





21

33

39

47

49

Contents

Stochastic Geometry and Image Analysis,
by A.J. Baddeley

Typesetting at the CWI - Part II,
by Jaap Akkerhuis

Order Statistics, Quantile Processes and Extreme .
Value Theory, by R. Helmers

Abstracts of Recent CWI Publications
Activities at CWI, Autumn 1984

Visitors to CWI from Abroad

4

Centre for Mathematics
and Computer Science

Centrum voor Wiskunde en Informatica

Bibllotheek
CWi-Centrum voor Wiskunde en Informatica
\_ Amsterdam



*

STOCHASTIC GEOMETRY AND IMAGE ANALYSIS
by
A.J. Baddeley

School of Mathematics, University of Bath,
Claverton Down, Bath, BA2 7AY,
UK.

Summary

We list recent ideas in stochastic geometry which are closely related to
image analysis. These include the synthesis of stochastic models of images,
techniques for evaluating models and algorithms, general concepts of ‘geome-
trical information’ and the theory of random sets, problems of image irregular-
ity and errors in observation, techniques of geometric integration theory, and
fractional dimensional irregularity.

1. Introduction

The development of computerized image processing and image analysis
already seems to have prompted considerable study of the relations between
geometry, probability theory and computer science. Rosenfeld [29, preface]
observes that all image processing algorithms must be based explicitly or impli-
citly on mathematical models of the images to be processed. Some of the newer
stochastic image models presented in [29] are based on Markov processes, ran-
dom fields, random mosaics (tessellations) and stochastic grammars. Apart
from image modeling, we imagine other mathematical contributions should
include a theoretical background for the comparison of algorithms, and
mathematical techniques for the treatment of image models.

Independently of such requirements, many concepts related to image
analysis have evolved in other areas, notably in stochastic geometry, stereology
and geometric integration theory. Stochastic geometry is that part of probabil-
ity theory dealing with random subsets of a geometrical space, and interactions
between probability and geometry. This includes all stochastic image models,
at least in principle, but some frequently studied models are: elementary con-
structions of random lines, circles or triangles; spatial schemes such as random
mosaics and random coverings of the plane; and general random processes and
random sets. The main body of theory concentrates on wuniformly random
models, for which there are simple explicit solutions. However, the last decade

+ This paper is a contribution to the ‘Proceedings of the CWI symposium on
mathematics and computer science’, CWI monograph 1.



has seen the introduction of more flexible techniques and a completely general
theoretical foundation for random sets.

This paper summarizes some recent work in stochastic geometry (drawing
also on stereology and geometric integration theory) which could be connected
with image analysis. Section 2 introduces the range of random image models in
stochastic geometry, and outlines the classical theory of uniformly random
models. The more recent combinatorial theory (section 3) has an application to
problems of image complexity. Section 4 discusses the Kendall-Matheron
abstract theory of random sets, which has many similarities to tenets of image
analysis. J. Serra’s mathematical morphology and image analysis theory is
touched upon in Section 5. Recent thoughts about image irregularity and
observation errors (Section 6) are developed using geometric integration theory.
Finally Section 7 speculates on the usefulness of fractal (fractional dimen-
sional) models of image irregularity.

2. Classical stochastic geometry

Detailed surveys of stochastic geometry can be consulted in the literature
[24, 3, 7, 32, 35] and we shall give here a very brief sketch. Probability models
available for generating random geometrical objects (hence random image
models) can be classified as

(a) elementary constructions;
(b) stochastic processes;
(c) theory of random sets.

(a) Elementary constructions are the simple geometrical figures of Euclid with
an added component of randomness, as for example the output of a computer
graphics program when the input is a random number generator. Points, lines,
triangles, circles and other figures are determined by n <oo real parameters so
that a random figure can be defined as a probability distribution on the n-
dimensional parameter space. Of course we may also construct the random line
joining two random points, and so on. Using parametrisations of the rotation
and translation groups we may generate random positions of an arbitrary
object. Typical problems include finding the probability that two random fig-
ures (or a random figure and a fixed figure) will intersect; the mean area of
length of overlap between figures; and the probability that N random figures
will completely cover a specified region.

Even the simplest problems for random figures lead to difficult multiple
integrals. An exception to this rule is that uniformly distributed random figures
often lead to simple explicit solutions. For example, a random two-dimensional
point X = (x,x,) is a uniformly random (UR) point in the region A4 CR? if it
has constant probability density f(x;x;) = K. The constant must be
K = 1/area(4) since probability integrates to 1. For any measurable subset
B CA we find the probability

P(X falls in B) = —:gi(%, )



which is what we understand by a ‘simple explicit solution’. Now consider a
random circle C(X,r) of fixed radius r obtained by randomizing the centre
point X. Let X be a uniformly random point in the disc Dy, of radius R +r
and centre 0. Then the circle C(X,r) always intersects Dy, the disc of radius
R about 0. We say C(X,r) is a uniformly random circle hitting Dg. For any
(fixed) point x € Dy,

‘7TI'2

P(C(X,r) contains x) = P(X falls in C(x,r)) = TR+

by (1), which does not depend on x. Furthermore, the mean or expected area
of overlap between C(X,r) and Dy is by Fubini’s theorem

E(area C(X,r)NDg) = fP(x lies in C (X ,r))dx
Dr
2

= gR2——1
R+r)?’

i.e. proportional to the product of areas of C(X,r) and Dg.

Definition of a uniformly random line is less intuitive. Let parameters (p ,6)
specify the line

{(x,y):xcosf + ysind = p},

ie. |p| is the distance of the line from the origin, and 6 determines its direc-
tion. A uniformly random (UR) line is such that (p,6) is a uniformly distributed
point in some bounded region of R X[0,7). For example a UR line hitting the
disc Dy is obtained when p and @ are independent random variables uniformly
distributed over [—r,+r] and [0,7) respectively. In general for X CR? the set
of lines intersecting X is some irregular set of (p,d) points in the allowable
region. To generate a UR line hitting X, in practice, find a disc Dy cir-
cumscribing X . Generate a UR line L hitting Dg; if LNX = &, reject this
attempt and generate another line L; until L hits X. Then L is UR hitting X.

UnForm random ine hiting X

generate random fine g
unform in disc

Condtional on g hiting X.
g is unform random ine hiting X




Uniform random lines have the invariance property that if L is a UR line
hitting X, and if ¥ C X, then the probability P (L hits Y) does not depend on
the position or orientation of ¥ within X. All parts of X are equally likely to
be ‘sampled’ by L. This fair sampling property, which characterizes the uni-
form distribution, can be recognised as invariance under the euclidean group
of rigid motions. Another nice characterization of UR lines is based on the
two-person game where 4 ‘hides’ a set Y inside X and player B draws a line
L through X to find Y. Optimal strategy for B is to generate a uniform ran-
dom line.

We state two fundamental results concerning UR lines. Let L be a UR line
through X, a bounded measurable plane set. If 4 CX is measurable then

E length (L NA) = 1*%’—4—1 Q)

where E again denotes expected (mean) value, and K is a constant depending
on X.If C CX is a plane curve then

En(LNC) = MEIE@Q A3)

where n(L N C) is the number of intersection points between L and C. Thus,
the mean amount of overlap between a UR line and a fixed figure is given by
(2), (3) regardless of the geometrical configuration of the figure. This general-
ity is the basis of the classical theory. Corresponding formulae hold in higher
dimensions and noneuclidean spaces [30].

Apart from the obvious application of (2)-(3) to stochastic image models,
we can interpret them to give methods for measurement of length and area. If
an image consists of several curves, their total length can be statistically
estimated by randomly rotating the image, superimposing a grid of parallel
lines and counting the number of crossing points.

Statements about image complexity also follow from (2)-(3). Suppose the
image consists of curves of total length /, the screen is divided into an n Xn
square grid, and we wish to estimate the number of grid squares which contain
part of the image. Assuming the image and grid are randomly superimposed,
the mean number of grid-image intersections is 4(n —1)/. For large n this
approximates the mean number of squares crossed, i.e. the mean complexity.

Stochastic image models may also be based on (b) stochastic processes. To
generate a random pattern extending over the entire plane, divide R? into
squares, and place a random number of random points in each square. A ran-
dom pattern of lines is a random pattern of (p,f) points in R X[0,7), and so
on. Thus we define a random point process in space S as a random locally fin-
ite set of points in S, where ‘locally finite’ means each bounded region of §
only contains a finite (random) number of (random) points. A random line
process “is’ a random point process in R X[0,7), or more intrinsically, is a ran-
dom locally finite set of lines in R In calculations one uses the correspon-
dence between a random point process and the system of random variables



N(A) = (number of points in A), A CS, which constitute a random measure
N() on S. A random line process is a random measure on R X[0,7), or intrin-
sically, corresponds to a random capacity function H(4) = (number of lines
intersecting A ), A CR2 See[18,12].

A Finte population of spheres in R’
or
a reaksation of a random sphere process

Explicit calculations are usually unsuccessful except for uniform Poisson
processes, in which each bounded part of the process consist of independent
uniformly random points/lines, and N(4), N(B) are independent when
ANB = . Equations (1)-(3) yield the expected values of N(4), H(A), the
number of crossings of a fixed curve, the total length of lines overlapping 4,
and the number of line-line crossings inside A4 .

General random point processes and line processes have been studied using
moments [12,19,32] and Palm probabilities [26]. For a point process the first
two moment measures are the intensity measure w(4) = E[N(4)] on R?, and
the second moment measure p® on R?XR? defined by p®(A XB) =
E[N (4 )N (B)], which together contain all variance-covariance information. If
the process is statistically stationary, then w(4 ) = A.area(4 ) where A>0 is the
intensity, while p® ‘disintegrates’,

dpP(x y) = dy(y —x)dp(x) xpeR?

and the measure y on R? describes correlations between points in the process.
The correlation characteristics can be estimated from observations of the pro-
cess, furnishing a general empirical approach to point- and line- processes [33].
Second-order statistics characterize many of the visible characteristics of an
image or pattern [11], but are not infallible [28,5]. A direct analysis of



dependence between points or lines in a process is obtained using the Palm
probabilities P*, essentially the conditional probability distribution of the ran-
dom process given that there is a random point at x.

A random line process or circle process subdivides the plane into a random
tessellation. This is a potentially important model of random images [14, 24,
31]. Characteristics of the polygons formed by a Poisson line process have
been determined by Miles [23], in particular the means and variances of
polygon area, perimeter length and number of sides. Another important ran-
dom tessellation is the Dirichlet or Voronoi tessellation: if {x;,i€Z} are the
points in a point process, let the tile corresponding to x; be

T, = {yeR%|y —x; |<|y —x; |, j5i}.

The T; are polygons tessellating R2. Characteristics of the Voronoi tessellation

1

induced by a Poisson point process are given by Miles [21].

Finally, random image models can be based on (c) the theory of random
sets. This is discussed in Section 4.

