Cen\mmvoo‘ W'\skunde el \nio!ma\‘\ca
cenve ' ynematics and Compute! goience

19

26

33

45

47

Contents

The Pythagoras Tree as a Julia Set,
by H.A. Lauwerier

Mathematical Libraries in Ada, by Jan Kok
Calculating by Steam, by Harry Cohen
Abstracts of Recent CWI Publications
Activities at CWI, Spring 1985

Visitors to CWI from Abroad

4

Centre for Mathematics
and Computer Science

Centrum voor Wiskunde en Informatica

BiviBihbskl o th e e k I

CnICHT-Centrfvoor Wiskinde=énnformatica
" kifisterdam-

The Pythagoras Tree as a Julia Set

H.A. Lauwerier

Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

1. INTRODUCTION

Forty years ago in the dark days of the second world war the Dutch engineer
A. BosMAN constructed the so-called Pythagoras tree reproduced here in
fig.1.1. It must have taken him many, many hours at the drawingboard. But
now with a personal computer and a plotter a nice tree can be formed within
an hour and generalizations can be made to order.

Our research on this tree actually started when we tried to determine the set
of infinitesimally small squares formed in the limit if the construction is
continued indefinitely. Let J denote the closure of this set then J, which we
call the blossom of the Pythagoras tree, is a continuous curve which is invariant
(i.e. mapped into itself) under two (!) similarity transformations A and B.
Coordinates can be chosen in such a way that in complex notation

A: ze 1+ A+i)z /2,
{B: 2ol 4+ (1-i)z /2 (LT}

We see that A has 1+ as its centre of rotation (or fixed point), the reduction
factor 1 / V2 and the rotation angle 7 /4. For B the centre is at 1—i with
reduction factor 1/ /2 and rotation angle —x /4. Both centres 1*i are
elements of J. More points of J (in fact a dense subset of it) can be obtained
from them by subjecting them to a random sequence of operations of 4 and
B. In this way fig.1.2 has been obtained as part of the blossom of the
Pythagoras tree.

J is a continuous image of the unit interval 0 < r < 1. Let r (r<1) have
the binary expansion

r = 0."1’2"3"' (12)

0.0)

(LD

FIGURE 1.1. The Pythagoras tree
and define for k = 1
ss = (1—r)a + b,
with
a=0+i)/2, b =(1-i)/2.

(1.3)

(1.4)

This means that s; is either @ or b according to the value 0 or 1 of the k th

binary digit of . Then to r we may associate the following point of J

. &) % gy e ®. o
3,,2°° \.“-.0 \ool.\qf < u.w b u.-v ¢ ao-l ‘e l..oois o»..on\
s < o % o o oitno el & wogt, TV O
a0 oo, ¥, 00 LFNNS et o ¥
A e}t e Ve 28, oS . H . Iy
Wy L T S M e e
e P & ® o . * « N e
BV LR IR Ak o et S ORI (s T B
F . i 3 R K ° . .
.s-v. . .\ o s 3 o u.V.-O..-.. o .Io “ ew e e
oo, * \h. oo’ o TR .-ﬁ- -ooo R 2 oL ooo\ﬁfo\.
R O D .uw-..l. R IR A -.-\o.-oo oo e hoAa
u..s....m.s -..1......... 2 2N PRI AR e et e n..at.v..\ "
- e g, ¢ e o o o . . o . . 2 e Se.
oofc.' L o . o ¥ M -0
¢ 4 . Oo i# 'Y g LI 4 *
8% o ”c i wge . .= osc B . . . e . *° QJ.-.. . M A
S ke TR Sl RS £ S A
. LA . . N e * o
u\o.o‘ nf-vm F * . oo oo . o o’.cof oofco o‘-ooﬂoo
F i . N . LX) “ . o 06 "o oo o ® . . .
o oo o %o ¢ o % ee o, e S L XS .o® . * eea o e
oo o * 9 L I . . o L . . . ’ S ¥ el
0] . . e 3
b .t 3 s S w23, vl e, st
DAY ° g l- [8 . 0.0 .‘o d * ' hew '0.- .-
“e - R we o0 oo *Ne? 4
e '-0\' - .L ¢ . v"cm
o”oofoo c” o W, o * -8 Mou .
u o >3 ® . o o S 'of 0
et @ o - ® . 9.
. 5% 2°,° S o~ n-. o\l‘.m
%ee o o 1 00 oo -1 ooo
ouo-lﬂo & - : . v oo-o’oh o'\o-
Y r.’- ., oy . oco.~ (]
o e e oo ° Lo
o ® 0 PY .
' %o . . o
. ... " * s 3 d
o Ry v e 2 . * see .
.o ‘ 'Yy . - -o . .-Q 5-. ° ® ° s vi®e l. -.5.
o'c o‘ e ¢ U : ﬂo. ' % e H M\o.'\
vy ’ . wlee, e
oooo-co- .o . . L3 80 e . L o.o Q..\O.o
oo... -ooo é . o -o\ . o s . . .Iooo
ouco'olo ¢ .) ot& v . oo 2 o o
é ﬂno . %3e o7 * . Qu.oo
. RS o
B 12 t

FIGURE 1.2. (Part of) the limit set of the Pythagoras tree

z =cgtcyteygtoezt o (1.5)
where ¢y = 1 and for k = 1

Ck = SKCr—1 (1.6)
Thus to r =0 corresponds the point

z = l+a+a*+a*+..=1/(0—a) = 1+i,
the fixed point of 4, and tor = 1 /3 = .010101-- corresponds

z = 1+a+ab+a’*h +a*b*+a’b*+- = 3+i.
On J the actions of 4 and B are then translated into

{A: rer/2,
|B: re(14r)/2 (1.7

Thus a random sequence of transformations 4 and B corresponds to a
uniform distribution of numbers in (0,1) and accordingly to what one could
call a uniform distribution of points on J.

The obvious generalization is to give a and b arbitrary complex values with
la| <1 and |b|<1. The problem of determining the conditions under which
the resulting curve can be considered as the limit set of some Pythagoras tree
will be taken up in the next section 2.

There is a little problem about rational numbers with a terminating binary
expansion. Sequences like .1000~- and .0111- represent the same rational
number (1/2). However, a simple calculation shows that for a +b = 1 the
corresponding sequences of complex numbers 1+b+ab+a%h + a’b+ - - -
and 1+a +ab+ab*+ab>+ - - - also represent the same point.

The overall situation is very reminiscent of the inverse logistic map in its
complex form as studied by MANDELBROT [1]

2/ = Vz+pu (1.8)

We follow up this analogy in more detail in section 3. Its main features are as
follows. For suitable values of p this two-valued map (1.8) has a Julia set
(cf.[1]) as the collection of limit points of random iterative sequences. The fixed
points are p /2 and 1—p /2 where p = (p>—2p) /4 in the usual notation of
the logistic map as x — px(1—x). In fact, both the more general version of

(1.1)
z’=14az or z/ =1+ bz, (1.9)

and (1.8) can be considered as the members of a family of quadratic (2,2)-
maps described by a relation of the form

F(z'z) =0, (1.10)

where F is a quadratic polynomial of its arguments. In particular the blossom
of the Pythagoras tree and the San Marco attractors (cf.[1]) can be interpreted
as Julia sets of the map (1.10). However, the theory of iterated analytic maps

(cf[2)) is only fully developed for the case that z’(z) (or its inverse) is a
single-valued meromorphic analytic function. The examples given here may
give rise to an extension of the theory to algebraic functions of the kind (1.10).

2. THE PYTHAGORAS TREE

In the introduction we have seen that the construction of BosMAN’s Pythagoras
tree can be based upon sequences of complex numbers (1.5), (1.6) with a and
b given by (1.4). In fig.2.1 the initial part of what we call the skeleton of a tree
is given. The endpoints P, (z;) of the successive branches can be labelled in
such a way that

z20=0, z; =1, z =1+a, z3 =1+b,
z4 = 1+a +a?, zs = l+a-+ab, etc

E.g. for k = 50, which is 110010 in binary notation, we have
zso = 1+b+ab +a%b +a’b*+a’b%

What we have done in fig.2.1 with the special values of @ and b can be done
for any values of a and b. In this way we obtain a similar tree. The question
arises whether such a tree can be interpreted as the skeleton of a generalized
Pythagoras tree. Can we put squares or quadrilaterals onto the branches?

Before that question can be answered we need a little more analysis of the
tree of fig.2.1 which we now interpret as an illustration of the general case. The
tree is transformed into itself by either similarity transformation

Az 1+ az, -
B:zo1+ bz (&)

The fixed points of these transformations, 1/(1—a), 1 /(1—b) are indicated
in fig.2.1 by 4 and B. An endpoint with index k is transformed into an
endpoint with a higher index. In particular

Azsy = zgp, Bzso = zp1a
The general rule is as follows. Let
m <k <2mt!
then symbolically
A(k) = k+2", B(k) = k+2m+L

We now consider the central question under what conditions for @ and b the
tree of fig.2.1 can be blown up into a generalized Pythagoras tree. By this we
understand a tree like fig.1.1 where the basic pattern is a triangle with similar
quadrilaterals on its sides. In fig.1.1 the quadrilaterals are squares and the
triangle is half a square. If the triangle is rectangular but not isosceles the tree
is called an oblique Pythagoras tree. In all other cases the tree is called a
generalized Pythagoras tree.

FIGURE 2.1. Initial part of the skeleton of the Pythagoras tree

In view of the similarity transformations (2.1) it is sufficient to consider the
first three branches with the first three quadrilaterals as shown in fig.2.2. Let
UU’'V'V be the first quadrilateral with U’ = A(U) and V' = B(V) then
there exists a point W which is both the 4 -image of V' as well as the B-image
of U. Labelling U and V by complex numbers u and v we obtain the
condition

1+bu = 1+av

so that bu = av. This suggests the following construction. Let a and b be
arbitrary complex numbers, of course with |a| < 1, |b| <1 and a /b not
real, then for any complex number A a generalized Pythagoras tree can be
constructed. The first quadrilateral is determined by the corners

Aa, Ab, 1+Aa? 1+Ab2 (2.2)

ExampLe. For a = >(1+i), b = 5(3—2i) and A =1 we obtain a

quadrilateral with the corner points (1+i)/2, (3—2i)/4, Q2+i)/2,
21—-12i) / 16.

The situation is sketched in fig.2.2. The quadrilateral is a trapezium here. A
simple calculation shows that always U'V’/ UV when a +b is real. When
the vectors UU’ and V'V’ are equal, the quadrilaterals are parallelograms. In
that case we should have A(b2—a?) = A(b —a) which gives the condition

FIGURE 2.2. The beginning of a generalized Pythagoras tree

at+b = 1. (2.3)
We may write
a=(+ic)/2, b =(—ic)/2 (24

where ¢ = i(b —a) is an arbitrary complex number for which |a| < 1 and
|b| < 1. Thus c is restricted to a lens-shaped region bounded by the two
circular arcs defined by |c=*i| < 2.

