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The Centre for Mathematics and Computer Science (CWI) is the research in-
stitute of the Stichting Mathematisch Centrum (SMC), which was founded on
11 February 1946.

The goal of CWI is to do fundamental and advanced research in mathemat-
ics and computer science, with special attention to those areas to which the
research may have relevant applications. The research is fundamental in that it
is mainly concerned with those problems for which there are as yet no stan-
dard methods of solution. It is advanced in that CWI aims at research work
which is of a high level both nationally and internationally. Preference is given
to those subjects which, from an international point of view, look likely to
have interesting developments.

The research at CWI is organized in eight scientific departments:

Pure Mathematics;

Applied Mathematics;

Mathematical Statistics;

Operations Research and System Theory;

Numerical Mathematics;

Software Technology;

Algorithms and Architecture;

Interactive Systems
There are also a number of supporting sectors, in particular the Computer Sys-
tems and Telematics Sector, and an extensive Library.

The subdivision of the research into eight departments is less rigid than it
appears, for there exists considerable collaboration between the departments.
This is a matter of deliberate policy, not only in the selection of research
topics, but also in the selection of the permanent scientific staff.



Group Induced Orderings with
some Applications in Statistics

Morris L. Eaton*

University of Minnesota, Department of Mathematics
Minneapolis, MN 55455, USA

We discuss sufficient conditions on a compact group G for a function be
decreasing with respect to certain group induced orderings, and present a
class of composition theorems. We give an application of group induced order-
ings to linear statistical models, in particular a new proof of the Gauss-Markov
Theorem. Furthermore, we indicate a possible application of such orderings to
general experimental design problems.

1. INTRODUCTION

The origins of group induced orderings date back at least to the work of ADO
[33]. In a paper concerned with majorization and variations thereof, Rado
observed that classical majorization (see MARSHALL and OLKIN [24], Chapter 1
for an historical sketch concerning majorization) is equivalent to a pre-ordering
defined by the group of permutation matrices.ecall that for two column vectors
x, y in R", x is majorized by y (often written x <y) if the conditions

k k
>xi < Xy ok = La,n—1
i =1 i=1
. . (1.1)
_Elxm = _Elym
i= i=

are satisfied where x;;=...=x,) and y[;;=...=y|, are the ordered coordinates
of x and y. An important characterization of majorization due to HARDY, Lit-
TLEWOOD and PoLYA [19] is that

x<y iff x=Py (1.2)

where P is an n Xn doubly stochastic matrix.

Now, let 9, denote the group of n Xn permutation matrices. BIRKHOFF [3]
proved that 9, is exactly the set of extreme points of the convex set of doubly
stochastic matrices. Thus each doubly stochastic matrix has the representation

* This work was supported in part by National Science Foundation Grant No. DMS 83-19924.



P = Ya,g (1.3)
g

where the sum runs over 9, and the non-negative weights a, satisfy Za, =1.
Combining (1.2) and (1.3) shows that

x<y iff x=a,gy (1.4)
i

for some set of non-negative weights a, adding up to 1. The set
0,={gy|geP,} is the orbit of y under the action of the group ¥, on R".
Further, the convex hull of 0, consists of points of the form

x = Za,gy
and is denoted by C(y). We are thus led to Rado’s observation that
x<y iff xeC(y). (1.5)

Equation (1.5) was then used by ADO [33] as a definition to study relatives of
majorization defined by subgroups of %,. More precisely, if G is any subgroup
of 9,, define x<(G)y to mean x € C;(y) where Cg(y) denotes the convex hull
of the set {gy |geG}.

The idea of group induced orderings on R" arose in quite a different context
in MUDHOLKAR [27]. Given a compact subgroup G of the orthogonal group
0,, write

x<y iff xeC(y) (1.6)

where again C(y) denotes the convex hull of the orbit O, ={gy|geG}. The
dependence of <, C(y) and O, on G is suppressed notationally. A real valued
function f defined on R” is decreasing if

x<y implies f(x)=f(y). (1.7)

Mudholkar’s result gives a sufficient condition that the convolution of two
functions be decreasing.

THEOREM | (MUDHOLKAR [27]). Suppose f| and f, are non-negative measurable
functions defined on R" which satisfy
(1) filx) = fi(gx), xeR", geG, i=1,2;
(ii) for each ¢>0and i=1,2, {x|fi(x)=c} is a convex set.
If
h(y) = [fily —x)f2(x)dx

is finite for each y €R", then h is decreasing in the sense of (1.7).

The impetus for Mudholkar’s work as well as some more recent work on group
induced orderings has come from problems in multivariate probability inequal-
ities. Such problems often involve obtaining tight upper and/or lower bounds
on a function defined on R” or some subset of R". To see how group induced
orderings are applied to such problems, again let G be a compact subgroup of
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O, and let < denote the pre-ordering defined by G. Thus, x<y iff xeC(y).
Consider a real valued function f defined on R" which satisfies

{(i) f(x)=f(gx); xeR" geG 18

(i)) f is concave.
First observe that f satisfies (1.7). To see this consider x <y, so
X = D0gg). (1.9)
g

From (1.8), we have

() = fReggy)= Zagf (g9) = 2agf )=/ ().

Thus, concave invariant functions are necessarily decreasing in the sense of
(1.7) and lower bounds on f(x) are obtained when x € C(y). Upper bounds on
[ satisfying (1.8) are obtained via the following observation. Given any y, let

y = [gyudg)
where » is the unique invariant probability measure on the compact group G.
Obviously y<y since y is a ‘convex combination’ of points in the orbit of y. In
fact, y is the smallest element in C(y) in the sense that x eC(y) implies y<x.
To see this, observe that x<<x and for xeC(y) we have

X = D0gg).
g
Therefore the invariance of » yields
x = [hxv(dh)= [h(Za,gy)n(dh)=Za, [hgyv(dh)
= Zagfhy ndh)=Za,y=Yy.
Thus, for f satisfying (1.8), the double inequality

fW=fx)=f () (1.10)

is valid for all xeC(y). Further (1.10) is sharp in the sense that there are
points in C(y) so that both of the inequalities are equalities.

It is inequality (1.10) which has proved to be so useful in many applications.
When G=9,, the book by MARSHALL and OLKIN [24] provides a host of
examples. The main focus of this paper is a discussion of conditions on a com-
pact group G so that usable sufficient conditions can be given which imply that
a function is decreasing, and thus that (1.10) holds. In the case that G=9,,
there are three general sets of conditions on a function f which imply that fis
decreasing. A differential condition due to OsTROWSKI [30] is discussed in
MARSHALL and OLKIN ([24], p. 57). A second type of condition, established by
MARSHALL and OLKIN [23], shows that the convolution of two decreasing func-
tions is again decreasing. Both sets of conditions were shown to have complete
analogues when the group G is a reflection group (see EATON and PERLMAN
[13]). A third set of conditions involves the so-called composition theorem and
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convolution families of probability densities (see PROSCHAN and SETHURAMAN
[31], HOLLANDER, PROSCHAN and SETHURAMAN [20], and NEVIUS, PROSCHAN
and SETHURAMAN [29]). These are the types of conditions on which our discus-
sion centers.

General group induced orderings are introduced in Section 2. The line of
development described here comes from EAToN [6,9,10]. This development
provides a description of what is currently known concerning differential con-
ditions which imply that a function is decreasing (as defined in (1.7)). After
presenting two standard examples, we apply the theory to give a group
induced ordering on real skew symmetric matrices.

In Section 3, we discuss a class of composition theorems which yield
sufficient conditions for certain functions to be decreasing. These theorems
have applications in probability and statistics via multivariate probability ine-
qualities - for example, see INOTT [34], MARSHALL and OLKIN [23], EATON and
PERLMAN [13], PROSCHAN and SETHURAMAN [31], MARSHALL and OLKIN [24],
ToNG [37], EATON [7], EATON [9], and EATON [10].

An application of group induced orderings to linear statistical models is
presented in Section 4. A new proof of the classical Gauss-Markov Theorem is
given. Under slightly strengthened assumptions, this classical result is then
extended to a more general class of loss functions.

In Section 5, we discuss some open problems connected with group induced
orderings. In addition, we indicate a possible application of such orderings to
experimental design problems.

Before beginning a general discussion of group induced orderings, it is useful
to consider an example which is prototypical of many statistical applications of
such orderings. This example concerns what might be called the k-sample
Behrens-Fisher problem and its solution dates back to Hsu [21] and HAJEK
[17].

ExampLE 1. Consider random samples from k normal populations, say Xj;,
j=1..,n+1and i =1,.. .k where the distribution of Xj; is
E(X;) = N(u.0?).

Here the mean y; and the variance o7 are both unknown. The problem is to
construct a confidence interval (perhaps approximate) for a known linear com-
bination of the means - say

0 = ey
i
with ¢y,...,¢, known constants. The sample means

X = (m+1)7' 3X;
J

and the sample variances
st =n! E(XU_)_(:’)Z
J



are the MVUE (Minimum variance unbiased estimators) for the population
means and variances respectively. Thus

é = ZC,‘X

is the MVUE for 6 and
£@) = N@.7)
where

? = Dk +1) ot
i

Further,
P = Se2m+1)"s?

is the MVUE for 7 so it seems reasonable to try to construct a confidence
interval for 6 based on the approximate pivotal quantity

9—0

T

W =
For a fixed constant d, the interval (é—df?, 9+d?) has confidence coefficient

@—fzgﬁsdz]

T

y=7rp

where ¢ is a function of o7,...,6%. Thus, the assessment of the above interval as
an inferential procedure depends on finding upper and more importantly,
lower bounds on ¢. To this end, set
A 2
S 0—0}

T

so Z has the x{ distribution (chi-square with one degree of freedom distribu-
tion). Now, define w;; by
Gt nlo
wij = ’1'2 7]: PR
for i=1,...,k. Obviously 0<w;; and

Ly

. . . . . ’\2
Because (n;s?)/0? has a x2 distribution, it follows easily that 7°/7* has the
same distribution as

L

where {Uj;|j=1,..,n;; i=1,..,k} is a collection of n=Z2n; Lid. (independent
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and identically distributed) x} random variables.
The analysis above and the independence of 6 and 7 show that

¥ = YW =P{Z<d(SIw,Uy))
L

where w is the n-dimensional vector with coordinate w;;, and Z is independent
of the Uj;. Therefore bounding y involves studying y(w). For notational con-
venience, the double subscript notation is now dropped and we consider vec-
tors w in R” which satisfy
(l) ngi, i = 1,...,n;
n
(i) ZWI' =1
1
(1) n; coordinates of w are the same, n, coordinates of w are the same,...,n;
coordinates of w are the same where n =2n;.

Let A CR" be the set of w’s satisfying these conditions. The function which
needs to be bounded is

Yw) = P{Z<d*w'U)

where U is an n-vector of ii.d. x} random variables and w’ is the transposed
of w. Because Z and U are independent, y(w) can be written

Yw) = S(F(d*w'U))

where F is the distribution function of Z. Since Z is x{, F is a concave func-
tion so that ¢ is a concave function.

Now, let 9, be the group of n Xn permutation matrices. Since the coordi-
nates of U are i.i.d., it follows that

2(U) = £(gU), g€,

In other words, U is exchangeable and so y(w)=y(gw) for ge%,. Thus ¢
satisfies (1.8) and hence the analysis leading to (1.10) is valid. In particular, for
any weA, the vector

1
w = F%gw
satisfies gw=w for all geP,. This implies that
_ 1 ,
w=- {15 1555 1]
and hence Y(w)<y(w) for all weA. A moment’s reflection shows that

Yw) = P(F,<d’)

where F|, has the F-distribution with 1 and n degrees of freedom.
A lower bound for ¢ on the set 4 is obtained as follows. Recall that n; is
the smallest sample size. Define w by

%= L [1,1,.,1,0,0,...,0] €4
n
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where w has n, coordinates equal to one and the remainder are zero. The clas-
sical definition (1.1) of majorization yields w<w for all weA so that we C(w).
Hence

YW)<Y(w), weA.
Again, it is easy to show
¥(w) = P(F\, <d)

so that computable tight upper and lower bounds on (w) have been found.

2. GROUP INDUCED ORDERINGS

Our formal treatment of group induced orderings is restricted to the finite
dimensional case and to the case that the group is a compact group of linear
transformations. More precisely, let (V,(-,-)) be a finite dimensional inner pro-
duct space. As usual GL(V) denotes the group of non-singular linear transfor-
mations on V. The orthogonal group of (V,(:,")) is

oV) = {g|geGL(V), (gx,gx) = (x,x) for xeV}.

In what follows, G is a closed subgroup of O(V) so G is compact. Given
xeV, O,={gx|geG} is the orbit of x and C(x) denotes the convex hull of
O,. Because G is compact, both O, and C(x) are compact subsets of V.

DErINITION 2.1. For x, zeV, write z<x iff zeC(x). The dependence of <
on G is suppressed notationally. Here are some easily verifiable facts about the
relation <.

ProPoOSITION 2.1. For xeV

(1) gCkx) = C(gx)=C(x), gegG,

(i) z<xiff g1z<<g,x for some g,, g,€G;
(i) zeC(x) iff C(z) CC(x);

(iv) z<y and y<x implies z<Xx;

(V) z<xand x<ziff z€0,.

PROOF. Property (i) follows from the invariance of the orbit O, and the fact
that

0,=0,, g€G.

(i) follows directly from (i). For (iii), C(z) CC(x) obviously implies z € C(x).
Conversely, zeC(x) implies gzeC(x) for all geG by (ii). Thus C(z)CC(x)
since C(x) is convex. If z<y and y<x, then by (i) C(z)CC(y)CC(x) so
z<x and (iv) holds. To prove (v), if z€O,, then z=gx for some geG so by
(i) z<x and x<z. Conversely, assume z<x and x<z. Then for some integer
r,

M\

Z = a,«gix

i=1



where g x,...,g,x are distinct vectors, 0<q; and Za; =1. Thus,
llzll = 1[Zeigix||<Zelgix|| = Zeullx[| = [x]]. 2.1
Similarly ||x||<||z|| so ||x||=]|z||- But there is equality in the inequality (2.1) iff

all the a; except one are zero because the norm || - || derived from an inner pro-
duct is strictly convex. Thus, z€0,. O

The relation < is called a pre-ordering in what follows. (The term ‘ordering’ is
usually reserved for relations which are reflexive, transitive and x<y<x
implies x =y.) A real valued function f on V is decreasing if x <y implies that
f(x)=f(y). If —fis decreasing, then f'is increasing. Observe that any decreas-
ing function f must satisfy

f() = fign). xeV, geG

because x <gx <x for all x,g.

In order to decide whether or not z<x, it is necessary to have a verifiable
criterion to decide whether or not ze€C(x). The use of support functions for
this purpose was developed in EATON [6,9] and in GIOVAGNOLI and WYNN
[16]. Given x, ueV, define m on V' XV by

mlu,x] = suB(u,gx). (2.2)
ge
The use of the square brackets in the definition of m is to distinguish ml[-,]

from the inner product (-,-) on the right hand side of (2.2).

PROPOSITION 2.2. The function m satisfies
(1) mlux] = mlx,ul;

(i) mlgiugox] = mlux] for g1.82€G;
(i) z<x iff mu,z)<mlu,x] for all ueVv .

PrOOF. Properties (i) and (ii) follow from the fact that G is a subgroup of
O(V). For (i), if z<x, then

z = 2ogix
as in (1.1). Thus

mlu,z] = sgp(u,gz) = sgp(u,g(Za,-g,-x)) = sgpza,(u,gg,«x)s

Za;sup (u,gg;x) = Za;sup (u,gx) = Zaym[u,x] = m[u,x].
4 g

That the right-hand side of (iii) implies z<x can be proved directly from the
Separating Hyperplane Theorem (see EATON [10], Proposition A.3). Alterna-
tively, the fact that wwmlu,x] is the support function of C(x) (see
ROCKAFELLER [35], Chapter 13) can be used to give a proof. [J

Part (ii) of Proposition 2.2 shows that m is an invariant function of each of its
arguments. Thus m is determined by its values on the quotient space V/G. In
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all of the applications that I know, it is possible to ‘represent’ V'/G by a con-
vex cone contained in V. Further, this representation turns out to be important
in characterizing the pre-ordering <.

At this point in our discussion, we restrict our attention to the group induced
cone orderings. In essence these are the pre-orderings where we know a
differential characterization of the decreasing functions.

DErFINITION 2.2. The pre-ordering < defined on (V,(,-)) by G is a group
induced cone ordering if there exists a closed (non-empty) convex cone FCV
such that

(i) for each xeV, O, NF is not empty;

(i) for u, xeF, mlu,x] = (u,x).

Condition (i) says that each orbit intersects F. Since the relation x <y is invari-
ant in both x and y, it is sufficient to characterize < for x, yeF. Condition
(i1) simply says that the support function m is just the inner product when res-
tricted to FX F. Let M be the linear span of F so that F has a non-empty inte-
rior as a subset of the linear space M. Further, let

Fyy = {(weM|(w,x)=0 for all xeF}.

Thus, Fy; is the dual cone of F relative to the subspace M.

PROPOSITION 2.3. Assume < is a group induced cone ordering. For x, y €F, the
following are equivalent:

H x=<y;

(i) y —xeFy.

PrOOF. When x<y, Proposition 2.2 (iii) together with Definition 2.2 (i)
shows that for ueF

(u,x) = mlu,x]<mlu,y] = (u,p).

so y —x €Fy. For the converse, just read the above argument backwards. [J

Proposition 2.3 shows that < is a cone ordering on F as defined in MARSHALL,
WaLKUP and WETS [25]. The convex cone which defines the cone ordering is
Fy; while the domain of definition of the ordering is F. Recall that a subset
T* CFyy is a positive spanning set for Fyy if every element u of Fy; has the
form

7
U — Za,‘ti
1

where #,€T*, ;=0 for i=1,..,r and r is some positive integer. A positive
spanning set T* CFyy is a frame for Fy if no proper subset of 7" is a positive
spanning set. A direct application of the results in MARSHALL, WALKUP and
WETs [25] yields the following necessary and sufficient condition that an
invariant function with a differential be decreasing when < is a group induced

cone ordering.
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THEOREM 2.1. Suppose < is a group induced cone ordering on (V,(-,")) with F
and Fy as above. Let f be a real valued function which is invariant (i.e.
S (x)=f(gx) for xeV and geG), and suppose f has a differential df. Let T* be
a positive spanning set for Fyy. The following are equivalent:

() x<y implies f(x)=f(y) for all x,yeV;

(1) (t,df (x))<<O for all xeF and teT".

In applications of Theorem 2.1, one tries to find a frame 7* for Fj; when
attempting to verify (ii). In the following example, we show that the above
theory applies and yields the classical results concerning majorization.

