





22

30

35

38

47

49

Contents

In 1983 Faltings Proved Conjectures by Mordell,
Shafarevich and Tate. by Frans Oort

Proportional Representation in a Regional Council,
by J.M. Anthonisse

Living in Amsterdam, by Steven Pemberton
Open Problems

Abstracts of Recent CWI Publications
Activities at CWI, Winter 1984

Visitors to CWI from Abroad

4

Centre for Mathematics
and Computer Science

Centrum voor Wiskunde en Informatica

Bibllotheek

i CWi-Centim voor Wiskiinde en Informatica



In 1983 Faltings proved conjectures
by Mordell, Shafarevich and Tate.

Frans Oort

Mathematisch Instituut
Budapestlaan 6
3508 TA Utrecht
The Netherlands

INTRODUCTION

In a rather short paper [F] we find proofs of several striking and deep
theorems. Admiring experts are said to call the result by G. FALTINGS which
confirms the Mordell conjecture ‘the theorem of the century’ (cf. JOHN
EwING’s ‘Editorial’ in The Math. Intelligencer, 5 (1983), number 4).

Already several expository papers have been devoted to these results; in
[Fa3] we find a survey for non-specialists by G. FALTINGS; in the Bourbaki
talks [D] and [S] several details of the proof are carefully examined; newspa-
pers all over the world have reported on these achievements; several specialists
study these theorems, the proofs and further developments. It may be hoped
that Séminaire Szpiro 1983/1984 will appear in print and it seems that A.N.
PARSHIN is planning to write a survey article on this material. Hence there is
no need for any exposition of these kinds; therefore, in this note, we restrict
ourselves to stating the theorems and to making some side-remarks on their
significance.

1. HILBERT’S TENTH PROBLEM
In Paris, at the International Congres of Mathematicians, 1900, DAvID Hir-
BERT delivered a lecture, in which he posed 23 problems. The 10th reads:

‘10 Determination of the solvability of a diophantine equation.

Given a diophantine equation with any number of unknown quan-
tities and with rational integral numerical coefficients: To devise a
process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.’



Excellent surveys of developments arising from the Hilbert problems can be
found in the 2 volumes of [Proc.]. In 1970 MATUASEVICH gave a negative
answer to the tenth problem. Thus we are faced with the reality that in treat-
ing diophantine equations ad hoc methods will be needed; a fact which
mathematicians can digest only with some difficulty. However,

‘One of the charms of mathematics is the constant discovery of
unexpected almost unbelievable connections. Whatever is logically
possible may be true!” (cf. [Proc.], part 2, p.338).

Thus, the systematic approach Hilbert was asking for does not exist, but
mathematics seems in this way to gain interest instead of loosing it.

2. A THEOREM AND A CONJECTURE BY MORDELL
Let us consider one equation in two variables, and try to find rational solu-
tions. For example:

X +y? =1 ()
we see immediately that for any ¢ €Q,

I _ A
1+ 7 142

is a solution (also (—1,0) is a solution, and in this way we obtain all of them).

Thus we see that the equation has infinitely many solutions with x,y €eQ. For
cubic equations the situation is already much more complicated. Consider:

Y2 = X3(X-1) @)
Y’+Y = X’-X A3)
X’+y =1 (4);

the equation (2) has infinitely many rational solutions (and it is easy to find
them all: with the help of lines through the singularity (0,0) we can
parametrize the curve rationally, as we did in the previous case); the equation
(3) has many solutions over Q, for example

21 _ =%

5 Y T s

is a solution of (3), but it is not so easy to find all solutions; of course, equa-
tion (4) has no solutions (x,y) with xy0. We see the difficulties, and, what
happens if we consider equations of higher degree?

To an algebraic rational curve C one can attach a natural invariant, the
genus, g(C). This non-negative integer can be defined in several ways. For
example, it can be given with the help of the topology on the set of complex
points of C, i.e. with the Riemann surface C(C). If C is a curve in the projec-
tive plane P2 given by an equation involving an irreducible polynomial of
degree n, then

x:



g(C) < 3(n—1)(n—2)

and equality holds iff C is a smooth curve (this means that it has no singulari-
ties over C). The curves in (1), (2), (3), (4) have genus 0,0,1,1, respectively.
Note the remarkable twist: we started studying a purely algebraically given
equation, we see that equations which look alike may be different in behaviour,
and the difference will be (partly) explained by properties of a
topologic/geometric concept such as a Riemann surface (working over Q, we
use the topology of the Riemann surface of points with coordinates in C).
This combination of arithmetic and geometry will be used to study the ques-
tion:

given f €Q[X,Y], find solutions:
xy€Q or xyeZ, with f(x,y) =0
From now on C is the complete curve given by such a polynomial f .

For rational curves (i.e. those with g(C)=0) the set C(Q) of solutions x,y €Q
is easily described:

either there are no solutions (e.g. X*+ Y2 = -1,
or there are infinitely many solutions (use a parametrization).

However solutions x,y €Z are much more difficult. We come back to this
question later.

/
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If g(C)=1, we say we have an elliptic curve (the name: computing the arc-
length of an ellipse, WALLIS 1655, led to elliptic integrals, e.g. studied by
LEGENDRE 1825, and these functions parametrize curves with g =1, WEIER-
STRASS 1825; therefore curves with g =1 are called elliptic curves). Any curve
with g(C)=1, and C(Q)# & can be given by a cubic equation (and for a
cubic polynomial f, the curve has either g(C)=0 if it is singular, or g(C)=1
if it is smooth). If E is elliptic, E CP? and it has a rational point, then its set
of points forms a commutative group, in a very natural way (use a geometric
description of this group law, or use the addition theorem for the Weierstrass
p-function). For an elliptic curve MORDELL proved in 1922:

let E be an elliptic curve; the group E(Q).is finitely generated

(cf. [Mol]); hence
EQ)=7"®T,

with r€Z, and T a finite commutative group, T'=Tors(E (Q)), the torsion
subgroup of E(Q). This theorem can be generalized, as A. WEIL proved: for
any abelian variety 4 over a number field K (i.e. [K:Q]<o0), the group 4 (K)
is finitely generated (cf. [Wel]). These results did not end this subject, but
rather started fascinating research areas, such as computation of r and T for a
given E. Some deep results have been achieved (such as: for any E,

#T < 16,

where T =Tors(E(Q)), MAZUR, 1976, cf. [Maz]), but many questions remain
open (Birch and Swinnerton-Dyer conjecture; Taniyama and Weil conjecture,
and many other difficult problems; an adequate description would lead us
much too far). Thus the 1922 result by MORDELL started a wide field of
research. At the same time MORDELL formulated a conjecture (which, by FALT-
INGS, is now a theorem):

(M). Let K be a number (i.e. K is a finite extension of Q), let C be an algebraic
curve over K, assume g(C)=2, then # (C(K))<oo.

Note, as a corollary:
LetneZ;, then # {(x yeQ|x"+y" =1} < o0

because the projective curve defined by the homogeneous equation
X"+Y"=Z" has no singularities, hence its genus equals g =3(n —1)(n —2),
and n >4 implies g =3, while for n =3 we already know the result to be true.

Fermat’s ‘last theorem’ would say there are no rational solutions of this
equation with xy 0.



3. QUESTIONS AND CONJECTURES

An open problem in mathematics can be very stimulating. Whole branches of
this discipline have been developed in order to settle a certain question. Some-
times it seems that answering a question makes the field less interesting. In
some cases the methods turn out to be of greater importance than the results
aimed at. It also happens that the new theorems open new fields, give new
impetus to further research.

I think these results by FALTINGs will trigger new ideas. In itself the fact
that the Mordell conjecture has been solved is perhaps not so far-reaching, but
it gives a certainty that mathematical reality has such nice aspects, and, even
more importantly, the method of proof, and in particular the validity of con-
jectures by SHAFAREVICH and by TATE (cf. below) is of great technical impor-
tance.

When do we, mathematicians, say that a certain idea or hope is a conjec-
ture? Well, there seem to be different tastes. Let me illustrate this with two
examples. In 1955 SERRE posed a question, cf. [FAC], page 243 (is every finite
type projective K[X,, ..., X,]-module free?). Soon several mathematicians
called this the Serre conjecture (it has been solved affirmatively), but to me it
seemed to be more in the style of the author in question to refer to this as ‘a
question posed by SERRE’ or ‘the Serre problem’. I remember a discussion
between SERRE and LANG, Arcata, 1974, where SERRE in his talk formulated a
certain question. LANG, in the audience, thought that enough numerical evi-
dence was available to have that question given the status of a conjecture,
while SERRE remained resistent to do so.

So, we see that different mathematicians may have different opinions about
the meaning of the word ‘conjecture’. We cite A. WEIL from his commentary
[Wed], Vol. III, pp. 453/454:

‘... J'évitai de parler de “conjectures”. Ceci me donne I'occasion de
dire mon sentiment sur ce mot dont on a tant usé et abusé.

Sans cesse le mathématicien se dit: “Ce serait bien beau” (ou:
“Ce serait bien commode”) si telle ou telle chose était vraie. Par-
fois il le vérifie sans trop de peine; d’autres fois il ne tarde pas a se
détromper. Si son intuition 2 résisté quelque temps a ses efforts, il
tend a parler de “conjecture”, méme si la chose a peu d’'importance
en soi. Le plus souvent c’est prématuré.

En théorie des groupes, on a longtemps parlé d’une “conjecture
de Burnside”, qu’a vrai dire celui-ci, fort judicieusement, n’avait
proposée que comme probléme. Il n’y avait pas la moindre raison
de croire que I'énoncé en question fut vrai. Finalement il était
faux.

Nous sommes moins avancés a I'égard de la “conjecture de
Mordell”. 1t s’agit 1a d’une question qu’un arithméticien ne peut
guére manquer de se poser; on n’apercoit d’ailleurs aucun motif
sérieux de parier pour ou contre. Peut-€tre dira-t-on que
'existence d’une infinité de solutions rationnelles pour une



équation f(x,y)=0, en l'absence d’une raison algébrique qui la
Justifie, est infiniment peu probable. Mais ce n’est pas un argu-
ment ...

En ce qui concerne les questions posées a la fin de [1967a], tant
de résultats partiels sont venus depuis lors s’ajouter aux miens qu’a
présent je n’hésiterais plus, je crois, a parler de “conjectures”,
encore que le terme d“hypothese de travail” soit peut-étre plus
approprié. En tout cas, s’il m’appartenait de donner un conseil a
qui ne m’en demande point, je recommanderais d’employer
désormais le mot de “conjecture” avec un peu plus de circonspec-
tion que dans ces derniers temps.’

Of course the fact that a question turns out to have an affirmative answer
does not justify afterwards having used the terminology ‘conjecture’, thus I
have reproduced the opinions by SERRE and WEIL.

4. INTEGRAL POINTS: THE SIEGEL THEOREM

We like to study integral solutions of equations. Let me give a warning at this
point. Previously in this note we have gone back and forth between a polyno-
mial F and the algebraic curve defined by the equation F =0. But of course,
in studying integral solutions, the isomorphisms of the curves must be taken
over the ring of integers. Let me illustrate this with an example. The curves
defined by

Y24Y = X*—X and 7'+8y = £—16¢

are isomorphic over Q (by 4X =¢, 8Y =), they are not isomorphic over Z, the
point (§=1,7=—5) is an integral solutlon of the second equation but the
corresponding Q-rational point (x =3 y = —) does not have integral coordi-
nates. This shows we have to be careful in saying something like ‘an integral
point on a curve over Q’.