The quadrilaterals are squares if

iv—u)=u"—u
i.e. if

(14+Xa?) — Aa = i\Nb —a).
Substitution of (2.4) gives the unique solution

A= @.5)

24+ac+1
So given a and b satisfying (2.4) unless ¢ = —2+V3 a generalized
Pythagoras tree with squares can be constructed. An oblique Pythagoras tree,
ie. a tree with squares and right-angled triangles, calls for a further
specialization. A simple calculation shows that this requires that

¢ = —iexpQRai), 0<a<w/4

and hence

2a — isinacosa (2:6)

a = cos*a + isinacosa,
b = sin

Finally for « = 7 / 4 the original symmetric Pythagoras tree is obtained.

The corresponding geometric situation for an oblique tree is sketched in
fig.2.3 (where a = 27 /9).

A ‘“full’ oblique Pythagoras tree with « = 7 /5 is given in fig.2.4. The limit
set of the infinitesimally small squares, its blossom, is given in fig.2.5. In the
computer program it is obtained as the invariant set of the similarity
transformations

zeltaz, z - 1+bz

with a and b given by (2.6). Each fixed point 1 /(1—a) and 1/(1—b) is
subjected to random sequences of similarity transformations.

NN

A

N/,

1

D

N

' .
/2< / \
/ \

b

FIGURE 2.4. An oblique Pythagoras tree with a = 7 /5

FIGURE 2.5. The limit set of an oblique Pythagoras tree with a = 7 /5

12

3. JULIA SETS

A Julia set is a certain invariant set of an analytic map z » f(z). It is
obtained as the closure of the set of all unstable periodic points. Definitions,
properties and many details can be found in the excellent survey paper by
BLANCHARD [2]. In many cases the Julia set is a non-differentiable curve or a
totally disconnected point set. The very special case

Zl—>22

already shows many features of the general case. The Julia set is the unit
circle here. It is densely covered by the pre-images of any of its points. It is a
separatrix separating orbits converging to z =0 and orbits diverging to z = co.
It is an attractor of the inverse map z » +Vz .

Much attention has been paid to the properties of the quadratic map

zwzt—p 3.D

in the literature. Only for p = 0 and p = 2 do we have a Julia set in the form
of a simple curve or arc. For p = 3 /4 the Julia set has a nice shape called the
‘San Marco attractor’ by MANDELBROT. It is given in fig.3.1. The computer
program is very similar to that for the blossom of the Pythagoras tree. Points
of the Julia set are obtained from the iteration process

Zk+1 = o Vptz, (3.2)

where oy, k € N is a random sequence of + 1’s and where zy = —1/2, a
critically stable fixed point which is an element of the Julia set.
The Julia set of (3.1) is invariant under the two transformations

A: z e Vptz,
B: z o — Vptz G3)

the two inverses of (3.1). If this is compared with the corresponding
transformations (2.1) of the generalized Pythagoras tree, we observe a striking
similarity. The limit set of a Pythagoras tree and the Julia set of the quadratic
transformation (3.3) appear to have common features. We have seen that the
limit points of the Pythagoras tree formed from

zwl+taz, z1+ bz 3.4
with |a| < 1, |b| < 1 are explicitly given by
o0
z =1+ 3 apaja; a, 3.5)
k=0

with

q = a if r, = 0,)
{ (3.6)

ak=b ifrk—l,

13

- .,
' R
") b
[ad . * .. .‘.
~ & k bl
d D)
i 3
{ K
oo ’ [N
H 3
¢ T
ro "~.>
<.,L.
3 3
3 3
i'-o . o‘J
¢ »
¢ ?
€. . . -~
K - v
& 3
L," S 4

FIGURE 3.1. The San Marco attractor, the Julia set of z ~ z2 — 3 /4

where r; is the k th binary digit of the binary expansion of a fraction r. Thus
to each point of the limit set J corresponds a real number of [0,1]. (There is a
little ambiguity for binary expansions terminating in an endless string of zeros
or ones, but this concerns only a countable subset of J.)

14

The dynamics on the limit set J can be described by (see fig.3.2)

Az: rer /2,
Bz: r(14r)/2. G.7)
A
1
0 »
0 1
FIGURE 3.2.

This double-valued transformation has a unique inverse which is perhaps the
simplest transformation showing chaotic behaviour.

Let us next consider the quadratic map (3.3) for the case p = 2. Then we
may use the parametrization

z = 2 cosmr. 3.8)
Substitution gives at once
Az: rer /2,

Bz: r1—r/2 3.9

the well-known tent map closely related to the map (3.7).

‘Thus there is every reason to extend the notion of the Julia set to non-
unique analytic mappings. In both cases we have considered here the limit set
J has the same chaotic behaviour. If z is an arbitrary point of J, then the
sequences formed by subjecting z either to A4 or to B in some pseudo-random

15

manner, e.g. prescribed by the binary digits of the binary expansion of a
fraction, almost never converge. A generalized Julia set may then be defined as
the limit set of all sequences found in this way from two or more analytic
transformations, 4,B etc. provided it exists. If the transformations are the
branches of the inverse of a single-valued analytic function this coincides with
the traditional definition. It would be tempting to sketch a general theory but,
in our opinion, it is better to start with a number of interesting special cases.
We end this paper by considering the following (2-2)-complex map in which
both the Pythagoras tree and the quadratic map are combined. We consider

Fwz) =0 (3.10)

where F is a quadratic polynomial. It is assumed that w =z = *1 are fixed
points with multipliers dw /dz equal to a and b. Then F is determined by a
further single complex parameter ¢ and can be written as

(w—az —1+a)w—bz+1—b)+c(w—z)* = 0. 3.11)
For ¢ = 0 this reduces to the Pythagoras map
w=1%+a(z—1),
{w = —1+ b(z+1). (3.12)
For ¢ = —ab = —3(a +b) the quadratic map is obtained in the form
V(A+e)/ewr =) +w —z =0. (3.13)

The maps (3.13) and (3.1) are equivalent with the following relation between
the parameters

uc = 1. (3.14)
In particular the San Marco attractor is obtained for @ = —1, b = 1/3,
¢c =1/3as

wi+w —1=2 (3.15)
As an illustration we consider the special case

a=0+i)/2, b=010-i)/2, ¢ = — 3
The multipliers are those of the Pythagoras tree (1.1). The value ¢ = —g is
chosen halfway the value ¢ = O of the Pythagoras tree and ¢ = —5 of the

quadratic map. The result shown in fig.3.3 looks like the blossom of a
generalized Pythagoras tree but has the cauliflower structure of known Julia
sets of the quadratic map (see [2]). Shown are 1000 pre-images of the point
z = 1 which is a fixed point of (3.13). It is a safe conjecture that this Julia set
is entirely disconnected.

16

. l": .:
o PR
- " .
e . : -
o L .
B < v, v
K . =k
‘1 Pl
. H
. . g = L)
L I . . . -
. - ¢ e p
e e
o . p ‘o
* .
. "a.;
DY
< "
1. - :.'
.
. . el
e e
bl
L
4
.4
.
&%
2
. . -
i
~ % e
con eyt
OS2
Les PRSI
H
ste
‘ N & N
‘ b BN
j
Ly
‘<
.
. % N .
i e
S “w?
A
® s B ﬁ:’
. *. s
St v
.
"
‘e .
- & . -
e Focan tep s e
2. ¥
. . e
T e gt ¢
. 'y o
B
-t - .
7 3%
.
o .S . .
"o"_. .lf‘f ‘_.' (s
L g - .:\\. s
.~
PR S ¢
LY

FIGURE 3.3. A generalized Julia set

The last illustration may give an idea of what to expect in a more general
situation. We took

A: zw1+iz /2,
B: zw»a(l+z% /2, (Belty)

with @ = 4 /5. The fixed point of A is 0.8 + i0.4. The fixed points of B are
*+2. In fig.34 we have shown a representative part of the corresponding
generalized Julia set with z = 2 as the starting-point of a random sequence.

17

of

3
_\Pé\
L4 “: - ERR
4%"::‘ .
v %
VYoo
g‘. v VJ;»
& V‘ ‘ey.
S
Al
Ff
TN e e 2 ., o d:f
il ; -t-(j.‘ » s ._.4—6_"; - “‘:’}'
Y e, ey _'.’:.’ &
~»;\:‘:‘ 2y ""f
% A
+4 &
LY 4 L ¢
A)
L J:;f
v*‘& %
'."!' &
Y
3
FIGURE 3.4. A generalized Julia set
REFERENCES
1. B. MANDELBROT (1980). Fractal aspects of the iteration
z = Az(1—z). Ann. New York Acad. Sci. 357, 249-259.
2. P. BLANCHARD (1984). Complex analytic dynamics. Bull Am. Math.
Soc. 11, 85-141.
3. M.F. BARNSLEY, A.N. HARRINGTON (1985). A Mandelbrot set for pairs

of linear maps. Physica 15D, 421-432.

18

Mathematical Libraries in Ada!

Jan Kok

Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

In this paper a description is given of past and present activities at the CWI
related to the programming language Ada. After a survey of Ada’s history and
its design aims, more details are given of language features that are of special
interest for the implementation of numerical methods and the construction of
large scientific libraries. Characteristics of these libraries, enhanced by the use
of Ada, are portability, reliability, and reusability. The paper concludes with an
outline of future activities which will take place in international co-operation.
KEY WORDS: Ada, high level language, scientific libraries, portability, reliability,
reusability.

1. INTRODUCTION

At the end of the sixties it was recognized that the production of computer
software was not keeping pace with the increase in availability and possibilities
of modern computers. Causes of the so-called ‘software crisis’ were found in
the old-fashionedness of programming methods and tools. Independent efforts
to provide a new programming language for common use (one of the tools)
merely contributed to the crisis, because of the confusion of languages and the
incompatibility of systems.

In a programme launched by the US Department of Defense for
modernising both tools and methods, one of the results was the definition of a
new programming language for common use. This language, called Ada [1],
was primarily designed for the production of large portions of maintainable
software for real-time applications. Furthermore Ada’s use should enhance
software characteristics such as readability, modularity, portability, reusability,
and reliability.

With respect to scientific computation, Ada was intended in the first place
for use in those calculations invoked in software for real-time applications. But
the readability, modularity, portability, reusability, and reliability, which make
programming in large teams possible as well, make Ada also useful for the
production of software for large-scale scientific computation on mainframes.