EXAMPLE 2.1. (Majorization). Let ¥ =R" with the usual inner product and
consider the pre-ordering < induced by the group of permutation matrices %, .
The usual choice for the convex cone F is

F={x|x;=.=2x,)

where x,,...,x, are the coordinates of x. Obviously, every orbit intersects F.
Since F has non-empty interior, M =R" for this example. The fact that

mlu,x] = supu’gx =u'x
£
for x,ueF is the famous rearrangement inequality of HARDY, LITTLEWOOD
and PoLyA ([19], p.261). Thus, we see that < is a group induced cone ordering

(as in Definition 2.2).
The dual cone of F is easily shown to be

k n
F* = {(u| 2u;=0, k=1,..,n —1, Du;=0).
h 1

A frame for F* is
T" = {t),...tn—1)}

where 7; €R" has its ith coordinate equal to one, its (i + 1)st coordinate equal
to minus one, and all other coordinates equal to zero. Proofs of these asser-
tions can be found in EaToN [10].

For x, y e F, Proposition 2.2 shows that x<y iff y —x e F* iff

k k
Si=¥x, k=l,.,n—1
1 1

n
i = 2.
1 1

These are just the classical conditions for majorization for elements of F. For
elements not in F, one simply permutes the coordinates so the permuted vector
is in F, and then applies the above conditions.
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Now, let f be a 9, invariant real valued function defined on R" and assume
[ has a differential df. Theorem 2.1 shows that f'is decreasing iff

tidf(x))<0, i=1,.,n, xeF
which is easily seen to be equivalent to the conditions

df 9f
o, =<..< o, (x), xeF.

These are exactly the OSTROWSKI [30] conditions for f to be decreasing (Schur
concave). This completes Example 2.1.

ExaMpLE 2.2. For this example, take V' to be the real vector space of nXn
real symmetric matrices with inner product

(x,y) = trxy
where tr denotes the trace. Let O, act on V' by
x—gxg'

for xeV and ge0,. The Spectral Theorem for real symmetric matrices implies
that for each x, there is a ge O, such that

z = gxg’
is an nXn diagonal matrix with diagonal elements z; which satisfy
z11=...=2,,. Thus, the convex cone

F = {z|z€V, z is diagonal, z;,=...=2,,}

intersects every orbit under the action of O, on V. For u, x€F,

n
mlu,x] = suptrugxg’ = D uux; = trux=(u,x).
8 i=1
The second equality is a consequence of results of VON NEUMANN [28] and
FAN [14] (see also Example 6.4 in EaToN [10]). Hence the pre-ordering <
induced on V by O, is a group induced cone ordering.

It is clear that the subspace M generated by F is just the space of all nXn
real diagonal matrices. Using the results of Example 2.1, it is routine to show
that the dual cone Fj; (of Fin M) is

k n
F)\} == {Z |ZEM, 2 Z,‘,‘?O, k—_—l,...,n _1, 2 Z; = O}
1 1

As in Example 2.1, a frame for Fy 1s
T = {t,...tn}

where ;€ Fyy has its (i,/) element equal to one, its (i +1, i +1) element equal
to minus one, and all other elements are zero.

Given x €V, when gxg’=z is in F, then the diagonal elements of z are just
the ordered eigenvalues of x. To interpret what the pre-ordering < means in

13



terms of eigenvalues, consider x,y € V' and write

z= g% w = gaygd
with z and win F. Then x<y iff z<w iff w —z e Fy iff

k k n n
2 W,'l’> 2 Zijy k = 1,...,” e l, 2 Wi = 2 Zjj.
1 1 1 1

In other words, x<<y iff the eigenvalues of y majorize the eigenvalues of x.
This was proved by KARLIN and RINOTT [22] from first principles, by ALBERTI
and UHLMANN [1] in a book related to mathematical physics, and by EATON
[6,9] using the general theory of group induced cone orderings described
above.

To describe the decreasing functions, first note that if f is decreasing, then
f(x) is only a function of the eigenvalues of x. Because of the above charac-
terization of < in terms of majorization, fis decreasing on V iff as a function
of the eigenvalues of x, it is decreasing in the sense of majorization (as in
Example 2.1).

Here is a new example of a group induced cone ordering.

ExaMPLE 2.3. Let V be the real vector space of nXn real skew symmetric
matrices, with inner product (x,y)=trxy’. The case of n even, say n=2r, is
treated below. When n is odd, the details are slightly different, but the same
general argument applies. The group O, acts on V' via

x—gxg's xeV, ge0,.

This group action produces a canonical form for x which can be described as
follows. Let E,,...,E, be defined by

I . 0]
T . 01
=11 1o
where the 2 X2 block
0 1
-1 0

is located on the diagonal in rows and columns 2/ —1 and 2i, i =1,...,r. Given
x €V, there exists a g0, such that

gug' = 2 0, E;

i=1

14



where the real numbers 6,...,0, satisfy
0,=6,=..=26,=0.

For a proof of this standard result, see MEHTA ([26], p. 221). Thus the convex
cone

F = {x|x = > 6,E; with6,>..>0,=0}
1
intersects every orbit under the action of O, on V. When x €F, say
X = E 0,’E,',
I

then the singular values of x (by definition, the singular values are the ordered
non-negative square roots of the ordered eigenvalues of xx’) are easily shown
to be

01 301 702,02""30r»0r'
The results of vON NEUMANN [28] and FAN [14] show that for

X = 2 oiEi and u = E a,-E,- n F,
1 1
we have
mlu,x] = sup tru(gxg’y = 2 X a;b; = trux’ = (u,x).
g 1

Therefore O, induces a cone ordering < on V as in Definition 2.2.
To describe the pre-ordering < more completely, let

,
M = {x|x = X oE, geR, i = 1,..r}.
T

Clearly M is the linear subspace of V generated by F. It is not too hard to
show that the dual cone of Fin M is

r k
Fy = {x|x = D aE, > a=0k = 1..r}
1 1
Therefore, for x,y € F, say
4 r
x = 6 andy = X nE,
] 1

we see that x<y iff

k k
27’,‘ = E 0,‘, k = 1,...,r. (23)
1 1

This relationship among 6, >...>6,=0 and 7, =>...=>7,=0 is sometimes called
submajorization - that is, the vector of s is submajorized by the vector of 7’s

15



(see the discussion in MARSHALL and OLKIN ([24], p. 10) and in EaTON ([10],
Example 6.2, p. 157)).

For x and y in V, the relation x<y can be described as follows. Let
0,,0,,...,0,,6, be the singular values of x and let ,,7y,...,,,m, be the singular
values of y. Then x<y iff the singular values of y submajorize the singular
values x - that is, iff the inequalities

k k
2 UR = 2 0,', k = 1,...,r
1 1

hold. These inequalities are related to the group induced cone ordering given
in Example 6.2 in EATON [10].

Finally, suppose fis an O,-invariant function defined on V. Then fis deter-
mined by its values on F so we write

h®) = fSO,E) for S 6,E; in F
1 1

Assume 4 has a differential. It follows from MARSHALL, WALKUP and WETS
[25] that the conditions

oh
a0,

;Thl(0)<... <2 (6)<0 (2.4)

imply that
h(@)=h(n)

whenever (2.3) holds. Thus the conditions (2.4) imply that an invariant func-
tion fis decreasing.

Other examples of group induced cone orderings can be found in EATON and
PERLMAN [13], ALBERTI and UHLMANN [1], EATON [6,9] and EATON [10].

3. COMPOSITION THEOREMS

For group induced cone orderings, the results of Theorem 2.1 provide neces-
sary and sufficient conditions for a differentiable invariant function to be
decreasing. These conditions are certainly the most widely used for proving
that functions are decreasing. However, in special situations there are other
sufficient conditions which are sometimes easier to verify than the differential
condition. In this section, we review a few of the main results.

Here is a common situation in probability and statistics to which group
induced orderings and the double inequality (1.10) can sometimes be applied.
Let XCR* be the sample space of a random vector. Also, let ® CR" be a
parameter space for a class of probability models for X. Assume that A is a o-
finite measure on the Borel sets of X and assume that X has a density (with
respect to A) f(-| ) where 8€©. For any integrable function A, consider

WO) = 6h(X) = [ h(x)f(x |ONdx), (3.1)
X
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The question is: Under what conditions on A, f{(-|‘), and A can we hope to
apply the ideas of group induced orderings in order to conclude that y is
decreasing (or increasing)? Notice that Mudholkar’s result mentioned in Sec-
tion 1 provides one set of sufficient conditions that { be decreasing when 4 is a
translation parameter.

To give another example, let XC R* be the set of vectors x whose coordi-
nates x,...,X; are non-negative integers which satisfy

k
S x =n
1

Here n is a fixed positive integer. Take A to be counting measure on . Let
O Cyk be the set of 6’s with coordinates 6,,...,6;, which satisfy

k
0,‘20, 2 0,‘ =1
1

The density of the multinomial distribution, 9k, 8,n) is
k

fx|6) = —"— ] 6%, xex.

X]!...xk! i=1

The group ¥ of permutation matrices acts on X and ©. Thus we have the
group induced pre-ordering < on both %X and 6. .

THEOREM 3.1 (RINOTT [34]). Suppose h is a real valued function defined on X
which is decreasing. Then

W) = &h(X) = [ h(x)f(x |6)\(dx)
X
_is a decreasing function defined on ©.

Rinott’s proof consists of showing that ¢ satisfies the differential conditions of
Example 2.1. NEviUs, PROSCHAN and SETHURAMAN [29] developed another
method for establishing this result which is discussed later in this section.
MARSHALL and OLKIN [23] established a convolution theorem which
strengthens Mudholkar’s Theorem in the case that the group is 9 is acting on

k.

THEOREM 3.2 (MARSHALL and OLKIN [23]). Suppose | and f, are non-negative
functions defined on R which are decreasing (in the pre-ordering of majoriza-
tion). If

f30) = [ fr(x)f2(x —6)dx
Rk
exists for @eyk, then f3 is decreasing.

These two theorems turn out to be closely connected with the fact that 9 is a
reflection group. To explain the connection, we now turn to a discussion of
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such groups. In the inner product space (V,(-,")), Let u be a vector of length
one. Define the linear transformation R, by

R,x = x—2u,x)u, xeV.

Clearly R,u=—u, R,x=x if (u,x)=0 and R, =R, . Thus, R,€O0(V) reflects
vectors across the hyperplane {x|(u,x)=0}. Any such transformation is a
reflection.

DEFINITION 3.1. A closed group G CO(V) is a reflection group if there is some
set of reflections R={R, |u€A} such that G is the closure of the group gen-
erated algebraically by R.

The structure of reflection groups is completely known, see EATON and PERL-
MAN ([13], Section 3) for a discussion. In particular, the pre-orderings induced
by reflection groups are all group induced cone orderings (i.e. Definition 2.2).
However, the groups in Examples 2.2 and 2.3 are not reflection groups.
Perhaps the most relevant example here is %; acting on R¥. To see that 9 is a
reflection group, just take

= {u|u = L/V2, i = 1,....k—1}

where 1,,...,f —; are given in Example 2.1.
In what follows, we focus on a given set

& = (R, |ucd)CO(V)

of reflections rather than on the reflection group G generated by %. Let X and
% be R-invariant Borel subsets of V.

DEFINITION 3.2. A real valued function f defined on XX% is a decreasing
reflection (DR) function if

() fxp) = f(Rx,Ryp) for R,e%;

(1) for uel, if (u,x)(u,p)=0, then f(x,y)=f(x,R,p).

Condition (ii) which is the essence of the definition, means that when x and y
are on the same side of the hyperplane {x | (4,x)=0}, then f does not increase
when one of the arguments is reflected across the hyperplane. For a statistical
interpretation of DR functions when G=%,, see EaToN ([10], Chapter 3).
When G=9,, properties of DR functions have been used in a variety of appli-
cations. For example, SAVAGE [36] applied the ideas to some non-parametric
problems while EATON [4] isolated properties (i) and (ii) in a paper on ranking
problems. In the context of majorization PROSCHAN and SETHURAMAN [29]
proved the important Composition Theorem for DR functions when G=9,.

To describe the Composition Theorem in the case of general reflection
groups, let

& = (R, |ueA)

be a given set of reflections.
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Suppose X,% and Z are Borel subsets of (V,(:,-)) which are invariant under
each reflection in 4. Further, let A be a o-finite measure defined on the Borel
subsets of % and assume A is invariant under each reflection in K.

THEOREM 3.3 (COMPOSITION THEOREM). Suppose f| and f, are DR functions
defined on X XY and X Z respectively and suppose

f3(ez) = [ filep)f2(n2)Ndp).
exists for each x and z. Then f3 is a DR function on XX %.

ProoF. That f3 satisfies (i) of Definition 3.2 is an easy consequence of the
invariance assumption on A and the fact that f; and f, are DR functions.
Now, consider R,e® and xeX, z€Z which satisfy (u,x)(u,z)=0. It must be
“shown that

0 = f3(x,2)— f3(x,R,2) 3.2)
= [ Lxunlf2052) = f20,R2)NEy)=0.

Decompose the region of integration % into
Vo = P @)>0}, % = {y|(@y)=0}, Y- = {y|(uy)<0}.

In (3.2), the integral over the set %, is zero because f(y,R,z)=f(y,z) for
y€%. Using the change of variable ywR,y, the integral over ¥U_ is
transformed into an integral over %, . Then the invariance assumptions on f,
f> and A show that & can be written

8 = [1fitey) = AR 0:2) = f20.R2)Ndy).
Yy

Because f; and f, are DR functions, the integrand is non-negative over ¥
since (u,x )(u,z)=0. Thus =0 and the proof is complete. ~ [J

Now, we turn to a connection between DR functions and the decreasing (or
increasing) functions. This connection was first established in HOLLANDER,
PrOSCHAN and SETHURAMAN [20] for the case G=9,.

THEOREM 3.4. Let G be the reflection group generated by the set of reflections

R={R, |uecA}. For a function f, defined on V, the following are equivalent:

(1) fo is decreasing (increasing);

(i) the function f(x,y)=fo(x —y) (f(x,y) =fo(x +y)) is a DR function and
satisfies f (x,y)=f (gx,gy), g€G.

PrROOF. The proof of this result depends on the structure theory for reflection
groups and is not given here. A proof in the case of G=9%, can be found in
HOLLANDER, PROSCHAN and SETHURAMAN [20]. A discussion of the general
case can be found in EATON ([10], Chapter 6). [
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In some cases, the conclusion of Theorem 3.4 is true for f, defined only on a
G-invariant subset, say %, of V. The G-induced ordering on X is the restriction
of the G-induced ordering on V. For example, if G=9%, and X is the set of all
vectors in R" with integer coordinates then Theorem 3.4 is valid. Also if % is
the set of vectors all of whose coordinates are non-negative, then Theorem 3.4
is valid. These two cases are used in the Poisson example at the end of this
section.

Taken together, Theorems 3.3 and 3.4 provide a very easy proof of the so-
called Convolution Theorem for the case of a reflection group (EATON and
PERLMAN [13]). Again, let G be a reflection group acting on (V. (:,)).

THEOREM 3.5 (CONVOLUTION THEOREM). Suppose f| and f, are non-negative
decreasing (in the pre-ordering defined by G) functions defined on V. Let dx
denote Lebesgue measure on V and assume

f[30) = [ /iy —x)fa(x)dx
v
exists for each y €V. Then f5 is decreasing.

Proor. From Theorem 3.4, it suffices to show that
f0.2) = fap —2) = [ fily =z —x)fa(x)dx
v

is a DR function. The invariance of f3 follows from the G-invariance of fi, f>
and dx. Using the translation invariance of Lebesgue measure, we have

f0.2) = [ fily =x)falx —2)dx.
4

Theorem 3.4 shows fi(y —x) and f,(x —z) are both DR functions on V'XV.
The Composition Theorem then yields that fis a DR function and hence that
f3 1s decreasing. [

Applications of the Convolution Theorem can be found in MARSHALL and
OLKIN [23,24], EATON and PERLMAN [13] and EATON [7]. The validity of this
result for non-reflection groups is discussed in Section 5.

The main applications of the Convolution Theorem in statistics is to prob-
lems involving a translation parameter. For non-translation parameter prob-
lems there is one special case where arguments similar to that used in the
proof of Theorem 3.5 can be used to show functions are decreasing or increas-
ing. An example will illustrate the main idea. Again consider the reflection
group 9, acting on R" and let X be those vectors in R" which have integer
coordinates. Counting measure on X is denoted by A. Further let ©® be those
vectors in R" with all coordinates positive. Given §€0, consider the density
(on X, with respect to A) given by

—6, gx,
e .

I_I if x,=0,i=1,..,n

0 1 Xt
fx]8) = 0 otherwise.
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Then f{:|6) is the density function of a random vector X with independent
coordinates Xj,..,X, and X; has a Poisson distribution with parameter 6,
i=1,..,n. Let h be an increasing function defined on %X. (Functions which are
defined only on {x|xeX,x;=0 i=1,.,n}=X" and are increasing have
increasing extensions defined on 9.) Here is the argument used by Hor-
LANDER, PROSCHAN and SETHURAMAN [20] to show that

W) = [ h(x) fix|O)\dx) (33)
X

is increasing. First, ¢ is increasing iff y(8+mn)=k(6,n) is a DR function on
©X© (by Theorem 3.4 applied to the convex %,- invariant set © rather than
R"). But

WO+m) = [ h(x) f(x]6+m) Mdx). (3:4)
Now, the density f(-|-) has the convolution property - that is, for all x e,
fGe|6+m) = [ flx =y [6) fiy[n) Ndy). (3.5)

Such parametric families are called convolution families. Substituting (3.5) into
(3.4) and interchanging integrations yields

WO+ = [ fiy|m) [Jh(x)f(x =y |6) Mdx)] N(dy).

Changing variables in the inside integral, the translation invariance of A gives

W0+n) = [ fiy|m) [[h(x +y) fix [OA(dx)] N(dy).

But, a routine argument shows that f(-|-) is a DR function. Since 4 is increas-
ing, (x,y)~h(x +y) is a DR function, so

(700 [ h(x +y) f(x]6) Mdx)

is a DR function by the Composition Theorem. A second application of the
Composition Theorem then shows that (6,m)-y(6+n) is a DR function so ¢ is
increasing.

The essence of the above argument is two applications of Theorem 3.5
together with the observation that f(-|6) is a convolution family. Other appli-
cations of this argument can be found in HOLLANDER, PROSCHAN and
SETHURAMAN [20] and MARSHALL and OLKIN [24]. The result of RINOTT [34]
given in Theorem 3.1 above follows from the above result for the Poisson dis-
tribution via an easy conditioning argument (see NEVIUS, PROSCHAN and
SETHURAMAN [29]).

4. THE GAUSS-MARKOV THEOREM
In this section, we use group induced orderings to provide a new proof of the
classical Gauss-Markov Theorem. This new proof suggests some strengthened
versions of this classical result under some slightly stronger assumptions.