3. Combinatorial theory

More results have recently been obtained for classical problems, by simpli-
fying geometry and applying combinatorial probability methods [1]. We will
first prove the curve length formula (3),

En(LNC) = 2 lenglzh <€)

where C is a plane curve, L is a UR line hitting XDC, and n(LNC) =
number of intersection points in L NC. Suppose C is a polygonal curve con-
sisting of line segments S,S,, . ..,S,. Let[S;] denote the event L NS,;5% 3,
that is L hits S;. Put

1if LNS,#2
Isi= Y0 if Lns,=2.

Clearly we have
n(LNC) = illls’]
with probability 1, since P(L contains S;) = 0. But immediately
En(LNC) = _éEl{S.] = ilP([Si]).

It can easily be argued that uniform random lines have P ([S;]) proportional to
length (S;);

En(LNC) = a é length (S;) = a. length (C)

i=1



which proves (3) up to the constant factor.

The proof reveals importance of additivity, meaning both the linearity of
the integral E and the additivity of the counting function n(L NC). Together
with the natural properties of uniform distributions, this property forms the
basis of stochastic geometry.

Suppose now we want the distribution of the variable n(L NC): computa-
tion of P{n(LNC) = k} is not obvious. Consider two segments §,,S, and
evaluate P ([S;]N[S,]), the probability that L intersects both S,,S,. Case 1: if
S1,S, have a common point, let 7 be the third side of the triangle. Then

1
Iisunisa = 2(Isgt sy — i) as.

since if L interseécts both S,5, the sum in brackets equals 2, and otherwise is
zero. Case 2: if §,5, have no common point we can derive a similar expres-
sion

Lisgngsy = sUpag* 1y — gy — 1z a.s.

where 4, A4,,B, B, are segments joining the four endpoints of S,5,. But this
implies that every expression 15 n(s,) = lis,}1is,) can be written as a linear com-
bination of variables 1(7,), where T} are line segments joining vertices of C.

Theorem. Let x,, . . .,x, be points in R and sij the line segment joining x;
with x;. For a random line L, let [s;;] be the event L Ns;5=@. Let Q@ be the ring
of events generated (through unions, intersections, set differences) by [s;]
<i<j<n. Then for any A €@ there exist constants c;;(A) such that
L = ()], “)
i<j

holds except when L contains a vertex Xx;.

If L is uniformly distributed we take mean values in (4) to get
P(A) = 2/K Fc;()lx; —x; i )
i<j
i.e. all combinatorial probabilities for UR lines are expressible as sums of
lengths of segments s;;. For example, the distribution of n(L NC) is expressi-
ble in terms of the distances between each pair of vertices of C. This is a great

advance, in principle, on the classical theory which was restricted to mean
values. An algorithm for the c;;(4 ) is known, and practicable for small n.

One can also take non-uniform random lines in (4), say with probability
distribution Q, to obtain
Q) = Xc;(4)Qls;] (6)
i<j
and note the coefficients c;;(4) are the same as above. The quantity Qlsi]
serves as a generalized length of s;. Thus, again in principle, nonuniform



random lines are no more computationally difficult than UR lines.

Finally we present another application to image complexity, concerning the
quad-tree representation of images. An image can be recorded or transmitted
as tree structure, as follows. Divide the image field into four equal squares
and note which squares, if any, consist of a single colour. The remaining, mul-
ticoloured squares are subdivided again into four, and the process repeats until
a predetermined level of subdivision is reached. The record of subdivisions and

Quad-tree representation of images

colours forms the quad tree. Important questions include the average complex-
ity (number of nodes) of the quad tree, and estimating the increase in complex-
ity if a deeper level (finer subdivision) is added. Both problems depend on the
image, but it is reasonable to suppose that in a sufficiently small square, the
image boundary can be regarded as a uniformly random line. Consider a UR
line hitting a square subdivided into k Xk equal squares. According to (3) the
mean number of subsquares crossed equals k. Furthermore using (5) we can
compute the distribution of the number N of subsquares crossed. In the
interesting case k = 2, we have P(N =1) = %(\/f—l), P(N =2) = 2—V2,
P(N =3) = %(\/?: —1). Thus the cost of adding one extra level of subdivi-

sion is to double the number of terminal nodes, on average. One fifth of the
new branches will be triple.

4. Random set theory
In addition to the constructive examples of random geometry in Section 2,



one can propose others such as the zero-set (or contours) of a random func-
tion. Foundations of a general theory of random sets were laid by G. Math-
eron [18] and D.G. Kendall [13]. Matheron’s theory of random closed sets was
expressly developed as a mathematical background to image analysis as well as
stochastic geometry. Kendall’s theory takes an abstract view of the construc-
tion of probability spaces of random sets, emphasising the variety of structures
which can be chosen. The two approaches are complementary [27] and both
make use of Choquet’s capacity theorem.

To introduce the theory we generalize the random events [S;] which played
a formative role in section 3. For the Matheron approach, let ¥ be the class of
all closed sets in R". If T CR" define the hitting set

[T] = {(FEFFNT#2).

Endow & with the (weakest) topology such that [U] is an open subset of & for
all open sets U CR", and [K] is closed for all compact K NR" (see [20]).
Then % becomes a Polish space. Define a random closed set as a random ele-
ment of & with the Borel o-algebra. Under this structure the events [T], T CR"
are measurable when 7 is open, closed or indeed Borel. Intersections and
unions of random closed sets are random closed sets. Area, length (where
defined) and number of points (where finite) are random variables.

Kendall’s approach emphasises that the definition of a random set depends
on the geometrical information which is assumed to be observable. Its basic
constituents are the random events [T] = {X NT+#@} where X is the ran-
dom set and T is a fixed set called a ‘trap’. The associated random variable

1 if XNT=£Y
h(T):{ ' > ™

0 if not
corresponds to a ‘bit” or ‘flag’ indicating whether X was detected by the trap
T. From the observer’s point of view, the random set X is characterized by the
information {h(T),T €7} where J is the class of all traps available to the
observer. Define a trapping system 9 on a space S to be a class of nonempty
subsets of S, which cover S, satisfying certain properties analogous to separa-
bility and local compactness. A random J-set in S is a random function

h:9-{0,1}

i.e. a stochastic process of 0-1 variables 4 (T), T €9, subject to a consistency
condition which enables 4 to be interpreted in the form (7). Note the probabil-
ity structure depends completely on the choice of trapping-system. If § = R”
and 9= open sets, a random J-set is a random closed set in Matheron’s sense.
Smaller trapping-systems may be inadequate to distinguish all closed sets. A
set X is indistinguishable (to the observer) from its J-closure,

clos(X,"J)Z[ U TC: n 7

XNT=g XNT=0

10



(¢ denotes complement) and we need only consider J-closed sets
X = clos(X,%). For example if 3 = {open halfplanes of R?} the J-closed sets
are the convex sets of R2. Thus random J-sets in this case ‘are’ random convex
sets; and the customary representation of convex sets by support functions can
be derived from A (T).

Random set theory provides solid foundations for investigating both sto-
chastic geometry and the observation and processing of images. For example,
convergence of random sets is a natural concept in the general theory which
has been applied to assess errors committed in digitizing an image, approxima-
tion of one image by another, and the stability of image processing transforma-
tions [31, Chapter VII] and to derive the statistically important laws of large
numbers and a central limit theorem for repeated observations of images [2,36].
The general setting also permits more involved discussion of the probabilistic
properties of image models, such as infinite divisibility and the semi-Markov
property [18,19]. It is a basic result that the probability distribution of a ran-
dom set X is determined by its avoidance function

QA4)=Prob(XNA=2), A= UT,, T.€J
=1
and the introduction of Q makes for a coherent approach to image models
[31,18].

The strongest link between image analysis and random set theory is surely
the trapping system. Any image is given to us through an array of detectors
(and perhaps subjected to edge detection processing, etc.) which can be formal-
ised as a trapping system. Further, the relationships between various forms of
image information (e.g. digitized versions on different lattices; grey tones) can
be studied by varying 7 in the stochastic model. The author feels that the great
potential of this method is yet unexplored.

5. Mathematical morphology

The work of J. Serra [31] establishes a coherent methodology for image
analysis which avoids the fragmentary character of most other approaches.
Mathematical morphology developed in parallel with random set theory, begin-
ning with Matheron’s [17] geostatistical work and Serra’s invention of the ‘tex-
ture analyzer’ image processing devices. The result is a combination of sound
theoretical criteria with practical experience. We can only convey the flavour of
the subject here.

Transformations of sets arise in many stochastic geometry problems. Con-
sider the grobability distribution of the random distance d(x, 4) from a fixed
set A CR? to a random point x ¢4 . Clearly P {d(x, A)<r} equals the proba-
bility that X falls in the region 4, = {x eR*d(x, A)<r} which we dub the
r-envelope of A. Equivalently A, is the set formed by placing a disc of radius
r around every point a €4 . The envelope transformation 4 —A ) is the sim-
plest example of a set transformation. If 4 = Dg is a disc then A,y = Dg+,,

11



while in general the shape of 4, is more rounded (with smaller holes) than
that of 4. It is argued that the function f,(r) = area (4) reflects essential
characteristics of the geometry of A. If A is convex then f,(r) = ar? + r.
length (04) + area (4), while if 4 is a finite set of points then f4 is piecewise
quadratic with a behaviour reflecting the sizes of gaps between the points. A
series of images Ay, . . ., A, could be differentiated or discriminated using the
derived functions f 4 (r), . . ., f4,(7).

The envelope operation can be performed on a discrete grid of points. A
simple algorithm is to scan the entire grid and, for each point x whose digital
neighbourhood includes a point of the current image 4, we mark x for inclu-
sion in the new image 4. Furthermore we can watch this process of expan-
sion for increasing r by repeating the algorithm, since (4(,))s) = A +5)- This
is done by texture analyzers.

The Minkowski sum of two sets A ,B CR? is defined as
A®B = {atbacA,beB}

in the sense of vector addition. If B is the disc D, then A ®D, = A4, the r-
envelope. More generally 4 @B is the superposition of translated copies of B
centred on each of the points of 4, if we take the origin 0 as the ‘centre’ of B.
Shifted copies of A4 are obtained when B is a single point, A ®{b} =
(a+b:acAd). Defining B= {—b:bcB} one can interpret A ®B =
{(x eR%:(x®B) NA = @}, the set of all ‘centres’ of shifted copies of Bwhich
intersect 4. Hence the transformation 4 -4 @B also has a clear interpreta-
tion in stochastic geometry, and can be claimed to reflect important charac-
teristics of the geometry of A. This and other set transformations can be
implemented on a discrete grid by including or removing points x according to
the state of the entire digital neighbourhood of x.

Minkowski subtraction of A,B CR? is defined by
AOSB = (A°®B)°

i.e. the complement A€ is enlarged by B. For example, if B = D, is a disc,
AOSD, = ({(xeA:d(x,A)=r} is the inner parallel set. In general
AOB = {xeA:x®BCA} is the set of all centres of copies of B contained
in A. This has a natural interpretation and the function g(r) = area (4 ©D,)
is claimed to contain essential information about the geometry of 4. Define
two further set transformations, the closure

A% = (4 ®B)OB
and opening
Ap = (ASB)®B.

