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1. INTRODUCTION

In April 1984, at the 16th Annual ACM Symposium on Theory of Computing,
NARENDRA KARMARKAR of AT&T Bell Laboratories presented a new algo-
rithm for linear programming. The algorithm was not only shown to be
theoretically efficient (i.e., its running time is bounded by a polynomial in the
input size), but was also claimed to be very fast in practice — about 50 times
faster than Dantzig’s classical simplex method, for the largest problems
evaluated.

This news created much excitement among computer scientists and
mathematical programmers, and subsequent reports, inter alia in Science maga-
zine and on the front page of the New York Times, contributed to a further
propagation of the sensation. Linear programming is one of the mathematical
fields most applied in practice. Linear programming problems occur in such
diverse areas as engineering, transportation, agriculture, distribution, schedul-
ing, nutrition, management, and a reduction of the computer time needed
would not only speed up solving linear programming problems, but also would
allow one to solve larger LP-problems than before. In situations like oil pro-
cessing and automatic control, quick, almost forthwith, solution of LP-
problems is essential.

In 1979, L.G. KHACHIYAN published the first polynomial-time method for
linear programming, the ellipsoid method. This method, though theoretically
efficient, turned out to behave rather disappointingly in practice. So
Karmarkar’s claim that he now has found a method which is both theoretically
and practically efficient, was much welcomed. Karmarkar’s paper was pub-
lished in the December issue of Combinatorica [S]. However, no computational
details were given.

Next, KARMARKAR was invited to give plenary lectures at two international



conferences, the ORSA/TIMS-meeting in November 1984 in Dallas, and the
12th International Symposium on Mathematical Programming in August 1985
at MIT. KARMARKAR described his method and variants, explaining some of
the tricks used in practice, claiming superiority of his method over the simplex
method, and giving a few comparisons, but he refused to give full disclosure of
test problems, computer programs and running times. This has led to much
uncertainty and discussion among mathematical programmers with respect to
the practical value of the new method. It led to a report ‘Founding father of
just a footnote?' in the Boston Globe of August 9, 1985:

“This week in Cambridge, the 28-year-old KARMARKAR came under
mounting fire from his colleagues at the 12th International Sympo-
sium on Mathematical Programming. They snorted at his scientific
manners, scoffed at his claims and derided his results as being
everything from ‘frisky’ to ‘majestic’. Mostly, they said that his
accounts of super-fast solutions to difficult problems couldn’t be
replicated. ...

.. ‘He may have some wonderful method after all, but I habitually
mistrust all secret mathematics’, said EEM.L. BEALE, a pioneer in
the commercial applications of linear programming. ..

KARMARKAR himself didn’t advance his cause much in a talk
before an unusual plenary session of the MIT meeting of some 800
scientists from around the world. He began by observing that while
mathematicians agree on what constitutes convincing proof of a
mathematical proposition, there is no corresponding consensus as
to what makes a persuasive presentation of experimental results —
a contention that was immediately disputed by many of his
listeners.’

Indeed, there is some generally accepted standard in presenting computional
results. One gives (or makes available) the computer program, the test data,
the type of computer, the output, and the CPU-time. In essence, the results are
replicable, possibly making due allowance for the running time. Generally, one
tries to give as much information as possible within the compass of a lecture
or report.

Although this consensus differs from that holding in mathematics, with its
strict rules for definitions, theorems and proofs, it essentially is comparable
with the praxis in other branches of sciences, such as physics and chemistry,
when reporting on experiments.

Karmarkar's reservedness in presenting computational details may have
respectable reasons, for instance that Bell Labs has propriety of the actual
computer program, which might not yet be ready as a marketable package, but
the scientific community turns out to sputter if despite that a similar reserved-
ness in making claims is not observed.



In this account of the new method I will restrict myself to the theoretical
aspects.

In Section 2 and 3 we briefly discuss the simplex method and Khachiyan’s
ellipsoid method. In Section 4 and 5 we describe Karmarkars method, while
in Sections 6 and 7 we show that the method has polynomially bounded run-
ning time.

2. LINEAR PROGRAMMING AND THE SIMPLEX METHOD
The linear programming problem (or LP-problem) is as follows:

given A €Z™ ", bel™, cel", 0))
find a vector x €Q" attaining max {c”x [Ax<b}.

So it is asked to maximize the linear function ¢’x where x ranges over the
polyhedron {x|Ax<b}. The practical relevance of this problem was revealed
in the 1940s by the work of L.V. KanTorovicH, T1.C. KooPMANs and G.B.
DANTZIG.

In 1947 DANTZIG designed his famous simplex method for solving (1). The
idea is to make a trip over the polyhedron P:={x|Ax<b} from vertex to ver-
tex along edges, on which ¢”x increases, until an optimum vertex is attained.
The correctness of this algorithm is based on the property that if a vertex x,
of a polytope P does not maximize c”x over P, then there exists a vertex x
adjacent to- x for wich ¢Tx,>cTx,. (Here x, adjacent to x, means that the
segment xx; forms an edge of P.)

Roots of this idea occur already in FOURIER [3], describing a method for
minimizing |[4x —bll,, (where |/*||, denotes the maximum absolute value of
the entries in *):

‘Pour atteindre promptement le point inférieur du vase, on éleve en
un point quelconque du plan horizontal, par exemple a I'origine
des x et y, une ordonnée verticale jusqu’a la rencontre du plan le
plus élevé, c’est-a-dire que parmi tous les points d’intersection que
I’on trouve sur cette verticale, on choisit le plus distant du plan des
x et y. Soit m;, ce point d’intersection placé sur le plan extréme.
On descend sur ce méme plan depuis le point m; jusqu’a un point
m, d’une aréte du polyedre, et en suivant cette aréte, on descend
depuis le point m, jusqu’au sommet mj; commun a trois plans
extrémes. Apartir du point m; on continue de descendre suivant
une seconde aréte jusqu’a un nouveau sommet mg4, €t I'on continue
I'application du méme procédé, en suivant toujours celle des deux
arétes qui conduit & un sommet moins élevé. On arrive ainsi trés-
prochainement au point le plus bas du polyedre.’

According to FOURIER, this description suffices to understand the method in



more dimensions. DE LA VALLEE POUSSIN [9] gave a similar method.

DANTZIG [2] algebraized the method, obtaining an attractive compact
scheme (simplex tableau) and iterative procedure (pivoting), which facilitates
computer implementation. This simplex method turns out to be very efficient
in practice and enables one to solve LP-problems in several thousands of vari-
ables.

However, it could not be proved theoretically that the simplex method is
efficient. That is, no proof has been found that the running time of the simplex
method is bounded by a polynomial in the size of the problem, i.e. in

S log(la; | +1) + F log (161 + 1) + X log (I¢;1 +1). ()
i i J

In fact, KLEE and MINTY [7] showed, by giving a bad class of LP-problems,
that with Dantzig’s pivoting rule, the simplex method can require exponential
running time. Their examples have as feasible regions a deformation of the n-
dimensional cube (described by 2n inequalities), for which Dantzig’s rule leads
to a trip along all 2" vertices. Several alternative pivot selection rules have
been proposed, but none of them could be proved to yield a polynomial-time
method.

On the other hand, BORGWARDT [1] recently gave a pivoting rule which he
showed to yield a polynomial-time algorithm on the average, in a certain
natural probabilistic model. His result very much agrees with practical experi-
ence, where data seem to be more ‘random’ than structural.

3. THE ELLIPSOID METHOD

It has been an open question for a long time whether linear programming is
solvable in polynomial time. Although the simplex method works well for
present-day practical problems, one never knows whether the barycenter of
practical problems will change, and it would then be good to have a method
which can be proved to perform well always.

It was a big surprise when in 1979 the Soviet mathematician L.G. KHACHI-
yAN answered this question affirmatively, showing that the ellipsoid method for
nonlinear programming has polynomially bounded running time when applied
to LP-problems. Also this result was reported on the front page of the New
York Times.

Khachiyan’s method can be described by application to the following prob-
lem:
given

Aezm™*", peZ™, find xeQ" such that Ax<b. 3)
This problem is polynomially equivalent to problem (1), i.e., any polynomial-
time algorithm for problem (1) yields a polynomial-time algorithm for problem

(3), and conversely. Indeed, (3) easily reduces to (1) by taking ¢=0. Con-
versely, by the Duality theorem of linear programming, solving (1) is
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A deformation of the n-dimensional cube, with a simplex path along 2" vertices

(n=3)

equivalent to solving the following system of linear inequalities:
Ax<b, yTZO, yTA =, yTbSCTx 4)

(clearly, equations can be split into two opposite inequalities). This is a special
case of (3).

To sketch Khachiyan’s method, we assume that the polyhedron {x|Ax<b}
is bounded and full-dimensional (KHACHIYAN showed that we without loss of
generality may restrict ourselves to this case). Let 7 be the maximum absolute
value of the entries in 4 and b (w.lo.g. T=n=2). With Cramer’s rule, one
may show that the components of the vertices {x |Ax<b} are at most n"T"
in absolute value. Hence {x|Ax<b} is contained in the ball E,: = B(0,R)



around the origin of radius R:= n""'T".

E, is the first ellipsoid. Next ellipsoids E,E,,... are determined with the
following rule. If E; has been found, with center say z, check if Az, <b holds.
If so, we have found a solution of Ax<b as required. If not, we can choose an
inequality, say alx<b; in Ax<b violated by z;. Let E 4, be the ellipsoid
such that

E 1 DE N{xlal x<alz) (5)

and such that E, ,, has smallest volume (there exist simple updating formulas
for obtaining the parameters describing Ej 1, from those describing E; and
from a;). Since {x|Ax<b}C{x|alx<alz}, it follows by induction on k
from (5) that

E, D {x|Ax<b}. (6)
Moreover, it can be proved that

—1/4n

volume E; ;| <e - volume E;. 7

Since one easily sees that volume E,<(2R)" <n?’ T”z, inductively from (7) we
have:

volume E;, <e */4 . a2 T (8)

On the other hand, with Cramer’s rule, using the boundedness and fulldi-
mensionality of {x |Ax<b}, we know:

volume {x|Ax<b}=n 7T )
(6), (8) and (9) imply:

n—2;.’Tﬂfge—k/atn,nznZ Tnz’ (10)
1.€.,

k<lén’lnn + 8n°InT. (11)

So after a polynomially bounded number of iterations we will have found a
solution of Ax<b . Updating the ellipsoid parameters can be done in o(n?)
arithmetic operations, while all calculations have to be done with a precision
of O(n’log T) digits. Altogether this amounts to O(n®log? T) bit operations
(excluding data-handling, which takes O(loglog T -logloglog T) for each bit
operation).

Although KHACHIYAN showed the polynomial solvability of the linear pro-
gramming problem, his method turned out to perform badly in practice. This
is caused, among others, by the facts that the upper bound (11) of iterative
steps, though polynomial in the input size, can be rather big also for moderate
problems, and that the precision required to describe the successive ellipsoids
is huge. (The ellipsoid method has implications in combinatorial optimization
— see [4].)



Thus the question remained if there is a method for linear programming
which is both practically and theoretically efficient. KARMARKAR claims that
the following method is so.

4. KARMARKAR’S FORM OF THE LINEAR PROGRAMMING PROBLEM
Karmarkar’s method applies to problems of the following form:

given A €Z™*", c¢eZ" such that A1 = 0, (12)
find x eQ"such that x=0, Ax = 0, 17x = 1, ¢Tx<0.

(Here 1 denotes an all-one column vector of appropriate dimension.) This is a
problem equivalent to (1) and (3). Indeed, (12) clearly is a special case of (1),
as (12) amounts to finding x attaining max{—c’x|x=>0,4x =0,1"x =1}.
Conversely, (3) can be reduced to solving a system of linear equations in non-
negative variables:

given A€Z™*", bel™, (13)
find a vector x eQ” such that x=0, Ax = b.