The following theorem should be called the Thue-Siegel-Mahler theorem on
integral points on curves over number fields.

(S). Let K be a number field, let S be a finite set of discrete valuations of K, and
let

R =Rs:= NG

veS

(the ring of elements of K, integral outside S). Let C be a smooth affine algebraic
curve defined over R. Assume, either _
a)  g>0 (here g is the genus of the compactification C of CQg K); or
b) g=0and # (C(K)—C(K))=3.
Then

#QR) < oo

(cf. [La3] for references).



Example. Let K=Q, S=@, R=1, and suppose C is given by the equation
Y2=X3+17. If v is a discrete valuation corresponding to the prime p then 0,
consists of all elements that can be written as @ /b with a€Z, beZ and
ged(b,p)=1. Thus Rg =R. The curve C is smooth and g(©)=1, so the equa-
tion Y2=X>+17 has finitely many integral solutions by the above theorem
(and NAGELL determined all of them, cf. [Mo2], page 246).

Application. Let K, S, R be as above. It is known that R" (the group of
units of R) is finitely generated. We write

Jks := R"N(A+R") =
= {AeR|AeR’” and (A—1)eR"}.

Applying (S) with C the curve given by the complex projective line minus three
points P! —{0,1,00}, we get

#JK,S < o0

(cf. [Ch]; this was known as a conjecture of JULIA ROBINSON).

Theorem (S) with R =0(K), i.e. S =@, was known in 1929. The proof was
not easy. Through the work of FALTINGs we obtain a new proof (with S finite,
arbitrary).

It would be more systematic to put the theorem in the following form: K,
S, R as above, C an algebraic smooth curve defined over R, C the
compactification of C®x K. Then (R) is finite in each of the following
cases:

©) g=0, #(C(K)~C(K)=3;
(1) g=1, #(CK)-CK)=1
(=2) g=2 (the Mordell case).

In this form the theorem becomes much more natural (to me) than in the clas-
sical form. The numbers 3 (for g =0), 1 (for g=1) and 0 (for g =2) are the
numbers of zeros which imposed on a global vector field on such a curve
makes it constant. This is what naturally comes out of the arithmetic-geometric
proof of (S).

So far we have described mathematical ideas and theorems mainly developed
between 1900 and 1930. To prove something like the Mordell conjecture it
turned out that new techniques were necessary. It took mathematicians a long
time to develop these new methods. As FALTINGS pointed out on several occa-
sions, his achievements were possible after much work done by SHAFAREVICH,
TATE, MUMFORD, PARSHIN, ARAKELOV, ZARHIN, RAYNAUD and many others.
The way FALTINGS combines these ideas is certainly astonishing, and in his
proof several ingenious turns can be seen. But we like to point out the impor-
tance of previous developments. Also we like to stress again the influential role



of algebraic geometry:

‘Allgemein laszt sich sagen, dasz die Beweismethoden aus der alge-
braischen Geometrie stammen... Es scheint jedoch, als ob die
Tragweite dieser Entwicklungen von vielen Zahlentheoretikern
nicht voll erkannt worden ist. Es zeigt sich hier einmal mehr, dasz
die Zahlentheorie zwar zu Recht die Konigin der Mathematik
genannt wird, sie aber ihren Glanz, wie auch Kéniginnen sonst,
nicht so sehr aus sich selbst als viel mehr aus den Kriften ihrer
Untertanen zieht.” (FALTINGS, [Fa3], p.1).

Or, we can read in [We5] on page 405 the way in which WEIL considers the
relationship between the theory of diophantine equations and algebraic
geometry:

‘... apres de timides essais de Hilbert et Hurwitz, puis de Poincaré,
Mordell remit les equations diophantiennes en honneur en demon-
trant son célebre théoréme, apres quoi I'analyse de Diophante est
devenue une branche, et non des moindres, de la géométrie
algébrique. Les roles se sont renversés. A present la mere a élu
domicile chez sa fille.’

5. THE SHAFAREVICH PHILOSOPHY

In Stockholm, at the International Congress of Mathematicians, 1962, 1.R.

SHAFAREVICH discussed certain finiteness conjectures. His philosophy reads as

follows:

a) fix a base B (e.g. the arithmetic case: K is a number field and S a
finite set of discrete valuations of K, then B is the set Spec(Rg) of all
prime ideals of Rg; or the function field case: let B be some algebraic
variety);

b) consider certain objects defined over the base (field extensions of K,
algebraic curves over K, abelian varieties over K ,...; these objects may
have some extra structure);

c) fix discrete invariants of these objects and insist on ‘good behaviour’ of
these objects with respect to the base (such as properties of non-
ramification, or of good reduction outside S).

We denote the set of objects satisfying such data by
Sh((a);(b);(c)).

Often, reference to ‘good behaviour’ will be suppressed in (c). The Shafarevich
philosophy is that in certain cases one may hope that

# Sh((a);(b);(c)) < oo.

Example (Theorem of Hermite). Fix a number field K and a set S of discrete



valuations of K with #S <oo0; fix n €Z~, and consider field extensions L DK
of degree [L:K]=n, such that L is unramified K outside S. Then

# Sh(K,S; fields L; [L:K]=n) < «©

(here the objects of course are considered up to =~ over K) (cf. [Ha], p.595).

This is the first example of the Shafarevich philosophy; one could say that
this is the case of ‘relative dimension zero’, and n is the other discrete invari-
ant we fix. To formulate the ideas by Shafarevich we generalize the notion of
‘unramified’ in the case of algebraic varieties over a field with a discrete valua-
tion.

Let K be a field, v a discrete valuation of K, and R, CK its valuation ring.
Let C be a complete curve over K. We say that C has good reduction at v if
there exists a smooth, proper curve C defined over R, such that C®g K~C.
As an example, let E be the projective plane curve given by the equation

Y’Z= X’+5°2°.
This equation can be used to define a curve over Z, but at the prime 5 this

equation defines a singular curve. However E has good reduction at the prime
5, because over Q it can also be defined by the equation

= £+
(Y =5%, X =5%, Z=%), and this new equation defines a curve over Z which

at the prime 5 has a smooth fibre. There is a lot of literature on this subject,
but we shall leave this aside.

Example. SHAFAREVICH proved: Fix K, S, g =1, then
# Sh(K,S ; (hyper)elliptic curves C; g(C)=g) < 0
(cf. [Sed], p. IV-7, [Pa3], p.79 and [O06], Th. 3.1 for details and proofs).

These proofs depend on the Siegel theorem (S). By FALTINGs we now have a
proof independent of (S).

We can also study these questions for abelian varieties (over number fields,
etc.). In this case definitions of good reduction can be given which are analo-
gous to those for curves. The Shafarevich conjecture (now a theorem by FALT-
INGS) reads:

(Sh). Let K be a number field and let S be a finite set of discrete valuations of K,
fix g€Z; the set of abelian varieties of dimension g, defined over K, having
good reduction for every v &S (up to isomorphism over K) is a finite set:

# Sh(K,S'; abelian varieties A ; dim(A)=g) < 0.

Remark. In some formulations of this conjecture it seems easier to use

10



polarized abelian varieties. A trick by ZARHIN tells us that for any abelian
variety A the abelian variety 4*X(4")* has a principal polarization. So, if we
can prove (Sh) for all g in the principally polarized case, the conjecture fol-
lows for abelian varieties. In the arithmetic case this simplification can be
made; in the function field case there are some difficulties.

Example. Take K=Q, S =@. It seems to be true that
Sh(Q, 7 ; abelian varieties 4 ; dim(4)=g) = &

for every g. For g =1 this is due to TATE (cf. [Ogg], p.145); this is a special
case of the Taniyama-Weil conjecture. For g <3 this was proved by ABRASH-
KIN, cf. [Ab]. I was just informed (July 1984) that RAYNAUD has proved this
for all g.

Let C be an algebraic curve (over K), and 4 =Jac(C) its Jacobian variety. If
C has good reduction at v, then 4 has good reduction at v (the converse is
false). Therefore, from (Sh) we can easily derive:

(Sh, curves). Let K, S, g be as before, then

# Sh(K,S'; curves C; g(O)=g)<oo.

6. THE IMPLICATIONS (Sh) = (M), AND (Sh) = (S)

In 1967, KODAIRA constructed certain surfaces as branched coverings of
another surface (cf. [Ko]; cf. [Ka]). His construction can be performed in a
purely algebraic context, and it can also be applied to €, where C is an alge-
braic curve over K, further R CK and C—Spec(R) (note that the (Krull)
dimension of € equals 2, there is the analogy). In this way PARSHIN showed
that the Mordell conjecture would follow from the Shafarevich finiteness state-
ment for curves (cf. [Pal], p.1168, Remark 2; cf. [Pa2]). We sketch the argu-
ments. Suppose there is given a curve C over K, and g(C)=g =2; we want to
show

#C(K) < oo.

Choose an even positive integer ¢ (e.g. ¢ =2), and construct for every P e(K)
the following objects: an étale covering C,—C by pulling back ¢-id; (where
J =Jac(C));

C] e d
fol Vg
C - J,
a divisor §p on C, by
& = f7(P)

(note that C, is an irreducible algebraic curve defined over K); note that
deg(&P):ng , s0 it is even. Let K be the smallest field for which there exists a

11



divisor 8p on C,, rational over Kp, such that
6}) o~ 26};

(linear equivalence over Kp on C,). Now use the Kodaira construction: there
exists an algebraic curve Cp and a 2:1-covering

Cp — C’

which ramifies exactly at 8p (proof: if 8p is locally given by f eI'(U,0), where
U CC, is affine open, then Cp is locally given by

Spec(D(U OIT1/(T*~ ),
and 8, ~ 28, tells us that these open pieces glue to a scheme over Kp). Note
that g(Cp)=:h is determined by g and ¢ (use the Hurwitz formula for the
coverings C'—»C and Cp—C’). There exists a field L such that [L:K]<oo,
with L DKp, for all P eC(K). This fact is crucial; it follows from the theorem
of Hermite: take K, inside the field of rationality for the points of the fibre
above [0p] in

X2: Pic™(Cy)— Pic™™ (Cy), m = q%;
this bounds the degree of Kp and K, » / K is unramified for all discrete valua-
tions v with v|2 and such that C has good reduction at v.

Now let T be the set of all discrete valuations w of L with the property that
w12 or there exists a valuation v on K, satisfying w |v such that C has bad
reduction at v. Clearly # T <oo. Furthermore Cp has good reduction for all
weT (this follows by extending the coverings Cp — C’—C to Spec(R,)).
Thus we arrive at a map:

P Cp
C(K) — Sh(L,T; curves C; g(C)=h).

