

15

25

31

34

42

Contents

The B Programming Language and Environment,
by Steven Pemberton

Typesetting at the CWI - Part I,
by Jaap Akkerhuis

Multigrid Algorithms Run on Supercomputers, by P.W. Hemker

Winning Ways for your Mathematical Plays,
Book review by Aart Blokhuis

Abstracts of Recent CWI Publications
CWI Activities, Summer 1984

Visitors to CWI from abroad

4

Centre for Mathematics
and Computer Science

Centrum voor Wiskunde en Informatica

Bibllotheek

CM-Cen’rrum voor Wiskunde en Informatica
\ Amsterdam

The B Programming Language and Environment

A new programming language and environment
for personal computing designed at the CWI1

by Steven Pemberton

New computers, old languages

It is a common observation that the latest personal computers are very
powerful. Certainly more powerful and more capacious than many of the
previous generation of ‘large’ computers. Thus, it is quite feasible that many
personal computers will spend most of their time idle, not from lack of use,
but from under-filled capacity. And this is not because of delusions of gran-
deur on the part of the purchaser: the central processor, the part that is
responsible for much of the measure of speed in a computer, is but a tiny
part of the cost of a modern computer; there is no economic (or other)
advantage in using a slower processor.

It is therefore rather surprising to realise that most programming on per-
sonal computers is done with programming languages that are for the most
part 15 to 20 years old, languages designed for computers of a previous gen-
eration (or before). In particular, whatever personal computer you buy, you
can be sure that the one language that the manufacturer has supplied for you
is BASIC, a language designed in the mid-sixties, and which has been
described as “an adaptation to early and very marginal computer technology”
[1]. Thus you have the strange situation of people programming the comput-
ers of the eighties with a language of the sixties, a language unable to take
advantage of the increased capabilities of the newer machines.

Two main advantages of BASIC are that it is interactive, and that it is sim-
ple. Interactiveness is the ability to type in and run a program immediately
without going through any intermediate stages like translating the program
into machine code, and to correct a program and re-run it immediately.
Strictly speaking, this is a property of an implementation of a language, and
not of the language itself, since it is in principle possible to make an interac-
tive implementation of any language, or a non-interactive version of BASIC.
But notwithstanding, a language usually has features that orient it more or
less towards interactive implementation, and BASIC is usually implemented
interactively, and most other languages are not.

Simplicity is a property often claimed for a programming language or sys-
tem, without the term being properly clarified. For there are two, in some
ways conflicting, senses to the word. You can have definitional simplicity,
where there are only a few concepts, and you can have what might be called
psychological simplicity, where the concepts are closest to your needs. A

couple of examples.
® The idea of a Turing machine is specifically to give the simplest model
of a computational machine. No one however would consider it simple
to program for.
® Boolean algebra can be expressed using a single operator ‘not and’.
However, no one would consider the expression

(q nand (q nand q)) nand ((p nand p) nand (q nand q))

as simpler than the equivalent

not (p or q)

despite the larger number of concepts in the second.

The simplicity of BASIC is actually a definitional one. It is easy to imple-
ment, and has few concepts to be learnt, but once learnt, it only remains easy
to use for very small programs. Beyond that it is like cutting your lawn with
a pair of scissors.

In schools

BASIC is also the principle programming language taught in schools.
Apart from the perceived simplicity, it is usually the case that schools simply
could not afford machines large enough to run anything other than BASIC.
That situation will change quickly enough with the coming generation of
cheap large computers, but the risk is that schools will continue using BASIC
from sheer momentum, and perceived ‘investment’ in the language (a com-
mon barrier to change outside schools too). Risk, because BASIC has little
to recommend it for educational use (and I say this as someone who has had
to teach students coming from schools where they have learnt to program
with BASIC). Just as with teaching yourself to type with one finger, where if
you then want to learn to type properly you must first get rid of your old
habits, BASIC’s paucity of structuring facilities means that much time has to
be dedicated to learning ways of getting round its expressive poverty, and the
student ends up learning bad habits that must only be unlearnt in order to
progress to other languages.
Well, either that, or they learn nothing at all, for quoting from [1] again:
“For the vast majority of students who learn to program in BASIC, learning
to program means learning a few set pieces of programming from a textbook
and devoting the rest of their time at the terminal to playing computer
games.”

B
B is a programming language being designed and implemented at the CWI,

together with an integrated programming environment (it should be noted
that ‘B’ is just a working title; the system will gain its definitive name when
the language is frozen.) It was originally started in 1975 in an attempt to
design a language for beginners as a suitable replacement for BASIC. In the
intervening years the emphasis of the project has shifted from “beginners” to
“personal computing”, but the main design objectives have remained the
same:

® simplicity;

@ suitability for interactive use;

® availability of constructs for structured programming.

The design of the language has proceeded iteratively, and the language as it
now stands is the third iteration of this process. The first two iterations were
the work of Lambert Meertens and Leo Geurts of the CWI (then called the
Mathematical Centre) in 1975-6 and 1977-9, and were more in the line of
definitionally simple, being easy to learn and easy to implement.

In the third iteration of B, designed in 1979-81 with the addition of Robert
Dewar of New York University, it became psychologically simple: it is still
easy to learn, by having few constructs, but is now also easy to use, by hav-
ing powerful constructs, without the sorts of restrictions that professional
programmers are trained to put up with, but that a newcomer finds irritating,
unreasonable or silly.

However, B is not just a language, but a complete programming environ-
ment. Traditional computer use for programming involves not only learning
the programming language, but also a whole host of sub-systems and their
commands, often completely separate and non-cooperating. B on the other
hand shows one face at all times to the user, and it is not necessary to learn
anything outside the B system.

Simplicity

B has just two basic data types: texts and numbers, and three ways of com-
bining other values: compounds, lists and tables.

Numbers have two surprises for the seasoned computer user: firstly, on the
basis of the maxim of no restrictions, numbers may be as big as wanted
(within, of course, the physical limits of the computer’s available memory);
you may just as easily calculate 10°® as 10°. In fact a Dutch newspaper
recently dedicated a whole page to printing the value 2" —1 (the current
largest prime), which had been calculated with the B program

WRITE 2x%%132049-1

which, though it took a while to run, nevertheless produced the final answer
consisting of more than 37000 digits.
Secondly, as long as it is possible, numbers are always kept exact, even

fractional numbers. Thus, as long as you use exactness-preserving operations,
such as addition, subtraction, multiplication, and even division, a number is
calculated exactly. Operations such as taking the square root cannot of
course produce an exact result in general, and so in this case an approximate
number results, rounded to some length.

Mathematicians and computer scientists alike are often surprised by the
following little program that uses the properties of arithmetic in B to calcu-
late the digits of 7 by evaluating the continued fraction

4
1
4
9

1+

3+

et
k2
..+—_—.——
Qk+D)+ - -

HOW/TO PI:
WRITE #3.7
PUT 3, 0, 40, 4, 24, 0, 1 INk, a, b, ¢, d, e, f
WHILE 1 = 1:
PUT k%2, 2xk+1, k+t IN p, q, k
PUT b, pxa+qxb, d, p#c+gxd IN a, b, c, d
PUT f, floor(b/d) IN e, f
WHILE e = f:
WRITE e<«1
PUT 10%(a-exc), 10x(b-fxd) IN a, b
PUT floor(a/c), floor(b/d) IN e, f

Texts are strings of printable characters. Unlike many other languages B
has a full range of operations on texts, such as joining texts together, replicat-
ing them, taking sub-strings and so on. Just as with all types in B, there is
no maximum limit imposed on the size of a text, nor does the size have to be
declared in advance.

Compounds are the way of making tuples, or records as they are called in
some other languages, for instance for making complex numbers:

PUT 0, 1 IN z.

Lists are sorted collections of elements, again unrestricted in size. The ele-
ments of a given list must all be of the same type, but otherwise, and this is
another surprise for the experienced programmer, may be of any type. Thus
you may have lists of texts, numbers, compounds, lists of other lists, and so
on. Elements may be duplicated; thus a list is a multiset or bag. You can
insert elements, delete elements, find out if an element is present, find the size
of a list, and so on. Here is a program that uses lists of numbers and the
sieve method to calculate primes.

HOW/TO SIEVE’/TO n: \name is SIEVE’TO
PUT {2..n} IN set \set to be sieved
WHILE set > {}: \repeat indented part
PUT min set IN p \smal lest member
REMOVE/MULTIPLES \refinement, see below
WRITE p
REMOVE/MULTIPLES:
PUT p IN multiple
WHILE multiple <= n:
IF multiple in set: \present in set?
REMOVE multiple FROM set
PUT multiple+p IN multiple

The last type is the table. Tables are mappings from values of any one
type onto values of any one other type, and as such are a generalisation of
arrays in other programming languages. Standard programming languages
only allow you to map integers (and sometimes a few other similar types)
onto other types. It is one of the biggest surprises, bordering on disbelief, for
experienced programmers, that you may use any type for the indexes of B
arrays. Thus if you want mappings from texts to lists, or tables to numbers,
or tables to other tables, all are possible.

As an example, consider representing a directed acyclic graph as a map-
ping from nodes to lists of nodes:

PUT {[0]: {3}; [8]: {7; 8}; [71: {8}; [81: {}} IN graph

You can write a test to see if two elements are connected as follows:

TEST a connected’to b:

SHARE graph

REPORT b in graph[a]l OR indirectly’/connected
indirectly’connected:

REPORT SOME e IN graph[a]l HAS e connected’to b

and then write
IF 0 connected’/to 8:

Other examples of surprises for the seasoned programmer that the newco-
mer will find unremarkable are in the READ command. If a running pro-
gram is to input a value from the user, the READ command is used. In tradi-
tional languages, you can only read numbers and characters, and furthermore
only constants of these types. However, in B, any type of value may be read,
and further, any expression may be typed as input. This includes the use of
variables, functions and so on.

It may be remarked from the above examples that although the data types
of B are unusual, the kind of commands, or statements, are rather familiar.

There are the usual input and output commands, the assignment command, if
and while commands, and so on. In fact the only unusual feature is the
refinement, such as REMOVE/MULTIPLES and indirectly’connected
in the above examples. These explicitly support the idea of ‘step-wise
refinement’, so often practised in programming, but so rarely supported by
programming languages.

As you can see, B has a small set of rather powerful data types. This is in
comparison with most other languages that supply you with a number of
low-level tools, that you must then use to build your own high-level tools.

B does it just the other way round. You get high-level tools which you can
use for low-level purposes if you wish. For instance:

® If the numbers you use in a program are all less than a certain limit, you

don’t have to do anything special in B. In other languages, if your
numbers go higher than a certain limit, you must write your own numer-
ical package.

