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Semiparametric Models: Progress and Problems’

Jon A. Wellner
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Seattle, Wa.98195

Semiparametric models, models which incorporate both parametric (finite-
dimensional) and nonparametric (infinite-dimensional) components, have
received increasing use and attention in statistics in recent years. This paper
reviews developments in this very large and rich class of models which spans
the middle ground between parametric and nonparametric models. Attention is
devoted to a preliminary classification of such models with comments on recent
work, to lower bounds for estimation, to two potentially useful methods for con-
struction of efficient estimates, and to open problems.

1. INTRODUCTION

Models for phenomena involving randomness play a key role in statistics. If
P, denotes the collection of all probability distributions on a sample space X
of the observations X, a model P is a subset of P,;: thus we assume in con-
structing a model P that X has a distribution P in P, and we write X=P €P.
The sample space X is the set of all possible observations.

A statistician uses the observations X to make inferences about the ‘true’
probability distribution P, and hence about real-world phenomena in question.
A common form of inference is point estimation. For example, if X represents
the life expectancy or survival time of an individual who has been given a new
medical treatment, the statistician may be interested in using a sample of such
individuals to estimate »(P)=P(X=t), the probability of survival beyond ¢
time units. The choice of a model P can have a major effect on inferences
about »(P): If the model P is too small, the statistician runs the risk that the
model will not contain the ‘true’ P, and the consequent price is bias in estima-
tion of »(P). In this case the model is not sufficiently large to be realistic and
may fail to capture the essential features of the phenomena in question. On the
other hand, if the model P is too large, the statistician may find himself in the
position of estimating too many parameters from too little data. This tradeoff

1. This is a revised version of a paper presented at the Centenary Session of the International
Statistical Institute, Amsterdam 1985, and which has appeared in the proceedings of that confer-
ence ( Bull. Int. Star. Inst. 51 (4), 23.1.1-23.1.20). It is reproduced here by kind permission of the
International Statistical Institute.



between realism and parsimony is an ever-present theme in statistics; for
interesting discussions of some aspects of model-building see Chapters 2 and 4
of Cox and SNELL [23] and STONE [74].

Parametric models Py={P4:00} with ® CR“ for some d play a dominant
role in classical statistical theory. Such models, with a finite-dimensional
parameter space ©, form the basis of much of classical statistics. A difficulty
with such parametric models is that typically a parametric model Py is a rela-
tively small subset of P,;, and hence the ‘true’ distribution P of X may not be
contained in Py.

One approach to this difficulty is the completely nonparametric approach:
assume only that PeP,, or a slight restriction of P, requiring only some
smoothness or monotonicity assumptions. While this approach seems to be
feasible when the dimensionality of the sample space is small, it fails to take
advantage of structure in the phenomena being modeled and begins to run
into difficulty when the dimensionality of the sample space (and hence of the
parameter space, P itself) is large.

A compromise strategy which gains in model realism and the flexibility
needed to make use of the larger data sets which are increasingly available is
the semiparametric approach: assume that some aspects or components of the
model are parametric or finite-dimensional, while other aspects or components
are allowed to be nonparametric or infinite-dimensional. Then the resulting
semiparametric model P is typically of the form

P={Py;:0€0, GeG}

where ©® CR for some d and G is some (large) collection of functions. We also
write

P= {P,9:0 = (01,02) Wlth 01 E@] CRd, 02 E@z},

where 0, is a collection of functions.

This semiparametric approach has proved to be very useful in a wide range
of problems, and promises to play an increasingly important role in statistics.
Our object here is to survey this extremely rich and flexible class of models
(Section 2), and to briefly review the developing inference methods with
emphasis on lower bounds for estimation and construction of efficient esti-
mates of the parametric component of such models (Section 3 and 4). The sur-
vey of models and review of inference methods may be read independently of
one another. The final section discusses open problems.

The notion of a semiparametric model is very general, and is already being
used, at least implicitly, in situations involving observations which are not
independent and identically distributed (iid). For simplicity, however, we res-
trict attention here to the iid case: throughout this paper X, ..., X, are iid
P €P where P is a parametric or semiparametric model.



2. CLASSES OF SEMIPARAMETRIC MODELS

Little effort has been made to classify or categorize semiparametric models.
While such an effort may be premature, it may also help to identify related
models and aid in developing methods to apply to new problems. The follow-
ing scheme should be regarded as provisional and temporary.

The classification of models given here has two fundamental categories:
basic models, and derived models. The basic models consist of exponential
family models, group models, and transformation models. The derived models
include regression models, convolution models, mixing models, censoring
models, and biased sampling models. Although this scheme is both redundant
and possibly incomplete, it includes all the semiparametric models with which
I am now familiar. The rest of this section elaborates on these categories, and
provides examples of the models of the various types with some brief com-
ments on recent work. ’

2.1. Basic Models
The following basic models serve as building blocks in the construction of
semiparametric models.

2.1.1. Exponential family models. (A). These are familiar parametric models
with density (with respect to some measure m)

k
p(0) = cOexp( 3 Q(O)T,(x)h (x)
i=1
for 0c® CR*, xeXCR?. While these are themselves completely parametric
(finitely dimensional) models, they serve as building blocks for many interest-
ing semiparametric models.

2.1.2. Group models. (B).

(1). The classical parametric model of this type is obtained as follows: suppose
that Y=G=P,, a fixed distribution on X, and let V denote a group of
(one to one) transformations on X parametrized by 0O CRK. If vyeV,
let X=vy(Y)=P, for 0<0O.

Examples:

(a) Location. X=R, v4(x)=x+6 with §cR?, and Py=Py(-—90).

(b) Elliptic distributions. X=RY, vg(x)=0""'/% x where 0 is positive definite
and symmetric; G=P, is spherically symmetric on R¢. Then
P={Py:0c0O} is the P(-family of elliptic distributions.

(¢) Two-sample models. X=X, XX,;, V=V;XV, where V, is a group of
transformations on Xy, §=(p,»)e0) XOy=0, Y =(W,Z) with W,Z=P,
independent, and X =(v,(W),v,v,(Z)).



(2). By letting the distribution P in (1) range over some large class of proba-
bility distributions G small enough to still allow identification of 6, or at
least some important functions of 6, yields a semiparametric model

P={(Py;:0€0,GeG)}.

Examples:

(a) If X=R' in 1(a) above and G is the family of distributions symmetric
about 0, P is the classical symmetric location family.

(b) If X and © are as in 1(b) above and G is the family of all spherical sym-
metric distributions, then P is the family of all elliptic distributions; see
e.g. BICKEL [6].

(c) If X and © are as in 1(c) and G is arbitrary, then » is still identifiable; see
STEIN [71] or PFANZAGL [64].

(3). Classical nonparametric statistical theory uses transformation groups
which are not parametrizable by a Euclidean space; for example, all con-
tinuous monotone transformations from R to R. See LEHMANN [51] page
24 and 25 for ‘semiparametric subgroups’ of the large group and note that
examples 2(a) and 2(b) are of this type. A wealth of other ‘semiparametric
group’ families are undoubtedly possible.

2.1.3 Transformation models. (C). These models typically map (6,P)—>Py
where #€® CR* and P €G, a collection of probability distributions on X. The
key feature is that the map Py=y(6,P) acts on P, or some function that is
one-to-one with P, rather than on X as in the case of a group model.

The classical example of this type of model is that of a family of ‘Lehmann
alternatives’ defined as follows (see LEHMANN [50]): Let X=R!, suppose that
Y=G and let {B(-.0):0c®CR*} be a family of monotone transformations
from [0,1] to [0,1] with B(0,0)=0, B(1,0)=1 for all #€®. Then X=Py; has
df (distribution function) Fy (x)=B(G(x),0). Here are some particular cases.

Examples:

(a) Ba(p.,ﬁ)ZIA(l—p)a with 0<<#<co. This yields the proportional hazards
model: Ap(x)=0Ag(x) where Ay is the cumulative hazard function
corresponding tgo F; see LEl—;MANN [501] and Cox [22].

_ b _ _ud—p)
®) By(.6) Out+(1—p)  1+6p(1—p !
proportional odds model

F)  _, Gk)

with 0<f<<oo. This yields the

1=Fixl = 1—@fx)"
see BENNETT [2].
(©) B.(n0,v)=1—[1—pblog(1—p)] '/”, 0<r<<oo, §>0. This yields the semi-
parametric Pareto model suggested by CrayroN and Cuzick [19]. Note



that B,(u,0,v)—B,(1,0) as »—0 while Bennett’s B, is related to Clayton
and Cuzick’s B, by

B.(1 — exp(——E£—),0,1) = B (.0).
1—n

These three models can all be written in the form
h(X)= —log®) + ¢ (1

where  (x)=logA¢(x)=log[ —log(1 —G(x))] and € has the distribution:
(a) F(x)=1—exp(—e") (extreme value);

(b) F(x)=1/(1+e ) (logistic);

() F(x)=1—1/(1+wx)!/" (Pareto).

Because of the generality allowed for the transformations 4, rank methods and
partial likelihoods play an important role in analyzing these models. Note that
(1) yields a transformation family linear model if 6=exp(yz), and shows that
these models can be viewed as special cases of a type of model involving
smooth transformations of both X and z considered by BREIMAN and FRIED-
MAN [11]; see 2.2.1 below and DoksuMm [24].

2.2 Derived models
The following classes of models are all derived from the basic models given
above.

2.2.1 Regression models. (D). Given a basic model of one of the three types
described above, there is a straightforward recipe for constructing related
regression models:

1. Start with an exponential family, group or transformation model
P={Py;:0€0,GeG} where 8 is the finite-dimensional Euclidean com-
ponent of the model and G is the nonparametric or infinite-dimensional
component of the basic model.

2. Suppose that Z=H on R“.

3. Given Z=z, replace 6 (or a component thereof) in the basic model by a
semiparametric regression function r(y,z) taking values in ® where
yeI'C some R¥. Different forms for r ranging from parametric to non-
parametric regression models, with many interesting intermediate semi-
parametric forms, are possible. For example:

(a) Linear model: r(y,z)=vz;

(a") Exponential linear model: r(y,z)=exp(yz);

(b) Nonlinear: r(y,z)=r(y,z) for a fixed known nonlinear function rg;

(c) Nonparametric: r(y,z)=r(z), with r smooth;

(d) Semiparametric: r(y,z)=vz,+r(z;), where z=(zy,z3), and r is
smooth;



() Projection pursuit: r(y,z)=r(yz) where |yl =1 and r:R'SR!' is
smooth;

(f) Signal-noise: r(yz) where r ‘R'>R! is periodic with period 1 so that
y is a frequency parameter.

Combining various types of regression functions illustrated by (a) - (f) with the
basic models A, B or C yields a rich collection of regression models, includ-
ing parametric, semiparametric, and nonparametric models. STONE [74] gives
an interesting survey and further references. A few selected examples with
brief comments concerning recent work follow.

Examples:

(a)

(b)

(©)

(d)
(e

(M

Combining basic model A with the regression model D(a) yields linear
exponential family regression models; see e.g. LedMANN [51] Chapter 3,
pages 196 - 207.

Combining the basic model Bl(a) where P, is normal with D(a) yields
classical parametric normal theory regression models; the extension to
B2(a) yields semiparametric linear regression models with arbitrary (sym-
metric) error distributions.

The basic model Bl(a) (with P a fixed distribution on R'; e.g. normal)
combined with the semiparametric regression model D(d) leads to a very
interesting class of regression models introduced by ENGLE, GRANGER,
Rice and WEIss [26] to study effects of weather on electricity demand,
and by WaHBA [79]. This model has one nonparametric component, the
smooth regression function r. Generalizations with two nonparametric
components by allowing the error distribution to be arbitrary are also of
interest. A special case has been studied by SCHICK [70], while STONE [74]
discusses a spectrum of related regression models.

Combining B2(a) with D(e) leads to a model related to projection-pursuit
regression; see FRIEDMAN and STUETZLE [27], STONE [74], and HUBER [37].
Combining Cl(a) with D(a’) yields Cox’s (1972) proportional hazards
model. Many variants on this model are possible and deserve further
exploration. Replacement of the exponential with some other (fixed)
non-negative function has been considered by PRENTICE and SELF [67],
while Cl(c) combined with D(a’) has been explored by CLAYTON and
Cuzick [19]. TIBSHIRANI [76] considers a version of Cox’s model with the
linear function in exp(yz) replaced by a sum of smooth but otherwise
arbitrary functions Ef_‘:]r,-(z,-). See 2.2.2 below for related mixture models
involving unobserved covariates.

Combination of Bl(a) or B2(a) with D(f) yields a semiparametric ‘signal
plus noise’ model which extends classical parametric signal plus noise
models. For the latter, see IBRAGIMOV and HAS'MINSKII [38].
MCDONALD [56] has some interesting preliminary work on semiparametric
extensions. These models are of interest in astrophysical applications; see
e.g. LAFLER and KINMAN [44] or STELLINGWERF [72].



2.2.2 Mixture models. (E). Mixture models can usually be viewed as the result
of unobserved heterogeneity as follows: suppose that X=(Y,Z) has a distribu-
tion of the form

Pocu(YEA,ZEB)= [ Poo(YEA | Z = 2)dH (2).

Then if we can only observe Y, the observations have the mixture distribution

Poou(Yed)= [Pyg(YEA |Z = 2)dH (2).