In an inner product space (V,(:,)), a linear statistical model for a random
vector Y consists of the specification of
(i) a known linear subspace M in which the mean vector p of Y is assumed

to lie;
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(i) a known set y of possible positive definite covariances for the random vec-
tor Y.
Throughout this discussion, it is assumed that the identity is an element of .
The linear unbiased estimators of p have the form AY where A is a linear
transformation on V¥ which satisfies

Ax = x for xeM. 4.1)

Let £ be the set of all linear transformations satisfying (4.1). Typically, one
tries to choose 4 €€ to minimize some measure of average loss of the form

WA) = EK(AY —p). 4.2)

A classical choice for the function K, in the context of the Gauss-Markov
Theorem, is the quadratic form

K(x) = (x,Bx), xeV (4.3)

where B is some fixed self adjoint positive definite linear transformation on V.
In the present context, the Gauss-Markov Theorem takes the following form.
Let A €L be the orthogonal projection onto M.

THEOREM 4.1. Assume that Z(M)CM for each 2y (so the regression subspace
is an invariant subspace of each of the covariances in the model for Y). Then for
each non-negative definite B and each 2 ey, the function

WUA) = SAY —p, B(AY —p))

is minimized at A=A,. Conversely, if B is positive definite and if { is minimized
at A=A, for each Zey, then Z(M)CM for each Zey.

This form of the Gauss-Markov Theorem is discussed in EATON [8] where a
proof can be found. In the present generality, the result applies to both
univariate and multivariate analysis of variance models as well as some types
of linear models with patterned covariances.

To formulate things in terms of subgroups of O(V), first let Q =(I —A,) be
the orthogonal projection onto M~ - the orthogonal complement of M. Then
set

& =1-20. (4.4)
Clearly g,=g,’=g,'€0(V), so G,={l,g,} is a two element subgroup of
O(V). The following result connects G, to a basic condition in Theorem 4.1.

LEMMA 4.1. The following are equivalent
(1) Z(M)CM for all Zey;
(i) g,=2=2Zg, for all Zey.

Proor. Condition (ii) is clearly equivalent to
(i) A,2=2A, for all Zey.
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That (iii) and (i) are equivalent is well known (for example, see HALMOS [18]).

LEMMA 4.2. For each A €l
A + Ag,

5 =i (4.5)

PRrOOF. A bit of algebra shows that

A+Ag,

S = AA,

Because A4 €F,
AA,x = x for xeM
AAd,x =0 forxeM=.

Since AA, is a linear transformation, and agrees with 4, on M and M+, obvi-
ously A4,=A4,. U
Note that

A + Ag,

2
is just the average (with respect to the invariant probability measure on G,) of
{Ag| g€G,}. Thus 4, is in the convex hull of the orbit {4g|geG,} for every
Ael
Here is Theorem 4.1 expressed in terms of G,.

THEOREM 4.2. Given the linear model for Y, assume that

2g, = 8,2, 2€eY. (4.6)
Then for each positive semi-definite B and for each 2 €y,

YA) = SAY —p, B(AY —p)
is minimized at A =A,.
PROOF. A standard result in the calculus of random vectors (see EATON [8],
Chapter 2) shows that when Cov (Y)=2,

YWA) = HAY —p, BAY —p)) = tr AZA'B
where tr denotes the trace. Because of assumption (4.6),

WAg,) = UA), A€, (4.7)

so ¢ is a G, invariant function. Because 2 and B are non-negative definite, it is
easy to verify that ¢ is a convex function defined on the convex set £. Using
Lemma 4.2 and (4.7), we have for any 4 €f,
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UA,) = WF(A+AG)<TUA) + Tidg,) = UA)

and the proof is complete. 0

The above argument is just a special case of the argument given in Section 1 to
derive inequality (1.10) (for concave rather than convex functions). In our pre-
vious terminology, G, acts on £ and ¥ is an invariant convex function. Thus,
for A €£, Y must be minimized at ‘the center of the orbit of A.’

We now turn to a generalization of Theorem 4.2. As before the linear model
for Y in (V,(-,-)) consists of the regression subspace M and the set of covari-
ances y for Y. Elements 4 of £ yield linear unbiased estimators AY for peM.
Let G be a subgroup of O (V) such that
i) G,CG;

(i) gx = xforxeM, geG.
The group G acts on the left of £ via the group action

Ar—»Ag_l.

Thus, G defines an induced group ordering on £ that is, write 4| <4, iff 4, is
an element of the convex hull of the orbit

(g '[geG).
LEMMA 4.3. Given A €, A, <A where A, is the orthogonal projection onto M.

PROOF. Let » denote the invariant probability measure on G and set
Ay = [ Ag~'w(dg).
Then 4, € and 4, <A. With g, as in (4.4), the invariance of » yields
Arg, = [ Ag~'gmdg) = [ A(g,g)”'wdg) = [ Ag 'w(dg) = A,.
Thus,
A1 = T4 +4,g,)
and so by lemma 4.2, 4, =4,,. Hence 4,<A. O

The above lemma shows that

h(4,)<h(A4)
for any convex G-invariant function defined on £. Here is a generalization of
Theorem 4.2.
THEOREM 4.3. In the linear model for Y, assume that gE=3Zg for geG, Zey.
For each positive semi-definite B and for each Z€v, the function

UA4) = (AY —p, B(AY —p))
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is increasing in the pre-ordering defined by G and
UA,)<YA), A€t

PrROOF. As in Theorem 4.2,

Y(A) = trAZA’B,
and so ¢ is convex. The invariance of ¢ follows from the assumption. This
completes the proof. O
Somewhat stronger conclusions can be obtained with invariance assumptions
on the distribution of the error vector

E=Y—pu

The group G is as above. However, we now consider more general loss func-
tions (rather than only quadratic forms) to measure the performance of linear
unbiased estimators. First, consider

WA) = GH(AY —p), AP (4.8)

as a measure of loss for using AY to estimate p. Of course, H is assumed to
be measurable and such that

E|H(AY —p)| <+oo
for all A ef and Z€y.
THEOREM 4.4. Assume the distribution of E is the same as the distribution of gE
for each g€G. Then  in (4.8) is an invariant function - that is,

WAg ") = UA), A€t geG,

Further, if H is a convex function, then { is a convex function so  is increasing
in the pre-ordering defined by G, and in particular,

YA,)<y4), A€t

PROOF. Because 4 €f, Ap=p for all pe M. The assumption on the distribution
of E yields,

UA) = 6H(AY —p)=6H(A(Y —p))=6H(AE)
= 6H(Ag 'E)=y(AG ).
The first assertion follows.
When H is convex, obviously y is convex and hence increasing. [J

As an example of the previous result, consider the standard univariate linear
regression model with homoscedastic normal errors. Then, Y has a normal dis-
tribution on R", say N,(u,0°1,), where p lies in a known linear subspace M.
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In this case, the error vector E=Y —p is N,(0,021,) and hence the distribution
of E is invariant under all orthogonal transformations. Thus, the appropriate
group for this problem is

G = {g|ge0,, gx=x for xeM}.
Theorem 4.4 shows that when H is convex,
WA) = 6H(AY —p)

is minimized at 4 =A4,. Thus the usual least squares estimator minimizes the
expected loss (among linear unbiased estimators) for all convex H. In the nor-
mal case, this result has been strengthened even further. Let C be a convex
symmetric subset of M - that is, C is convex, CCM and C=—C. As a meas-
ure of loss, consider

Yi1(4) = P{AY —peC}.
BERK and HWANG [2] proved that
Yi(do)<¢1(4)
for all 4 €f. This result has been extended in a variety of directions in EATON

[10] where group induced orderings also play a role.

5. DISCUSSION

There are a variety of open questions related to the results discussed in the
previous sections. First, we discuss differential characterizations of the decreas-
ing functions when the compact group G CO(V) acts on (V,(:,7)) as in Section
2. A necessary condition for a real valued function f, with a differential df, to
be decreasing is

PROPOSITION 5.1 (EATON [5]). If fis decreasing, then

(gx —x,df(x))=0 geG, xeV. 5.1

ProoF. For a€l0,1], xeV and gegG,
HNa) = f(1—a)x +agx)=f(x)
because fis decreasing. Expanding ¢ in a Taylor series about a=0 yields
@) = H0)+¢'(0)a+o(a).
Since ¢(a)=¢(0) and
¢(0) = (gx —x,df(x)),
we have
a(gx —x,df(x)) + o(a)=0.
Dividing by & and letting a—0 gives (5.1). O
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It is known (see EATON and PErRLMAN [13]) that (5.1) is necessary and
sufficient for f to be decreasing when G is a reflection group. For Examples 2.2
and 2.3, it can be shown that (5.1) is necessary and sufficient for f with a
differential to be decreasing. However, there are instances of interest where the
question is open. For example, take V'=R" and let G={*g|ge%,}. This
group is not a reflection group and the pre-ordering induced by G is not a
group induced cone ordering (condition (ii) of Definition 2.2 fails, see EATON
([11], Example 6.6)). A differential characterization of the decreasing functions
is not known for this example.

Condition (5.1) can be rewritten in a form similar to that in Theorem 2.2
(i1). Let H(x) be the convex cone generated by

{x—gx|geG}).
Then (5.1) is equivalent to
(¢,df(x))<O0 for all re H(x). 5.2)

An important question is whether or not (5.2) implies that f is decreasing.
Counterexamples are not known.

Next, we turn to Composition and Convolution Theorems. In statistical
applications, the Convolution Theorem (CT) deals mainly with translation
parameter problems. The only cases for which CT is known to be valid are
when G is a product of reflection groups (see EATON [9] for a discussion) or
when G acts transitively on {x |xeV, (x,x)=1}. Further, CT is known to be
false for finite rotation groups acting on R? (see EaToN [9], Example 4.1).
However, there are important cases which arise in practice where the question
has not been settled. For example, take G={=*g|g€%,} acting on R", n=3.
A necessary condition for CT to hold is described in EATON ([9], Proposition
10). The only known counterexamples to CT violate this necessary condition.

The Composition Theorem (CoT) was used in Section 3 to show that the
function ¢ in (3.3) is increasing. The argument employed there was rather spe-
cial because the parametric family in question was a convolution family. In
fact, the only applications of CoT to settle questions relating to the monotoni-
city of functions ¢ of the form (3.1) involve convolution families (see HOL-
LANDER, PROSCHAN and SETHURAMAN [20]). Conditions which yield monoton-
icity of ¢ in (3.1) for non-convolution families would be most useful.

Finally, we offer a few comments on possible applications of group induced
orderings to experimental design. These comments are prompted, at least in
part, by the recent article of PUKELSHEIM [32]. In essence an experimental
design problem consists of a measurable space X (the design space) and a class
M of probability measures defined on the o-algebra of %. Elements of 9 are
interpreted as ‘designs.” Symmetry properties of designs are most naturally
defined in terms of a group G of bimeasurable transformations defined on X.
Given geG and a design £€9T, define the new design g by

(g&)(B) = &g~ 'B) (5.3)

for each measurable set B. Now, assume that
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(5.4)

(1) 9 is a convex set
(i1) £€9 implies that g§e9N for all geG.

Under the assumptions (5.4), the group G acts on 9 and it is clear that

gleé +(1—wf,) = agéy + (1—a)gé, (5.5)

for real numbers a€(0,1], geG and &;,& M. In other words, elements of G
act affinely on 9. This suggests that we define the group induced pre-ordering
on 9N as follows:

§ < §iff §eC&) (3.6)

where C(§;) is the convex hull of {gé, |geG}. This is precisely the type of
situation considered in Section 2, except that in most cases, 9 is a convex
subset of an infinite-dimensional linear space. A design {9 is invariant if

gé=¢& forgeG

In order to select a ‘good’ design from A, one ordinarily specifies a real
valued criterion function ® defined on 9. Many common criterion functions
satisfy

(i) &) = ®(gd), <G =
That is, attention is focused on criterion functions which are concave and G-
invariant (see PUKELSHEIM [32] for a discussion of these two conditions in the
context of experimental design problems in linear models).

A design &, is called ®-optimal if £, maximizes ® over 9. To see how the
pre-ordering plays a role, consider

gl = Eagg&

where the finite sum ranges over some subset of G and the non-negative
weights a, sum to 1. Then the conditions (5.7) on @ yield

D)) = D(Za,gsy) = Za,(ghr) = 2a, (&) = B(&).

In other words, §, <¢, implies that ®(£,)=®(£,) so @ is decreasing.

When the group G is compact (as in some applications), a repetition of the
argument leading to (1.10) shows the ® is maximized over the set of invariant
designs in 9. More precisely, let » be the invariant probability measure on the
compact group G. For £€91, let

(i) 2(eg; + (1-a)yy) = a®(§)) + (l—a)‘l’(iz)}

§ = [ gévldg). (5.8)
This is shorthand notation for § defined by

&B) = [ (g&)(Bdg) = [ &g~ ' B)n(dg). (5.9)
Obviously £ is invariant and because £ is in C(§),

(&) = D(©). (5.10)
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Therefore, given any design £, there is an invariant design ¢ with ®(&)=d(¢).
Hence ® is maximized on the set of invariant designs.

The purpose of the above discussion is to show that group orderings can be
applied to general design problems rather than just linear model design prob-
lems as discussed in PUKELSHEIM [32]. The important observation is that the
group G acts in a very natural way on the designs £ The idea of inducing a
group action on one space when the group acts on a second space is very well
known and is widely used in invariance applications in statistics (for example,
see EATON ([8], Chapter 7) for as systematic discussion). Recent work on group
induced orderings in experimental design can be found in GIOVAGNOLI,
PUKELSHEIM and WYNN [15].
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Regime Behaviour and Predictability Properties
of the Atmospheric Circulation Studied with
Limited-Resolution Spectral Models

H.E. de Swart

Institute of Meteorology and Oceanography, State University of Utrecht
Princetonplein 5, 3684 CC Utrecht, The Netherlands

A brief review is presented of a project carried out at the CWI during the years
1983-1987. These investigations were supported by the Netherlands Founda-
tion for the Technical Sciences (STW), future Technical Science Branch of the
Netherlands Organization for Scientific Research (NWO). The aim was to obtain
a better understanding of the chaotic properties of the atmosphere, which may
contribute to the development of long-range weather prediction models. It is
argued that a method for investigating this problem is to analyse highly
simplified atmospheric spectral models, since the results may provide clues on
how to analyse more complicated models as well as real data. It appears that
low-order models possess multiple equilibria, with the corresponding flow pat-
terns resembling large-scale preferent states of the atmospheric circulation.
Vacillatory behaviour, in which the system alternately visits different flow
regimes, is obtained either by adding stochastic perturbations to the equations
or by including a sufficient number of modes in the spectral expansions. The
predictability properties of these systems are discussed and particular attention
is given to the forcing terms which are added to the spectral equations in order
to account for the effect of the neglected modes and physical processes not
included in the model.

1. INTRODUCTION

During 1983-1987 research was done at the CWI in the STW project
‘Mathematical methods for the analysis of atmospheric spectral models’. The
aim of this study was to obtain a better understanding of the dynamics of the
atmospheric circulation in the midlatitudes (roughly between the 30 and 60
degree latitude), especially in relation to the problem of long-range weather
predictions. Modern weather forecasts are based on the results of detailed and
complicated numerical models, such as that of the European Centre for
Medium Range Weather Forecasting (ECMWF) in Reading, England. It has
long been assumed that the period over which the weather is predicted could
be increased forever if the numerical models would be further improved and
the initial state (determined by means of observations) better prescribed. How-
ever, nowadays it is known that there is a fundamental limit to the period over
which the weather can be predicted, i.e., it cannot be enlarged by carrying out
more and better observations. In most cases this predictability horizon of the
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atmosphere is encountered after a period of 5 to 14 days (OPSTEEGH [21]). As a
consequence, it is not possible to give forecasts for periods longer than about
two weeks. Unfortunately, there is precisely a strong need for accurate long-
range weather predictions. This is because on time scales between a week and
three months frequently climatic anomalies occur which have large social
consequences, for example excessive droughts, heat-waves, etc.

In order to understand why forecasts fail on the long term we first present
some qualitative arguments. The weather as we (in midlatitudes) experience it
is the result of day to day variations in the geographical distribution of high-
and low-pressure belts. These so-called synoptic-scale eddies have typical hor-
izontal dimensions of 1000 km, a life span of about a week and are embedded
in a belt of predominantly westerly winds. The latter result from an approxi-
mate balance between thermal forcing, due to the equator-pole temperature
gradient, and the Coriolis force (induced by the rotation of the earth) acting
on a moving fluid. Furthermore, due to the presence of a large-scale topogra-
phy (to which in particular the Himalaya, Rocky Mountains and the oceans
contribute) and thermal differences between land and ocean, ultra-long quasi-
stationary waves are generated which give the flow a meandering structure.
These planetary waves have much larger dimensions (about 10000 km) and
longer lives (of the order of several months) than the synoptic-scale eddies.
Thus, the atmospheric circulation is characterized by two distinct scales of
motion: a planetary scale and a synoptic scale. Little is known about the sub-
tle interplay between these scales of motion. It appears that synoptic-scale
eddies develop spontaneously as initially small perturbations of the locally
unstable planetary-scale circulation. Moreover, the planetary-scale flow tends
to steer and organize the eddies along preferent paths, which are the
stormtracks. On the other hand the eddies themselves influence the evolution
of the planetary waves. The consequences for the predictability of the atmos-
pheric circulation were systematically studied by Lorenz [18]. He demon-
strated that interactions between different scales of motion are the principal
cause for the limited predictability of the atmosphere.

As a result of the feedback between the planetary waves and the synoptic-
scale eddies quasi-stable flow configurations occur which cause short-range
climatic anomalies. The existence of such large-scale preferent states of the
atmospheric circulation (sometimes called weather regimes) has been known
for a long time. They can be divided into three major types: zonal (high-index)
states with strong western winds and small wave amplitudes, meridional (low-
index) states with large waves embedded in a weak zonal flow and transitional
states which have characteristics of both the high- and low-index states. Typi-
cal flow configurations of these regimes in the European region are shown in
Figure 1. The situation in Figure lc is that of a persistent anticyclone near
Scandinavia which blocks the standard passage of depressions over Western
Europe, in this way causing persistent weather conditions in this region.
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FIGURE 1. Geographical distribution of the height (in geopotential de-
cameter) of the 500 mb level for the Wz (a), HM (b) and
HFa (c) winter Grosswetterlagen, which are of zonal,
mixed and meridional type, respectively. The isohyps are
approximate streamlines of the flow; arrows indicate flow
direction. From VAN DUK ET AL. [29].