® In traditional languages, if you wish to use sparse arrays, you must write

a package to implement them using the non-sparse arrays in the
language. In B, sparse arrays (i.e. tables) are the default, but you can
use them in a non-sparse way without extra effort.

® Traditional languages sometimes supply a pointer type, which you can

then use to create data space dynamically. In B, data space is automati-
cally dynamic. Furthermore, if you study the use of pointer types in
other languages, you will see that they are almost always used for sorting
and searching purposes. B supplies these sorting and searching facilities
as primitives. If you still need to use pointers, you can represent them
using B tables, but with additional advantages, for instance that you can
print tables while you cannot print pointers.

Another feature of the simplicity of B lies in its environment. Global vari-
ables are permanent, in the sense that they remain not only while the pro-
grammer is working at the computer, but even after switching off, and return-
ing later. Thus variables may be used instead of ‘files’ in the traditional
sense, and so there is no need for extra file-handling facilities in the language.
Since B variables are dynamic, and unrestricted in size, using them in place
of files causes no difficulties. Quite the reverse in fact, since you now have
the powerful data-types of B at your disposal, allowing random, and indeed
associative, access to the contents.

Compare the following two programs in B and Pascal for counting the
number of characters in a text file. In B:

PUT 0 IN size
FOR lLine IN document:

PUT size+#line IN size
WRITE size

In Pascal:

program count(document, output);
var document: text;
c: char;
size: integer;
begin
reset (document) ;
size := 0;
while not eof (document)
do begin
while not eoln(document)
do begin
read(document, c);
size := size + 1
end;
readln(document)
end;
write(size)
end.

This, I contend, speaks for itself. In fact, these two programs illustrate
clearly how compact B programs turn out to be. It is my experience that B
programs are around a quarter or a fifth of the size of their equivalent Pascal
programs (this comparison includes a 1000 line Pascal program which
resulted in a 200 line B program). The ratio against BASIC would be even
further in B’s favour. This clearly has consequences for programmer
efficiency, especially as programmer effort is proportional not to program
length, but a power of program length. Brookes [2] reports that empirical
studies show this power to be around 1.5. This would imply that B is some-
thing like an order of magnitude easier to use than traditional languages.

The other side of this efficiency coin is that, because of its higher level, the
language is no longer so straightforward to implement, and because it is
interpreted, a given program in B will not run as fast as an equivalent pro-
gram written in a non-interactive language. However, we have already noted
that the personal computers of the new generation are so powerful that they
will spend a large proportion of their time idle. This trade-off of computer
time against programmer time is more than reasonable in view of this excess
computational capacity. Furthermore, there are other trade-offs involved
when comparing non-interactive languages with interactive ones, such as the
absence of a translation phase in an interactive language.

Comparing B with BASIC on this score is another matter. BASIC imple-
mentations tend to be slow anyway, yet many people are willing to accept
this slowness in return for interactive access. For instance, Bentley reports [3]
that BASIC on an (apparently large) personal computer he bought ran at 100
instructions per second. This is even slower than the first commercially

produced computers of the 1950’s which ran at 700 instructions per second!
Of course, higher-level commands like those of B take more time individu-
ally, but on the other hand fewer have to be executed to do the same job and
more work is done at the (faster) system level than with a lower-level
language. The combined effect depends on the application: simple programs
— which take little time anyway — will generally run slower, but more com-
plicated tasks may well run faster than if coded in a lower-level language.
But still, even if a given program in B runs slower than acceptable (for
instance in the case of a commercial application which must run as fast as
possible on a slow micro-computer), the programmer efficiency of B still
makes it a good choice for the prototyping phase of a project.

Interaction

Just as with BASIC, any command typed straight in at the terminal will be
executed immediately. Thus you may use all the features of B as a sort of
high-grade calculator:

WRITE root 2
1.41421356237

Furthermore, since user-written programs are called in exactly the same way
as built-in B commands, much of the need for a separate command language
so often found on computers disappears: as already pointed out, variables
serve as files, and since programs are just the equivalent of subroutines in
other languages, parameters can be passed to programs using the normal
parameter passing mechanism of subroutines. In most systems, if parameters
can be passed to a program at all, it is usually with a completely different
mechanism.

One of the demands on an interactive language is that typing be minim-
ised, since so much time is spent at the keyboard. One solution to this used
by some interactive systems is to use abbreviated commands, but this gen-
erally results in very cryptic looking commands. B solves this by having a
dedicated editor that knows much about the syntax and semantics of B. As
an example, consider the above WRITE command. This is the second most
used command in B (the first is PUT) and so when you type a W as first
letter of a command, it is more than likely that you want a WRITE com-
mand. To this end, the moment you do type such a W, the system immedi-
ately suggests the rest of the command to you, by showing WRITE on the
screen. If you do want a WRITE you can then press the ‘accept’ key and the
system positions you so that ycu can type in the expression that you want to
write. If you don’t want a WRITE, but a WHILE say, then you just ignore
the suggestion and type the next character, an H. The system then changes
the suggestion to WHILE, and so on. This also works for the commands you
write yourself (such as the SIEVE/TO unit defined earlier). The system also
knows about things like matching brackets and supplies these for you. Thus
certain typical sorts of typing error are just not possible in B.

The editor is also used in place of many functions that would normally be
performed by a separate command language. For example, it is possible to
edit the list of units (procedures and functions) that you have: if you delete
an entry in the list using the editor, the corresponding unit disappears.
Another feature of this is that you may edit the list of commands that you
have typed in and executed: this then causes the changed commands to be
re-executed as if you had typed the commands in in that way in the first
place.

Another feature of the interactiveness of B is that declarations are not
used. BASIC users usually perceive this as an advantage because it means
less typing. Users of other languages, such as Pascal on the other hand,
accept declarations on the grounds that they allow type inconsistencies and
other similar errors to be detected before the program is run, therefore reduc-
ing the time taken to get a program correct.

10

B supplies the advantages of both, by inferring the types of variables from
the way they are used (for instance, if you say 1+a, a must be a number),
and checking that all such uses are consistent. Furthermore, inconsistencies
can be spotted as the command is typed in, increasing the interactive feel of
the language.

Teaching

It is our feeling that B is well suited for teaching purposes. The availabil-
ity of program and data structuring facilities, including support for step-wise
refinement, means that students are less likely to adopt bad habits. More
importantly, because of B’s high-level, a student can quickly get to a level of
competence to produce useful working programs, rather than just trivial exer-
cises.

B is currently being taught at a Dutch school in collaboration with the
CWI to several classes of different school types. However, this has only
recently started.

Implementation

Part of the effort at the CWI is to create an implementation of B. We
have had a pilot implementation running for several years, and have now just
finished a release version.

The original B implementation was written in 1981. It was explicitly
designed as a pilot system, to explore the language rather than produce a
production system, and so the priority was on speed of programming rather
than speed of execution. As a result, it was produced by one person in a
mere 2 months, and while it was slower than is desirable, it was still usable,
and several people used it in preference to other languages.

The second version, just completed, is aimed at wider use, and therefore
speed and portability have become an issue, though the system has also
become more functional in the rewrite. Like the pilot system, it is written in
the programming language C and was produced by first modularising the
pilot system, and then systematically replacing modules, so that at all times
we had a running B system. It was produced in a year by a group of four.
This implementation runs on larger machines that run Unix* (with at least
128 Kbytes of main store) and is freely available for non-commercial use at
the cost of the media.

One of the features of the implementation is the way values are imple-
mented, based on the scheme of Hibbard, Knueven and Leverett [4]. Here,
each value includes a count of how many copies of it there exist. When a
value has to be copied, instead of copying the whole object, only a pointer to
it is copied, and the associated counts are updated. When a count reaches
zero, the value is disposed of.

When a value has to be modified, such as by inserting a value in a list, if its

* A trademark of AT&T Bell Laboratories

count is greater than one then the value must first be ‘uniquified’ by (really)
copying it to a fresh area of store (actually only part of it is usually copied
because, for instance, if the list is a list of tables, the tables need only have
their counts updated, since they are not changed themselves.) Already unique
values are modified in situ.

This scheme has one outstanding feature, that the cost of copying is
independent of the size of the value. Therefore there is a size of value above
which this method becomes cheaper than ordinary copying. This critical size
is rather small, and since B values easily become large, it is advantageous.
Furthermore, PUT commands are typically the most executed sort of com-
mand in programs, and so it makes sense to choose a method that favours
them.

The implementation uses B trees (no relation) [5] to represent texts, lists,
and tables. These are a form of balanced trees, and the cost of modifying an
element is only O(log n). Instead of having to copy a whole level of the
value on modification, only a sub-section of the tree needs to be copied.

We have been lucky to receive, through the generosity of IBM Netherlands,
an IBM Personal Computer, and we are now busy transporting the imple-
mentation to it.

The Future

There will be one final polishing of the language before it is finally frozen,
to clear up a few odd corners. However, most work on the system is now
focusing on the environment, for instance to try and do for graphics and
data-entry what up to now we have done for programming.

Further information

For more details of the language, refer to reference [6]. There is a B
newsletter published at the CWI, with further details of the B environment.
An annotated list of B publications is given in an appendix.

Conclusion

The time has come that personal computers have so much power that a
new programming language is called for to take advantage of that power. B
has been designed with just such an aim, to satisfy the needs of people who,
while not being professional programmers, nevertheless need to use personal
computers. Although the language was designed with these non-professionals
in mind, it turns out to be of interest to professionals too: several people in
our institute now use it in preference to other languages.

References

[1] Seymour A. Papert, Computers and learning, in M.L. Dertouzos (ed.),
The Computer Age, MIT Press, 1979, 73-86.

12

[2] F.P. Brookes, The Mythical Man Month, Addison Wesley, 1975.

[3] Jon Bentley, Programming Pearls, Comm. ACM, 27 (1984) 3, 181-184.

[4] P.G. Hibbard, P. Knueven, B.W. Leverett, A Stackless Run-time Imple-
mentation Scheme, in R.B.K. Dewar (ed.), Proc. 4th Int. Conf. on Design
and Implementation of Algorithmic Languages, Courant Institute, New
York, 1976, 176-192.

[5]1 T. Krijnen & L. Meertens, Making B Trees Work for B, Report IW
219/83, Mathematical Centre, Amsterdam, 1983.

[6] Leo Geurts, An Overview of the B Programming Language, SIGPLAN
Notices, 17 (1982) 12, 49-58.

Appendix: Available publications about B
A number of publications about B are currently available. Unless other-

wise stated, all are published by the CWI; an order form can be found at the

end of this newsletter.

An Overview of the B Programming Language, or B without Tears,

Leo Geurts, CWI report IW 208/82, 11 pages.
This is the first place to go if you want to know more about B. Also
published in SIGPLAN Notices 17 (1982) 12, 49-58.