Examples:

(@)

(b)

()

Paired exponentials. Suppose that (Y=(Y,,Y;,)|Z =z)= (exponential
(z),exponential(fz)):

f|2)=0z%exp(—(zy, + 02y 2))110,00)(V 1) 110,50)(V2)
and suppose Z=H on R*. Then

f(y)zf,,u,(y):[O°°az2exp(—z(yl +0y,))dH (2);

see e.g. LINDSAY [53]. Here 6 is a parametric component and H a non-
parametric component of the model, and the mixed distribution is
parametric while the mixing distribution is nonparametric. Generaliza-
tions of this model, including regression type models, have been studied
and advocated for use in modeling micro-economic data by HECKMAN and
SINGER [35].

Dependent proportional hazards or fraility models. Suppose that
(Y=(Y,,Y;,)| Z =z) has joint survival function

Po(Y1=y1,Y,2p,|Z =2)=[1 = Gi(p)F[1 — G2(n)F
with G =(G,G,) and suppose that Z=Gamma(r,A). Then with 8=(»,\),
AY
A+ A+ M0

where A;=—log(1—G;), i =1,2. In this case the mixed distribution is
nonparametric while the mixing distribution is a parametric family. This
model, which serves as an alternative to (a), has been studied by CLAYTON
[16] and OAKEs [63], and has been generalized by GiLL [28]. Related
regression models are discussed by RIDDER and VERBAKEL [68] and
ELBERS and RIDDER [25].

Errors in variables models. Suppose that X =(Y,Z) with

Y1:Z+€1
Y2:a+,BZ+£2

Pog(Yi=y,,Y,=y,) =



where Z=H (non-Gaussian) and €=(e;,&;)=N (0,Z). The resulting mix-
ture model is an errors in variables regression model. Consistent maximum
likelihood estimates were obtained by KIEFER and WOLFOWITZ [42], but
lower bounds for estimation of (a,B) together with asymptotically efficient
estimates attaining the bounds were first obtained by BICKEL and RITOV
[9].

(d) If (Y |Z =z)= exponential (z) and Z=H, then

Pu(Y=y) = fowexp(—yz)dH(z).

Estimation of H via nonparametric maximum likelihood methods in this
and more general situations has been considered by LAIRD [45] and
JEWELL [39]. While the estimates are known to be consistent, little 1is
known about the efficiency of the estimates or their rate of convergence.

Other results concerning mixing models and efficient estimation have also been
obtained by LAMBERT and TIERNEY [46], [47], and by HAS'MINSKII and IBRAGI-
MoV [34].

2.2.3 Censoring models. (F). These models are derived from other models of

one of the above types as follows: Suppose that X=P ; €P, and suppose that

T is a many-to-one function on the sample space X of X. Then we can observe

only X"=T(X)=Py .

Examples:

(a) Mixing. The mixing models of E are censoring models with
Y=rzZi=r,

(b) Random right censorship. In this type of censoring, which has received
much use in survival analysis, X =(X1,X3)=T(X,,X,)
=(X,/\X1,1jx,<x,)- Random right censoring meshes extremely well with
Cox’s proportional hazards regression model as discussed in D(e). On the
other hand, however, this type of censoring can make estimation quite
difficult. For example, estimation for the linear regression model D(b)
with arbitrary right censoring of the dependent variable has been con-
sidered by MILLER [61] and by BUCKLEY and JAMES [13]; see HALPERN
and MILLER [60]. Ritov [69] has, in spite of the difficulties, computed
information lower bounds and produced asymptotically efficient estima-
tors achieving the bounds. TIBSHIRANI [75] considered a version of this
censored regression model with the linear (parametric) regression function
replaced by a smooth regression function.

(¢) Convolution. Here X' =T(X,,X,)=X,+X, where X, and X, are
independent. The traffic model of BRANSTON [10] is a model which results
from this convolution type of censoring combined with a simple mixture
model.



2.2.4 Biased sampling models. (G). Suppose that X=P ; €P, a semiparametric

model. Then suppose that K;(x), i=1,...,s is a collection of known non-
negative biasing kernels and that \;,, i=1, ... s is a probability distribution
on {1,...,s}. Then the biased sampling distribution corresponding to Py,
K=Ky, ....K),and A=(A, ... A)) is
J Kix)Po,6(dx)
Poga(XeA I =i)= A 6)
J Ki(x)Po 6(dx)
fori =1, ...,s. Here are some examples of this type of model.
Examples:
(a) Vardi’s selection bias model. Suppose that Py;=G and K, ... K, are
biasing functions with fK,-dG<oo for i=1,...,s, and A,=0 satisfy
2 A=1 Then
[ KidG
Po(XeAl=i)="4 A i=1,...,s
J KidG

VARDI [78] gives a condition which guarantees existence of the non-
parametric maximum likelihood estimate of G. The particular case with
X=R', K,(x)=1,K,(x)=x, which involves the length-biased distribution

f Xde(y) / 1 corresponding to G was studied by VARDI [77], and the
further special case with A; =0=1—A, was considered earlier by Cox [21].
Consistency, asymptotic normality, and efficiency of Vardi’s non-
parametric maximum likelihood estimator are addressed in a forthcoming
paper by GiLL and WELLNER [29].

(b) Choice-based sampling models. Suppose that X=(Y,Z), where Z=H is a
vector of covariates, and (Y |Z =z)=Multinomial,(1,p(6,z)) (where k
denotes the number of cells and the number of trials is 1); we will write

[Y =y] for the event that outcome y occurs, y =1, ... ,k. A frequently
used model for the p’s is the multinomial - logit model with
exp(6,z)
PG(Y :y |Z = Z) :py(a,z) — -k_y—’
> exp(f,2)
y'=1

but in any case this part of the model is parametric; the nonparametric
part of the model is G. To get a ‘choice-based sampling model’, let
Ki(x)=Ki(y,z)=1p(y), i =1,...,s where D, ..., D, are known subsets
of {1,...,k}. Then the biased sampling model (2) becomes

L0, 0IPo(Y =y | Z =2)dG ()
k 1.
[ S 1p()Pe(Y =y |Z = 2)dG(2)

y=1

Pyo(Y =y,ZeB,] =i)=

10



This type of model has received considerable use in econometrics; see
CossLETT [20] for some history and further references. Estimation for this
model was considered by MANSKI and LERMAN ( Econometrika 45 (1977),
1977-1988). The efficiency of their estimators of § and generalizations were
treated by COsSLETT [20]. In general the ‘choice functions’ or biasing ker-
nels may depend on both y and z; see MANSKI and MCFADDEN ( Struc-
tural Analysis of Discrete Data (1981), MIT Press).

(c) Truncated regression models. Suppose that X =(Y,Z) with Y=0Z+e
where e=G with density g and Z=H are independent. Thus the basic
semiparametric model is a linear regression model with unknown error
distribution G. If s =1 and K(x)=K(»,2)=1(—w,y,)(¥) Where yo is a fixed
constant, then

" (7w~y0]nAg(y — 0z)dydH (z)
ff g(y — 0z)dydH (z)
(7°°v)’n]

This truncated regression model has been investigated by BHATTACHARYA,
CHERNOFF, and YANG [5]. Motivated by a controversy in astronomy con-
cerning Hubble’s law, they constructed n-consistent estimators of the
regression parameters 6. Further results for this model have been obtained
by JEWELL [41], who also gives additional examples. JEWELL [40] has also
considered estimation for generalizations of this model with s=2
corresponding to stratified sampling on the dependent variable Y.

Pyos(YeA,ZeB) =

3. BOUNDS FOR ESTIMATION

Lower bounds for the variances of estimators play an important role in statisti-
cal theory, setting a baseline or standard against which estimators can be com-
pared. In their classical form such bounds assert that any unbiased estimator
6, of 8 has variance no smaller than (n/ (0))"'=b() / n:

Var,(8,]= 2@
n

In other words b() /n is the smallest variance we can hope for in an unbiased
estimator 6, of 6. If 6, is an estimator which asymptotically achieves the bound
(in the sense that \/ﬁ(ﬂi‘())-edN (0,b(6))), then we say that 05 is asymptoti-
cally efficient. 1If the statistician uses an estimator , which is inefficient, then
he has not used the data to best advantage and is essentially wasting observa-
tions. Hence if 0?, is another estimator with \/;(0:—0)—>dN (0,a(6)) where
a(9)=b(6) necessarily, then the limiting ratio of sample sizes which yields
equal standard deviations (and hence also equal variances) of 6, and 02 is
called the asymptotic relative efficiency,_e,p of 6, with respect to 8,; evidently
e, =b(0) /a@)<1. If the estimato;bﬁz has asymptotic re}%tive efficiency 1/2
relative to an (efficient) estimator #, and the estimator 6, requires n, =100

11



observations to yield a given variance, then n,=200 observations will be
needed to achieve the same variance using the inefficient estimator 6,,; half the
data are ‘wasted’ by the use of 6. Thus in the search for ‘good’ estimators and
other inference procedures, statisticians are interested in answers to the ques-
tions: A. How well can we do? What are the lower bounds for estimation in
the model at hand? B. How can we construct efficient estimates, i.e. estimates
which achieve the bounds?

Our aim in this section is to briefly survey classical (Cramér - Rao) and
modern (Hajek - Le Cam) bounds for estimation in ‘regular’ parametric
models. The Hajek - Le Cam approach has led to the development of lower
bounds for estimation in nonparametric and semiparametric models. Bounds
of this type have been established by BERAN [3], KOSHEVNIK and LEVIT [43],
LeviT [52], MILLAR [57], [58], [59], PFANZAGL [64], and BEGUN et al. [1]. We
give a brief introduction to these bounds for semiparametric models at the end
of this section. A thorough treatment will be given in the forthcoming mono-
graph by BICKEL, KLAASSEN, RITOV, and WELLNER [7].

3.1. Cramér - Rao lower bounds
First consider the case of a ‘regular’ parametric model: suppose that
Xy, ..., X, are iid PyeP=(P;:0c0) where ® CR is open, that P is dom-

dP
inated by a (sigma-finite) measure p on X, and let p (-,6)= y Z for 6 ©. Then

the classical log-likelihood of an observation X is

16.X)=logp (X, 6),
the scores vector 1 is

L 0 I
p(X’o)(aalp(X,ﬂ), B a6,‘119(/\(,6’)) .

16, X)= v, X) =

and the Fisher information matrix for 6 is

1(6) = E4[I(6, X)l(8,X)7].

Assume that 7(6) is positive definite so that 7() ' exists.
One form of the classical Cramer-Rao inequality for unbiased estimates
aTH,, of a"8, where a is a fixed vector in RY, is:

A - aTb 2
nVargla"0,]=a"1(0) 'a :EgWB’ZTLIw)Lb (1)

If we focus on estimation of the first component 6, eR' of 6, it follows
immediately from (1), the definition of 7(6), and standard L,-projection or

12



regression theory that

b2
nVarg[6, 1= sup ——— 1'(9) )
“bTI(0)b
_ 1
R‘iinf_ Eo[il = C2i2 N Cdid]z
1 _ 1

10(0) — 12O)n' @) 11,6

where
B 1,,(0) 1,,(0)
IO= 11,0 1,0

denote the partitions of I(f) and 1(6)" ' correspondmg to the partition of

L 111(0) 112(0)
121(0) 122(0)

6=(8,.63)" with 6, —(02, ...,0,)". Thus when 6, is the parameter of interest
and 6, =(0,, . . .,0,)" are nuisance parameters, the effective information 11, (6)
for 8, is
" _ -*2
InO0) =1y — Ip0n' Iy = E¢(ly), 3

where the efficient score function i for 0, is

=i — 112", =1, —1q, |[iz]) (4)
and the efficient influence curve il for estimation of 6, is

=o', (5)
so that

Ey) =110 =1"(0).

It is easily seen that the effective information [/ 11 for ) is just the squared
length of the component I, of 1; which is orthogonal to b, .. . ,l; in Ly(Pg):
in other words, the efficient score function is obtained by subtractmg from 1,
its projection H(ll l[lz]) Figda' 12 on the space [|2] spanned by b, . . ld in
L,(Py).
If the nuisance parameters 8, =(0,, . . . ,8,)" are known, the bound (2) may
be replaced by B

nVarg[él]>7”1(—0), (6)

and, of course,

10O)=11,0) =1, — 215"y

13



where equality holds if and only if
Fig =0 =0 orifl hlly,. .. Jyin Ls(Py). (7

Thus lack of knowledge of 6,=(6,, . . . ,0,)" decreases the information for 6,
unless (7) holds; in this case the lower bounds (2) and (6) agree, suggesting
that 6, can be estimated as well when 6, is unknown as when #, is known.
This possibility was recognized by STEIN [71] in a paper which initiated the
theory of adaptive estimation.

3.2. Hajek - Le Cam lower bounds
Two different but closely related asymptotic formulations of the classical
Cramér - Rao lower bounds have proved useful: One is the convolution-type
representation theorem of HAJEK [32] and LE Cam [48] which has been further
developed and applied by BERAN [3], [4] and MILLAR [59]. The other is the
local asymptotic minimax approach; see HAJEK [33] for a nice exposition and
history, MILLAR [58], and LE CAM [49] for additional remarks.