1. Ada is a registered trademark of the US Government (AJPO).

19

The need for mathematical software in Ada with the same qualities as
software for real-time applications is not yet widely recognized by users. It is
generally assumed that computer manufacturers have completely satisfied the
demand for software for all kinds of computations. Here, many enjoyable case
stories of application failures are tacitly ignored [2]. Perhaps it is the rise of a
modern language like Ada which now clearly exposes the shortcomings of
previous hardware and software provisions. Possibilities not offered by most
other languages are user demands for various real precisions, constructs for
writing portable and reusable software, and safe interaction between separate
library modules.

One may expect that software produced before, in older languages and
probably in many versions for all kinds of machines and systems, should be
reconsidered for use in Ada, and that re-design of mathematical software in
agreement with the Ada design goals might turn out to be very profitable.

An early initiative was taken by the National Physical Laboratory (NPL) in
Teddington and the Centrum voor Wiskunde en Informatica (CWI), to
investigate both the new possibilities given by the language Ada for the design
of mathematical software and for the construction of scientific libraries for
large-scale computation, and to offer solutions for the problems encountered.
This led to a project by NPL and CWI that was sponsored by the European
Community. In this project, which lasted from 1982 to 1983, guidelines were
produced for the design of large, modular, scientific libraries in Ada [4].

In the following sections first a summary of Ada’s history and design are
given, with a discussion of Ada’s design goals and some information about
Ada’s availability. Next, language features are described which open new ways
for the implementation of efficient and portable mathematical software for
large scientific libraries. Finally, completed and ongoing activities are
described.

2. ADA’S HISTORY

The story of Ada starts in 1974 when Ada’s foster parent, the US Department
of Defense (DoD), initiated a programme for obtaining more profits from their
software budget, in particular concerning software for embedded systems.
After an analysis of software costs, with the conclusion that too much was
spent on maintenance and conversion, characteristics were gathered for a
programming language in common for all types of machines in use, and for all
kinds of applications.

When it became clear that no existing language satisfied the requirements,
proposals were requested for the development of a new language. From the
selection of four proposals for further evaluation, in 1979 one language design
was chosen to become the common high-level language. Its name would be
Ada, in honour of Augusta Ada Lovelace, daughter of Lord Byron, and as the
assistant of Charles Babbage one of the first programmers. In 1980 this
language was standardized by the DoD, and a revised version was accepted as
ANSI standard in 1983 (ANSI: American National Standards Institute). The

20

process for its becoming an ISO standard continues.

One of the characteristics of Ada is that its text should be clear, readable,
and easy-to-understand: the possibility of programming errors and typing
errors not being detected should be very low. This characteristic is achieved
by:

- offering language expressions for:

- the declaration of (abstract) data types;

- making packages of sets of data types, operations, and routines;

- defining library modules, where components of library modules can
be packages as well as individual routines, i.e. procedures, functions,
or operators;

- recovery from aborts by the so-called handling of exceptions;

- programming for distributed systems by the so-called tasking facility;

- detection of errors at an early stage by:

- Ada’s strong typing rules and scope rules;

- the small number of error-prone language concepts;

- several constructs that encourage structured programming;

- the inhibition of access to abstract data types from outside;

- possibilities for the design of portable programs by means of language
concepts for:

- obtaining hardware or system information through environmental
parameters;

- connecting appropriate hardware provisions to user-defined data
types (and also operators, exceptions, and tasks);

- reusing software through the generic concept (see section 3).

The availability of Ada is still very small. The amount of language constructs
and their semantic intricacies make the writing of a compiler and run-time
system a major software project. Moreover, only systems which correctly
process an official suite of about 2000 test programs are allowed to be called
Ada (compiler validation). And although the language requirements were such
that compilers ought to be able to generate efficient object code, not much can
be said about this yet, since the first efforts are spent on obtaining correct
object code, not fast. For Ada to become a success, many more compilers for
different machines must become available within the next few years.

Meanwhile, the creation of a new language became just one component of
the much larger DoD activity for improving software technology. A related
project is the construction of Ada Programming Support Environments (APSE)
as the indispensable working environments for Ada programmers and for the
execution of Ada programmes. An APSE should contain besides the Ada
compiler and run-time system, the command language, an Ada-directed editor,
libraries, verifiers, a debugger, monitors, data bases, etc.

21

3. USE OF ADA FOR NUMERICAL SOFTWARE

During 1982 and 1983 the National Physical Laboratory, Teddington, and the
Centrum voor Wiskunde en Informatica were engaged in an investigation of
the possibilities of designing large modular scientific libraries in Ada. The
project was sponsored by the Commission of the European Community and
culminated in the production of a set of guidelines [4] which include
recommendations on the ways in which Ada can and might be used in this
context.

The language features which might make Ada particularly useful for the
redesigning of numerical software and for the construction of coherent
scientific libraries, are:

- Several floating-point types can be defined. E.g.

type REAL is digits 8;

(Meaning: a new floating-point type named REAL is made by specifying
a minimal number of 8 significant decimal digits.)
If hardware floating-point types with different mantissa lengths are
available, then the hardware type best suitable to the user-defined type
will be associated with it. If the user’s requirements cannot be met, the
program will not run.

- Type definitions and associated operator definitions can be made for all
kinds of numerical data structures, e.g.
VECTOR, MATRIX, COMPLEX, RATIONAL, etc.

- A package in Ada is a capsule containing related definitions of types,
operators, and procedures. Moreover, the physical structure of data types
can be hidden from the user. For example,

package RATIONAL FIELD is
type RATIONAL is record
NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;
end record,

function ” +” (A, B : RATIONAL) return RATIONAL;
-- analogous declarations for ”-”, "%”, "/”, ...

end RATIONAL FIELD;

The declarations of this package can be obtained together by mentioning:
use RATIONAL FIELD.
If the inner declaration is replaced by:

22

type RATIONAL is private;

this would make the structure of the type RATIONAL hidden.

Language concepts are available for the construction of large pre-compiled
libraries containing as modules packages, but also individual routines.
The language rules enable that consistency checks for parameters (in
compile time) will always be possible.

Modules can be parameterized with types, operators and other
subprograms, as well as with individual values and variables. Such
modules are called generic subprograms or packages, and it allows library
packages to be constructed once for a whole class of user-defined types
and the operations thereon.

For example, for sorting values in a one-dimensional array only one
generic sort procedure need be written:

generic
-- (with three generic parameters:
type EL TYPE is private;
type AR TYPE is array (INTEGER range <>) of EL TYPE;
with function ”<” (A, B : EL TYPE) return BOOLEAN
is <>,

procedure GEN SORT (X : in out AR TYPE);

This generic procedure is a template for sorting procedures. A concrete
sorting procedure can be obtained by substituting a linear array type, its
component type, and the operator ”<<” acting on values of the component
type. The specification of such a procedure would be

procedure SORT INTEGERS (X : in out INTEGER ARRAY);

Exceptions and the recovery from raised exceptions can be used for the
description of all abnormal events. E.g., when the declaration of an
exception SINGULAR MATRIX is available, a routine can execute the
statement B

raise SINGULAR MATRIX;
to cause abnormal termination of the called routine. However, the user

can catch raised exceptions in so-called exception handlers, in order to
execute some recovery action.

23

- The concept of fasks is a high-level concept for describing in a readable
and reliable way concurrent activities and the safe communication
between tasks, and between a user and his tasks. Tasks can be used to
describe in a clear way the provision of numerical services to processes in
embedded systems, but also the processing of distributed computations for
special architectures, especially for general-purpose multi-processors.

A conclusion of the NPL/CWI investigation was that Ada is a useful language
and several Ada features are of much interest for the redesigning and
construction of large scientific libraries. Difficulties caused by idiosyncracies of
the language syntax and semantics can be overcome satisfactorily in most of
the cases, and solutions were offered. Moreover, since elementary mathematical
provisions in Ada style were expected to be indispensable for Ada
programmers, a standard definition and the early implementation of basic
functions packages were emphatically recommended in [3].

In [4] also examples of library components were given, and language items
were listed which ought to be cleared (by Ada implementors) or preferably
changed in a future language revision.

For more information and details one is referred to the complete report [4].

4. FUTURE ACTIVITIES

Members of the CWI Numerical Mathematics Department are currently co-
operating with colleagues from six European Community countries (and
Sweden) in the EC-supported Ada-Europe Numerics Working Group. This
group has already produced several documents on all aspects of the
implementation of numerical libraries in Ada and the design of new methods.
Co-operation is sought with a US counterpart.

A problem the group is facing is that the need for newly-designed
mathematical software with properties that Ada can provide (reliable, well-
designed, readable, and portable modules in coherent packages) is not
generally recognized. Ada offers the possibility of imposing a hierarchical
structure onto libraries, through encapsulation of related declarations.
Furthermore, consistency checks of passed parameters are maintained
throughout the library’s life cycle. Finally, relying on the mathematical
provisions made available by a computer manufacturer has sometimes been a
bad experience. It is regrettable that the very experts on the analysis of the
results of long computations have been ignored so often.

Meanwhile, co-operation between the CWI and the Numerical Algorithms
Group (NAG, Oxford) and NPL (among others) has been established, with the
final aim of making all common numerical provisions available to Ada
programmers. As a start, pilot implementations will be made of basic modules
of numerical libraries in Ada, for which subsidies have been granted.

24

REFERENCES

L.

2.

3

ANSI/MIL-STD 1815 A. (1983). Reference Manual for the Ada
Programming Language.

R.L. BABER (1984). Software development: science or patchwork? CWI
Newsletter 2, 18-34.

J. Kok, G.T. Symm (1984). A proposal for standard basic functions in
Ada. Ada Letters Vol IV.3, 44-52.

G.T. Symm, B.A. WICHMANN, J. Kok, D.T. WINTER (1984). Guidelines
for the Design of Large Modular Scientific Libraries in Ada, NPL Report
DITC 37/84, CWI Report NM-N8401.

25

Calculating by Steam

Book Review

Harry Cohen

ANTHONY HYMAN (1982). Charles Babbage - Pioneer of the Computer, Oxford,
University Press.
ANDREW HODGES (1983). Alan Turing - The Enigma, Burnett Books.

Those who would like to see the world’s oldest computer, should go to
London. In the Science Museum, between a 250 million times enlarged model
of the DNA molecule and a collection of antique navigation instruments, there
is a construction that reminds one of some old-fashioned gas-meters. It is the
Difference Engine built by Babbage in 1832 and still in perfect working order.
Of course, it is not the oldest calculating aid. The abacus has been in use for
thousands of years and the first multiplicator, the slide rule, was invented in
the seventeenth century. Also from those days are the first calculators that
deserve the name of machine. The ingenious clockworks of Pascal and Leibniz
could add or even multiply numbers, but they were not automatic machines.
When a calculation involved more than one step, the result had to be read
each time and the apparatus readjusted. The difference engine, however, only
needs a few starting instructions and then goes through the whole cycle
without any additional assistance. It is as automatic as a modern washing-
machine.