Draft Proposal for the B Programming Language,

Lambert Meertens, CWI, ISBN 90 6196 238 2, 88 pages.
This book is a specification of the whole language, though rather techn-
ical for the casual reader. It also contains some thoughts on a B sys-
tem. A part of the book, the Quick Reference, also appeared in the
Algol Bulletin 48 (August 1982).

Description of B,

Lambert Meertens & Steven Pemberton, CWI note CS-N8405, 38 pages.
This is the informal definition of B promised in the Draft Proposal. It
aims to provide a reference book for the users of B that is more accessi-
ble than the somewhat formal Draft Proposal. While it is not a text
book, it should also be useful to people who already have ample pro-
gramming experience and want to learn B.

Computer Programming for Beginners — Introducing the B Language (Part I),

Leo Geurts, CWI note CS-N8402, 85 pages.
This is a text-book on programming for people who know nothing
about computers or programming. It is self-contained and may be used
in courses or for self-study. The focus is on designing and writing pro-
grams, as opposed to entering them in the computer, and so on. It
introduces the language, and how to write small programs. Part 2,
which will appear later this year, will treat the language, and program-
ming, in greater depth.

13

A User’s Guide to the B System,

Steven Pemberton, CWI note CS-N8404, 10 pages.
A brief introduction to using the current B implementation.

B Quick Reference Card.
A single card containing all the features of the language, the editor, and
the implementation, for quick reference when using B.

An Implementation of the B Programming Language,

Lambert Meertens & Steven Pemberton, 8 pages.
This gives an overview of the implementation and some of the tech-
niques used in it. Not published by the CWL. To appear in USENIX
Washington Conference Proceedings (January 1984).

Making B Trees Work for B,

Timo Krijnen & Lambert Meertens, CWI report IW 219/83, 13 pages.
This describes a method of implementing the values of B. It is rather
technical.

Incremental Polymorphic Type-Checking in B,

Lambert Meertens, CWI report IW 214/82, 11 pages.
B allows you to use variables without having to declare them, and yet
gives you all the safety that declarations would supply. This paper
describes how this is achieved, but is very technical. Definitely not for
the faint-hearted. Also published in Conference Record of the 10th
Annual ACM Symposium on Principles of Programming Languages,
ACM, 1983, 265-275.

On the Design of an Editor for the B Programming Language,

Aad Nienhuis, CWI report IW 248/83, 16 pages.
Gives an overview of the design of a pilot version of the B dedicated
editor.

On the Implementation of an Editor for the B Programming Language,

Frank van Harmelen, CWI report 220/83, 18 pages.
Gives details of a pilot implementation of the B dedicated editor.

Towards a Specification of the B Programming Environment,

Jeroen van de Graaf, CWI report CS-R8408, 23 pages.
This report contains an informal description and a tentative
specification of the environment.

The B Newsletter,
This is produced to keep interested parties in touch with developments
in the language and its implementation, and to provide a forum for dis-
cussions. Issues 1 and 2 have already appeared.

14

Typesetting at the CWI — Part 1

by Jaap Akkerhuis

Introduction
In this article I will discuss how the typesetting of various publications, like
the Newsletter you are reading, is done at the CwI.

Since the founding of the Institute in 1946, the Centre has published reports.
The typing and printing of its publications has always been done “in house”.
This made it possible to get a quick turnaround time between the writing and
printing of a report. In this way it is also possible to have a close interaction
between the author and the typist, which allows the author to have a good
control not only over the contents but also over the appearance of his publica-
tion.

It was recognised at an early stage that a computer could provide some help
with the composition of a publication. This lead to a program, called
TEKSTSCHAAF [1], on the Electrologica X8 computer written by D. Grune. This
system allowed you to format a text and it would automatically provide page
headings, page numbering, justification*, etc. There was a nice mechanism to
prevent widowst, but the most interesting aspect of the program was the way
the justification was done. Most programs do justification on a line by line
basis, but in this system a couple of lines (normally 3) were considered before
the final adjustment took place. Where the extra spaces were added in the line
was dependent on an “elastic band” between the words. The stretchability of
this band depended on certain conditions that could be changed by the user,
and some analysis of the (Dutch) text. A similar approach, using stretchable
glue and taking into consideration a total paragraph before justification, is
used in the TEX system [2] designed by Knuth.

A successful system that has been used for a long time was a formatting
program made by H. Noot [3]. It had good error reporting and a mechanism
for avoiding widows. All these above-mentioned programs did not give sup-
port for mathematics, and could only handle non-proportionally spaced char-
acters (i.e. typewriter fonts).

The current system in use consists of the UNIx} [4] formatting tools. These
were first used by the department of computer science. When the CWI
obtained a phototypesetter, the rest of the institute slowly started to use these

* Justification is the the process of adding extra space between words to improve the appearance
of a text, for instance to get right adjusted margins.

T A widow is a single line of text or just one word on the top of a page before a new paragraph
starts. It actually belongs to the paragraph before.

§ UNIX is a trademark of Bell Laboratories.

15

tools too. Although they are simple and straightforward, they turn out to be
very flexible and capable of producing a lot of different things, from simple
text up to line drawings, all of high quality.

Computers and typesetting

In the last decade a revolution has taken place in the typographical world.
Nearly everywhere the hot-metal typesetters have been taken over by modern
equipment like laser- and ink-jet printers, phototypesetters, daisy wheel and
matrix printers. This revolution did not only take place at the output side; the
process of keying in text has also been strongly influenced by computer tech-
nology.

This has lead to two different approaches: interactive typesetting and batch
typesetting.

Interactive typesetting starts at the low end with a typewriter with some
editing facilities and leads via word processors and their derivates to systems
which allow the mark-up of complete and complicated material, including digi-
tised pictures. These can be characterised as simple to very sophisticated pic-
ture editors, where the picture is built from simple characters to very complex
entities. Some of these systems are even able to automatically make the neces-
sary corrections for reproducing colour pictures on a printing press [5].
Although these systems are very flexible and can produce high quality
material, they are very expensive and cost a lot in computer power. A cheaper
approach is batch oriented typesetting, also known as formatting. This is
much more popular in the scientific world, because there is no need for huge
productivity, and it is yet another application which will run on the probably
already available research computer. The quality of the output can neverthe-
less be high.

At this moment there are three different popular and generally available for-
matting programs. A well-known program is the SCRIBE formatter [6]. One
of the interesting aspects of SCRIBE is that the input does not specify the
form of the output. Instead it specifies the different segments of the text, like
titles, headers, paragraphs with or without hanging tags*, etc. The only way
the output is controlled is by specifying the style of the document. The actual
output produced is dependent on the output device and on the way the
different styles are implemented. Support for the typesetting of mathematics is
quite poor.

The TEX formatter, designed by D. Knuth, gives the user close control over
the final appearance of the output. It is known for its good output quality,
due to the fact that it formats a complete paragraph at once. The mathematics
support is good, since the program has a lot of built in information about the

* A hanging tag is the part of the text hanging like a tag on the left side of a somewhat indented
paragraph. This line of text in this footnote is a bit superfluous, but it will make the
footnote big enough to demonstrate the use of the hanging tag.

16

shape of the character. A disadvantage is its enormous size and the crude
input syntax. The system is especially written for raster printer devices, which
makes interfacing to real typesetters a problem [7].

The standard UNIX formatter, TROFF [7], is specially designed for a typesetter
and has extensive macro capabilities. In accordance with the general UNIX-
philosophy, it is a central formatting tool. Special tasks like mathematics
typesetting are performed by preprocessors. This system is the one used at the
CWL

The three mentioned formatters have had a great impact on “in house”
typesetting in the (scientific) world and their influence is noticeable every-
where, e.g. in the proposed international standard for text processing [9].

History of TROFF.

Around 1964 a formatting program called RUNOFF made its appearance at
MIT on the Compatible Time Sharing System. This program had a lot of
influence and implementations were made for many different systems. One of
them was the program ROFF at Bell Labs. Around 1973 ROFF was completely
revised to NROFF (new roff). The output device for NROFF was basically the
Teletype 37. It also got a cousin called TROFF (typesetter ROFF) which used a
Graphics System C/A/T-4 typesetter as its output device. These three pro-
grams were written in assembly language, but in 1975 TROFF and NROFF were
recoded in the higher level language C, and at the same time its capabilities
were expanded. In 1979 Bell Labs acquired a new phototypesetter. This
would have been a good opportunity to replace TROFF by something better,
but no one could come up with a better design. Brian Kernighan started to
modify TROFF, so it would run “henceforth” without any change on a variety
of typesetters. This renewed version of TROFF is known as typesetter indepen-
dent TROFF, and is usually called DITROFF [10] .

In 1981 the CWI obtained its own typesetter, a Harris 7450. This machine
is connected by a serial line to a port selector so it can be shared between vari-
ous computers. In order to get the machine running as soon as possible, I
developed a filter which took the TROFF binary output code specific to the
C/A/T and translated it into yet another binary code for the Harris. 1t actu-
ally consists of two filters, one for the interpretation of the C/A/T code and
another one which maintains the protocol with the Harris, which is rather too
arcane to describe here. Having two filters makes it possible to have other
programs like TEX and a plotting package produce Harris code without their
having to know about the ghastly protocol. When I was investigating the
changes that had to be made to TROFF, I learned about Kernighan’s work and
decided to wait until it was available, not wanting to reinvent the wheel.
When DITROFF finally arrived, I made the necessary changes to let it drive the
Harris typesetter [11]. Also, Dutch hyphenation rules were added, which actu-
ally amounted to incorporating the BESTESPLITS [12] program inside TROFF.
This addition makes it possible to switch from the American to the Dutch
hyphenation algorithm in a single text. German hyphenation rules will be

17

added soon*.

Using the system

As explained before, TROFF is actually the central program among the typeset-
ting tools. It is hardly used on its own but most of the time it is used in com-
bination with a macro package and/or with one or more preprocessors. Note,
that the preprocessors do not know anything about the output device, but they
merely generate TROFF requestst and macro/string definitions, which are pro-
cessed by TROFF, which does all the necessary calculations. By means of exam-
ples I will show you the capabilities of a macro package and some of the
preprocessors. The input of the examples will be set in a line printer style
font, 0CR-B, and the corresponding output will be generated in the laurel font,
which differs from the Times font used for the running text. The macro pack-
age explained is a standard one and is known as the —ms macro package [13].

The —ms macros
These macros give TROFF SCRIBE style capabilities. By classifying parts of
the text, the output is produced according to a certain standard. It is not
uncommon to do this: the [*TEX system [14] is especially designed to give TEX
these capabilities as well. In this system some of the features of the TBL TROFF
preprocessor are also implemented.