As said before, once K, C, ¢ are given, then L, T and h are fixed. We show
that the fibres of this map are finite. From the covering Cp —»C we can find
back the point P (because this map ramifies exactly at P €C). Therefore the
claim follows from the following observation:

let D and C be curves, g(C)=2, then the set of separable surjec-
tive maps from D to C is finite

(there are many ways of proving this, e.g. it is a special case of the theorem of
De Franchis, cf. [La3], or, use [O05] p.111, Lemma 3.3.; thus

# Sh(L,T; curves C; g(C)=h) < =
implies

#C(K) < oo,

which is the sought-for finiteness statement in the Mordell conjecture. So far

12



for the implication (Sh)=(M).

In order to derive (S) from (Sh) we consider C over K with Q e C(K) (case
g(C)=1), respectively 0,0,,0,€C(K), 3 different points (g(C)=0). Let S
be a finite set of discrete valuations of K, let R =R; be as before, and let
C—Spec(R)=B be a curve obtained by extending C over B, and omitting the
section extending Q (we describe only the case g(C)=1). For any P e@R)
(i.e. P eC(K) such that for each v ¢S the sections extending P and Q do not
intersect above v) we take

f = Xq: C->C
and we define
& = [T (P+Q);
from here we proceed as before. In case g(C)=0, for any P e((R) we choose

Ep—C, 2:1, ramified exactly at P, Q,, Q, and Q,, and we continue as before.
In particular, the observation:

let D and E be curves, g(E)=1, let Q €E, the set of separable
surjective maps from D to E which ramify at Q is finite

(and the analogous statement for g(C)=0 and Q,,0,,0,€E) can be used to
finish the proof.

We see that this geometric approach to arithmetic problems is very strong. It
brings out clearly what the correct conditions should be. These finiteness
theorems are exactly the kind of problems which can be handled in this way.

However these methods also have limitations. Note that in order to study an
‘easy’ equation like X" +Y" =Z" over an ‘easy’ field like Q, the geometric
method has to work via a large extension of Q, and the proof uses geometric
objects (abelian varieties) for which it is almost impossible to write out simple
defining equations. Thus for mathematicians who like to work with explicitly
given formulas these ideas seem far away from more ‘concrete methods’. This
solution of (M) does not belong to what we call ‘elementary methods’ in
number theory (some elementary methods are very difficult!). The reader could
see the discussion between MORDELL and LANG as recorded in [La3], pp.
349—358. We hope that the various developments have a positive mutual
influence.

We note that (at the moment) the geometric method does not give effective
bounds. (We would like to produce for each equation a bound for the coordi-
nates of the solutions). It seems that RAYNAUD and PARSHIN can give a bound
for the number of the solutions of the Fermat equation X" +Y" =2Z", n=3,
with x,y,z €Z and coprime. Using the ‘effective Chebotarev’, cf. [LMO], part
of the proof by FALTINGS can be made effective.

13



7. THE TATE CONJECTURE
In order to handle (co)homology of an algebraic curve C it is very useful to
know properties of the abelian variety Jac(C). Thus one is naturally led to the
study of abelian varieties. We denote for any n €Z; by 4 [n] the kernel of the
map

n.id 4 ° A—A
(here A is an abelian variety). If A is defined over a field M, and char(M)
does not divide n, then

A[n[(M) ~ (Z /n)®, g=dim4
(this is easy if char(M)=0, once you know that

A(C) = C8 /A,
where A ~Z% is a lattice in C). For a prime number / we denote by

T)A = limA[I'(M)

(projective limit taken with respect to X/: A[I'*']>A[/']). This is an abelian
group,
T)A =~ (Z,)%,

and Gal (M* / M) acts on it in a continuous way, here M* denotes the separ-
able closure of M. The advantage of these concepts is that they can be studied
over any base, and that they make visible a lot of the structure you want to
study. If 4 and B are abelian varieties over a field M we like to determine
Hom,, (4 ,B) (for example, given E =A, and E’=B are elliptic curves over Q,
say such that E modp and E’modp are isogenous for (almost) all p, does it
follow that E and E’ are isogenous over Q?). We obtain a natural map

;- Homy (4 ,B) — Hom(T;A T, B).

(! some prime number, /~char M). In general there is little chance that this
map is bijective: the left-hand side is a free Z-module of rank at most 4gg’
(g=dimA, g’=dimA’; at most 2§g” if char(M)=0), and the right-hand side
is isomorphic (as a group) to (Z;)*; of course —®zZ, to the left-hand side
will help, but still there is no chance in general that the map is bijective. The
Tate conjecture reads (cf. [Tal], page 134, last paragraph):

(T). Let M be a field which is finitely generated over its prime field. Then for
every A and B (abelian varieties over M) and for every |=char(M) the map

Y: Homy (4,B)®Z, — (Hom(T,A,T;B))°
is bijective and

End((T;A ®Q)) is a semi —simple G —module

14



(here G:=Gal(M* /M) and the superscript G indicates that only those
homomorphisms which commute with the action of G should be taken, and
finally Q, = field of fractions of Z,).

In [Tal] TATE proved this in the case the M =F, is a finite field. FALTINGS
proved (T) in the case M =K, a number field. This has important conse-
quences, e.g., let A and B be abelian varieties over a number field have the
same zeta function, then they are isogenous. Thus one asserts the existence of
a morphism from apparently weaker data! See ZARHIN [Za4] and MORET-
BAILLEY [MB] for other cases of the Tate conjecture; also cf. [FW]. I think
this theorem will have many applications in the future.

As already remarked, we are not going to enter in the proof of (Sh) and of
(T) (and hence of (M)). Let me only note that FALTINGS first proves weak
forms of (Sh), then using such finiteness results one derives (T) as indicated on
page 137 of [Tal] and given by ZARHIN in [Za4]; then a beautiful (and short!)
argument using deep facts like the Chebotarev density theorem and Weil's
Riemann hypothesis for abelian varieties finishes the proof of (Sh). The proof
is both elegant and quite involved, the results are astonishing,

8. THE FUNCTION FIELD CASE
Let k be a field, let B be an affine curve over k with coordinate ring R (and
suppose B is smooth). In this case we speak of the function field case,
M =k(B) is a function field in one variable. There are striking analogies
between the function field case and the arithmetic case. That analogy seems
very stimulating. Already many mathematicians studied it fruitfully, and we
would need quite a lot of space to give an adequate description. Note that R is
a Dedekind domain, just as in the case of the ring of integers in a number
field. E.g. by using of the theory of minimal models, a curve C over k(B) can
be extended to a surface C with a morphism C—»B having C over k(B) as gen-
eric fibre. Thus we see that methods of surfaces hopefully can be transported
to the arithmetic case etc.

From the rich variety of problems and results we like to mention only two.

If we want to settle a certain problem in arithmetical algebraic geometry, it
sometimes helps to decide first the case of a function field as a starting point.
E.g. the Mordell conjecture was proved for function fields by MANIN (in
characteristic zero, cf. [Mal]), and by GRAUERT (in the algebraic case, cf. [Gr]).
One has to make certain restrictions, e.g. if C is a curve over a field k with
#C (k) not finite, then for any M Dk the ‘constant’ curve C ®, M certainly
has infinitely many M -rational points. But these restrictions are quite natural.
The ‘Shafarevich-Mordell conjecture in the function field case’ has obtained
much attention. We mention only results by PARSHIN, cf. [Pal], ARAKELOV, cf.
[Arl1], Szpiro, cf. [Sz] (and there are many more). Here, results on algebraic
surfaces are useful: take B, a fibering by curves over a curve B, compactify
B, extend C to a complete surface, and try to compute all kinds of invariants
of this surface (cf. [Arl], pp. 1298-1301). But also deformation theory (‘rigi-
dity theorems’) comes in: one proves that the objects in consideration are rigid
and belong to bounded families (and finiteness follows). This line of thought is
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exposed in [Mu], pp. 41-43. Certainly this field of research will produce more
interesting theorems.

As said, often the function field case is used as a test case for the arithmetic
case. If one wants to prove a theorem for curves or for abelian varieties over
number fields, one can first analyze the analogous situation in the function
field case (either with k a finite field, or with k =C, imposing extra restric-
tions). Thus it was surprising to see that the Shafarevich philosophy is correct
for abelian varieties over number fields, whereas FALTINGS in [Fal] shows that
the analogous finiteness theorem for families of principally polarized abelian
varieties with zero trace (i.e. non-constant in a very strong form) does not hold
for abelian varieties of dimension eight (!) in case of function fields of charac-
teristic zero (possibly there is a relation with new results by SERRE on /-adic
representations). Thus here the arithmetic case has no exceptions (which makes
life easy, e.g. replace A by A*X(A4")%, whereas in the function field case one
has to be more careful.

We mentioned already the following method: if C—B is a fibering of curves
over a curve, compactify B to a complete curve, replace C by a complete sur-
face
C—> B

and apply the theory of compact surfaces. This method, which is rather obvi-
ous in the function field case, can be imitated in the arithmetic case. If C is a
curve over a number field K, let R be the ring of integers of K, and
B:=Spec(R), with C-B an extension of C to B (e.g. via minimal models).
ARAKELOV and FALTINGS have developed a theory of ‘arithmetic surfaces’ (C
has Krull-dimension equal to two) which also takes into account intersections
at infinity, cf. [Ar2], [Fa2]. Certainly this abuts to ideas which go back to WEIL
and KRONECKER (cf. Weil’s talks [1939a] ‘Sur I'analogie entre les corps de
nombres algébriques et les corps de fonctions algébriques’ and [1950b]
‘Number theory and algebraic geometry’ in [We4], Vol. I and Vol. II). Several
basic facts about number fields and theorems on algebraic curves are merely
translations of each other. In this way we obtain a geometric interpretation
(and intuition) for certain algebraic concepts (an explanation of the height as a
degree of a certain line bundle is an example cf. [F], p.354; these concepts play
an essential role in the proof of (Sh), (T) and (M)). Geometry leads us to the
correct concepts in this part of number theory. It seems that ‘arithmetical alge-
braic geometry’ is in a rapid of developments.

9. A FINAL REMARK .
After having mentioned these beautiful and influential results I would like to
make a remark on the style in which they are written down in the paper [F].
For centuries mathematicians have struggled with deciding on the precision
in which mathematical achievements are to be recorded. Many concise
mathematical papers are only understandable for a small circle of insiders. But
often we see that when an author tries to make every argument precise, tries to

16



capture every property in a symbol, the result can be an indigestible paper or
book. So we like to make descriptions and notation transparent so as to unveil
the true ideas and deep motivations for the theory. There is a variety in styles,
ranging from extensive treatises to concise descriptions of the essentials. As to
Falting’s paper I would like to make the following remarks in this respect.