This follows by replacing Ax<b by the system:
Ax'—Ax"+x"" =b, x’,x",x”"=0. Now (13) can be reduced to (12) as fol-
lows. Let 4,b as in (13) be given. Let T be the maximum absolute value of the
entries in 4 and b. With Cramer’s rule we can prove that if x=0, Ax =5 has a
solution, it has one satisfying 17x<n"*!'T". So we wish to solve:

x=0, Ax = b, 1"x<n"*'T". (14)
By adding one extra variable we may assume we must solve:

=20, Ax=b, Tx =T (15)
By subtracting multiples of the last equation in (15) from the equations in
Ax=b and by scaling equations, this is equivalent to:

=0, 4x =0, "x = 1. (16)
If A1 = 0 then n~'1 is a solution. Otherwise, by elementary changes of the
system we may assume A1=1. So we wish to find a solution x, A for:

x=0, A=0, Ax—1I\ =0, 17x+A = 1, such that A<0O.  (17)

Since A1—11=0, this 1is a special case of (12) (taking
A:=[4,—1], ¢:=(O, . ..,0,1)T eZ"*h),

So Karmarkar’s method applied to (12) solves linear programming in gen-
eral.



5.KARMARKAR’S METHOD
Karmarkar’s method consists of constructing a sequence of vectors x°,x!,x?,...
converging to a solution of (12) (provided (12) has a solution). The essence of
the method is to replace the condition x=0 by a stronger condition x €E, for
some ellipsoid E contained in R%. As we shall see, minimizing ¢’x over
{x|x€E, Ax =0,1"x =1} is easy, while minimizing cTx  over
{x|xeR" ,4x=0,1"x=1} is the original problem (12).

Let A and ¢ as in (12) be given. We may assume without loss of generality
that the rows of A are linearly independent, and that n=>2. Throughout we use

T L (18)
n—1
Let
0. 1
%+ & =—], (19)
n
So Ax°=0, 17x9=1, x°>0. Next a sequence of vectors xo,xl,xz,... such

that Ax* =0, 17x¥=1, x>0 is determined, with the following recursion:
denote x* = :(x{©), ..., x)), and let D be the diagonal matrix:

D : = diagx{, ..., x{). (20)
Define z¥ ! and x**! as :
zk*+1is the vector attaining 1)
min {(c7D)z1(4D): = 0;17z=n; z€B(1,57)
XK1 = (ATDzk+1) 1Dk H,
Note that if we replace in the minimization problem the condition z eB(l,%r)

by the weaker condition z=0, then we would obtain a minimization problem
with  optimum  value at  most 0 if and only if min
{cTx|Ax =0, 17x =1, x=0}<0, which is our original problem (12).

As zK*1 minimizes (cTD)z over the intersection of a ball with an affine
space, we can write down a formula for z**!:

PROPOSITION 1.

1,._(—D4 T(A4D?*AT) '4D—n""1-1")Dc

2" (1=DATAD?*AT) ' 4D —n""1-17)Dcll '

PrOOF. The minimum in (21) can be determined by projecting Dc onto the

space {z |(4D)z =0, 17z =0}, thus obtaining the vector:
p:=(I—DAT(AD*A ™~11-17)Dc. (22)

(Indeed, ADp = 0, 17p = 0, as one easily checks (using AD1=A4x*=0), and

zk+1 =1 -




¢"D—p7 is a linear combination of rows of AD and of the row vector 17.)
Then z¥*! is the vector reached from 1 by going over a distance 5 in the

direction —p, i.e.,

S+ = g %r I_E' |_|. 0 (23)
\P

This method describes Karmarkar’s method.

6. A LEMMA IN CALCULUS
In order to show correctness and convergence of the algorithm, we use the fol-
lowing lemma in elementary calculus. For x =(x, . . . ,x,)’, we denote:

IIx : =x;-... x,. (24)

LEMMA. Let neN, H : ={xeR"|1"x=n}. Then:
(i) HNB(,r) CHNR" CHNB(,(n—1)r);

1
@) if erﬂB(l,%r), then Hx>%(l+n/T21)"_l.
(i) Letx=(xy,...,x,) eHNB(,r). To show xeR", suppose without loss
of generality x1<0. Since xeB(1,r) we know:

o= 12+ .+, —1)?*<r’—(x;—1)’<r?—1=1/(n—1). Hence, with
Cauchy-Schwarz:

Go—DH =D Vn—1- V(xg— 1) +... +(x, — 1)* <L.

Therefore, x, +...+ x,<x; +...+x,<n, contradicting the fact that x belongs
to H.
Next let xe HNR" . Then

=12+ 4+, —1)? =(x3 + xH)—2x, +...+x,)+n
<(xy +otx,)?—2(x1+...+x,)+n

=n?=2n+n = (n—1)y>*r2

(The last inequality follows from the fact that x=0.) So x € B(1,(n — 1)r).

(i) We first show an auxiliary result:
let \,peR; if x*,y",z" achieve (25)
min {xyz |x+y+z=A, x2+p?+2z2=p},and
x'<y"<:z’, theny*=z".
By replacing x,y,z by x —%A, y —%)\, z= %)\, we may assume
A=0.Then it is clear that the minimum is nonpositive, and hence

10



*

x" <0<y <z". Therefore,
x"y'z'?x"(L;-l)2 = -;—(x')3> — % V6. (26)

The first inequality here follows from the geometric-arithmetic mean ine-
quality (note that x <0), and the secondlinegua]ity from the fact that if
x+y+z=0,x2+y2+22=u, then x=—73Vép.

On the other hand, (x,y,z):= (—% véu,% v6p,% Vé6p) satisfies
x+y+z=0, x? +y?+z2=p, xyz = ——1% Véu. Hence we have equality
throughout in (2.6). Therefore, y" =z, proving (25).

We now prove (i) of the Lemma. The case n=2 being easy, assume n=3.
Let x attain

min (ILx|x€H NB(1,57)). @7
Without loss of generality, x; <x;<..<x,. Then for all 1<i<j<k<n, the
vector (x;,X;,Xx) attains

min{xyz |x+y+z = x;tx;+xi, x2+yz+z2 = x,-2+x12-+x,2(} (28)
(otherwise we could replace the components x;,X;,Xk of x by better values).
Hence by (25), x; =xk. Therefore x,=x3=...=x,. As xe HNB(1,37r), this
implies x, =, and x,=... =x, = (I +2 /(n—1)). This shows (ii). O

7. OPERATIVENESS OF THE ALGORITHM
The operativeness of the algorithm now follows from the following proposi-
tion:

PROPOSITION 2. If (12) has a solution then for all k=0:

T k+1\n T, kyn
) 2L x) (29)
ka+l e ka

ProOF. First note:

CTxk+1 n ka B (CTDZk+1)n ka
: = : (30)
ka+1 (chk)n H(Dzk-H) (CTxk)n
B cTDzk+! n . 1
¢TD1 [k

using (21) and TI(Dz* 1) = (Ix¥I1z* ") and x* = D1.
We next show that, if (12) has a solution, then

11



T k+1 1
LCAE)- SRRR R G1)
(c"D) n—=]
Indeed, if (12) has a solution then ADz =0, z=0, ¢’ Dz <0 for some z70. We
may assume 17z =n. Hence,

0=min{(c"D)z|zeR" ,ADz=0, 17z =n) (32)
>min{(c"D)z1zeB(1,(n—1)r), ADz=0,1"z=n)

(the last inequality follows from (i) of the Lemma).

The last minimum in (32) is attained by the vector 1—(n—1)"_p_np s
_lr—l—“ ” attains the minimum in (21), (cf. (22)).
Therefore, ¢”D(1—(n — 1)r—£— Ip ”
This implies
¢ D k+l_ TD(I_—rH ”) (33)
1 1
=(1 — —2)c"D1 +—L—cTD(A—(n— 1)L
n—1 n—1 ” ”
<(1 — cTD),
proving (31)
Therefore, as 12K+ == (1+ /(n=1))""", by (ii) of the Lemma,
T, k+1 I
- DTj_)l 1 }<+1 = — nfl ) 11/ = % G
¢ z (14 —— N y !
"

(as (1—x) /(1+x)<<e % for x=0, since the function e > —(1 —x)/(1+x)
is 0 for x =0, and has nonnegative derivative if x=0). (30) and (34) combined
give (29). O

By induction on k, Proposition 2 implies, if ¢"x°=0,c"x'=0, ...,c"xk=0,
(using
1 < 1
IIx*)l/n<— = =—<lI):
(1x") B ;l xf S =1)
k/n k/n
T k<;Txk__ 2 : .i< 2 ’ ‘nT 35
C' X = kNI /n < 0Nl /n = nit, ( )
(I1x%) € (I1x%) e

where T denotes the maximum absolute value of the entries in 4 and ¢ (w.
lLo.g.T=n).
This gives, if we take

12



2
N : :[[l_lnz]nzln(nT)], (36)

the following theorem.
THEOREM. If (12) has a solution, then cTxk<n™"T~" for some k=0, ... N.

PROOF. Suppose cTxO ..., ¢"xN=n""T"". Then (35) holds for k=N,
implying ¢7x" <(2/e)¥/"nT<n "T". Contradiction. [J

So supkpose (12) has a solution. Then with Karmarkar’s method we find a vec-
tor xK satisfying x%=0, Ax=0, 1"x=1, ¢Txk<n™"T~". By elementary
linear algebra, it is easy to find a vertex x" of the polytope
(x=014x=0, 1"x=1} with cTx"<cTxk. Hence, c’x’<n™"T™". By
Cramer’s rule, the entries in x  have a common denominator at most n"T".
As c is integral, this implies ¢Tx"<0. So x" is a solution of (12).

Karmarkar’s method consists of @(nzlogT) iterations, each consisting of O(n?)
arithmetic operations (due to the updating formula given by Proposition 1).
All calculations have to be made with a precision of O(n*log T) digits. Alto-
gether this amounts to O(n’log* T) bit operations (excluding data-handling,
which takes O(loglog T - logloglogT') for each bit operation).

Parts of the description above are taken from the forthcoming book [8].

REFERENCES

1. K.-H. BORGWARDT (1982). The average number of pivot steps required
by the simplex method is polynomial. Zeitschrift fiir Operations Research
26, 157-171.

2. G.B. DANTZIG (1951). Maximization of a linear function of variables sub-
ject to linear inequalities. T3.C. KOOPMANS (ed.). Activity Analysis of Pro-
duction and Allocation, John Wiley & Sons, New York, 339-347.

3. JB.J. FOURIER (1826). Analyse des travaux de I'’Académie Royale des
Sciences, pendant I’année 1823, Partie mathématique. Histoire de
I’Académie Royale des Sciences de IInstitut de France 6, xxix-xli.

4. M. GROTSCHEL, L. LovAsz, A. SCHRUVER (1986). The Ellipsoid Method
and Combinatorial Optimization, Springer-Verlag, Berlin.

5. N. KARMARKAR (1984). A new polynomial-time algorithm for linear pro-
gramming. Combinatorica 4, 373-395.

6. L.G. KHACHIYAN (1979). A polynomial algorithm in linear programming
(in Russian). Doklady Akademii Nauk SSSR 244, 1093-1096.

7. V. KLEg, G.J. MINTY (1972). How good is the simplex algorithm?

O. SHisHA (ed.). Inequalities, 111, Academic Press, New York, 159-175.
8. A. SCHRUVER (1986). Theory of Linear and Integer Programming, John

13



Wiley & Sons, Chichester.
9. CH. DE LA VALLEE PoussIN (1910). Sur la méthode de I'approximation
minimum. Annales de la Société Scientifique de Bruxelles 35 (2), 1-16.

14



A Recent Algoritnm for the Factorization of Polynomials

Arjen K. Lenstra

Department of Computer Science
The University of Chicago, Ryerson Hall
1100 E. 58th Street, Chicago, IL 60637, USA

1. INTRODUCTION

The last few years a lot of attention has been paid to the problem of factoring
polynomials with rational coefficients. An important result was the discovery
of a polynomial-time factoring algorithm [7]. The purpose of this note is to pro-
vide an informal description of this new algorithm.

It is well known that a polynomial in @[X] can be decomposed into irredu-
cible factors in @[X] and that this factorization is unique up to units. Such a
factorization is equivalent to the factorization of a primitive polynomial with
integral coefficients, where a polynomial is called primitive if the greatest com-
mon divisor of its coefficients equals 1. Throughout this note we will therefore
restrict ourselves to primitive integral polynomials.