Both types of lower bounds are formulated in terms of locally asymptotically
normal families: Suppose that X=(X,,...,X,)=P,¢ has density p,(-.0),
0O CRY, and set -

1,(6) = logp,(X.6).
If ,=60-+hn"'/2, so that
ln(an) - ln(o) = log[[’n({’an)/pn(zaa)]ﬁ

then P=(P, 4:0€0} is locally asymptotically normal (LAN) at 6 if there is a
vector of L,(Py) functions 1,,(f) and a nonsingular matrix /(¢) such that, with

L(0,) — 1,0) = 1,07 h — ThTIO)h + R, (0.h). (8)

it follows that, in P, 4-probability,
(1) R,(6,h)—,0 uniformly on bounded A-sets, and
(ii) 1,(6)—4N (0.1(8)).

Thus l,,(H,,)—l,,(ﬂ)—wN(—%oz,oz) with 6>=hTI(0)h. In ‘regular families’ P

(with 1id observations) i,,(ﬂ)zn_l/ ZEf':li(ﬂ,X,») where 1 is the scores vector
(for n =1) and 1(6) is the information matrix. B

Because of our interest here in the parametric component 6 of a semi-
parametric model P={P,;}, we formulate versions of the convolution and
asymptotic minimax bounds for the first component 6, of 6.

A sequence of estimators T, of 6, is regular at 6 if, under Py

V(T — 01,)—a T

for every 6, =0+n"'/2h where the distribution I(T) of T does not depend
on h.
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TueoreM 1 ( HAJEK, 1970). Suppose that P is LAN at 0 and that T, is a regu-
lar estimator with limit distribution 1{T ). Then

Tl ;Zl + W] (9)
where Z =N (0,1 / I},(8)), 1},(0) is as in (3), and W is independent of Z,.

Thus any regular estimator 7', of 8, must have a limit distribution which is at
least as dispersed as N (0,1 /1 11(8)), and it makes sense to call a regular esti-
mator T, asymptotically efficient if it converges in distribution to Z; i.e. if
W] =01in (9)

Now suppose that w:R' >R " satisfies:

(i) w(x)=w(—x) for all xeR';

(i) w(0)=0, w(x) increases in x=0;

(ili) Ew(0Z)<co for all 6>0 where Z=N(0,1).

THEOREM 2 (HAJEK, 1972). Suppose that P is LAN at 0 and that w satisfies (i) -
(iii). Then, for any estimator Ty, of 0,
lim liminf _ sup  Eqw(Vn(T\, —0,)=Ew(Z)) (10)

M- n—oo nlg, —0l<M

where Z,=N (0,1 / I}, (0)) as in theorem 1.

If the uniformity in /4 in (i) of the definition of a LAN family is relaxed to just
pointwise convergence, then theorems 1 and 2 continue to hold, but the
bounds may not be attainable. Furthermore, if attention is restricted to regular
estimates, then (10) holds without the supremum on the lefthand side.

3.3. Bounds for semiparametric models
The Hajek-Le Cam convolution and asymptotic minimax bounds stated above
for a parametric model Py continue to hold in a wide range of regular non-
parametric and semiparametric .models. All of the extensions make use, in
some form, of the tangent space P (at (6,G)) for the model P. For a parametric
model P, the tangent space Py (at #€©) is just the linear subspace [, . . ., 1]
of L,(Py) spanned by 1, ... ;. For a semiparametric model
P={(Py;:0c0 CR? ,GeG), the tangent space PCL;(Py ) is simply the set of
all possible score functions of one-dimensional regular parametric submodels
(at (6,G)).

For 6,€0,G,€G, let Py and P; denote the submodels of P with G =G,
and 6=0, respectively:

PgE{Po_GUEPZHEG}, P(;E{Pgo‘GEP:GEG}.

If P, and P; denote the corresponding tangent spaces, then Py®P; CP and
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typically equality holds. Here P plays the role that [l, . . . 1] played for the
parametric model Py, and the efficient score function for 8 extending (4) is:

g = Iy — I, | P;) (11)

so that i;J_PG in L,(Py ), and the effective information for 6 in the model P is
* .‘.tT

1 (0) = Eg;(gly ). (12)

In the special case when l; :igJ_PG, then I"(8)=1(0)=E 0'G(igl‘;) and adapta-
tion to G is possible; this is the situation emphasized by STEIN [71] and BICKEL
[6].

Now versions of theorems 1 and 2 for the parametric component 6 of the
semiparametric model P continue to hold with 6, replaced by 6 and 1 /1, (8)
replaced by 17(6)"! where I7(0) is given in (12); see KOSHEVNIK and LEviT
[43], LEvrT [52], BEGUN et al. [1], and PFANZAGL [64], [65]. A complete treat-
ment will be given in BICKEL, KLAASSEN, RiTOV, and WELLNER [7].

4. CONSTRUCTION OF ASYMPTOTICALLY EFFICIENT ESTIMATES: TWO APPROACHES
Suppose that P={Py ;:(0,G)e® X G}= {P;:0=(6,,6,)€0, X0, )} with ©,=G
is a ‘regular’ semiparametric model. A first stage in analyzing the model is to
calculate scores for 6 and information lower bounds as outlined in Section 2
above if possible. A second step is to construct estimators (6,,G,) which are
Vn-consistent. A third stage is to find estimators (6,,G,) of (8,G) which are
efficient in the sense that they achieve the information lower bounds (perhaps
in the weakened sense of convergence in distribution for fixed (6,G) rather
than locally uniformly as required by the definition of regular estimates given
in Section 3). R

Two classical methods of constructing asymptotically efficient estimators 6,
in regular parametric models are the methods of maximum likelihood estima-
tion and Bayes estimation; see LEHMANN [51] and IBRAGIMOV and HAS'MINSKII
[38], though, as LEHMANN makes clear, the emphasis in likelihood estimation,
even in parametric models, should be on the scores and score equations rather
than on maximizing likelihoods per se since the scores often lead to efficient
estimates even when likelihoods themselves are unbounded.

Our aim here is to outline two useful approaches to the construction of
asymptotically efficient estimates of the parametric part 8 of a semiparametric
model P.

4.1. Method 1: Efficient score equation

Suppose that it is possible to calculate the efficient score function 1] for 6,
. ¥ o . —l . o . . .
L =l —Inln' L =1 —II(, |Py,)

and the effective information

I3 (0) = Eoi)).
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Furthermore, suppose that 6, is a Vn-consistent estimator of 6,
\/;(0,,—0) = 0p(1). Then define 6,, to be either a solution of the efficient
score equation

no.x A —
S 1(814,02,, X)) = 0,
i=1
or a one-step approximation thereof:
'l oF —
S (0

B1p =010 + — (1)
I}(6,)

- 1 n ~ =
:gln F ;Ei:lll(an"xi)

where 1, is the efficient influence curve for 6,, see (3.5). Additional smoothing
may also be required in forming the sums in (1), but we have omitted it here
for simplicity. Once an efficient estimator 6, of 8, is found, method 2 can
often be used to construct an efficient estimator of .

While no general theorem yet exists, the estimator ), defined above (or
variations thereon involving suitable smoothing and truncation) has been
shown to be asymptotically efficient in several important problems, a notable
example being the errors in variables models studied by BICKEL and RiTOV [9].
Roughly speaking, the fact that 1, is orthogonal to b, . . ., . the scores for 6,,
permits the use of an inefficient estimator ,, to estimate out the ‘nuisance
parameter’ 6,. This should be contrasted with solving (or approximating by a
one-step solution)

n . =

S1(6,,6,,) =0

i=1
for 6,, a method which is known to produce inefficient estimates of 6, in gen-
eral; see e.g. GONG and SAMANIEGO [30].

The main drawback of the method is that it requires calculation of the
efficient score function ;. Thus the method depends heavily on being able to
calculate projections onto [(L]1="Ps, =P, which often neces§itates calculation of
the inverse of the information operator_i;i_z =1,,. When i‘ Zil SO i1 is orthog-
onal to [;]=Py,, then ‘adaptation’ with respect to 6,=G is possible, and
method 1 becomes essentially the method used to construct efficient estimates
in this case; see e.g. STONE [73] and BICKEL [6].
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4.2. Method 2: Efficient estimation of 6, for known 6,

Now suppose that an efficient estimate 6,, of 6, is available if 0, is known. We
denote this estimator by 6,,(6,) because it depends on the ‘known’ value of 6,.
Substitution of this estimate of 6, into the ordinary score for 4, (as if 6, were
known and equal to 6, yields the ‘condensed’ or ‘concentrated’ score equation

n. ~
2 l1(01 ,02n(01 )"Xl) =0
i=1
which we can solve for 6,=#,. Or, if El,, is a Vn-consistent estimate of 6,, a
one-step approximation thereof:

1 LN ~ =
; Z ll(aln302n(0ln)’/\,i)
i=1

éln = aln +

TP ; 2
— E ll(oln’02n(01n))
Ri=1
as in the case of (1), more smoothing may be needed in forming the sums in
(2), we have omitted it here for simplicity. This is a frequently used device in
parametric models, but the method is equally useful for semiparametric
models. While no general results concerning the estimator (2) seem to be
known, this method has been used by RiITov [69] to construct efficient esti-
mates for censored regression models.

5. PROBLEMS

Statisticians have a large, well-stocked tool-box for dealing with classical

parametric models, and a growing companion set of tools for handling com-

pletely nonparametric models. The choice of tools for dealing with the rich
middle ground of semiparametric models is, however, still relatively limited,
and the few available tools are not all well suited for the job. Many important

problems remain. Here is a partial list: o

(a). Calculation of lower bounds. 1f the projection II(ly | P,) in_ Section 3 can
be calculated, then so can the efficient score function 1y, the effective
information 17, (), and the efficient influence curve l;. In many models
this projection is simply a conditional expectation, and hence can be cal-
culated easily; but in other models such as the dependent proportional
hazards model of 2.E(b) the projection calculation is apparently intract-
able. More systematic methods, possibly involving iterative, numerical
techniques, are needed.

(b). Construction of efficient estimates. HUANG [36] has made a preliminary
study of method 1 outlined in Section 4, but general results concerning
the asymptotic efficiency of methods 1 and 2, or variations thereof involv-
ing more smoothing, are still needed. Other methods including minimum
Hellinger distance estimates, minimum Kullback-Leibler discrepancy esti-
mators, and maximum-likelihood estimators obtained via EM-algorithms
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(©).

(d).

(e).

(.

all need further development and sharpening in the context of semi-
parametric models. Efficient estimates are still unknown for many of the
models given in Section 2.

Identifiability and regularity criteria. For many semiparametric models,
further work on identifiability and conditions for regularity of submodels
is still needed before work on estimation can get underway. For examples
of such studies, see the papers by HECKMAN and SINGER [35] and ELBERS
and RIDDER [25] concerning identifiability issues for the models of 2.E(b)
and 2.E(c). Classical regularity investigations of translation and
parametric models, which carry over to many group models are given by
HAJEk [31], [33].

Hypothesis testing. As yet no adequate theory of hypothesis testing exists
for semiparametric models. One type of testing problem concerns testing
hypotheses within a nested family of semiparametric models: for example,
consider testing A, =yA, for some 0<y<oo in the Clayton-Oakes model
of example E(b). Or, of interest in survival analysis, test the assumption
of a proportional hazards regression model against some general family of
alternatives. Another rather different testing problem would involve test-
ing non-nested semiparametric models against one another, e.g. a Cox-
type regression model against a more classical linear regression model or
perhaps a semiparametric mixed regression model.

Asymptotics for estimates based on smoothing. Construction of efficient
estimates for many of the models discussed above require smoothing tech-
niques involving density or conditional expectation estimators. While the
asymptotics for such smoothing processes are available, they need further
development, study, and refinement to ease their systematic application to
the construction of efficient estimates in a wide range of semiparametric
models.

Robustness; connections and problems.  Efficient estimation in semi-
parametric models has many interesting connections with questions of
robustness. Just as classical robustness theory has focused on neighbor-
hoods of parametric models (often a one - sample location model), a gen-
eralization suggested by BICKEL and LEHMANN [8] concerns neighbor-
hoods of semiparametric models, which they called ‘nonparametric models
with natural parameters’. For example, are the partial likelihood estim-
tors for the Cox proportional hazards model robust in some appropriate
sense (with respect to the assumption of proportional hazards)? As more
experience is gained with efficient estimates for semiparametric models,
this more general type of robustness outlined by BICKEL and LEHMANN [8]
can begin to be considered. Many challenging problems remain.

Acknowledgments: 1 have profited from several helpful discussions concerning
semiparametric models with Peter Bickel. In particular, I learned of ‘method 2
in Section 4 from him. I also owe thanks to Richard Gill for helpful comments

concerning Sections 1 and 3. R.D. Martin suggested example 2D(f).
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Numerical Time-Stepping in Partial
Differential Equations’

Jan G. Verwer

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. INTRODUCTION

The numerical solution of initial-value or initial boundary-value problems in
partial differential equations (PDEs) has been studied for a considerable time
already. Thanks to widely available computer facilities many important and
interesting PDE problems from the engineering and physical sciences are
nowadays solved by numerical methods. ~An outstanding field of applications
is that of fluid dynamics, for example. In fact, computational fluid dynamics
is still growing and seems to develop itself as an almost independent and self-
supporting branch of science lying between mathematics and physics.