At several places the author just says enough to give the basic ideas without
burying it under heaps of notation; to my taste this reflects the deep insight
the author has in these intricate matters, and it is stimulating to try to follow
the surprising way leading to these results. However, I feel, at some places the
author is too brief in this paper. At some places the author gives hints only
understandable for the experts, at several places references are lacking (e.g. on
p-365: ‘Beweis Torelli’; it would be easy to give a reference, and then some
details still have to be filled in, because Torelli’s theorem is formulated over an
algebraically closed field; a combination of these two little obstacles makes the
paper difficult for non-specialists at such a point); I feel the author could have
given more references. Furthermore, I have one fundamental criticism; the
author uses ambiguous notation, and he uses references in a way that does not
quite fit his situation. Thus even for specialists it becomes a difficult affair to
check details of this proof. It could have been avoided with more precision.
With such a style mistakes can be made more easily. It seems dangerous if
such a style would become daily practice in mathematics. I must give an exam-
ple to illustrate my critical remark. On p.364 of [F] we find on line 11 an iso-
geny between abelian varieties, and its kernel is denoted by G. We have seen
in the paper that the author uses the same kind of symbols for an abelian
variety over a field (4 over K), and for an extension (‘let 4 »S be a semi-
abelian variety’; here R is the ring of integers of K, and S =Spec(R); many
authors distinguish @S and @ ® K =4, but FALTINGS uses the same nota-
tion in both cases). The use of the words ‘abelian varieties’ leads to the conclu-
sion that we work over a field, so G =Ker¢ would then be a finite group
scheme over K; but on line 7 from below we find G /R, so apparently G is
considered as a group scheme over S; the most logical guess gives a group
scheme G —S§ which is quasi-finite over S, but in general not finite over S'! At
the places where the abelian varieties have bad reduction, the group scheme
may fail to be finite. At that moment FALTINGS refers to a result by RAYNAUD,
but that result is valid for finite group schemes. The reference serves to com-
pute a certain ramification, but if one wants to complete the quasi-finite group
scheme to a finite one, this may create ‘new ramification’. This is not some-
thing which can be settled by a simple and direct argument, although the case
considered can be settled (cf. [D], p.13 and p.15), and finally the result seems
correct (except for [F], Satz 2 in that form). Personally I feel a style is not
acceptable if it is difficult even for insiders to check details of the proof. ‘

Certainly this small point will not diminish my enthusiasm and respect for
these results. Coming generations may judge whether this is ‘the theorem of
the century’. In the meantime, we can gratefully enjoy and use the new
developments.
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Proportional representation in a regional council

J.M. Anthonisse
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1098 SJ Amsterdam
The Netherlands

The members of a regional council are appointed by and from the local coun-
cils which participate in the regional cooperation.

The regional council should constitute a fair representation of the local interests
and also a fair representation of the political views.

A method is presented to determine the number of members to be appointed
by each local council from each political party. Optimal flows in networks
solve the problem.

1. INTRODUCTION

The region Gooi en Vechtstreek is a cooperation of nine municipalities near
Amsterdam. The statute of the cooperation stipulates that the members of the
regional council are appointed by the participating local councils. Each local
council has an odd number of members, a fourth part of which (rounded to
the nearest integer) is appointed into the regional council. In this way, the
representation of each municipality is proportional to the membership of its
council and this should be a fair representation of the local interests in the
regional cooperation.

The regional council should also be a fair representation of the political
views on the matters to be discussed and decided by that body. Each political
party should get a number of seats in the regional council that is close to a
fourth part of its total number of seats in the local councils. Thus, if a party
has a single seat in each local council then it expects to get two seats in the
regional council. However, if the allocation of seats is completely left to the
local councils then it may be expected that none of these will give a seat in the
regional council to a small minority in their midst, if only for fear that the
other councils would do so too. It is clear that the local councils should coor-
dinate the allocation of seats so as to obtain a fair political composition of the
regional council.

In Gooi en Vechtstreek the allocation of seats is coordinated by the chairman
of the cooperation. Based on the outcome of the local elections he calculates
the number of seats to be allotted to each party in each local council. The
results of his calculations are discussed with the incumbent political leaders of
the regional council and then sent, as an advice, to the local councils. In 1982
the method as described by ANTHONISSE [1] was used. The present paper pro-
vides an extended and improved method.
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In the Netherlands, cooperation between municipalities is quite common.
There are 740 municipalities and over 1250 cooperations. Many cooperations
have a very restricted purpose and the political composition of their council is
not important. A new law, to become effective 1st January 1985, should
improve the surveyability of the cooperations. The country is to be divided
into regions of cooperation and, as a rule, cooperation will be restricted to the
municipalities in a region. Moreover, the number of cooperations will be
reduced by integrating several existing cooperations into a new one. The new
law stipulates that the councils are appointed by and from the local councils.
The statute of the cooperation must specify the number of members to be
appointed by each local council.

It may be expected that, due to these developments, there will be an
increased interest in the political composition of the councils of cooperations.

2. PROPORTIONAL REPRESENTATION AS AN OPTIMIZATION PROBLEM
The problem of proportional representation is to allot the seats in a represen-
tative body to the political parties in such a way that the number of seats is
proportional to the number of votes for each party. Let v, denote the number
of votes for party p, thus the total number of votes is VZEP v,. Let §
denote the number of seats in the body, then party p should obtain
e =S8 Xv, / V seats. In general, however, the numbers e, are not integers and
rounding is required to obtain a feasible allotment. Let 5, denote the number
of seats for party p.

Te RIELE [2] describes seven methods of proportional representation as
methods to solve an optimization problem

minimize Zf(e], ) (1)
P
subject to
25 =S8 )
P
and
each 5, non—negative integer. 3

The function f (e555) determines the distance between the exact or theoretical
allotment e, and the solution Sp-

The well-known method of the greatest remainders (ROGET, HAMILTON)
corresponds with

f(&s5) = e, —s,|. 4)
The equally well-known method of the greatest divisors (D’HONDT
HAGENBACH-BISCHOFF, JEFFERSON) corresponds with

f(e5,) = (s, —(e, —7))* /e, (5)

WEBSTER’S method corresponds with



f(ep ,Sp) = (Sp _ep)z/ep' (6)

BALINSKI and YOUNG [3] list a number of properties of the ‘ideal’ method of
proportional representation and show that no such method exists.

The method of the greatest remainders allows the occurrence of the
Alabama-paradox: while the v, remain the same, an s, may decrease by
increasing S. A fair method should not allow this.

The method of the greatest divisors favours the greater parties. This method
has a tendency to round e, downwards as s, is compared with e, — - How-

ever, some e, must be rounded upwards and this will occur, in general, at the
largest e, .

WEBSTER’S method appears to be a very good approximation to the ideal of
proportional representation.

3. THE METHOD

Now the problem of allotting the seats in the regional council to the parties in
the local councils can be formulated. Throughout f(-,) denotes any function
corresponding with a method of proportional representation. The number of
members of party p in the local council of municipality m is denoted by ¢, .
Here a practical problem occurs, as it is not evident which parties should be
distinguished. The municipal elections allot the seats in the local council to,
typically, four up to six local parties. Some of these local parties are chapters
of national parties, others are coalitions of such chapters and still others are
purely local political organizations. Thus it must be decided which combina-
tions of local parties should be considered as regional parties in order to allot
the seats in the regional council. A conclusive arrangement is to combine those
local parties which, by a joint statement, require to be combined and to con-
sider each remaining local party as a separate one. From these statements the
Cmp can be determined. The regional strength of a party is r, =3, ¢, and
R zzp r,. The local council of m has s, :Zp Cmp SEALs.

Let a, denote the number of members of the regional council to be
appointed by and from the local council of municipality m. Thus 4 =3 a,
is the number of seats in the regional council. The numbers a,, are found by
consulting the statute of the cooperation.

Now the allotment can be found by solving two problems. First, the political
composition of the regional council is found by computing the number of seats
b, for each party p. Secondly, the numbers x,, are computed, which denote
the number of members of party p to be appointed from the local council of
municipality ».

The first problem is to find b, :

minimize ) f (e, b, ) ™
p
subject to
DXmp = Gy (Mm=12,.) ®)
p
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S, = b, (p=12,.) )

Xp S Cp (M=12,...; p=12,.) (10)
and
each b, ,x,,, non—negative integer, (11)

where ¢, denotes a theoretical allotment of the 4 seats, e.g. ¢, =4 Xr, /R.

The second problem is to find x,,, :

minimize 3} > f (€ »Xmp) (12)
m p ‘
subject to
Dy = Gy (Mm=12,.) (13)
P
DXmp = b, (p=12,.) (14)
Xp S Cp (M=12,...; p=12,.) (15)
and
each x,,, non—negative integer, (16)

where b, denotes the solution of the first problem and e,,, denotes a theoreti-
cal allotment of the seats, e.g. e,,, =4 Xc,, / R.

The first problem obviously has a feasible solution, provided a,, <s,,. The
latter condition is certainly satisfied, thus any sample of g, from the s,
members satisfies (8) and (10). Constraint (9) merely defines by.

It is clear that the second problem, with the bp which solve the first one,
also has a feasible solution. Constraints (8)-(11) are identical to constraints
(13)-(16).

It is tempting to replace the first problem by a simpler one. The b, might be
computed by allotting the A seats proportional to 7,. This amounts to a relax-
ation of the constraints (8)-(11) into

b, =4

P

b, non—negative integer.

amn

However, this may yield a nonfeasible second problem, as the following exam-
ple shows. ’
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Emp p= 1 2 3 4 5 6 | a,
m=1 7 2

2 7 2

3 7 2

4 6 1 2

5 30 15 11

6 16 29 11

7 2 31 12 | 11

8 19 5

b, 6 8 8 8 8 8 | 46 =4

The method of the greatest remainders was used here to determine the b, pro-
portional to (27,31,31,31,31,31). This results in 6 seats for party 1, but this
party will get at least 7 seats from the first four municipalities. Similar exam-
ples have been constructed for other methods of proportional representation.

Thus the first problem must be solved to ensure the feasibility of the second
problem.

In practice, however, the simpler method (7), (17) to compute b, may be tried
first. If, with these bp, the second problem is feasible then these bp constitute
an optimal solution of the first problem. In the opposite case the problem
(7)-(11) must be solved to obtain the correct b, .

4. FLOWS IN NETWORKS

Both the first and the second problem as defined in the previous section can be
formulated as problems of finding an optimal flow in a network. In both cases
the network contains nodes M,, corresponding with the municipalities and P,
corresponding with the parties. Node M,, receives a fixed flow of a,, units
from a source. The arc from M,, to P, has a capacity of c,, units, the flow in
this arc is denoted by x,,,. There is a flow of b, units from node P, into a
sink. At each node, the incoming flow equals the outgoing flow.
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source

In the first problem, f (e,,b,) can be interpreted as the cost of sending b, units
of flow from node P, towards the sink. The problem is to find a feasible flow
which minimizes these costs. Most algorithms to solve such problems assume
that the cost is a linear function of the flow through an arc. Due to the con-
vexity of f (e, ,b,) the problem is easily put into this form.

Let b, denote an integer value of b, which minimizes f (e sb,). Then

by = b+ +B5 + - )=(b1 +hy + )

where
b, €{0,1} and b, €{0,1).
Then
f(e.b,) = fe ,I;p)-f- 2 dp;rbpfr + 2 dyi by
where
dt = flepby +i)—f (e, 8, +i—1)
and

dy = f(e.b, —i)—f(e,.B, —i +1).
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4

>+

b, —1 » b, +1

Now the arc from P, towards the sink having a nonlinear cost can be replaced
by a number of parallel arcs. One contains a fixed flow of BP units. The other
arcs have unit capacity. Some of the arcs are directed from P, towards the
sink. These correspond with flows bp,-+ at cost dpfr. Other arcs are directed
from the sink towards P,. These correspond with flows bp,»+ at cost d,; . The
mincost flow in this network corresponds with the solution of the first prob-
lem.