Thus Ap is the union of all copies of B contained in A4 ; and A% is the result
of a similar operation on A. A set is B-closed, A®B = A, iff it is 9-closed in
the sense of Section 4 where J is the class of all translated copies of B. Apart

12



from their natural interpretation in stochastic geometry, A® and Ap can be
used to develop a rigorous definition of size and size distribution for images
[18,31].

The mathematical morphology approach to an image processing problem is
to select an image transformation (built from ©,0, AB Ay etc.) suitable to
the application, and make numerical analyses of the transformed images. One
chooses transformations either by experience, intuition about the scientific
problem, or by setting down criteria which the transformation must satisfy.

Some limitations of mathematical morphology as it currently stands call for
brief comments. The texture analyser is designed on a hexagonal point lattice
for the digitized image. Naturally the theory is strongly dependent on this
choice of instrumentation, and probably does not answer all questions about
random image models that are required in different applications. Associated
with the choice of instrumentation is the adoption [31, pp 8-15] of a list of
theoretical principles which notably excludes rotational stability. A hexagonal
grid has only three basic directions and there have been difficulties with the
analysis of image orientation or directionality. There may also be practical
reasons for employing a rectangular grid or other system of image detection -
for example, satellite data may already be in this form. Another problem with
all image analysis based on stochastic geometry is that images are not sharply
divided black and white sets, but grey tone functions. This is a drawback to
the widespread use of texture analyzers. Mathematical morphology for grey-
tone functions is under development [31, Chapter XII].

The author suspects one can be led astray by excessive analysis of a single
image, when this image is to be representative of a larger population. This
applies particularly in stereology, where the planar image is a random plane
section X NE of a three-dimensional body X which is the real object of
interest. It is then important that the sampling procedure used to generate
X NE should be known, and appropriate. Statistical inferences depend on the
sampling method used. It is not quite sufficient to base image analysis on con-
siderations of the trapping-system and other geometrical structures, without
incorporating statistical models for the origins of data.

6. Image irregularity, observation errors and geometric measure theory

Elementary formulae from stochastic geometry (see (1)-(3) in Section 2) are
widely used in stereology for measuring curve lengths, estimating surface areas
and so on. Yet these results were derived for ideal smooth curves and it is a
priori doubtful whether they apply to irregular images or images observed
under error.

An extreme example is fangent counting. Let C be a twice differentaible
plane curve, 8€[0,m) and T (f) = number of tangents to C parallel to direc-
tion 6. This would be found by scanning a straight line across the image
(parallel to 6) and counting the positions where the image is tangent to C. We
have

13



T

[T (8)d6 = [Ix(s)ds 8)
0 c

where «(s) is the curvature of C at point s. If the scan direction 6 is generated
at random (uniformly), #7°*(#) is a statistically unbiased estimator of the
total absolute curvature of C. Additionally if C is itself a random plane sec-
tion of a curved surface, then T° yields an estimate of the total ‘absolute’
surface curvature.

T ; "

PR

/ TAbS . 1O ponts of curve where
} tangent is paralel to scan ine

Even assuming that real images are differentiable, the tangent count is
unstable in the sense that small perturbations (kinks, ripples) in C may cause
large changes in 7% and k. More realistically if C is the boundary of a finite
union of convex compact sets (hence, almost everywhere differentiable) s
does not share the properties usually required of a good statistic. Serra [31,
p.141 ff] nevertheless shows that a precise and useful interpretation can be
given to the tangent count or ‘convexity number’ of such curves, and that this
can be approximately determined from a digitized image.

Practical stereologists and image analysts follow procedures for counting
‘tangents’ to image curves, even when these are irregular, thick or fuzzy, bro-
ken or digitized. A tangent counting algorithm may be built into the image
analyzing device. Mathematicians should be discussing the performance of
such algorithms, their relation to real geometry, and the effects of observation
errors.

14



Standard proofs of (1)-(3) and (8) do not accommodate a discussion of per-
turbations or errors, being applications of Fubini’s theorem to simple geometri-
cal models. We need the more powerful methods of geometric measure theory
[6], principally the coarea formula. Briefly, let M ,N be m- and n-dimensional
domains (rectifiable surfaces), m=n, and let p:M—>N be a Lipschitz-
continuous map. For almost every x €N, p Yx} = {zeM:p(z) = x} is an
m —n dimensional rectifiable set. If m =n, then p~'{x} is a finite set. There
is a function J"p defined on M called the approximate Jacobian of p, such
that the coarea formula

[f@Up)z)dH"z = [ [ f@)d¥m "z dX"x )
M Np {x)
holds for any J(™-integrable function f:M—R, where 9k is the k-
dimensional Hausdorff measure (‘k-dimensional volume integration’, see Sec-
tion 7).
Thus (9) is a kind of generalization of Fubini’s theorem which incorporates
the Jacobian for a change of variables.

To prove (8), for example, let C be a twice differentiable curve, and intro-
duce
C* = {(s,l):s €C, [ is the tangent to C at s }.

This is a one-parameter set of points in R2XR x[0,7). Apply the coarea for-
mula (9) to the map

p:C"=C, p(@s)l)=s.

1
This has (J'p)(s,/) = (1+«*) * where k = k(s) is the curvature of C, and
since p ~!{s} is a single point (s,/) we get

[fsDA+K) 2dIH D) = [f (s,0)ds
c ¢

for any function f . Similarly, for the map

q:C * 5[0,7), q(s,l) = direction of line /,

1
we have (J'g)(s,/) = (&*/1+«k%*. Since ¢~ '{#} consists of all pairs (s,/)
where / is parallel to 6, we get

m

[F 601+ W50 = [ 3 F(si0)db.
2

09 {0
If f =1, the sum on the right hand side above is T (g). Choosing
f(s,1) = lk| so that the two left hand sides agree, we get equation (8).

Now suppose that C is nondifferentiable, and that the experimenter has
some algorithm for counting or detecting apparent tangents to C. Let

C = {(s,/):s €R?[ is a line; the algorithm counts / as a tangent to at s }.
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Then under suitable conditions we may replace C* above by C and perform
the same calculations to get

[T @)d6 = [k(s)ds,

0 T
where T° is the experimentally observed tangent count, I' = p(C) is the set
of points at which tangents are detected, and k = J'q/J'p is a kind of gen-
eralized curvature. For example, let C be an irregular curve C(r) =
A(t)+e(), 0<t <1, where curve 4 is smooth and lle(z)||<<r. If the tangent
algorithm is such that s €4 and / is tangent to A ®D,, then I' = 4, and & is
a function of r and the curvature of A. Thus I is a rectified version of C.
Secondly, if C is smooth, but a tangent where k(s) is small may not be
observed, we get

E(#T™) = / Li(s ) | u (ks ))ds
C

where u (k) = probability of detecting a given tangent at curvature x. Further
examples are explored in [4].

Thus we still have a geometrical interpretation of the image analysis algo-
rithm when it is applied to non-ideal images. This is achieved by concentrating
on intrinsic behaviour of the algorithm or observation method, encapsulated in
the projection maps p ,q. More generally we can regard an image analysis algo-
rithm as an operator on images in the sense of generalized functions, and the
mathematical prerequisites for such an approach already exist [6].

7. Fractals

Mandelbrot [15,16] explored the concept of fractal (fractional dimensional)
sets initiated by Besicovitch, which have wide mathematical associations and
seem to be useful models for real images. The simplest kind of fractal set is
self-similar: if X can be divided into k disjoint sets each of which is congruent
to X after magnification by a factor a, then A = loga/ logk is the similarity
dimension of X. For curves A = 1; for a disc A = 2; but for the Cantor set,
k =2, a =3, A = log3/log2 is fractional. When X is magnified, its content
increases by a fractional power of the magnification. This extreme form of
fractal behaviour is not generally required (except in the limit of small scale).
Define for each real 1 =0 the ¢ -dimensional Hausdorff measure 3,

N
(X)) = lilrgx ¢,.inf{ > (diam S, :S ... ., Sy cover X diam S; <e}

i=1 :

where the infimum ranges over (say) all families of compact sets S; with diam-
eters less than e. The limit may be infinite. Define the Hausdorff-Besicovitch
dimension of X as

D(X) = sup{r=0:3"(X)<oo} = inf{r =0:3"(X) = o0}.
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Ht(x>=<;t - N{Z(diamsi)t:s'....,s cover X,
1]

840
dian5i<8>

Then X is fractal if D(X) is not an integer. If X is a random closed set (Sec-
tion 4), the topology of F is such that D(X) is a random variable.

Other examples of fractals include the graphs and zero sets of random con-
tinuous functions (the graph of Brownian motion is statistically self similar)
and limit sets of iterations of quadratic maps in the complex plane. The
viewer’s impression of a fractal curve is one of sharp irregularity and
unbounded oscillation.

Real objects and images do often behave non-linearly with magnification.
Coastlines are the best-known example. Given a picture of a fractal curve
(1<D <2) we could estimate D as the slope of the regression line relating
logL (a) to loga, where L(a) is an estimate of length obtained at magnification
a. Applied to coastlines this has produced a range of fractional dimensions,
which seem to reflect degrees of irregularity. A more serious application con-
cerns the measurement of lung membrane surface area [34, p. 156] from plane
section curves. Conflicting estimates based on different magnifications have
been reconciled and a consistent estimate of D obtained.

Many real phenomena and images have been described as ‘fractal’ and
their empirical values of D determined. The theory of ideal fractals has not
kept pace with this development of approximate fractals. Any empirical value
of D is a partial description of the image, at certain scales only, and over dif-
ferent scales the ‘dimension’ may vary. This should not be an objection to the
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use of fractals as a geometrical model (naturally any model is confined to a
chosen scale), but the meaning of a fractal approximation needs to be clarified
[10]. We have already observed that Hausdorff dimension fits into the general
theory of random closed sets, and indeed D (X) represents an asymptotic index
of the frequency of intersections between X and small traps D,,r —0. It seems
to the author that fractional dimensional irregularity could be better under-
stood from the empirical and statistical viewpoint of stochastic geometry.
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Typesetting at the CWI — Part 2

by Jaap Akkerhuis

Handling of tabular material
Although it is possible to do this “by hand”, the easiest way of handling tabu-
lar material is using the TBL [1] preprocessor. This preprocessor turns a simple
description of a table into TROFF commands.

I will illustrate TBL with some examples. The TBL preprocessor will only
process lines between the delimiters, .TS and .TE, and so, in general, a table
will look like

.TS
options ;
format .
data
« TE

The symbol @ in the input represents a tab character.
The first example is a three part table, with the first items centered, and the
rest of the items left adjusted.

Input:

=TS

box;

cCcic

L L L.