Due to the wide diversity in PDEs, there are many features which play a
role in the construction and analysis of numerical methods: hyperbolic or par-
abolic character, number of space dimensions, nonlinearities, large gradients in
the solution and discontinuities (shocks), shape of region, etc. In this note we
will present a brief introduction to time-stepping schemes for time-dependent
problems. Our aim is a presentation accessible to the non-specialist in numeri-
cal methods. We shall discuss the construction of some simple numerical
time-stepping procedures and their stability. It should be emphasized that no
part of the material presented here is new. In fact, the schemes and their pro-
perties we discuss have been known in the literature for a considerable time
already. However, we also stress that these schemes, in spite of their simplicity,
remain of continuing practical interest.

As a concrete example we shall use the linear convection-diffusion equation

1. Report of a lecture presented at the General CWI-colloquium
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u+vVu=elu, >0, xeQCRY, (1.1)

where (scalar) u(x,?) is the convected and diffused variable, v=(v,, . .. ,v,)T is
the convecting velocity vector (here constant), and €0 is a diffusivity parame-
ter. We recall that V is the gradient operator and A the Laplacian.

2. EXPLICIT AND IMPLICIT SCHEMES
For the time being we consider a general, linear time-dependent PDE of the
form

u,=Lu, >0, xeQCR? 2.1

If we define the space-operator L by Lu=—(v-V)u+eAu, the convection-
diffusion equation (1.1) is obtained. We will not specify boundary conditions
for (2.1) as we do not discuss their influence here. The development of the
time-stepping schemes will be carried through as if we were studying the
initial-value problem.

Time-stepping schemes for the numerical integration of the evolution equa-
tion (2.1) are step-by-step methods. A step-by-step method proceeds from an
approximation at ¢ =, one step of size 7 to an approximation at f=t,
where 1, =1, +7. The choice of a scheme for (2.1) depends on various prob-
lem features as we mentioned in the introduction. A fundamental property of
any scheme is that of stability. In this connection it makes sense to classify
time-stepping schemes under three headings:

a) explicit schemes;
b) implicit schemes;
c) explicit-implicit schemes;

which we shall use for the purpose of this presentation.

In the remainder of this section we shall discuss a simple example of an
explicit and implicit scheme. Subsequently, in section 3 we shall present an
interesting example of type c.

2.1. The explicit and implicit Euler scheme

To begin with, we shall discuss the construction of the forerunners of all
integration schemes, viz., the explicit and implicit Euler rule. We note that the
notions employed are of a much wider applicability. Let u be a solution of
(2.1). Suppose that u is sufficiently differentiable and consider the Taylor
expansion of u(x,t,+7) about #,:

U by )= (6, by) + (6, 0) F 3 P (1) + 2.2)

When stepping from #, to £,,; any scheme tries to approximate, in some way
or another, a truncated part of this series. Let us truncate after two terms:
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u(x,t, +r)=u(x,t,) Tu (X, t,). 2.3)

This is an approximate relation between exact solution values. By replacing
this approximate relation by an exact one, but now between approximate solu-
tion values, a numerical scheme is obtained. This scheme is then said to be
consistent of order one (in time) since (2.2) is approximated up to O(7*). The
replacement itself determines the actual type of scheme.

Using the differential equation (2.1), (2.3) can be rewritten to

u(x,t, + )= u(x,t,) + TLu(x,ty). 24
We now define the approximation U"(x) for u(x,t,) by the exact relation
Utl(x) = U'(x) + LU (x), (2.5)

which is the simplest of all integration schemes, viz., the explicit Euler rule.
Note, however, that U" is still space-continuous and L a space differential
operator. To get a fully discrete approximation we next replace L by an
appropriate finite difference operator Ly [1,11,13,14,15] so that (2.5) is replaced
by

urtt = Up + 1L, Uj. (2.6)

The precise form of Lj is not of interest at the moment. Here we only note
that U} is a grid variable and approximates u at the space-time point (X;,)
where x; is a grid point from the finite difference grid €, covering the space
domain Q. We observe that L,Uj is always a linear combination of grid values
defined on a stencil around x;. If the space dimension d is greater than 1, then
j is a multi-index.

At each step with (2.6) an approximation error is made, the so-called local
discretization or truncation error, which is accumulated during the stepping for-
ward in time to the so-called global discretization error

€ = u(xjta) — U. Q2.7

The local error is found by recovering the truncated Taylor series (2.3) or 24
from (2.6). For this purpose we write down a perturbed version of (2.6), viz.,

u(xjyty 1) = u(xjsty) + TLyu(x;,t,) + (2.8)
T(L —Lh)u(xj’tn) + TP(XA,I,,)
:u(xj’tn) + Tul(xjatn) + Tp(-x"tn)-

Comparison with (2.2) shows that p(X;js1n)s which is the local error due to
Euler’s formula, satisfies

0, 10) = 3Tt (X;:1a) + O, 29)

which once more reveals the first order consistency of Euler’s rule. The quan-
tity
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a(x;,t,)= (L—Ly)u(x;,1,) (2.10)

is called the space truncation error. This error has nothing to do with the
time-stepping scheme and originates from the replacement of L by L,. If the
grid &, is refined, then a(x;,t,) should diminish accordingly. The (total) local
error of the discretization (2.6) of (2.1) thus is given by

B(xj.t,) = a(x),t,) + p(x),t,). (2.11)

Finally, if we subtract (2.6) from its perturbed version (2.8), we get by
definition of €} (2.7)

¢t = (1+1Ly)el + 1B(x)t,). (2.12)

The accumulation of the local errors B(x;,t,), 0<n<N —1, to the global
error € at a fixed time 7= N, is described by this recursion. The convergence
question, i.e., the question under which conditions on 7 and 4 the global error
€" at t=T will decrease and how fast, obviously turns out to be a stability
question. Loosely speaking, recursion (2.12) may be called szable if at each step
the amplification of €] is not larger than by a factor 1+ O(r). Of course this
depends on the metric used on the operator 1+7L,, and thus on L, and L.
The interested reader is referred to [15] where the convergence question is
extensively discussed. The notion of stability, in the sense of VON NEUMANN,
will be taken up again in section 2.2.

The time-stepping scheme (2.6) is called the explicit Euler rule. A scheme is
called explicit if the approximation at the new step point #,; is based only on
previous approximations. The appellation implicit becomes clear if we slightly
change (2.6) to the first order implicit Euler rule

Ut = Ut + LU (2.13)

Here, U} *! also appears in the right-hand side of the approximating equation
which essentially requires the inversion of the operator 1—r7L, at each time-
step. In practice, this inversion implies the inversion of an associated, well-
structured finite difference or finite element matrix [11, 12], which is carried
out either by some form of Gaussian elimination or in an iterative fashion. For
this reason one time step with (2.13) is more costly than one step with the
explicit scheme (2.6), especially if d>1. However, it still may be attractive to
use (2.13), viz., if stability restricts the step size value 7 in the explicit scheme.
In virtually all applications the implicit Euler rule is stable for all 70 (uncon-
ditional stability [3]). In section 2.2 we shall illustrate this for the convection-
diffusion equation (1.1). Finally, despite their low order of consistency, both
Euler rules are frequently employed in numerical practice. This is particularly
the case if problems are highly complicated as in computational fluid dynamics
(see, e.g., [2] and [9] for an application of the implicit and explicit scheme,
respectively).
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2.2. Von Neumann stability
A central theme in the development and analysis of time-stepping schemes is
that of stability. Consider again the explicit Euler rule and its error scheme
(2.12). Stability there was taken to mean that, in some metric the amplification
of € to €’ *! is not larger than by a factor 1+O(r). In practice it is usual to
insist on a stability condition which guarantees an amplification factor not
larger than 1, since this best mimics the behaviour of the true solution of the
problem, at least for the convection-diffusion equation (1.1). For constant
coefficient problems, such as (1.1), most common is a Fourier analysis as pro-
posed by VON NEUMANN (see [15]). Here we illustrate this analysis for equa-
tion (1.1).

Unless otherwise stated we let d=1, so we consider the one-dimensional
problem

u, +vu, = €uy,, t>0, (2.14)
whereby we suppose that L, is defined by second order central finite
differences: x;=jh and [1, 11, 13, 15]

\4
LU = <5 WU =20+ Um0~ 3 Ui = ) (2.15)

For the sake of brevity it is convenient to introduce the finite difference opera-
tors

‘SZUj:UjH_zUj‘*‘Ujﬂ, HUj:(Uj+1_Uj—1)/2- (2.16)
Then the explicit Euler scheme (2.6) applied to (2.14) reads

+1 = Tege TV
Uit =1+ W 6 p H)Uj. 2.17)
Consider the convection-diffusion equation (2.14). Corresponding to the ini-

tial data u(x,0)= exp(iwx),i 2= —1,weR, the solution of (2.14) satisfies

w(x;,1,) = e e Hime) g% (2.18)

We see that the absolute value of the exponential is less than or equal to one
for all €=0,v€R, and any Fourier mode exp (iwx). The Fourier (or von Neu-
mann) stability method applied to (2.17) now consists of examining Fourier
modes

Ur =¢ge', (2.19)

and deriving conditions on 7 and 4 such that, in agreement with the behaviour
of the exponential in (2.18) the (complex valued) amplification factor § satisfies

1£] <1. (2.20)

If (2.20) is true, the time-stepping scheme is called stable in the (strict) sense of
von Neumann. The adjective strict refers to the fact that |§| <1 rather than
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[£1 <1+ O(r) which is the original condition [15]. Hereafter we will omit this
adjective. Obviously, for any method £ approximates the exponential in (2.18).
Here we do not discuss this further but concentrate on the stability question.

Some remarks are in order. Fourier analysis is based on the hypothesis that
the problem and its approximating scheme admit solutions such as (2.18) and
(2.19), respectively. Strictly speaking, Fourier analysis applies only to the
problem with periodic boundary conditions or to the pure initial-value prob-
lem on the infinite x-axis. Also, it is required that the initial function possesses
a Fourier series. Further, we take the wave number w continuous in R while
the given mesh actually allows us to consider only a discrete set. Loosely
speaking, the error made here is O(h?) and therefore we will follow precedent
and let w be continuous [15]. Despite these constraints, ‘the von Neumann
method is generally the best single technique for analysing the stability of
difference schemes. It should always be part of a stability analysis, even if
other techniques are also employed’ (quotation from [9], p.890).

On substituting the Fourier mode (2.19) into the difference scheme (2.17),
the value for §é=U7*1/ Uj is obtained. As a function of the phase angle 6=wh
it is given by

§=1—a(l—cosf)—icsiné, (2.21)

where

a= 2—627 (is called the diffusion parameter )

v (2.22)
= ( is called the Courant number )

Here we have used the simple properties
82" =2(cosf—1)e', He' =i (sinf)e'™ (2.23)

We are now ready to establish conditions on the diffusion parameter a and
the Courant number ¢ in order that the explicit Euler - central difference
scheme (2.17) is stable in the sense of von Neumann. It can be shown that
[£1<1 for all 4 if and only if

e Lasl (2.24)

Hence this pair of inequalities is necessary and sufficient for stability in the
sense of VON NEUMANN (see [9] and the reference therein) The diffusion barrier
a<1 implies that

o e, (2.25)
2¢

which is a severe restriction on the time-step 7 if € is not small. Such a
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restriction on 7 is found for virtually all explicit methods and unacceptable for
numerical practice. Inequality (2.25) is acceptable only if € is small, hence if
|v|>>e (dominating convection term). Unfortunately then the convection-
diffusion barrier c?<a, or

r=X, (2.26)
v
spoils the game. In fact, in the absense of diffusion (e=0) we always have in-
stability illustrating that for the purely hyperbolic problem the explicit Euler -
central difference scheme is of no use at all.

Similar negative results are found for the multi-dimensional problem (1.1).
For full details we refer to the interesting and previously mentioned paper [9]
by HINDMARSH, GRESHO and GRIFFITHS. They present a comprehensive study
regarding the numerical stability of the simple explicit Euler formula combined
with various spatial discretizations, including finite elements. In the next sec-
tion we shall discuss an alternative scheme, nearly as simple as explicit Euler,
which can be used with standard central differences and does not suffer from
the convection diffusion barrier ¢* <a.

To contrast the explicit Euler-finite difference scheme with its implicit coun-

terpart (see (2.13))
= 6 - e

let us compute the amplification factor £ for this implicit scheme. Using rela-
tions ( 2.22 and 2.23) we get

£¢=(1+a(l—cosf)+icsinb) ', (2.28)

and an elementary calculation shows that |£| <1, for all 4, for any nonnega-
tive value of the diffusion parameter a and any value of the Courant number c.
Consequently, stability limits such as (2.25) and (2.26) do not exist for the
implicit Euler - finite difference scheme. The scheme is said to be uncondition-
ally stable.

For numerical time-stepping purposes the property of unconditional stability
is ideal in the sense that we then have the freedom to adjust the stepsize 7
completely to the accuracy (in time) desired. Unfortunately, as we mentioned
before, implicit steps may be rather expensive when compared with explicit
steps, particularly so in two-dimensional and three-dimensional spaces. In
practice, the choice of using explicit or implicit time-stepping is generally
influenced by various factors, e.g., ease of programming (explicit schemes are
invariably easier to apply than implicit ones) and computer facilities (available
memory storage and central processor time). No doubt problems exist which
must be treated implicitly just for the sake of numerical stability. In other
cases, however, implicit time-stepping may be a bit superfluous and then
appropriate explicit or explicit-implicit schemes can be quite useful.
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3. AN EXPLICIT-IMPLICIT SCHEME

The appellation explicit-implicit refers to the fact that such schemes are based
on a combination of explicit and implicit calculations. The objective of such a
combination is always to reduce the computational effort of a fully implicit
step to an acceptable level and in such a way that the resulting combination
still offers attractive stability properties (in the literature one often uses the
phrase splitting instead of explicit-implicit). Here we shall present an interest-
ing example, viz., the odd-even hopscotch scheme which combines the explicit
and implicit Euler rules (2.6) and (2.13). This combination was introduced by
GORDON [4]. GOURLAY [5,6] has made a thorough study of Gordon’s combi-
nation and has suggested various generalizations (see also [7], p.777 for more
references).