Obviously, the atmosphere can be considered as a chaotic system which shows
vacillatory behaviour, i.e., it irregularly visits different preferent states. As dis-
cussed in DOLE [9] and REINHOLD [23], quasi-stable flow patterns suddenly
develop and disappear without any clear indication why. Furthermore, the life
span of the weather regimes is highly variable without having a preferent time
scale. Within the framework of long-term weather predictions it is important to
obtain a better understanding of the dynamics responsible for this vacillatory
behaviour. A method for studying this problem consists of analysing highly
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simplified models which represent qualitative features of the atmospheric circu-
lation. The motivation for doing this is that from the results indications may
be found how to consider more complicated models as well as real data. In
this way we hope to enhance our understanding in the atmospheric dynamics.
This method has been adapted in the STW project mentioned previously and a
review of the results will be presented in this paper.

2. QUASI-GEOSTROPHIC DYNAMICS

In order to study the variability of the atmospheric circulation we should start
from the full equations of motion. However, they are too complicated to deal
with analytically and therefore they are simplified by the application of scale
analysis, being a standard technique in geophysical fluid dynamics, see
PEDLOSKY [22]. The method requires an a priori specification of the type of
motion to be studied. Next it yields, by means of physical arguments, charac-
teristic scales for the flow with which the equations of motion are written in a
dimensionless form. The resulting system will contain several dimensionless
parameters. The aim of the method is to find small parameters. Then, by
means of standard perturbation techniques, simplified equations are derived
which describe the type of motion under consideration.

Here we consider a flow near some central latitude ¢=¢y on the Northern
Hemisphere distant from equator and pole. Let it have a horizontal (parallel to
the earth’s surface) length scale kK ~!, a vertical length scale H (which is the
depth of the fluid) and a time scale 6!, such that

H<<k '<<rg, o<<fy =2 sin ¢, (2.1)

where f; is the Coriolis parameter at =gy, { the angular speed of rotation of
the earth and r the radius of the earth. The first condition implies that the
flow is nearly horizontal and 2-dimensional. The latter means that to a first
approximation the momentum equations reduce to a balance between the
Coriolis force and pressure gradient force, which is the geostrophic balance.
Clearly, (2.1) is satisfied for large-scale atmospheric motions near ¢y =45° N
where k7' ~10° m, H~10* m, 6~ '~10° s, f,=10"* 5! and ry~6.4-10° m.
Under these conditions it is shown by PEDLOSKY [22] that the equations of
motion reduce to one nonlinear partial differential equation. With the addi-
tional assumption that the flow is barotropic (i.e., density is a function of pres-
sure only) the result reads (in a dimensionless form)

2 G2y 4, VUL LTy =0 @)

ot )
(h () 3) 4) )
This is the barotropic vorticity equation. Here 7 is time and y(x,y,f) a stream-
function to which all state variables (velocities, density, pressure and tempera-
ture) are related. At a fixed time the flow is along the streamlines ¢ = con-

stant. Furthermore
da db da db

_,90 9 _ 9a 0b _ da 9db
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dx = krocosgod\, dy = krodo,

where A is longitude and ¢ is latitude. In Eq. (2.2) term (1) represents the local
change of the relative vorticity vy (which is the vertical component of the
curl of the velocity vector), (2) the advection of vorticity by the flow itself, (3)
the production of vorticity due to the presence of a large-scale topography
h(x,p) (in particular the high mountains and the oceans) with characteristic
amplitude hg, (4) the planetary vorticity advection due to the variation of the
Coriolis parameter with latitude and (5) represents both a damping of vorticity
and an external vorticity forcing (modelling the equator-pole temperature gra-
dient) indicated by the function ¢’ (x,y). The dimensionless parameters are

_ foho B: & _ ZQCOS% _ fosE
oH "’ ok okrg 20H°

where 8y is the depth of the boundary layer near the earth’s surface in which
frictional effects are important. The flow described by Eq. (2.2) is called quasi-
geostrophic because the small departures from the geostrophic balance deter-
mine the evolution of the flow (PEDLOSKY [22]).

(2.4)

3. DERIVATION OF SPECTRAL MODELS BY GALERKIN PROJECTION TECHNIQUES
The barotropic vorticity equation (2.2) is still difficult to handle, mainly
because of its nonlinear structure. A way to obtain approximate solutions is to
apply Galerkin projection techniques where explicit use is made of the boun-
dary conditions to the equation (VOIGT ET AL. [30]). This spectral method
will be discussed for a specific example. Its application to models used for
numerical weather prediction is described by JARRAUD and BAEDE [15]. Con-
sider Eq. (2.2) in a rectangular channel of length L and width B=(bL/2). The
dimensionless length and width are 27 and wb, respectively. We investigate the
existence of travelling wave solutions in the zonal x-direction. At the boun-
daries y =0 and y=nb the meridional velocity component is assumed to be
zero and it follows that the mean zonal velocity component over these boun-
daries should be constant. Consequently, the boundary conditions read

Ux+2m, y, 1) = Y x,p,1), (3.1

27
W _ Do, = —{ =
2> =0 and atofaydx 0 aty=0,y=mb.

Applying the spectral method, we expand the streamfunction ¥(x,y,7) in a
series of eigenfunctions {¢;}; of the Laplace operator V2 with corresponding
eigenvalues A;, thus

Yxp,1) = 2(0;(x.p) J=(10j2): (3.2)
J

Each mode y;¢; satisfies the boundary conditions and the eigenfunctions are
orthonormalized with respect to the domain average. In this case
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(¢,) = V2cos(j,y/b) (3.3a)
(¢} = V2exp(ij x)sin(jpy/b) (3.3b)

2
y :ﬁ+lj>_22’ liilds = L3 (3.30)

The functions (3.3a) describe (0,/;) zonal flow modes (because they are
independent of x) and the functions in (3.3b) describe (|j|,j2) wave modes.
The topography and forcing streamfunction are represented by

h(x,y) = cos(x)sin(y/b), (34
U (xp) = V2 {¥g1cos(y/b)+gacos(2y /b)),

Projecting Eq. (2.2) on the eigenfunctions (3.3), which is called a Galerkin pro-
jection, we obtain the spectral model

)\j\}/j = %; 2CimN =AW + Y; D CimYihy +
+ ;bjl‘PI“CAj(‘l/j_‘P;)’ (3.5)

consisting of an infinite number of coupled ordinary differential equations.
Here a dot denotes differentiation with respect to time,

0

Gin = <o, T Gbu)>, by = B<g > (36)
are the interaction coefficients and <,> denotes an inner product on the
domain considered. It appears that nonlinear contributions always occur as
triads in which two modes interact and affect the evolution of a third mode.
Developing (3.6) using (3.3) we find that there are two types of nonlinear
triads: one involving a zonal flow mode and two wave modes and one involv-
ing three wave modes. The underlying physical mechanism is discussed in
PeDLOSKY [22].

4. THE TRUNCATION PROBLEM
In practice the expansion (3.2) is truncated after a finite number of eigenfunc-
tions. Only the large-scale modes are resolved since it is observed that most
energy of quasi-geostrophic flow is contained in the long waves. The result is a
dynamical system of the type

x = fu(x)+F() inRY. 4.1

Here N is the truncation number, RY the phase space, x =(x,x3,...,xy) real-
valued velocity amplitudes of the modes (to be specified in the next sections)
and f,(x) an N-dimensional vector field depending on x and parameters
p=(k1,12,...,14n). Finally, the F(r) represent the effect of the neglected modes
on the dynamics of the retained modes. We remark that if (4.1) is used as a
forecast model F(t) should also account for the effect of physical processes
and boundary conditions not (correctly) incorporated in the model. These

38



forcing terms are unknowns by definition.

A convenient approach in theoretical studies concerning (4.1) is to neglect
the effect of the forcing terms a priori and consider the properties of spectral
models with increasing truncation numbers. The underlying motivation is that
they will at least represent properties of the original vorticity equation. Some
formal indications that this idea is correct have been found by CONSTANTIN ET
AL. [4]. They showed that for spectral models of the Navier-Stokes equations a
minimum number N of eigenfunctions could be selected such that solutions of
truncated spectral models with N=N; and F(t)=0 have equal attractor pro-
perties as the solutions of the original system. Although it is not clear whether
these results are applicable to the barotropic vorticity equation, they at least
suggest that it is useful to consider truncated spectral models.

In principle we would like to investigate the properties of (4.1) for arbitrary
values of N. However, we remark that it is not possible to carry out such an
analysis systematically since the systems have a complicated dynamics due to
the large number of nonlinear terms in the equations. Therefore, as a first step,
it becomes worthwhile to study low-order spectral models, in which only a few
modes are retained, and investigate in what sense they reflect features like
transitions between weather regimes and a flow with a limited predictability.
An important advantage is that they can be analysed with techniques originat-
ing from the theory of dynamical systems, see GUCKENHEIMER and HOLMES
[14] and THOMPSON and STEWART [28], whereas from the results indications
may be found how to study more complicated models as well as real data.

The structure of the vector fields of the spectral models discussed in this
paper is such that nontransient solutions are found in bounded subsets of the
phase space. These can be either regular sets, including stationary points
(equilibrium flow patterns), limit cycles (oscillating flow) and invariant tori
(quasi-periodically oscillating flow), as well as irregular sets which are in fact
strange attractors (chaotic flow). These sets of limit points are determined
from a numerical bifurcation analysis of the spectral model, using adapted rou-
tines of the software package AUTO of DOEDEL [8].

A spectral model is assumed to give at least a qualitative description of the
atmospheric circulation if trajectories irregularly visit different preferent
regions in phase space. In this way the index cycle mentioned in the introduc-
tion is simulated. If this behaviour does not occur the truncation is apparently
too severe and more modes should be included in the spectral expansions.
Another possibility is to take account of the effect of the synoptic-scale tran-
sient eddies on the dynamics of planetary-specific scale flow by adding specific
forcing terms to the spectral equations. However, this requires a thorough
understanding of the interactions between different scales of motion, this being
one of the major problems in modern dynamic meteorology. We will return to
this point in the Sections 6 and 7.
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5. A THREE- AND SIX-COMPONENT MODEL

The fact that the Galerkin projection technique, discussed in Section 3, can be
applied to the partial differential equations describing the dynamics of large-
scale atmospheric flow was first realized by SILBERMAN [26]. Later on a
number of other spectral models have been developed, see the review in DE
SWART [5]. It appears that already extremely low-order spectral models show
qualitative features of the circulation. The simplest example is the three-
component model of CHARNEY and DEVORE [2] in which only the (0,1) zonal
flow mode and the (1,1) wave mode are retained. This implies that we assume
Y02 in (3.4) to be zero. The stationary points of this model can be computed
analytically. There are either one or three of them depending on the model
parameters. As a characteristic situation we will consider a channel of length
5000 km (= 2w/k) and width 4000 km centered at latitude ¢ =45° where
fo=10"*s7" and By=1.610""" m~' s™'. The vertical length scale is taken
H=10* m, the time scale o' =10° s (about one day), the mountain amplitude
ho=10* m and the dissipation time scale about ten days. This yields the
parameter values b=1.6, =125, y=1 and ¢=0.1. In Figure 2 the x,-
component of the stationary Points (where x; =40, /b) is presented as a func-
tion of the external forcing x; =yq,/b=U/U,, where U is a velocity scale for
the forcing and Uy =0/k=7.8 ms ~!.
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FIGURE 2. The x,-component of the stationary points x of the three-
component model for the parameter values discussed in the
text. A solid line denotes that the solution is stable whereas
a dashed line refers to an unstable solution.

In Figure 3 the streamfunction patterns associated with the equilibria E,, E,
and E; occurring for x; =4 are shown. Note their strong resemblance to the
circulation patterns shown in Figure 1. Based on this agreement CHARNEY and
DEVORE [2] suggest that equilibria of spectral models indicate large-scale pre-
ferent states of the atmospheric circulation. The existence of multiple equilibria
is a consequence of the presence of topography, forcing and dissipation.
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However, no flow with a limited predictability and no vacillatory behaviour
(i.e., an index cycle) is found: the nontransient solutions are always stationary.
The reason for this behaviour is a lack of nonlinear interactions in the model.

C

FIGURE 3. Nondimensional streamfunction patterns of the equilibria
E, (a), E; (b) and E; (c) for the parameter values dis-
cussed in the text. The arrows indicate the flow direction
which is along the streamlines =constant. Here a
difference AY=1 corresponds to a zonal transport of
2.6:10" m? s~ '.The dashed lines represent contours of the
topography (10° m).
Therefore, we extend the model by including also the (0,2) zonal flow mode
and the (1,2) wave mode in the spectral expansions, resulting in a SIX-
component model. In Figure 4 the x;- and x4(=v02/ b)-component of its sta-
tionary points are shown as a function of x] in case x4(=yg/b)=0 and all
other parameter values similar as before. Clearly, equilibria of the three-
component model are also equilibria of the six-component model but stability
properties can be different because of the increased number of degrees of free-
dom. Furthermore, the model contains a new type of nonlinear interactions
involving a zonal flow component and two different wave modes. As a result
additional equilibria are found. However, the nontransient behaviour can be
more complicated. In DE SWART [5,6] it is shown that also stable periodic
orbits exist, indicated by the presence of Hopf bifurcation points in Figure 4,
as well as strange attractors. However, the latter have only a limited domain of
attraction in phase space and the chaotic solutions remain in the low-index
regime forever. Thus no simulation of an index cycle is obtained. This
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conclusion remains unchanged if x4 is given nonzero values. It is due to the
presence of only one triad of nonlinear interactions in the model. Thus in
order to obtain vacillating solutions either forcing terms must be added to the
equations or more modes should be included in the spectral expansions. Both
possibilities will be subsequently considered.
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FIGURE 4. As Figure 2, but the x;-component (left) and x,-
component (right) of the six-component model. A triangle
denotes a Hopf bifurcation point.

6. EFFECT OF STOCHASTIC PERTURBATIONS ON LOW-ORDER SPECTRAL MODELS
A first attempt to model the effect of the unresolved modes on the three com-
ponent model was carried out by EGGER [10]. He added stochastic forcing
terms of Gaussian white noise with a fixed small intensity to the equations.
The noise forces the system to visit alternately the attraction domains of the
two stable equilibria, thus in this way an index cycle is simulated. A
justification for choosing this type of forcing was given by EGGER and ScHIL-
LING [11] who showed, using atmospheric data, that the forcing terms F(7) in
(4.1) can be modelled by coloured-noise processes. These are stationary and
Gaussian Markov processes and contain white noise as a limit for the correla-
tion time tending to zero. In DE SWART and GRASMAN [7] the effect of
coloured-noise forcing on the three-component-model of Section 5 having three
different stationary points is discussed. For simplicity we only consider the
effect of white-noise forcing. Then Eg. (4.1) become

dx = f(x)dt + edW inR3, (6.1

where the three components of W(r) are mutually independent Wiener
processes and e is the noise intensity which is assumed to be small (e<<1).
Let the stable equilibria E; and E; have the attraction domains Q and
with boundaries 9%, and 99, respectively. We investigate the distribution of
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residence times 7(x) starting from a state x €Q; (i =1,3) of the system in these
attraction domains. The expected value <7(x)>=T(x) gives a measure of the
persistence of a large-scale preferent state of the atmospheric circulation. In
GORDINER [13] it is shown that T'(x) obeys

TEVAT(x)+f,(x)VT(x) = —1in &, (6.2)
T=0at 0% (i =1 or 3).

An asymptotic solution of this elliptic differential equation, valid for low-
intensity noise (e<<<<1), is derived in MATKOWSKY ET AL. [20] by application
of singular perturbation techniques. Outside a boundary layer near 9%; it
reads

T~Ce ', K = lim Q(x) (6.3)

Here Q(x) is the solution of the eikonal equation
%(VQ(X))2 T fulx)VO((x) =0, Q(E) =0, (6.4)

which can be solved by means of the ray method, see LupwiG [19]. However,
the computed residence times are of the order of months whereas from obser-
vations we expect life spans of weather regimes in the order of two weeks. We
will discuss this indiscrepancy in Section 8. Furthermore, it is found that the
most probable region of exit from the attraction domains is an -
neighbourhood of the unstable equilibrium E,. Here the system remains for a
characteristic time

Ty~ log(+), - ©
where A is the largest positive real part of the deterministic system linearized at
E,.

Once the stochastic dynamical system is in its statistical equilibrium it is
characterized by the expected residence times in the different regimes. How-
ever, in this way no information is obtained about the time scale over which
the effect of initial conditions is important. This can be investigated with a
discrete-state Markov process model. For the randomly forced spectral models
discussed here we can derive such a model with three states: a zonal state (1),
a transitional state (2) and a meridional state (3). Let Q;; denote the transition
probability per unit of time from state i to j and let p;(¢) denote the probabil-
ity for the system to be in state i at time ¢. Then the p;() satisfy

1= — (@t Qupr — Qups + O,

P3 = — Qup1 —(Qn + Qn)ps + Oxn, (6.6)
p2 = 1=p1—ps,
where
_ _ 1 1 1
Q21—Q23——2}7, 2= Q32_—T_3' (6.7)



In Figure 5 the probability functions p;(¢) are given for a process with
T,=9, T,=1 and T; =31 that starts in state 1, 2 and 3, respectively.

1 T T T T 1

N " " L " L L
0 50 0 . 50 ) : 50

FIGURE 5. Evolution of the probability distribution of the Markov
process starting in state 1 (left), 2 (middle) and 3 (right)
respectively. The dotted lines represent the stationary dis-
tribution.

From these figures it is seen that once an initial state is given, the Markov
model contains more information about the system than the stationary proba-
bility distribution for a period of about fifty days.

7. TEN COMPONENTS: DETERMINISTIC CHAOS AND VACILLATION

As discussed in Section 5, a second possibility for simulating an index cycle
with spectral models of the quasi-geostrophic barotropic potential vorticity
equation is to include more modes in the spectral expansions. LEGRAS and
GHIL [16] have studied a 25-component model and found that solutions could
visit different preferent regions in phase space. In DE SWART [6] a method is
discussed to derive a ‘minimum-order’ spectral model which has, for fixed
parameter values, multiple unstable regular solutions and a strange attractor. It
is expected that trajectories starting from arbitrary initial conditions converge
to this attractor. After that they must vacillate between different preferent
regions in phase space which are close to the (weakly) unstable regular solu-
tions. It is claimed that, by using a rectangular truncation of the eigenfunction
expansions in wave number space, the minimum number of components is ten.
The model describes the evolution of two zonal flow profiles (a (0,1) and (0,2)
mode) and four waves (the (1,1), (1,2), (2,1) and (2,2) modes) in a barotropic
atmosphere. Compared to the six-component model of Section 5 it contains a
new type of nonlinear interaction involving three waves: the (1,1), (1,2) and
(2,1) modes. In Figure 6 the x - and x4-component of the stationary points of
this model are shown for the same parameter values as discussed in Section 5.
Due to the presence of the wave triad, isolated branches of equilibria occur. By
letting x4 become nonzero all regular solutions may be turned unstable. For
x3=—8 the model represents a flow vacillating between three preferent
regimes where the latter are actually unstable periodic solutions of the model,
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see Figure 7. The wave triad provides for interaction between clearly distinct
scales of motion: a planetary scale and synoptic scale. This behaviour is simi-
lar to what is observed in the atmosphere.
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FIGURE 6. As Figure 4, but for the ten-component model.
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FIGURE 7a. The x;-component of a chaotic solution of the ten-
component model as a function of time. Here
1"=(1 —1000)/500 and the dimensional period is approxi-
mately six years.

b. Sketch of the unstable periodic orbits projected onto the
x3—x3 plane. The preferent regions of the strange attrac-
tor are small tubes around these orbits.