In the second problem, the flows from P, towards the sink are fixed at b,.
Now the mincost flow between the nodes M,, and P, is to be found. Again,
the problem can be linearized by replacing the arcs from M,, to P, by parallel
arcs in both directions, with the appropriate capacities and costs.

With the above linearizations the two problems are easily solved, either by a
network flow algorithm or by a general algorithm for linear programming.
The first complete treatment of flows in networks was given by FORD and
FULKERSON [4]. The book by KENNINGTON and HELGASON [5] contains com-
puter programs of flow algorithms. These programs are available in OPERAL,
the CWI library of Operations Research Algorithms.

5. CONCLUDING REMARKS
The two problems defined above can be solved simultaneously as

minimize W 3 f (€,.5,)+ 2 2 (€mp Xmp)
)4 m.p

subject to (8)-(11), where W, denotes a sufficiently large value. For W ;=0 the
optimal x,,, are completely defined by the local preferences and can be found
by solving a proportional representation problem for each m separately. An
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increase of W means that more weight is attached to the regional preferences.

It might occur that the statute specifies 4 only and that the a, are to be
found by solving a proportional representation problem. Now the three prob-
lems may be solved simultaneously

minimize Wy > f (A Xsp / Roa,)+ WD f (e B Y+ Z 2T Copomy)
m P m p

subject to (8)-(11) and

a,, non—negative integer and > a,, = 4,
m

where both W, and W, are sufficiently large.

As mentioned above, there is a wide choice of functions f(-,) that could be
used in the above method.

Moreover, another definition of e,,, could be used, €.g. €, =am XCpp / Sm-
These e, reflect the local preferences. By using these e,, the composition of
the regional council would not deviate more from the sum of the local prefer-
ences than is necessary to reflect the regional strength of the parties.

Also, another definition of é could be used, e.g., e Em Am X Cmp / Sm -
This, however, introduces a bias because the a,, are not an exact propomonal
distribution of the A4 seats over the municipalities.

In the above description, the apportionment is based on the number of
representatives in the local councils. They could also be based on the number
of votes for a party.

Similar optimization models to the ones described above can be formulated to
solve the other problems which may arise when the new law becomes effective.
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Living in Amsterdam

Steven Pemberton

Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Having visited Holland before, I knew that they were going to ask me three
questions at the border: ‘How long are you staying? Have you got a return
ticket? How much money have you got with you? Since I guessed that at
least two of my answers were going to be unsatisfactory to them, and so that I
wouldn’t be kept too long, I had my invitation letter from the Mathematical
Centre (as the CWI was then called) close at hand, as I dragged my trunk the
size of a small house along.

A friend had come with me to help me move in, and she went through
passport-control first. How long was she staying? One week. Had she a
return ticket? Yes. How much money did she have? 200 guilders. All satisfac-
tory answers, and she got waved on. Then me. ‘Are you together?” Yes, I
said. ‘Ok, you can go.’ And that was it! I wonder what he thought I had in
my trunk for a week’s stay!

Amsterdam. City of canals, trams, bars that stay open later than 11 o’clock
at night, and in Summer a hippy on every corner singing yet more Bob Dylan
songs.

I was determined not to be the sort of Englishman abroad who only sticks
with other English people, and whose house is a pocket of Englishness. No, I
was going to merge in. I was going to be a real Amsterdammer.

DELIGHT OF TRANSPORT
One of the distinguishing features of Amsterdam is its wide range of transport
facilities. More than half the working population of Amsterdam go to work
under their own steam (in other words by foot or bike — while there’s a lot of
water, 1 still haven’t heard of anybody who swims to work). And the canals
with their opening bridges are a real way of life for Amsterdammers — it is
said that half the people who are late for work use the excuse ‘I'm sorry, the
bridge was up’. The other half use the excuse that it was down.

On trams, what distinguishes tourists from Amsterdammers is that tourists
don’t pay, because they get on the tram with everyone else and then sit staring
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around wondering how you pay and whether a conductor is going to come and
collect fares. Amsterdammers on the other hand just don’t pay. They know
how much the fine is, and how often you get one, and they know which is
cheaper.

But of course the real Amsterdammer rides a bike, and so the first step for
any aspiring Amsterdammer is to go to the Waterlooplein flea market and buy
one. So that I duly did, a lovely job with three speeds. A week later I
discovered the second step to becoming an Amsterdammer — you get it stolen.

In fact since then I've discovered a little known fact that may interest you.
Cyclists must pay a cycle tax, and this is levied by taking your bike, and re-
selling it (on the Waterlooplein flea market). The current tax rate is one bike
per year: everyone that I asked how long they had lived here and how many
bikes they had lost, always said the same number for both. Well, with one
exception. A friend here at the CWI boasted to me that he hadn’t had a bike
stolen in four years. Alas, someone must have been listening, because by the
end of that year he had had four stolen. (This story got around the CWI
recently, and some more people started coming to me boasting. Foolish peo-
ple who didn’t recognise the warning in the last sentence. I especially pity the
person who told me he’d had the same bike for 35 years...)

As an Englishman, people ask me ‘Don’t you find it difficult riding on the
right?” but the answer is no. I believe that the world is divided into two sorts
of people — those who read maps by turning the map round in the direction
they’re travelling, and those who do it by turning their brains round in the
direction they’re travelling. Being of the latter type, I just had to flip my brain
over, and there were no problems. Well — except now with reading maps ...

No, it wasn’t with left and right I had problems, but with colours. 1 still
haven’t got used to red traffic lights meaning ‘go’ for cyclists. And another
thing. Having been a cyclist in a particularly hilly part of England, I was
looking forward to coming to flat Amsterdam. What I hadn’t anticipated was
the compulsory passenger that you must carry on the back of your bike here.
Terrible.

STREET LIFE

Another step to becoming a true Amsterdammer is to see a riot, and I think
the police realised this, and so as a sort of welcoming gesture, organised a riot
in my neighbourhood. I lived in a quiet street then, full of trees and birds, not
your usual sort of street for a riot thus, and so one evening just as I was
cycling home from work (on my second bike), the police chased some rioters
into my street as a sort of ‘surprise party’, and proceeded to set about me with
clubs.

Only that week I had learnt my first three Dutch sentences, and this was my
big chance to try two of them out. After having received the legal minimum
number of blows to my body, I was able to get up off the ground and blurt
out Ik ben Engels. Ik woon in deze straat.’ This seemed to convince him,
despite, or perhaps because of, my bad Dutch, and he rudely pushed me out of
the street with his stick, with some of his chums joining in for the fun.
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That evening also gave me the chance to experience the wonderful new
Academic Hospital on the outskirts of Amsterdam, having my arm X-rayed.

Two LIPS IN AMSTERDAM

Learning Dutch is of course an important step to becoming a true Amsterdam-
mer, and so as soon as I arrived in Holland, much to the surprise of many of
my Dutch friends, I set about learning it. ‘But it’s such an unimportant
language!” they would plead. But to tell the truth, I had always wanted to
learn Dutch. I knew that after Frisian it is the closest living language to
English (excluding American of course), and the idea of this fascinated me — 1
really wanted to see in what ways the two languages had diverged from their
common source of a thousand odd years ago.

However, when I was in England I could find little justification for putting
the effort into learning it. ‘It’s such an unimportant language’ I would say to
myself. And so coming to Amsterdam was my big opportunity.

It’s not difficult to find the similarities between the two languages. One’s
first few weeks in Holland are filled with being charmed by sentences that are
recognisably the same as English. ‘Beter dan de rest!” proclaimed a bag of
apples I bought at the greengrocers; on all the windows in trams, in jolly red
letters, is the sign ‘Wilt U zitten? Ik kan staan!’, presumably some sort of sub-
liminal suggestion to make you give up your seat as the tram fills, though the
only time I tried it, I was greeted with gales of laughter.

Learning a language is a funny affair. For a start, the first thing you learn
to say is ‘I'm sorry I don’t speak your language’. And another thing is, you
can never ask a native speaker any but the simplest questions. I have a partic-
ular memory of one time I was complaining to a Dutchman about one espe-
cially difficult property of the language that I continually have problems with,
and giving a few examples of how you had to say different things in very simi-
lar situations. He blinked at me blankly for a few moments, and then said
‘Yes — why is that actually?

The closeness of the two languages makes it relatively easy to learn for the
English speaker, though of course relying on similarities can be very mislead-
ing. The word ‘warm’ for instance, looks identical in the two languages, but in
Dutch I've found that it clearly means something much warmer than in
English. I mean, who would be tempted by the offer of a ‘warm meal’? Not L
And consider the words ‘slim’ and ‘stout’ that occur in both languages. Who
would guess that in Dutch they mean respectively ‘clever’ and ‘naughty’?
(apart from the Dutch of course).

Interestingly enough, the two strongest words in the English language, the
only two I believe that don’t appear in the original edition of the Oxford
English Dictionary (they added them in supplement I'm told), these two words
have acceptable, everyday, but it must be admitted related, meanings in Dutch.
It is initially quite a shock to hear them being used in polite company, the sort
of shock an English person experiences when an American announces he’s
going to change his pants, or an American experiences when an English man
talks about going to the Norfolk Broads, or how he can’t give up fags.
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Now the question arises, if Dutch is so easy for an English speaker to learn,
then why do so few English speakers in Holland actually speak Dutch? What
I have only recently discovered is something that the Dutch people reading
this will already know about only too well, and that is the organised movement
to stop English speakers learning Dutch. For the benefit of English-speaking
readers who don’t know about this plot, I'll explain.

The major tactic is one of demoralisation. ‘But Dutch is such an unimpor-
tant language!’ they proclaim, if they hear that someone plans to learn it, or
‘It’s a terribly difficult language to learn’ (as if they knew). A subtler approach
is sarcasm. ‘What good Dutch you speak!” they say, as you stutter out some
half comprehensible anglicism, receiving the praise only because you pro-
nounced the g’s right.

The final tactic is ridicule. You go into a shop, and they suffer you to speak
in Dutch and they reply in Dutch. But the moment you make a mistake, or
fail to understand, they immediately continue in English, and nothing, nothing
you say or do will get them back to their mother tongue.

But why this organised plan to prevent English speakers from learning
Dutch, you ask. Well of course, if all the English speakers spoke Dutch, who
then could the Dutch practise their English on?

For indeed, I can’t imagine a country with more linguists than Holland: it’s
quite normal for a Dutch person to speak four languages, and watch TV pro-
grams from four countries. And which other country demands the ability to
speak a foreign language as a condition for joining the police force? And
where else can shop assistants, even outside the tourist areas, converse with
you in English?

Living and working in Amsterdam has had one unexpected effect. Now
when I go to an international conference, people say to me ‘What good
English you speak!” I still haven’t decided whether to say ‘Oh, I lived in Eng-
land for awhile’ or ‘Yes, my mother’s English you know.’

But the worst thing happened on holiday in Greece. I was speaking to an
English man, and when I said I was on my way back to Amsterdam, he said
‘Aha! I thought you weren’t English!”
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Open problems

All correspondence should be sent to the
editors of the

CWI Newsletter

Centre for Mathematics and
Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

1. THE DEMOGRAPHER’S PROBLEM

An important problem in practical demography, concerning statistical estima-
tion of a Markov process model, requires solution of the mathematical prob-
lem which is described below.