The England of 160 years ago, in which this engine originated, was a quiet
little world in which production was still largely manual. Electricity was
known, of course, as a natural phenomenon, but industrial applications were
not yet thought of. Even the use of steam was still in its infancy. Darwin and
Marx had not yet disturbed mankind. There was no place in London that was
more than a quarter of an hour’s walk from the edge of town. Few realized
that the Industrial Revolution had already begun.

Charles Babbage (1791-1871), however, had seen it all coming. He belonged to

26

the London upper middle class and had sufficient means to occupy himself all
his life with unpaid scientific research. Hyman’s biography gives a good
description of this social background. Babbage’s family life, his travels, his
circle of friends: all is vividly portrayed. The discussion of Babbage’s books
gives us an idea of how universal the work of one man could still be in those
days. In a theological treatise, for example, he tried to show that the plan of
creation corresponds to the pattern of a quartic equation. But first and
foremost he was interested in mathematics and physics, engine-building, and
economics, three branches of science that were closely connected in his world-
picture. Unlike the classical economists Adam Smith and Ricardo, he did not
consider agriculture but industry as the pivot of the economic system. And the
progress of industry depended on science and technology. This point of view
was behind his decision on how to spend his life.

He first had an inspiration when round about 1820 he met a French
engineer who applied the principle of the division of labour, as described by
Adam Smith, to the making of logarithmic tables. The success was amazing.
The whole job, that would otherwise have taken a lifetime, was now done in a
few years (division of labour: 6 scientists, 8 trained assistants, and ca. 60
executors who could only do additions and subtractions). Babbage’s ideas
went much farther. An operation that consists of the continuous repetition of a
simple action, such as addition, could in principle be mechanized. That means
better quality (in this case fewer mistakes), faster results, and cheaper
production. Driven by steam it might become even faster and cheaper.
Babbage began to dream of logarithmic tables ‘as cheap as potatoes’.

Shortly after he began to design a machine that would make mathematical
tables. The working of such a machine is not really difficult to understand.
Suppose we want to have a table of the squares of all the numbers from 1 to
1000, ie., 1, 4, 9, 16, 25, etc. If we subtract from each square the preceding
square, we find the so-called difference series: 3, 5, 7, 9, etc. These numbers
can also be found in another way, viz., by starting with 3 and then adding 2
each time. Having found the difference series in this way, the computation of
the squares in only a simple trick:

1+3= 4
4+5=9
9+7=16
16+9=25

This table then can be obtained by means of addition. For a great many other
mathematical tables there are similar tricks for computing each term by two or
more additions of preceding terms. They are always based on a difference
series, hence the name Difference Engine. In this way there is no need for
multiplication. This is a great advantage, for addition is easier for a machine
(just as it is for a human being) than multiplication. So Babbage could keep
this part of his machine quite simple. The rest of the mechanism, however,
occasioned so much brain-racking that its design and construction took over
ten years. The outcome was the Difference Engine which, after the necessary

27

CALCULATIOM,
il COMPLETE m
HIH

IIW_IIIIMIWIM
i I h—)\'.l\

JLLT
D b
o] e

I
| \’ Hlﬂﬂlﬂ\llll
r }

O s T

,% “wfjy| mmmm“
O Sl

i
" n—-gﬁ‘“‘

-y ', «lm

* Wﬂm Lﬂlllllll#ill!lllm& i

\f e w‘%
wabll) | _IEW

|]-llllll'—& ‘lIlIiIMIIH

1

il I!I!
IllW Illlﬂllllﬁlllllﬂlmul HH
AL

B. H. Babbage, del.

Impression from a woodcut of a small portion of Mr. Babbage’s Difference Engine
No. 1, the property of Government, at present deposited in the Museum at South
Kensington. (Facsimile of frontispiece from ‘Passages from the Life of a
Philosopher’ published in 1864.)

28

adjustments, could work quite independently. The results were even recorded
in matrices of printing type, so that both reading and printing errors were
avoided. The whole contraption, however, had to be kept in motion by turning
a handle without interruption; the dream of calculating by steam was never
realized.

Babbage still had all sorts of improvements in mind, but for financial
reasons he had to leave it at this first model. Originally, the project was
subsidized by the government, but this was stopped by the politicians’ short-
sightedness. They did not even want to take over the machine. Eventually, it
was put in Babbage’s drawing-room, and moved to a museum later on.

Babbage realized that he would never be able to build another complete
machine, but he had sufficient means at least to continue to design and
experiment. His new plans concerned a far more sophisticated calculating
engine, the Analytical Engine, which could also solve mathematical equations.
With each improvement the design began to resemble a modern computer
more and more closely. For example, there was a clear division between the
memory and the processing unit (Babbage called it ‘store’ and ‘mill’, according
to the layout of cotton mills in those days). Both parts were run by a ‘control’.
To this end the control was given the necessary commands on punched cards
made of tin in which the program was recorded. For the output of the results
Babbage had first thought of the matrix press of the Difference Engine or of a
line printer. Later it proved to be simpler to have the results recorded by the
machine on punched cards that could then serve as a program for an
automatic printing press. In this way, moreover, human errors were avoided
completely.

Quite a modern feature were the special commands to react to interim
results. In the design of the Analytical Engine punched cards were connected
in such a way as to form a chain. Normally, they would pass the ‘control’ in
fixed order. After one of the special commands, however, the mechanism
would depart from this pattern whenever an interim result satisfied certain
conditions. The whole chain would then move a few places, for example. In
other words: an automatic modification of the program. This approaches what
is nowadays called conditional branching. (Without this facility our computers
would not be so uncannily clever; Hodges calls it the mechanization of the
word IF.) This is as far as the resemblance to a modern computer goes. In
Babbage’s machine the binary system was (deliberately) not used and the
program could not be stored in the memory. Of course, the Analytical Engine
was not electronic, nor even electrical. This made the parts so large and their
movements so slow that the working of the machine, if it would ever have been
built, could have been followed with the naked eye. The 4.50 meter high
colossus would have needed a few seconds for an addition and a few minutes
for a multiplication. The whole machine has been described by Ada, Countess
of Lovelace, a daughter of Byron. According to her, its features were so
universal that in principle it could compose music. She also wrote some
programs for the engine.

29

The question has been raised whether at this stage Babbage’s plans were still
realistic. Hyman is inclined to think that, with sufficient funding, construction
would have been technically feasible. But Babbage was far ahead of his time.
After 1840 the gap between pure science and the art of engineering grew wider
and wider, and the Engine ‘fell through this gap into a century’s oblivion.’

Indeed, for the next hundred years little was heard about calculating
engines. Babbage’s brain-children were sleeping in the Science Museum. The
mathematics student Turing, who had been in Cambridge since 1931, was not
aware of their existence. He, too, had invented a calculating machine, but one
that will never be on view in a museum. Of the design only one part is known,
viz., a tape that is divided into little squares. It can move one square at a time,
either forwards or backwards. Then there is a simple operation: if the new
square is empty, it may be marked with a cross; if it already contains a cross,
it may be erased. Then there is another cycle. Turing has shown that such a
tape-machine, if supplied with the necessary clockwork, can do additions.
After some changes in the mechanism it can also do multiplications or other
arithmetical operations. He even described a universal machine that could do
‘anything’. We shall never know, however, how it was supposed to function, as
Turing never worked out the technical aspects of his ideas. There are no
models or blueprints. Indeed, it never was his intention to construct anything.
The so-called Turing machines were no more than abstract constructs intended
to give a precise meaning to the notion of ‘effective procedure’, which needed
clarification in the context of mathematical logic at that time.

Alan Turing (1912-1954) was regarded as an eccentric in Cambridge, and also
in later years he always remained the incredibly intelligent outsider in
whatever circles he moved. In his biography, Hodges has treated this aspect at
great length. Alan’s parents, who lived in India, sent him to England when he
was two years old, to be brought up by strangers. He became a withdrawn
little boy, but won all the prizes at school. Later he applied himself to such an
individual sport as long-distance running, and as an adult he asked his mother
a teddybear for Christmas. His fellow students were shocked by the frankness
with which he admitted his homosexual inclinations. As a topic for
conversation it was not taboo in Cambridge, but in those days the actual
practice of it was limited to certain exclusive circles (hence, ‘higher sodomy’) to
which Turing was not admitted. After all, this was the time in which King
George V is supposed to have said: ‘I thought men like that shot themselves.’
For his intellectual achievements, however, and this is Cambridge, too, he
was openly honoured and rewarded. Yet, he left for America in 1936 to
graduate. While there, he built an apparatus in his spare time derived from the
Turing machines, with which text could be encoded. In the mean time,
Europe was heading for war. Information was as important as guns were, and
it was necessary to intercept as much as possible of the wireless
communications between the enemy forces. But naturally the Germans sent
their messages in code, so that each message had to be deciphered. To that end
Churchill created a new service, the famous Bletchley Park. A puzzle club of

30

well-meaning amateurs rapidly developed into a tight organization of 10,000
people (mostly women, by the way). Turing, who was back in England by now,
was put in control of a department that was concerned with the movements of
the enemy submarine fleet. German submarines were particularly active in the
Atlantic. The outcome of the war depended on American material (and later
on American men), and supplies were almost exclusively by sea. There was no
lack of messages, but decoding often took so long that in the mean time the
information had become useless. That was why Turing concentrated all his
efforts on cracking the code itself. The code was defined by the wiring of the
Enigma, the electro-mechanical coding and decoding machine, which belonged
to the equipment of every German unit.

Turing replaced primitive techniques of trial and error by refined statistical
analyses and introduced punched cards. During 1941 they succeeded in
reducing losses of ships by 50%. This success did not last long, for the
Germans regularly changed the Enigma key setting. On the other hand, they
were so careless as to transmit their weatherforecasts, the contents of which
were easily guessed, in the same code. Hodges thinks that they never realized
that their code was being tracked all the time. Failure of a submarine mission
was invariably attributed to espionage or treason, never to the silent crew of
Bletchley Park, ‘the geese who laid the golden eggs and never cackled,” as they
were called by Churchill.

In 1942 Turing was sent to the United States to learn about the use of
electronics in data handling. The subject was in the air, mathematicians and
physicists all over the country were doing research, but all threads came
together at one man, Professor Von Neumann of Princeton University. Turing
had met him several times. Although scientifically they were on the same track,
their approach was as different as can be. While the lonely hobbyist Turing
soldered his own models, Von Neumann had organized his project as a large-
scale enterprise. He visited universities, was on all committees, had his own
professional journal, and made an immortal name for himself in the history of
computer science.