So one could start a paper with:

.TL

The Title

.AU

The Author

The Ghostwriter

-Al

The Author's institution

The Ghostwriter's address

.AB

The abstract of the paper begins, it will be printed as a
centered

block using 5/6 of the current Line length.

Note also the rearrangement and justification of
these

input Llines in the output.

.AE (abstract ends)

and the output will be:

* This is a widow
+ A request is a line of text, in the text to be typeset, requesting TROFF to perform a certain func-
tion, for instance to generate a new page or to print the current page number.

18

The Title

The Author
The Ghostwriter

The Author’s institution
The Ghostwriter’s address

ABSTRACT

The abstract of the paper begins, it will be printed as a cen-
tered block using 5/6 of the current line length. Note also the
rearrangement and justification of these input lines in the out-
put.

As you can see, a line starting with a period means something special to
TROFF.

Normally text is divided into paragraphs. To start an indented paragraph, a
.PP command is used. For a left aligned paragraph, the .LP command is
used.

Paragraph headings
Headings like the previous one are generated with
-SH
Paragraph headings
.LP
Headings like the ...

It is also possible to have the headers numbered automatically. The follow-
ing example shows this.

19

-NH

Basic CPUs, Processor options, Memories
.NH 2

Central Processors
.NH 3

PDP-8 Kits

.NH 3

PDP-11 Kits

.NH 2

Memories

-.NH

Mass Storage

.NH 2

Cartridge Disk Kits
.NH O

Appendix

1. Basic CPUs, Processor options, Memories

1.1. Central Processors

1.1.1. PDP-8 Kits

1.1.2. PDP-11 Kits

1.2. Memories

2. Mass Storage

2.1. Cartridge Disk Kits

1. Appendix

The numeric argument to the .NH macro call specifies which part of the gen-
erated number needs to be incremented. The .NH 0 command will reset the
top level to one.

Indented paragraphs

It is possible to have hanging paragraphs with or without hanging tags. The
following example illustrates this.

20

IP [1]

Text for first paragraph, typed normally as long as you
wish. The first argument is the so called hanging tag.
You may omit it as in:

-IP

and the paragraph will be just indented. A second
argument changes the amount of indentation Llike:

IP first 12

and the indentation will be 12 en's.

This value will be the new default value so the next .IP
.IP next

will give you this.

If you don't want a tag but do want to change the
indentation use

JOp "5

As done here, the "" denotes an empty argument.

[1]Text for first paragraph, typed normally as long as you wish. The first argu-
ment is the so called hanging tag. You may omit it as in:
and the paragraph will be just indented. A second argument changes the
amount of indentation like:

first and the indentation will be 12 en’s. This value will be the new
default value so the next .IP
next will give you this. If you don’t want a tag but do want to change

the indentation use
As done here, the ”” denotes an empty argument.

Footnote generation
Footnotes* are placed at the bottom of the page. They are generated with

Footnotes*

.FS

* Like this one
.FE

are placed ...

The character sizef will be automatically reduced by two points.

* Like this one

T In the American typographic world the size of a character is usually given in Pica points, while
in Europe Didot points are used. There are 12 points in a Pica and 6 Picas in an inch. A Pica
point breaks down to 0.35146mm and a Didot point to 0.376065mm, so a Pica point is 0.934572
Didot point. Of course, TROFF uses Pica points.

21

Keeping blocks together
Sometimes the output should be kept together. This is achieved with the keep
commands.

.KS
Text inserted here will be kept together until the
.KE

If the output of the material placed between the .KS and the .KE won’t fit on
the current page, a new page is generated before the actual output takes place.
Using a .KF instead of a .KS, the new page will not be issued, but the output
of the material placed between the .KF and the .KE will be delayed until there
is enough space. This way material will float trough the actual output.

Displays

To get an exact replica of the input, so TROFF will not rearrange (apart from
the typeface) the output with respect to the (current output) line length, the
material must be surrounded by the display macros.

.DS
This is how the input to the examples is made
.DE

To get this display as a block of text, the keep macros are used, to prevent a
split of the material over a page.

Note the caveat in displays. If the output device has proportionally spaced
characters the appearance of the output will be different from the input. Con-
sider the next input:

.DS

We want this X to Line
up with this Y.

.DE

And this is how it looks:
We want this X to line
up with this Y.

The above example shows a basic problem for the ignorant user. There is a
difference between what has been written down and the way it looks —how it
is read is yet another problem.

Controlling the typeface
As you have seen the typeface changes when there is a different function of the
text. Titles will be set in the bold-typeface somewhat bigger, while headers
will just become bold and footnotes just smaller.

Apart from these automatic changes of the typeface, it can of course be
specified by the user.

22

« I
After this command everything will be italic until the
-R

After this command everything will be italic ...

If the .I has an argument, only that argument will be in italic, and an
optional second argument will be put right after it. So this is the way

.B bold -item.

to produce bold-item.
To get (two points) smaller output:

.SM

This will be smaller,
-NL

and back to normal.

This will be smaller, and back to normal.

The .LG6 command will make the size Larger.

There are of course a lot more things you want, and can do with the -ms
macros, for instance creating running page headers, etc. However I will not
treat this here, nor will I give any details of the bare TROFF commands since I
merely want to give an overview of the system and do not want to write a user
manual.

In the next issue of the CWI-Newsletter I will discuss the typesetting of
tables, mathematical formulas and graphics.

Finally, I am grateful to Sape Mullender for allowing me to use his pro-
grams which made it possible to create the “artwork™ on the cover.

References

1 D. Grune, Handleiding bij de TEKSTSCHAAF, LR 2.5, Mathema-
tisch Centrum, Amsterdam, 1972.

[2] Donald E. Knuth, 7EX and METAFONT, American Mathematical
Society and Digital Press, Bedford, MA, 1979.

[3] Han Noot, “Structured Text Formatting”, Software Practice and
Experience, 13(1983), 79-94.

[4] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual,
Sixth Edition, Bell Laboratories, Murray Hill, NJ, 1975.

[5] A. F. de Winter, “De grafische industrie — Elektronica tussen pers
en post”, Natuur en Techniek, S1(1983), 432-447.

[6] Brian K. Reid, Scribe: A document Specification Language and its
Compiler, Carnegie Mellon University, Pittsburgh, PA, 1980.

[7] A. H. Noot, “DVI-Code to the Harris 7500”, TUG-Boat, March
1984.

23

(8]
19

(10]

(11]

(12]
(13]

(14]

J. F. Ossanna, NROFF/TROFF User’s Manual, Computing Science
Technical Report 54, Bell Laboratories, Murray Hill, NJ, 1976.

ISO standard, Information Processing Systems - Programming
Languages - Text Interchange and Processing (Sixth Working Draft),
ANSI, New York, 1 June 1983.

Brian W. Kernighan, A Typesetter-independent TROFF, Computing
Science Technical Report 97, Murray Hill, NJ, revised, March 1982.
J. N. Akkerhuis, “Typesetting and Troff”, Proceedings EUUG confer-
ence 7-9th September, 29-41, Dublin, Trinity College, 1983, Also
available as IW 247/83, CWI, Amsterdam 1983.

J. C. van Vliet, Bestesplits 1, NR 28/72, Mathematisch Centrum,
Amsterdam, 1972.

M. E. Lesk, Typing Documents on UNIX and GCOS: The —ms Mac-
ros for troff, Bell Laboratories, Murray Hill, NJ, 1977.

Leslie Lamport, The L*TEX Document Preparation System, Second
Preliminary Edition, SRI international, Menlo Park, CA, December
13, 1983.

24

Multigrid Algorithms Run on Supercomputers

by P.W. Hemker

The aim of research at the CWI on multigrid-methods in elliptic partial dif-
ferential equations is the construction of algorithms that efficiently yield a
numerical solution to these problems. This research is motivated by numerous
applications, mainly in physics and in the engineering sciences. Except for a
few very simple cases, it is impossible to find explicit mathematical expressions
for the solutions, so that one has to rely on a numerical approximation to the
solution.

By the very nature of partial differential equations, their solutions are con-
tinuous functions of several variables. In the numerical approach, these func-
tions are approximated by only a finite set of numbers. Usually these numbers
represent the function values of the solution at an evenly spaced set of “grid-
points” in the domain of definition of the equation.

In practice, many problems appear in the form of an equation for the func-

tion u(x,y), with (x,y) in a rectangle Q. The form of this equation is
0 0 0 0 0 0 ou ou

(5 ang, Tan @)+ @(02154_“2267))“ thig, +b2$+cu =f
with additional conditions for u(x,y) on the boundary of . The coefficients
a;;,bi,c and f are given functions of x and y. Much of the research on mul-
tigrid methods is restricted to this equation. The computer programs that have
been recently constructed at the CWI are almost all intended for equations of
this type.

For those who are not familiar with elliptic partial differential equations a
simple example is given by the Poisson equation:

0 0

= _+_ =
GGy,
with u(x,y) prescribed on the boudary of the 2-dimensional domain €. For this
equation we can imagine the solution z = u(x,y) as a surface in 3-dimensional
space. On the boundary of Q its position (x,y,z) is given and in the interior of
{2 the surface behaves like a soap-film between the prescribed boundary values.

Yu =0 on,

e e o o —
N

S

25

This example illustrates some essential properties of elliptic partial differen-
tial equations: boundary conditions are to be given all along the boundary and
the solution in the interior is a smooth function.

The usual technique for finding an approximation to u(x,y) is to replace
equation (*) by a set of N linear equations for N unknown values w; which
are meant to represent the function values u(x;,p;), where (x;,);) 1s a grid-
point. All these gridpoints form a “grid” (or “net”) for the “discretization” of
(*). The approximation u; for u(x;.y;) becomes more accurate as the number
of gridpoints N gets larger. Therefore, it is often necessary to solve linear sys-
tems with N very large. N may be so large that — with conventional solution
methods such as Gaussian elimination — it can take many days to solve these
systems on a computer.

Therefore the usual way to solve the large systems is by relaxation
methods, i.e. iterative methods in which an initial guess of the solution is
improved step by step. Well-known relaxation methods are Gauss Seidel-
relaxation, SOR, zebra-relaxation, and Incomplete (Line) LU-decomposition-
relaxation. Successful research in recent years has resulted in other, much fas-
ter converging, iteration methods such as ICCG (preconditioned conjugate gra-
dient methods, cf.[6]). A disadvantage of all these methods is that the rate of
convergence of the iterations decreases for larger N.

A significant improvement in solving these (very large) systems of equa-
tions is found in the multigrid method. This is a technique which accelerates
the convergence of the relaxation methods so that the rate is independent of
N. This is done by introducing coarser grid discretizations (linear systems with
N:=N/4, N/16 etc.) and by combining relaxation for the large system with
the (less laborious and faster converging) relaxation on the coarser grids. A
good account of the multigrid method is found in [2].