Consider the explicit Euler - finite difference scheme (2.6) and its implicit
counterpart (2.13). Let us suppose that the problem is one-dimensional (just
for simplicity of presentation) and that L, is a 3-point operator, i.e., L, U; is a
linear combination of U;_,U;,U;+,, for example the convection diffusion
operator (2.15). Next consider the time-space mesh in the figure below

moOmo
omom
momo
omow
moOmOo

—

where the mesh points have been divided into two sets of points, viz., the
points E where (n+j) is even and the points O where (n+;) is odd.
GORDON’s idea was now to use the explicit scheme at the odd points, for some
fixed value of n, and then, for the same value of n, the implicit scheme at the
even points:

1=U) + 1L, U} , (n+))odd, (€R))
l=Ur +1L, U, (n+)) even. 3.2)

S &

For example, for (2.15) this can be written as

+1
Ui

U;+;_;(U;H —207 T U ) — (U — Uf-) (la)

b |

S

Up+ S U =205 4 U = (U~ Uf1)(3.2)

Because first all U;-'“, where (n+1+ ) is even, are computed, for a fixed n, it
immediately follows that Gordon’s scheme (3.1a) - (3.1b) is essentially explicit
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and therefore easy to program. Note that at the following time step the roles
of odd and even formulas are interchanged. GOURLAY has introduced the
name hopscotch for this type of explicit-implicit scheme because of its progress
through the time-space mesh.

As observed by GOURLAY the scheme (3.1) can be reformulated in terms of
a single equation as follows:

pntl = Ut + 0L, UT + 10T LU (3.3)
J J J J i J

where 87 =1 for (n+)) odd and 67 =0 for (n+j) even. This formulation is
useful as a starting point for the von Neumann stability analysis which we
shall discuss now for the central difference operator (2.15).

Before we can apply the von Neumann stability analysis some preparatory
work has to be done. First we write down the step from 7, 4 10 1, +2

U}l+2___U;_1+1 +70;+1LhU}1+1 _+_7_07+2Lh(];_1+2’ (34)
and subtract (3.3) from (3.4):
Ut =2unt! = U + 1)L U T 18] L, U @3

This equation takes a particularly simple form at the even points since there
07 =67"2=0, viz.,

Uit = 2t = U}, (n+t))even. (3.6)
Note that this is a simple three-level extrapolation formula. To get a workable
three-level formula for the odd points the expression for U}’“ from (3.3) is
substituted into (3.4). Then, taking into account that for the odd points
97+1=0 and 67 =072 =1, we get

Ut = U+ 1L, U+ LU, (nt)) odd (3.7
Finally, by inserting (2.15) and the relation (3.6) for the even points, we arrive
at the following three-level scheme at the odd points:
27
h2
_ T am+l _ pm+l ;

h U — Uity , (nt)) odd

Bt =1+ U — Ut + Up + Uit (3.8)

J

If we ignore the start and the completion of the odd-even hopscotch process,
we see that this process produces numerical solutions at the complete set of
uncoupled odd points which satisfy the three-level scheme (3.8). This three-
level scheme is known as the leapfrog-Du Fort-Frankel scheme. This equi-
valence is employed for the von Neumann stability analysis of the hopscotch
scheme. Let us substitute the Fourier mode (2.19) into (3.8). We then find that
the associated amplification factor £ must be a root of the quadratic equation

(1+a)? —2acosf@—icsinf)é — (1—a)=0. 3.9)
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For von Neumann stability we thus want both roots of (3.9) on the unit disk
for all 6. Using well-known results [8,10] this is the case if and only if the com-
plex number

A=1—(1—cos#) —icsinf (3.10)

satisfies |A| =<1 for all 8. We see that A is of type (2.21) (with a=1) and we
immediately conclude that scheme (3.8), and thus also the odd-even hopscotch
- finite difference scheme (3.1) - (3.2) with L, given by (2.15), is stable in the
sense of von Neumann iff 7|v|<h or

& = 1, (3.11)

This is in marked contrast to the result (2.24) for the explicit Euler - central
difference scheme. We see that by alternating the explicit and implicit Euler
rules in the odd-even hopscotch way — a simple and essentially explicit pro-
cess — we are rid of the convection-diffusion barrier ¢?><a. Moreover, the
diffusion parameter « is no longer present in the inequality (3.11).

As we noted above, the scheme (3.8) is unconditionally stable for the para-
bolic part of the problem. Unfortunately, concerning this part the scheme
shows a deficiency with respect to accuracy. If we substitute » and let 7,h—0,
the scheme approaches

U+ vu, = eu, — e%un + O() + O(h?) + O(er*/h?). (3.12)

This implies that for 7—0, 7/h fixed and 7|v|<h, the numerical solution
approaches the solution of a wrong equation. It is plausible to expect that in
practise this deficiency is not very serious as long as eu, does not take too
large values. If it should lead to inaccuracies the most simple remedy is to
reduce the time step a little. One could also conceive of eliminating the term
erh ~%u, by an extrapolation device [16]. Finally we want to remark that the
hopscotch process can be equally well applied for all # in two-dimensional and
three-dimensional spaces. The only restriction is that L, allows the odd-even
uncoupling [5,6,16].
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The Seventh MTNS Symposium
Stockholm, June 10-14, 1985

J. M. Schumacher

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. THE CONFERENCE AND THE CITY

The Seventh International Symposium on the Mathematical Theory of Net-
works and Systems (MTNS) was held in Stockholm, from Monday the 10th to
Friday the 14th of June, 1985. The conference sessions took place in the Royal
Institute of Technology in the Swedish capital. The renowned institute is
located somewhat north of the center of the city, forming a large complex of
red brick buildings which offered the MTNS symposium a variety of lecture
rooms for the parallel sessions (of which there were often five or six), as well as
a simple but effective auditorium for the plenary lectures.

The MTNS conference takes place once every two years. It started out as an
informal meeting (now counted as the zeroth MTNS) organized by
R.W.NEwcOMB in 1972 at the University of Maryland, College Park. The first
two symposia were in fact held under the heading OTNS (Operator Theory of
Networks and Systems), but the name was changed to reflect the importance of
various other mathematical disciplines in network and system theory. The
MTNS symposium is now the leading conference in a field that might be
described as ‘Mathematical System Theory’ to distinguish it from its larger
neighbor, the more applications-oriented area known as ‘Systems and Control’.
The systems and control field itself is covered by many conferences, such as
the ones organized by the IEEE, INRIA, and IFAC.

One of the interesting features of MTNS is that it is a truly international
undertaking. There is no particular organization which is responsible for the
conference; rather, its continuity is ensured by an international committee of
scientists, chaired by PAUL A. FUHRMANN of the Ben Gurion University of the
Negev in Israel. The site of the conference is different each time, and the
preceding years have seen meetings at various locations in the United States,
Canada, the Netherlands, and Israel. For 1985, ANDERS LINDQUIST of the
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Division of Optimization and Systems Theory of the Royal Institute of Tech-
nology volunteered to organize the symposium. LinpQuisT did the job
together with CHRISTOPHER I. ByrnEs, whose home base is Arizona State
University at Tempe, Arizona. The Swedish-Arizonan cooperation resulted in a
smoothly-running conference.

For myself, it was the first visit to the Swedish capital. Stockholm is a
remarkable city, built on a conglomerate of islands, some larger, some smaller.
The situation called for a comparison with my home town, Amsterdam, which
is also a pretty watery place. I would formulate as a conjecture that the
number of bridges is smaller in Stockholm than it is in Amsterdam, but that
their total length is larger. On the other hand, I don’t hesitate to formulate as
a theorem (rigorously proven) that there are more places in Amsterdam than
there are in Stockholm where a person can have a beer after a hard day’s
work.

The seventh MTNS was the largest ever held. In the List of Participants, I
counted 285 attendants from 26 countries. The researchers from the United
States were most numerous (74), followed by those from host nation Sweden.
The third largest party came, and this is no surprise for those who know the
MTNS conference, from the Netherlands (25 participants). Groups of ten or
more researchers also came from France (18), Italy (18), the United Kingdom
(14), Canada (12), Poland (11), Israel (11), and the Federal Republic of Ger-
many (10). The List of Participants also mentions six Belgians, four Chinese,
four Japanese, and four Soviet citizens. The large size of the Dutch delegation
is an indication of the high level of activity that the small country by the sea
maintains in the field of system theory — or, at least, in those aspects of the
field that are traditionally emphasized at the MTNS symposia.

2. MAIN LECTURES
There were nine plenary speakers at the symposium, and the organization had
put the lecturers simply in alphabetical order. As a result, it was J. ACKER-
MANN from the Institut fir Dynamik der Flugsysteme in Oberpfaffenhofen,
West-Germany, who gave the opening talk. He discussed the problem of
‘simultaneous stabilization’: how to construct a single controller which will sta-
bilize several different systems (say, an airplane under different flight condi-
tions). Ackermann’s solution essentially came down to defining a parametrized
class of controllers, and using a heuristic scheme to look for a feasible solution.
There has also been some theoretical work in this area using heavy mathemati-
cal equipment. However, results of BYRNES and GHOSH giving a criterion for a
‘generic’ class of systems were put aside by ACKERMANN, who noted: ‘practical
cases are not generic’. What we have to learn from this remarkable statement
is, I presume, that one has to be very careful in assuming that sets looking ‘fat’
or ‘thin’ from a certain mathematical point of view correspond to situations
that ‘almost always’ or ‘almost never’ occur in practice.

One of the aspects I like about the system theory field is the fact that there
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is often a philosophical touch which helps to bear the weight of the technicali-
ties. Several of the plenary lectures exhibited this feature very clearly, and
among those the talk given by JAN C. WILLEMS of the University of
Groningen. WILLEMS presented some of his recent work under the title
‘Modelling, complexity and approximation of linear systems’. This work
addresses the field of system identification, which, roughly speaking, deals with
the problem of how to obtain a (dynamic) system model from observed data.
There are some basic issues here which, according to the speaker, still need a
fair amount of clearing up; ‘causality structure’, ‘complexity’, and ‘approxima-
tion’ are a few of the keywords in this context. The lecture was followed by a
lively discussion, and I think this is welcome in a field where perhaps too often
the approach is: select a model class, pick an error criterion, and compute
compute compute. This is not to say that one has to stop doing computations,
but certainly a complement is needed in terms of a discussion on the basics of
the field.

Notwithstanding the alphabetic order of the speakers, WILLEMS was fol-
lowed by two more main lecturers. W. MURRAY WONHAM of the University of
Toronto informed the audience about recent progress in the field of ‘discrete
event systems’, an area in which he himself was the first to initiate a major
research program, about five years ago. Discrete event systems, as defined by
WONHAM, are intended to describe certain types of decision situations, charac-
terized by a finite number of states which go ‘on’ or ‘oft” at irregularly spaced
points in time, influenced by internal dynamics as well as by so-called ‘super-
visory control’. These are rather untraditional objects to look at in a discipline
where people are used to work with rather neat differential or difference equa-
tions. Nevertheless, it seems that some analogies can be drawn, so that,
perhaps, new applications (such as production planning and control) come into
reach. It has taken some time before a firm structure developed in this new
field, but now there are at least some algorithms which can solve certain types
of problems, be it that the amount of computation time needed seems to easily
become a hurdle. Recently, there has also been a group at INRIA in France
which considers discrete event systems in a setting that is somewhat different
from Wonham’s. It may well be that here we have a research area of which we
will hear a lot more in the future. One can, at least, recognize a trend away
from the vector space or manifold structures which have pervaded the system
theory field for so long.

As was to be expected, the final plenary lecture was given by GEORGE
ZAMEs of McGill University. ZAMES shocked his audience slightly by noting,
near to the end of his lecture, that he had given almost the same talk already
once before, at an IEEE conference in 1976. Indeed, what ZAMES said had a
very philosophical touch, and was, therefore, not tied to a specific time and
place. The lecture was followed by a heated debate about the relation of 7 and
22/17, or, what one has to watch out for when using rational approximations
for things that are not rational. ZAMES had stated that any useful system
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representation should be able to incorporate the uncertainty about the ‘real’,
‘physical’ system, and had claimed that transfer matrix representations are the
only ones that fulfill this criterion; obviously, there were some in the audience
who disagreed.

3. ADAPTIVE CONTROL

Among the very many subjects that were discussed in the parallel sessions,
perhaps most attention was drawn by adaptive control. This is a field which
has been very actively explored over quite a few years now, and by a large
group of researchers. Roughly, what one tries to do in adaptive control is to
define controller structures that include an ‘intelligent’ (if one may use this
word) reaction to a perceived suboptimal behavior of the controlled system,
due, perhaps, to incorrect modelling or to drift of the parameters of the sys-
tem. A precise definition of the problem would be difficult to give, and, in
fact, the term ‘adaptive control’ should rather be understood as denoting a col-
lection of disciplines, all working with the above idea in mind, but in several
directions.

