If R,R′ ∈ RΦ and R ⊆ R′ and r(R) = r(R′), then

maxQ∈QΦ,P,R
H(Q)

r(R)
≤ maxQ∈QΦ,P,R′ H(Q)

r(R′)
.
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Proof. We leave the proof to the reader. �

Recall that a subset R ⊆ Φ × Φ is an equivalence relation if
for all x, y, z ∈ Φ we have (x, x) ∈ R; (x, y) ∈ R ⇒ (y, x) ∈ R;
and (x, y) ∈ R ∧ (y, z) ∈ R ⇒ (x, z) ∈ R. If Φ = �iΦi is a set
partition of Φ, then R = {(x, y) ∈ Φ × Φ | ∃i : x ∈ Φi ∧ y ∈ Φi}
is an equivalence relation. The set partition into singletons yields
the equality equivalence relation ΔΦ = {(x, x) | x ∈ Φ}.

Lemma 3.19. Let R ∈ RΦ. Then there is an R′ ∈ RΦ which is
an equivalence relation and such that R ⊆ R′ and r(R) = r(R′).
Therefore, Theorem 1.52 still holds if RΦ is replaced by the set

RΦ ∩ {equivalence relations}.

Proof. We can extend R to an equivalence relation without
increasing its rank. Namely, let ΔΦ = {(x, x) | x ∈ Φ}, RT =
{(y, x) | (x, y) ∈ R} and R ◦ R = {(x, z) | (x, y), (y, z) ∈ R}.
Then r(R ∪ ΔΦ) = r(R), r(R ∪ RT ) = r(R) and r(R ∪ (R ◦ R)) =
r(R). As mentioned above, if R ⊆ R′ with r(R) = r(R′), then
only R′ needs to be considered. Therefore, replacing RΦ by RΦ ∩
{equivalence relations} will not change the optimal value of the
maximization over RΦ. �

We state one more simple fact.

Lemma 3.20. r(Ri) ≤ k − 2.

Proof. The support Φ is tight with respect to α, so for every
x ∈ Φ we have

∑k
j=1 αj(xj) = 0. So any w ∈ SpanQ{α(x) − α(y) |

(x, y) ∈ Ri} satisfies the equations wi = 0 and
∑k

j=1 wj = 0 and
hence the span has rank at most k − 2. �

Choice of α. Finally, we discuss the choice of the map α =
(α1, . . . , αk). If α and β are such maps then φ is also tight for
γ = (γ1, . . . , γk) with γi := αi + Cβi for any integer C, except
that γi may fail to be injective for finitely many C. For a given
R ∈ RΦ, rα(R) is the rank of some matrix X and rβ(R) is the rank
of some other matrix Y , while rγ(R) is the rank of X + CY . But
the latter is at least max{rα(R), rβ(R)} except for at most finitely
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many values of C. Taking into account every R still excludes only
finitely many values of C, hence there is at least one good C. So in
theory one can proceed by finding a new k-tuple of injective maps
with at least one r(R) higher than what one already has and then
improve by finding suitable linear combination. There are finitely
many relations and the ranks are never larger than k −2, therefore
only finitely many improvements are possible.

3.5. Applications of Theorem 1.52 We finish this section by
giving some example applications of Theorem 1.52, one of which
is the result on the weight-(2, 2) Dicke tensor that we use in com-
bination with Theorem 1.50 to upper bound the exponent of the
complete graph tensor. We use Notation 3.10.

First, as a sanity check, we derive from Theorem 1.52 the lower-
bound part of Strassen’s Theorem 1.37 on the monomial subexpo-
nent of tight 3-tensors.

Lemma 3.21. Fix marginal distributions P = (P1, . . . , Pk) on the
k components of Φ and let P ∈ PΦ be an element that has maximal
entropy among all elements of Φ with marginals P1, . . . , Pk. Let
R ∈ RΦ such that R ⊆ Ri and let Q ∈ QΦ,P,R. Then,

H(Q) ≤ 2H(P ) − H(Pi).