Language @ Authors ® Runs on

Fortran ® Many ® Almost anything
PL/1I ® IBM ©® 360/370

¢ ® BTL ® 11/45,H6000,370

BLISS @ Carnegie-Mellon ® PDP-10,11
IDS ® Honeywell ©® H6000

Pascal ® Stanford ® 370

«TE

The first part of this article appeared in CWI Newsletter no. 3 (June 1984).
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Output:

Language Authors Runs on
Fortran Many Almost anything
PL/1 IBM 360/370

C BTL 11/45,H6000,370
BLISS Carnegie-Mellon ~ PDP-10,11

IDS Honeywell H6000

Pascal Stanford 370

The following table has all entries boxed, and the first entry centered and
spanned. The complete table is expanded over the available line length as
well.

Input:

.TS

expand allbox;

cccccccecec

nnnnnnnnna

Type @ Vf @ If ® Wa @ Wg2 @ Ea @ Eg2 @ Wo @ Mhz
807 ©6.3® .9®30® 3.5 ® 750 ® 300 ® 50 ® 60
813 @10 ® 5 ® 100 ® 22 ® 2000 ® 400 ® 260 @ 30
815 6.3®1.6 ®25 ® 4 ® 500 ® 200 ® 56 ® 125
829A © 6.3®2.5040® 7 ® 750 ® 240 ® 87 @ 200
832A 6.3 ®1.6 @15 ® 5 ® 750 ® 250 ® 26 ® 200

Output:

Type \%3 If Wa Wg2 Ea Eg2 Wo Mhz
807 6.3 9 30 3.5 750 300 50 60
813 10 5 100 22 2000 400 260 30
815 6.3 1.6 25 4 500 200 56 125
829A 6.3 2.5 40 7 750 240 87 200
832A 6.3 1.6 15 5 750 250 26 200

22




The next table is more complicated. To get the complicated header right, it
uses the .T& (table continue) command. This table is boxed again, and has
some entries boxed, by using the | specifier. The = in the data part of the
table denotes a double line over the full width of the column. A _ specifies a
single line. The \* specifies a vertical aligned column. Note the difference
between this table and the “all boxed” one in the previous example.

Input:

.TS

box;

cfB's s s s s.

Ranges of Typical Commercial Spark Stations

T

c

c

c | l clclec.

® Range in nautical miles @ Wave-
Power @ _© \*

\A® Over sea @ Over Land @ length
required @ \*® _ @ \*

\*® \*® Flat ® Hilly ® Mountainous @ (metres)
.sp 0.5

-.T&

ninlilnlnlinln.

300 watts ® 100 ® 77 ® 30 ® 13 ® 300
\*® 100 ® 95 ® 73 ® 52 ® 1200

1\(12 kw ® 220 ® 170 ® 67 @ 28 @ 300
\*® 220 ® 210 ® 160 ® 115 ©® 1200

3 kw ® 280 ® 220 @ 84 ® 36 ® 300
\*® 280 ® 270 ® 200 ® 145 ® 1200

5 kw ® 340 ® 260 ® 100 ©® 43 ® 300
\A*® 340 @ 325 @ 240 ® 175 ® 1200

10 kw @ 470 @ 360 ® 138 @ 59 @ 300
\2*® 470 @ 450 ® 330 @ 240 ©® 1200

.nr x \n(.n-7n \" Remember position
.TE

.ta \nxuL \" set a tab

® \fIl(Sankey)\fP \" goto tab and print

s ¢
s c
| |
| I

O 0 o0 o0
nw unu non
nw nu —-——-—

&
|
|
|
|
|

o0 o0 o o s |
o0 o0 nn
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QOutput:

Ranges of Typical Commercial Spark Stations
Range in nautical miles Wave.
Power Over Land feng
—— Over sea

4 Flat | Hilly | Mountainous | (metres)

100 77 30 13 300

300 watts | 109 95 | 73 52 1200

220 170 67 28 300

LA kw 220 210 160 115 1200

3 kw 280 220 84 36 300

280 270 | 200 145 1200

5 kw 340 260 100 43 300

340 325 | 240 175 1200

470 360 138 59 300

10k 470 450 | 330 240 1200

(Sankey)

A more exotic use of TBL is to generate a picture with it, as in the next
example. The ce0 stands for centered equalwidth column with space of 0
ens* between the columns. Note that the complete table is centered on the
page as well.

Input:
.TS

center;
ce0 ce0 ce0 ce0 ce0 ce0 ce0 ce0 ce0 ce0 ce0 ce.

-0-0-0-0-0-0-0-0-0-0-0-
10.0.0.0.0.90.0.0.0.0.0+
10.0.080.0.0.0.010.0.01
10.0.0.0.0B0.0.0.0.0.0 |
10.2.0.0.0.0.0.0.0.0.0
- 0-0-@0-0-0+0-0-0-0-0-0-

* An en is the width on the character n in the current font.
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Output:

Handling of mathematics material

Mathematics material is handled by the EQN [2] preprocessor. Just as the TBL
preprocessor it arranges low level TROFF commands.

The input resembles a programming language which allows specification of the
equation to be typeset by describing the desired output in words. It is claimed
tlhat it is easy to use and one can learn to typeset an in-line formula like

f sinmx dx or displayed equations like
0
_ ko, _
D, = —3 expl—n- 277'1] -1 =

= 1 > [cos——zzk + i sin——zzk} —1| =

I
I
™M

n a2 n
[2 _ 2_21&} _ 23k
n n,/=, n

in an hour or so.

EQn will process everything in the input between .EQ, .EN and pairs of dol-
lar signs ($), the most used delimiters. The .EQ and .EN with their optional
arguments are copied through untouched.

The —ms-package will center the given equation. A .EQ L will make the
displayed equation a left justified block, and .EN I somewhat indented. An
optional third argument gives the equation number placed towards the right
margin.

.EQ I (3a).
a=b+c
-EN

a=b+c (3a).

Note that this is not a feature of EQN, but of the macro package actually
used. So if you want to have the equation number in front, you have to
rewrite the .EQ macro.
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One of the problems of the beginning user is that input spaces are nearly
always ignored, so the following different input lines

X=y+z

X =y + 2z

X = y
+ z

will all result in the same output:
x=y+z

The (input) spaces are only used as obligatory keyword delimiters, so
$x sub2$ will give you xsub2 instead of x,.

However, if you want to have spaces in the output, the ~ character will give
you a space and the . half a space. So

i~ e~

X =y + 2
will look like
x =y t+z

Subscripts and superscripts, special names and brackets
As you will have noticed before, subscripts are easily generated by the sub
command. Superscripts are made in the same way, so

X sup 2 + y sub k
gives
x®+y
Of course, more complicated matter can be treated in the same way:
e sup {i pi sup {rho +1}}
RLaw

The braces {} are used here to group things together. Everything between
them will be treated by EQN as a block. Also pi and rho are translated into
the corresponding Greek character. To get the braces itself one uses { and to
get large braces in the output, the left and right constructs are used. See
the examples in the following paragraph.
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Fractions and roots
In the following example, you see the use of big brackets and the way fractions
are made with the over construct.

left { a over b + 1 right }
~=~ left ( ¢ over d right )
+ left [ e right 1

{%4—1} = . [e]

Square roots are made just as easily

d

sqrt atb

Va+b

One should avoid big square roots, they don’t look nice.

sqrt {a sup 2 over b sub 2}

a

by
One can better rearrange the formula so as to get

(a®/ by)*

This is done by
(a sup 2 /b sub 2 ) sup half

Large operators and matrices
Large operators like integrals and summations are made straightforwardly as
in:

prod from { i != j } ton
£ ( 1-x sub i x sub j sup =1 ) } sup k
- -1k
H(l_x,'x,' )
i

A matrix is made by

matrix {
ccol { x sub i above y sub i }
ccol { x sup 2 above y sup 2 }
b

which results in
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i y°
There are more ways of placing things on top of each other, and also for let-
ting parts of an equation line up with each other. Also, font changes can take
place on demand.
As a last example, here follows the input of the big display from the begin-
ning. Note the use of defining macros with define name @ macro body a.

.EQ I
define T1 @ 1 over n sum from { k =1 } ton a
D subn ~ mark =~ T1 left | = exp
left ( k over n ~ 2 pi i right ) "-1 right | 7=
-EN
.EQ I
lineup = = T1 left | ~ left ( cos { 2 pi k } over n
“~+ "3 " sin {2 pi k } over n right )
“ -1 right | ~=
-.EN
.EQ I
lineup = ~ T1 left ( 2 " - 2 cos {2 pi k } over n
right ) sup { 1 over 2 } "= 2 over n
sum from { k =1 ) to n sin { pi k } over n
.EN

Bibliographic references
An application of inverted indices on the UNIX system is the refer [3] prepro-
cessor. This program makes it possible to give an imprecise citation in the
text, which is translated into a proper reference. The database of citations
searched may be tailored to each system, and individual users may specify
their own citation files.

For example, the reference for TEXTSCHAAF was specified by

handled by the EQN
.L

tekstschaaf Grune
oy |

preprocessor

There are various styles in which the references can appear, for instance, in
a footnote, or in a list which can be sorted on various items at the end of the
paper (as done here). Also the style of the labels used can be varied.
Although refer provides the necessary information to do this, the actual imple-
mentation of how the output looks, as usual, is dependent on the macros pack-
age actually used.
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Handling of graphics material
Typesetters are not really made for this, but it is sometimes possible to turn
them into drawing machines. For drawing pictures there exists the pIC [4]
preprocessor. It implements a language of the same name for specifying sim-
ple figures. The basic objects in PIC are boxes, circles, ellipses, lines, arrows,
arcs, spline curves, and text. These may be placed anywhere, at positions
specified absolutely or in terms of previous objects. Just like the other prepro-
cessors, PIC only looks at the part between certain macros, .P$ and .PE.

I will not explain all the details of the language in this article but I hope the
next example, which has been taken straight out of the user manual, will give a
general idea of how pictures are made.
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This picture was generated with the following input:

.PS

1 h = .51

2 dh = .02i

3 dw = .1i

4 C

5 Ptr: [

6 boxht = h; boxwid = dw

7 A: box

8 B: box

9 C: box

10 box wid 2*boxwid "..."

1" D: box

12 ]

13 Block: [

14 boxht = 2*dw; boxwid = 2*dw
15 movewid = 2*dh

16 A: box; move

17 B: box; move

18 C: box; move

19 box invis "..." wid 2*boxwid; move
20 D: box
21 ] with .t at Ptr.s - (0,h/2)
22 arrow from Ptr.A to Block.A.nw
23 arrow from Ptr.B to Block.B.nw
24 arrow from Ptr.C to Block.C.nw
25 arrow from Ptr.D to Block.D.nw
26 ]
27 box dashed ht last []l.ht+dw wid last []l.wid+dw at Llast L[]

«PE

The line numbers don’t belong to the input, they have been inserted for the
sake of the following explanation only.

The first three lines give values to later used constants. These values are in
inches, but could have been scaled to centimetres if the scale=2.54 had been
issued first.