By computing the spectrum of Lyapunov exponents, using the method of
WoLF ET AL. [31] the existence of a global strange attractor is shown.
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Lyapunov exponents measure the average divergence between nearby orbits in
phase space whereas chaos is defined by at least one positive exponent. As dis-
cussed in FARMER ET AL. [12] from the spectrum of Lyapunov exponents we
can estimate the fractal dimension of the attractor which also yields an upper
bound to the number of degrees of freedom of the chaotic flow.

In practice initial conditions are never known with infinite precision. Thus
small errors are introduced in the system which will grow during its evolution
because of the chaotic dynamics. Consequently, the predictability of the flow is
limited: a time scale of average prediction is given by the reciprocal of the sum
of all positive Lyapunov exponents (SCHUSTER [25]). However, of more interest
to meteorologists is the dependence of predictability on the state of the system
(TENNEKES ET AL. [27]). In DE SWART [6] it is argued that the local eigen-
values at each point of an orbit may determine the time evolution of small
errors on this orbit. In that case the eigenvectors corresponding to the eigen-
values with positive real part determine the geographical distribution of the
error growth. However, this is on the condition that the time scale of error
growth is small compared to the time scale on which the flow itself evolves.
This method can be applied to spectral models showing long periods of quasi-
stationary behaviour.

The impact of neglected short-scale modes on a planetary-scale model was
studied by considering the chaotic ten-component model to represent the real
atmosphere and the six-component model of Section 5 (for identical parameter
values) to be a forecast model. For obtaining equivalence between solutions of
the two systems forcing terms must be added to the equations of the forecast
model. It appears that these forcing terms have an unpredictable nature and
that they cannot be modelled by the simple stochastic processes used in Sec-
tion 6. We will discuss these results in the next section.

8. CONCLUDING REMARKS

In this final section we briefly discuss the relevance of our investigations to a
better understanding of the atmospheric circulation. It was remarked in the
introduction that an accurate modelling of the feedback between quasi-
stationary planetary-scale motion and transient synoptic-scale eddies is impor-
tant for the development of long-range weather forecast models. Here we have
argued that this problem may be studied by considering simplified models
which still represent the chaotic properties and vacillatory behaviour of the
atmosphere. Next we investigated whether they provide clues on how to
analyse more complicated models as well as real data.

As discussed in Section 5, already extremely low-order spectral models show
qualitative features of the atmospheric circulation. They possess multiple
equilibria for a range of parameter values and the corresponding flow patterns
resemble large-scale preferent states of the atmospheric circulation. However,
we remark that the existence of weather regimes has never been convincingly
demonstrated by a systematic data analysis; only recently some indications
have been found (BENzI ET AL. [1]).

It has been found that the three- and six-component models cannot simulate
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a flow vacillating between different weather regimes. In order to meet this
imperfection, in Section 6 stochastic forcing terms were added to the spectral
equations. They are assumed to account for the effect of neglected modes and
physical processes not incorporated in the model. A justification for choosing
white noise and coloured noise parametrizations is found from the data study
of EGGER and SCHILLING [11]. The noise forces the system to visit alternately
attraction domains of the stable equilibria. During a transition the system
remains a characteristic time near an unstable equilibrium. This suggests that
stable and unstable regular solutions of a spectral model may have some
relevance for the dynamics of the atmospheric circulation. A method was dis-
cussed for computing expected residence times near the equilibria of the
unperturbed system. Comparing the results with observational data it appears
that the computed life spans of the weather regimes are a factor of 10 larger
than those in the atmosphere.

A systematic way for investigating the effect of neglected modes on a trun-
cated spectral model has been discussed in Section 7. Here a ten-component
model is considered which is a ‘minimum-order’ model representing a finitely
predictable flow having two distinct scales of motion (a planetary and synoptic
scale) and vacillating between different preferent regimes. We assumed this
model to represent the real atmosphere and considered a six-component sub-
system as a forecast model. To the subsystem forcing terms were added such
that its solutions are equivalent to those of the full model projected onto the
modes which also belong to the subsystem. It was found that these forcing
terms have an unpredictable nature and that they cannot be modelled by
coloured-noise processes. This result is in agreement with that of LINDENBERG
and WEsT [17], who analysed explicit expressions for the forcing terms
representing the effect of the neglected modes on truncated spectral models of
the barotropic vorticity equation. It does not contradict the result of EGGER
and SCHILLING [11] since the latter authors also include the effect of neglected
physical processes in their definition of the forcing terms.

We remark that effects of topography are over-estimated in barotropic
models since they act directly on the entire fluid column. Baroclinic multi-level
models of the quasi-geostrophic potential vorticity equation give better results
at this point. Again multiple equilibria are found (CHARNEY and STRAUS [3])
and due to the presence of baroclinic instability mechanisms vacillatory
behaviour is even more easily produced. The two-level twenty-component
model of REINHOLD and PIERREHUMBERT [24] is probably the simplest model
containing all basic physical mechanisms: topographic, barotropic and baroc-
linic instability as well as the occurrence of wave triad interactions.

The problems with low-order spectral models in general is that unrealisti-
cally large external forcing values (corresponding to an equator-pole tempera-
ture difference of more than 150° C) are required in order to produce vacilla-
tory behaviour. Moreover, the characteristic lives of the regimes in the models
are much larger than those obtained from atmospheric data. These imperfec-
tions are probably due to the severe truncation in both the horizontal and vert-
ical direction. A better description of the atmospheric circulation is expected
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from multi-level high resolution models. Since their structure is extremely com-
plicated they are difficult to analyse. Alternatively, we can study lower-
dimensional spectral models which include an appropriate parametrization of
the synoptic forcing terms. This problem remains to be investigated in more
detail.
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Symbolic Computing Day

Spring WTI Meeting

A Symposium ‘Symbolic Computing’ organized by the Werkgemeenschap
Theoretische Informatica (WTI) will take place on Tuesday, April 19, 1988, at
the Centre for Mathematics and Computer Science (CWI), Kruislaan 413, in
Amsterdam. Time: from 9.45 (sharp) to 16.30. Further information can be
obtained from K.R. Apt (CWI, 020-5924135).

By ‘Symbolic Computing’ we mean programming on non-numeric domains
using non-imperative methods. The lectures will attempt to delineate the area.
They will be all of an introductory character.

PROGRAM

Relational databases
P.M.G. Apers (U. Twente)

Deductive databases
K.R. Apt (CWI, Amsterdam and UT Austin)

Functional programming
H.P. Barendregt (KU Nijmegen)

Logic programming and PROLOG
M. Bezem (CWI, Amsterdam)

Mathematical formula manipulation
from a user’s point of view
AM. Cohen (CWI, Amsterdam and RU Utrecht)

Complexity of symbolic computing
P. van Emde Boas (UvA and CWI, Amsterdam)

Term rewriting systems
J.W. Klop (CWI, Amsterdam and VU Amsterdam)
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 43. H.L. Bodlaender. Distributed Computing, Structure and Com-
lexity.

AMS 68B20, 68C05; CR C.2.1; 294 pp.

Abstract: By connecting several processors or computer systems, for instance in a network, one
obtains a distributed system. Distributed systems have important advantages over conventional
(mainly) sequential computer systems. In this book some fundamental problems in the area of
distributed computing are analyzed. An extensive analysis is made of the concept of uniform
emulation: a method for obtaining structure-preserving, efficient simulations of (large) processor-
networks on smaller processor-networks. Several new lower bounds and upper bounds are
obtained for extrema-finding (or election) on rings of processors. An analysis is made of a funda-
mental load-balancing problem on rings of processors. Deadlock is an undesirable property of
store-and-forward packet switching networks. A large class of controllers is introduced, that avoid
store-and-forward deadlock and use only ‘local information’.

CWI Syllabus 15. Vacantiecursus 1983: Complexe getallen.

Abstract: This syllabus (in Dutch) contains reprints of lectures on complex numbers, presented at
the Vacation Course for high school mathematics teachers in 1983. They cover interesting aspects
of complex numbers with applications in a variety of mathematical disciplines.

CS-R8735. K.R. Apt, L. Bougé & Ph. Clermont. Two normal form theorems

for CSP programs.
AMS 68Q55, 68Q2; 12 pp.
Abstract: We define two normal forms for CSP programs. In the First Normal Form, each process
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contains only one I/0 repetitive command and all its I/O commands appear as guards of this
command. In the Second Normal Form, it is moreover required that all guards of this I/0O repeti-
tive command are in fact I/0 guards. We describe an inductive method which transforms any
CSP program into an equivalent program in first or second normal form. The involved
equivalence notion is discussed. It is shown in particular that no transformation into second nor-
mal form can preserve deadlock-freedom.

CS-R8736. M. Bezem. Consistency of rule-based expert systems.

AMS 68T30, 68T15; CR 1.2.3,1.2.4, F.4.1; 10 pp.; key words: knowledge-based
systems, rule-based expert systems, knowledge representation, consistency.
Abstract: Consistency of a knowledge-based system has become a topic of growing concern. Every
notion of consistency presupposes a notion of semantics. We present a theoretical framework in
which both the semantics and the consistency of a knowledge base can be studied. This frame-
work is based on first order many-sorted predicate logic and is sufficiently rich to capture an
interesting class of rule-based expert systems and deductive databases. We also provide criteria
which allow us to isolate cases in which the consistency test is feasible.

CS-R8737. P.R.H. Hendriks. Type-checking mini-ML: an algebraic specification
with user-defined syntax.

AMS 68BXX; CR D.2.1, D.3.1, F.3.1, F.3.2, F.4.2; 32 pp.; key words: software
engineering, algebraic specifications, formal definition of programming
languages, specification languages, executable specifications, user-definable syn-
tax, syntax definition formalism, type-checker, polymorphism, type inference.
Abstract: An algebraic specification of a type-checker for Mini-ML, a sublanguage of ML, is given.
As specification formalism a combination of the algebraic specification formalism ASF and the
syntax definition formalism SDF is used.

CS-R8738. R. van Liere & P.J.W. ten Hagen. Logical input devices and interac-
tion.

CR 134, 1.3.6; 15 pp.; key words: logical input devices, dialogue systems,
dialogue programming.

Abstract: The logical input device model, as adopted in the standardized graphics packages GKS
and PHIGS, has been an accepted basis for producing device-independent graphics systems.
However, when used in highly interactive graphical applications, the logical input device model
does not provide sufficient support for a number of fundamental issues inherent to interaction.
This paper reopens a discussion which questions the functionality provided by the logical input
device model when brought in conjunction with interaction. In particular, the logical input device
model does not support the notion of input/output symmetry.

CS-R8739. J.C.M. Baeten & W.P. Weijland. Semantics for prolog via term
rewrite systems. AMS 68Q45, 68Q50, 68N15; CR F.4.1, F4.2, D.3.1, 1.2.3,
F.3.2; 12 pp.; key words: prolog, logic programming, term rewrite system,
priority rewrite system, depth-first search.

Abstract: We present semantics for logic programs using term rewrite systems. Reading program
lines from left to right (so reversing the arrows), considering the result as a rewrite system,
immediately gives the usual declarative semantics (the least Herbrand model). Then, we add a
priority ordering on the rewrite rules, and obtain a procedural semantics for Prolog with depth-
first search rule. This gives us different semantics in the same setting.
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CS-R8740. W.P. Weijland. Semantics for logic programs without occur check.
AMS 68Q40, 68Q55; CR F.3.1, F.3.2, F.4.1; 25 pp.; key words: logic program-
ming, occur-check, infinite trees, fixed point semantics.

Abstract: For reasons of efficiency, in almost all implementations of Prolog the occur check is left
out. This mechanism should protect the program against introducing circular bindings of variables.
In practice the occur check is very expensive, however, and it is left to the skills of the user to
avoid these circular bindings in the program. In this paper a semantics of Prolog without occur
check is introduced, by considering circular bindings {x/f(x)} as recursive equations {x=f(x)}.
The new kind of resolution, i.e.: SLD-resolution without occur check, is referred to as CSLD-
resolution. Important theorems such as soundness and completeness of CSLD-resolution are esta-
blished. Moreover, the finite failure set turns out to be precisely the complement of the greatest
fixed point of a monotonic mapping 7”p on the complete Herbrand base. Soundness and com-
pleteness of the negation as failure rule can be obtained in this new setting.

CS-R8741. K.R. Apt. Introduction to logic programming.

CR FA4.1, F32; 55 pp.

Abstract: We provide a systematic and self-contained introduction to the theory of logic program-
ming.

CS-R8742. P. Bernus & Z. Létray. Intelligent systems interconnection: what
should come after open systems interconnection?

AMS 68T30; CR 1.24, 1.2.6, C.1.3, C.2.4; 12 pp.; key words: representation
languages, agents, CAD, conversation theory, knowledge representation archi-

tectures.

Abstract: The battle for the best knowledge representation language seems to be terminated. Not
because anyone had found one, but because fairly cbviously there is none. We propose to turn our
attention to general architectures of knowledge representation. If theories to be represented
become specified, we can use such general constructs in the development of individual architec-
tures. Theories are generally used by some agent for specific purposes. Agents need to communi-
cate with each other in order to make use of their theories. We claim that a theory of computer-
agenthood should describe communication and conversation among agents and the way they
interact with the environment. A functional architecture for intelligent systems interconnection
(ISI) is proposed. Subsuming functional layers of representations and theories are identified,
without making commitments for particular choices in any one layer. We attempt to show the road
to bring together represented conscious - and unconscious - as well as not represented inherent
knowledge. We do it in order to combine intelligence with effectiveness.

CS-R8743. P.M.B. Vitanyi. Locality, communication, and interconnect length in
multicomputers.

AMS 68C05, 68C25, 68A05, 68B20, 94C99; CR B.7.0, C.2, D4, F.2.7, G.2.4;
15 pp.; key words: multicomputers, complexity of computation, locality, com-
munication, wire length, general communication network, edge-symmetric
graph, n-cube, cube-connected cycles, tree, Euclidean embedding, scalability,
optical computing.

Abstract: We derive a lower bound on the average interconnect (edge) length in d-dimensional
embeddings of arbitrary graphs, expressed in terms of diameter and symmetry. It is optimal for
all graph topologies we have examined, including complete graph, star, binary n-cube, cube-
connected cycles, complete binary tree, and mesh with wrap-around (e.g., torus, ring). The lower
bound is technology independent, and shows that many interconnection topologies of today’s
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multicomputers do not scale well in the physical world (4 =3). The new proof technique is simple,
geometrical and works for wires with zero volume, e.g., for optical (fibre) or photonic (fibreless,
laser) communication networks. Apparently, while getting rid of the ‘von Neumann’ bottleneck in
the shift from sequential to non-sequential computation, a new communication bottleneck arises
because of the interplay between locality of computation, communication, and the number of
dimensions of physical space. As a consequence, realistic models for non-sequential computation
should charge extra for communication, in terms of time and space.

CS-R8744. V. Akman, P.J.W. ten Hagen & T. Tomiyama. Design as a formal,
knowledge engineered activity.

CR D.2.m, 1.2.1, 1.2.3, 1.2.4, 1.2.5, J.6; 22 pp.; key words: intelligent CAD,
design theory, logic, theory of knowledge, qualitative physics, object oriented
programming, logic programming, knowledge engineering, prototyping.

Abstract: We summarize the framework and the preliminary results of the project Intelligent
Integrated Interactive CAD (IIICAD) conducted at CWIL. In e.g. mechanical computer aided
engineering, currently much research aspires at using knowledge engineering but truly unifying
approaches (i.e. ‘more’ than expert systems) are lacking. IIICAD aims at filling this gap using the
theory of CAD. Here, we show the concepts and the architecture of IIICAD. We then formulate
how IIICAD can help in integrating existing CAD tools and establishing a workbench for design.
We demonstrate the relevance and use of qualitative physics in machine design. As for the IIICAD
software development methodology, we consider several aspects of software engineering as well as
knowledge engineering, for CAD systems tend to be very large. IIICAD has a kernel language
based on logic programming and object oriented programming paradigms. We explain the combi-
nation of these paradigms and give a taste of our IIICAD prototype which is presently under con-
struction.

CS-R8745. V. Akman, P.J.W. ten Hagen, J.L.H. Rogier & P. Veerkamp.
Knowledge engineering in design.

CR 1.2.3,1.2.4, J.6; 18 pp.; key words: nonstandard logics, object-oriented pro-
gramming, naive physics, extensional/intensional descriptions.

Abstract: We present in a unifying framework the principles of the IIICAD (Intelligent, Integrated,
and Interactive Computer-Aided Design) system. IIICAD is a generic design apprentice currently
under development at CWI. IIICAD incorporates three kinds of design knowledge. First, it has
general knowledge about the stepwise nature of design based on a set-theoretic design theory.
Second, it has domain-dependent knowledge belonging to the specific design areas where it may
actually be used. Finally, it maintains knowledge about the previously designed objects; this is
somewhat similar to software reuse. Furthermore, IIICAD uses Al techniques in the following
areas: (i) formalisation of design processes; extensional vs. intensional descriptions; modal and
other nonstandard logics as knowledge representation tools, (ii) common sense reasoning about the
physical world (naive physics); coupling symbolic and numerical computation, (iii) integration of
object-oriented and logic programming paradigms; development of a common base language for
design.

CS-R8746. R. van Liere & P.J.W. ten Hagen. Resource management in DICE.
CR 134, 1.3.5, 1.3.6; 28 pp.; key words: user interface management systems,
dialogue languages, resource management, window management.

Abstract: A framework is presented for integrating a general resource management facility into the
dialogue cell language. It is shown that, by using resources as the basis for input and output, the
coupling of input and output at the physical device level can be achieved. By integrating the
resource manager in the dialogue cell language, correlations between higher level input and output
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can be defined and maintained. Context sensitive resource rules are defined as extensions to the
corresponding activation rules of dialogue cells themselves. By applying various inheritance
mechanisms a resource specification can be done virtually. The dialogue run-time system dynami-
cally binds these virtual specifications with physical devices. The resource manager is imple-
mented by augmenting the dialogue grammar with specific resource information. In this way a
potentially ambiguous dialogue can be unambiguously parsed. An O(nlogn)-time algorithm, with
n indicating the number of overlapping windows, is given which detects ambiguous resource
configurations.