In VAN DER WAERDEN [13] it is shown that the factorization of a polynomial
in Z[X] is effectively computable. The method described there was invented in
1793 by the German astronomer VON SCHUBERT, and later re-invented by
KRONECKER; it is usually referred to as Kronecker’s method. For practical pur-
poses this algorithm can hardly be recommended. A better algorithm was pub-
lished in 1969 by ZasseNHAUs [15]. It is based on a combination of
Berlekamp’s algorithm for the factorization of polynomials over finite fields [6,
Section 4.6.2] and Hensel’s lemma [6, Exercise 4.6.2.22], and is therefore called
the Berlekamp-Hensel algorithm. Zassenhaus’ method performs quite well in
practice, and there is some evidence that its expected running time is a polyno-
mial function of the degree of the polynomial to be factored [2]. It has how-
ever one important disadvantage: its worst-case running time is an exponential
function of the degree. Polynomials that exhibit the exponential behaviour of
the Berlekamp-Hensel algorithm can easily be constructed [5].

In 1982 an algorithm was presented whose running time, when applied to
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some polynomial fin Z[X], is always bounded by a fixed polynomial function
of the degree and the coefficient-size of f [7]. A simplified and slightly
improved version of this algorithm was given in [4] and [12]. This latter ver-
sion, which we will follow here, is based on the following observation. The
irreducible factors in Z[X] of f can be regarded as the minimal polynomials (in
Z[ X)) of its roots. Therefore, to find an irreducible factor of f, it suffices to
determine the minimal polynomial of one of its roots. The minimal polyno-
mial of a root a of fimmediately follows from an integral linear combination
of minimal degree among the powers of a. In Section 2 it is shown that the
problem of finding such a relation among the powers of a can be reduced to
the problem of finding a relatively short vector in a certain subset of a real
vector space. Such a short vector can then be found by means of the basis
reduction algorithm , as is explained in Section 3.

2. REDUCTION TO FINDING SHORT VECTORS

Let fin Z[X] be the polynomial to be factored and let a be one of its roots.
For simplicity we assume that « is real; the general case easily follows from
this. Denote by 4 in Z[X] the minimal polynomial of a. Obviously, this poly-
nomial 4 is an irreducible factor of f.

Suppose the degree of h equals m, for some positive integer m. Let ¢ be
some fixed positive integer. Below we will show how this integer should be
chosen. For an arbitrary polynomial geZ[X] of degree at most m we denote
by g the (m+2)-dimensional vector having the coefficient of X' ™' of g as ith
coordinate, for 0 <i < m+1, and with last coordinate c-g(a). By L, we
denote the subset of R™*? consisting of these vectors g; notice that the
(m +2)-dimensional vector 4 is contained in L,,. There is a natural correspon-
dence between the vectors g and integral linear combinations of degree at most
m among the powers of a: the first m+1 coordinates of g correspond to the
coefficients of the integral linear combination, and the last coordinate of g is
the value of that particular combination, multiplied by c. In this Section we
show that a relatively short non-zero vector in L, leads to the coefficients of A,
where we use the ordinary Euclidean norm in R™*2 (denoted | | ).

Because 4 is a factor of f, there exists an upper bound on the absolute value
of the coefficients of 4 that depends only on f[9]. Combined with A(a) = 0, we
find that there is a bound B; = 2, only depending on f and not on ¢, such that
|h| < B;. We claim that for any C >1 the value for ¢ can be chosen such
that |g| > C-By if ged(h, g) = 1. This means that we can choose ¢ in such a
way that any non-zero vector g that is not much longer than A, leads to A.
Namely, if |g| < C-By then ged(h, g) 7= 1, so that g is an integral multiple of h
because 4 is irreducible and because the degree of g is at most m. Thus A can
be found if we can find a vector g that is relatively short, ie., |g| < C-B; for
some C > 1.

To prove our claim, let C > 1 be a real number, and let geZ[X] of degree
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at most m be such that gcd(h, g) =1. We prove that ¢ can be chosen such that
|g| > C"By. Obviously, if the Euclidean length of the vector g (i.e., the vector
consisting of the first m + 1 coordinates of g) is > C-By; then also |g| > C-By.
Therefore we may assume that the Euclidean length of the vector g is bounded
by C-By; it suffices to prove that ¢ can be chosen such that |c-g(a)| > C-By.

Denote by n the degree of g. Define the (m+n)X(m+n) matrix M as the
matrix having ith column X'~'h for 1<i<n and X' "'y for
n+1<i<m+n, where X' "-h and X' " 'g are regarded as (m+n)-
dimensional vectors. By R we denote the absolute value of the determinant of
M, the so-called resultant of h and g.

We prove that this resultant R is non-zero. Suppose on the contrary that
the determinant of M is zero. This would imply that a linear combination of
the columns of M is zero, so that there exist polynomials a, b €Z[X] with
degree(a)<n and degree(hp) <m such that a-h +b-g=0. Because
ged(h, g) =1, we have that h divides b, so that with degree(b) <m, we find
b =0, and also a =0. This proves that the columns of M are linearly
independent, so that R 0. Because the entries of M are integral we even
have R = 1.

We add, for 2 <i <m+n, the ith row of M times T~ ! to the first row of
M, for some indeterminate 7. The first row of M then becomes
(h(T), T-h(T), ..., T"~"h(T),g(T), T-g(T), ..., T~ "-g(T)).  Expanding the
determinant of M with respect to the first row, we find that

R = |h(T)(ap+a, T+..+a,_-T" ")
+g(T)(bo+by T+... +bp_ T" I,
where the g; and b; are determinants of (m +n — 1)X(m+n —1) submatrices of
M. Evaluating the above identity for 7 = a yields
R=lg@] |bo+b; a+..+by_1a" "I,

because h(a) = 0. From lh| < B, |gl < C-By, and Hadamard’s inequality it
follows that |b;| <(C -Bf)”'+"". Because By is also an upper bound for the
roots of f we get

R <|g(a) | '(C‘Bf)2m+"'1,
so that, with R =1, we find
|g(a)l Z(C,Bf)—Zm*rH—l.

Therefore, in order to get |c-g(a)| > C-By, it suffices to take ¢ >(C -Bf)3’".
This proves our claim.

Of course, the degree m of h is not known beforehand. The way in which we
apply the above to determine 4 is as follows.

For some C > 1, to be specified in the next section, we take ¢ minimal such
that ¢ > (C-Bf)3'd°g'“(f). Next for m = 1,2, ..., degree(f)—1 in succession we
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do the following. Consider the set L,, of (m -+2)-dimensional vectors g as
defined above. Because (C-By)* “&l) = (C-B)* %&") a non-zero vector g in
L, satisfying |g| < C-B; leads to a polynomial g that has a non-trivial
greatest common divisor with A. Therefore, for values of m smaller than the
degree of 4 all non-zero vectors in L,, must have length >C-By, and there can
only be non-zero vectors g in L,, satisfying |g| < C-By if m is at least equal to
the degree of h, i.e., if h is also contained in L,,. And, as reasoned above, if m
equals the degree of 4, then a reasonably short non-zero vector g leads to a
polynomial g that is a non-trivial multiple of A. This implies that for
m = degree(h) vector h is a shortest non-zero vector in the set L,,, and that h
can be determined if we can find a non-zero vector in L,, that is longer than h
by at most a factor C. In the next section we will see that, for some value of
C > 1, we can always find a non-zero vector in L, that is at most a factor C
longer than a shortest non-zero vector in L,,. Thus the algorithm can be ter-
minated as soon as we succeed in finding a non-zero vector g of length at most
C-By. If no such vector is found, then all values for m are smaller than
degree(h), so that h = f.

REMARK. If a is irrational, then in practice it is impossible to work with an
exact representation of a. However, it is not difficult to see that the same
arguments as above apply if we use a sufficiently close approximation a to a.
It appears. that it suffices to have |a—a| <27, where s is bounded by a poly-
nomial function of the degree of f and of log|f|. Such an approximation of a
root of f can be found in polynomial time, as is shown in [11].

If & is a non-real complex number, then we modify the definition of g as fol-
lows: for arbitrary g € Z[X] of degree at most m we denote by g the (m +3)-
dimensional vector having the coefficient of X'~ ! of g as ith coordinate, for
0 <i<m+1, and with last two coordinates c-Re(g(a)) and c-Im(g(a)).

3. HOW TO FIND THE SHORTEST VECTOR
In the previous section we have reduced the problem of factoring polynomials
with rational coefficients to the problem of finding a relatively short vector in a
certain subset L, of R™*2. Such a subset of a real vector space is usually
called a lattice. In this section we will discuss the problem of finding short
non-zero vectors in a lattice, and we will see that the shortest vector problem
from Section 2 can be solved by means of L. Lovasz’ basis reduction algorithm.
Let n and k be positive integers, and let by, b,, ..., by be linearly indepen-
dent vectors in R". The lattice of dimension k generated by by, b,, ..., by is
defined as the set

{Drbi:rel)}.

i=1
The lattice is denoted L = L(b,, b,,...,b;) and b, b,, ..., by 1s said to be a
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basis for the lattice. Clearly, the set L, from Section 2 is an (m+1)-
dimensional lattice generated by 20,81, m Where g = X' fori=0,1,..,m

The shortest vector problem for a lattice L = L(by, by, ..., by) is the problem
of finding a shortest non-zero vector in L. Of course this problem depends on
our choice of norm in R". It is known that for the L, -norm (the max-norm)
the shortest vector problem is NP-hard (see for instance [14]), which makes it
quite unlikely that there is an efficient algorithm to find a shortest vector with
respect to that norm. In Section 2 we are interested in the L,-norm (the ordi-
nary Euclidean norm). For the L,-norm the shortest vector problem is still
open, i.e. it is unknown whether the problem is NP-hard or allows a
polynomial-time solution (see [3] for an algorithm that runs in polynomial time
if the dimension of the lattice is fixed).

In Section 2 we have a weaker version of the shortest vector problem: it
suffices to find a non-zero vector that is longer than a shortest vector by at
most a factor C, for some C > 1. This problem can be solved as follows. Let
L = L(by, by, ..., b;) be as above a lattice of dimension k in R”. In 1981 L.
LovAsz invented an algorithm, the basis reduction algorithm (see [7, Section
1]), _that transforms the basis by, b,,..,b for L into a reduced basis
by, by, ..., by for L. Roughly speaking, a reduced basis is a basis that is nearly
orthogonal ; for a precise definition of this concept, and for a description of the
basis reduction algorithm, we refer to [7, Section 1].

It is intuitively clear that a basis that is nearly orthogonal contains a vector
that is not much longer than a shortest vector in the lattice. For a reduced
basis by, by, ..., by for L the following can be proved:

|b1|2<2k~1'|)€|2

for every non-zero x in L. This implies that the first vector b, in the reduced
basis is longer than a shortest non-zero vector in L by at most a factor
2k=1/2_ I Section 2 it is therefore sufficient to take C = 2"'2.

In [7] it is shown that the running time of the basis reduction algorithm,
when applied to a basis by, by, ..., b in Z", is bounded by a polynomial func-
tion of k,n, and max; (log|b;|). Combined with a precise analysis of the
results from Section 2 it follows that a primitive polynomial f in Z[X] of
degree n can be factored in time polynomial in 7 and log | f1.

Except for a polynomial-time algorithm for factoring polynomials, there
exist many more applications of L. Lovasz’ basis reduction algorithm. To men-
tion a few: simultaneous diophantine approximation [7], breaking knapsack
based cryptosystems [1, 8], and the disproof of the Mertens conjecture [10].
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The Home of the Big Whopper*

Paul M.B. Vitanyi
Centre for Mathematics and Computer Science
P.O. Box 4079,
1009 AB Amsterdam,
The Netherlands

Wherein visits to: Computer Science Department, University of Chicago, Chi-
cago, IL; Complexity Workshop (same address); 17th ACM Symposium on
Theory of Computing, Providence, RI: Laboratory for Computer Science, MIT,
Cambridge, MA; Computer Science Department, University of Rochester,
Rochester, NY; Chapel Hill VLSI Conference, Chapel Hill, N.C.; Computer Sci-
ence Department, University of California, Berkeley, CA; Computer Science
Department, Stanford University, Palo Alto, CA; Digital Equipment Co., System
Research Center, Palo Alto, CA; IBM San Jose Research Laboratory, San Jose,
CA: Computer Science Department, University of California, San Diego, CA.

1. PLAINS

On April 29 I flew from Amsterdam to Chicago. The purpose of the visit to
the Windy City was the newly established Computer Science Department of
the University of Chicago (1100 East 58 St) where I gave a talk next day. The
strong position of the US § was advertised by giant billboards along the high-
way leading into town stating “Europe is on sale! Book a $469 round trip
now!”