For those to whom the basic idea of multigrid is new, we give a very short
explanation. The principle of multigrid is based on three facts:
1) The simple relaxation methods such as Gauss Seidel damp the rapidly vary-
ing components in the error much faster than the slowly varying components.
In other words: they can be considered as efficient smoothers for the error
rather than as reducers of the overall error.
2) The remaining (smooth) error components can be represented on coarser
grids, where the number of gridpoints is much smaller. Consequently, the
remaining error components can be reduced there much more efficiently.
3) On the coarse grid the solution is most efficiently reduced by a simple relax-
ation method and, again, coarser grid corrections. Thus a recursive procedure
can be defined where on the very coarsest grid the linear system to be solved
has a very small number of unknowns.

It will be clear that the above principle is rather general and that many
variants are possible. The idea can also be applied to other equations in which
the original problem has continuous solutions. The idea can for instance be
used for integral equations [4]. Attempts are even made to use the multigrid

26

o B“"“““‘l“‘
R S N W W W W
"‘“ s s e n -

/l/“ “"“" S
“ - o S —

S
, o
S

- e
S OSSS =<
T W . Wi W e
“‘.““‘l" oz
S o

s0d-

u
00°0

T
S0°0

ot'o

27

idea in cases where the linear systems do not originally stem from a continuous
equation [5].

The convergence of multigrid for the equation (x) depends on the coeffi-
cients in the equation, on the operators that take care of the interaction
between the various grids, and on the relaxation method used. On the one
hand the efficiency of a multigrid algorithm depends on this convergence and
on the other hand on the amount of arithmetic operations in each iteration. In
recent years some research at the CWI was devoted to the selection of optimal
efficient multigrid strategies for different equations (*), cf. [3].

It appears that for different classes of (*), different relaxation methods give
optimal efficiency. For problems like the Poisson problem zebra- and ILU-
relaxation are succesful (zebra is slightly more efficient, but ILU performs
better for a larger class of equations), while ILLU-relaxation is particulary
suited for problems where the coefficients b; dominate the coefficients a;; .

Several implementations of multigrid algorithms have been constructed at
the CWL. Besides a comprehensive program for experimental purposes written
in ALGOL 68, a number of programs was written in FORTRAN with efficient
execution in practical applications in mind. Two particular programs,
developed in cooperation with the Numerical Group of the University of Tech-
nology, Delft, are called MGDI (ILU relaxation) and MGDS5 (ILLU).

In practice, the speed of these programs depends not only on the conver-
gence rates or the number of arithmetic operations per iteration cycle, but also
on the architecture of the computer used.

Here the programmer has to decide whether his aim is to develop his pro-
gram for a particular machine or to pursue an efficient program for a general
class of computers. We decided in favor of the latter and wrote two versions,
one aimed at the usual sequential (=scalar) computer and one at vector com-
puters (CRAY 1 or CYBER 205). In both cases we refrained from the use of
features that are available only on one particular machine and we wrote the
programs in a most elementary and portable FORTRAN. For the vector com-
puters this means that we used the auto-vectorization capabilities of the FOR-
TRAN compilers.

Thus for ILU- and ILLU-relaxation we constructed a scalar-version
(MGDIS, MGDS5S) and a vector-version (MGDIV, MGD5V). For the scalar
architecture the computing time for an iteration cycle is proportional to the
number of gridpoints in the finest grid. For different machines the execution
times are given in table 1. From this we see that for an equation like Poisson’s
equation (for which 3 iterations and a preparational phase corresponding to 3
iteration cycles are necessary) a linear system with N = 257X257~66000
equations can be solved in less than a second.

It is interesting to see to what extent the arithmetic operations in MGDI
and MGD5 can be arranged so as to make effective use of the vector-
architecture of the CRAY 1 or the CYBER 205 (i.e. to what extent the

28

algorithms are vectorizable). The acceleration factors of the vector-programs
run (if possible) in vector-mode over the scalar-programs (run in scalar-mode)
are given in Table 2.

MGDI MGD5
relaxation ILU ILLU
IBM 3081K 16.7 25.7
CYBER 170 15.4 249
CRAY 1S 9.1 12.7
CYBER 205 8.1 11.1

Table 1. CPU-times for the scalar versions on scalar architecture
in psec/(cycle X meshpoint).

N MGDI MGD5

CYBER 170 65X 65 0.86 0.95
(scalar mode)

CRAY 1S 65X 65 32 27
(vector mode) 129X129 36 29
CYBER 205 65X 65 32 22
(vector mode; 129X129 42 25
two pipes) 257 X257 48 2.6

Table 2. Acceleration factor of the vector version over the scalar
version for the algorithms MGD1 and MGDS5.

We see that vectorization of the MGDS5 algorithm has more effect on the
CRAY than on the CYBER. The other algorithm, MGDI, is better vectoriz-
able, especially on the CYBER 205. Now a Poisson type problem with
N =257X257 is solved in 0.2 sec.

Other programs were made for zebra-relaxation. By its nature this relaxa-
tion method seems better suited for vectorization than ILU- or ILLU-
relaxation, and on the CRAY 1 better acceleration factors were indeed found.
However, to make it efficient on the CYBER the data structures in the pro-
gram had to be changed drastically. In the MGD-programs the data (u;) are
stored in a natural way in a rectangular array, corresponding to the location of
the gridpoints (x;,y;) in the rectangle 2. In order to prevent the frequent use of
strides >1 in the zebra program (which is necessary for efficient vectorization
on the CYBER), the data u; had to be re-ordered by even and odd lines. In
this way the program could be accelerated by a factor 7.3 on the CYBER. The
same program runs without problems on the CRAY.

29

We see that for efficient implementation of an algorithm we have to tune
the structure of the program very much to the computer architecture. We are
willing to do this as long as our programs remain portable.

A program can generally be made even faster if one tunes the programming
really to one particular machine and even more if one restricts its use to only
one particular case of equation (*). Such a program has been constructed by
Barkai and Brandt [1]. It solves (only) the Poisson equation on a CYBER 205.
In this program a checkerboard relaxation is used and the data structures have
been specially adapted for this relaxation on this particular computer. The
result is a non-portable program which is extremely fast. In [1] it is mentioned
that the Poisson equation with N = 129X 129 can be solved in 0.006 seconds.

At the CWI we do not plan to proceed in the direction of non-portable
programs. At the moment we are more interested in efficient algorithms for
solving wider classes of equations. Besides our special interest in the solution
of equations (%) of singular perturbation type, we are considering the imple-
mentation of an algorithm for (*) with (strongly) discontinuous coefficients.

Acknowledgements

I would like thank Paul de Zeeuw who did most of the programming and
Walter Lioen who implemented the FORTRAN programs with zebra relaxa-
tion. Furthermore, I would like to thank Drs I.P. Jones and C.P. Thompson
from AERE, Harwell (England), for their kind cooperation in running the pro-
grams on the CRAY 1 and the IBM 3081K.

References

1. D. Barkai & A. Brandt, (1983) Vectorized Multigrid Poisson Solver for the
CDC CYBER 205. J. Appl. Math. & Computat. 13 215-227.

2. W. Hackbusch & U. Trottenberg (eds.), (1982) Multigrid Methods. LNM
960, Springer Verlag.

3. P.W. Hemker, R. Kettler, P. Wesseling & P.M. de Zeeuw, (1983) Mul-
tigrid Methods: Development of Fast Solvers. J. Appl. Math. & Computat.
13 311-326.

4. H. Schippers, (1983) Multiple Grid Methods for Equations of the Second
Kind with Applications in Fluid Mechanics. Mathematical Centre Tract
163, CWI, Amsterdam.

5. K. Stiiben, (1983) Algebraic Multigrid (AMG): Experiences and Com-
parisons. J. Appl. Math. & Computat. 13 419-451.

6. H.A. van der Vorst, (1982) Preconditioning by Incomplete Decompositions.
Doctoral Thesis, University of Utrecht.

30

Winning ways for your mathematical plays
by Aart Blokhuis

Winning Ways for your Mathematical Plays by Elwyn R. Berlekamp, John H.
Conway & Richard K. Guy.

Vol. 1 Games in General, 426 pp.

Vol. 2 Games in Particular, 424 pp.

Academic Press (London, New York, etc.), 1982.

One-heap min is certainly the most boring game ! Two persons sit at a
table with a heap of beans. At his turn one of the players takes any number
of beans, at least one, from the heap. The first player unable to move loses.
Usually the first player wins by taking the whole heap. Things become more
interesting, though, if more heaps are involved. At his turn a player chooses a
heap and removes any number from that heap. This game is the disjunctive
sum of several one-heap min games. In general, games are considered in
which the players move alternately, and with the rule that the first player
unable to move loses. In the disjunctive sum of games, a move consists of
choosing a game and making a move in that game. In Volume 1 of Winning
Ways, the authors develop a theory for addition of games, best illustrated
using a partial variant of min called hackenbush.

A hackenbush game is drawn in figure 1.

i

ground
Fig.1

The two players, blue and red say, may hack the bush in any segment of their
colour (single edges = blue, double = red). The part of the stalk that is
disconnected from the ground disappears, together with the chopped segment.
Clearly, this example is the disjunctive sum of three ‘simple’ hackenbush
games. A little analysis also shows that in this example the player who starts
always loses. This is called a zero-game. In hackenbush it is possible to
assign to every position a number, corresponding to the number of ‘free
moves’ for blue. If the number is positive blue always wins and if it is

31

negative red wins (irrespective of who starts); zero means that the starter
loses. In figure 1 the three parts have values —1,—' and 1%, adding up to 0.
How to compute these numbers is all in the book. As an example here are
strings with value 7 and 1 / w, where w is the first infinite ordinal:

Fig.2

Also, other startling values like Vw or @™ can be constructed.

So far things were easy, but what number should we assign to a min-
heap of one bean, or (which is the same) to a hackenbush stalk having just
one segment which is red and blue at the same time (purple say) ? In this
game the first player wins, but if you add to it any game with positive value,
i.e. blue wins, the result is still positive. Hence the value of this game is
something like zero, but it’s not zero itself (which means the starter loses). In
this way the ‘nimbers’ make their appearance. This one is called *, and it is
easy to prove that * + % = 0! Another interesting ‘number’ is 1 which has
the property 1 > 0, but 1 < 27" for all n. It is here that the real problems
begin, and that the reader should read the book instead of this review.

Volume 2 is called games in particular, and the only way to give an
impression of its contents is to look at some games in particular. In chapter
18 we meet the following game: 4 and B choose a number in turn, with the
restriction that no new number may be the sum of multiples of previously
chosen ones. If you choose 1 you lose. For example, 4:2, B:5, A:3, B:1 and
loses.