Any sequence of PIC statements may be enclosed in brackets [...] to form
a block, which can than be treated as a single object, just as the braces are
used for grouping with EQN. At line 4 a big block starts, consisting of two
other blocks made again with the square brackets and some arrows.

These two blocks are labeled with Ptr and Block, which allows them to be
referenced later by name. The labels refer to the center of the blocks.

The block Ptr is made out of several boxes which will get their sizes
specified in line 6. At line 10 a box is specified twice the size of the default
box (in the current block) with a text consisting of periods in the middle of it.
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The second block Block is specified in a similar fashion. Note that on line
19 an invisible box is specified, which contains ... as text.

Line 21 will place the block Block with its top (.t), at the South of block
Ptr (Ptr.s), moved over the vector (0,h/2) downwards.

Line 22 specifies that an arrow be drawn from the center of box A in block
Ptr to the North-West corner of the box A in block Block.

At the last line (27), a box is specified with a dashed line style and a height
(ht) of the height of the last block plus something extra, ([1.ht+dw). Also,
the width is specified and finally this box is placed on top of the previous
(conceptual) block, with the centers aligned (at last [J).

More pictures
Yet another preprocessor is IDEAL [5]. It implements a language for describing
pictures with the same name. It has similar capabilities as PIC.

Some conclusions

The UNIX typesettings tools produce a fine quality of printed material with a
relatively small claim on the financial and manpower budget of a medium
scale research institute like the CWI.

What really made the system a success is its modularity and flexibility.
Separate modules are used for separate functions which implies that if you are
not using a certain function, you leave out the module, and so you won’t get a
surprising effect when you accidentally trigger a function in the system you are
not aware of.

An advantage of this separated functionality is that the next complicated
looking output can easily be made. Mathematics as well as graphics are used
inside the following table.

Text Equation Graphics
circle x%* + y?=1r? Q
2 z
: x Yoo
ellipse — + =1
P a? b?

To have a text processing system as described here around, has its influence
on the people dealing with it. Although the quality of the printed material is
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superior to what was produced before, there tends to be more criticism of it
than before. Partly this criticism is justified. There are some defects in the
system that need to be changed. The programs currently in use have actually
never officially been released for use in a production environment. There is
still work going on to make them more stable and to increase the quality of
the output.

Also people tend to have difficulties proofreading material to be typeset. A
lot of the time there are complaints about the appearance of the text, while the
contents should be checked. Some people have strong objections to checking
the contents of a text when the output is produced by simulating the typesetter
on a cheaper raster style device. I guess that this is the price to pay for “in
house” text processing.
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Order Statistics, Quantile Processes
and Extreme Value Theory

Oberwolfach Meeting from 25" to 31" March 1984

by R. Helmers

This meeting, organized by R.D. Reiss (Siegen) and W.R. van Zwet
(Leiden), brought together 43 researchers working in three different, though
closely related, fields in probability and statistics: order statistics, quantile
processes and extreme value theory. In this report I shall survey a number of
recent developments that were discussed at the conference. Specifically I shall
deal with the following subjects: spacings theory, empirical and quantile
processes, estimation of the tail of a distribution, extreme value theory, and a
miscellaneous category.

Spacings theory

The talks in this section dealt with functions of uniform k-spacings. Statis-
tics of this type play an important role in a number of different contexts, such
as tests for uniformity, Poisson processes and non parametric density estima-
tion.

Consider a sequence U},U,,... of independent random variables (observa-
tions), each of them distributed according to the uniform distribution on [0,1],
and let, for eachn = 1, Uy, < --- < U,, denote the first n U;’s ordered
in ascending order of magnitude. Set Uy, = 0 and U, ., = 1. Uniform
spacings are defined by D;, = U, 4.4~ U,y (0<<i <n), the gaps induced by the
‘random points’ Uy,...,U, in the interval [0,1], and, more generally, uniform k-
spacings by Dig = Uitxn — Ui O<i<n+1-—k). Let M, = max D,

o<i<n

the maximal spacing or maximal gap, and M,, = max D, the maxi-
o<i<n+1-k

mal k -spacing. Of course M,,; = M,,.
As early as in 1939 P. Levy found the limit distribution of M,:
lim P(nM, < logn+x) = exp(—e *) for all x € R. It is well-known that

n—oo

the distribution function exp(—e ™ *) has mean y = 0.5772- - -, Euler’s con-

stant, and variance ra In Devroye (1981) it was noted that indeed the

expected value E(nM, —logn) — y and the variance o*(nM,,)) - 1762—, as

n — oo, as one may expect from Levy’s result. However, the question
remains: how small or large can the maximal gap M, be as n gets large? In
Devroye (1982) it was proved that, with probability 1,
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lim inf (nM, —logn +logloglogn) = —log2

n—oo

and (H

. nM, —logn

TP 2loglogn
At the conference Deheuvels (joint work with L. Devroye) proved similar
strong limit laws (n —o0) for M,, and related statistics, both when k is fixed
and when it is allowed to increase with n at a rate not exceeding logn. If k is
fixed, then, with probability 1,

nM,, —logn —(k —1)loglogn

o -
h:riglf logloglog n
and @
) nM,, —logn —(k —1)loglogn
lim su B £ =
pvig 2loglogn

Note that (2) includes the case k =1, for which (2) is implied by the more
refined result (1). Clearly k affects only the second order terms in (2). This
means that if the maximal spacing M, is either ‘small’ or ‘large’, the maximal
k -spacing M, is likely to be of the same order of magnitude. If, on other
hand, kK = k(n) — oo, but k = o(logn), then, with probability 1,

nM,, —logn
(k — Dlog 182

-1 3

Again, as in (2), nM, is of the order of logn. A correction term
(k—l)log(e—ll(igﬂ) is also established. In reference [3] the deviation of

nM,;, —logn from this correction term is studied. Also the case k = clogn, for
some constant ¢ > 0, was considered in the talk as well as results for the
non-uniform case.

Berry-Esseen bounds and Edgeworth expansions for statistics of the form
2o g((n+1)D,,) for a fixed function g, were derived by Does (joint work
with R. Helmers and C.A.J. Klaassen). Klaassen proved a general limit
theorem for conditional statistics, with an application to uniform k -spacings.

Empirical and quantile processes

In a three part talk M. Csorgo, S. Csorgé and D.M. Mason (joint work
with L. Horvath), introduce a new Brownian Bridge approximation to the uni-
form empirical and quantile processes and discuss applications in probability
and statistics. To explain their result we need a bit of notation. Let I', denote
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Ly (s)
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/
/ + t — > 5

0 Un:l Un:2 Un n 1

0

the empirical distribution function based on U,,..,U,; i.e. I',(s) is the propor-
tion of the U;’s (1<<i<n) which are < s (0<s<1). The uniform empirical
process a,, is given by a,(s) = n*(T,(s)—s), 0<s<1. Also let Q, be the uni-

—1
2 <S<L

form empirical quantile function; Q,(s) = U;.,, for p,

n
(1<i<n) and Q,(0) = 0. So Q, is the left-continuous inverse of I',. The
uniform quantile process B, is given by B,(s) = n"(s —Q,(s)), 0<s<I.
Finally let B(s), 0<s <1, denote a Brownian Bridge, i.e. a real-valued, zero-
mean Gaussian process with continuous sample paths and covariance function
EB(s)B(t) = min(s,t)—st, 0<s,t<1.

A probability space is constructed with a sequence of independent uniform
(0,1) random variables U,,U,,... and a sequence of Brownian Bridges B ,B),...
defined on it, such that for all 0<<r<</

JSUp e ()= By ()] /(s(1=)* " =0, (1) @

where E,, (s) = B,(s)forn ! <s < 1—n""! and zero elsewhere; in addition
one also has forall 0 < » < %
i —B 1— B9 — 10) = 5
SR BB /(1 =5) ) O
Here O,(n ") has the standard meaning that n” times the Lh.s. of (4) and (5)
remain bounded in probability as n gets large.

In a way these Brownian Bridge approximations improve upon the well-
known ‘KMT-embedding’ for a,, due to Komlos, Major and Tusnady and also
known as the Hungarian embedding, and the parallel result for B,; the
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improvement is in the ‘tails’, i.e. in neighbourhoods of zero and one. The con-
structions (4) and (5) were successfully applied to certain asymptotic problems
involving the tails of a, and B,. Examples of such problems, which were men-
tioned in the talks, include: a refined Chibisov-O-Reilly theorem for the weak
convergence of weighted empirical and quantile processes, a new proof of the
Jaeschke-Ficker limit theorems, and central limit theorems for sums of extreme
order statistics.

In the talk of Révész a very delicate strong invariance principle was
presented for the local time vy, of a,; here y, is the number of zero crossings
of a,. Révész proved that one has with probability 1,

In =%y, —m(n)| = O(n~"*) (6)

for any €>0, where the process 7(z), t = 0 denotes the (carefully defined)
local time of a Kiefer process. As an application of (6) we have, with probabil-
ity 1,

lim sup - S @)
noo Vnloglogn V2
Ruymgaart (joint work with J. Einmahl and J.A. Wellner) established a Chi-
bisov O-Reilly result for the weak convergence of weighted empirical processes
for the multidimensional case, both when the process is indexed by points (the
classical case) and when it is indexed by rectangles. Steinebach proved an
improved Erdés - Rényi strong law for moving quantiles.

The talks in this category discussed so far emphasise a probabilistic point
of view. In contrast, the two part talk of Basset and Koenker contributes signi-
ficantly to problems of statistical applications, e.g. in econometrics. Their idea
is to estimate the error structure in linear models with the aid of an empirical
regression quantile function. The behaviour of associated quantile processes is
studied and applications discussed. Other talks in this category were by Boos
(estimation of large quantiles) and by Falk (kernel type estimators of a popula-
tion quantile).

Estimation of the tail of a distribution
Consider a distribution function F with regularly varying upper tail, i.e.
1 — F(x)=x"MM(x), x>0 ®)

where A > 0 denotes the tail index of F and L is slowly varying at infinity.
The problem is to estimate A on the basis of n independent observations
X1,...X, from F. Hill [4] proposed the estimator

>\n = (k_l 2ik:I 10g)(an»l:n _loan—k:n)_l (9)
where X, < -+ < X,.,, are the ordered X;’s. For simplicity we suppose
F(0) = 0. The integer k (1<k <n) depends on n in such a way that

k = k(n)—> oo, k(n)=o(n) (10)
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Three talks were devoted to the problem of the asymptotic normality of A,.
Haiisler showed that \/En—) (A, —A) is asymptotically normally distributed, pro-
vided k(n) — oo sufficiently slow. If some knowledge about L is available
then the sequence k = k(n) can be determined explicitly. Smith dealt with the
same problem from a different point of view: k = k(n) is now the random
number of exceedances of a given threshold level x,. Again to determine x,
information about L is required. S. Csorgé (joint work with D.M. Mason)
showed that the Brownian Bridge approximation (5) can be applied to estab-
lish the asymptotic normality of A,,.