The Chicago Symphony Orchestra and the Lyric Opera of Chicago are
famous. The Art Institute of Chicago has the best collection of impressionists
this side of Paris (e.g., Seurat’s ‘Grande Jatte’), is strong in contemporary art
(most appropriately Hopper’s ‘Nighthawks’ is here) and has a distinguished

* This is a modified and gentlified version of the original internal accounting for the described
trip. All resemblance to existing people and institutes is unintentional and accidental. All opin-
ions expressed are my own. All errors as well. Free after John Bunyan’s “Apology for this Book
(Pilgrim’s Progress)”: “Some said ‘Paul, print it’; others said ‘not so’. Some said ‘It might be good’;

S

others said ‘no’.
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oriental collection. Innovative architecture has long been a Chicago theme:
Frank Lloyd Wright and Mies Van Der Rohe worked here. Now downtown
Chicago proudly boasts the most expensive skyscraper (the Standard Oil Build-
ing covered with Carrara marble), the tallest skyscraper ‘Sears Tower’ and,
with the new state building of Illinois, the skyscraper with most empty space
inside. Here we find a gigantic open air mosaic of Chagall - tender and lovely
- opposite the Burger King ‘Home of the Big Whopper’. On Wabash and Ran-
dolph the Underground stands on 10 yard stilts between an admiring crowd of
high rise developments. It shudders and sheds flakes of rust whenever a
screeching train ventures to pass.

Open air mosaic of Chagall
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The University of Chicago is situated in the Hyde Park area of Chicago
(East 50th St - East 60th St), and consists for a large part of attractive gar-
goyle studded neo-gothic buildings. This area forms a pleasant enclave in
threatening surroundings. Going on foot below the 50s or above the 60s is ill
advised; going too far away from the lake front is dangerous as well. In fact,
without tin cover on wheels you can only swim out. The Computer Science
Department is presently situated on the ground floor of the Physical Sciences
building in Ryerson Hall. The CS department has been recently reestablished
under the chairmanship of Robert I. Soare. His philosophy is to attract ini-
tially a large number of very strong researchers in algebraical and combina-
torial aspects of the theory of computing, and slowly build up a group in
Theory and later in Systems. Among the impressive group he has collected are:
Laszlo Babai, Laszlo Lovasz, Arjen Lenstra, Janos Simon, Endre Szemeredi.
AT&T has supported the department by instituting two AT&T fellowships, of
which Babai and Lenstra are the first recipients. In the context of building up
the name of the department, the (pre-ACM Symposium on Theory of Comput-
ing) Workshop on Computational Complexity in Chicago was held from May
2 — May 4. The main feature of this workshop was a cycle of 4 lectures giving
the state of the art in the “NC-class and P-RAM” type of parallel complexity
theory, by Richard M. Karp of the Computer Science Division, University of
California, Berkeley. NC stands for “Nick’s Class”: Turing Award winner and
originator of the NP-completeness concept Stephen Cook has named this
parallel complexity class after one of the original investigators Nicholas Pip-
penger, Maria Klawe’s husband. (At the time unknown, this highest distinc-
tion in Computer Science, the Turing Award, has now been conferred to Dick
Karp for 1985.) New results were presented by Tom Leighton, Laboratory for
Computer Science, MIT, and by Lovasz and Szemeredi, but the big news was
the talk by Andrew Chi-Chih Yao of the Computer Science Department, Stan-
ford University, where progress related to the famous P versus NP question
was announced. (No solution, but an oracle set which separates the polynomial
hierarchy uniformly. Officially presented at 26th IEEE-FOCS in Portland, OR,
October 1985.) The Workshop drew over 70 invited participants from the US,
together with a couple from Europe. Most participants stayed in the con-
veniently located Hyde Park Hilton. A late night excursion to Buddy Guy’s
Checkerboard Lounge in the desolation of 423 E. 43rd Street (five specially
dressed excursionists in a ramshackle car) gave that authentic Chicago feeling.
“Bluesman Buddy Guy [has] one of the establishments which have made
Chicago’s blues scene one of the best. The Checkerboard is not in a great area,
so don’t wander about; rent a car and don’t depend on public transportation.”
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2. NEW ENGLAND

On May 5 I flew from Chicago to Providence, Rhode Island, to attend the
17th ACM Symposium on the Theory of Computing. This conference is one of
the two yearly preeminent (if you have a hang for theory) computer science
conferences in the US (the other one is the IEEE Conference on Fundamentals
of Computer Science). The symposium took place in the Biltmore Plaza Hotel,
Kennedy Plaza, Providence, and was mainly devoted to issues in the theory of
computation. Several interesting new results in the area of distributed comput-
ing were presented. Narendra Karmarkar of AT&T Bell Labs presented an
impromptu lecture in which he gave a comparison in number of iterations and
cpu time between his applauded new method for solving linear programming
problems and the standard Simplex method. The practical performance of the
new method has this last year been the subject of much debate in the Opera-
tions Research community. This issue is so important because of the huge
economic investment in linear programming problems. Karmarkar has com-
pared 4 types of problems, ranging in number of parameters and size of prob-
lem instances, and prepared by independent outside experts as benchmarks.
According to Karmarkar, the results showed a 10 to 300 fold speedup by using
the new method, the latter for the very large problem instances.

Rhode Island, smallest state in the Union, is first in corruption. This time
Providence hit the news with the Von Bulow trial. The long drawn out case
about the Honourable Von Bulow’s supposed murder attempt on his rich wife
(in coma for the last five years) led first to a life imprisonment sentence; now
Von Bulow was acquitted and had a happy reunion in front of the networks
with his (long time) girlfriend. During the trial (and the STOC) the famous
man stayed in the Biltmore besieged by the national press. This too is the city
of which the mayor, offering to host the STOC last year, had to resign half an
hour after signing the invitation letter on being charged in a corruption case.
The city also contains Ivy League’s Brown University. Nearby Newport is the
home of the very rich. Their mansions border the ocean along ‘Cliff Walk’. In
Rosecliff Manor a champagne reception on the grass lawn with view over the
ocean took place on the filmic location of ‘the Great Gatsby’ followed by a
lobster dinner in the ballroom.

From May 8 - May 11 I visited the Laboratory for Computer Science, Mas-
sachusetts Institute of Technology. In the aftermath of the nearby STOC
conference, some more attendees descended on MIT to give talks. Main pur-
pose of my visit here was the Distributed Computing group centered around
Nancy Lynch, and to reconnoitre the Boston-Cambridge area for a more pro-
tracted visit in the near future. Invited to the weekly faculty luncheon, I had
the good fortune to hear director M.L. Dertouzos of the Laboratory for Com-
puter Science expound the newly proposed guidelines for proprietary rights for
products like books or software developed at LCS-MIT. As Dertouzos stated:
“the proposed guidelines are the most liberal possible. Everybody, from
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faculty to students, will be the legal owner of their own work, shared among
the participants according to contribution, without MIT having any title to it.
This holds insofar as the work has been produced using ordinary (computer)
resources. For extraordinary resources like the Athena Project, the ownership
will have to be shared with MIT. Similar exceptions have to be made for con-
tract work. The policy will put the LCS at odds with the general MIT policy.
This is a responsibility I will take, and the outlined new policy will be the
department policy from the immediate future onwards.” In the discussion it
became clear that the new LCS-MIT policy aimed at trying to keep good
faculty and students who are able to write profitable books and software. The
previous policy, that MIT has the title to such work produced during employ-
ment by MIT (as is common elsewhere), is perceived to encourage the very
best people to look for more grazy pastures. This is a general issue among all
top US Universities, and, true to its reputation for excellence, LCS-MIT seems
the first to change its policy by, in effect, opting to attract and keep the very
best experts and waiving short-term (and doubtful because of law suits) mone-
tary gain.

MIT (founded in 1861 in Boston and moved to Cambridge in 1916) is the
hub of the high-tech developments along US Route 128 ‘America’s Technology
Highway. MIT has 9,500 students and 123 buildings. (Compare
Harvard/Radcliffe with 23,000 students, 274 buildings.) It occupies a sprawling
elongated terrain bordering the Charles river in Cambridge opposite from the
Back Bay area in Boston. The site is interspersed with sturdy looking turn-of-
the-century buildings (viz., the mascot MIT dome), new avant garde architec-
ture like the Auditorium by Saarinen, ramshackle barracks which are shedding
loose planking, decrepit smoking factory buildings which are left-overs from
the last century, factory railroads crossing the area, high-tech companies in
modern buildings, and, on Technology Square 545, the Laboratory for Com-
puter Science. Excavations are going on, roads are being paved, buildings are
being erected. The institute is appropriately -and perhaps fondly- nicknamed
“the factory”. One of the newer looking buildings is the CS building, which
does not prevent it from being renovated bottom up. Therefore, the Theory
part on the third floor is handsomely designed, whereas the Distributed Sys-
tems group on the fifth floor is housed somewhat oldfashionedly. Office and
other space is pretty tight. Although the regular professors have a 10 times 10
ft cubicle to themselves, with another such cubicle for their private secretary,
the graduate students and more ordinary faculty members share rooms, some-
times three to a small room of 12 times 12 ft. This was a pattern I saw
repeated also at Stanford University, contrasting with the very spacious accom-
modations at Chicago University, and the in-between accommodations at
Berkeley. Although UNIX is available, the most commonly used operating
system seems to be DEC’s TOPS 20, and the usual editor Emacs. Finally,
MIT proudly boasts an enormously long corridor: crossing the Mathematics
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wing is the second longest* corridor in the world (two miles).

To the European eye, Boston-Cambridge makes a pleasing view, with as
highlights the Back Bay, Beacon Hill and Harvard Square. In between lies the
Charles River lined with frantic joggers and supporting innumerable sailing
boats. The Boston area has nearly a hundred Universities, some of them far
larger than Harvard or MIT. Beacon Hill is a curious part of the New World
in that it looks largely 18th century. Here we find the graves of Paul Revere
and Benjamin Franklin bordering a several miles long red stripe in the pave-
ment: the Freedom Trail. This is where it all began.

On May 12 - May 13 I visited the Computer Science Department, Univer-
sity of Rochester, Ray P. Hylan Building, Rochester, NY. On Rochester Air-
port visitors are gladdened by a large ‘Welcome to the Home of Eastman-
Kodak’ and ‘Rochester, first in film’. Without scorning Kodak, or Xerox for
that matter ‘Xerox, a Rochester Employer’, the main reason for my visit was
cooperation with former chairman Joel Seiferas on a subject in automata-
complexity. The Computer Science Department in Rochester has 36 graduate
students and no undergraduates. It has three specialisations: Theory of Com-
puting, Systems and Artificial Intelligence. The department has a wealth of
hardware, which is partly connected to the fact that Rochester is the home of
the above mentioned industrial giants. Among the equipment of the faculty
are: several VAXs 780 and 750, 12 Xerox Altos intelligent work stations
(where the MacIntosh technology comes from), 10 SUNs, 6 new Xerox Dan-
delion Intelligent work stations (descendants of the Altos), part of a BBN
Butterfly, and the first Butterfly to be delivered on order. The Bolt Beranek &
Newman Butterfly is a multiprocessor machine consisting of 128 Motorola
68010 microprocessors, each with its own few M memory, in a fast permuta-
tion topology (viz., in the “butterfly” or Fast Fourier Transform circuit).