One branch tries to attack the problem by splitting it in two: first try to
identify the parameters of the system to be controlled, then apply the control
action that would be optimal for what you think that the system is. The ‘adap-
tiveness’ then comes from the combination of both aspects in one ongoing pro-
cedure. This is sometimes called a ‘certainty equivalence’ approach, because at
each step one acts as if one is certain about the controlled system. One of the
best-known results in system theory is that this approach is justified for linear
systems if the uncertainty appears as additive Gaussian noise and if the cost
criterion is of the quadratic integral type (the ‘separation principle’). Of course,
such a strong result is not expected for other types of uncertainty and other
cost criteria, but, under suitable circumstances, the approach may still be feasi-
ble. Another direction is given by ‘model reference adaptive control’, which
updates the controller parameters on the basis of the difference between the
outputs of the actual system and of a reference model that one is trying to ‘fol-
low’. In these schemes, the control structure is still understood as basically
consisting of a linear controller which contains, however, parameters that will
vary along with the system dynamics. Looking at the control structure as a
whole, one sees that this set-up actually defines a nonlinear controller (which,
of course, explains much of the difficulty of the field).

So, from a certain point of view, adaptive control simply means that one is
trying to find a nonlinear controller which will reach some specified design
goal for a linear system containing some unknown parameters, that is, for a
class of linear systems. It then becomes a natural question to ask, how big such
a class of linear systems can be, in order that there exists a nonlinear con-
troller which will reach a minimal design goal, say, asymptotic stability.
Several sufficient conditions for this to happen have been around for a long
time, but it was not clear how close these were to being necessary. In 1983,
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A.S.MorsE explicitly stated a conjecture in which he formulated the problem
in its simplest instance: does there exist a universal controller of the form
z2(t) = f(z(2),x (1)), u(t) = g(z(t),x (1)), where z(¢) is in R™ (an ‘m™ order
controller’) and f and g are differentiable functions, which will stabilize the
class of systems of the form x(r) = x(¢) + Au(t) (x(r)eR,AeR \ {0} fixed but
unknown)? A solution to this problem had been known for a long time for the
case where A is restricted to either the positive or the negative reals. MORSE
conjectured that this condition — the sign of A must be known — is also
necessary, so that the answer to the above question would be negative for A
arbitrarily ranging over R. The conjecture was explained by EDUARDO SONTAG
to his colleague ROGER D. NussBaUM at Rutgers University. NUSSBAUM, not
burdened by many years of study in adaptive control, was quick to show that
Morse’s conjecture is false, by producing a universal controller of the desired
type. He even showed that it is sufficient to use a first-order controller (m = 1)
and to let f and g be real-analytic functions. By way of consolation,
NussBAUM also proved that Morse’s conjecture is true when f and g are res-
tricted to be polynomials. (The solution was published in Systems and Control
Letters, vol. 3 (1983), pp.243-246.)

Nussbaum’s result indicated that it should be possible to design universal
controllers for much larger classes of systems than had been considered before.
Research in this direction culminated recently in work by BENGT
MARTENSSON, who is a Ph.D. student at Lund University in Sweden. The
MTNS meeting in Stockholm was the first occasion for MARTENSSON to
present his results at a major conference. He spoke in one of the parallel ses-
sions. MARTENSSON showed how to construct a universal controller for any
class of linear systems having the property that there is a uniform bound on
the orders of the linear controllers that can be used to stabilize any particular
element from the class. The order of the universal controller can be taken
equal to this bound. This result encompasses all previous results on sufficient
conditions for stabilizing adaptive control, including, of course, the one by
NUSSBAUM.

In addition to the sufficiency result by MARTENSSON, CHRIS BYRNEs, in his
plenary talk, announced a proof of the necessity of the same condition. So, it
seems that the problem has been completely solved. However, there are a few
points that still call for discussion. In his presentation, MARTENSSON
emphasized that his universal controller is useless from the applied point of
view. The excursions that will take place in the controlled system before stabil-
ization sets in are so large that any practical use is precluded. MARTENSSON
even succeeded to obtain computer simulation results in the simplest cases, due
to overflow problems. So it may be that the algorithm converges only on a
cosmological time scale, which, although the requirements of the mathematical
problem are still met, does not really represent a solution to the engineering
problems that supposedly motivate the study of adaptive control.

Therefore, it remains to be seen what the real conclusion will be from the
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development that apparently reached its summit at the MTNS meeting. As a
corollary to his result (which has now been published in Systems and Control
Letters, vol. 6 (1985), pp.87-91), MARTENsSON showed that if one allows the
order of the nonlinear controller to vary with time, then one can construct a
universal controller for the whole class of linear systems that can be stabilized
at all by a finite-order controller. In a sense, this is a disappointing result since
it shows that no interesting conditions come out from the problem of con-
structing a universal stabilizing controller. Apparently, the requirement of
asymptotic stability in itself is too weak to distinguish between systems that
are ‘easy’ or ‘difficult’ to control; a distinction which, of course, is felt very
clearly in practice. So, it appears that something stronger should be looked
for, which brings us back (a little wiser, though) to the problem that has both-
ered the mathematical study of adaptive control all along: how to obtain a
sharply defined and not too intractable mathematical question that properly
reflects at least some of the aspects that one has to reckon with in actual con-
trol applications. Time will tell whether Martensson’s result marks the begin-
ning or the end of a development.

41



Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 19. T.M.V. Janssen. Foundations and Applications of Montague

Grammar. Part 1, Philosophy, Framework, Computer Science.
AMS 08A99, 03G15, 68F05, 68F20, 03B15; CR F.3.2, 1.2.7, F.3.1, F.3.0, F.4.3;
206 pp.

Abstract: The present volume is one of the two tracts which are based on my dissertation ‘Founda-
tions and applications of Montague grammar’. The two volumes present an interdisciplinary study
in mathematics, philosophy, computer science, logic, and linguistics. No knowledge of specific
results in these fields is presupposed, although occasionally terminology or results from them are
mentioned. Throughout the text it is assumed that the reader is acquainted with fundamental prin-
ciples of logic, in particular of model theory, and that he is used to a mathematical kind of argu-
mentation. The contents of the volumes have a linear structure: first the approach is motivated,
next the theory is developed, and finally it is applied. Volume 1 contains an application to pro-
gramming languages, whereas volume 2 is devoted completely to the consequences of the approach
for natural languages. The volumes deal with many facets of syntax and semantics, discussing
rather different kind of subjects from this interdisciplinary field. They range from abstract univer-
sal algebra to linguistic observations, from the history of philosophy to formal language theory,
and from idealized computers to human psychology.

CS-R8512. J.W. de Bakker, J.-J.Ch. Meyer & E.-R. Olderog. Infinite streams
and finite observations in the semantics of uniform concurrency.

AMS 68B10, 68C01; CR D.3.1, F.3.2, F.3.3; 23 pp.; key words: concurrency,
denotational semantics, streams, uniform languages, observations, Smyth ord-
ering, parallel composition, topological closedness.
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Abstract: Two ways of assigning meaning to a language with uniform concurrency are presented
and compared. The language has uninterpreted elementary actions from which statements are com-
posed using sequential composition, nondeterministic choice, parallel composition with communi-
cation, and recursion. The first semantics uses infinite streams in the sense which is a refinement of
the linear time semantics of De Bakker et al. The second semantics uses the finite observations of
Hoare et al., situated ‘in between’ the divergence and readiness semantics of Olderog & Hoare. It
is shown that the two models are isomorphic and that this isomorphism induces an equivalence
result between the two semantics. Furthermore, a definition of the hiding operation which is
inspired by the infinite streams approach is presented. Finally, the continuity of this operation is
proved in the framework of finite observations.

CS-R8517. J.C.M. Baeten, J.A. Bergstra & J.W. Klop. Ready trace semantics
for concrete process algebra with priority operator.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 21 pp.; key
words: process algebra, concurrency, readiness semantics, failure semantics,
ready trace semantics, priority operator.

Abstract: We consider a process semantics intermediate between bisimulation semantics and readi-
ness semantics, called here ready trace semantics. The advantage of this semantics is that, while
retaining the simplicity of readiness semantics, it is still possible to augment this process model
with the mechanism of atomic actions with priority (the 8 operator). It is shown that in readiness
semantics and a fortiori in failure semantics such an extension with 6 is impossible. Ready trace
semantics is considered here in the simple setting of concrete process algebra, that is: without
abstraction (no silent moves), moreover for finite processes only. For such finite processes without
silent moves a complete axiomatisation of ready trace semantics is given via the method of process
graph transformations.

CS-R8518. M.L. Kersten, H. Weigand, F. Dignum & J. Boom. A conceptual
modeling expert system.

CR H.2.1, 1.2.1, 1.2.7; 14 pp.; key words: logical design, expert systems, natural
language parsing.

Abstract: This paper describes the architecture of an interactive conceptual modeling expert sys-
tem, called ACME. The input to ACME is a natural language description of the application
domain, which is decomposed by a parser into so-called predications. From these predications a
preliminary EAR model can be extracted readily, which is subsequently improved by the EAR
modeling expert using structural and semantic rules stored in a knowledge base. In an iterative
process the user resolves the inconsistency and ambiguity problems discovered by ACME and
enhances the conceptual model.

CS-R8519. Ming Li & P.M.B. Vitanyi. Tape versus queue and stacks: the lower
bounds.

AMS 68C40, 68C25, 68C05, 94B60, 10-00; CR F.1.1, F.1.3, F.2.3; 24 pp.; key
words: multitape Turing machine, stack, queue, pushdown stores, determinism,
nondeterminism, on-line, off-line, time complexity, lower bound, simulation by

one tape, algorithmic information theory, Kolmogorov complexity.

Abstract: Several optimal or nearly optimal lower bounds are derived on the time needed to simu-
late queue, stacks (stack = pushdown store) and tapes by one off-line single-head tape-unit with
one-way input, both deterministic and nondeterministic. The techniques rely on algorithmic infor-
mation theory (Kolmogorov complexity).
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CS-R8520. N.W.P. van Diepen & W.P. de Roever. Program derivation through
transformations: the evolution of list-copying algorithms.

AMS 68B10, 68C05, 68E10; CR D.2, D.2.2, D.2.4, E.1, F.3, F.3.1, 1.2.2; 60
pp.; key words: program verification, Hoare logic, program transformation, list
traversal, Deutsch-Schorr-Waite algorithm, list-copying, Robson’s algorithm,
Clark’s algorithm, graph algorithm.

Abstract: The introduction of Hoare Logic made it feasible to supply correctness proofs of small
sequential programs. While correctness proofs of larger programs could be given in principle, the
increased size of such a proof warranted additional organization. The present paper puts
emphasis on the technique of program transformation to show the derivability and to prove the
correctness of some fast list-copying algorithms developed by Robson, Fisher and Clark. This
subject was motivated by an earlier paper on the same topic by Lee, De Roever, and Gerhart.
Some transformation rules necessary for the correctness proofs are given. Other proof techniques
used include data refinement and the use of auxiliary variables and structures.

CS-R8521. J.C.M. Baeten & J.A. Bergstra. Global renaming operators in con-

crete process algebra.
AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 30 pp.; key

words: process algebra, concurrency, renaming operator, trace set.

Abstract: Renaming operators are introduced in concrete process algebra (concrete means that
abstraction and silent moves are not considered). Examples of renaming operators are given:
encapsulation, pre-abstraction and localization. We show that renamings enhance the defining
power of concrete process algebra by using the example of a queue. We give a definition of the
trace set of a process, see when equality of trace sets implies equality of processes, and use trace
sets to define the restriction of a process. Finally, we describe processes with actions that have a
side effect on a state space and show how to use this for a translation of computer programs into
process algebra.

CS-R8522. J.C.M. Baeten, J.A. Bergstra & J.W. Klop. An operational seman-
tics for process algebra.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 30 pp.; key
words: process algebra, concurrency, operational semantics, true concurrency,
real-time behaviour, rewrite rules, object-oriented, Petri net theory.

Abstract: We consider operational rewrite rules, expressing the dynamic behaviour of
configurations of objects. This gives an algebraic way to generalize Petri net theory. We give a
detailed description of operational rewrite rules for various process algebras, and show that, in
each case, the operational semantics thus obtained is equivalent to the regular denotational seman-
tics of processes. This theory can be used to describe features like true concurrency and real-time
behaviour for concurrent, communicating processes.

CS-R8523. J.A. Bergstra, J.W. Klop & E.-R. Olderog. Readies and failures in
the algebra of communicating processes.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 38 pp.; key
words: process algebra, concurrency, readiness semantics, failure semantics,

bisimulation semantics.

Abstract: Readiness and failure semantics are studied in the setting of ACP (Algebra of Communi-
cating Processes). A model of process graphs modulo readiness and failure equivalence respectively
is constructed, and an equational axiom system is presented which is complete for this graph



model. An explicit representation of the graph model is given, the failure model, whose elements
are failure sets. Furthermore, a characterization of failure equivalence is obtained as the maximal
congruence which is consistent with trace semantics. By suitably restricting the communication for-
mat in ACP, this result is shown to carry over to Milner’s CCS and Hoare’s CSP. In the above we
restrict ourselves to finite processes without 7-steps. At the end of the paper a comment is made
on the situation for infinite processes with 7-steps: notably we obtain that failure semantics is
incompatible with Koomen’s fair abstraction rule, a proof principle based on the notion of bisimu-
lation.