Having returned to England in 1943, Turing changed his course on the basis
of the newly acquired knowledge. Bletchley Park could now do without him,
and he applied himself to the construction of a machine for speech-
encipherment that would secure military telephone-traffic across the ocean. But
his imagination was already much farther ahead. With the use of electronics
the Turing machine, that was originally meant for thought experiments only,
could now actually be built. It would even be possible to imitate the human
brain by electronic means (in those days radio valves!). Of course this
imitation was not in a physiological or psychological sense, but as a logical
system. As soon as the war was over, Turing took up a post in a government
laboratory to realize this vision. The design of the ACE (Automatic Computing
Engine; the use of the word ‘engine’ is in honour of Babbage) was largely due
to him. It promised to be a very fast computing machine with an enormous
memory, but for the rest the hardware was a reflection of his modest lifestyle:
a minimal machine, no built-in gadgets, the type of installation that is

31

appreciated by very clever programmers only. It could have become the first
real computer, but Turing had little or no consideration for ‘user-friendliness’.
Because of his inflexible behaviour, construction was out of the question for
the time being. After all kinds of difficulties he left the laboratory.

After this incident, his fame declined. In 1948 he eventually accepted an
appointment at Manchester University. There they had just finished building a
computer, so that there was little original work left for him to do. It did not
seem to bother him; his attention was now directed rather towards such
questions as are frequently heard again these days: can a computer think?
Well, said Turing, let’s first see if a computer can do arithmetic. Each
calculating machine is designed in such a way that if the input is 47+21, the
output is 68. In Babbage’s engine one could actually see the three numbers
(the positions of the gear-wheels). In an electronic machine, however, they are
not really present; those investigating the inside will only find some pulses
darting to and fro. A computer does not do arithmetic in the way a human
being does. It does come up with the desired result, but it is found in a
completely different way. If you insist on still calling this ‘doing arithmetic’,
was Turing’s conclusion, then with as good reason I can state that in principle
a computer can think. The same goes for playing chess, learning, making
decisions, etc. He expected, by the way, that by the end of this century the
definitions of all of these words would have been sufficiently expanded to
make such discussions superfluous. (Compare the word ‘computer’ that 15
years earlier had been used for human calculators only.)

In Manchester, too, he was the eccentric genius again. People laughed about
that lanky person who put an old tie round his waist to keep his trousers up,
who changed his bicycle with his own hands into a moped, and in spring wore
a gasmask for hayfever. Shrink-proof clothing he washed himself, the rest went
to his mother.

His mastery as a programmer was openly acknowledged. He could make a
computer do conditional branching, even if this was not provided for in the
hardware. Primitive peripherals were forced to question and answer techniques
in a way that is very much like a modern teenager playing games with his
personal computer nowadays. Only once was he outrivalled by a colleague who
wrote a program that made the computer (then still provided with a hooter)
play the national anthem when it had performed its task.

In the mean time the engineers around him were a step ahead again; they
were experimenting with transistors. Alan Turing was not involved. As
Hodges points out, he had become the Trotski of the computer revolution.

In 1952 he was arrested for homosexuality. He was placed on probation for
one year, with the condition that he submitted to a hormone treatment that
rendered him temporarily impotent. A year after the end of the probation
term, a few days before his forty-second birthday, he killed himself.

Translated from Dutch from: NRC Handelsblad, Supplement ‘Mens en
Bedrijf’, 21 March 1984

32

Abstracts
of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 2. JJ. Dijkstra. Fake Topological Hilbert Spaces and
Characterizations of Dimension in Terms of Negligibility.

AMS 57N20, 54F45, 54G99, 57N15; 109 pp.

Abstract: The main result of this monograph is the construction of a sequence X _;, X, X ,... of
topologically complete AR spaces that have, among other things, the following properties: (1) X,
has the weak discrete approximation property; (2) homeomorphisms between compact subsets of
X, can be extended; (3) X, X X, is homeomorphic to ¢2, the separable Hilbert space; (4) if 4 CX,,
is a o-compactum, then A is strongly negligible iff dim 4 <n; (5) if 4 CX,, is a compactum of
fundamental dimension at most n, then A is negligible (in particular, if B C X, is an m-cell, then
B is negligible and B is strongly negligible iff m <n).

Our results were motivated by Torunczyk’s theorem that every complete AR with the strong
approximation property is homeomorphic to 2 Since in > every o-compact set is strongly
negligible (Anderson), (4) shows that X, % ¢ and that X, #X,, if n5~m. The spaces X, show that
the properties (1,2,3,5) and the “if” part of (4) do not characterize ¢2 and therefore block a
possible generalization of Toruficzyk’s theorem. As a by-product we get a characterization of
topological dimension in terms of negligibility. Our construction is inspired by ideas in Anderson,
Curtis & van Mill, Trans. Amer. Math. Soc. 272 (1982) 311-321, but to get (4) and (5) a more
delicate process was necessary and quite a lot of additional machinery had to be developed.

CWI Tract 12. W.H. Hundsdorfer. The Numerical Solution of Nonlinear Stiff
Initial Value Problems

AMS 65L05; 138 pp.

Abstract: In this monograph an analysis is presented of a general class of one-step methods for the
numerical solution of stiff initial value problems. This class of methods includes implicit Runge-
Kutta methods as well as semi-implicit methods such as Rosenbrock methods, ROW-methods and
adaptive Runge-Kutta methods. The main subjects we consider are the feasibility of the methods

33

(meaning that the implicit - algebraic - equations are uniquely solvable), and their nonlinear
stability properties.

CWI Tract 13. D. Grune. On the Design of ALEPH.

CR D.3.1, D.3.4, F.4.2; 194 pp.

Abstract: The tract ‘On the Design of ALEPH’ emphasizes the similarity that exists between
grammars and programs. The relation between the input and the output of a program can be
described by a (two-level or affix) grammar, which can then be viewed as parsing the input while
at the same time producing the output. The context information gathered during parsing and
needed during production is kept in parameters (metanotions or affixes). The tract explains the
above principles in detail and then proceeds to base a practical system on them, ALEPH. A global
design of a compiler for ALEPH is given, augmented with a detailed description of some of its
parts. The ALEPH Manual is included in an appendix.

CWI Tract 14. J.G.F. Thiemann. Analytic Spaces and Dynamic Programming.

AMS 28A05, 28A33, 49C20, 60B99, 90C39; 96 pp.

Abstract: Parts of the theory of analytic topological spaces are developed within a purely measure-
theoretic framework, and applied to dynamic programming. This results in a formalism for
dynamic programming involving no topology. Moreover, this formalism allows more general
strategies than existing formalisms. The main measure-theoretic tools used, viz. universal
measurability, Souslin sets, and a measurable-space structure on sets of probabilities, are treated in
an introductory chapter, which makes the exposition self-contained.

CWI Tract 15. F.J. van der Linden. Euclidean Rings with Two Infinite Primes.
AMS 12A45, 12A25, 12A30, 12A90, 12J10, 10C25, 10E15, 10E20, 14G15; 196

Alr:stract: An infinite prime of a subring of a global field K is an equivalence class of non-trivial
valuations of K that does not correspond to a prime ideal of the ring. In this book all earlier
results about the classification of (norm-) Euclidean subrings with two infinite primes of global
fields are combined. Examples of rings with two infinite primes are the rings of integers of real
quadratic, complex cubic, and totally complex quartic fields. Apart from earlier results also new
results are given. In particular a total classification is given for subrings with two infinite primes in
complex quadratic fields. For rings of integers of certain quartic fields new results are derived. For
instance all Euclidean rings of integers of cyclic quartic totally complex fields are determined. As a
slight extension to the subject of this book not only Euclidean rings are investigated but also rings
with a Euclidean ideal class.

CWI Syllabus 3. W.CM. Kallenberg et al. Testing statistical hypotheses:
worked solutions.

AMS 62F03, 62H15, 62G10; 310 pp.; key words: hypothesis tests, invariance,
unbiasedness.

Abstract: E.L. Lehmann’s book ‘Testing Statistical Hypotheses’, Wiley & Sons, New York, was
first published in 1959 and has since become a classic in the statistical literature. It remains the
standard introduction to hypothesis testing, giving special attention to the role of the principles of
unbiasedness and invariance. Its 228 exercises continue to stimulate and challenge. This CWI
syllabus contains complete worked solutions to all the exercises in ‘Testing Statistical Hypotheses’.
It should be especially useful to those using the book in statistics courses and for private study.

CWI Syllabus 4. J.G. Verwer (ed.). Colloguium “Topics in Applied Numerical
Analysis’. Vol. 1.
AMS 65XX06; 253 pp.

34

CWI Syllabus 5. J.G. Verwer (ed.). Colloquium ‘Topics in Applied Numerical
Analysis’. Vol. 2.

AMS 65XX06; 229 pp.

Abstract: The colloquium ‘Topics in Applied Numerical Analysis’ was held at the Department of
Numerical Mathematics of the CWI during the academic year 1983/1984. The aim of this
colloquium was to draw attention to the widespread use of numerical mathematics in real life
scientific problems, as well as to foster co-operation between mathematicians working in an
academic environment and representatives from industries and institutes where the numerical
solution of real life problems is studied. The proceedings, consisting of two volumes, contain in
complete form all 24 papers presented by the speakers in the colloquium. The greater part of the
papers deal with practical problems, mainly arising in the engineering sciences.

CS-R8413. PJ.W. ten Hagen & J. Derksen. Parallel input and feedback in

dialogue cells.

CR 1.3.6; 15 pp.; key words: interaction, man-machine communication,
Computer Graphics.

Abstract: In this paper a specification method for interaction is outlined based on a new
programming concept called ‘dialogue cells’. The method supports parallel input and separation of
a dialogue part from the algorithmic part of an application. Graphics interaction can be fully
integrated. Some problems associated with parsing parallel inputs are analyzed.

CS-R8416. P.M.B. Vitanyi. Distributed elections in a ring of processors using
Archimedean time.

AMS 68A05, 68B20, 94C99; CR C.2, D.4, F.2.2; 13 pp.; key words: distributed
control, local area networks - rings, operating systems, communication
management - message sending, algorithms using time, Archimedean time
distributed systems, time-independent correctness and termination, robustness,
accelerated efficiency by improved synchronicity, extrema-finding in a ring
network.