3. OLD SouTH

May 14 I left Rochester for ‘Gone with the Wind’ country to visit the Chapel
Hill VLSI Conference, held at Chapel Hill, N.C., May 15 - May 17. Atten-
dance to this conference was by invitation only. This is a ruse to keep out
hordes of nontechnicians which may flock to conferences graced by the golden
acronym. The conference was held on the campus of the University of North
Carolina in Chapel Hill, the oldest (1795) state university in the US. (Harvard
(1636) is the oldest university.) Chapel Hill has about 15,000 regular inhabi-
tants and 23,000 transient students. The latter amuse themselves on Franklin
(the main drag) before 12.00 pm in “He Is Not Here” drinking beer and after
00.00 am at “Cat’s Cradle” swinging it out. Alumnus Thomas Wolfe once
described it as a place that “beats every other town all hollow.” The

* Where is the longest?
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conference was unusual among scientific conferences because of a sizeable
group of reporters attending, and rushing off their findings in the evening.
Chapel Hill is one corner of the famous ‘Research Triangle’: University of
North Carolina at Chapel Hill, North Carolina State University at Raleigh and
Duke University in Durham, in the center of which is Research Triangle Park.
This area is reputed to have the most Ph.D.s per head of population in the US.
On Thursday 16th the conferencees visited the new Microelectronics Center of
North Carolina (MCNC) located in the Triangle Research Park. MCNC is a
not-for-profit corporation founded by five universities: Duke University, North
Carolina A&T State University, University of North Carolina at Chapel Hill,
University of North Carolina at Charlotte, and Triangle Research Institute.
The headquarters is a $20M building with extensive Integrated Circuit design
and fabrication facilities. A total of about $100M has by now been invested in
this venture. No actual chips had as yet been produced. The color graphics
design facilities were demonstrated, and the super cleanness of the building
spoke for itself. Another day we were shown the advanced facilities at the
University itself. Among the interesting talks at the conference was the idea of
“Hot Clocks” by Ch. Seitz from Caltech. Formerly the pope of the idea of
delay-insensitive VLSI circuits, this paper presented a 180 degree volte-face by
propagating chips which are the epitome of synchronization by using the clock
itself to power the circuits. Substantial area savings appeared to result.
Remarkable was the presented Chapel Hill research on building a VLSI-based
graphic system “Pixel-Planes”, by conference organizer H. Fuchs et. al., which
would also be presented at the July SIGGRAPH conference in San Francisco.
This was one of several papers of using VLSI in computer graphics. N.L. Lin-
coln, of ETA Systems, gave a talk on very large scale computation (VLSC) in
which he described feasible approaches of building supercomputers. One
approach which recently seemed to become viable was putting a hundred
mainframes (in the form of chips) on a sub-pc board, and stacking such boards
in a cabinet. The quest for speed with Gallium-Arsenide substrates instead of
silicon continues. Optical computing was a scientist dreaming, or, in any event,
way out in the future. Another talk was about legal protection for VLSI from
patent laws through the 1978 and 1980 revisions of the US Copyright Act to
the 1984 Chip Protection Act. Nearly all of the projects presented used the
general chip-bakery: the MOSIS project, where those institutes with access to
the Arpanet could get a turn-around time, between sending the design and
receiving the packaged chips, of about 6 weeks. (Volume about 1300 design
projects per year.) One feature of the conference was that nearly all talks con-
cluded with a slide with the magnified picture of ‘the final chip’: formerly a
sign that something had been actually fabricated, now somewhat boring
because everybody does so and one design looks very much like another.
(Except to the proud parents.) Here I could not miss but meeting a 7 ft expa-
triate Dutchman, Adriaan Ligtenberg, presently at AT&T Bell Labs, Holmdell,
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N.J., engaged in the development of VLSI design tools. At his work site his
facilities included having a private microVAX under his desk. Another meet-
ing, at the conference dinner in the historic building of Morehead Planetarium
(used by U.S. astronauts in preparing for space flights), was with new Com-
puter Science Department (UNC Chapel Hill) Chairman J. Nievergelt who will
leave his present position at Informatik, ETH Zurich, Switzerland. At the end
of the conference the United Airlines pilots went on strike, which was incon-
venient for holders of a United Airlines Airpass, like myself. Having to fly to
San Francisco that same day, May 17, I succeeded in cajoling the airlines to
first transport me by Delta to Dallas/Fort Worth, and continuing with Braniff
to San Francisco.

4. CALIFORNIA

Arriving 15 minutes early in San Francisco, was compensated for by having to
wait a long time for my checked luggage. The good fortune in arriving early
was further offset by the removal from the bag of a small satchel containing
half a pound of Dutch coin and all receipts so far accumulated. Here I visited
Leslie Lamport, lately of SRI-International at Menlo Park, now at DEC-SRC
in Palo Alto. On May 20 I spent the day at the Computer Science Depart-
ment, University of California, Berkeley. My host was Associate Chairman for
Computer Science Dominico Ferrari, of the EECS Department. Here I nearly
overdid it by giving a CS seminar in the morning and one in the afternoon as
well. Luckily, there was coffee on the premisses and goodsized audiences in the
room. The group of Ferrari is responsible for the Berkeley Unix releases. In
between seminars I had luncheon with the faculty and staff, where the relative
responsibilities and the resulting frictions between those two echelons were dis-
cussed. One problem is that secretaries have to learn the Unix system, and
when they are highly qualified users do not earn more for that. Thus, they tend
to go elsewhere to where the appreciation is expressed by an appropriate
salary. This results in an extraordinarily high turnover of the supporting
administrative staff. Another issue at the meeting was that the staff should
screen the faculty from administrative duties and random visitors. (A well
known faculty like the one at UC Berkeley attracts so many people who want
to talk to them that if they are not shielded no time for significant research is
left. Eventually then the faculty looses prominence and the visitors stop com-
ing: a prospect which had little appeal to faculty and staff alike.) UC Berkeley
is doing well, and somebody told me that soon the big three in Computer Sci-
ence will be the big four.

On May 21 I proceeded to nearby Palo Alto, Cal., focal point of Silicon
Valley, to visit the Computer Science Department, Stanford University, housed
in Margaret Jacks Hall. Stanford University owes its existence to one Leland
Stanford Jr., in whose memory his doting mother erected a garishly mosaic
studded chapel in - what is described as - “Spanish brown sandstone style”.
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The chapel wall bears the unforgettable legend ‘for the glory of God and
<doubling of point size> the memory of Leland Stanford Jr’, as well as
exhortations to lead a moral and religious life. The Stanfords were railroad
barons and owned the huge tract of land on which the university now stands
scattered among waving palm trees and approved by a one yard across copper
embossed ‘Seal of the President of the United States” in the pavement. Shortly
after junior changed this earthly existence for a more eternal one, around the
turn of the century, senior did so too. The bereaved mother and wife subse-
quently added a museum (second largest collection of Rodin sculptures) and a
mausoleum (for the Stanford family) to the grounds. Just as UC Berkeley has
its twice life size copy of the San Marco Campanilla of Venice as focal point
on campus, also Stanford has its rallying tower. As far as I know, this may be
one of a kind.

Being a speaker in the Stanford Computer Science Colloquium, I was invited
to attend the weekly (?) faculty luncheon. Like MIT’s, this faculty consists of a
host of well-known names. In this case, with a slant towards the theoretical
side. I was cheerfully welcomed by acting chairman Nils Nillson, introduced
to all entering faculty, “is that Hungarian?”, and invited to join the discussion.
The topic here was whether the graduate students should be forced to do
significant research already in their first year “slave labor for their teacher”, or
whether only - as is practice now - in their second year. Well-known scientist:
“if T would have to have done all these things in my first year at Caltech I
would have flunked”. Conclusion: continue the present state of events, with
perhaps some pressure added. The Stanford faculty scene seems like a firma-
ment studded with bright solitary stars fixed in place with little communication
yet fierce competition.

Stanford’s CS department has 60 graduate students, computer generated
mosaics (resembling pen drawings by Lucebert*) on some outdoor walls, and
occupies the basement and 2nd and 3rd floors of the sandstone building. There
are some mainframes which seem to be down a lot of the time, about 40 SUN
intelligent work stations, Xerox Altos sprinkled here and there, Dandelions etc.
Work in Stanford is theoretically oriented, systems and AL

Giving a CS Colloquium at Stanford is a somewhat unsettling experience.
The occasion takes place in a large auditorium, where each seat is supplied
with a microphone connected to the sound system. In the back of the audito-
rium is a smoked glass division, behind which is the recording crew. Each such
lecture is transmitted live on television to both remote locations on campus
and off campus (for instance, to corporations in Silicon Valley). All listeners
can - by direct connection - interrupt the lecture and ask questions which

* Lucebert, pseudonym of Lubertus J. Swaanswijk (1924 - ) contemporary Dutch poet-painter of
the COBRA group.
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rudely bellow from the walls. The video recorded talks are stored in the
libraries for future reference. Speakers are presented with a set of instructions
on what to wear and how to behave, which follow below.

TELEVISED SEMINARS: A GUIDE FOR GUEST SPEAKERS
I. LET ME KNOW YOUR A/V NEEDS

We can provide 35mm slide projection, 16mm film projection, 3/4” and
VHS videotape playbacks, and computer hook-ups into our video system
for certain computers. Please notify me if you are using any visual

aids other than one overhead projector.

II. PLEASE DON'T WEAR WHITE!

Clothing with too great a contrast (white shirt with dark slacks) can
interfere with the camera’s operation. If possible, wear shirts in
pastel blues, yellows, and greys.

ITII. BE AWARE OF THE LIMITATIONS OF TELEVISION

Try not to pace. Do not simultaneously refer to specific points on two
separate blackboards.

Our overhead cameras can show material that you place down on your
desk, for both off campus and in-studio students. Be aware that televised
graphics resolve best when they conform to a ratio of 3 x 4. Material

that is typed on 8 1/2 by 11 paper, and small print from books will not be
clear. Use fairly large print, ideally 24 point font size. We can

provide entire pads of lined paper that we have specially designed for
studio use.

If you have a series of visuals that you will be placing on the desk for
pickup by the overhead camera, place each page down in the same spot.
Do not move your visuals hastily.

Arthur Keller
Coordinator, Stanford CS Colloquia

Dinner in Palo Alto, true to the way it ought to be, was with high-powered
thirtyish Silicon Valley people like Leo Guibas (Stanford/ DEC-SRC/Technical
U. Athens), Pat Cole (Project Leader Personal Computers HP), Co-Chair of
the upcoming SIGGRAPH Conference in San Francisco, and Susan Brennan
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(Senior Researcher HP) and member of the same conference committee.
Conversation turned to problems attending running a conference with 35,000
attendees, personal career planning, and problems in computer graphics. Con-
trary to the deplorable situation in the Low Countries, big responsibilities are
often shouldered by the very young in Silicon Valley.

On May 22 1 paid a short visit to the newly established DEC Systems
Research Center (SRC), situated just on the edge of the Stanford Campus and
Palo Alto proper. This is a new group, which aims at producing long-term
work. DEC thinks it needs its own scientific research center to match those of
IBM and AT&T Bell.

SRC’s role is to design, build, and use new digital systems five to ten years before
they become commonplace. The purpose is to advance both the state of the
knowledge and the state of the art. SRC will create and use real systems in order
to investigate their properties. Interesting systems are t0o complex to be evaluated
purely in the abstract. Our strategy is to build prototypes, use them as daily tools,
and feed the experience back into the design of better tools and more relevant
theories. Most of the major advances in information systems have come through
this strategy, including time-sharing, the Arpanet, and distributed personal com-
puting. Among the areas SRC will build prototypes during the next several years
are applications of high-performance personal computing, distributed computing,
communications, databases, programming environments, system-building tools,
design automation. specification technology, and tightly coupled multiprocessors.
SRC will also do work of a more formal and mathematical flavor: some members
will be constructing theories, developing algorithms, and proving theorems as well
as designing systems and writing programs. Some of SRC’s work will be in esta-
blished fields of theoretical computer science, such as the analysis of algorithms,
computational geometry and logics of programming. In other cases, new ground
motivated by problems arising in systems research will be explored. DEC has a
commitment to open research. The improved understanding that comes with
widespread exposure seems more valuable than any transient competitive advan-
tage. SRC will freely report results at conferences and in professional journals. We
will encourage visits by university researchers and conduct collaborative research.
We will actively seek users for our prototype systems. To facilitate interchange, we
will develop systems that run on hardware available to universities and work out
ways of making our software available for academic use.

The new SRC is largely staffed by the former researchers from Xerox Palo
Alto Research, the people who invented the technology of the Xerox Alto, bit
map display and the like. Owing to failure of Xerox to properly market these
machines, and eventual sale of the technology to Apple Co. - in search of a
new product and thereby able to develop the Lisa and the MacIntosh - the
innovative work of this group is not commonly realised. Work is going on in
designing a new personal work station. This Firefly will probably be a follow-
up of the Xerox Dandelion (itself a follow-up of the Altos), contain five micro-
VAXs with a large common memory. SRC has chosen Modula-2 as its primary
programming language for the next few years. The SRC has produced as yet
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three technical reports. DEC-SRC is distinct from the older DEC Western
Research Laboratory a couple of blocks down the road. Late in the evening I
saw the Apple Co. headquarters in Cupertino (from the outside).