First we introduce some notation. For row vectors in R? (1<p <o0), ‘=’
and ‘>>’ denote componentwise = and > respectively. We denote by 0 and
1 the vectors all of whose components are 0 and 1 respectively. The unit sim-
plex SCR? and its relative interior ° are defined by

$={x=0:x1T=1)
§ = [x>0: x1T=1].
The set of all p Xp intensity matrices is
2= {QeRF*P: g, =0 Vij, Q1T =0T},

The problem to be solved is: given ped and N €2 such that v=p+1N >>0,
does there exist / €5° such that
1
| = [pe®ds where Q = (diag/)"'N? *
0
If so is the solution unique? Do the iterations suggested by (*) converge?
Extensive numerical experimentation suggests that the answers to all three
questions are positive. Using the K-K-M lemma and homotopy theory, the
existence problem has been solved and some very partial results on uniqueness
have been obtained [1]. In particular it is known that a solution to (*) does
always exist and moreover if rank(N)=p —1 then / €S° solves (*) if and only
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if it also solves
v = pe? where Q = (diagl/)”"'N. **

What about uniqueness and convergence?
Richard D. Gill
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Amsterdam.

2. ON FINITE QUATERNIONIC REFLECTION GROUPS

Let V be a vector space of finite dimension n over the field of complex (or
real) numbers. A reflection on V is a linear nonidentity transformation fixing a
linear subspace of dimension n —1 pointwise. A group of linear transforma-
tions on V is called a reflection group if it is generated by reflections. If G is a
finite reflection group, then the stabilizer G, of any vector » in V' is again a
reflection group in V. Proofs of this fact can be found in [1, p.139, ex.8] and
[5]. In both proofs, the ring of polynomial functions on V' invariant under G
plays a crucial role. Therefore, they are no longer valid if the field of scalars is
replaced by H, the division ring of real quaternions. In view of the
classification of finite quaternionic reflection groups, cf. [2], the question:

Are all subgroups of finite reflection groups on a quaternionic vec-
tor space V fixing a vector again reflection groups?

can be answered by a case by case analysis. This has been done for all so-
called imprimitive reflection groups and for all groups occurring in dimension
n <3 (by CUYPERS [3]). The question remains whether the statement is true for
all G. If the answer is yes, a proof of this fact independent of the classification
of finite quaternionic reflection groups would be useful in obtaining an elemen-
tary proof of this classification. (The present proof depends on the
classification of all complex linear groups generated by elements fixing a linear
subspace of dimension n —2 pointwise, cf. HUFFMAN-WALES [4].)

Arjeh M. Cohen
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 8. M.H. van Hoorn. Algorithms and Approximations for Queueing

Systems.

AMS 60K25; 122 pp.

Abstract: In this monograph recursive computational schemes are given for the steady state proba-
bilities and other performance measures for a wide class of single server and multi server queues.
The ultimate goal is to obtain practically useful results and therefore the analysis is exact whenever
possible and approximate whenever exact methods would lead to intractable results. Special atten-
tion has been paid to actual numerical calculations in order to check whether the proposed
methods are indeed useful for practical purposes. Many numerical results and illustrations are
given. In particular, the following models are analyzed: the M /G /1 queue and the M /G /c queue
with uniform or state dependent arrival rate, the M*/G/1 queue with state dependent batch
arrivals and the H,/G/1 queue.

CWI Tract 9. C.P.J. Koymans. Models of the Lambda Calculus.

AMS 03B40, 68F20; 181 pp.

Abstract: In this book the semantics of the lambda calculus is studied. There are two conceptually
different approaches to this subject. The first approach considers functions to be algorithms and
gives rise to the notion of a lambda algebra, either by giving a direct interpretation of lambda
terms (environment models) or by using the equivalent theory of strong combinatory logic. The
second approach is set theoretical in that it identifies functions with their graphs. This leads to the
notion of a lambda model. The unification of both methods using category theory is the main
topic of this text. Both lambda algebras and lambda models can be defined naturally in this way.
As an application of the category theoretic approach the theory of derived models is studied,
analyzing the construction of a D ,-like extensional lambda calculus model inside Pw as originally
defined by Scott. The last chapter studies the properties of a special model, viz. Sanchis’s hyper-
graph model. This turns out to be the first mathematical structure modelling combinatory logic,
that cannot be expanded to a lambda model.

CWI Tract 10. C.G. van der Laan & N.M. Temme. Calculation of Special
Functions: The Gamma Function, The Exponential Integrals and Error-Like

Functions.
AMS 65D20, 65-04, 33-04; 231 pp.

Abstract: The main scope of this tract is to review and to discuss several aspects of implementa-
tions for the numerical computation of special functions. Especially three groups of functions are
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considered, ‘namely those related to the Euler gamma function, exponential integrals and error
functions. For each of these groups a systematic screening in the literature and several program
libraries is performed. The information for each group includes: (1) definitions, analytic properties
and fundamental formulas; (2) algorithms, implementations, error analysis, tabulated coefficients,
testing. There is an introductory chapter on the literature and program libraries and a chapter on
the theoretical background (error analysis, recurrence relations, continued fractions and general-
ized hypergeometric functions).

CWI Tract 11. N.M. van Dijk. Controlled Markov Processes; Time-
Discretization.

AMS 60Jxx, J25/60/75, 93Exx, E20/25; 166 pp.

Abstract: This study investigates the method of time-discretization in order to approximate
continuous-time controlled Markov processes and corresponding finite horizon cost functions. The
approximation method is based on approximating time-evolution equations by one-step difference
methods. For this an approximation lemma adopted from numerical analysis is presented. This
lemma enables us to determine orders of convergence, which makes it of computational interest, as
well as to deal with unbounded cost functions. We concentrate on approximations induced by
discrete-time controlled Markov processes. As a result, by applying discrete-time dynamic pro-
gramming we can compute the approximations. Much attention is paid to analyzing a specific
discretization for controlled Markov jump and controlled diffusion processes.

CS-R8412. P.M.B. Vitanyi. Signal propagation delay, wire length distribution
and the efficiency of VLSI circuits.

AMS 68C25, 94C99; CR B.7.0, F.2.3; 11 pp.; key words: very large scale
integrated circuits (VLSI), wafer scale integration, logarithmic signal propaga-
tion delay, electronic principles, driving long wires, wire aspect ratio, wire
length distributions in VLSI layouts, Rent’s Rule, layout area, computational
complexity, efficiency.

Abstract: Using sound electronic principles, a signal propagation delay logarithmic in the length of
a wire can be attained in VLSI circuits only if all wires in the layout have the same aspect ratio.
This results in a penalty in surface area of the order of the square of the length of the wire. Thus,
the global complexity of a VLSI circuit is affected. In particular, the complexity becomes very lay-
out dependent. This effect will be truly pronounced in the emerging wafer scale integration tech-
nology. Simple theoretical considerations and experimental study of actual circuits have shown
elsewhere that the wire length distribution f (i) for the layout of integrated logic chips, in particu-
lar for VLSI, tend to satisfy f(i)= c¢/i*1<i<L) and f(@)=0( > L). There are wire-length
distributions for which the logarithmic delay assumption entails at least an exponential increase in
area over the constant wire width assumption for any layout with that distribution. Consequently,
the wires need to get so much longer to achieve logarithmic delay that the absolute propagation
delay turns out to be not improved over an original linear or quadratic propagation delay. Taking
into account also the fact that the wide wires have to be actually placed in a layout, the loga-
rithmic delay requirement may in some cases not be implementable at all, apart from the fact that
even if it could it would give no improvement in absolute time.

CS-R8414. P.M.B. Vitanyi. Circuit topology, signal propagation delay and the
efficiency of VLSI circuits.

AMS 68C25, 94C99; CR B.7.0, F.2.3; 18 pp.; key words: very large scale
integrated circuits (VLSI), wafer scale integration, logarithmic signal propaga-
tion delay, electronic principles, driving long wires, wire aspect ratio, wire
length distribution, circuit topology, layout area, computational complexity,
efficiency, H-tree layout, Dictionary machine, Cube-Connected Cycles.
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Abstract: Using sound electronic principles, a signal propagation delay logarithmic in the length of
a wire can be attained in VLSI circuits only if all wires in the layout have the same aspect ratio.
This results in a penalty in wire surface area of the order of the square of the length of the wire.
Thus, the global complexity of a VLSI circuit is affected. In particular, the complexity becomes
very layout dependent. This effect will be truly pronounced in the emerging wafer scale integration
technology. There are circuit topologies with the same function (Dictionary machine, Fast Fourier
Transform) such that a circuit topology which is optimal under one delay assumption is subop-
timal under another. Under constant signal propagation delay, or logarithmic delay, systolic search
trees or fast permutation networks of superior performance can be laid out if we assume constant
width wires. However, under logarithmic signal propagation delay with the required constant
aspect ratio for the wires the naive Mesh layout is superior over every tree layout with respect to
both Area and Period. Similarly, if the Fast Fourier Transform is implemented in this way, the
naive Mesh layout is superior over every layout for a fast permutation network like the Cube-
Connected Cycles in Area, Area X Period and the AreaX Execution Time. As a matter of indepen-
dent interest, with a constant aspect ratio a for wires and using at most ¢ layers, every layout for
a complete N-node binary tree, and hence also the H-tree layout, takes Area (N log a’e Ny,
With the wire aspect ratio and number of layers constant independent of N, it is impossible to
layout a complete N-node binary tree using equal length wires.

CS-R8415. W.E. van Waning. Engineering robot actions in a computer

integrated manufacturing environment.

AMS 86B20, 68G99, 68J10; CR D.2.6, 1.2.9, J.1.6; 7 pp.; key words: computer
integrated manufacturing (CIM), robotics, engineering design, design and
organization of systems, programming environments.

Abstract: A model is presented according to which robot-actions and the activities in manufactur-
ing cells can be designed. In this model, design-activities have three major aspects: specification,
analysis and synthesis. Principles are then derived for the construction of programming systems for
designing operations of robots and manufacturing cells. The specification describes an external
environment (the device to be made and the tools to make it with). Given the outer environment
and the knowledge specific to the discipline the engineer designs possible inner structures that
serve as strategies specifying how to make the device in question. It is important that the engineer
can express the designs symbolically. Finally, when synthesizing the process-structure the designed
manufacturing process is matched against the external environment. The need is stressed for simu-
lation environments so that it is possible to test the design thoroughly on the basis of actually
observed sensor-data before the programs are taken into production.

CS-R8418. S.J. Mullender & A.S. Tanenbaum. The design of a capability-based
distributed operating system.

AMS 68A05, 68B20; CR C.2.2, C24, D.4.4, D.4.6; 19 pp.; key words: distri-
buted operating systems, capabilities, connectionless protocols, transaction-
oriented protocols, protection, accounting, file systems, service model.

Abstract: Fifth generation computer systems will use a large numbers of processors to achieve high
performance. In this paper a capability-based operating system designed for this environment is
discussed. Capability-based operating systems have traditionally required large, complex kernels to
manage the use of capabilities. In our proposal, capability management is done entirely by user
programs without giving up any of the protection aspects normally associated with capabilities.
The basic idea is to use one-way functions and encryption to protect sensitive information. Vari-
ous aspects of the proposed system are discussed.