Abstract: Unlimited synchronism is intolerable in real physically distributed computer systems.
Such systems, synchronous or not, use clocks and timeouts. Pure synchronism can not exist either.
Therefore the appropriate model is in between synchronous and asynchronous: the magnitudes of
elapsed absolute time in the system need to have finite ratios, that is, they satisfy the axiom of
Archimedes. Under this restriction of asynchronicity logically time-independent algorithms can be
derived which are better (in number of message passes) than is possible otherwise. An example is
the problem of decentralized extrema-finding in a circular configuration of processors, that is,
reaching distributed agreement on the choice of a single processor. Each processor has a unique
name (integer) and does not know the size of the ring. The election can be instigated by any
processor at any time: also when an election is in progress but the processor is as yet unaware of
it. Asynchronous rings have been shown to need at least N log N message passes on the average
and a unidirectional order N log N worst-case message pass solution is known. We give a
logically time-independent (unidirectional deterministic) solution using order sN message passes
in the worst case, with s a measure of the asynchronicity of the system. For synchronous
systems s =1 and even for asynchronous systems we can eliminate s by choice of the parameters
in the Protocol. The result depends on the processors using subjective clocks but its correctness
and termination is independent of the time assumptions. Consequently, some basic subtilities
associated with distributed computations are highlighted. For instance, even the known nonlinear
average-case lower bound on the number of message passes is cracked by the worst-case
performance of the new solution. For the synchronous case, in which the necessary assumptions
hold a fortiori, the method is -asymptotically- the most efficient one yet, and of optimal order of
magnitude. The deterministic algorithm is of -asymptotically- optimal bit complexity, and, in the
synchronous case, also yields an optimal bound to determine the ring size. All of these results

30

improve the known ones. A result on distributed sorting in unidirectional rings is discussed.

CS-R8417. S.J. Mullender. A secure high-speed transaction protocol.
AMS 68A05, 68B20; CR C.2.2, C.2.4, D.44; 9 pp.; key words: transaction

protocols, connectionless protocols, capabilities, local-area networks.

Abstract: Most computer networks use a byte stream protocol for communication between
processes, which suffer from two important drawbacks: the addressing mechanisms provided are
often process-dependent or location-dependent, and communication is slow. While carrying out
research into distributed operating systems at the Free University of Amsterdam and the Centre
for Mathematics & Computer Science, we have developed a transaction-oriented transport
protocol for the Amoeba distributed operating system, aimed for high speed, with an addressing
mechanism that is not only more general, but provides a protection mechanism as well. The basic
mechanism for communication between processes is the transaction: a client process sends a
request to a server process, which carries out the request and returns a reply. Protection is
provided by using ports, chosen from a sparse address space, for addressing services. These ports
serve as a “capability” for communication with the service. Through its simplicity, the transaction
protocol achieves much higher transmission rates than other protocols executing on similar
hardware (about 300 Kbytes/sec process-to-process). The protection mechanism and the
mechanisms for realising high transmission speeds, are described.

CS-R8419. S.J. Mullender. Distributed systems management in wide area

networks.
AMS 68A05, 68B20; CR 2.2, C.2.4, D.4.4, D.4.7; 10 pp.; key words: service

model. distributed systems, wide-area networks, COST-11.

Abstract: While quite a few distributed operating systems for local-area networks exist, hardly any
work has been done to date on distributed operating systems for wide-area networks. In Europe,
a number of public networks are mow operational, with gateways between some of them.
However, the use of these networks is still mostly restricted to “remote login” and, in some cases,
simple file transfer operations. To study these problems and to find structural solutions for
efficient and simple use of national and international networks the working group “Distributed
Systems Management” was founded within cosT 11. Recently, this working group has submitted a
research proposal to cosT 11 to realise an infrastructure for the implementation of distributed
services in a wide-area network in a European collaborative effort. The model underlying the
research is the service model used in many local-area network distributed operating systems. The
research project is described, and the proposed infrastructure is discussed in some detail.

CS-R8420. J.A. Bergstra & J.W. Klop. A complete inference system for regular
processes with silent moves.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 59 pp.; key
words: concurrency, process algebra, regular processes, complete inference

system, parallel composition, invisible steps.

Abstracts: We study the notion of bisimulation between process graphs with silent or invisible
steps (r-steps). This leads to a normalisation or minimalisation result for regular processes, and
furthermore to a complete proof system for regular processes with 7-steps and subject to
operations + (alternative composition), . (sequential composition) and || (parallel composition or
free merge), thereby answering a question of Milner and proving the consistency of a version of
Koomen’s fair abstraction rule.

CS-R8421. J.A. Bergstra & J.W. Klop. Algebra of communicating processes.
AMS 68B110, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.4.3; 42 pp.; key
words: concurrency, communicating processes, process algebra, merge, data
flow networks, regular processes, invisible steps.

36

Abstract: A survey of process algebra is presented including the following features: merging
processes without communication, merging processes with communication, data flow networks,
regular processes, recursively defined processes, abstraction mechanisms both in absence and
presence of communication. Throughout the paper emphasis is on equational specifications and
graph theoretic models.

CS-R8422. JW. de Bakker & J.N. Kok. Towards a uniform topological
treatment of streams and functions on streams.

AMS 68B10; CR D.3.1, F.3.2, F.3.3; 18 pp.; key words: streams, functional
programming, denotational semantics, metric topology, Hausdorff’ metric, trace

theory, typed lambda calculus, concurrency.

Abstract: We study the semantics of functional languages on streams such as Turner’s SASL or
KRC. The basis of these languages is recursive equations for (functions on) finite or infinite
sequences. The paper presents a start towards a mathematical (denotational) description of such
languages using tools from metric topology. The description is based on the Banach fixed point
theorem and a restricted version of a typed lambda calculus. To a system of recursive stream
(function) declarations a system of functions is associated in an appropriate topological domain.
These functions have to be contracting in certain arguments and non distance increasing in others;
a syntax is designed which ensures the right interplay between these conditions. Nondeterminism
is handled by considering compact sets of streams, and preservation of compactness is another
important technical issue. Not all concepts in a language such as KRC are covered, and some
indications on possible extensions of the framework are provided.

CS-R8423. J. Seiferas, P.M.B. Vitanyi. Counting is easy.

AMS 68C40, 68C25, 68C05, 94B60, 10-00; CR F.1.1, F.1.3, F.2.3, B.3.2, E.1,
E.4; 8 pp.; key words: counting, number representation, coding, counter
machine, multicounter machine, augmented counter machine, real-time

simulation by oblivious one-tape Turing machine.

Abstract: An exposition is presented of the recent result that many independent counts with
simultaneous zero-check can be maintained in real-time on an oblivious single-head tape unit
using the information-theoretical storage minimum. Some extensions of that result are also given.
The treatment is informal and aims at making the central ideas more transparent.

CS-R8424. S.J. Mullender, P.M.B. Vitanyi. Distributed match-making for
processes in computer networks.

AMS 68C05, 68C25; C.2.1. F.2.2, G.2.2; 16 pp.; key words: locating objects,
locating services, computer networks, network topology.

Abstract: Locating services in a computer network is usually done by broadcasting “where are
you” messages. In many networks this is an efficient method, because the network medium is
itself a broadcast medium. In other networks, such as large store-and-forward networks,
broadcasting is considerably more costly than sending a message directly to its destination. Here
we examine methods for locating services that are less expensive than broadcasting in terms of
message passes or “hops.” For these methods we investigate the complexity in terms of needed
storage, in terms of message passes and in terms of processing needed. The general problem
consists of distributed match-making between processes, such as server processes and client
processes, in computer networks. The processes are assumed to be mobile and not have fixed
addresses. When the servers assist the clients in getting themselves found, it appears that, in many
mesh networks, match-making can be done in oVN) message passes, where N is the number of
nodes in the network. Conventional broadcast methods for locating services need a minimum of
O(N') message passes to do the broadcast. The theoretical limitations of distributed match-making
are established, and the techniques are applied to several network topologies.

37

CS-R8501. J. Heering. Partial evaluation and «-completeness of algebraic

specifications.

AMS 03B40, 03C05, 68B10, 68C20; CR D.1.2, D.34, F.3.2, F4.1, L1.1, 1.2.2;
14 pp.; key words: algebraic specification, «-completeness, initial algebra
semantics, equational logic, structural induction, «-rule, program
transformation, program optimization, partial evaluation, mixed computation,
symbolic computation, propagation of incomplete information, constant
propagation, combinatory logic, w-extensionality.

Abstract: Suppose P(x,y) is a program with two arguments, whose first argument has a known
value ¢, but whose second argument is not yet known. Partial evaluation of P(c,y) results (or
rather: should result) in a specialized residual program P, (y) in which “as much as possible” has
been computed on the basis of c. In the literature on partial evaluation this is often more or less
loosely expressed by saying that partial evaluation amounts to “making maximal use of incomplete
information.” In this paper a precise meaning is given to this notion in the context of initial
algebra specifications and term rewriting systems. It turns out that, if maximal propagation of
incomplete information is to be achieved, as a first step it is necessary to add equations to the
algebraic specification in question until it is w-complete (if ever). The basic properties of -
complete specifications are discussed, and some examples of w-complete specifications as well as of
specifications that do not have a finite w-complete enrichment are given.

CS-N8501. N.W.P. van Diepen. Integer-square-root. An example of and
introduction to program transformations. (In Dutch.)
AMS 68B10; CR 1.2.2; 12 pp.; key words: program transformation, program

verification.

Abstract: This paper is an intuitive introduction to the field of transformational programming. A
short introductory description of partial correctness proofs in Hoare Logic is given. Next two
exhaustive examples of correctness preserving program transformations are given. Both examples
start with an evidently correct solution to the problem of computing the Integer-Square-Root (
[\/;J) of a given positive integer n. These programs are then optimized using program
transformations.

OS-R8411. R M. Karp, J.K. Lenstra, C.J.H. McDiarmid & A.H.G. Rinnooy
Kan. Probabilistic analysis of combinatorial algorithms: An annotated
bibliography.

AMS 68E10, 68C25, 90C05, 90C10, 90C35; 26 pp.; key words: probabilistic
analysis, combinatorial algorithm, random graph, matching, stable set,
colouring, Hamiltonian cycle, assignment, traveling salesman, location, linear
programming, simplex method, bin packing, scheduling, knapsack, branch-
and-bound, local search.

Abstract: This annotated bibliography reviews the literature on the probabilistic analysis of
combinatorial algorithms for problems defined on (unweighted and weighted) graphs, Euclidean
problems, linear programming, packing and covering problems, and of branch-and-bound and
local search methods.

OS-N8402. M.W.P. Savelsbergh. Vehicle routing and computer graphics.
AMS 68V20, 69G30, 69G12; 6 pp.; key words: vehicle routing problem,
interactive optimization, computer graphics, colour graphics, Graphical Kernel

System.
Abstract: After introducing the Vehicle Routing Problem, we discuss the advantages of an
interactive optimization approach and make some remarks on the underlying optimization method

38

to be used. In addition, we emphasize the importance of a colour graphics user interface and relate
our experiences with the Graphical Kernel System graphics package.