On May 23 I talked at IBM Research Laboratory in San Jose, geographical
heart of Silicon Valley. Peter and Ghica van Emde Boas, Dutchmen for 9
months at IBM, regaled me on stories of the different life in this part of the
new world. I, in turn, could tell them about the things transpiring back home.
It was a pleasure to settle last year’s bet which I lost in the form of a bottle of
vintage Veuve Cliquot. The innominate winner, in a surprise switch from
theory to practice, now runs a project to build a multiprocessor system. It is
rumored that this computer consists of 1024 processors, of very special and
secret design, each processor on chip and as powerful as an IBM 3081 main-
frame. These processors get their input (and deliver their output) from another
one of these processors over a pipelined channel with a peak of 6 Mfl. The
processors communicate with each other over a fast permutation network like
an FFT network. The machine seems essentially made for special purpose
application in scientific computations such as the numeric solution of second
order partial differential equations and the like.

IBM San Jose employes about 7,000 people, of which but a relatively small
number do fundamental computer-based research. Prominently on display in
the main hall of the part of the complex I visited were models and photo-
graphs of the posh group of buildings IBM is building in the nearby moun-
tains as an attractive new site for fundamental research in Computer Science
and associated branches of Mathematics. It seems that most major corpora-
tions in the field are rapidly expanding their activities in fundamental research.
In the late afternoon Peter and Ghica brought me to the San Jose airport to
take an American Airlines flight to San Diego (thus avoiding the UA strike).

From May 24 - May 26 I visited the Computer Science Department of the
University of California, San Diego. Here my host was Walter Savitch. San
Diego is appointed as the center of an interuniversity network in the southern
part of California, to give universities in the area rapid access to supercomput-
ers. Soon, supercomputer users at Stanford will compute on the supercomput-
ers in San Diego Super Computer Center. This is the result of a nation wide
campaign in US Congress, and a feasibility study at SRI-International, to give
the major universities on-line access to supercomputers. The campus of UC
San Diego is picturesquely situated among a million eucalyptus trees near the
beach of subcity La Jolla “La Hojja”. The architecture of the buildings is
modern but very pleasant, and, since a few years, the statue of “The Sun God”
(also called “the Chicken”) in Karel Appel* like colors benevolently glowers
over the campus. It emanates golden rays from its high pedestal while the sun

* Karel Appel (1921 - ) contemporary Dutch painter-sculptor. Member of the COBRA group.
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The Sun God

sets in the west in the Pacific. Scenic San Diego’s airport is perhaps the only
one in the world situated right in the center of a major city. Startled first time
arrivals gaze at skyscrapers towering left and right above them just before
touch-down, and wonder whether the pilot knows what he is doing. Among the
attractions of the area are one of the best zoo’s in the world and a major
wildlife park. On the 26th I tried to figure out how to get by United to Chi-
cago to catch the connecting KLM flight next day. But now not only were the
pilots on strike, but also the computer was down “I cannot do anything for
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you sir, I am looking at a blank screen”. Spending Sunday in Mexico (another
nearby attraction) I tried again next evening. Now the one flight which was
flying was full, but I could try on stand-by basis. This was no good to me, so
after some insistence and the discovery of a magical “M” status on the ticket, I
was told that maybe American Airlines would endorse the ticket. And they
did, most friendly and efficiently. So, on the 27th home again in a KLM plane
from Chicago. The movie was ‘All of me’, and seated next to me in the row
where you can stretch your legs in a 747 was a friendly citizen of Lincoln’s
birthplace (Springfield, I1l.). He had been shot down in a fighter plane above
Midwoud (N-H) during the war, and was now en route to visit old friends in
the Netherlands, as he did every seventh year.
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Syllabus 6. P.J.M. Bongaarts, J.N. Buur, E.A. de Kerf, R. Martini, H.G.J.
Pijls & J.W. de Roever. Proceedings Seminar 1982-1983 Mathematical Struc-

tures in Field Theories.

AMS 81EXX, 81E10, 53BXX, 55RXX, 55N30; 250 pp.

Abstract: Starting from 1982/1983, the University of Amsterdam played host to a series of sem-
inars on the mathematics of field theories. This volume contains the lecture series of the first year
which were concerned with the basics of quantum field theory and with Yang-Mills gauge theories.
The volume contains several in depth lecture series covering on the whole known material in a
form suitable on the one hand to mathematicians who desire to know more about physics and
physical intuition underlying this field, and suitable to theoretical physicists who need to know
more about the mathematical techniques involved. This reflected the composition of the group of
participants. Further volumes covering the material presented in 1983/1984 and 1984/1985 are in
preparation. Topics covered: Feynman path integral and perturbation quantum field theory, topo-
logical solutions and Derricks theorem, fields and Lagrangians, the Ward Ansatz for Y.-M. poten-
tials, massless field equations, sheaf cohomology, Penrox tranform.

CS-R8513. S.J. Mullender & P.M.B. Vitanyi. Distributed match-making for
processes in computer networks.
AMS 68C05, 68C25; CR C.2.1, F22, G2.2; 22 pp; key words: locating

objects, locating services, computer networks, network topology.

Abstract: In the very large multiprocessor systems and, on a grander scale, computer networks now
emerging, processes are not tied to fixed processors but run on processors taken from a pool of
processors. Processors are released when a process dies, migrates or when the process crashes. In
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distributed operating systems using the service concept, processes can be clients asking for a ser-
vice, servers giving a service or both. Establishing communication between a process asking for a
service and a process giving that service, without centralized control in a distributed environment
with mobile processes, constitutes the problem of distributed match-making. Logically, such a
match-making phase precedes routing in store-and-forward computer networks of this type. Algo-
rithms for distributed match-making are developed and their complexity is investigated in terms of
message passes and in terms of storage needed. The theoretical limitations of distributed match-
making are established, and the techniques are applied to several network topologies.

CS-R8514. P.M.B. Vitanyi. Area penalty for sublinear signal propagation delay
on chip (preliminary version).

AMS 68C25, 94C99; CR B.7.0, F.2.3; 22 pp.; key words: very large scale
integrated circuits (VLSI), wafer scale integration, sublinear signal propagation
delay, electronic principles, driving long wires, wire aspect ratio, circuit topol-
ogy, complete binary tree circuits, H-tree layout, layout area, time, computa-
tional complexity and efficiency, actual wire length distributions, Rent’s Rule.
Abstract: Sublinear signal propagation delay in VLSI circuits carries a far greater penalty in wire
area than is commonly realized. Therefore, the global complexity of VLSI circuits is more layout
dependent than previously thought. This effect will be truly pronounced in the emerging wafer
scale integration technology. We establish lower bounds on the trade-off between sublinear signal-
ling speed and layout area for the implementation of a complete binary tree in VLSI. In particu-
lar, sublinear delay can only be realized at the cost of superlinear area. Designs with equal length
wires can either not be laid out at all, viz. for logarithmic delay, or require such long wires in the
case of radical delay (i.e., rth root of the wire length) that the aimed for gain in speed is cancelled.
Also for wire length distributions commonly occurring on chip it appears that the requirements for
sublinear signal propagation delay tend to cancel the gain.

CS-R8515. P. America, J.W. de Bakker, J.N. Kok & J. Rutten. Operational
semantics of a parallel object-oriented language.

AMS 68B10, 68C01; CR D.1.3, D.2.1, D.3.1, F.3.2; 19 pp.; key words: object-
oriented programming, parallelism, transition systems, language design, imple-
mentation, fairness, operational semantics, maximal parallelism.

Abstract: In this paper the semantics of the programming language POOL is described. It is a
language that integrates the object-oriented structure of languages like Smalltalk-80 with facilities
for concurrency and communication like the ones in Ada. The semantics is described in an opera-
tional way: it is based on transition systems. By using a way of representing parallel processes that
is different from the traditional one, it is possible to overcome some difficulties pertaining to the
latter. The resulting semantics shows a close resemblance to the informal language description and
at the same time there are good prospects that it can serve as a secure guide for the implementa-
tion of the language.

CS-N8506. G.J. Hofman & J.C. van Vliet. On certification and document pro-
cessing.

CR K.7.3, 1.7.2; 12 pp.; key words: certification, testing, text processing.
Abstract: How can functional aspects of document processing systems be certified? It turns out
that most existing techniques for testing cannot be applied to this problem. In this article an alter-
native technique is sketched and applied. This case study suggests that, in order to certify a given
type of software, a considerable investment and a considerable knowledge of the problem domain
in question are needed.
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NM-R8507. P.W. Hemker & S.P. Spekreijse. Multiple grid and Osher’s scheme
for the efficient solution of the steady Euler equations.

AMS 65N05, 65N30, 76G15, 76HO5; 22 pp.; key words: steady Euler equa-
tions, multigrid methods.

Abstract: An iterative method is developed for the solution of steady Euler equations for inviscid
flow. The system of hyperbolic conservation laws is discretized by a finite volume Osher-
discretization. The iterative method is a multiple grid (FAS) iteration with symmetric Gauss-Seidel
(SGS) as a relaxation method. Initial estimates are obtained by full multigrid (FMG). In the point-
wise relaxation the equations are kept in block-coupled form and local linearization of the equa-
tions and the boundary conditions are considered. The efficient formulation of Osher’s discretiza-
tion of the 2-D non-isentropic steady Euler equations and its linearization is presented. The
efficiency of FAS-SGS iteration is shown for a transsonic model problem. It appears that the rate
of convergence is independent of the gridsize and that for all meshsizes the discrete system is
solved up to truncation error accuracy in only a few (2 or 3) iteration cycles.

NM-R8508. B.P. Sommeijer. On the economization of explicit Runge-Kutta
methods.

AMS 65L05; CR G.1.7; 17 pp.; key words: initial value problems, Runge-
Kutta methods.

Abstract: A modification of explicit Runge-Kutta (RK) methods is proposed. Schemes are con-
structed which require less derivative-evaluations to achieve a certain order than do classical RK
methods. As an example, we give a second-order method requiring one evaluation, two third-order
methods using one and two evaluations respectively, and finally a fourth-order method which
requires two evaluations. Numerical examples illustrate the behaviour of these schemes.

NM-R8509. P.J. van der Houwen & B.P. Sommeijer. Predictor-corrector
methods for periodic second-order initial value problems.
AMS 65L05; CR G.1.7; 17 pp.; key words: numerical analysis, ordinary

differential equations, periodic solutions, predictor-corrector methods.

Abstract: Predictor-corrector methods are constructed for the accurate representation of the eigen-
modes in the solution of second-order differential equations without first derivatives. These
methods have (algebraic) order 4 and 6, and phase errors of orders up to 10. For linear and
weakly nonlinear problems where homogeneous solution components dominate, the methods pro-
posed in this paper are considerably more accurate than conventional methods.

NM-R8510. P.J. van der Houwen. Discretization of hyperbolic differential equa-

tions with periodic solutions.
(see NM-R8514).

NM-R8511. F.W. Wubs. Performance evaluation of explicit shallow-water equa-
tions solvers on the CYBER 205.
AMS 65M10, 76D99; 12 pp.; key words: stabilization, hyperbolic equations,

method of lines, residual averaging, shallow-water equations.

Abstract: The performance of an explicit method and an ADI method for shallow-water equations
is compared on a CYBER 205. Furthermore, a stabilization technique is discussed, which stabilizes
the explicit method in such a way that any desired time step is possible without the development
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of instabilities. Comparing the codes for two test models, we found that the explicit methods are
attractive on the CYBER 205. Finally, some proposals are made for the handling of irregular
geometries.

NM-R8512. J. Kok. Two Ada mathematical functions packages for use in real

time.

AMS 69D49, 65-04; 9 pp.; key words: Ada, high level language, basic
mathematical functions, scientific libraries, portability, real-time processing.
Abstract: Two portable Ada packages are proposed for the provision of basic mathematical func-
tions in a form suitable for real-time processing. These packages satisfy the requirements given in
the ‘Guidelines for the design of large modular scientific libraries in Ada’ with regard to services
requested by real-time processes.

NM-R8513. J.H.M. ten Thije Boonkkamp & J.G. Verwer. On the odd-even
hopscotch scheme for the numerical integration of time-dependent partial

differential equations.