40



CS-N8405. L.G.L.T. Meertens & S. Pemberton. Description of B.

AMS 69D41; 38 pp.; key words: Programming languages, B.

Abstract: B is a simple but powerful new programming language designed for use in personal com-
puting. This report is intended as a reference book for the users of B, though it will also be useful
for experienced programmers who want to learn B.

CS-N8407. L.J.M. Geurts. Een kennismaking met de programmeertaal B, Deel
L

AMS D.3.3, D.1.0, K.3.2; 85 pp.; key words: programming, programming
languages, B.

This is a Dutch version of CS-N8402. (see Abstracts section of Newsletter no. 4).

CS-N8408. J.C. Ebergen. On VLSI design.

AMS 68C01, 68F05, 94C99; 8 pp.; key words: VLSI design, functional
specification, regular expressions, layout of a circuit.

Abstract: Some of the problems in VLSI design are discussed. A VLSI design method is presented
with which these problems may be tackled. An example is provided to illustrate some parts of the
design method.

OS-R8409. M.W.P. Savelsbergh. Local search in routing problems with time

windows.

AMS 69Gl11, 69G30, 69F13; 13 pp.; key words: vehicle routing problem, trav-
eling salesman problem, time windows, local search, k-interchange, NP-
completeness, computational complexity, heuristics.

Abstract: We develop local search algorithms for routing problems with time windows. The algo-
rithms presented are based on the k-interchange concept. The presence of time windows intro-
duces feasibility constraints, the checking of which normally requires O(N) time. Our method
reduces this checking effort to O(1) time. We also consider the problem of finding initial solutions.
A complexity result is given and an insertion heuristic is described.

OS-R8410. E.A. van Doorn. A note on equivalent random theory.

AMS 60K30, 90B22; 4 pp.; key words: teletraffic theory, equivalent random
theory, overflow traffic, peakedness factor.

Abstract: The purpose of this note is to provide proofs for two fundamental results in equivalent
random theory that are generally accepted as valid, but for which no proofs are available in the
literature.

NM-R8408. P.J. van der Houwen & B.P. Sommeijer. High order difference
schemes with reduced dispersion for hyperbolic differential equations.

AMS 65M20, 76B15; 25 pp.; key words: hyperbolic equations, difference
schemes, Runge-Kutta methods, dispersion.

Abstract: We investigate difference schemes for systems of first order hyperbolic differential equa-
tions in two space dimensions, possessing the following characteristics: (i) The spatial discretiza-
tions are fourth order accurate. (ii) The time discretization is of explicit Runge-Kutta type and is
also fourth order accurate. (iii) The scaled stability boundary is approximately V272, (iv) The
weights in the space discretizations and the Runge-Kutta parameters can be adapted so as to
reduce the dispersion of the dominant Fourier components in the solution.
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This method is illustrated by applying it to the shallow water equations simulating the motion of
water in a shallow sea due to tidal forces. Since in such problems the dominant frequencies in the
solution are known in advance, the method can take full advantage of the possibility of tuning the
various parameters to these dominant frequencies.

NM-R8409. P.J. van der Houwen & J.G. Blom. Stability results for discrete
Volterra equations: Numerical experiments.

AMS 65R20; 12 pp.; key words: numerical analysis, Volterra integral equa-
tions, stability.

Abstract: In this paper we formulate a local stability criterion for linear multistep discretizations of
first- and second-kind Volterra integral equations with finitely decomposable kernel. In a large
number of numerical experiments this criterion is tested. We did not find examples with unstable
behaviour while the stability criterion predicted stability. However, we found several examples
with stable behaviour while the stability criterion predicted instability. A possible explanation may
be the fact that the stability criterion is independent of the decomposition of the kernel, that is, it
holds for the most ill-conditioned decomposition and consequently it may be rather pessimistic.

NM-R8410. P.J. van der Houwen, B.P. Sommeijer & C.T.H. Baker. On the
stability of predictor-corrector methods for parabolic equations with delay.

AMS 65Q05, 65M20, 35R10; 16 pp.; key words: parabolic equations, delay
equations, predictor-corrector methods.

Abstract: Diffusion problems where the current state depends upon an earlier one give rise to para-
bolic equations with delay. The efficient numerical solution of classical parabolic equations can be
accomplished via methods for stiff differential equations. One such class are predictor-corrector-
type methods with extended real stability intervals and with reduced storage requirements. Analo-
gous methods for equations with delay are proposed and analyzed here. Numerical experiments
which illustrate the theoretical results are reported.

NM-R8411. J.G. Verwer. On the shift parameter in the backward beam method
for parabolic problems for preceding times.

AMS 65M30, 65M20, 65L10; CR 5.17; 9 pp.; key words: backward heat prob-
lems, ill-posed problems, numerical analysis, boundary value methods, back-

ward beam method.

Abstract: We consider the backward beam method of Buzbee & Carasso (Math. Comp. 27 (1973),
237-267) for the numerical computation of parabolic problems for preceding times. The perfor-
mance of this method is strongly influenced by the choice of a spectral shift parameter. Using log-
arithmic convexity arguments Buzbee & Carasso derived an expression for the optimal value for
linear problems. The main concern of this paper is to illustrate that this expression can also be
found and explained via the numerical stability analysis of the forward and backward recurrence
involved.

NM-R8412. A M. Odlyzko & H.J.J. te Riele. Disproof of the Mertens conjec-
ture.

AMS 10A20, 10HOS, 65E05, 06C10; CR 5.12; 18 pp.; key words: Mertens con-
jecture, Riemann hypothesis, Lattice basis reduction algorithm, multiple preci-

sion computation, zeros of the Riemann zeta function.
Abstract: The Mertens conjecture states that | M (x)| <x!/2 for all x > 1, where

M(x) = Dpn)

n<x

and p(n) is the Mobius function. This conjecture has attracted a substantial amount of interest in
its almost 100 years of existence because its truth was known to imply the truth of the Riemann
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hypothesis. This paper disproves the Mertens conjecture by showing that
limsupM (x )x ~ /2 > 1.06.

The disproof relies on extensive computations with the zeros of the zeta function, and does not
provide an explicit counterexample.

NM-R8413. W.H. Hundsdorfer & M.N. Spijker. On the algebraic equations in
implicit Runge-Kutta methods.

AMS 65L05, 47H15, 65H10; 13 pp.; key words: numerical analysis, stiff initial
value problems, implicit Runge-Kutta methods, nonlinear algebraic equations,
stability.

Abstract: This paper is concerned with the system of (nonlinear) algebraic equations which arise in
the application of implicit Runge-Kutta methods to stiff initial value problems. Without making
the classical assumption that the stepsize h >0 is small, we derive transparent conditions on the
method that guarantee existence and uniqueness of solutions to the equations. Besides, we discuss
the sensitivity of the Runge-Kutta procedure with respect to perturbations in the algebraic equa-
tions.

MS--R8411. R.D. Gill. On estimating transition intensities of a Markov process
with aggregate data of a certain type.

AMS 62MO05, 62Pxx; 12 pp.; key words: Markov process, aggregate data, mul-
tidimensional mathematical demography, multistate life-table, occurrence-
exposure rate, fixed-point theorem, degree theory.

Abstract: In demography finite-state-space time-homogeneous Markov processes are often used,
explicitly or implicitly, to model the movement of individuals between various states (e.g. studies
of marital formation and dissolution or of interregional migration). However, the fact that data is
often only available at certain levels of aggregation, preventing a simple and exact statistical
analysis, has caused much confusion and has even impeded the adoption of probabilistic model-
ling and statistical analysis. In this paper we consider one specific form of aggregate data and pro-
pose a new method of estimation of the underlying Markov process. Some preliminary results on
the properties of this method are given and some open problems are discussed.

MS-R8412. H.C.P. Berbee. Convergence rates in the strong law for bounded
mixing sequences.

AMS 60F15, 60G10, 60K05; 16 pp.; key words: mixing, Marcinkiewicz-
Zygmund strong law, coupling, moment inequality, renewal theory.

Abstract: Speed of convergence is studied in the Marcinkiewicz-Zygmund strong law for partial
sums of bounded dependent random variables under conditions on their mixing rate. Though a-
mixing is also considered, the most interesting result concerns absolutely regular sequences. The
results are applied to renewal theory to show estimates obtained there by coupling are best possi-
ble. Another application sharpens a result for averaging a function along a random walk.

AM-R8410. B. Dijkhuis. On the propagation speed in relativistic quantum

mechanics.

AMS 81MO0S, 81D0S, 47B47; 4 pp.; key words: propagation speed in relativis-
tic quantum mechanics, local commutativity, superluminal velocity.

Abstract: A new definition of propagation speed is proposed. Assuming that there is a maximal
speed, we derive an operator condition that resembles the condition of local commutativity in
quantum field theory. The relativistic energy-momentum relation implies that the maximal speed is
not smaller than the speed of light. We discuss an example that shows a superluminal propagation
speed.
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AM-R8411. N.M. Temme. A class of polynomials related to those of Laguerre.
AMS 33A65, 41A60; 6 pp.; key words: Laguerre polynomials, asymptotic
expansion.

Abstract: We consider a class of polynomials, defined by /,(x) = (—1)" Ly ~"(x), which were
introduced by F.G. Tricomi. We explain the role of the polynomials in asymptotics, especially in
uniform expansions of a Laplace-type integral. Moreover, an asymptotic expansion of /,(x) is
given for n —oo which refines results of Tricomi and Berg.

AM-R8412. N.M. Temme. Uniform asymptotic expansions of integrals.

AMS 41A60, 33-xx, 30E15; 13 pp.; key words: asymptotic expansions of
integrals, uniform asymptotic expansions, special functions.

Abstract: The purpose of the paper is to give an account of several aspects of uniform asymptotic
expansions of integrals. We given examples of standard forms, the role of critical points and
methods for constructing the expansions.

AM-R8413. H.A. Lauwerier. Dynamical systems and numerical integration.
AMS 58F14, 65D30, 39A10; 25 pp.; key words: dynamical systems, numerical
integration, difference equations.

Abstract: A few schemes for the numerical integration of ordinary differential equations are con-
sidered as discrete dynamical systems. The properties of those systems centered around the
Poincaré-Birkhoff theorem and the Kolmogorov-Arnold-Moser (KAM) theorem may give a deeper
understanding of the global behaviour of integration schemes and may explain the occurrence of
unwanted phenomena such as ‘chaotic’ oscillations. This approach is of wider generality than the
usual technique of Taylor expansions, a technique which is not always justified and may even be
wrong.

AM-R8414. HJ.AM. Heijmans. The dynamical behaviour of the age-size-
distribution of a cell population.

AMS 92A15; 25 pp.; key words: age-size-distribution, integration along charac-
teristics, abstract renewal equation, Laplace transform, operator-valued func-
tion, positive operator, non-supporting operator, dominant singularity, renewal

theorem.

Abstract: We study the model proposed by Bell and Anderson describing the dynamics of a proli-
ferating cell population. This model assumes that the individual’s behaviour is completely deter-
mined by its age and size. By the method of integration along characteristics the problem is
reduced to a renewal type integral equation. Using Laplace transform techniques and results from
positive operator theory we can describe the large time behaviour of the solution, if we impose a
condition on the growth rate.