CS-R8747. W.P.Weijland. Correctness proofs for systolic algorithms: a palin-

drome recognizer.
AMS 68Q35, 68Q60, 68Q10, 68Q55; CR B.7.1, D.2.4, F.3.2; 19 pp.; key words:

concurrency, process algebra, systolic array, VLSI, correctness proof.

Abstract: In designing VLSI-circuits it is very useful, if not necessary, to construct the specific cir-
cuit by placing simple components in regular configurations. Systolic systems are circuits built up
from arrays of cells and therefore very suitable for formal analysis and induction methods. In the
case of a palindrome recognizer a correctness proof is given using bisimulation semantics with
asynchronous cooperation. The proof is carried out in the formal setting of the Algebra of Com-
municating Processes, which provides us with an algebraic theory and a convenient proof system.
An extensive introduction to this theory is included in this paper. The palindrome recognizer has
also been studied by Hennessy in a setting of failure semantics with synchronous cooperation.

CS-R8748. J.A. Bergstra, JW. Klop & E.-R. Olderog. Readies and failures in

the algebra of communicating processes.

AMS 68Q05, 68Q10, 68Q55, 68Q45; CR F.1.2, F.3.1, F.3.2; 54 pp.; key words:
process algebra, concurrency, readiness semantics, failure semantics, bisimula-
tion semantics.

Abstract: Readiness and failure semantics are studied in the setting of ACP (Algebra of Communi-
cating Processes). A model of process graphs modulo readiness equivalence, respectively failure
equivalence, is constructed, and an equational axiom system is presented which is complete for this
graph model. An explicit representation of the graph model is given, the failure model, whose ele-
ments are failure sets. Furthermore, a characterisation of failure equivalence is obtained as the
maximal congruence which is consistent with trace semantics. By suitably restricting the communi-
cation format in ACP, this result is shown to carry over to subsets of Hoare’s CSP and Milner’s
CCS. Also, the characterisation implies a full abstraction result for the failure model. In the above
we restrict ourselves to finite processes without 7-steps. At the end of the paper a comment is
made on the situation for infinite processes with 7-steps: notably we obtain that failure semantics
is incompatible with Koomen’s fair abstraction rule, a proof principle based on the notion of
bisimulation. This is remarkable because a weaker version of Koomen’s fair abstraction rule is
consistent with (finite) failure semantics.

CS-R8749. J. Heering, P. Klint & J. Rekers. Principles of lazy and incremental
program generation.

AMS 68N20; CR D.1.2, D.3.4; 8 pp.; key words: program generator, fourth
generation language, greedy, lazy, and incremental program generation, lazy
and incremental generation of lexical scanners, lazy and incremental genera-

tion of parsers, lazy and incremental compilation, dynamic compilation.
Abstract: Current program generators usually operate in a greedy manner in the sense that a pro-
gram must be generated in its entirety before it can be used. If generation time is scarce, or if the
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input to the generator is subject to modification, it may be better to be more cautious and to gen-
erate only those parts of the program that are indispensable for processing the particular data at
hand. We call this lazy program generation. Another, closely related, strategy is incremental pro-
gram generation. When its input is modified, an incremental generator will try to make a
corresponding modification in its output rather than generate a completely new program. It may
be advantageous to use a combination of both strategies in program generators that have to
operate in a highly dynamic and/or interactive environment.

CS-R8750. S.J. Mullender & P.M.B. Vitanyi. Distributed match-making.

AMS 68C05, 68C25; CR C.2.1, F22, G.2.2; 25 pp.; key words: locating
objects, locating services, mutual exclusion, replicated data management, distri-
buted algorithms, computational complexity, store-and-forward computer net-
works, network topology.

Abstract: In many distributed computing environments, processes are concurrently executed by
nodes in a store-and-forward communication network. Distributed control issues as diverse as
name server, mutual exclusion, and replicated data management involve making matches between
such processes. We propose a formal problem called ‘distributed match-making’ as the generic
paradigm. Algorithms for distributed match-making are developed and the complexity is investi-
gated in terms of messages and in terms of storage needed. Lower bounds on the complexity of
distributed match-making are established. Optimal algorithms, or nearly optimal algorithms, are
given for particular network topologies.

CS-R8751. Ming Li & P.M.B. Vitanyi. A very simple construction for atomic
multiwriter register.

AMS 68C05, 68C25, 68A05, 68B20; CR B.3.2, B4.3, D.4.1, D.4.4; 7 pp.; key
words: shared variable (register), concurrent reading and writing, atomicity,

multiwriter variable.

Abstract: This paper introduces a new and conceptually very simple algorithm to implement an
atomic n-reader n-writer variable directly from atomic 1-reader l-writer variables, using bounded
tags. The algorithm is developed top-down from the Vitanyi-Awerbuch unbounded tag method.
This is the first direct such construction, and considerably improves the complexity of all known
compound constructions. The algorithm uses new techniques, but its main virtue is that it is con-
ceptually very simple and easily proved correct.

CS-R8752. Ming Li &, P.M.B. Vitanyi. Tape versus queue and stacks: The
lower bounds.

AMS 68C40, 68C25, 68C05, 94B60, 10-00; CR F.1.1, F.1.3, F.2.3; 24 pp.; key
words: multitape Turing machine, stack, queue, pushdown stores, determinism,
nondeterminism, on-line, off-line, time complexity, lower bounds, simulation

by one tape, Kolmogorov complexity.

Abstract: Several new optimal or nearly optimal lower bounds are derived on the time needed to
simulate queues, stacks (stack = pushdown store) and tapes by one off-line single-head tape-unit
with one-way input, for both the deterministic case and the nondeterministic case. The techniques
rely on algorithmic information theory (Kolmogorov complexity).

CS-R8753. M.M. de Ruiter. C-GKS, a C implementation of GKS, the graphical
kernel system.

AMS 69K32, 69K34, 69K30; 83 pp.; key words: computer graphics, graphics
systems, standardization.
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Abstract: GKS, the ISO international standard for 2D graphics software, is specified in a language
independent form. This document contains the GKS language binding to C of the GKS datatypes
and functions. Furthermore, it contains remarks about the implemented GKS functions. The user
of this document is supposed to be familiar with GKS.

CS-R8754. E. Kranakis & K.N. Oikonomou. Fixpoint representations of
characteristic sets of linear-time temporal formulas.

AMS 68N05, 68N15; CR F.3.1, F4.1; 33 pp.; key words: temporal logic,
fixpoint, set-transformer, temporal functional equation, walk, universal and

existential characteristic set.

Abstract: We present an algebraic-axiomatic method for computing existential and universal
characteristic sets of linear-time temporal logic formulas on directed graphs. The set of all nodes »
of a given graph (model) such that all (respectively, some) infinite walks starting from » satisfy a
formula ¢ is called the universal (respectively, existential) characteristic set of ¢. We reduce the
computation of the characteristic set to finding the least or greatest fixpoint of a system of set
equations. Our method is sufficient to handle the following subsets of the logic
L(O,0,0,A,v,~): formulas in which the temporal connective <> applies only to boolean sub-
formulas, formulas in which [J does not occur, and formulas that express general fairness proper-
ties of concurrent systems, such as impartiality, justice, and fairness. The representation of the
characteristic sets obtained are model-independent, in the sense that the same representation holds
for all graphs, and regardless of whether or not they are finite or infinite.

CS-R8755. J.N. Kok & JJMM. Rutten. Contractions in comparing con-

currency semantics.

AMS 68B10, 68C01; CR D.3.1, F.3.2, F.3.3; 40 pp.; key words: concurrency,
imperative languages, denotational semantics, operational semantics, metric
spaces, contractions, semantic equivalence.

Abstract: We define for a number of concurrent imperative languages both operational and denota-
tional semantic models as fixed points of contractions on complete metric spaces. Next, we
develop a general method for comparing different semantic models by relating their defining con-
tractions and exploiting the fact that contractions have a unique fixed point.

CS-R8756. Y. Yamaguchi, F. Kimura & P.J.W. ten Hagen. Interaction
management in CAD systems with a history mechanism.

CR H.1.2,13.5,13.6, 1.6, D.4.8; 12 pp.

Abstract: User friendliness is one of the unresolved problems in CAD systems. There are many
possible directions for improving user friendliness. Understanding of the modeling process is one
of the most important directions. It is natural for a user to describe the model in terms of its evo-
lution. We call this concept model derivation. To construct and use model derivation, we propose
a history mechanism which keeps and manipulates the history of the modeling process. The history
mechanism manages high level interactions by introducing powerful symbolic computation to
manipulate the history. Since the history representation is based on the operation’s syntax and
separated from the internal model representation, it is easy to apply the history mechanism to any
modeling system which uses established techniques. Thus the system designer can easily introduce
model derivation without reducing efficiency of the implementation.

CS-R8757. L.C. van der Gaag. A network approach to the certainty factor

model.
AMS 68TXX; CR 1.2.3, 1.2.5; 17 pp.; key words: expert systems, plausible
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reasoning, certainty factor model.

Abstract: Most expert knowledge is of an ill-defined and heuristic nature. Therefore, many
present-day rule-based expert systems include a mechanism for modelling and manipulating impre-
cise knowledge. For a long time, probability theory has been the primary quantitative approach
for handling uncertainty. Other mathematical models of uncertainty have been proposed during
the last decade, several of which depart from probability theory. The certainty factor model pro-
posed by the authors of the MYCIN system is an example of an ad hoc model. The aim in
developing the model was primarily to develop a method that was of practical use. The certainty
factor model is computationally simple, a property that has led to its considerable success. In this
paper, we use so-called inference networks to demonstrate the application of the model in a rule-
based top-down reasoning expert system. This approach enables us to show some inadequacies of
the notational convention used by the creators of the model. We propose a syntactically correct
formalism and use this formalism to discuss several properties of the model.

CS-R8758. A. Israeli, M. Li & P.M.B. Vitanyi. Simple multireader registers

using time-stamp schemes.

AMS 68C05, 68C25, 68A05, 68B20; CR B.3.2, B.4.3, D.4.1, D.4.4; 8 pp.; key
words: shared variable (register), concurrent reading and writing, atomicity,
multiwriter variable.

Abstract: We use the theory of time-stamp schemes to implement an atomic 1-writer n-reader vari-
able (register) from n? atomic 1-writer 1-reader variables, using bounded time-stamps. The number
of time-stamps needed is (2n +2)?, so this scheme uses O(nzlog n) control bits altogether. The con-
struction is simple, transparent, and optimal in worst-case number of control bits per subvariable.
A similar scheme is given that uses only 2-bit variables written by readers, and 2n-bit variables
written by the writer. This uses altogether O(n?) control bits altogether. This scheme is optimal in
worst-case overall number of control bits. Apart from being optimal in several ways, our construc-
tions add an intuitive dimension which lacks in previous algorithms for this problem.

CS-R8759. J.J.M.M. Rutten & J.I. Zucker. A semantic approach to fairness.
AMS 68B10, 68C01, 68C05; CR D.1.3, F.1.2; 25 pp.; key words: fairness,
semantic domains of metric processes, fair infinite iteration, alternation of ran-
dom choices.

Abstract: In the semantic framework of metric process theory, we undertake a general investigation
of fairness of processes from two points of view: (1) intrinsic fairness of processes, and (2) fair
operations on processes. Regarding (1), we shall define a ‘fairification” operation on processes
called Fair such that for every (generally unfair) process p the process Fair(p) is fair, and contains
precisely those paths of p that are fair. Its definition uses systematic alternation of random choices.
The second part of this paper treats the notion of fair operations on processes: suppose given an
operator on processes (like merge, or infinite iteration), we want to define a fair version of it. For
the operation of infinite iteration we define a fair version, again by a ‘fair scheduling’ technique.

CS-R8761. J. Heering, P. Klint & J. Rekers. Incremental generation of lexical
scanners.

AMS 68N20; CR D.1.2, D.3.4; 24 pp.; key words: program generator, lazy and
incremental generation of lexical scanners, finite automata, subset construction.
Abstract: It is common practice to specify textual patterns by means of a set of regular expressions
and to transform this set into a finite automaton to be used for the scanning of input strings. In
many applications, the costs of this preprocessing phase can be amortized over many uses of the
constructed automaton. In this paper new techniques for lazy and incremental scanner generation
are presented. The lazy technique postpones the construction of parts of the automaton until they
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are really needed during the scanning of input. The incremental technique allows modifications to
the original set of regular expressions to be made and reuses as many parts of the previous auto-
maton as possible. This is interesting in situations where modifications to the definition of lexical
syntax and the use of the generated scanner alternate frequently, for instance, in environments for
the interactive development of language definitions.

CS-R8762. H.A. Lauwerier & J.A. Kaandorp. Fractals (mathematics, program-
ming and applications).

AMS 58F13, 69K30, 69K34; 33 pp.; key words: fractals, self-similar sets, non-
linear complex mappings, fractal growth.

Abstract: This tutorial consists of three subjects. The first subject is the mathematics of fractals,
several classes of fractals (Cantor sets, Koch’s curve, Levy’s Curve Mandelbrot and Julia sets) are
discussed together with self-similarity and fractal dimension. The second subject is the generation
of fractal objects, in which several methods are discussed for creating fractals (formal languages,
Iterated Function Systems, geometric construction of fractals, non-linear complex mappings). The
last subject is the application of fractals for modelling natural objects natural. In this subject the
estimation of the fractal dimension and simulation of natural objects from nature are discussed.

OS-R8712. O.J. Boxma & W.P. Groenendijk. Two queues with alternating ser-
vice and switching times.

AMS 30E25, 60K25, 68M20; 20 pp.; key words: queueing system, alternating
service, switching time, Riemann boundary value problem.

Abstract: This paper is concerned with a system of two queues, attended by a single server who
alternately serves one customer of each queue (if not empty). The server experiences switching
times in his transition from one queue to the other. It is shown that the joint stationary queue-
length distribution, at the instants at which the server becomes available to a queue, can be deter-
mined via transformation to a Riemann boundary value problem. The latter problem can be com-
pletely solved for general service- and switching-time distributions. The stationary distributions of
the waiting times at both queues, and of the cycle times of the server, are also derived. The
obtained results, and in particular the extensive numerical data for moments of waiting times and
cycle times, yield insight into the behaviour of more general cyclic-service models. Such models are
frequently used to analyse polling systems.

OS-R8713. P.R. de Waal. Performance analysis and optimal control of an
M/M/1/k queueing system with impatient customers.
AMS 60K25, 68M20 90B22, 93E20; 16 pp.; key words: communication sys-

tems, queues, impatient customers, stochastic control.

Abstract: A simple M/M/1/k queue with impatient customers is presented as a model for com-
munication systems operating under overload conditions. The performance analysis and optimal
control problem for this model are discussed. An efficient algorithm for computing the optimal
control is presented along with numerical results.

OS-R8714. J.K. Lenstra, D.B. Shmoys & E. Tardos. Approximation algorithms
for scheduling unrelated parallel machines.

AMS 90B35, 90C27, 68Q25, 68R05; 10 pp.; key words: scheduling, parallel
machines, approximation algorithm, worst case analysis, linear programming,
integer programming, rounding.

Abstract: We consider the following scheduling problem. There are m parallel machines and n
independent jobs. Each job is to be assigned to one of the machines. The processing of job j on
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machine 7 requires time p;;. The objective is to find a schedule that minimizes the makespan. Our
main result is a polynomial algorithm which constructs a schedule that is guaranteed to be no
longer than twice the optimum. We also present a polynomial approximation scheme for the case
that the number of machines is fixed. Both approximation results are corollaries of a theorem
about the relationship of a class of integer programming problems and their linear programming
relaxations. In particular, we give a polynomial method to round the fractional extreme points of
the linear program to integral points that nearly satisfy the constraints. In contrast to our main
result, we prove that no polynomial algorithm can achieve a worst-case ratio less then 3/2 unless
P =NP. We finally obtain a complexity classification for all special cases with a fixed number of
processing times.

OS-R8715. M. Desrochers, J.K. Lenstra, M.W.P. Savelsbergh & F. Soumis.
Vehicle routing with time windows: optimization and approximation.

AMS 90B05, 90B35, 90C27; 15 pp.; key words: traveling salesman problem,
vehicle routing problem, pickup and delivery problem, dial-a-ride problem,
time window constraints, branch and bound, dynamic programming, state
space relaxation, set partitioning, column generation, construction, iterative
improvement, incomplete optimization.

Abstract: This is a survey of solution methods for routing problems with time constraints. Among
the problems considered are the traveling salesman problem, the vehicle routing problem, the
pickup and delivery problem, and the dial-a-ride problem. We present optimization algorithms
that use branch and bound, dynamic programming and set partitioning, and approximation algo-
rithms based on construction, iterative improvement and incomplete optimization.

OS-R8716. J.M. Anthonisse, J.K. Lenstra & M.W.P. Savelsbergh. Functional
description of CAR, an interactive system for computer aided routing.

AMS 90B05, 90C27, 90C50, 68U05; 15 pp.; key words: physical distribution,
clustering, routing, man-machine interaction, color graphics.

Abstract: CAR is an interactive software package which can be used to support operational distri-
bution management. It has been developed at the Centre for Mathematics and Computer Science
(CWI) in the period 1983-1986. This document contains a general description of CAR, a detailed
description of the interface between CAR and software in its environment (data entry and report
generation), and a user manual in the form of a functional description of all available commands.

OS-R8717. O.J. Boxma & G.A.P. Kindervater. A queueing network model for
analyzing a class of branch and bound algorithms on a master-slave architecture.
AMS 60K25, 68M20, 68Q10, 90C27; 16 pp.; key words: parallel computing,

branch and bound, queueing network, fluid flow approximation.

Abstract: Partitioning methods lend themselves very well to implementation on parallel computers.
In recent years, branch and bound algorithms have been tested on various types of architectures.
In this paper, we develop a queueing network model for the analysis of a class of branch and
bound algorithms on a master-slave architecture. The analysis is based on a fluid flow approxima-
tion. Numerical examples illustrate the concepts developed. Finally, related branch and bound
algorithms are studied using a machine repair queueing model.

OS-R8718. A. Schrijver. Edge-disjoint homotopic paths in straight-line planar
graphs.

AMS 05C10, 68R10, 90C27, 05C38, 5TM15; 15 pp.; key words: planar, graph,
homotopic, edge-disjoint, VLSI, straight-line.
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Abstract: Let G be a planar graph, embedded without crossings in the euclidean plane R?, and let

Iy, ...,I, be some of its faces (including the unbounded face), considered as open sets. Suppose
there exist (straight) line segments Loty v o o L in R? such that
GUIy---UL,=LU---ULULU:--- UIf and such that each L; has its end points in
Ly --- UIP. Let Cy,...,Cy becurves in R\ (/U - - - UI,,) with end points in vertices of G.
We describe conditions under which there exist pairwise edge-disjoint paths Py, ...,P; in G so

that P; is homotopic to C; in R2\ ([ U - - - Ul,), for i=1, ... k. This extends results of Kauf-
mann and Mehlhorn for graphs derived from the rectangular grid.