OS-N8403. HM.C.A. Hop. Time dependent behaviour of queuing systems and
the practical application of relaxation times. (In Dutch.)
AMS 60K25, 69D58, 90B22; 37 pp.; key words: queuing system, relaxation

time, time dependent behaviour, simulation.

Abstract: We study the amount of time required for the average number of customers in a network
of M/M/1 stations to approach its stationary value up to 1%, given initial conditions that differ
from the equilibrium situation. In particular the ratio between the above defined time and the
relaxation time of the average number of customers in the network is investigated. For certain
models this ratio is determined by the solution of the system of differential equations that
describes the model. The numerical results are confirmed by simulations.

OS-N8404. M.W.P. Savelsbergh. Vehicle routing and computer graphics.
(Dutch version of OS-N8402.)

NM-R8414. H.J.J. te Riele & R.W. Wagenaar. Numerical solution of a first
kind Fredholm integral equation arising in electron-atom scattering.
AMS 65R20, 81GXX; 7 pp.; key words: Fredholm integral equation of the first

kind, regularization, electron-atom scattering,
Abstract: The regularization method of Phillips and Tihonov is applied to a first kind Fredholm
integral equation arising in the field of electron-atom scattering.

NM-R8415. H.J.J. te Riele. Some historical and other notes about the Mertens

conjecture and its recent disproof-

AMS 01AS55, 10A20; 6 pp.; key words: Mertens conjecture.

Abstract: This paper answers some questions about the recent disproof of the Mertens conjecture
by Odlyzko and te Riele. In particular, the roles of Stieltjes and Mertens are sketched, and some
comments are given on the electronic communication between Amsterdam and Murray Hill and
on the publicity around the disproof.

NM-R8416. H.J.J. te Riele. A program for solving first kind Fredholm integral
equations by means of regularization.

AMS 65R20, 65V05, 81GXX; 17 pp.; key words: Fredholm integral equation
of the first kind, regularization, elastic electron-atom scattering, indirect

measuring, dispersion relation.

Abstract: A program is described for solving a Fredholm integral equation of the first kind with
help of the regularization method of Phillips and Tihonov. This type of problem frequently arises
in the mathematical analysis of physical problems, such as elastic electron-atom scattering.

NM-R8501. B.P. Sommeijer, P.J. van der Houwen & B. Neta. Symmetric
linear multistep methods for second-order differential equations with periodic
solutions.

AMS 65L05; 9 pp.; key words: numerical analysis, second-order differential

equations, periodic solutions, linear multistep methods.

Abstract: Special symmetric linear multistep methods for second-order differential equations
without first derivatives are proposed. The methods can be tuned to a possibly a priori knowledge
of the user on the location of the frequencies that are dominant in the exact solution. On the basis
of such extra information the truncation error can be considerably reduced in magnitude.

39

Numerical results are compared with results produced by the symmetric methods of Lambert and
Watson and the method of Gautschi.

MS-R8413. P. Groeneboom. Brownian motion with a parabolic drift and Airy

functions.

AMS 60J65, 60J75, 62E20, 62G05; 45 pp.; key words: Brownian motion,
parabolic drift, Airy functions, Cameron-Martin-Girsanov formula, Feynman-
Kac formula, Bessel process, density estimation.

Abstract: Let {W(r):1 =s) be Brownian motion, starting at x at time s. The densities of first
passage times of the process {W (1) — ct?:t =s) are determined analytically in terms of Airy
functions; the joint distribution of the maximum and the location of the maximum of this process
is also expressed in terms of Airy functions. Corresponding results are given for two-sided
Brownian motion. The structure of a jump process of locations of maxima of Brownian motion
with respect to a family of parabolas is derived. This process plays a fundamental role in
describing the limiting global behavior of certain estimators of densities and distribution functions.
As a probabilistic side result the distribution of excursion integrals is obtained.

MS-R8414. C. van Eeden. Mean integrated squared error of kernel estimators
when the density and its derivative are not necessarily continuous.

AMS 62G05; 11 pp.; key words: density estimation, mean integrated squared
error, optimal kernel.

Abstract: Asymptotic properties of the mean integrated squared error (MISE) of kernel estimators
of a density function, based on a sample X, .., X,, were obtained by Rosenblatt and
Epanechnikov for the case when the density f and its derivate f" are continuous. They found,
under certain additional regularity conditions, that the optimal choice h,o for the scale factor
h, =Kn ™% is given by h,,=Kn ~1/5 with K, depending on f and the kernel; they also showed
that MISE (h,0)=0(n ~*°) and Epanechnikov found the optimal kernel. In this paper we
investigate the robustness of these results to departures from the assumptions concerning the
smoothness of the density function. In particular it is shown, under certain regularity conditions,
that when f is continuous but is derivative /" is not, the optimal value of « in the scale factor
becomes 1/4 and MISE (h,o)=0(n ~*'%); for the case when f is not continuous the optimal value
of a becomes 1/2 and MISE (h,o=0(n ~'/?). For this last case the optimal kernel is shown to be
the double exponential density.

MS-N8401. P. Groeneboom. An investigation into head-way time on a 2x2 lane
motorway. (In Dutch.)

AMS 62G05, 62P99; 40 pp.; key words: semi-Poisson model, Brantson’s
generalized queuing model.

Abstract: Measurements of head-way times on a 2x2 lane motorway were analysed with the help of
various statistical models. The distribution of head-way times was separated into two components.
One component corresponds to drivers whose speed is determined by the car in front of them
(followers’), the other corresponds to drivers for which this is not the case (‘leaders’). Various
models from the literature were further developed and large-sample variances of the estimates were
determined. With analysis very clear differences were found in the structure of traffic at different
locations, and the results also led to hypotheses on the difference in structure during wet and dry
weather.

AM-R8415. H.E. de Swart & J.T.F. Zimmerman. Tidal rectification in lateral
viscous boundary layers of a semi-enclosed basin.

AMS 35A35, 76D30; 15 pp.; key words: residual current, Strouhal number
primitive perturbation method, global renormalization.

40

Abstract: The rectified flow, induced by divergence of the vorticity flux in lateral oscillatory viscous
boundary layers along the side-walls of a semi-enclosed basin, is studied as a function of the
Strouhal number, k, equivalent to the Reynolds number. It is shown that for small Strouhal
numbers the ratio of the rectified flow and the tidal current amplitude is proportional to «, but for
larger k values the behaviour is exponential. The latter conclusion is reached at by using a global
renormalization of the vorticity equation.

AM-R8416. H.A. Lauwerier & M.B. van der Mark. Chaos and order in an
optical ring cavity.

AMS 58F14, 58F13, 78A10; 16 pp.; key words: iterative maps, chaotic
behaviour, strange attractor.

Abstract: This study orginates from an attempt to understand the bifurcation behaviour in a
certain two-dimensional iterative map considered by Ikeda et al. in a theoretical study of optical
bistability. The map can be written in complex coordinates z and z in the following form:
2/ =A +Bz exp i(zz —). The complex coordinate z has the meaning of an electric field vector, 4
is the amplitude of the incoming wave, B measures the dissipation of the electric energy and B is
called a mistuning parameter. The mapping is considered from a mathematical point of view by
using the usual techniques of two-dimensional maps. The parameter B determines whether the
map is Hamiltonian (B =1), i.e. measure preserving, or dissipative (B < 1). Various plots are given
showing the chaotic behaviour of the map, periodic points, continuous invariant curves, isolated
structures, strange attractors, etc.

AM-R8417. HJ.A.M. Heijmans. Structured populations, linear semigroups, and
positivity.

AMS 92A15, 47D05; 17 pp.; key words: structured populations, positive
irreducible semigroup, Perron-Frobenius theory, essential spectrum, peripheral
spectrum, renewal theorem, generation expansion.

Abstract: A general model represented by a first-order partial differential equation with boundary
and initial conditions, describing the growth of a biological population is formulated and it is
indicated how several physiological structures fit into this model. It is shown that the semigroup
associated with the problem is positive and irreducible. Therefore the Perron-Frobenius theory of
positive semigroups can be applied in order to obtain relevant information on the spectrum of the
semigroup, and this can be used to characterize the large time behaviour of solutions.

AM-R8418. J. Aten & J. Grasman. Quantitative models describing the kinetics
of tumour cell proliferation: a comparison with experimental data.
AMS 62P10; 6 pp.; key words: cell cycle, transition probability model.

Abstract: Pedigrees of cells from a mouse osteosarcoma line are analyzed. The generation time
data of cells of 12 pedigrees is used to estimate the parameters in two transition probability
models of the cell cycle.

AM-R8419. J.A.J. Metz & F.H.D. van Batenburg. Holling’s “hungry mantid”
model for the invertebrate functional response considered as a Markov process.
Part I: The full model and some of its limits.

AMS 92A15, 60J25, 60K30; 46 pp.; key words: satiation, functional response,
predation behaviour, structured population models, first order partial
differential equations with transformed arguments, Markov processes, time

scale arguments, approximating stochastic processes.

Abstract: In this paper we give an analytical reformulation of Holling’s (1966) simulation model
for invertebrate predatory behaviour. To this end we represent a population of predators as a
frequency distribution over a space of (physiological) states. The functional response of a predator

41

is calculated from the (stable) equilibrium of its state as a function of prey density. Starting from
the general model various other models, some of them new and some of them old, are obtained as
limit processes, the more interesting of which will be studied in further papers in this series.

AM-R8420. J.A.J. Metz & F.H.D. Batenburg. Holling’s “hungry mantid” model
for the invertebrate functional response considered as a Markov process. Part I1:
Negligible handling time.

AMS 92A15, 60125, 60K30; 33 pp.; key words: satiation, functional response,
predation behaviour, first order partial differential equations with transformed
arguments, Markov processes, approximation stochastic processes, van

Kampen expansion.

Abstract: In this paper we analyse a stochastic model for invertebrate predation taking account of
the predator’s satiation. This model approximates Holling’s “hungry mantid” model when
handling time is negligible (see part I). For this model we derive equations from which we can
calculate the functional response and the variance of the total catch. Moreover we study a
number of approximations which can be used to calculate these quantities in practical cases in a
relatively simple manner.

AM-R8502. S-N. Chow, O. Diekmann & J. Mallet-Paret. Stability, multiplicity,
and global continuation of symmetric periodic solutions of a nonlinear Volterra
integral equation.