While attending the meeting S. Csorgo, P. Deheuvels and D.M. Mason
wrote paper [5]. In this paper these authors introduced a new class of estima-
tors of A, which can be viewed as the inverse of the convolution of a kernel
function with the logarithm of the empirical quantile function of the X;’s.
Asymptotic normality is established with the aid of (5) and optimal kernels are
selected that give more weights to the extreme observations then Hill's A,,.

Extreme value theory

Extreme value theory in concerned with the asymptotic behaviour of sam-
ple extremes. The central result in this area is of course Gnedenko’s theorem
stating that the limit distribution of the normalized maximum X, ., of indepen-
dent and identically distributed random variables X,...,X,, if it exists, must be
one of three types: of the well-known extreme value distributions. Balkema
(joint work with L. de Haan and S. Resnick) gave rate of convergence results
for the case that the X;’s are in the domain of attraction of the extreme value
distribution exp(—e ™ *).

It is known that under appropriate ‘long range’ and ‘local’ dependence con-
ditions, classical extreme value theory remains true for dependent (stationary)
sequences. Leadbetter discusses what happens if the ‘local’ dependence condi-
tion is relaxed. The answer turns out to be that the asymptotic distribution of
the maximum is essentially unchanged, whereas the distributions of the other
extreme order statistics are altered in a specific way. This phenomenon is
caused by the fact that the point processes of high exceedances, which are clas-
sically Poisson, now involve clustering.

Other talks in this category were by de Haan (records from an improving
population), Hiisler (extreme value theory for non-stationary sequences),
Meizler (extreme value theory for independent but not identically distributed
random variables), Lindgren (optimal prediction of upcrossing of a critical
level by a stationary Gaussian process), Rootzén (behaviour of extremes of
moving averages) and Tiago de Oliveira (extreme value theory for bivariate
random variables).

Miscellaneous
Daniels discussed the joint distribution of the maximum of a random walk
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and the time at which it is attained. Asymptotically the problem is related to
one involving Brownian motion in presence of a parabolic boundary. This
bears some resemblance with recent work at CWI by P. Groeneboom and
N.M. Temme on the statistical problem of estimating a monotone density.

The other talks dealt with the saddle point method and M -estimators
(Dinges), the asymptotic behaviour of the Li-error of density estimators
(Gyorfi), generalized L -statistics (Helmers; joint work with P. Janssen and R.J.
Serfling), order statistics in the non ii.d. case and the influence of outliers
(David, Gather, Mathar), order statistics in insurance mathematics (Teugels),
order statistics and symmetric functions (Riischendorf), test for a change point
model (Mittal), and a multivariate two sample test based on nearest neigh-
bours (Henze).
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MC Tract 164. F.A. van der Duyn Schouten. Markov Decision Processes with
Continuous Time Parameter.

AMS 60B10, 60G17, 60J25, 90B05, 90B25, 90C47, 93E20; 195pp.

Abstract: We deal with continuous time Markov decision drift processes (CTMDP), which permit
both controls affecting jump rates of the process and impulsive controls causing immediate transi-
tions. Between two successive jump epochs the state of the process evolves according to a deter-
ministic drift function. Given a CTMDP we construct a sequence of discrete time Markov deci-
sion drift processes (DTMDP) with decreasing distance between the successive decision epochs.
Sufficient conditions are given under which the law of the CTMDP controlled by a fixed policy is
the limit (in the sense of weak convergence of probability measures) of the laws of the approximat-
ing DTMDPs controlled by fixed discrete time policies. These conditions concern both the param-
eters of the CTMDP and the relation between the discrete time and continuous time policies.
Based on these conditions for weak convergence we derive relations between the discrete time and
the continuous time optimal policies for the discounted cost criterion. In this way discounted
optimality results for a CTMDP are obtainable from the corresponding results of a DTMDP.
These discounted optimality results for a CTMDP are in turn the base for the analysis of the aver-
age cost criterion. Applications to an M/M/1 queueing model, a maintainance-replacement model
and an inventory model are given.

CWI Tract 1. D. Epema. Surfaces with Canonical Hyperplane Sections.

AMS 14C30, 14J10, 14J15, 14J17, 14J25; 106pp.

Abstract: We study a special case of surfaces, characterized by the property that they can be
embedded in some projective space in such a way, that a general hyperplane section is a canonical
curve. The main examples are quartics in P? with isolated singularities and double covers of p?
branched along a sextic. First, we derive general properties of these surfaces, but for the greatest
part we focus on those surfaces with this property, which are birational to a ruled surface over an
elliptic curve. This leads to a detailed description and classification of all quartics in P> with either
a singularity of genus 2, or with two simple elliptic singularities, and so the construction of a
moduli variety for the double covers of P°. We conclude with a discussion of the mixed Hodge
structure on the cohomology groups of a certain open part of the minimal resolution of these sur-
faces, and the description of a period map for the double planes.

CWI Tract 3. AJ. van der Schaft. System Theoretic Descriptions of Physical

Systems.
AMS 93-02, 93B05, 93B10, 93C05, 93C10, 58-02, 58F05, 70D05, 70HOS5;

256pp.

AbsuPaIzt: In this monograph the dynamical behaviour of physical systems is described including
their interaction with the environment. This interaction or external behaviour is given as the time-
evolution of the external variables, just as the internal behaviour is given by the state variables. In
order to do so the usual framework of mathematical system theory is enlarged by not requiring a
priori that the external variables are split into inputs and outputs. This framework is explored for
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set-theoretic, linear and smooth nonlinear systems, emphasizing a “geometric” approach. The cen-
tral part of the monograph is concerned with the treatment of Hamiltonian systems from this
point of view. Roughly speaking the symplectic formulation of the Hamilton and Euler-Lagrange
equations without external forces is extended to the original equations with external forces. Gra-
dient systems are similarly treated. Furthermore, symmetries, conservation laws and time-
reversibility are dealt with in this setting, and the developed theory of Hamiltonian systems is
applied to optimal control.

CWI Tract 4. J. Koene. Minimal Cost Flow In Processing Networks, A Primal

Approach.

AMS 90B10, 90C35; 157pp.

Abstract: In the past decades the so-called pure and generalized network flow problems have been
investigated thoroughly. This tract is concerned with a more general type of network flow prob-
lems, namely processing network problems. In a processing network it is allowed that a given flow
splits up proportionally in a number of components (a refining process), or in reverse, that a
number of components is blended in given proportions (a blending process). Moreover, the same
requirements hold as in pure or generalized networks, giving rise to two types of processing net-
works: pure and generalized networks. The processing network structure appears among others in
production planning environments in the process industry and in energy, assembly and economic
models. Since processing network problems can be formulated as LP-problems, they can be solved
by standard LP-programs. However, in large size applications, much computer time and storage
requirements might be saved if solution techniques were available in which the (processing) net-
work structure is exploited. Primal simplex algorithms for both pure and generalized processing
network problems are developed. We present a characterization of a basis in terms of the network
and yield a natural way to partition a basis. The steps of the simplex algorithm can partially be
done by using techniques developed for pure and generalized networks. On the other hand a so-
called working basis is required. This working basis has a size equal to the number of basis refin-
ing and blending processes and is maintained in block triangular form. Using these results we pro-
vide an algorithm for solving processing network problems with additional linear constraints. The
relation between processing networks and general linear programming is discussed. It is shown
that any linear programming problem can be transformed to a pure processing network problem.

CWI Tract 5. B. Hoogenboom. Intertwining Functions on Compact Lie Groups.
AMS 17B05, 22F30, 22F46, 33A65, 33A75, 43A90; 86pp.

Abstract: We consider a generalization, called intertwining functions, of spherical functions on a
compact semisimple Lie group. These are matrix coefficients of some irreducible representation of
U, which are left - K -, and right - H - invariant; K and H being the fixed point groups of two
commuting involutions on U. It is shown that the intertwining functions on U can be considered
as orthogonal polynomials on some region in R’ with respect to a certain positive weight function.
This generalizes results of Vretare in the spherical case. In the course of this, a structure theory for
real semisimple Lie algebras with two commuting involutions is developed. We also prove a gen-
eralized Cartan decomposition for U, and finally the orthogonal polynomials constructed before
are characterized as eigenfunctions of the K,H -radial part of the Laplace-Beltrami operator on U.

CWI Tract 6. A.P.W. Bohm. Dataflow Computation.

AMS 68A05, 68F10, 68F20; CR C.1.3, D.3.2, F.1.1, F.2.1, F.3.2; 208 pp.
Abstract: This monograph is devoted to dataflow computation, a particular kind of parallel compu-
tation. Chapter One gives a short overview of parallel computers and their underlying model of
computation. The dataflow model of computation is discussed in some detail. A dataflow net is a
directed graph in which the nodes represent processing elements and the edges represent data
paths. An existing dataflow machine, the Manchester Dataflow Machine, is discussed.

Chapter Two introduces an elementary dataflow model, which differs from the widely accepted
model of Rodriquez and Adams in that it mirrors the time-dependent, non-functional behaviour of
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dataflow machines. It is shown that for so called well-formed dataflow nets the asynchronous,
parallel execution mode does not lead to non-functional behaviour. The model is shown to have
universal computing power. Other models of computation are simulated.

Chapter Three introduces a programming language with explicit parallelism at the procedure level.
A program in execution is a dynamically changing network of processes which communicate with
each other via channels (hence the name of the language: DNP for Dynamic Networks of
Processes).

Chapter Four presents a number of algorithms in DNP, which are believed to be prototypical for
dataflow computing. The complexity of the algorithms is analysed. It is shown that not all classes
of computation graphs can be generated by DNP. Ways to overcome this are indicated. A com-
parison is made with the standard complexity classes.

In Chapter Five DNP programs from Chapter Four are proved correct. The proofs are based upon
a semantics of DNP according to Kahn’s ideas.

CWI Tract 7. A. Blokhuis. Few-Distance Sets.

AMS 05-02, 05B25, 05B35, 06C10, 51K99, 51M10, 52A40; 70pp.

Abstract: In this tract bounds are derived for the cardinality of point sets with few distances in
Euclidean space and on the “unit-sphere” of inner product spaces with arbitrary signature. Espe-
cially the case of hyperbolic space, R?, yields sharp bounds, also for the related problem of
equiangular lines. A theorem of Frankl and Wilson concerning few distances modulo a prime is
generalized to Delsarte spaces. A problem of Erdds on few-distance point sets is shown to be
related to 2-distance sets and solved. It is shown that graphs satisfying: 1) 3k such that each
maximal clique has k points; 2) Je such that each point p has e neighbours in any maximal
clique not containing p, have a highly geometric structure, resembling that of polar spaces.

CWI Syllabus 1. Vacation-course 1984: Hewet-plus mathematics.

233pp. (in Dutch).