OS-R8719. A. Schrijver. Decomposition of graphs on surfaces and a homotopic
circulation theorem.

AMS 05CXX, STMXX, 90C27, 05C10, 05C38, 57N06; 49 pp.; key words: sur-
face, homotopic, graph, curve, circulation, VLSI, crossing.

Abstract: We prove the following theorem. Let G be an Eulerian graph embedded (without cross-
ings) on a compact orientable surface S. Then the edges of G can be decomposed into cycles
Cy,...,C, in such a way that for a closed curve D on S:

t
mincr (G,D) = E,:l mincr (C;,D).

Here mincr (G,D) denotes the minimum number of crossings of G and D, among all closed curves
D homotopic to D (so that D does not intersect vertices of G). Similarly, mincr (C,D) denotes the
minimum number of crossings of C and D, among all closed curves C and D homotopic to C and
D, respectively. As a corollary we derive the following ‘homotopic circulation theorem’. Let G be
a graph embedded on a compact orientable surface S, let c: E—Q . be a ‘capacity’ function, let

Cy,...,Cy becycles in G, and let dy, ... ,d, Q@ be ‘demands’. Then there exist circulations
X1,...,x in G so that each x; decomposes fractionally into d; cycles homotopic to C;
(i=1,...,k) and so that the total flow through any edge does not exceed its capacity, if and only

if for each closed curve D on S not intersecting vertices of G we have that the sum of the capaci-
ties of the edges intersected by D (counting multiplicities) is not smaller than Sk_ d;-mincr (C,, D).
This applies to a problem posed by K. Mehlhorn in relation to the automatic design of integrated
circuits.

OS-R8720. G.A.P. Kindervater & J.K. Lenstra. Parallel computing in combina-
torial optimization.

AMS 90C27, 68Q15, 68Q25, 68RXX; 33 pp.; key words: parallel computer,
computational complexity, polylog parallel algorithm, %-completeness, sorting,
shortest paths, minimum spanning tree, matching, maximum flow, linear pro-
gramming, knapsack, scheduling, traveling salesman, dynamic programming,
branch and bound.

Abstract: This is a review of the literature on parallel computers and algorithms that is relevant for
combinatorial optimization. We start by describing theoretical as well as realistic machine models
for parallel computations. Next, we deal with complexity theory for parallel computations and

illustrate the resulting concepts by presenting a number of polylog parallel algorithms and -
completeness results. Finally, we discuss the use of parallelism in enumerative methods.

OS-R8721. M. Desrochers, J.K. Lenstra & M.W.P. Savelsbergh. A4
classification scheme for vehicle routing and scheduling problems.

AMS 90B05, 90B35, 68T30; 12 pp.; key words: classification, routing, schedul-
ing, model, algorithm.

Abstract: We propose a classification scheme for a class of models that arise in the area of vehicle
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routing and scheduling and illustrate it on a number of problems that have been considered in the
literature. The classification scheme may serve as a first step towards the development of a model
and algorithm management system in this area.

OS-N8702. J.M. Anthonisse, K.M. van Hee & J.K. Lenstra. Resource-
constrained project scheduling: an international exercise in DSS development.
AMS 90B35, 90C50; 11 pp.; key words: decision support system, resource-
constrained project scheduling, comparative evaluation.

Abstract: The International Institute for Applied Systems Analysis in Laxenburg, Austria, coordi-
nates an international exercise in the development of decision support systems. The participants
will independently develop a number of interactive planning systems for resource-constrained pro-
ject scheduling, in the hope of generating knowledge and experience in the design, analysis and
implementation of decision support systems. This report specifies the rules of the exercise.

NM-R8715. W.M. Lioen, M. Louter-Nool & H.J.J. te Riele. Optimization of
the real level 2 BLAS on the Cyber 205.

AMS 65V05, 65F05, 65F30; CR 5.14, 4.6; 13 pp.; key words: matrix-vector
operations, Level 2 BLAS, Cyber 205 optimization.

Abstract: The results of the implementation and optimizaton of the real Level 2 BLAS routines on
the Cyber 205 vectorcomputer are presented. The Level 2 BLAS routines perform three types of
matrix-vector operations, viz., matrix-vector multiplication, rank-1 and rank-2 updates, and solu-
tion of triangular systems of equations. The performance of the routines varies between 60% and
80% of the maximum Cyber 205 performance, for general matrices of order 500, and for band
matrices of order 30000 with 6 non-zero diagonals.

NM-R8716. C. Nebbeling & B. Koren. An experimental-computational investi-
gation of transonic shock wave-turbulent boundary layer interaction in a curved

test section.
AMS 35B30, 65N50, 76G15, 76HO5; 17 pp.; key words: steady Euler equa-

tions, transonic flows, grid generation and adaptation, boundary conditions.
Abstract: This paper describes an experimental investigation of a transonic shock wave-turbulent
boundary layer interaction in a curved test section in which the flow has been computed by a 2-D
Euler flow method. The test section has been designed such that the flow field near the shock wave
at the convex wall corresponds to that near the shock wave at the upper surface of a transonic air-
foil. The ratio between the radius of curvature of the wind tunnel wall and the thickness of the
undisturbed boundary layer is about 80, being a mean value for modern transonic wings at cruis-
ing flight conditions. The Mach number distributions from the Euler flow computations are com-
pared to those obtained from holographic interferometry, at flow Mach numbers upstream of the
shock wave of 1.15 and 1.37. For these two Mach numbers boundary layer measurements in the
interaction region have been performed by means of static pressure and pitot pressure probe
traverses. Moreover, extended surface pressure measurements have been made at several upstream
Mach numbers M,. In particular attention is paid to the effects of flow curvature and static pres-
sure increase downstream of the shock wave, in relation to changing boundary layer parameters
and separation phenomena.

NM-R8717. W.H. Hundsdorfer. Convergence of Runge-Kutta methods on
classes of stiff initial value problems.

AMS 65105, 65M20; 9 pp.; key words: numerical analysis, stiff initial value
problems, implicit Runge-Kutta methods, B-convergence.
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Abstract: For certain stiff initial value problems the order of convergence of implicit Runge-Kutta
methods can be much lower than for nonstiff problems. In this paper we consider for some classes
of stiff initial value problems convergence results which are independent of the stiffness, such as
the B-convergence results for nonlinear dissipative problems.

NM-R8718. J. Kok. Proposal for standard mathematical packages in Ada.

AMS 69D49, 65-04; 23 pp.; key words: Ada, high level language, elementary
functions, mathematical packages, standard functions, scientific libraries.
Abstract: On behalf of the Ada-Europe Numerics Working Group we propose Ada packages of
mathematical types, constants, operators and subprograms to be added to the standard Ada pro-
gram library. These include packages of elementary mathematical functions, of mathematical con-
stants, of random number generators, and of (cartesian and polar) complex types and related
arithmetic operations.

NM-R8719. P.P.M. de Rijk. NUMVEC FORTRAN library manual. Chapter:
Simultaneous linear equations. Routine: SVDTJP and LSQMNS.

AMS 65F15, 65F20, 65F25, 15A18; CR 5.14; 9 pp.; key words: least squares
problems, one-sided Jacobi algorithm, rank deficiency, Singular Value Decom-
position, vector computing.

Abstract: This document describes two NUMVEC FORTRAN Library routines. SVDTJP com-
putes the Singular Value Decomposition of a real rectangular matrix A4, using a one-sided Jacobi
algorithm. LSQMNS finds the minimum norm least-squares solution of a system Ax~b,” where

the real rectangular matrix 4 has been decomposed into its Singular Value Decomposition using
SVDTIP.

NM-R8720. E.D. de Goede & J.H.M. ten Thije Boonkkamp. Vectorization of
the odd-even hopscotch scheme and the alternating direction implicit scheme for

the two-dimensional Burgers’ equations.

AMS 65V05, 65M05, 76DXX; 15 pp.; key words: vector computers, Burgers’
equations, odd-even hopscotch scheme, alternating direction implicit scheme,
vectorization.

Abstract: A vectorized version of the odd-even hopscotch (OEH) scheme and the alternation direc-
tion implicit (ADI) scheme have been implemented on vector computers for solving two-
dimensional Burgers’ equations on a rectangular domain. This paper examines the efficiency of
both schemes on vector computers. Data structures and techniques employed in vectorizing both
schemes are discussed, accompanied by performance details.

NM-R8721. J.HM. ten Thije Boonkkamp. Residual smoothing for accelerating
the ADI iteration method for elliptic difference equations.
AMS 65F10, 65N20; 14 pp.; key words: elliptic difference equation, ADI itera-

tion, residual smoothing, smoothed ADI iteration.

Abstract: Residual smoothing is a simple technique for accelerating the rate of convergence of
iterative methods for elliptic difference equations. In this paper, we combine residual smoothing
with the ADI iteration method, which can be done in several ways. When applied in the proper
way, residual smoothing can considerably reduce the number of iterations and thus the computing
time of the ADI scheme. The parameter values of the smoothed ADI scheme are chosen such that
the high- and low frequency components in the iteration error are damped very well. Due to the
residual smoothing, the other components in the error are also properly damped. Numerical exam-
ples demonstrate the performance results of the ADI scheme and the smoothed ADI scheme.
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NM-R8722. W.M. Lioen. Multigrid methods for elliptic PDEs.

AMS 65V05, 65N20, 65F10; CR 5.17; 15 pp.; key words: elliptic PDEs, Galer-
kin approximation, multigrid methods, software, sparse linear systems, zebra
relaxation.

Abstract: After a brief 1ntroducuon in multigrid methods we discuss some of the algorithmic
choices in the NUMVEC' Library routine MGZEB (which is a highly vectorised multigrid code
for the solution of linear systems resulting from the 7-point discretisation of general linear 2
order elliptic PDEs in two dimensions). Since the relaxation process is the most expensive part of
a multigrid iteration cycle, we adapted the datastructure to avoid Cyber 205 stride-problems when
executing zebra relaxation. After discussing the effects of vectorisation and of choosing another
datastructure, we will also have a glance at large problems on the Cyber 205.

NM-R8723. P.J. van der Houwen, B.P. Sommeijer & G. Pontrelli. 4 compara-
tive study of Chebyshev acceleration and residue smoothing in the solution of non-
linear elliptic difference equations.

AMS 65N10; 23 pp.; key words: numerical analysis, elliptic boundary value
problems, smoothing matrices.

Abstract: We compare the traditional and widely-used Chebyshev acceleration method with an
acceleration technique based on residue smoothing. Both acceleration methods can be applied to a
variety of function iteration methods and allow therefore a fair comparison. The effect of residue
smoothing is that the spectral radius of the Jacobian matrix associated with the system of equa-
tions can be reduced substantially, so that the eigenvalues of the iteration matrix of the iteration
method used are considerably decreased. Comparative experiments clearly indicate that residue
smoothing is superior to Chebyshev acceleration. For a model problem we show that the rate of
convergence of the smoothed Jacobi process is comparable with that of ADI methods. The
smoothing matrices by which the residue smoothing is achieved, allow for a very efficient imple-
mentation, thus hardly increasing the computational effort of the iteration process. Another feature
of residue smoothing is that it is directly applicable to nonlinear problems without affecting the
algorithmic complexity. Moreover, the simplicity of the method offers excellent prospects for exe-
cution on vector and parallel computers.

NM-R8724. W.H. Hundsdorfer & J.G. Verwer. Stability and convergence of the
Peaceman-Rachford ADI method for initial boundary value problems.

AMS 65M10, 65M15, 65M20; CR 5.17; 28 pp.; key words: numerical analysis,
time dependent PDEs, alternating direction implicit methods, Peaceman-

Rachford method, method of lines, stability, error bounds.

Abstract: In this paper an analysis will be presented for the ADI (alternating direction implicit)
method of Peaceman and Rachford applied to initial boundary value problems for partial
differential equations in two space dimensions. We shall use the method of lines approach.
Motivated by developments in the field of stiff nonlinear ordinary differential equations, our
analysis will focus on problems where the semi-discrete system, obtained after discretization in
space, satisfies a one sided Lipschitz condition with a constant independent of the grid spacing.
For such problems unconditional stability and convergence results will be derived.

NM-R8725. J.J.F.M. Schlichting & H.A. van der Vorst. Solving bidiagonal sys-
tems of linear equations on the CDC Cyber 205.

1. NUMVEC is a CWI library of NUMerical software for VECtor computers in FORTRAN.
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AMS 65F05, 65V05, 69C12; CR 5.14, 4.6; 46 pp.; key words: bidiagonal linear
system, Cyber 205, scalar optimization, cyclic reduction, recursive doubling,
vectorization.

Abstract: This paper examines the efficiency of some different techniques for the solution of bidiag-
onal systems of linear equations on a CDC Cyber 205. Special attention is paid to exploiting the
capabilities of the scalar processor and the estimation of execution times. Three categories of algo-
rithms for the solution of bidiagonal systems of linear equations are described. The first category
consists of straightforward scalar algorithms written in standard FORTRAN, optimized by means
of commonly known techniques like loop unrolling. The second category consists of vector algo-
rithms on recursive doubling, cyclic reduction and a partitioning technique. The third category
consists of scalar codes written in assembly code designed to fully exploit the parallelism in the
scalar processor; a method is developed to predict the execution time of optimal code for recursive
problems. The predicted and measured performances of the routines described are compared and
analysed.

MS-R8707. R.D. Gill & S. Johansen. Product-integrals and counting processes.
AMS 60J27, 62G05, 60H20, 45D05; 36 pp.; key words: Markov process, multi-
plicative integral, Volterra integral equation, intensity measure, exponential
semimartingale, compact (Hadamard) differentiability, survival analysis,
product-limit (Kaplan-Meier) estimator.

Abstract: The basic theory of the product-integral II(1+dX) is summarized and applications in
probability and statistics are discussed, in particular to non-homogeneous Markov protesses,
counting process likelihoods and the product-limit estimator.

MS-R8708. R. Helmers. On the Edgeworth expansion and the bootstrap approx-
imation for a studentized U-statistic.

AMS 62E20, 62G05, 60F05; 15 pp.; key words: Edgeworth expansions,
bootstrap approximations, studentized U-statistics, bootstrap confidence inter-
vals, Edgeworth based confidence intervals, studentized L-statistics, studentized
M-estimators.

Abstract: The asymptotic accuracy of the estimated one-term Edgeworth expansion and the
bootstrap approximation for a studentized U-statistic is investigated. It is shown that both the
Edgeworth expansion estimate and the bootstrap approximation are asymptotically closer to the
exact distribution of a studentized U-statistic than the normal approximation. The conditions
needed to obtain these results are weak moment assumptions on the kernel 4 of the U-statistic and
a non-lattice condition for the distribution of g(X;)=E[h(X,,X;)|X1]. As an application
improved Edgeworth and bootstrap based confidence intervals for the mean of a U-statistic are
obtained. Extensions to studentized statistical functions admitting a second order von Mises
expansion, such as studentized L-statistics with smooth weights and studentized M-estimators of
maximum likelihood type, are also briefly discussed.

MS-R8709. R.D. Gill. Non- and semi-parametric maximum likelihood estima-
tors and the von Mises method (part I).

AMS 62G05, 62G20, 60B12, 60F17, 46A05; 26 pp.; key words: non-parametric
maximum likelihood, von Mises method, compact differentiation, Hadamard

differentiation, asymptotically efficient estimation.

Abstract: After introducing the approach to von Mises derivatives based on compact
differentiation due to Reeds, we show how non-parametric maximum likelihood estimators can
often be defined by solving infinite dimensional score equations. Each component of the score

65



equation corresponds to the derivative of the log likelihood for a one-dimensional parametric sub-
model. By means of examples we show that it usually is not possible to base consistency and
asymptotic normality theorems on the implicit function theorem. However (in part II) we show for
a particular class of models, that once consistency (in a rather strong sense) has been established
by other means, asymptotic normality and efficiency of the non-parametric maximum likelihood
estimator can be established by the von Mises method. This revised version of an earlier report
contains a new section on applications to the bootstrap resampling scheme.

MS-R8710. A.L.M. Dekkers & L. de Haan. On a consistent estimate of the
index of an extreme-value distribution.

AMS 62F12, 62G30; 17 pp.; key words: extreme-value theory, order statistics,
strong consistency, asymptotic normality.

Abstract: An easy proof is given for the weak consistency of Pickands’ estimate of the main
parameter of an extreme-value distribution. Moreover, further natural conditions are given for
strong consistency and for asymptotic normality of the estimate.

MS-R8711. A.L.M. Dekkers & L. de Haan. Large quantile estimation under
extreme-value conditions.

AMS 62F25, 62G30; 13 pp.; key words: quantile estimation, extreme-value
theory.

Abstract: A large quantile is estimated by a combination of extreme or intermediate order statis-
tics. This leads to an asymptotic confidence interval.

MS-R8712. E.V. Khmaladze. An innovation approach to goodness of fit tests in
R™.

AMS 62G10, 62F03; 12 pp.; key words: empirical processes, multivariate inno-
vation process, Doob transformation.

Abstract: We present a solution to the goodness-of-fit problem for multivariate observations, using
the innovation process for the (sequential) empirical distribution function with respect to a con-
veniently chosen linear ordering or scanning system in R”'.

MS-R8713. C.C. Heesterman. A central limit theorem for M-estimators by the
von Mises method.

AMS 62F12, 62G05; 13 pp.; key words: asymptotic normality of M-estimators,
compact differentiation, Hadamard differentiation, §-method, M-estimator, von
Mises functional.

Abstract: Asymptotic normality of M- or maximum likelihood type estimators has long since been
a result by Huber (1967). Reeds (1976) argued that this could also have been established as an
application of the §-method using the tool of compactly differentiating von Mises functionals with
respect to the (empirical) distribution function F,. If slightly adapted, this alternative approach is
shown to be quite fruitful, hopefully maybe even in the non-parametric case. A corrected version
of the proof by REEDS is given.

MS-R8714. A.J. de Koning. On single lane roads.

AMS 60K 30, 60G35; 14 pp.; key words: traffic flow, stochastic processes.
Abstract: A road which narrows at a bottleneck from an co-lane road to a one-lane road is studied
with the aid of two stochastic processes. Special attention is given to headways and gaps. At the
bottleneck an equilibrium headway can be viewed as the maximum of a shifted exponential ran-
dom variable and a minimum headway. After the bottleneck the situation becomes far more
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complicated. However, limiting results are obtained for headways and gaps at a large distance
from the bottleneck. The asymptotic behaviour of headway and gaps is largely determined by the
behaviour of the desired speed distribution at the lower extreme of its support.