CS-N8507. J.C. van Vliet. STARS and stripes.

CR D.2; 7 pp.; key words: STARS, Software Engineering Institute, Ada,
software engineering environments, software engineering methodology, reus-
able software, software tools, software transition, measurements, defense appli-
cations, business practices, education.

Abstract: The overall goal of DoD’s Software Initiative is to meet DoD’s future software needs by
an order of magnitude improvement in the state of the practice, and to hasten the transition to
new technology. The STARS Program (Software Technology for Adaptable, Reliable Systems) is
one of the components of the Software Initiative. Other components are the Ada Program and the
Software Engineering Institute. The STARS Program is to result in a fully integrated environment
which captures all phases of the software life cycle. From April 30 to May 2, 1985, the first
DoD/Industry STARS Program Conference was organized, which brought together representatives
of government, industry, and the academic community to review and discuss the STARS Program
and other components of the Software Initiative.

CS-N8508. S. van Veen & E. de Vink. Semantics of logic programming.

AMS 68B05, 68C01; 41 pp.; key words: Concurrent Prolog.

Abstract: In this note several semantics of logic programming are given and equivalence of these
semantics is proven. The technique of transition systems is used to describe the semantics of a sub-
set of Prolog and Concurrent Prolog. A notion of fairness is introduced in order to model infinite
computations of logic programs.

CS-N8509. MJ.A.C. Andreoli. Language primitives in B for graphic editing.
(In Dutch.)

AMS 69D26. 69D43, 69K34; 26 pp.; key words: programming language B.
Abstract: This report investigates the addition of commands to a language such as B to make
‘graphic editing’ (interactive input via a graphics interface) possible and easy.

0S-R8506. J.M. Schumacher. Residue formulas for meromorphic matrices.

AMS 15A54, 47A56, 70110, 70125, 93D05; 13 pp.; key words: vibrating struc-
ture, residue matrix, partial fraction expansion, local ring, Lyapunov stability.
Abstract: In the analysis of the vibrations of mechanical systems, it is not only important to com-
pute the resonance frequencies, but also to find the so-called ‘participation matrices’ which govern
the distribution of the energy over the various resonance modes. These matrices appear as residue
matrices for certain meromorphic matrix-valued functions (transfer matrices from forces to dis-
placements), the poles of which correspond to the resonance frequencies. Also, these poles are sim-
ple as a consequence of the law of conservation of energy. So the problem comes down to the
computation of the residue at a simple pole of a meromorphic matrix. This matrix is in general
not given through its entries, but rather as the inverse of another matrix or as a fraction of holo-
morphic matrices. Extending earlier results of Lancaster and of Gohberg and Sigal, we work out a
convenient residue formula for matrices in fractional form. Several variants will be discussed as
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well. In all versions, one constructs a ‘normalizing matrix’ which is invertible if and only if the
pole one considers is simple, and one writes down a formula for the residue which features the
inverse of the normalizing matrix. Proofs are based on the ‘local Smith form’ for meromorphic
matrices. The normalizing matrix can also be used in stability tests, and we show an application
of this.

OS-R8507. J.H. van Schuppen. Stochastic realization problems motivated by
econometric modeling.

AMS 93E03, 93E12, 93B15, 90A15, 90A16, 90A20; 17 pp.; key words: stochas-
tic realization, factor analysis, latent structure analysis, conditional indepen-

dence, causality.

Abstract: The econometric modeling of time series by linear stochastic models has been criticized
by R.E. Kalman. Instead he proposes formulating this modeling problem as a stochastic realiza-
tion problem. In this note Kalman’s approach is followed and in a non-dynamic framework gen-
eralized to multivariate stochastic realization problems. The special case of the three-variate Gaus-
sian stochastic realization problem is investigated in some detail. In a dynamic context the sto-
chastic realization problem is posed of representing an observed process such that the inherent
causality or dependency relation between the components is made explicit.

OS-R8508. R.K. Boel & J.H. van Schuppen. Overload control for SPC tele-
phone exchanges refined models and stochastic control.
AMS 93E20, 90B22, 60K25; 11 pp.; key words: overload control, stochastic

control, queueing theory, communication systems.

Abstract: In telephone networks switching and connecting operations are performed by the
exchanges. The Stored Program Control (SPC) exchanges which are nowadays installed are com-
puter controlled. One of the problems with these exchanges is the severe performance degradation
during periods in which the demand for service exceeds the design capacity. The problem of over-
load control is then to maximize the number of successfully completed calls. In this paper two
models for overload control of an SPC exchange are proposed that are refinements of an earlier
model. A stochastic control problem for one of these models is shown to have a bang-bang type
of optimal solution.

OS-R8509. J.W. Polderman. A note on the structure of two subsets of the
parameter space in adaptive control problems.

AMS 93C40; 10 pp.; key words: adaptive LQ control, C“-manifold.

Abstract: In this note we study the geometric structure of two subsets of the parameter space that
are of interest in the context of adaptive LQ-control. The first set can be considered as the set of
possible limit points of an adaptive control algorithm, whereas the second can be seen as the set of
desirable limit points. Our main result is that these sets are C“-manifolds.

OS-R8510. O.J. Boxma & B. Meister. Waiting-time approximations for cyclic-

service systems with switch-over times.

AMS 60K25, 60K30, 68M20; 16 pp.; key words: queueing system, cyclic ser-
vice, switch-over times, mean waiting time.

Abstract: Mean waiting-time approximations are derived for a single-server multi-queue system
with nonexhaustive cyclic service. Non-zero switch-over times of the server between consecutive
queues are assumed. The main tool used in the derivation is a pseudo-conservation law recently
found by Watson. The approximation is simpler and, as extensive simulations show, more accurate
than existing approximations. Moreover, it gives very good insight into the qualitative behavior of
cyclic-service queueing systems.
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OS-R8511. O.J. Boxma. A queueing model of finite and infinite source interac-
tion.
AMS 60K25, 68M20; 11 pp.; key words: M /M/1 queue, finite source, interac-

tion.

Abstract: An M/M/1 service system is considered, which also serves one finite source. The joint
distribution of queue length at the M/M/1 queue and position of the finite source customer in the
system is determined. This leads to exact expressions for various performance measures; such
expressions yield insight into the interaction of finite and infinite sources.

OS-R8512. G.A.P. Kindervater & H.W.J.M. Trienekens. Experiments with
parallel algorithms for combinatorial problems.

AMS 90C27, 68Q10, 68R05; 19 pp.; key words: parallel computer, SIMD,
MIMD, pipelining, dataflow, branch and bound, dynamic programming, divide
and conquer, knapsack, shortest paths, change-making.

Abstract: In the last decade many models for parallel computation have been proposed and many
parallel algorithms have been developed. However, few of these models have been realized and
most of these algorithms are supposed to run on idealized, unrealistic parallel machines. The
parallel machines constructed so far all use a simple model of parallel computation. Therefore, not
every existing parallel machine is equally well suited for each type of algorithm. The adaptation of
a certain algorithm to a specific parallel architecture may severely increase the complexity of the
algorithm or severely obscure its essence. Little is known about the performance of some standard
combinatorial algorithms on existing parallel machines. In this paper we present computational
results concerning the solution of knapsack, shortest paths and change-making problems by
branch and bound, dynamic programming, and divide and conquer algorithms on the ICL-DAP
(an SIMD computer), the Manchester dataflow machine and the CDC-CYBER-205 (a pipeline
computer).

0S-R8513. P.J.C. Spreij. Recursive parameter estimation for counting processes
with linear intensity.

AMS 62F12, 93E12; 23 pp.; key words: recursive estimation, counting process,
martingale, Lyapunov function, central limit theory.

Abstract: Recursive estimation algorithms are presented for counting processes that have an inten-
sity process which is linear in the parameter. Strong consistency and asymptotic normality of the
estimators generated by the algorithms are proved.

NM-R8519. P.J. van der Houwen & B.P. Sommeijer. Reduction of dispersion in
hyperbolic difference schemes by adapting the space discretization.

AMS 65M20, 76B15; 12 pp.; key words: hyperbolic equations, difference
schemes, spatial discretization, dispersion, shallow water equations.

Abstract: A fourth-order accurate difference scheme for systems of hyperbolic equations is
presented. The dispersion in this scheme can be reduced if it is known in advance in which region
the frequencies of the dominant Fourier components are located. All method parameters are expli-
citly expressed in terms of the bounds on the dominating frequencies. The performance of the
method is illustrated by an application to the shallow water equations.
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NM-R8520. S.P. Spekreijse. Second order accurate upwind solutions of the 2D
steady Euler equations by the use of a defect correction method.

AMS 65N05, 76G15, 76HOS; 11 pp.; key words: steady Euler equations, defect
correction method.

Abstract: In this paper a description is given of first and second order finite volume upwind
schemes for 2D steady Euler equations in generalized coordinates. These discretizations are
obtained by projection-evolution stages, as suggested by Van Leer. The first order schemes can be
solved efficiently by multigrid methods. Second order approximations are obtained by a defect
correction method. In order to maintain monotone solutions, a limiter is introduced for the defect
correction method.

NM-R8521. F.W. Wubs. Stabilization of explicit methods for hyperbolic initial-
value problems.

AMS 65M10, 65M20; 12 pp.; key words: stabilization, hyperbolic equations,
method of lines, residual averaging.

Abstract: It is well known that explicit methods are subject to a restriction on the time step. This
restriction is a drawback if the variation in time is so small that accuracy considerations would
allow a larger time step. In this case, implicit methods are more appropriate because they do
allow large time steps. However, in general, they require more storage and are more difficult to
implement than explicit methods. In this paper, we propose a technique by which it is possible to
stabilize explicit methods for quasi-linear hyperbolic equations. The stabilization turns out to be so
effective that explicit methods become a good alternative to unconditionally stable implicit
methods.

NM-R8522. J.G. Blom & H. Brunner. The numerical solution of nonlinear Vol-
terra integral equations of the second kind by collocation and iterated collocation

methods.

AMS 65R20, 45D05, 45L10; 28 pp.; key words: nonlinear Volterra integral
equation, polynomial splines, collocation, iterated collocation, superconver-
gence, error estimates, variable stepsize.

Abstract: The subject of this paper is a variable-stepsize one-step method of collocation type for
solving general nonlinear second kind Volterra integral equations. We extend the iterated colloca-
tion method corresponding to polynomial spline collocation to nonlinear Volterra integral equa-
tions of the second kind. The resulting superconvergence properties of either the collocation
approximation or the iterated collocation approximation are used to obtain (local and global)
error estimates which in turn form the basis of a variable stepsize code. The performance of this
code is illustrated by means of numerous test problems.

NM-R8523. P.W. Hemker. Defect correction and higher order schemes for the
multigrid solution of the steady Euler equations.
AMS 65N05, 65N30, 76G13; 17 pp.; key words: steady Euler equations, mul-

tigrid methods, higher order schemes, defect correction.

Abstract: In this paper we describe first and second order finite volume schemes for the solution of
steady Euler equations for inviscid flow. The solution for the first order scheme can be efficiently
computed by an FAS multigrid procedure. Second order accurate approximations are obtained by
linear interpolation in the flux- or the state space. The corresponding discrete system is solved (up
to truncation error) by defect correction iteration. An initial estimate for the second order solution
is computed by Richardson extrapolation. Examples of computed approximations are given, with
emphasis on the effect for the different possible discontinuities in the solution.
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NM-N8501. D.T. Winter. Information about CWI Ada facilities # 1.

AMS 69D49; 8 pp.; key words: Ada.

Abstract: This report describes the technical characteristics of the hardware and software for Ada
program development available at CWI, based on a Data General MV4000 mini computer.

NM-N8502. H.J.J. te Riele. Applications of supercomputers in mathematics.
AMS 65V05, 65N20; 31 pp.; key words: vector computers, parallel processing,
computational mathematics.

Abstract: These course notes provide a concise survey of the role played by vector and parallel
processors in the solution of problems in computational mathematics. Some vectorization and
parallelization techniques are discussed. Many examples illuminate the discussion.

MS-R8506. H.J. Ader, D.J. Kuik, E. Opperdoes & B.F. Schriever. The use of
conversational packages in statistical computing.

AMS 62-04; 33 pp.; key words: conversational computing, statistical comput-
ing, evaluation of software, conversational statistical packages.

Abstract: It is not generally recognized that conversational computing demands a different way of
using statistical analysis. However, special problems arise while applying statistical techniques
repeatedly on the same dataset. The question is put whether unexperienced users should be pro-
tected against this kind of improper use of a conversational statistical package (CSP). We list some
formal aspects of conversational communication. Thereafter user-objectives in the use of the pack-
age are considered and consequences for the user-interface formulated. Finally some technical
questions are treated.

MS-R8509. H.C.P. Berbee. Chains with infinite connections: uniqueness and
Markov representation.

AMS 60G10, 60K35, 60J20; 9 pp.; key words: g-measure, chain with infinite
connection, Markov representation.

Abstract: If for a process (§,);°~ — the conditional distribution of £, given the past does not
depend on n for e.g. n = 0, then the process may be called a chain with infinite connections.
Under a well-known continuity condition on this conditional distribution the process is shown to
be distributed as an instantaneous function of a countable state Markov chain. Also under a cer-
tain weaker continuity condition uniqueness of the distributions of the stationary chains is
obtained.