Proof. Let i = {1, . . . , î, . . . , k} and let

k + i = {k + 1, . . . , k̂ + i, . . . , 2k},

where a hat denotes an omitted index. In this proof, if K ⊆ [2k]
is a set of indices, then for any Q ∈ QΦ,P,R we will write QK for
the marginal distribution of Q on these indices. Let (∗) denote
the assumption that among all distributions in PΦ with marginals
P1, . . . , Pk the distribution P is the one with maximal entropy. Let



104 M. Christandl, P. Vrana and J. Zuiddam cc 28 (2019)

Q ∈ QΦ,P,R. Then,

H(Q) = H(Qi) + H(Qi∪(k+[k]) | Qi)(chain rule)

≤ H(Qi) + H(Qi | Qi) + H(Qk+[k] | Qi)(strong sub-additivity)

≤ H(Qi) + H(Qi∪{i}) − H(Qi)

+ H(Q(k+[k])∪{i}) − H(Qi)(chain rule)

≤ H(Qi) + H(Q[k]) − H(Qi)

+ H(Qk+[k]) − H(Qi)(since R ⊆ Ri)

≤ 2H(P ) − H(Pi),(by (∗))

which proves the lemma. �

Corollary 3.22 (Strassen 1991). Let φ be a tight 3-tensor. Then

qM(φ) ≥ max
P∈PΦ

min{H(P1), H(P2), H(P3)}.

Proof. Let P ∈ PΦ. Then by Theorem 1.52,

(3.23) qM(φ) ≥ H(P ) − max
R∈RΦ

maxQ∈QΦ,P,R
H(Q) − H(P )

rα(R)
.

Let P1, . . . , Pk be the marginals of P . We may assume that P
has maximal entropy among all elements of PΦ with marginals
P1, . . . , Pk, since QΦ,P,R depends on P only through its marginals.
Let R ∈ RΦ. Then r(R) ≥ 1 (since R �⊆ ΔΦ) and r(R) ≤ k −2 = 1
(Lemma 3.20). Therefore, r(R) = 1. Combine this fact with (3.23)
and Lemma 3.21 to obtain

qM(φ) ≥ H(P ) − max
i

(2H(P ) − H(Pi) − H(P )) = min
i

H(Pi),

which proves the corollary. �

Second, we derive from Theorem 1.52 the lower-bound part of
Theorem 1.41 on the subexponent of the W-state tensors Wk =
D(1,k−1).
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Corollary 3.24 (Vrana & Christandl 2015). Let k ≥ 3. Then

qM(Wk) = q(Wk) = h
(
k−1

)
,

where h(p) denotes the binary entropy function.

Proof. For the proof of the upper bound q(Wk) ≤ h(k−1) we
refer to the proof of Theorem 11 in Vrana & Christandl (2015). We
will here give a proof for the lower bound qM(Wk) ≥ h(k−1), fixing
a small gap in the proof of Vrana & Christandl (2015). Let Φ be
supp Wk which we identify with the set

{(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1)}.

Let P be the uniform probability distribution on Φ. Then the
marginals of P are Pi(1) = 1 − Pi(0) = 1

k
. By Theorem 1.52,

(3.25) qM(Wk) ≥ log2 k−(k−2) max
R∈RΦ

maxQ∈QΦ,P,R
H(Q) − log2 k

r(R)
.

We may assume that RΦ consists of equivalence relations R ⊆
R1 by Lemma 3.19 and the symmetry of Φ. An equivalence relation
on Φ is just a set partition of Φ and we say that the type of such
a set partition is the integer partition consisting of the sizes of the
parts occurring in the set partition. Up to permuting the elements
of Φ, an equivalence relation on Φ is characterized by its type. Let
λ = (λ1, λ2, . . . , λ�(λ))  k be an integer partition with 
(λ) parts.
Let Rλ ∈ RΦ be any equivalence relation of type λ. Since Rλ ⊆ R1,
we have λ�(λ) = 1. It is not difficult to see that r(Rλ) = k − 
(λ)
(with α chosen as in Example 1.36); indeed if C1, . . . , C�(λ) are the
equivalence classes of Rλ in nonincreasing order, then r(Ci) = λi−1

and r(Rλ) =
∑�(λ)

i=1 r(Ci) since φ = Wk. Therefore,

(3.26) r(Rλ) =
�(λ)∑

i=1

(λi − 1) = k − 
(λ).

A probability distribution Q on Rλ can be identified with a block-
diagonal matrix with λi × λi blocks, and the condition on the
marginals means that the row and column sums are 1

k
. Using
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permutation symmetry and concavity of the entropy and permu-
tation symmetry of QΦ,P,R, one can see that maxQ∈QΦ,P,R

H(Q) is
attained when Q is constant in each block. In this case,

(3.27) H(Q) =
∑

i

λ2
i

( 1

λik
log2(λik)

)
= 2 log2 k − H

(λ

k

)
.