AMS 65M10; CR 5.17; 15 pp.; key words: partial differential equations,
convection-diffusion equations, numerical time stepping, odd-even hopscotch
method.

Abstract: This paper is devoted to the odd-even hopscotch scheme for the numerical integration of
time-dependent partial differential equations. Attention is focussed on two aspects. Firstly, via the
equivalence to the combined leapfrog-Du Fort-Frankel method we derive the explicit expression of
the critical time step for Neumann stability for a class of multi-dimensional convection-diffusion
equations. This expression can be derived directly by applying a useful stability theorem due to
Hindmarsh, Gresho & Griffiths. The interesting thing about the critical time step is that it is
independent of the diffusion parameter and yet smaller than the critical time step for zero
diffusion, but only in the multi-dimensional case. This curious phenomenon does not occur for the
one-dimensional problem. Secondly, we consider the drawback of the Du Fort-Frankel accuracy
deficiency of the hopscotch scheme. To overcome this deficiency we discuss global Richardson
extrapolation in time. This simple device can always be used without reducing feasibility. Numeri-
cal examples are given to illustrate the results of extrapolation.

NM-R8514. P.J. van der Houwen. Spatial discretization of hyperbolic equations
with periodic solutions.

AMS 65M20, 76B15; 15 pp.; key words: numerical analysis, hyperbolic equa-
tions, periodic solutions.

Abstract: We investigate the Cauchy problem for hyperbolic equations for which the frequencies of
the main Fourier components in the solution are located in a given frequency interval. Difference
formulas for the spatial derivatives are constructed that are tuned to the given intervals of frequen-
cies. Numerical examples illustrating these special discretizations are given both for linear and
nonlinear problems.

NM-R8515. J. van de Lune, HJ.J. te Riele & D.T. Winter. On the zeros of the
Riemann zeta function in the critical strip; 1V.
AMS 10HO05, 10-04, 65E05, 30-04; CR G.1.0; 18 pp.; key words: Riemann

hypothesis, Riemann zeta function, Gram blocks, Rosser’s rule.

Abstract: Very extensive computations are reported which extend and, partly, check previous com-
putations concerning the location of the complex zeros of the Riemann zeta function. The results
imply the truth of the Riemann hypothesis for the first 1,500,000,001 zeros of the form o + it in
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the critical strip with 0 <7 < 545,439,823.215, i.e., all these zeros have real part o = 2. Moreover,
all these zeros are simple. Various tables are given with statistical data concerning the numbers
and first occurences of Gram blocks of various types, the numbers of Gram intervals containing m
zeros, for m =0,1,2,3 and 4, and the numbers of exceptions to ‘Rosser’s rule’ of various types
(including some formerly unobserved types). Graphs of the function Z(¢) are given near five
rarely occurring exceptions to Rosser’s rule, near the first Gram block of length 9, near the closest
observed pair of zeros of the Riemann zeta function, and near the largest (positive and negative)
found values of Z () at Gram points. Finally, reference is given to various number-theoretical
implications.

NM-R8516. W.H. Hundsdorfer. Stability and B-convergence of linearly implicit
Runge-Kutta methods.

AMS 65L05, 651.20; 16 pp.; key words: numerical analysis, stiff initial value
problems, linearly implicit Runge-Kutta methods, B-convergence.

Abstract: In this paper we study stability and convergence properties of linear implicit Runge-
Kutta methods applied to stiff semi-linear systems of differential equations. The stability analysis
includes stability with respect to internal perturbations. All results presented in this paper are
independent of the stiffness of the system.

NM-R8517. K. Burrage, W.H. Hundsdorfer & J.G. Verwer. A study of B-
convergence of Runge-Kutta methods.

AMS 65L05; CR 5.17; 15 pp.; key words: numerical analysis, implicit Runge-
Kutta methods, stiff problems, B-convergence.

Abstract: This paper deals with the convergence analysis of implicit Runge-Kutta methods as
applied to stiff, semi-linear systems of the form U(t) = QU(t)+g(1,U(t)). A criterion is developed
which determines whether the order of optimal B-convergence is at least equal to the stage order
or one order higher. This criterion is studied for a number of interesting classes of methods.

NM-R8518. W.M. Lioen. NUMVEC FORTRAN library manual. Chapter:
Elliptic PDEs, Routine: MGZEB.

AMS 65V05, 65N20, 65F10; CR 5.17; 17 pp.; key words: elliptic PDEs, Galer-
kin approximation, multigrid methods, software, sparse linear systems, zebra
relaxation.

Abstract: The NUMVEC FORTRAN library routine MGZEB is described. MGZEB solves 7-

diagonal linear systems, that arise from 7-point discretizations of elliptic PDEs on a rectangle,
using a multigrid technique with zebra relaxation as smoothing process.

MS-R8504. R. Gill & M. Schumacher. A simple test of the proportional hazards

assumption.
AMS 62P10, 62G05; 34 pp.; key words: censored data rank tests, proportional

hazards.

Abstract: When comparing two samples of possibly censored survival times it is very often impor-
tant to assess the proportionality of the underlying hazard functions. In order to check the
assumption of proportional hazards graphical methods and several test procedures have been pro-
posed so far. Nearly all of these tests, however, are based on an arbitrarily chosen partition of the
time axis and/or are difficult to compute. The key idea behind the new test procedures proposed
in this paper is the observation that in nonproportional hazards situations different two-sample
tests, e.g. the logrank and a generalized Wilcoxon test, might come up with very different answers.
Our test procedures use this discrepancy as a check of the proportional hazards assumption and
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are based on the relationship between generalized linear rank tests and estimates of the propor-
tionality constant. This implies that the test statistics can be interpreted in a very natural way and
almost all computation effort has to be done anyway. In additional, a related graphical method is
presented which was originally proposed by Lee & Pirie for comparing trends in series of events.

MS-R8505. K.O. Dzhaparidze. On asymptotic inference about intensity parame-
ters of a counting process.
AMS 62F12, 62G05, 62M99; 14 pp.; key words: Cox’s regression model, mul-

tivariate counting process, compensator, parameter estimation.

Abstract: The Cox regression model may be viewed as a special case of the general model
described in this paper via the pair (4,,%,) of predictable characteristics of an r-variate counting
process N, = (N,l,...,Nf), associated with its compensator A, = (A],..,A}) as follows:
A, = Al +..+ A, and ¥, = dA/dA,. It is supposed that the latter characteristic involves the
real valued parameter B, i.e. ¥, = ¥,(B), to be estimated by means of a given sample path of
{N, 0<t¢<1}. Treating this problem in its asymptotic setting, we consider our experiment as n-th
in a sequence of experiments, and let A, satisfy Condition I of asymptotic stability. Under this
and certain additional conditions introduced on demand, we study asymptotic properties of the
estimator B for B, which is in fact the Cox estimator extended to our situation. In particular, we
characterize the consistency and asymptotic normality of 8 by estimating the probability of large
deviations, and then showing the convergence in all moments of the distribution of 8 to a normal
law. Finally, it is shown that B is the best within a class of (regular) estimators in the sense that
none of them can have an asymptotic distribution that is less spread out than that of .

MS-R8507. P. Haccou, E. Meelis & S. van de Geer. On the likelihood ratio test
for a change point in a sequence of independent exponentially distributed random
variables.

AMS 62E20, 62F05, 62F03, 62E25, 62F04, 62P10; 31 pp.; key words: Bahadur
efficiency, change point problem, exponential distribution, likelihood ratio test,
normed uniform quantile process.

Abstract: Let x,...,x, + | be independent exponentially distributed random variables, and let x;
have intensity A for i < r and intensity A, for i > 7, where 7 is an unknown instant and A; and
A, are also unknown. In this paper we preve that the asymptotic null-distribution of the likelihood
ratio statistic for testing A; = A, (or, equivalently, 7 = 0 or n + 1) is an extreme value distribu-
tion, by application of theorems concerning the normed uniform quantile process. The rate of con-
vergence is studied with Monte Carlo methods. Since it appears very low, simulated 5% critical
values are given. Furthermore, it is shown that the test is optimal in the sense of Bahadur. Simula-
tion results indicate a good power for values of n that are relevant for most applications. The likel-
ihood ratio test is compared with another test which has the same asymptotic null-distribution. It
is proved that this test has Bahadur efficiency zero. The simulation results confirm that the likeli-
hood ratio test is superior to the latter test.

MS-R8508. A.J. Koning. On roads with no overtaking,.
AMS 60K 30, 60G35; 42 pp.; key words: traffic flow, stochastic processes.

Abstract: A road which narrows at a bottleneck from an oo-lane road to a one-lane road is studied
with the aid of two independent stochastic processes. Special attention is given to headways. At
the bottleneck an equilibrium headway can be viewed as the maximum of a shifted exponential
random variable and a minimum headway. After the bottleneck the situation becomes far more
complicated. However, at a sufficiently large distance from the bottleneck an equilibrium headway
may be approximated by the maximum of a shifted exponential random variable and a minimum
headway, with the parameters of the shifted exponential random variable depending on the desired
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speed by the car. The distance from the bottleneck only affects the location, not the scale. Results
are checked by Monte Carlo experiments.

AM-R8510. F. van den Bosch & O. Diekmann. Egg-eating predator-prey
interactions: the effect of the functional response and of age-structure.

AMS 92A15; 19 pp.; key words: age structured population dynamics, egg-
eating predators, functional response, stability, Hopf bifurcation.

Abstract: In this paper we analyse an age-structured predator-prey model in which predators eat
only very young prey. The model can be formulated as a system of three Volterra integral equa-
tions with an implicitly defined non-linearity. An interpretation of the implicit relation is given.
The linearized stability of the steady-states is investigated. It turns out that concentration of the
predator on very young individuals is a stabilizing mechanism. Furthermore, it is seen that a com-
pound parameter which is a measure for the efficiency of the predator has a major influence on the
stability of the steady-states. If the efficiency of the predator decreases the steady-state can
become unstable and oscillations will arise. Furthermore, it is seen from the model that the desta-
bilizing effect of a juvenile period is stronger when it concerns the predator than when it concerns
the prey species.

AM-R8511. H.R. Thieme. A differential-integral equation modelling the dynam-
ics of populations with a rank structure.

AMS 92A15; 21 pp.; key words: rank structure, population dynamics, terri-
torial or hierarchical organization of populations, quasimonotone differential
equations, uniqueness of non-trivial equilibrium states, global asymptotic sta-
bility, threshold condition, spectral properties of compact strongly positive
linear operators on Banach lattices, Krasnosel'skii’s sublinearity (concavity)
method.

Abstract: In order to illustrate the stabilizing potential of rank structures for the development of
populations we propose a differential-integral equation (differentiation in time, integration over
rank) modelling the dynamics of rank-structured (e.g. territorially or hierarchically organized)
populations. After establishing existence and uniqueness of solutions we prove that, under biologi-
cally interpretable conditions, the population either dies out or tends towards a uniquely deter-
mined non-zero equilibrium state. Which of these alternatives actually occurs depends on the
reproductive potential of the population and the permeability of the rank structure.

AM-N8501. H.E. de Swart. Definitions and concepts in the theory of stochastic
differential equations.

AMS 34F05, 60J25; 19 pp.; key words: white noise, Markov process, Fokker
Planck equation, stochastic differential equations.

Abstract: In this technical note we summarize some definitions and concepts of stochastic
processes, which are of importance in the theory of randomly perturbed dynamical systems. The
following topics are reviewed: white noise, Chapman-Kolmogorov equation, Fokker-Planck equa-
tion, Wiener process, stochastic integrals, stochastic differential equations, and coloured noise.

PM-R8503. A.E. Brouwer. Uniqueness and nonexistence of some graphs related
toMy.

AMS 05B25, 05C50; 8 pp.; key words: distance regular graphs.

Abstract: There is a unique distance regular graph with intersection array i (7,6, 4,4; 1,1,1,6); it has
330 vertices, and its automorphism group M;.2 acts distance transitively. It does not have an
antipodal 2-cover, but it has a unique antipodal 3-cover, and this latter graph has automorphism
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group 3.My,.2 acting distance transitively. As a side result we show uniqueness of the strongly reg-
ular graph with parameters (v,k,A,p) = (231,30,9,3) under the assumption that it is a gamma
space with lines of size 3.