AM-R8512. N.M. Temme. Uniform asymptotic expansion for a class of polyno-
mials biorthogonal on the unit circle.

AMS 33A65, 41A60, 33A30, 30E15; 6 pp.; key words: biorthogonal polynomi-
als, uniform asymptotic expansion, hypergeometric function.

Abstract: An asymptotic expansion including error bounds is given for polynomials {P,,Q,} that
are biorthogonal on the unit circle with respect to the weight function (1 —e0ytB(1—e 1028
The asymptotic parameter is n; the expansion is uniform with respect to z in compact subsets of
€\ {0}. The point z =1 is an interesting point, where the asymptotic behaviour of the polynomi-
als changes markedly. The approximants in the expansions are confluent hypergeometric func-
tions. The polynomials are special cases of Gauss hypergeometric functions. The results of the
paper apply in fact to these functions for the case that in the function , F(—a,b;c ;$) a is positive
and large, b and c are fixed and { is the uniformity parameter with {=0 as ‘transition” point.
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AM-R8513. N.M. Temme. On the computation of the incomplete gamma func-
tions for large values of the parameters.

AMS 33A15, 65D20, 41A60; 7 pp.; key words: incomplete gamma function,
uniform asymptotic expansion, computation of special functions.

Abstract: A method for computing incomplete gamma functions is given for the case that the
parameters are positive and both large. The method is based on earlier results of the author on
uniform asymptotic expansions of these functions. It is concluded that the method may be con-
sidered as an addition to Gautschi’s algorithm, which becomes inefficient precisely in the case that
the method described here is best applicable.

AM-R8514. N.M. Temme. Incomplete Laplace integrals: uniform asymptotic
expansions with application to the incomplete beta function.

AMS 41A60, 30E1S, 33A15, 44A10; 26 pp.; key words: uniform asymptotic
expansion of integrals, incomplete gamma function, incomplete beta function,

incomplete Laplace integral, construction of error bounds.
Abstract: The incomplete Laplace integral

1

')
is considered for large values of z. Both A and « are uniformity parameters in [0,00). The basic
approximant is an incomplete gamma function, that is, the above integral with f=1. Also, a loop
integral in the complex plane is considered with the same asymptotic features. The asymptotic
expansions are furnished with error bounds for the remainders in the expansions. The results of
the paper combine four kinds of asymptotic problems considered earlier. An application is given
for the incomplete beta function. The present investigations are a continuation of earlier work of
the author for the above integral with a=0, and build significantly on this special case.

foot""e‘“f(t)dt

AM-R8515. H.E. de Swart & J. Grasman. Effect of stochastic perturbations on
a spectral model of the atmospheric circulation.

AMS 76C15, 60J70, 34A50; 18 pp.; key words: stochasticly forced spectral
model, Fokker-Planck equation, characteristic residence time, eikonal equation,
discrete state Markov process.

Abstract: The dynamics of a low order spectral model of the barotropic potential vorticity equa-
tion, forced by random perturbations, is studied as a function of the memory and intensity of the
noise. The unperturbed deterministic system has three equilibria, and for arbitrary initial condi-
tions trajectories in phase space always tend to one of the two stable equilibria representing pre-
ferent circulation patterns of the atmosphere. The noise forces the system to visit alternately the
two attraction domains of the stable equilibria. During the transition the system will remain for
some time in a neighbourhood of the unstable equilibrium. Characteristic residence times in the
attraction domains and in the domain near the unstable equilibrium are calculated by combined
analytical and numerical methods. Furthermore the alternation of preferent states is studied with a
discrete state Markov process model. It consists of three states, which are related to the equilibria
of the low order spectral model. Transition probabilities are derived from the characteristic
residence times of the stochasticly forced dynamical system. The eigenvalues of the Markov model
yield information about the time scale over which the effect of the initial state is present in the sys-
tem.
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AM-R8516. H.A. Lauwerier. Hopf bifurcation in host-parasitoid models.

AMS 58F14, S8F08, 92A15, 39A10; 18 pp.; key words: Hopf bifurcation,
host-parasitoid model, Arnold normal form, discrete dynamical systems,
iterated planar maps.

Abstract: For a wide class of host-parasitoid models a reduction to Arnold’s normal form can be
carried out in an explicit way. In the case of Hopf bifurcation the shape and size of the elliptic
limit curve can be derived in terms of the parameters of the model. Some models have a rich bifur-
cation behaviour with both forward and backward Hopf bifurcation, and with a transition zone in
the parameter plane for which there exists a pair of limit curves, one stable and one unstable. The
theory is confirmed and illustrated by numerical experiments.

PM-R8507. M. Hazewinkel. Parametrization problems for spaces of linear
input-output systems.

AMS 93B30, 93E12; 8 pp.; key words: identification, parametrization prob-
lems, linear dynamical input-output systems.

Abstract: This note introduces and discusses the general problem of finding good parametrizations
of sets of possible models, mainly in the context of finite dimensional dynamic input-output
models. The general problem is addressed in particular in the case where it is impossible to find
one global parametrization.

PM-N8501. A.E. Brouwer. Recursive constructions of mutually orthogonal Latin

squares.

AMS 05B15; 15 pp.; key words: Latin squares, transversal designs.

Abstract: Two nXn matrices (a;) and (b;;) with entries in an alphabet S of size n are called
orthogonal if for all (s,) €S XS there is a unique position (i,j) such that @;;= s and b;; = t. In this
report, large sets of pairwise orthogonal matrices are constructed, and the connection with Latin
squares is explained.
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CWI Activities
Winter 1985

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWI.

Study group on Analysis on Lie groups. Jointly with University of Leiden.
Biweekly. (T.H. Koornwinder)

Seminar on Algebra and Geometry, on Multilinear Forms. 20 January, 17
February, 17 March, 21 April. (A.M. Cohen)

NATO - ARW Workshop on Geometries and Groups, Finite and Algebraic.
24-28 March at Leeuwenhorst, Noordwijkerhout.
The objective is to provide an overview of current activities in: diagram
geometries, chamber systems with transitive automorphism groups, finite
quotients of affine buildings, properties of finite (twisted and nontwisted)
Chevalley groups, and geometries related to finite simple groups, and to
explore the use of new results in Algebraic Groups for Finite Group Theory,
and Geometry and vice versa. Invited speakers:
M. Aschbacher, F. Buekenhout, B.N. Cooperstein, R.L. Griess, W.M. Kan-
tor, G. Seitz, E.E. Shult, S. Smith, T.A. Springer, B. Stellmacher, G. Stroth,
F.G. Timmesfeld, J. Tits. (A.M. Cohen)

Cryptography working group. Monthly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Seminar on Integrable Systems. 27 January, 24 February, 24 March. (M.
Hazewinkel)

Orthogonal Polynomials Day. 31 January. Invited speakers:
E. Hendriksen (Amsterdam). P. Nevai (Columbus, USA), D. Stanton (Min-
neapolis, USA), E.A. van Doorn (Twente, The Netherlands). (T.H.

Koornwinder)
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Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Jointly with University of Leiden. Bimonthly. (J. Grasman)

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Jointly with University of Leiden. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. New results and
open problems on the research topics of the department: biomathematics,
mathematical physics, asymptotic and applied analysis, image analysis.
Weekly. (N.M. Temme)

Study group on Statistical Image Analysis. Biweekly. (R.D. Gill)

Colloquium ‘Models for Discrete Variables’. Biweekly.

The emphasis will be on generalized linear models and variants thereof for
discrete variables. After a short introduction to log-linear models, based on
Fienberg's book ‘The Analysis of Cross-Classified Categorical Data’ and the
standard package GLIM, we will turn to a number of modern developments
in the data-analysis of models for discrete variables, such as: Goodman’s bil-
inear models, comparison with other models and models for continuous
data, comparison of cross-products in different tables, Lauritzen and Speed’s
graphical models, computation of asymptotic standard errors, also for more
complex sample setups, quasi-likelihood, formalisation of model-selection
and testing with the same data. (A. Verbeek)

Seminar on Asymptotic Statistics. 15,21,29 January.

E. Mammen will give three lectures about recent developments in asymptotic
statistics. Especially Le Cam’s theory of the deficiency distance between sta-
tistical experiments and strong approximation of experiments will be treated.
(R.D. Gill)

Study group on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

System Theory Days. Irregular. (J.H. van Schuppen & J.M. Schumacher)

Study group on System Theory. Biweekly. (J.M. Schumacher)

Eleventh Conference on the Mathematics of Operations Research and System
Theory. 15,16,17 January at Lunteren. Invited speakers:

A.R. Conn (Waterloo, Canada), G. Cornuéjols (Carnegie-Mellon, USA),
R.P. Guidorzi (Bologna, Italy), T.J. Ott (Holmdel, USA), J.P. Quadrat
(Paris, France), P. Whittle (Cambridge, UK). (J.M. Schumacher)

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)

International Seminar on Teletraffic Analysis and Computer Performance
Evaluation. 2-6 June. (O.J. Boxma)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

International Colloquium on Numerical Aspects of Vector and Parallel Proces-
sors. Monthly, every last Friday. (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or

group members. Irregular. (H.J.J. te Riele)
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Study group on Graphics Standards. Monthly. (M. Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Post-academic Course on Modern Techniques in Software Engineering.
13,14,27,28 February. (J.C. van Vliet)

Seminar National Concurrency Project. Jointly with Universities of Leiden &
Eindhoven and several industrial research establishments. 7 February, 7
March, 9 May. (J.W. de Bakker)

National Study Group on Concurrency. Jointly with Universities of Leiden &
Eindhoven and several industrial research establishments. 21 February, 21
March, 23 May. (J.W. de Bakker)

Computer Science Colloquium. 24 January, 20 February, 20 March, 17 April,
22 May. (A. Janssen)

Colloquium Knowledge Based Systems. Biweekly. (M.L. Kersten & P.J.F.
Lucas)

Process Algebra Meeting. Weekly. (J.W. Klop)
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Visitors to CWI from Abroad

P.J. Courtois (Philips Research Laboratory, Brussels, Belgium) 18 November.
S. Csorgo (Bolyai Mathematical Institute, Szeged University, Hungary) 16
November. Dao Huu Ho (University of Hanoi, North Vietnam) 20
November. A.K. Dave (CRAY Research Ltd., London, UK) 29 November.
H. Fujii (Kyoto Sangyo University, Japan) 15-21 December. M. Guevara
(McGill University, Montreal, Canada) 10 January. M. Harris (University of
Minnesota, Minneapolis, USA) 18-19 November. F. Herrlich (University of
Bochum, West Germany) 18 November. E. Koenigsberg (University of Cali-
fornia, Berkeley, USA) 19 December. T. Koski (Tiirkii, Finland) 9 December.
H.R. Lerche (University of Heidelberg, West Germany) 30 September - 4
October. A. Ligtenberg (AT&T Bell Laboratories, Murray Hill, USA) 8
November. E. Mammen (University of Heidelberg, West Germany) December
1985 - January 1986. J.F. Paris (University of California, La Jolla, USA) 20
December. 1. Phillips (Imperial College London, UK) 9-13 December. G.
Picci (University of Padua, Italy) 7-17 October. P. Rabinowitz (Weizmann
Institute of Science, Rehovot, Israel) 23 October. S.M.N. Ruijsenaars (Univer-
sity of Tiibingen, West Germany) 28 October. R. Scherer (University of
Karlsruhe, West Germany) 1-3 November. J. Smith (John Hopkins University,
Baltimore, USA) September 1985 - June 1986. P. Tran-Gia (University of
Stuttgart, West Germany) 22 October. P.J. Weinberger (AT&T Bell Labora-
tories, Murray Hill, USA) 28-30 October, 1 November. L.A. Wolsey (CORE,
Louvain-la-Neuve, Belgium) 13 December. H. Yoshikawa (University of
Tokyo, Japan) 5 November.
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Order Form for CWI Publications

Sales Department

Centre for Mathematics and Computer Science

Kruislaan 413
1098 SJ Amsterdam
The Netherlands

O Please send the publications marked below on an exchange basis
O Please send the publications marked below with an invoice

Publication code Price per copy
O CWI Tract 19 *) 28.60
O CS-R8512 3.70
O CS-R8517 3.70
O CS-R8518 3.70
O CS-R8519 3.70
O CS-R8520 8.40
O CS-R8521 4.80
O CS-R8522 4.80
O CS-R8523 6.--
O CS-N8507 3.70
O CS-N8508 6.00
O CS-N8509 3.70
d OS-R8506 3.70
O OS-R8507 3.70
O OS-R8508 3.70
O OS-R8509 3.70
O OS-R8510 3.70

*) not available on exchange
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Number of copies wanted



Publication code Price per copy Number of copies wanted

O OS-R8511 390 s
O OS-R8512 870 e
O OS-R8513 370 L.
O NM-R8519 370 L
O NM-R8520 370 L
O NM-R8521 370 s
O NM-R8522 480 L
O NM-R8523 370 L
O NM-N8501 370 L
O NM-N8502 480 00 e
O MS-R8506 480
(] MS-R8509 370 L
O AM-R8512 370
O AM-R8513 370
O AM-R8514 30 e
O AM-R8515 370 L.
O AM-R8516 370
O PM-R8507 370 L
O PM-N8501 30 e

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

NamMe e
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