The game is called Sylvester coinage. Now B, of course, did not play
very smartly, since choosing 3 instead of 5 would have won immediately.
Hence 2 was not a clever choice for A either. Less obvious is that 4, 6, 8, 9,
12 are all losing opening moves. Can the reader prove that p is a winning
opening choice for each prime p=5? And what about 16, 18, 24, or any
number of the form 2%3°?

The game Sylvester coinage can possibly be analyzed completely; how-
ever the following two-person game (which cannot) is really interesting. It is

32

called ‘philosopher’s football’, or Phutball. The ball, a black stone, is put on
the central point of a go-board. Each player, when he moves, either places a
white stone somewhere on the board, or jumps the ball over a series of white
stones in any of the eight directions any number of times, removing the
jumped-over stones. One side of the board is Left’s goal line, the opposite is
Right’s. Left wins if he succeeds in bringing the ball on (or behind) Right’s
goal line and conversely. For a little introduction, see p. 688.

Further games analyzed include tic-tac-toe, hare and hounds, fox and
geese and many other less well-known games.

After 700 pages on two-person games come an additional 120 on 1-
person-games or puzzles, including of course the celebrated Hungarian cube
and the game of solitaire. The final 30 pages are about the most interesting
no-person game: life. Life is a ‘game’ which is played on an infinite chess-
board. At every stage some squares are ‘alive’ and others ‘dead’. In the next
stage squares become alive or die according to the following rules: A square
is born if exactly 3 of its neighbours were alive in the last stage. A square
dies if more than 3 or less than 2 neighbours were alive in the previous stage.
As an exercise one should look at the development of the ‘most spectacular
small living object, the glider’. Black dots are living cells.

the glider
Fig.3

After its ‘discovery’ by J.H. Conway around 1970 life has become very popu-
lar, as a result of which many amazing starting configurations have been
found, whose names suggest their properties: spaceships, flip-flops and finally
Gosper’s glider-gun, emitting a new glider every 30 generations. The final
pages of Volume 2 are devoted to a construction of a computer using glider
guns, eaters and other ingenious configurations, thus proving that life is
universal.

33

Abstracts
of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CS-R8401. J.A. Bergstra & J.V. Tucker. Top-down design and the algebra of
communicating processes.

AMS 68B10; 38 pp.; key words: hierarchical and modular systems, composi-
tion tools, system architectures, concurrency, communicating processes, process
algebra, fixed point equations, hand-shaking.

Abstract: We develop an algebraic theory for the top-down design of communicating systems in
which levels of abstraction are represented by algebras, and their stepwise refinements are
represented by homomorphisms. Particular attention is paid to the equational specification of these
levels of abstraction. A number of examples are included for illustration, most notably a top-down
design for a communication protocol.

CS-R8402. P.M.B. Vitanyi. Square time is optimal for simulation of one push-
down store by an oblivious one-head tape unit.

AMS 68C40; 4 pp.; key words: multitape Turing machines, pushdown stores,
queues, time complexity, square lower bounds, on-line simulation by oblivious
single-head tape units, Kolmogorov complexity.

Abstract: To simulate a pushdown store or queue on-line by an oblivious one-head tape unit takes
at least square time. Since each multitape Turing machine can be trivially simulated by an oblivi-
ous one-head tape unit in square time this result is optimal.

CS-R8403. J.A. Bergstra & J.W. Klop. Algebra of communicating processes with
abstraction.

AMS 68B10; 43 pp.; key words: concurrency, communicating processes, inter-
nal actions, process algebra, bisimulation, process graphs, handshaking, ter-
minating rewrite rules, recursive path ordering.

Abstract: We present an axiom system ACP, for communicating processes with silent actions (‘r-
steps’). The system is an extension of ACP, Algebra of Communicating Processes, with Milner’s -
laws and an explicit abstraction operator. By means of a model of finite acyclic process graphs for
ACP, syntactic properties such as consistency and conservativity over ACP are proved. Further-
more the Expansion Theorem for ACP is shown to carry over to ACP,. Finally, termination of
rewriting terms according to the ACP, axioms is proved using the method of recursive path order-
ings.

CS-R8404. J.A. Bergstra & J.W. Klop. Verification of an alternating bit proto-
col by means of process algebra.
AMS 68B10; 17 pp.; key words: process algebra, alternating bit protocol,

abstraction, fair abstraction.
Abstract: We verify a simple version of the alternating bit protocol in the system ACP, (Algebra of

34

Communicating Processes with silent actions) augmented with Koomen'’s fair abstraction rule.

CS-R8405. J.A. Bergstra & J.W. Klop. Fair FIFO queues satisfy an algebraic
criterion for protocol correctness.

AMS 68B10; 17 pp.; key words: process algebra, queue, communication proto-
col, verification.

Abstract: An algebraic criterion for protocol correctness is presented, as well as a proof method for
establishing the criterion. As an example we consider FIFO queues with unbounded capacity.

CS-R8406. P.M.B. Vitanyi. One queue for two pushdown stores take square time
on a one-head tape unit.

AMS 68C40; 5 pp.; key words: multitape Turing machines, pushdown stores,
queues, time complexity, square lower bounds, on-line simulation by single-
head tape units, Kolmogorov complexity.

Abstract: To simulate one virtual queue or two virtual pushdown stores by a one-head tape unit
takes at least square time. Since each multitape Turing machine can be trivially simulated by a
one-head tape unit in square time this result is optimal.

CS-R8407. J.C.M. Baeten, J.A. Bergstra & J.W. Klop. Priority rewrite systems.
AMS 03F65; 51 pp.; key words: term rewrite systems, priority rewrite set, sig-
nature, modularity, specification.

Abstract: Term rewrite systems with rules of different priority are introduced. The semantics are
explained in detail and several examples are discussed, including a rewrite rule interpretation of
Backus functional programming. '

CS-N8401. R. van den Born. Structure preserving data flow analysis for pro-
grams with GOTO-statements.

AMS 68B10; 47 pp.; key words: high level data flow analysis, (micro)code-
generation, optimalisation.

Abstract: The generation of efficient (micro)code requires information about the parallelism and
the data flow in the source program as well as its high level structure. The graph described in this
article provides a clear and flexible representation of this information. A new method for data flow
analysis is introduced, which can be used to compute such a graph. The method can handle arbi-
trary GOTO statements.

OS-R8401. J.K. Lenstra & A.H.G. Rinnooy Kan. New directions in scheduling
theory.

AMS 90B35; 9 pp.; key words: scheduling, jobs, machines, algorithm, compu-
tational complexity, probabilistic analysis.

Abstract: This is an assessment of new developments in the theory of sequencing and scheduling.
After a review of recent results and open questions within the traditional class of scheduling prob-
lems, we focus on the probabilistic analysis of scheduling algorithms and next discuss some exten-
sions of the traditional problem class that seem to be of particular interest.

OS-R8402. J.P.C. Blanc. Asymptotic analysis of a queueing system with a two-
dimensional state space.

AMS 60K25; 22 pp.; key words: asymptotic analysis, queueing system, two-
dimensional state space, conformal mapping, relaxation time.

Abstract: A technique is developed for the analysis of the asymptotic behaviour in the long run of
queueing systems with two waiting lines. The generating function of the time-dependent joint

35

queue length distribution is obtained with the aid of the theory of boundary value problems of the
Riemann-Hilbert type and by introducing a conformal mapping of the unit disk into a given
domain. In the asymptotic analysis an extensive use is made of theorems on the boundary
behaviour of such conformal mappings.

0S-R8403. J. Han & M. Yue. A study of elimination conditions for the permuta-
tion flow-shop sequencing problem.

AMS 90B35; 15 pp.; key words: flow-shop, elimination criterion, branch-and-
bound.

Abstract: We give a few elimination criteria for the permutation flow-shop problem and prove that

one of them is equivalent to Szwarc’s elimination criterion. We also propose a lower bound to be
used in a branch-and-bound method.

OS-R8404. J.H. van Schuppen. Overload control for an SPC telephone
exchange. An optimal stochastic control approach.

AMS 93E20; 32 pp.; key words: stored program control exchange, overload
control, queueing theory, stochastic control.

Abstract: The current stored program control (SPC) telephone exchanges are the operational units
of the telephone networks. One of the problems with these exchanges is the performance degrada-
tion during time periods of peak demand. The problem of overload control is then to maximize the
number of admitted and successfully completed calls under technical constraints of which the main
one is the available processor capacity. In the paper the processor load of an SPC telephone
exchange is modelled as a hierarchical queueing system, while the problem of overload control is
formulated as an optimal stochastic control problem. The latter problem is solved. An implementa-
tion of the derived control law is suggested.

0S-R8405. M.W.P. Savelsbergh & P. van Emde Boas. Bounded Tiling, an
alternative to satisfiability ?
AMS 68C25; 10 pp.; key words: computational complexity, NP-completeness,

master problem, master reduction, Bounded Tiling.

Abstract: The Bounded Tiling problem is presented and the question is raised whether it provides a
viable alternative to the foundation of the NP-completeness theory. To answer this question we
take the standard results and investigate how they will look when they are based upon Bounded
Tiling.

NM-R8401. P.W. Hemker & P.M. de Zeeuw. Some implementations of mul-
tigrid linear system solvers.
AMS 65F10; 34 pp.; key words: elliptic differential equations, solutions of

linear systems, multigrid methods.

Abstract: In this paper portable and efficient FORTRAN implementations for the solution of
linear systems by multigrid are described. They are based on ILU- or ILLU-relaxation. Scalar and
vector versions are compared. Also a complete formal description of a more general multigrid
algorithm is given in ALGOL 68.

NM-R8402. P.J. van der Houwen, B.P. Sommeijer & H.B. de Vries. General-
ized predictor-corrector methods of high order for the time integration of parabolic
differential equations.

AMS 65M10; 34 pp.; key words: parabolic differential equations, methods of

lines, predictor-corrector methods, stability.
Abstract: A general class of predictor-corrector methods is presented and explicit expressions for

36

the local truncation error and the stability polynomial are derived. Examples of methods of orders
up to 6 are given which are suitable for the integration of semi-discrete parabolic differential equa-
tions. By means of a large number of numerical experiments we show that the higher order
methods are generally more efficient than the lower order methods. As a further illustration we
compare the generalized predictor-corrector methods with the familiar ADI method confirming our
general belief that for smooth parabolic problems high order time integrators are superior to lower
order integrators.

NM-R8403. J.M. Sanz-Serna & J.G. Verwer. A study of the recursion

Yn+1=Vn 0"

AMS 65L05; 4 pp.; key words: numerical analysis, recursion formulas, energy
method, Euler’s method.

Abstract: We provide a detailed study of the recursion yo=1,y,4 1=y, t
M n=0,1,..., m > 1, which arises either as a model discretization of a nonlinear ordinary
differential equation or in the use of the energy method. Sharp bounds and asymptotic estimates
are given for the size of the iterates y, .