PM-R8504. T.H. Koornwinder. A group theoretic interpretation of Wilson poly-
nomials.

AMS 33A75, 33A65, 22E30, 43A80, 44A20; 20 pp.; key words: Askey scheme
of hypergeometric orthogonal polynomials, Racah polynomials, Wilson polyno-
mials, Racah coefficients, spherical harmonics, harmonics on a hyperboloid,

Jacobi functions, Jacobi polynomials.

Abstract: Racah and Wilson polynomials figure at the top level of Askey’s scheme of hyper-
geometric orthogonal polynomials. The first family of polynomials has a group theoretic interpre-
tation as Racah coefficients, but for Wilson polynomials such an interpretation was not known.
The paper presents a new group theoretic interpretation of Racah polynomials in connection with
O(p) X 0(g)X O(r)-invariant spherical harmonics on S” *¢*"~! and next, by analytic continua-
tion, a group theoretic interpretation of Wilson polynomials in connection with
O(p)*X O(q) X O(r)-invariant harmonics on the hyperboloid O(p +¢.r)/O( +¢, r —1). This is a
preliminary report not containing full proofs.

PM-R8505. M. Hazewinkel. Three lectures on formal groups.

AMS 14L05; 20 pp; key words: formal groups, universal formal groups, func-
tional equation lemma, BP cohomology, Witt vectors.

Abstract: This paper is the written version of a series of three lectures given in Windsor at the
occasion of the Canadian Mathematical Society’s summer school in Lie algebras and related topics
in July 1984. They were intended as an introduction to the subject for an algebraically oriented
audience with special emphasis on the kind of phenomena that appear when dealing with commu-
tative formal groups over rings (rather than fields). These written notes follow the original lectures
in structure but contain rather more. The contents are: 0) Introduction; 1) Two classes of exam-
ples of formal groups from other parts of mathematics; 2) Generalities and bialgebras; 3) The Lie
algebra of a formal group. Characteristic zero formal Lie theory; 4) The commutativity theorem;
5) Logarithms; 6) The functional equation lemma. Examples of formal groups; 7) Universal formal
groups. Generalities; 8) p-typical formal groups; 9) A universal p-typical formal group and a for-
mal group universal over Z,-algebras; 10) Construction of a universal formal group; 11) Applica-
tion to algebraic topology; 12) Atkin-Swinnerton Dyer congruences for elliptic curves; 13) Witt
vectors; 14) Curves, Frobenius and Verschiebung; 15) Cart(A); 16) Cartier-Dieudonné
classification theory; 17) p-typification; 18) Other classification results; 19) Universality of the for-
mal group of the Witt vectors; 20) U(W); 21) Remarks on noncommutative formal group theory.

PM-R8506. T.H. Koornwinder. A group theoretic interpretation of the last part
of de Branges’ proof of the Bieberbach conjecture.

AMS 33A75, 30C50, 33A45, 43A35, 43A90; 9 pp.; key words: Bieberbach con-
jecture, Milin conjecture, de Branges’ system of differential equations, Gegen-
bauer polynomials, spherical functions on spheres, positive definite functions
on spheres.

Abstract: A more conceptual and less computational proof is given for the last part of de Branges’
proof of the Bieberbach conjecture, i.e. where the special functions enter and the Askey-Gasper
inequality is applied. General solutions of de Branges’ system of differential equations are brought
in 1-1 correspondence first with Fourier-sine series and next with spherical function expansions on
the sphere S°. Restriction of spherical functions on S° to S* and positive definiteness then finish
the proof.
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CWI Activities
Autumn 1985

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWL

Study group on Analysis on Lie groups. Joint with University of Leiden.
Biweekly. (T.H. Koornwinder)

Seminar on Algebra and Geometry. Monthly. (A.M. Cohen)

Cryptography working group. Biweekly. (J.H. Evertse)

Crypto Course. Jointly sponsored by the Commission of European Communi-
ties and the Centre for Mathematics and Computer Science. 14-25 October.
(J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

ESMI (European Symposium on Mathematics in Industry). 29 October-1
November. (M. Hazewinkel)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Joint with University of Leiden. (J. Grasman)

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Joint with University of Leiden. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. New results and
open problems in biomathematics, mathematical physics and analysis.
Weekly. (N.M. Temme)

Lunteren meeting on Stochastics. 11,12,13 November 1984 at ‘De Blije Werelt’,
Lunteren. Invited speakers:

L. Birgé (Paris, France), S. Csorgd (Szeged, Hungary), M. Jacobsen
(Copenhagen, Denmark), J.T. Kent (Leeds, UK), R. Pyke (Seattle, USA),
S.I. Resnick (Fort Collins, USA). (R. Helmers)
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Study group on Statistical Image Analysis. Biweekly. (R.D. Gill)

Progress meetings on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

National Colloquium on Optimization. Irregular. (J.K. Lenstra)

System Theory Days. Irregular. (J.H. van Schuppen)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

Study group on Numerical Flow Dynamics. Lectures by group members.
Every Wednesday. (J.G. Verwer)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

International Colloquium on Numerical Aspects of Vector- and Parallel Pro-
cessors. Monthly, every last Friday. (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Irregular. (H.J.J. te Riele)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Colloquium Computer Graphics. Joint with University of Amsterdam.
Monthly. (E. Dooyes)

Post-academic course on Modern Techniques in Software Engineering.
10,11,24,25 October. (J.C. van Vliet)

Seminar National Concurrency Project. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 11 October, 8 November and 6
December. (J.W. de Bakker)

National Study Group on Concurrency. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 27 September, 25 October and 22
November. (J.W. de Bakker)
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Visitors to CWI from Abroad

D. & O. Berry (University of Southern California, Los Angeles, USA) 26 July.
Chen Wende (Academia Sinica, Beijing, PRC) 11-13 September. D.M. Chi-
bisov (Steklov Institute, Moscow, USSR) 17 September. C. Crepeau (Univer-
sity of Montreal, Canada) 8-11 September. J.M. Cushing (University of
Arizona, Tucson, USA) 1-2 July. M.L Dessouki (University of Illinois at
Urbana-Champaign, USA) 23 August. M.E. Gurtin (Carnegie-Mellon Univer-
sity, USA) 26 September. P. Jagers (University of Goteborg, Sweden) 21
August. T. Kawazoe (Keio University, Yokohama, Japan) 4-5 July. R. Kiihne
(AEG research institute, Ulm, West Germany) 3-6 September. E.L. Lawler
(University of California, Berkeley, USA) 1-31 July. T. Ledwina (Polytechnic,
Wroclaw, Poland) 9-11 July. U. Manber (University of Wisconsin, Madison,
USA) 24-26 July. P. Mandl (Charles University, Prague, Czechoslovakia)
11-22 August. S. Martello (University of Bologna, Italy) 17-20 September.
A.J. Martin (Caltech, USA) 18 September. K. Mehlhorn (University of Saar-
land, Saarbriicken, West Germany) 30 September. B. Meister (IBM, Ziirich,
Switzerland) 12-16 August. O. Nerman (University of Goteborg, Sweden) 21
August. A. Neumaier (University of Freiburg, West Germany) 26 August - 7
September. T. Tomiyama (University of Tokyo, Japan) August 1985 - August
1987. P. Toth (University of Bologna, Italy) 17-20 September. J.A. Wellner
(University of Washington, Seattle, USA) 2-9 September. M. Witten (Univer-
sity of Louisville, USA) 8-9 August. Zheng Yu Fan (East China Normal
University, Shanghai) 1-3 July.
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*) not available on exchange

Order Form for CWI Publications

Centre for Mathematics and Computer Science
Kruislaan 413

1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis
O Please send the publications marked below with an invoice

Publication code

CWI Syllabus 6 *)
CS-R8513
CS-R8514
CS-R8515
CS-N8506
NM-R8507
NM-R8508
NM-R8509
NM-R8510
NM-R8511
NM-R8512
NM-R8513
NM-R8514
NM-R8515

Price per copy

DAl. 35.70
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3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70

Number of copies wanted



Publication code Price per copy Number of copies wanted

O NM-R8516 370 L
O NM-R8517 370
O NM-R8518 370 L
a MS-R8504 480 00 e
O MS-R8505 370
O MS-R8507 480 L
O MS-R8508 o
O AM-R8510 370
O AM-R8511 370
O AM-N8501 370 s
O PM-R8503 370 e
O PM-R8504 370 L
O PM-R8505 370 s
a PM-R8506 370 L

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

NAME e
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ESMI

European Symposium on Mathematics in Industry
29 Oct. - 1 Nov. 1985
(Organized by: Wiskundige Dienstverlening (WD),
Univ. of Nijmegen and CWI, Amsterdam)

Very many practical problems in industry and commerce nowadays can be
attacked by a combination of mathematical modelling and analysis if necessary
supported by simulation. There are many active groups in Europe in this gen-
eral field, all with different experiences and areas of expertise.

Goal of this symposium is to compare experiences, to assess what is possible
and what should be possible, and to discuss ways and means for further
(university) research lab-industry relations both at the level of problem solving
and - intertwined therewith - continuing education programmes.

There will be two panel sessions to discuss these and related themes such as
the possible creation of a who-does-what-where database.

Opening session
Tuesday afternoon, 13.45-18.00, at the Royal Institute of the Tropics. Speak-
ers are: E. VAN SPIEGEL (Wetenschapsbeleid) C. SiLvErR BRITE programme,
EEG) H. PLATE (Volkswagenstiftung) W.A. KOUMANS (TNO) H. BosMa (Phi-
lips Nat. Lab.)

Lectures during the following three days
29 October - 1 November 1985, at CWI

J. AnDRews (CEGB, MEL, Southampton, UK) & A.B. TAYLER (Univ. of
Oxford, UK) (Integrated set of lectures), Mathematics applied to welding prob-
lems; M. ANILE (Univ. of Catania, Italy), Mathematical modeling of the atmo-
sphere and industrial agriculture; CL. BARDOS (Ec.Norm.Sup., Paris, France),
About practical applications of the mathematical theory of kinetic equations; A.
BensoussaN (INRIA, Le Chesnay, France), Applications of stochastic control in
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electricity production: description of a cooperation with Electricité de France; G.
BORNARD (Lab. d’automatique de Grenoble, France), Control design of destilla-
tion columns; Y. CHERRUAULT, A. RICHARD (Medimat, Paris, France) & J.F.
Prost (Servier Labs, France) (Integrated set of lectures), Mathematical models
in pharmacokinetics and medicine; E. CUMBERBATCH (Claremont College, Calif.,
USA), Mathematical problems brought to the Claremont Mathematical Clinic:
the American experience in university-industry relations; M. HEILIO (Lappeen-
ranta Techn. Univ., Finland), Survey of the university-industry cooperation in
Finland; J K. LENSTRA (CWI, Amsterdam, The Netherlands), Interactive plan-
ning methods; S. MCKEE (UCINA, Oxford, UK), Academic-industrial collabora-
tion in numerical analysis; J. MOLENAAR (Univ. of Nijmegen, The Netherlands),
The optimal form of diamond heat sinks; H. NEUNZERT (Univ. of Kaiserslau-
tern, BRD) & J. PEDERSEN (Audi, Ingolstadt, BRD) (Integrated set of lectures),
Mathematical problems in car production reliability; D. NORMAND-CYROT
(SUPELEC, Gif sur Yvette, France), Identification of nonlinear systems. Appli-
cations to electrical power plants; J. OPPELSTRUP (FEMPROG, Stockholm,
Sweden), How to meet the growing demand for mathematics software in industry;
M. PrRIMECERIO (Univ. of Florence, Italy), Free boundary problems: ground
[freezing, swelling solvents and intumescent paints;, W. SCHEMPP (Univ. of Siegen,
BRD), Radar signal design, digital signal processing, laser beam optics and the
Heisenberg group; D. SUNDSTROM (ITM, Stockholm, Sweden), The Swedisch
industry supports research in applied mathematics and sets priorities; P. TEN
HAGeN (CWI, Amsterdam, The Netherlands) & T. TomiyaMA (Univ. of
Tokyo, Japan), Methods bases for mathematicians; C.B. VREUGDENHIL (TH
Delft, The Netherlands), ISNAS: a software system for flow simulation; H.-J.
WACKER (Univ. of Linz, Austria), Mathematical research and consulting in Linz:
power plants, reaction columns and kilns.
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