Combine (3.25), (3.26) and (3.27) to get

qM(Wk) ≥ log2 k − (k − 2) max
λ

log2 k − H(λ
k
)

k − 
(λ)
.

If k and 
 = 
(λ) are fixed, then the minimum of H(λ
k
) is at-

tained at the partition λ = (k − 
 + 1, 1�−1), because the other
distributions can be expressed as a convex combinations of its per-
mutations. Therefore, we need to look for the maximum of

log2 k − H
(

(k−�+1, 1�−1)
k

)

k − 

=

(k − 
 + 1) log2(k − 
 + 1)

k(k − 
)
.

Taking the derivative with respect to 
, we get

d

d


(k − 
 + 1) log2(k − 
 + 1)

k(k − 
)
=

ln(1 + k − 
) − (k − 
)

k(k − 
)2 ln 2
≤ 0,

using ln(1 + x) ≤ x. Therefore, the optimum is at 
 = 2 and this
gives

qM(Wk) ≥ log2 k − (
log2 k − h

(
1
k

))
= h(k−1),

which proves the corollary. �

Finally, we compute the (monomial) subexponent of the weight-
(2, 2) Dicke tensor.

Corollary 3.28 (Weight-(2, 2) Dicke tensor). Let D(2,2) be the
weight-(2, 2) Dicke tensor,

D(2,2) = b0 ⊗ b0 ⊗ b1 ⊗ b1 + b0 ⊗ b1 ⊗ b0 ⊗ b1 + b0 ⊗ b1 ⊗ b1 ⊗ b0

+b1 ⊗ b0 ⊗ b0 ⊗ b1 + b1 ⊗ b0 ⊗ b1 ⊗ b0 + b1 ⊗ b1 ⊗ b0 ⊗ b0.

Then qM(D(2,2)) = q(D(2,2)) = 1.
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Proof. Let P be the uniform probability distribution on the
support Φ of D(2,2) which we identify with
{(1, 1, 0, 0), (1, 0, 1, 0), . . .}. Then H(P ) = log2 6. Note that the
marginals Pi are uniform distributions on {0, 1}. Let R ⊆ RΦ. By
the permutation symmetry of D(2,2), we may assume that

R ⊆ R1 ={(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}2

∪ {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)}2.

By Lemma 3.19, we may assume that R is an equivalence relation.
Define the set

S = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}.

If (x, y) ∈ R, then R ⊆ R′ := R∪{((1, 1, 1, 1)−x, (1, 1, 1, 1)−y)} ∈
RΦ and r(R) = r(R′), and hence we may assume that if (x, y) ∈ R
then also ((1, 1, 1, 1) − x, (1, 1, 1, 1) − y) ∈ R (Lemma 3.18). We
thus restrict ourselves to the equivalence relations R ⊆ R1 of the
following three types. In type (3) all three elements of S are equiva-
lent. There is only one such equivalence relation, namely the whole
set R1, which has size 18. In type (2, 1), two elements of S are mu-
tually equivalent and inequivalent to the third element (which is
equivalent to itself). Then the size of R is 10. In type (1, 1, 1),
all elements of S are inequivalent. However, this means that R is
contained in the diagonal ΔΦ = {(x, x) | x ∈ Φ}. Such an R is not
feasible. So we are left with the two types (3) and (2, 1). For type
(3) we have r(R) = 2 while for type (2, 1) we have r(R) = 1. In both
cases, the uniform probability distribution Q on R has marginals
P1, P2, P3, P4, P1, P2, P3, P4, namely uniform distributions on {0, 1}.
Therefore, this Q is the optimal Q and H(Q) = log2 |R|. Letting
R(3) and R(2,1) be any equivalence relations of type (3) and (2, 1)
respectively, we obtain

qM(D(2,2)) ≥ min
{
H(P ) − 2

r(R(3))

(
log2 |R(3)| − H(P )

)
,

H(P ) − 2
r(R(2,1))

(
log2 |R(2,1)| − H(P )

)}

= min{ log2 6 − 2
2
(log2 18 − log2 6),

log2 6 − 2
1
(log2 10 − log2 6)}

= min{1, log2
54
25

} = 1
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On the other hand, D(2,2) has a flattening of rank 2, so also the
upper bound q(D(2,2)) ≤ 1 holds. �
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