Abstract: This syllabus, for high-school teachers of mathematics, contains fourteen articles on
operations-research, matrix algebra, statistics and probability theory, geometry in three-
dimensional space, mathematical modeling, and computer science.

CS-R8408. J.A.M. van de Graaf. Towards a specification of the B programming
environment.

AMS 68B20; 23 pp.; key words: programming environments, personal comput-
ing, B.

Abstract: A primary aim in the design of a dedicated environment for the B programming
language has been to make the environment easy to use and to learn. We tried to achieve this by
tuning the features to the expected use, by integrating the language and the environment and by
allowing only a limited number of powerful, coherent concepts which have in varying context a
similar meaning. This report contains an informal description and a tentative specification of the
environment.

CS-R8409. J.A. Bergstra & J.W. Klop. Process algebra for communication and
mutual exclusion. Revised version.

AMS 68B10; 33 pp.; key words: concurrency, communicating processes, pro-
cess algebra, merge, critical regions, asynchronous cooperation, synchronous
cooperation.

Note: This report is a revised version of IW 218/83.

Abstract: Within the context of an algebraic theory of processes we provide an equational specifi-
cation of process cooperation. We consider four cases: free merge or interleaving, merging with
communication, merging with mutual exclusion of critical sections and synchronous process
cooperation. The rewrite system behind the communication algebra is shown to be confluent and
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terminating (modulo its permutative reductions). Furthermore, some relationships are shown to
hold between the four concepts of merging.

CS-R8410. J.A. Bergstra, J.W. Klop & J.V. Tucker. Process algebra with asyn-
chronous communication mechanisms

AMS 68B10; 23 pp.; key words: concurrency, communicating processes, asyn-
chronous communication, stimulus-response mechanism.

Abstract: Algebraic specifications are given for a stimulus-response mechanism, for asynchronous
non-order-preserving send and receive actions and for asynchronous order-preserving send and
receive statements.

CS-R8411. J.A. Bergstra, J. Heering & J.W. Klop. Object-oriented algebraic
specification: proposal for a notation and 12 examples.

AMS 68CO01; 25 pp.; key words: object-oriented specification, algebraic specifi-
cation, configuration transition system, transformation rule.

Abstract: A notation is introduced for expressing the dynamic behaviour of configurations of
objects. At each instant of time a configuration is just a multi-set of objects which themselves are
points (values) from some algebraically specified abstract data type. Several examples should con-
vince the reader of the attractive expressive power of our notation.

CS-N8402. L.J.M. Geurts. Computer programming for beginners. Introducing
the B language, Part I.

CR D.3.3; 85 pp.; key words: programming, programming languages, B.
Abstract: This report contains part 1 of a first course in programming based on the new program-
ming language B. B is a programming language designed specifically with the beginner, and all
other ‘non-professional’ computer users, in mind. Most elementary programming techniques and
most of the features of B are presented. The focus is on designing and writing programs, not on
actually entering programs in the computer, changing those programs, etc.. Many short programs
are shown, or asked to be written by the reader as exercises. The text is self-contained, and may be
used in courses or for self-study.

CS-N8403. C.L. Blom, A. Chaudry, P.JW. ten Hagen, L.O. Hertzberger, A.
Janssen, A.A.M. Kuyk, F. Tuynman, & W.E. van Waning. A strategy for com-
puter integrated manufacturing systems: Processing and communication.

AMS 69L60; 132 pp.; key words: Computer Integrated Manufacturing (CIM),
CAD/CAM, Flexible Manufacturing System (FMS), sensor systems, robot
vision, solid modeling, design, computer networks, processing technology, com-
munication technology.

Abstract: In 1983 the European Economic Commission launched a research program called ‘Euro-
pean Strategic Program for Research and Development in Information Technology’ (ESPRIT).
Since manufacturing is an important application area of Information Technology, attention has to
be paid to the evolving integration of Computer Aided Design (CAD), and Computer Aided
Manufacturing (CAM). In order to understand and optimize this process, a research project was
initiated to establish ‘Design Rules for Computer Integrated Manufacturing (CIM) Systems’. As a
first step, the state-of-the-art in two main areas of Information Technology (Processing and Com-
munication Technology) was investigated with respect to key modules of both CAD and CAM, in
order to identify well-founded strategies aimed at optimal support for the various Computer
Integrated Manufacturing activities, especially from the point of view of Processing and Communi-
cation Technology.

CS-N8404. S. Pemberton. A user’s guide to the B system.
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AMS 69D49; 10 pp.; key words: programming languages, B, programming
environments.

Abstract: B is a new interactive programming language being developed at the CWI. This report
gives a brief introduction to the use of the current B implementation. It does not teach about the
language, for which you should refer to CS-N8402.

CS-N8406. L.G.L.T. Meertens & S. Pemberton. An implementation of the B
programming language

AMS 69D44; 8 pp.; key words: programming language implementation, pro-
gramming environments, B.

Abstract: B is a new programming language designed for personal computing. We describe some
of the decisions taken in implementing the language, and the problems involved.

OS-R8406. P.J.C. Spreij. An on-line parameter estimation algorithm for counting
process observations.

AMS 60G55; key words: counting process, martingale, estimation, stochastic
Lyapunov function.

Abstract: The parameter estimation problem for counting process observation is considered. It is
assumed that the intensity of the counting process is adapted to the family of o-algebras generated
by the counting process itself. Furthermore we assume that the intensity depends linearly on some
deterministic constant parameters. An on-line parameter estimation algorithm is then presented
for which convergence is proved by using a stochastic approximation type lemma.

0S-R8407. J.P.C. Blanc, E.A. van Doorn. Relaxation times for queueing sys-
tems.

AMS 60K25; 20 pp.; key words: queueing system, relaxation time, time-
dependent behaviour.

Abstract: When a stochastic queueing model is used for performance analysis of, e.g., a computer
or communication system, the steady-state situation is usually assumed to prevail. Since many sys-
tems exist where the validity of this assumption is questionable, while determination of the time-
dependent behaviour of the system is difficult or even impossible, some simple means of character-
izing the speed with which system performance measures tend to their steady-state values are
called for. In this paper the concept of relaxation time is put forward to provide such a characteri-
zation. We give a survey of results pertaining to relaxation times for a variety of queueing models.
Also, some conjectures and open problems are mentioned.

0S-R8408. J.P.C. Blanc. The transient behaviour of networks with infinite server
nodes.

AMS 90B22; 18 pp.; key words: Jackson network, transient behaviour, relaxa-
tion time.

Abstract: How long does it take before the number of jobs in a Jackson network is within, say, 1%
of its steady-state value, when the system starts working at time O with given numbers of jobs at
the various nodes? How is this amount of time related to the relaxation time of the mean number
of jobs in the network? These questions are discussed in detail for networks with infinitely many
servers at each node. Conjectures are formulated for networks with finitely many servers at the
nodes on the basis of similarities with the infinite case for networks with one or two nodes.

OS-N8401. J.M. Anthonisse. Proportional representation in a regional council.

AMS 90B10; 16 pp. (in Dutch); key words: Proportional representation.

Abstract: The members of a regional council are appointed by and from the local councils which
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participate in the regional cooperation. The regional council should constitute a fair representa-
tion of the local interests and also a fair representation of the political views. A method is
presented for determining the number of members to be appointed by each local council from each
political party. The method consists of solving two (maxflow-mincost) network flow problems.

NM-R8404. J.G. Verwer & J.M. Sanz-Serna. Convergence of method of lines
approximations to partial differential equations.

AMS 65X02; 14 pp.; key words: initial value problems, partial differential
equations, method of lines, stiff differential equations, nonlinear problems,
convergence analysis.

Abstract: Many existing numerical schemes for evolutionary problems in partial differential equa-
tions (PDEs) can be viewed as method of lines (MOL) schemes. This paper treats the convergence
of one-step MOL schemes. Our main purpose is to set up a general framework for a convergence
analysis applicable to nonlinear problems. The stability materials for this framework are taken
from the field of nonlinear stiff ordinary differential equations. In this connection, important con-
cepts are the logarithmic matrix norm and C-stability. A nonlinear parabolic equation and the
cubic Schrodinger equation are used for illustrating the ideas.

NM-R8405. J.M. Sanz-Serna & J.G. Verwer. Conservative and nonconservative
schemes for the solution of the nonlinear Schrodinger equation.

AMS 65M10; 24 pp.; key words: numerical analysis, nonlinear Schrodinger
equation, time integration, conservation of energy.

Abstract: Five methods for the integration in time of a semi-discretization of the nonlinear
Schrodinger equation are extensively tested. Three of them (a partly explicit scheme and two split-
ting procedures) are found to perform poorly. The reasons for their failure, including the so-called
nonlinear blow-up, are analyzed. We draw general conclusions on the advantages and drawbacks
associated with the use of time-integrators which exactly conserve energy.

NM-R8406. F.W. Wubs. Evaluation of time integrators for shallow-water equa-
tions.

AMS 65M20; 32 pp.; key words: method of lines, linear stability, shallow-
water equations, efficiency of time integrators, storage reduction.

Abstract: In this report some well-known time integrators for shallow-water equations are
described and compared with each other with respect to efficiency. In particular, the efficiencies
of low-order versus high-order methods and of implicit methods versus explicit methods are con-
sidered. Numerical experiments for a problem posed by Grammeltvedt showed a good perfor-
mance of the classical fourth-order Runge-Kutta method. However, conclusions should be drawn
with care because the influence of the error due to the space discretization is not taken into
account.

NM-R8407. J. Kok & G.T. Symm. A proposal for standard basic functions in
Ada.

AMS 69D49; 9 pp.; key words: Ada, high level language, basic mathematical
functions, scientific libraries, portability.

Abstract: This paper contains a proposal for a standard basic mathematical functions package for
scientific computation in Ada. The package is transportable to machines with different floating-
point types and its availability will enhance the portability of numerical software.

MS-R8409. A.W. Ambergen. Asymptotic distributions of estimators for posterior
probabilities in a classification model with both continuous and discrete variables.
AMS 62H30; 26 pp.; key words: estimating posterior probabilities, discri-
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minant analysis.

Abstract: This paper is devoted to the asymptotic distribution of estimators for the posterior pro-
bability that an observation vector originates from one of k populations. The estimators are based
on training samples. The random vectors contain both continuous and discrete variables. Observa-
tion vector and prior probabilities are regarded as given constants. The continuous part of the ran-
dom vector has conditional on the discrete part a multivariate normal distribution. Several
assumptions about homogeneity of the dispersion matrices are considered.

MS-R8410. R.D. Gill 4 note on two papers in dependent central limit theory.
AMS 60F17; 9 pp.; key words: martingale central limit theorems, Poisson ran-
dom measures, approximation of population processes, Markov processes,
semi-Markov processes.