NM-N8401. G.T. Symm, B.A. Wichmann, J. Kok & D.T. Winter. Guidelines
for the design of large modular scientific libraries in ADA. Final report for the
Commission of the European Communilties.

AMS 69D49; 146 pp.; key words: Ada programming language, scientific
software.

Abstract: The new programming language Ada has been designed primarily for real-time, embed-
ded computer applications development. However, it is envisaged that it will also be widely used
in large-scale scientific computation. Several features of the language require careful consideration
if large portable and modular scientific algorithms libraries are to be implemented successfully.
Accordingly, in this report we attempt to identify the problems associated with the overall design
and implementation of such libraries in Ada and make recommendations for their solution. The
problem areas considered are precision, basic mathematical functions, composite data types, infor-
mation passing, error handling, working-space organisation and real-time environment.

MS-8401. D.M. Chibisov & W.R. van Zwet. On the Edgeworth expansion for
the logarithm of the likelihood ratio, I1.

AMS 62E20; 11 pp.; key words: Edgeworth expansions, contiguity.

Abstract: In this paper we discuss conditions under which the distribution function of the loga-
rithm of the likelihood ratio possesses an Edgeworth expansion. The underlying model is that of
independent but not necessarily identically distributed random variables and the two sequences of
product distributions are assumed to be contiguous. First we deal with the problem in full general-
ity and obtain a result in the spirit of Qosterhoff and Van Zwet (1979), who characterized con-
tiguity and asymptotic normality of the logarithm of the likelihood ratio. Next we show how this
result may be simplified for differentiable likelihoods. In a companion paper, Chibisov and Van
Zwet (1984), we discuss the special case of independent and identically distributed random vari-
ables and differentiable likelihoods in considerably more detail.

MS-R8402. C.A.J. Klaassen & W.R. van Zwet. On estimating a parameter and
its score function.
AMS 62F11; 12 pp.; key words: adaptation, score function, Cramér-Rao ine-

quality, semi-parametric models.

Abstract: We consider the problem of estimating a real-valued parameter 6 in the presence of an
abstract nuisance parameter 7, such as an unknown distributional shape. Attention is restricted to
the case in which the ‘score functions’ for @ and 7y are orthogonal, so that fully asymptotically

37

efficient estimation is not a priori impossible. For fixed sample size we provide a bound of
Cramér-Rao type. The bound differs from the classical one for known 7 by a term involving the
integrated mean square error of an estimator of a multiple of the score function for 8 for the case
where 7 is known. This implies that an estimator of 8 can only perform well over a class of shapes
7 if it is possible to estimate the score function for # accurately over this class.

MS-R8403. P. Groeneboom. Estimating a monotone density.

AMS 62E20; 14 pp.; key words: monotone densities, isotonic estimation,
Brownian motion, jump processes, concave majorant, heat equations, Volterra
integral equations, first exit densities.

Abstract: Some local and global results on estimating a monotone density are discussed. In partic-
ular, it is shown that a centered version of the L-distance between a smooth strictly decreasing
density and its Maximum Likelihood Estimator is asymptotically normal and has an asymptotic
variance which is independent of the density. The results are derived from the structure of a jump
process generated by Brownian motion.

MS-R8404. R.J.M.M. Does, R. Helmers & C.A.J. Klaassen. On the Edgeworth
expansion for the sum of a function of uniform spacings.
AMS 62E20; 15 pp.; key words: Edgeworth expansions, uniform spacings,

Cramér’s condition.

Abstract: An Edgeworth expansion for the sum of a fixed function g of normed uniform spacings
is established under a natural moment assumption and a Cramér type condition. This condition is
shown to hold under an easily verifiable and mild assumption about the function g.

MS-R8405. R.J.M.M. Does, R. Helmers & C.A.J. Klaassen. Approximating the
percentage points of Greenwood’s statistic with Cornish-Fisher expansions.

AMS 62E20; 6 pp.; key words: Greenwood’s statistic, Cornish-Fisher expan-
sions, uniform spacings, goodness-of-fit.

Abstract: It is suggested that approximating the exact percentage points of Greenwood’s statistic
with Cornish-Fisher expansions is useful for not too small sample sizes.

MS-R8406. P. Groeneboom & D.R. Truax. A monotonicity property of the
power function of multivariate tests.

AMS 62H10; 11 pp.; key words: monotonicity of power functions, non-central
Wishart matrix, characteristic roots, orthogonal groups, Euler angles, correla-
tion inequalities, hypergeometric functions of matrix arguments, FKG inequal-
ity, pairwise totz"ﬂ positive of order two.

Abstract: Let S =, X, X';, where the X; are independent observations from a 2-dimensional
k=1

normal N (i ,2) distribution, and let A= >y 7! be a diagonal matrix of the form A,
k=1

where A = 0 and I is the identity matrix. It is shown that the density ¢ of the vector i=(f,}) of
characteristic roots of S can be written as G (Af,%) ¢o (), where G satisfies the FKG condition on
R 1. This implies that the power function of tests with monotone acceptance region in f; and b, i.e.
a region of the form {g(f,) < c}, where g is nondecreasing in each argument, is nondecreasing
in A. It is also shown that the density ¢ of (f,,) does not allow a decomposition
&b,6)=G (\b.b) ¢ (B, with G satisfying the FKG condition, if A=diag(\,0) and A > 0, implying
that this approach to proving monotonicity of the power function fails in general.

MS-R8407. A.J. van Es. On the weak limits of elementary symmetric

38

polynomials.

AMS 60F05; 16 pp.; key words: symmetric polynomials, U statistics.

Abstract: In this paper we extend recent results of Székely and others on the weak limits of ele-
mentary symmetric polynomials S,,(k")(X > - - - » X,) in the case where the order k, of the polyno-
mials is proportional to the number of variables n.

MS-R8408. H.C.P. Berbee. A limit theorem for the superposition of renewal
processes.

AMS 60G55; 5 pp.; key words: stationary, renewal process, Palm measure,
superposition, asymptotics.

Abstract: The asymptotics of a superposition of renewal point processes is studied from the point
of view of Palm theory.

AM-R8401. H.J.A.M. Heijmans. On the stable size distribution of populations
reproducing by fission into two unequal parts.

AMS 92A15; 27 pp.; key words: size-structured populations, proliferating cells,
exponential individual growth, continuous culture, strongly continuous semi-
group, dynamical system.

Abstract: A nonlinear model describing the dynamics of a continuous culture of cells characterized
by their size only, and reproducing by fission into unequal parts, is formulated. It is assumed that
cells grow proportionally to their size. Using techniques from dynamical systems theory, we estab-
lish results concerning the existence of a globally stable equilibrium.

AM-R8402. H.A. Lauwerier. Global bifurcation of a logistic delay map.

AMS 58F14; 19 pp.; key words: logistic delay map, bifurcation, nonlinear
difference equation, period-doubling.

Abstractt We consider the planar map x’ = y,y’ =¢(x,y) connected with the difference.
X, +1 = ax,(1—(1—b)x, —bx, _;) witha > 1,0 < b < 1. The unstable manifold of the fixed
point (0,0) is determined explicitly as an analytic curve. The stable manifold consists of an infinity
of algebraic curves and forms the boundary of the escape region, the set of starting-points of orbits
going to infinity. The case b = % is studied in more detail and most illustrations are for this
case. For a > 3 there always exists an unstable 4-cycle. For this cycle the secondary unstable
manifolds are also determined explicity. Even for the case b = % a Feigenbaum scenario of
repeated period-doubling has been observed. However, the convergence to Feigenbaum’s universal
constant appears to be rather slow.

AM-R8403. J. Grasman & J.V. Lankelma. The exit problem for a stochastic
dynamical system in a domain with almost everywhere characteristic boundaries.
AMS 35A40; 13 pp.; key words: random perturbation, Fokker-Planck equa-
tion, exit problem, WKB approximation, hypercycle.

Abstract: For a dynamical system with a stable equilibrium point the influence of small random
perturbations is analyzed with singular perturbation techniques. The WKB approach to the asymp-
totic solution of the exit problem for domains with characteristic boundaries containing a critical
point is not valid, because of the turning-point behaviour of the Fokker-Planck equation near such
a point. In this paper this difficulty is resolved by changing the domain for the characteristic exit
problem slightly. Explicit computations are carried out for a problem originating from theoretical
population biology: the 3-dimensional hypercycle.

AM-R8404. H.A. Lauwerier. Entire functions for the logistic map I1.
AMS 30D05; 34 pp.; key words: entire functions, iterated maps, fractals.

39

Abstract: The asymptotic behaviour of the entire functions F introduced in part I of this article is
studied on rays in the complex plane. The Julia set of the logistic map is brought into relation
with the zeros of F(z).

AM-R8405. SM. Verduyn Lunel. Linear autonomous retarded functional dif-
ferential equations; a sharp version of Henry’s theorem.

AMS; 44 pp.; key words: completeness, functional differential equation, small
solution, Volterra convolution integral equation.

Abstract: Small solutions play a crucial role in the theory of completeness of the generalized eigen-
functions of the infinitesimal generator of the c-semigroup {7'(t)} associated with a linear auto-
nomous retarded functional differential equation. In this paper we prove a sharp version of
Henry’s Theorem on small solutions and, as a corollary, that the ascent a of {T(¢)} is equal to the
ascent 8 of the adjoint ¢(-semigroup {7'(t)" }.

AM-R8406. H.A. Lauwerier. A case of a not so strange strange attractor.

AMS 58F13; 13 pp.; key words: iterated maps, strange attractors, fractals.
Abstract: An example is given of an iterative two dimensional map of the horseshoe type in which
everything can be expressed in terms of simple trigonometric functions. The strange attractor is an
analytic curve with a fractal dimension.

AM-R8407. H.J.AM. Heijmans. Holling’s ‘hungry mantid’ model for the inver-
tebrate functional response considered as a Markov process. Part 111: Mathemati-
cal elaborations.

AMS 92A15; 43 pp.; key words: satiation, functional response, forward equa-
tion, backward equation, positive operator, semigroup, Trotter-Kato theorem,
weak * solution, first order partial differential equation with transformed argu-
ments.

Abstract: In this paper, we study an analytical model describing predatory behaviour. It is
assumed that the parameter describing the predator’s behaviour is its satiation. Using semigroup
methods and compactness arguments we prove that a stable satiation distribution is reached as
t—o0. Furthermore, using a Trotter-Kato theorem we justify the transition to the much simpler
problem that is obtained if the prey biomass tends to zero.

AM-R8408. H.E. de Swart. Spectral modelling of a potential vorticity equation
for a barotropic flow on a beta-plane.