AM-N8403. H.A. Lauwerier. The blooming tree of Pythagoras.

AMS 51-01, 51-04; 14 pp.; key words: Pythagoras tree.

Abstract: A description is given of the so-called Pythagoras tree and how it can be drawn by
means of a simple computer program. Apart from the geometrical construction an approach is
given in which complex numbers and binary representations of numbers is used.

PM-R8407. M. Hazewinkel. On positive vectors, positive matrices and the spe-
cialization ordering.
AMS 06A10, 15A48, 15A51; 7 pp.; key words: specialization order, nonnega-

tive matrices, majorization.
Abstract: A brief introductory discussion is given of the specialization partial ordering for positive



vectors in connection with the positive rank of nonnegative matrices.

PM-R8408. A. del Junco & D.J. Rudolph. On ergodic actions whose self-
Jjoinings are graphs.

AMS 28D05, 28D15; 54 pp.; key words: ergodic group actions, joinings, fac-
tors, group extensions.

Abstract: We call an ergodic measure-preserving action of a locally compact group G on a proba-
bility space simple if every ergodic joining of it to itself is either a product measure or is sup-
ported on a graph, and a similar condition holds for multiple self-joinings. This generalizes
Rudolph’s notion of minimal self-joinings and Veech’s property S. Main results: the joining of a
simple action with an arbitrary ergodic action can be explicitly described. A weakly-mixing group
extension of an action with minimal self-joinings is simple. The action of a closed, normal, co-
compact subgroup in a weakly-mixing simple action is again simple. Some corollaries: two simple
actions with no common factors are disjoint. The time-one flow of a weakly-mixing flow with
minimal self-joinings is prime. Distinct positive times in a Z-action with minimal self-joinings are
disjoint.

PM-R8409. E.P. van den Ban. Invariant differential operators on a semisimple
symmetric space and finite multiplicities in a Plancherel formula.

AMS 22E30, 22F46, 43A85; 11 pp.; key words: semisimple symmetric spaces,
Plancherel formula, discrete series, invariant differential operators.

Abstract: We investigate some properties of the algebra D(G/H) of invariant differential operators
on a semisimple symmetric space G /H . Our main results are that the action of D(G/H) diagonal-
izes over the discrete part of L2(G /H), and that the irreducible constituents of an abstract Plan-
cherel formula for L%(G /H ) occur with finite multiplicities. In particular this implies that discrete
series representations occur with finite multiplicities in LXG/H).

PM-R8410. E.P. van den Ban. Asymptotic behaviour of matrix coefficients
related to reductive symmetric spaces.

AMS 22E30, 22E46, 43A85; 76 pp.; key words: reductive symmetric space,
matrix coefficient, asymptotic behaviour, Schwartz space.

Abstract: We study the asymptotic behaviour of K-finite H -invariant matrix coefficients related to
a reductive symmetric space G /H . In all directions to infinity this behaviour is described by abso-
lutely converging series expansions similar to those in the group case. A generalization of Harish-
Chandra’s Schwartz space is introduced.

PM-R8411. M. Hazewinkel. Experimental mathematics.
AMS 00A05, 00A25, 58F03, 82F03, 35Q03; 38 pp.; key words: experimental

mathematics.

Abstract: Experimental mathematics in this paper is understood to mean the use of a computer for
doing mathematical experiments. For instance experiments designed to get the first glimmer of an
idea how to tackle a given set of problems or experiments to indicate where to look for counterex-
amples or to make the conjecture more precise. This is rapidly becoming a major area of research
and may well develop into a semi-separate discipline like computational fluid dynamics or statis-
tics.

PM-R8412. T.H. Koornwinder. Squares of Gegenbauer polynomials and Milin
type inequalities.

AMS 30C50, 33A30, 33A65; 4 pp.; key words: Bieberbach conjecture, Milin
conjecture, positive ;F, hypergeometric functions, squares of Gegenbauer poly-
nomials.
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Abstract: De Branges, in his proof of the Bieberbach conjecture, was led to a specific solution with
monotonicity properties of a certain linear system of differential equations. We present other solu-
tions with similar monotonicity properties, the derivatives of their coordinates being multiples of
squares of Gegenbauer polynomials. De Branges’ solution is a nonnegative linear combination of
our solutions. As a corollary we obtain Milin type inequalities for logarithmic power series
coefficients of univalent analytic functions on the unit disk which are sharper than the Milin con-
jecture.

PM-R8413. E. Badertscher. Harmonic analysis and Radon transforms on pencils
of geodesics.

AMS 51M10, 33A75, 43A32, 43A90; 21 pp.; key words: classical geometries,
pencils of geodesics, spherical functions, c-functions, Jacobi functions, spheri-
cal Fourier transform, product formulas, integral representations, Radon
transforms, fractional integral transforms, convolution products.

Abstract: We introduce pencils of geodesics as generalized points in classical geometries X. We
generalize the spherical harmonic analysis on X to pencils (in particular we consider spherical
functions and spherical Fourier transforms on pencils). By means of ‘Radon transforms’ (i.e. by
changing the invariance type of a function through integration) we can relate the theories of
different pencils. By evaluating the Radon transforms of spherical functions we get various pro-
duct formulas. In the interesting case that X = H" (hyperbolic n-space) we express everything
explicitly. The spherical functions in particular can be expressed by Jacobi functions, the Radon
transforms can be reduced to fractional integral transforms. By a Radon transform we also
transfer the convolution structure from K-invariant functions on H” to H-invariant functions on
H" (K = SO(n), H = SOy(1,n —1)).

PM-N8402. M. Hazewinkel. On mathematical control engineering.

AMS 93-02; 10 pp.; key words: mathematical control and system theory, filter-
ing.

Abstract: An introductory account is given of the mathematical problems arising in electrical and
control engineering.
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CWI Activities
Winter 1984

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWIL. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWL

Study group on Analysis on Lie groups. Joint with University of Leiden.
Biweekly. (E.P. van den Ban)

Seminar on Algebra and Geometry. Coxeter Groups and Combinatorics.
Biweekly. (A.E. Brouwer)

Study group on Cryptography. Biweekly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Joint with University of Leiden. (J. Grasman)

Study group ‘Nonlinear Analysis’. Lectures by visitors or members of the
group. Joint with University of Leiden. (O. Diekmann)

Progress Meetings of the Applied Mathematics Department. New results and
open problems in biomathematics, mathematical physics and analysis.
Weekly. (N.M. Temme)

National Study Group on Statistical Mechanics. Joint with Technological
University of Delft, Universities of Leiden and Groningen. Monthly.
University of Amsterdam. (H. Berbee)

Progress meetings of the Mathematical Statistics Department. New results in
research and consultation projects. Monthly. (R.D. Gill)

Lunteren Meeting on Stochastics. 12,13,14 November 1984 at ‘De Blije
Werelt’, Lunteren. Invited speakers:

M.L. Eaton (University of Minnesota, USA), S. Kakutani (Yale, New
Haven, Connecticut, USA), D.W. Miiller (University of Heidelberg, West
Germany), J. Pfanzagl (University of Cologne, West Germany). H. Rootzén
(University of Copenhagen, Denmark), J.E. Yukich (MIT, temporarily
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Strasburg). Joint with Dutch Mathematical Society and Dutch Statistical
Society. (R. Helmers)

Seminar on Probability Inequalities and Related Topics, given by M.L. Eaton.
Joint with University of Amsterdam (and held there). Weekly. (R.D. Gill)
Tenth Conference on the Mathematics of Operations Research. 9,10,11 Janu-

ary 1985 at Lunteren. Invited lecturers are:
J.B. Orlin (Cambridge, USA), M.J.D. Powell (Cambridge, UK), G.P. Pras-
tacos (Athens, Greece), R.R. Weber (Cambridge, UK). (E.A. van Doorn)

Progress meetings on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

System Theory Days. Irregular. (J.H. van Schuppen)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

National colloquium on Optimization. Irregular. (J.K. Lenstra)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Biweekly. (H.J.J. te Riele)

Study group Numerical Flow Dynamics. Lectures by group members. Every
Wednesday. (J.G. Verwer)

Study group Hyperbolic systems. Every Wednesday. (P.W. Hemker)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

Seminar National Concurrency Project. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 22 February, 22 March and 24 May.
(J.W. de Bakker)

National Study Group ‘Concurrency’. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 18 January, 8 February, 8 March and 5
April. University of Utrecht. (J.W. de Bakker)

Post-academic course on Modern Techniques in Software Engineering. 7,8 21
and 22 February. (J.C. van Vliet)

Post-academic course on B. 7 January - 9 May. Twice a week. (L. Geurts)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group ‘Dialogue programming’. (P.J.W. ten Hagen)
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Visitors to CWI from Abroad

A. Bruen (The University of Western Ontario, London, Canada) 30 October.
H. Brunner (University of Fribourg, Switzerland) 10-12 December. F. Calo-
gero (University of Rome, Italy) 26 September - 3 October. Cheng Kan
(Academia Sinica, Beijing, China) 25 November - 7 December. P. Cockshott
(University of Glasgow, Scotland) 2-4 October. M.L. Eaton (University of
Minnesota, USA) September 1984 - August 1985. C. van Eeden (University of
Montreal, Canada) September 1984 - August 1985. J. Grizzle (University of
Texas, Austin, USA) 5-26 November. M.R. Guevara (McGill University,
Montreal, Canada) 27 November. Hsu Guang-hui (Academia Sinica, Beijing,
China) 25 November - 7 December. R. Marumbar (University of Columbia,
USA) 3 December. M. Mimura (University of Hiroshima, Japan) 29 October -
2 November. J. Saxl (University of Cambridge, UK) 26 November. W.
Schappacher (University of Graz, Austria) 12 December. D. Schroeer (Univer-
sity of North Carolina, USA) 25 September. He Shi (Academia Sinica, Beij-
ing, China) 19-21 November. A. Strasburger (University of Warsaw, Poland)
14 December. R. Wong (University of Manitoba, Winnipeg, Canada) 7-8
October.
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*) not available on exchange

Order Form for CWI Publications

Centre for Mathematics and Computer Science

Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis
O Please send the publications marked below with an invoice

Publication code

CWI Tract 8 *)
CWI Tract 9 *)
CWI Tract 10 *)
CWI Tract 11 *)
CS-R8412
CS-R8414
CS-R8415
CS-R8418
CS-N8405
CS-N8407
CS-N8408
0OS-R8409
0OS-R8410
NM-R8408
NM-R8409
NM-R8410
NM-R8411
NM-R8412

Price per copy

DAl. 17.90
26.20
33.30
23.80

3.70
3.70
3.70
3.70
6.--
11.90
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70

Number of copies wanted



Publication code Price per copy Number of copies wanted

O NM-R8413 370
a MS-R8411 370 e
O MS-R8412 370 0 s
O AM-R8410 3700 ¢ . B s
O AM-R8411 370
(] AM-R8412 3700 e
O AM-R8413 3700 swew
O AM-R8414 370
O AM-N8403 370
O PM-R8407 370 e
a PM-R8408 840 L
O PM-R8409 370
O PM-R8410 1080 7 e
O PM-R8411 6~  mwmes
O PM-R8412 370
O PM-R8413 370 s
O PM-N8402 370 s

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address !

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.