Abstract: In this note a discussion is given of two papers on dependent central limit theory which
were presented at the 44th meeting of the International Statistical Institute in Madrid, 1983. The
papers are by LS. Helland, “Applications of Central Limit Theorems for Martingales with Con-
tinuous Time”, and by T.G. Kurtz, “Gaussian Approximations for Markov Chains and Counting
Processes”. The note addresses itself to the main differences between the approaches described by
Helland and Kurtz, called the martingale approach and the Poisson process approach respectively,
and discusses their application to statistical problems in survival, life-testing, demography, epi-
demiology, etc.

AM-R8409. N.M. Temme. A convolution integral equation solved by Laplace
transformation.
AMS 45A05; 5 pp.; key words: integral equations of convolution type, Laplace

transformations, analytic continuation, Airy functions.
Abstract: We consider the integral equation

p(t) = [K@—mp(mdr + r()
0

where both K(z) and r(z) behave as exp (ar?) as 1—>o00 (@>0). So straightforward application of
the Laplace transform technique is not possible. By introducing a complex parameter the equation
is solved in the complex domain. Analytic continuation with respect to this parameter yields the
desired solution. For a particular example (which arose in a statistical problem on estimating
monotone densities) we describe the construction of the explicit solution of the equation.

AM-N8401. J. Grasman & R. van der Horst. Automatic data-handling in stu-
dies of cell-proliferation using time lapse cinematography.

AMS 92-04; 4 pp. (in Dutch); key words: cell-proliferation, branching process.
Abstract: Data of cell proliferation is registered in the form of a family tree. For the mathematical
modeling of the cell cycle it is necessary to have this data available for automatic handling. This
report gives a method for constructing such a data file and for tracing possible errors. Moreover, a
graphical reconstruction of the family tree from the data is made.

AM-N8402. L.L.M. van der Wegen. Asymptotic expansions for modified Bessel
functions of large order.

AMS 33A40; 39 pp.; key words: asymptotic expansion, modified Bessel func-
tion, error bound for the remainder.

Abstract: In this report asymptotic expansions for modified Bessel functions of large order are
derived by applying the saddle-point method to well-known integral representations for K,(x) and
I(x), in the case » > 0 and x = 0. Moreover, error bounds for the remainders are given.
Finally, a comparison is made between these error bounds and the real errors that are made by

45



approximating the Bessel functions by parts of their asymptotic series.

PM-R8406. C.F. Dunkl. Orthogonal polynomials and a Dirichlet problem related

to the Hilbert transform.

AMS 33A65; 31 pp.; key words: Pollaczek polynomials, Hilbert transform,
shift operator, Fourier series, harmonic functions, Dirichlet problem, Poisson
kernel, groups of Mobius transformations, Heisenberg group.

Abstract: An operator closely related to the Hilbert transform on the circle is shown to be unitarily
equivalent to a shift realized on a basis of Pollaczek polynomials, a family of orthogonal polyno-
mials with weight supported by all of the real line. There is an associated Dirichlet problem for the
disk, where one wants to find harmonic functions with specified boundary values on the upper half
circle and with specified constant (possibly complex) directional derivative on the real diameter.
The Poisson kernel is found and is used to obtain continuous and L? function existence and
boundedness results. The Dirichlet problem is a limiting case of boundary value problems for cer-
tain special functions coming from the Heisenberg groups.

PM-N8401. M. Hazewinkel. Notes on (the philosophy of) linearization.

AMS 93C10; 14 pp.; key words: linearization of differential equations, lineari-
zation of control systems, embedding control systems.

Abstract This note, originally a handout for the special session on linearization at the 1983 Confer-
ence on Decision and Control in San Antonio, consists of a discussion and initial guide to the
literature on linearization in various parts of mathematics. Special attention is paid to linearization
of control systems.
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CWI Activities

Autumn 1984

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWIL.

Topology Day CWI.

25 years ago Prof.dr. P.C. Baayen, now director of CWI, joined
the Mathematical Centre. To celebrate this anniversary we are
holding a ‘“Topology Day’ on 28 September.

Topology is a relatively young science. This makes it all the more
remarkable that its basic concepts, results and vocabulary play a
major role in most of the major branches of mathematics. Indeed,
it is nowadays very hard to conceive of doing analysis, geometry,
algebra or even logic without a substantial involvement of topol-
ogy. This makes it a prime example for illustrating what is prob-
ably the most important present trend in the mathematical sci-
ences: the increasing interweaving of formerly separated discip-
lines. The day aims at illustrating this multi-usefulness of topol-
ogy.

Invited speakers:

R.D. Anderson: Infinite dimensional topology and analysis.

J. van Mill: Set theory and topology.

W.T. van Est: Algebraic topology or combinatorial topology?

M. Hazewinkel: Topology in algebra.

N.H. Kuiper: How convex can knots and surfaces be?

Study group on Analysis on Lie groups. Semisimple pseudo-Riemannian sym-
metric spaces. Joint with University of Leiden. Biweekly. (T.H.
Koornwinder)

Seminar on Algebra and Geometry. Distance regular graphs. Biweekly. (A.E.
Brouwer)

Study group on Cryptography. Biweekly. (A.E. Brouwer)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice
a month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Joint with University of Leiden. (J. Grasman)

Study group ‘Nonlinear Analysis’. Lectures by visitors or members of the
group. Joint with University of Leiden. (O. Diekmann)

Progress Meetings of the Applied Mathematics Department. New results and
open problems in biomathematics, mathematical physics and
analysis. Weekly. (N.M. Temme)
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Study group ‘Semiparametric Estimation Theory’. Lectures by members of
the group on non-parametric maximum likelihood estimators,
density estimation, etc. Biweekly. (R.D. Gill)

National Study Group on Statistical Mechanics. Joint with Technological
University of Delft, Universities of Leiden and Groningen.
Monthly. University of Amsterdam. (H. Berbee)

Progress meetings of the Mathematical Statistics Department. New results in
research and consultation projects. Monthly. (R.D. Gill)

Lunteren meeting on Stochastics. 12,13,14 November 1984 at ‘De Blije
Werelt’, Lunteren. (R. Helmers) '

Progress meetings on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

System Theory Days. Irregular. (J.H. van Schuppen)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

Naticnal colloquium on Optimization. Irregular. (J.K. Lenstra)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Bi-.eekly. (H.J.J. te Riele)

Study group Numerical Flow Dynamics. Lectures by group members. Every
Wednesday. (J.G. Verwer)

Study group Hyperbolic systems. Every Wednesday. (P.W. Hemker)

Conference on Numerical Mathematics. 15,16,17 October 1984 at Zeist.
Invited speakers:

B. van Leer (Technological University Delft),
J.J. Chattot (MATRA, Velizy, France),

H. Viviand (ONERA, Paris),

R. Beauwens (Free University, Brussel),

J. Periaux (Avions Marcel Dassault, Paris),

D. Young (University of Texas, Austin),
A.O.H. Axelsson (University of Nijmegen),

H. Schippers (NLR, Emmeloord). (J.G. Verwer)

Seminar National Concurrency Project. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 5 October, 2 November and 7
December. University of Leiden. (J.W. de Bakker)

National Study Group ‘Concurrency’. Joint with Universities of Leiden,
Utrecht, Nijmegen and Amsterdam. 28 September, 19 October, 16
November and 14 December. University of Utrecht. (JW. de
Bakker)

Post-academic course on Modern Techniques in Software Engineering. 1,2
and 15,16 November. (J.C. van Vliet)

Post-academic course on Design of Interactive Graphical Systems. (P.J.W.
ten Hagen)

Post-academic course on B. 3 September - 13 December. Twice a week. (L.
Geurts)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group ‘Dialogue programming’. (P.J.W. ten Hagen)

Study group ‘Data Flow Club’. Irregular. (J. Heering)
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Visitors to CWI from abroad

R.C. Bradley (Indiana University, USA) 1-5 July. M.M. Chawla (University
of New Dehli, India) 18-19 July. M.H.A. Davis (Imperial College, London,
UK) 1 August. A. Feldstein (Arizona State University, USA) 27 July. N.
Frances (Technion, Haifa, Israel) 1 August - 7 September. P.R. Freeman
(University of Leicester, UK) 9 July. R.L. Griess Jr. (University of Michi-
gan, Ann Arbor, USA) August. D. Griffiths (University of Dundee, Scotland)
26 September. M. Gyllenberg (Helsinki University of Technology, Finland)
August 1984 - July 1985. Jiang Furu (Fudan University, Shanghai, China)
25-26 June. P.R. Kumar (University of Maryland, Baltimore, USA) 13 July.
C. Meaney (University of Adelaide, Australia) 19-21 June. N. Megiddo
(Stanford University, USA) 30 August. B. Neta (Texas Techn. University,
Lubbock, USA) 16-20 July. A. Neumaier (Albert-Ludwig University,
Freiburg, West Germany) 15 August - 12 October. C.F. Nourani (G.TE.
Labs., Waltham, USA) 14 September. J.B. Orlin (MIT, Cambridge, USA) 1
September 1984 - 1 May 1985. L. Petzold (Sandia Laboratories, Albu-
querque, USA) 7 September. I.H. Sloan (University of Canberra, Australia)
23 July. K. and R.P. Soni (University of Tennessee, Knoxville, USA) 5-6
July. AM. Spaccamela (University of Rome, Italy) 31 July. H.R. Thieme
(University of Heidelberg, West Germany) August 1984 - July 1985. K.
Tomoeda (Osaka Institute of Techn., Japan) 5-6 July. C. Vercellis (Univer-
sity of Milan, Italy) 22 June. J. Walrand (University of California, Berkeley,
USA) 27 July. H.O. Walther (Ludwig-Maximillians University, Munich,
West Germany) 19-20 July. J.A. Wellner (University of Washington, Seattle,
USA) 19 July - 20 August. Zhu Hong (Fudan University, Shanghai, China)
11-13 September.
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Order form for CWI publications

Centre for Mathematics and Computer Science
Kruislaan 413

1098 SJ AMSTERDAM

The Netherlands

a
a

000000000 o0o0ooOoOoooOobooooooooo

Publication code

MC Tract 164

CWI Tract 1
CWI Tract 3
CWI Tract 4
CWI Tract 5
CWI Tract 6
CWI Tract 7

CWI Syllabus 1

CS-R8408
CS-R8409
CS-R8410
CS-R8411
CS-N8402
CS-N8403
CS-N8404
CS-N8406
OS-R8406
OS-R8407
0OS-R8408
0OS-N8401
NM-R8404
NM-R8405
NM-R8406
NM-R8407
MS-R8409
MS-R8410
AM-R8409
AM-N8401
AM-N8402

Price per copy

DAl. 28.60

15.50
36.90
22.70
13.20
29.80
10.80
33.50
3.70
4.80
3.70
3.70
11.90
19.10
3.70
3.70
3.70
3.70
3.70
3.70
3.70
3.70
4.80
3.70
3.70
3.70
3.70
3.70
4.80

Please send the reports marked below on an exchange basis
Please send the reports marked below with an invoice

Number of copies wanted



Publication code  Price per copy = Number of copies wanted

O  PM-R8406 480 7 s
0O  PM-N8401 3700 e

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address !

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.
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