AMS 34B25; 23 pp.; key words: scale analysis, hydrostatic balance, Rossby
number, quasi-geostrophy, beta-plane, barotropic assumption, Ekman boun-
dary layer, orography, spectral model.

Abstract: A quasi-geostrophic potential vorticity equation, including forcing and dissipation
mechanisms, is derived for a barotropic flow over a large scale topography on a f-plane. The
model is assumed to describe large scale motions in the atmosphere. Finally, from the vorticity
equation a spectral model is constructed.

PM-R8401. A. Blokhuis & A.E. Brouwer. Locally 4-by-4 grid graphs.

AMS 05C25; 19 pp.; key words: Johnson scheme, locally grid graph.

Abstract: We investigate locally grid graphs. Main results are: (i) a characterization of the Johnson
graphs (and certain quotients of these) as locally grid graphs such that two points at distance two
have precisely four common neighbours, and (i) a complete determination of all graphs that are
locally a 4x4 grid (it turns out that there are four such graphs, with 35, 40, 40 and 70 vertices).

40

PM-R8402. A.M. Cohen & A.G. Helminck. Trilinear alternating forms on a
vector space of dimension 7.

AMS 15A72; 20 pp.; key words: alternating forms, invariants.

Abstract: For vector spaces of dimension almost 7 over fields of cohomological dimension almost 1
(including algebraically closed and finite fields) all trilinear alternating forms and their isotropic
groups are determined.

PM-R8403. J. de Vries & J.C.S.P. van der Woude. Invariant measures and the
equicontinuous structure relation I.

AMS 54H20; 12 pp.; key words: equicontinuous structure relation, regionally
proximal relation, invariant measures, weak mixing.

Abstract: In this introductory paper we introduce and illustrate some notions and problems from
Topological Dynamics. This discipline originated from the qualitative theory of differential equa-
tions (work of Poincaré, Lyapunov, Birkhoff and others). This paper concerns ‘abstract’ Topologi-
cal Dynamics: there is no direct relationship with differential equations. After the necessary defini-
tions (Sections 1,2,3) we consider the problems of when the regionally proximal relation of a
minimal flow is an equivalence relation and when a minimal flow which has no non-trivial
equicontinuous factors is weakly mixing. In Sections 4 and 5 we state and prove a result of
MacMahou’s, namely that the answer to both problems is affirmative if the flow has an invariant
measure. Although the results are not new, the proofs are simpler than the existing ones.

PM-R8404. J. de Vries & J.C.S.P. van der Woude. Invariant measures and the
equicontinuous structure relation 11: The relative case.

AMS 54H20; 15 pp.; key words: minimal flow, weakly mixing, relatively
invariant measure, relative equicontinuous structure relation, relative regionally
proximal relation.

Abstract: In this expository paper we discuss some notions from (abstract) Topological Dynamics.
Moreover, we present self-contained simple proofs of the following results. Let ¢:X—Y be an
open extension of minimal flows and suppose that ¢ admits a relatively invariant measure. Then
Q4=E,, ie. the relative regionally proximal relation is an equivalence relation. Also, if E,=R,
(that is, ¢ has no non-trivial almost periodic factor), then ¢ is weakly mixing.

PM-R8405. J. de Vries. A note on the G-space version of Glicksberg’s theorem.
AMS 54H15; 2 pp.; key words: G-space, G-compactification, pseudocompact-
ness.

Abstract: In an earlier paper, Glicksberg’s theorem about the Stone-Cech compactification of pro-
ducts was generated by the author to the context of G-spaces and their maximal F-
compactifications, where G is an arbitrary locally compact group acting on all spaces under con-
sideration. However, in that paper only products of finitely many factors were considered. In the
present note, infinite products are taken into account.

41

CWI Activities

Summer 1984

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWL.

Study group on Analysis on Lie groups. Semisimple pseudo-Riemannian sym-
metric spaces. Joint with University of Leiden. Biweekly. (T.H.
Koornwinder)

Lecture series ‘The Spherical Fourier Transform for Semisimple Lie groups’.
Biweekly. (T.H. Koornwinder)

Seminar on Algebra and Geometry. The Leech lattice. Biweekly. (A.E.
Brouwer)

Study group on Cryptography. Biweekly. (A.E. Brouwer)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice
a month. (J. de Vries)

Lecture series “The Hamiltonian Formalism’. 6, 8, 12, 13, 15 June. Invited
speaker: B. Kupershmidt (University of Tennessee, USA). (M.
Hazewinkel)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Joint with University of Leiden. (J. Grasman)

Study group ‘Nonlinear Analysis’. Lectures by visitors or members of the
group. Joint with University of Leiden. (O. Dieckmann)

Progress Meetings of the Applied Mathematics Department. New results and
open problems in biomathematics and analysis. Weekly. (N.M.
Temme)

Study group ‘Semiparametric Estimation Theory’. Lectures by members of
the group on non-parametric maximum likelihood estimators,
density estimation, etc. Biweekly. (R.D. Gill)

National study group on statistical mechanics. Joint with Technological
University of Delft, Universities of Leiden and Groningen.
Monthly. University of Amsterdam. (H. Berbee)

Progress meetings of the Mathematical Statistics Department. New results in
research and consultation projects. Monthly. (R.D. Gill)

Colloquium on Queueing Theory. Triweekly. (E.A. van Doorn)

Progress meetings on Combinatorial Optimization. Biweekly. (J.K. Lenstra)

System Theory Days. 13 July. Main Speaker: P.R. Kumar (University of
Maryland, Baltimore County, USA). (J.H. van Schuppen)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Biweekly. (H.J.J. te Riele)

42

Study group Numerical Flow Dynamics. Lectures by group members. Every -
Wednesday. (J.G. Verwer)

Summer course 1984 for high-school teachers. Lectures on Operations
Research, Matrix Algebra, Statistics and Probability Theory, 3-
Dimensional Geometry, Mathematical Models, and Electronic
Data Processing. Zwolle, 9, 10 August. Eindhoven, 16, 17 August.
Amsterdam, 23, 24 August.

43

Visitors to CWI from abroad

J. Adams (University of California, Berkeley, USA) 30 May. W. Alt (Univer-
sity of Heidelberg, West Germany) 12 June. D.G. Aronson (University of
Minnesota, USA) 24 May. J. Beirlant (University of Louvain, Belgium) 23
May. L. Birgé (University of Paris X, France) 3-6 April. R.E. Bixby (Rice
University, Houston, USA) 11 May. C. Blume (University of Karlsruhe,
West Germany) 18-19 May. D. Chaum (University of California, Santa Bar-
bara, USA) 26 March - 15 August. V. Chvatal (McGill University, Montreal,
Canada) 29 May. W. Cook (University of Bonn, West Germany) 28 May.
M. Csorgé (Carlton University, Ottawa, Canada) 6 June. N. Cutland
(University of Hull, UK) 3 April. S.R. Dunbar (University of Heidelberg,
West Germany) 24 May. H. Fujii (Kyoto Sangyo University, Japan) 2-4
April. G. Goos (GMD, Bonn, West Germany) 9 February. P. Hammerstein
(University of Bielefeld, West Germany) 13 April. Hoang Huu Nhu (Univer-
sity of Hanoi, Vietnam) 29 March. A.F. Karr (John Hopkins University,
USA) 4-5 June. B. Kupershmidt (University of Tennessee, Tullahoma, USA)
6-26 June. H.T. Lau (Bell-Northern Ltd., Quebec, Canada) 17 May. E.L.
Lehmann (University of California, Berkeley, USA) 14-18 May. G. de Meij
(University of Gent, Belgium) 9 March. C.L. Monma (Bell Laboratories,
Holmdel, USA) 24-27 June. A. Neumaier (University of Freiburg, West Ger-
many) 26-27 March. A. Odlyzko (Bell Laboratories, Murray Hill, New Jer-
sey, USA) 16-19 April. T.J. Ott (Bell Communications Research, Holmdel,
USA) 4 June. E. Pardoux (University of Marseille, France) 19 April. M.
Pavon (University of Padua, Italy) 7-18 May. A. Pnueli (Weizmann Institute,
Rehovot, Israel) 16 March. D.K. RayChaudhuri (Ohio State University,
USA) 1-2 April. B. Schmitt (University of Metz, France) 14 May. A.
Schonhage (University of Tibingen, West Germany) 14-18 May. J. Sekigu-
chi (Tokyo Metropolitan University, Japan) 25 May. T. Sellke (Purdue
University, USA) 18-20 June. P. Tanner (CRC, Ottawa, Canada) 15-18 May.
J.J. Tyson (Virginia Polytechnic Institute, USA) 28-30 May. D.A. Vogan
(M.LT., Cambridge, Massachusetts, USA) 13 April. R.A. Volz (University of
Michigan, USA) 18 May. S. Walukiewicz (Polish Academy of Sciences, War-
saw, Poland) 11 May. R.A. Williamson (University of Cambridge, UK) 5-6
April.

Order form for CWI publications

Centre for Mathematics and Computer Science
Kruislaan 413

1098 SJ AMSTERDAM
The Netherlands

O Please send the reports marked below on an exchange basis
O Please send the reports marked below with an invoice

D000 oOO00O00O0o0oooooooooooooooooOoOogo

Publication code Price per copy
CS-R8401 DAl. 6.--
CS-R8402 3.70
CS-R8403 6.--
CS-R8404 3.70
CS-R8405 3.70
CS-R8406 3.70
CS-R8407 7.20
CS-N8401 -7.20
OS-R8401 3.70
OS-R8402 3.70
OS-R8403 3.70
0OS-R8404 3.70
0OS-R8405 3.70
NM-R8401 4.80
NM-R8402 4.80
NM-R8403 3.70
NM-N8401 20.30
MS-R8401 3.70
MS-R8402 3.70
MS-R8403 3.70
MS-R8404 3.70
MS-R8405 3.70
MS-R8406 3.70
MS-R8407 3.70
MS-R8408 3.70
AM-R8401 4.80
AM-R8402 3.70
AM-R8403 3.70
AM-R8404 4.80
AM-R8405 7.20
AM-R8406 3.70
AM-R8407 6.--

45

Number of copies wanted

Publication code Price per copy = Number of copies wanted

O AM-R8408 370
0O PM-R8401 370
0O PM-R8402 2 8 () -
0O PM-R8403 370 0 s
0O PM-R8404 370
0O PM-R8405 370

Publications about B (see page 13)

O IW 208/82 Dfi.370
O IW 214/82 370
O IwW 219/83 370 e
O IW 220/83 3700 s
0O IW 248/83 370
0O CS-N8402 1190 ..
0O CS-N8404 370 e
O CS-N8405 6~ e
O CS-R8408 370
O ISBN 90 6191 238 2 1210

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address !

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

NAME e e e e e naeen

46