AMS 45D05, 45G10, 45M05, 45M10; 32 pp.; key words: singular perturbation,
global Hopf bifurcation, Volterra convolution integral equation, invariant cone,

periodic solutions, stability, slowly oscillating solutions, Floquet multipliers.
Abstract: Results on existence, multiplicity, stability, global continuation, and limiting behaviour
when €0 of periodic solutions of

1+e

(E) x(O) =5 [fx(t—mydr

are derived for the case of a nonlinear function f having certain monotonicity and symmetry
properties. The proofs are based on the following two observations: (i) the right-hand side of (E)
defines an operator which maps a cone of two-periodic functions with symmetry and positivity
properties into itself; and (i) slowly oscillating solutions of the linear variational equation
correspond to dominant Floquet multipliers.

AM-R8503. H.A. Lauwerier. The Pythagoras tree as a Julia set.

AMS 30D05; 12 pp.; key words: Pythagoras tree, Julia set, iterated mapping,
self-similarity.

Abstract: Various properties of the so-called Pythagoras tree are considered, especially with respect
to iterated mappings, self-similarity, and Julia sets. The approach is based on binary
representations of real numbers and on the use of complex variables.

AM-R8504. O. Diekmann, HJ.AM. Heijmans & H.R. Thieme. On the
stability of the cell size distribution I1. Time-periodic developmental rates.

AMS 92A15; 23 pp.; key words: size-dependent population growth,
reproduction by fission, first order partial differential equation with
transformed argument, stable size distribution, spectral theory of strongly

positive quasi-compact linear operators on Banach lattices, essential spectrum.
Abstract: A deterministic model for the growth of a size-structured proliferating cell population is

42

analyzed. The developmental rates are allowed to vary with time. For periodically varying rates
stability of the cell size distribution is shown under similar conditions for the growth rate of
individual cells as found before in the time-homogeneous case. Strongly positive quasi-compact
linear operators on Banach lattices serve as powerful abstract tools. Finally the autonomous case is
revisited and the conditions for stability are relaxed.

AM-R8505. O. Diekmann, R.M. Nisbet, W.S.C. Gurney & F. van den Bosch.
Simple mathematical models for cannibalism: A critique and a new approach.
AMS 92A15; 17 pp.; key words: age structured population dynamics,
cannibalism, egg eating predators, steady states, stability, Hopf bifurcation.
Abstract: In this paper we show how to incorporate a functional response in recent models of
Gurtin, Levine, and others for egg cannibalism. Starting from a relatively complicated model with
vulnerability spread over an age interval of finite duration ¢, we arrive at a much simpler model by
passing to the limit €|0. It turns out that survivorship through the vulnerable stage is implicitly
determined by the solution of a scalar equation. Subsequently we study the existence and stability
of steady states and we find (analytically in a simple case, numerically in more general situations)
curves in a two-dimensional parameter space where a nontrivial steady state loses its stability and
a periodic solution arises through a Hopf bifurcation.

PM-R8414. E.P. van den Ban. A convexity theorem for semisimple symmetric
spaces.

AMS 22E30, 22E46, 43A85; 42 pp.; key words: semisimple symmetric space,
Iwasawa decomposition, convexity.

Abstract: We study an Iwasawa type projection related to a semisimple symmetric space and prove
a generalization of Kostant’s convexity theorem for it.

PM-R8415. A M. Cohen. Point-line characterizations of buildings.

AMS 51B25; 18 pp.; key words: buildings, incidence systems, Lie geometry.
Abstract: A survey is given of recent results in synthetic Lie geometry: axiomatic characterizations
of buildings in terms of points and lines. These notes are an extended version of a lecture given at
the CIME (International Mathematical Summer Center) Meeting on ‘Buildings and the Geometry
of Diagrams’, Como (Italy), August 30, 1984.

PM-R8501. T.H. Koornwinder. Special orthogonal polynomial systems mapped
onto each other by the Fourier-Jacobi transform.

AMS 33A65, 33A30, 33A75; 10 pp.; key words: Fourier-Jacobi transform,
Hankel transform, Whittaker transform, Jacobi polynomials, Laguerre
polynomials, Wilson polynomials, continuous dual Hahn polynomials,

tridiagonalization of differential operators.

Abstract: The Fourier-Jacobi transform, which generalizes the Mehler-Fock transform, is shown to
map an orthogonal basis involving Jacobi polynomials onto an orthogonal basis involving Wilson
polynomials. One limit case is the Hankel transform mapping Laguerre functions onto itself.
Another limit case is the Whittaker transform mapping Laguerre functions to continuous dual
Hahn polynomials. The orthogonal basis involving Jacobi polynomials tridiagonalizes the Jacobi
function differential operator. Group theoretic interpretations are briefly discussed. This is a
preliminary report not containing full proofs.

PM-R8502. E.P. van den Ban. On the holomorphic continuation of the Iwasawa
and a related decomposition.

AMS 22E30, 43E85; 31 pp.; key words: semisimple Lie group, Iwasawa
decomposition, holomorphic continuation, symmetric space.

43

Abstract: Let G be a real semisimple adjoint Lie group, G, its complexification. In this paper we
study the holomorphic continuation to G, of a decomposition of G which essentially generalizes
the Iwasawa decomposition. The results are of interest for the analysis on a semisimple symmetric
space.

CWI Activities
Spring 1985

With each activity we mention its frequency and (between parentheses) a
contact person at CWI. Sometimes some additional information is supplied,
such as the location if the activity will not take place at CWI.

Study group on Analysis on Lie groups. Joint with University of Leiden.
Biweekly. (E.P. van den Ban) '

Seminar on Algebra and Geometry. Coxeter Groups and Combinatorics.
Biweekly. (A.E. Brouwer)

Study group on Cryptography. Biweekly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Joint with University of Leiden. (J. Grasman)

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Joint with University of Leiden. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. New results and
open problems in biomathematics, mathematical physics and analysis.
Weekly. (N.M. Temme)

National Study Group on Statistical Mechanics. Joint with Technological
University of Delft, Universities of Leiden and Groningen. Monthly.
University of Amsterdam. (H. Berbee)

Lecture course on Basic Principles of Statistics of Dependent Observations
(martingale approach) by A.N. Shiryayev (Steklov Math. Institute,
Moscow). 6,7 and 8th May. (R.D. Gill)

Seminar on Probability Inequalities and Related Topics, given by M.L. Eaton.
Joint with University of Amsterdam (and held there). Weekly. (R.D. Gill)

Progress meetings on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

45

System Theory Days. Irregular. (J.H. van Schuppen)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

National colloquium on Optimization. Irregular. (J.K. Lenstra)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Biweekly. (H.J.J. te Riele)

Study group on Numerical Flow Dynamics. Lectures by group members.
Every wednesday. (J.G. Verwer)

Study group on Hyperbolic Systems. Every wednesday. (P.W. Hemker)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

Seminar National Concurrency Project. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 22 February, 22 March and 24 May.
(J.W. de Bakker)

National Study Group on Concurrency. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 18 January, 8 February, 8 March and 5
April. University of Utrecht. (J.W. de Bakker)

ESPRIT/LPC Advanced School on Current Trends in Concurrency. 10-21

June at ‘De Leeuwenhorst’, Noordwijkerhout. Invited speakers:
E.A. Ashcroft (SRI International, Menlo Park, USA), H.P. Barendregt
(University of Utrecht, The Netherlands), M. Diaz (L.A.A.S., Toulouse,
France), G. Levi (University of Pisa, Italy), E.-R. Olderog (University of
Kiel, West Germany), A. Pnueli (Weizmann Institute, Rehovot, Israel), F.B.
Schneider (Cornell University, Ithaca, USA), P.S. Thiagarajan (University of
Aarhus, Denmark). (J.W. de Bakker)

Post-academic course on Modern Techniques in Software Engineering. 9,10,23
and 24 May. (J.C. van Vliet) '

Post-academic course on B. 7 January - 9 May. Twice a week. (L. Geurts)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

46

Visitors to CWI from Abroad

K. Burrage (University of Auckland, New Zealand) January - February. J.C.
Butcher (University of Auckland, New Zealand) 4 January. W. Dahmen
(University of Bielefeld, West Germany) 20 March. H. Dym (The Weizmann
Institute of Science, Rehovot, Israel) 25 February. B. Fiedler (SFB 123
Heidelberg, West Germany) 11-22 March. M. Ghil (Courant Institute, New
York, USA) 14 January. J.W.P. Hirschfeld (University of Sussex, Brighton,
UK) 25 March. K.H. Hofmann (TH, Darmstadt, West Germany) 26-30
March. C.J. Holland (Department of the Navy, London, UK) 12-14 February.
A. Koranyi (Washington University, St. Louis, USA) 21-25 January. E.-R.
Olderog (University of Kiel, West Germany) 21 March - 4 April. J.B. Orlin
(M.LT., Cambridge, USA) 1 September 1984 - 1 May 1985. H. Schlichtkrull
(University of Copenhagen, Denmark) 24 February - 3 March. M.
Smorodinski (University of Tel Aviv, Israel) 4 February. G.J. Székely (E6tvos
L. University, Budapest, Hungary) 6-8 March. K. Voss (GMD, Bonn, West
Germany) 22 February. L.D. Wittie (SUNY, Stonybrook, USA) 21-22
January.

47

TER[QWINEWSLES

| @ S\ EWSLE | TE

O

0ooobO0O0O0O0000ooooooag

*) not available on exchange

Order Form for CWI Publications

Centre for Mathematics and Computer Science

Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis
O Please send the publications marked below with an invoice

Publication code

CWI Tract 2 *)
CWI Tract 12 *)
CWI Tract 13 *)
CWI Tract 14 *)
CWI Tract 15 *)
CWI Syllabus 3 *)
CWI Syllabus 4 *)
CWI Syllabus 5 *)
CS-R8413
CS-R8416
CS-R8417
CS-R8419
CS-R8420
CS-R8421
CS-R8422
CS-R8423
CS-R8424
CS-R8501

Price per copy

DAl. 16.70
20.30
28.60
14.30
27.40
45.10
36.90
33.30

3.70
3.70
3.70
3.70
8.40

6.--
3.70
3.70
3.70
3.70

Number of copies wanted

O000O0O0oO0o0O0O0oO0oOooOooooOoooocoooaon

Publication code

CS-N8501
OS-R8411
OS-N8402
OS-N8403
OS-N8404
NM-R8414
NM-R8415
NM-R8416
NM-R8501
MS-R8413
MS-R8414
MS-N8401
AM-R8415
AM-R8416
AM-R8417
AM-R8418
AM-R8419
AM-R8420
AM-R8502
AM-R8503
AM-R8504
AM-R8505
PM-R8414
PM-R8415
PM-R8501
PM-R8502

Price per copy

3.70
3.70
3.70

6,--
3.70
3.70
3.70
3.70
3.70

Number of copies wanted

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don'’t forget to add your name and address!
Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,

postal and handling charges.

Name