AM-R8706. Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans &
H.R. Thieme. Perturbation theory for dual semigroups I11. Nonlinear Lipschitz
continuous perturbations in the sun-reflexive case.

AMS 47D05, 47H20; 15 pp.; key words: strongly continuous semigroup, dual
semigroup, weakly * continuous semigroup, Favard class, weak * Riemann
integral, variation-of-constants formula, inhomogeneous initial value problem,
nonlinear Lipschitz continuous perturbation, semilinear equation, principle of
linearized stability, Volterra integral equation.

Abstract: We consider nonlinear Lipschitz perturbations of the infinitesimal generator of a linear
C-semigroup on a non-reflexive Banach space. It is allowed that the perturbation maps the space
into a bigger space which arises in a natural way when considering dual semigroups. Using a gen-
eralized variation-of-constants formula we show that the perturbed operator generates a strongly
continuous nonlinear semigroup. We study regularity properties of this semigroup and prove the
principle of linearized stability.

AM-R8707. HJ.AM. Heijmans. Mathematical morphology: an algebraic
approach.

AMS 69K40, 06A23; 17 pp.; key words: image processing, mathematical mor-
phology, morphological transformation, complete lattice, automorphism group.
Abstract: Mathematical morphology is a theory on morphological transformations which form the
basic components for a number of algorithms in quantitative image analysis. In this paper we
present an overview of the basic principles of mathematical morphology, and initiate a generaliza-
tion of the theory by taking the object space to be an arbitrary complete lattice.

AM-R8708. H.R. Thieme & J.A.P. Heesterbeek. How to estimate the efficacy of
periodic control of an infectious plant disease.

AMS 92A15, 15A18; 11 pp.; key words: epidemiology, deterministic model,
spectral radius, positive symmetric matrix.

Abstract: Certain infectious plant diseases are controlled by inspection and subsequent hand remo-
val of diseased parts. In this paper we give two sets of criteria from which one can conclude
whether this control effort is adequate or not. These criteria do not require knowledge of the
infection- or detection rate of the disease but only use the structure of the contact matrix. Com-
puter experiments give a feeling of how many inspections are needed in order to draw a conclu-
sion.

AM-R8709. K. Soni & N.M. Temme. On a biorthogonal system associated with

uniform asymptotic expansions.
AMS 41A10, 41A60, 30E15, 33A20, 33A70; 22 pp.; key words: approximation

by polynomials, biorthogonal functions, uniform asymptotic expansions.

Abstract: In 1987 Soni and Sleeman introduced a family of polynomials which are related to the
coefficients in a uniform asymptotic expansion of a class of integrals. In this expansion parabolic
cylinder functions (Weber functions) occur as basic approximants and the resulting series is of
Bleistein type. In the present paper a family of rational functions is introduced, and the two fami-
lies form a biorthogonal system, on a contour in the complex plane. The system can be viewed as

67



a generalization of the families {z”} and {z "'}, which occur in Taylor expansions and the
Cauchy integrals of analytic functions. Explicit representations of the rational functions are given
together with rigorous estimates. These results are used to establish convergence of expansions of
certain functions in terms of the polynomials and the rational functions. The main motivation to
study this system stems from the above mentioned problem on the asymptotic expansion of a class
of integrals. It is shown how to use the system in order to construct bounds for the remainders in
the asymptotic expansion. An instructive example is worked out in detail.

AM-R8710. H.E. de Swart. Analysis of a six-component barotropic spectral
model: chaotic motion, predictability and vacillation.

AMS 86A10, 76E20, 34C35; 25 pp.; key words: low-order model, vacillation
between weather regimes, bifurcation analysis, homoclinic orbits and chaos.
Abstract: A low-order spectral model of the barotropic potential vorticity equation in a S-plane
channel is considered. Its physical and mathematical properties are investigated by a numerical
bifurcation analysis of the steady states and periodic solutions. The two parameters varied are the
external forcing and width-length ratio of the channel with which the topographic and barotropic
instability mechanisms respectively can be controlled. Particular interest is paid to the existence of
solutions describing a flow with a limited predictability and which can vacillate between different
preferent regimes. It appears that, depending on the parameter values and initial conditions, the
long-term behaviour of the flow can be either stationary, periodic, quasi-periodic or chaotic. An
important scenario is found which leads to the generation of strange attractors. It includes the
occurrence of homoclinic orbits for specific parameter values, which connect an unstable stationary
point with itself. For nearby parameter values chaotic orbits exist which move in small tubes
around the homoclinic orbits, in agreement with Silnikov’s theory. The chaotic motion, character-
ized by a positive Lyapunov exponent, describes irregular flow predictable on a time scale given
by the reciprocal of this exponent. However, despite its interesting properties the model cannot
describe transitions between different preferent regimes. It is argued that this is due to the struc-
ture of the equations as well as to the severe truncation of the spectral expansions.

PM-R8705. D.J. Smit. String theory and algebraic geometry of moduli spaces.

35 pp.

Abstract: It is shown how the algebraic geometry of the moduli space of Riemann surfaces entirely
determines the partition function of Polyakov’s string theory. This is done by using elements of
Arakelov’s intersection theory applied to determinants of families of differential operators
parametrized by moduli space. As a result we write the partition function in terms of an exponen-
tial of Arakelov’s Green functions and Faltings’ invariant on Riemann surfaces. Generalizing to
arithmetic surfaces, i.e. surfaces which are associated to an algebraic number field K, we establish
a connection between string theory and the infinite primes of K. As a result we conjecture that the
usual partition function is a special case of a new partition function on the moduli space defined
over K.

PM-R8706. A.l. Zayed. Jacobi polynomials as generalized Faber polynomials.
AMS 33A65, 30C10; 14 pp.; key words: Jacobi polynomials, Faber polynomi-
als.

Abstract: Let B be an open bounded subset of the complex z-plane with closure B whose comple-
ment B is a simply connected domain on the Riemann sphere. Let z=y(w) map the domain
[w|>p (p>0) one-to-one conformally onto the domain B such that Y(o0)=oo. Let
R(w)=Z-gc,w ", co70 be analytic in the domain |w|>p with R(w)7£0. Let F(z)=Z7-(b,z",

00

b0, F*(z)= >, T)l—z" be analytic in |z|<I and analytically continuable to any point outside
n=0%n
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|z|<1 along any path not passing through the points z=0,1,c0. The generalized Faber polynomi-
als {P,(z)} =0 of B are defined by

/(1) Zy= SpmL
W) ROFGe ngoPn(z)t,,,

The aim of this paper is to show that
1) if the Jacobi polynomials (PP}, are generalized Faber polynomials of any region B, then

it must be the elliptic region {z:|z +1|+|z — 1|<p+;,p>l}.

t|>p

2) the only Jacobi polynomials that can be classified as generalized Faber polynomials are the
Chebyshev polynomials of the first kind, some normalized Gegenbauer polynomials, some normal-
ized Jacobi polynomials of type (P 1Dy o (PR 1A} and there are no others, no matter
how one normalizes them.

3) the Hermite and Laguerre polynomials cannot be generalized Faber polynomials of any region.

PM-R8707. J. van Bon, AM. Cohen & H. Cuypers. Graphs related to Held’s
simple group.

AMS 20B25, 05C25, 20D08; 15 pp.; key words: Held’s simple group, multipli-
city free permutation representation.

Abstract: We analyse the permutation representations of low degree of Held’s simple group He.
We also determine its primitive multiplicity free permutation representations and show that there
is no graph on which it or its automorphism group acts as a distance transitive group of automor-
phisms. In doing so, we supply a computerfree construction of He.

PM-R8708. D.J. Smit. Algebraic and arithmetic geometry in string theory.

AMS 81E13, 81C35, 14HO1, 14H25; 13 pp.; key words: Polyakov path integral,
Grothendieck-Riemann-Roch theorem, Belavin-Kniznik theorem, algebraic
number fields, Riemann-Roch on Spec(O), rational points.

Abstract: In the first part we review how elements of algebraic geometry can be used to give an
algebraic formula for the string partition function. In the second part we generalize these ideas to
include arithmetic surfaces, i.e. surfaces defined over an algebraic number field K. We will calcu-
late explicitly the volume of the lattice formed by K-rational tangent vectors at a K-rational point
in moduli space, with respect to the Polyakov measure.

PM-R8709. M. Hazewinkel. Introduction to nilpotent approximation filtering.

AMS 93E11, 93B30, 93E10, 93D25, 60H15, 93B15, 17B65, 17B99, 57R25,
35HO0S; 6 pp.; key words: nonlinear filtering, estimation Lie algebra, topologi-
cally nilpotent Lie algebra, Duncan-Mortenson-Zakai equation, unnormalized
conditional probability density, robustness, nilpotent approximation, Wei-

Norman theory, stochastic differential equations.

Abstract: The so-called reference probability or unnormalized probability method for nonlinear
filtering problems leads to a (robust) infinite dimensional filter of bilinear type. If the associated
Lie algebra is topologically solvable or nilpotent an infinite dimensional version of Wei-Norman
theory applies. If not then ideas of nilpotent approximation lead to (potential) approximation
filters. This note is not so much a definite report on results as an outline of a research program.

PM-R8710. G. Brassard, D. Chaum & C. Crépeau. Minimum disclosure proofs
of knowledge.
CR C.2.0, E3; 45 pp.; key words: bit commitment, blob, cryptographic
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protocol, cryptography, discrete logarithm, interactive proof, minimum disclo-
sure, quantum cryptography, satisfiability, unconditional, security, zero-
knowledge.

Abstract: Protocols are given for allowing a ‘prover’ to convince a ‘verifier’ that the prover knows
some verifiable secret information, without allowing the verifier to learn anything about the secret.
The secret can be probabilistically or deterministically verifiable, and only one of the prover or
verifier need have constrained resources. This paper unifies and extends models and techniques
previously put forward by the authors, and compares some independent related work.

PM-N8701. J.T.M. van Bon. Distance regular antipodal covers of Johnson and
Hamming graphs.

AMS 05C75; 4 pp.; key words: distance regular antipodal graph, Hamming
graph, Johnson graphs.

Abstract: We determine distance regular antipodal covers of Johnson and Hamming graphs and
some graphs related to them.
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CWI Activities

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWL.

Study group on Analysis on Lie groups. Jointly with University of Leiden.
Once a month. (T.H. Koornwinder)

Seminar on Algebra and Geometry. Jointly with the Universities of Eindhoven
and Utrecht. Biweekly. (A.M. Cohen)
Finite geometry and distance transitive graphs.

Cryptography working group. Monthly. (H. den Boer)

Study group Biomathematics. Lectures by visitors or members of the group.
Jointly with University of Leiden. Irregular. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. Weekly. (N.M.
Temme)
New results and open problems on the research topics of the department:
biomathematics, mathematical physics, asymptotics and applied analysis,
image analysis.

Study group on Statistical and Mathematical Image Analysis. Every three
weeks. (R.D. Gill)

Progress meetings of the Mathematical Statistics Department. Biweekly. (K.O.
Dzhaparidze)
Talks by members of the department on recent developments in research
and consultation.

System Theory Days. Irregular. (J.H. van Schuppen, J.M. Schumacher)

Study group on System Theory. Biweekly. (J.H. van Schuppen)

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)
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Thirteenth Conference on the Mathematics of Operations Research. 13,14,15
January 1988 at Lunteren.

Invited speakers: A. Federgruen (Tel Aviv, Israel), D. Shmoys (Cambridge,
USA), L. Trotter (Augsburg, West Germany), J. Walrand (Berkeley, USA),
L. van Wassenhove (Leuven, Belgium). (B.J. Lageweg)

Seventh Benelux Meeting on Systems and Control. 2,3,4 March 1988 at Heijen,
Limburg. (J.M. Schumacher)

Progress meetings on Numerical Mathematics. Including lectures by visitors.
Weekly. (H.J.J. te Riele)

Study group on Graphics Standards. Monthly. (M. Bakker)

National Study Group on Concurrency. Jointly with Universities of Leiden &
Eindhoven and several industrial research establishments. 29 January, 26
February, 25 March, 20 May 1988. (J.W. de Bakker)

REX Workshop: ‘Linear Time, Branching Time and Partial Order in Logics

and Models for Concurrency’. Jointly with Universities of Leiden & Eindho-
ven. 30 May - 3 June 1988 at Noordwijkerhout.
Invited speakers: J.F.A.K. van Benthem (Amsterdam), E.A. Emerson (Aus-
tin, USA), A. Pnueli (Rehovot, Israel), M. Hennessy (Sussex, UK), J.W.
Klop (Amsterdam), A. Mazurkiewicz (Warsaw, Poland), G. Winskel (Cam-
bridge, UK). (J.W. de Bakker)

Post-academic Course on Modern Techniques in Software Engineering. (N.

van Diepen)
Various lectures present modern techniques and methods for the construc-
tion of complex software systems. The course is meant for persons with a
background in computer science, who are or will be actively involved in the
construction of those systems.

Study group on Logical Aspects of Artificial Intelligence. (P.J.F. Lucas)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Process Algebra Meeting. Weekly. (J.W. Klop)

Course on DICE. 14,15,21,22,28,29 January 1988. (R. van Liere)

Course on C+ + voor C-programmers. 1,2 March 1988. (G. van Rossum)

Study group on User Interface. 15 January, 19 February, 18 March, 15 April,
20 May, 17 June 1988. (P.J.W. ten Hagen)

Working group on Knowledge Representation. (V. Akman)

The Interactive Systems Department is planning to start a working group on
knowledge representation beginning in January 1988. The aim of this work-
ing group is two-fold: (i) to study past achievements in Knowledge
Representation and (ii) to discuss new developments. We expect that these
studies and discussions will help us understand current problems more
clearly and hopefully lead to new, enlightening, and useful theoretical
developments. We emphasize that this working group is supposed to conduct
theoretical studies and we assume some maturity on the part of the partici-
pants.

Second  Eurographics Workshop on Intelligent CAD  Systems -

Implementational Issues. 12,13,14,15 April 1988 at Veldhoven. (V. Akman)
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Visitors to CWI from Abroad

C.A. Addison (Chr. Michelsen Institute, Bergen, Norway) 16 September. F.
Arbab (University of Southern California, USA) 3-28 August. B. Awerbuch
(MIT, USA) 13-17 July. A.J. Baddely (CSIRO, Sidney, Australia) 20 Sep-
tember - 3 October. O.E. Barndorff-Nielsen (University of Aarhus, Denmark)
28-29 September. B. Braams (Princeton University, New Jersey, USA) 3 July.
S. Burys (University Jagiellonski, Krakow, Poland) 7-18 September. J. Carroll
(NIHE, Dublin, Ireland) 16 September. A.K. Chandra (IBM Th.J. Watson
Research, Yorktown Heights, USA) 9-10 July. G. Cousineau (Ecole Normale
Supérieure, Paris, France) 28 August. J.H. Davenport (University of Bath,
UK) 14-15 September. L.M. Delves (University of Liverpool, UK) 16 Sep-
tember. R.K. Dewar (Courant Institute, New York, USA) 19-21 August. P.
De Vijver (Philips Research Labs., Brussels, Belgium) 28-29 September. P.P.B.
Eggermont (University of Delaware, USA) September 1987 - July 1988. 1.
Elshoff (University of Arizona, Tucson, USA) 1 June - 14 November. M. Erl
(NAG, Oxford, UK) 14-15 September. Fengsu Chen (Shanghai Institute of
Electric Power, Shanghai, China) 22-25 July. T. Flannagan (University of
Cambridge, UK) 31 July. B. Ford (NAG, Oxford, UK) 16 September. M.R.
Gomez (INESC, Lisbon, Portugal) 31 August. S. Grumbach (INRIA, Roc-
quencourt, France) 22-24 July. H.J.G. Gunderson (University of Aarhus, Den-
mark) 28-29 September. R. Haggenmiiller (SIEMENS, Miinchen, West Ger-
many) 14-16 September. M. Hennessy (University of Sussex, Brighton, UK)
24-26 September. G.S. Hodgson (NAG, Oxford, UK) 14-16 September. J.
Jenssen (University of Aarhus, Denmark) 28-29 September. C.B. Jones
(University of Manchester, UK) 24 August. Ms. K. Kanchanasut (Asian Insti-
tute of Technology, Bangkok, Thailand) 24-28 August. W. Klein (University
of Karlsruhe, West Germany) 14-15 September. F. Kriickeberg (GMD, Sankt
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Augustin, Bonn, West Germany) 15 September. M-H. Lallemand (INRIA,
Sophia-Antipolis, France) 21 September - 17 October. J.J. Lauture (European
Commission, Brussels, Belgium) 15 September. E.L. Lawler (University of
Berkeley, USA) 1-7 September. D. Leivant (Carnegie Mellon University, Pitts-
burgh, USA) 13 August. M. Martelli (University of Pisa, Italy) 28 August. J.
Moller (University of Aarhus, Denmark) 28-29 September. S. Morse (Yale
University, New Haven, USA) 27 July. R. Nisbet (University of Strathclyde,
Glasgow, UK) 21 September. J. Pintér (Research Center for Water Resources
Development, Budapest, Hungary) 18 September. G. Pontrelli (CNR, Rome,
Italy) 1 March - 3 October. S. Scholtz (TU-Dresden, East Germany) one week
in autumn. D. Scott (Concordia University and University of Montréal,
Canada) 14 August. K.E. Shuler (University of California, San Diego, USA)
1-25 September. F. Sommen (RU Gent, Belgium) 14 August. G.T. Symm
(NPL, Teddington, UK) 16 September. Y. Tomiyama (NTT, Tokyo, Japan) 6
July. C. Ullrich (University of Karlsruhe, West Germany) 14-16 September.
A. Vanderbauwhede (RU Gent, Belgium) 17-20 August. J. Vitter (Brown
University, USA and INRIA, Paris, France) 7-8 July. J. Wolff von Gudenberg
(University of Karlsruhe, West Germany) 14-16 September. A. Zollner (SIE-
MENS, Miinchen, West Germany) 14-16 September. J.I. Zucker (SUNY at
Buffalo, USA) 19-31 August.
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Order Form for CWI Publications

Sales Department
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis

Please send the publications marked below with an invoice

Publication code Price per copy Number of copies wanted
CWI Tract 43 *) Dfl. 4540 L.
CWI Syllabus 15 *) 1780 0 e
CS-R8735 = e
CS-R8736 4-- L
CS-R8737 520
CS-R8738 e —
CS-R8739 4--
CS-R8740 4--
CS-R8741 8%
CS-R8742 4--
CS-R8743 s e
CS-R8744 4--
CS-R8745 4-- L
CS-R8746 520
CS-R8747 4-- L
CS-R8748 890 0 e
CS-R8749 e e

*) not available on exchange

75



Ooodooooooooooo0oo0oooUooDoooooooLoooDooOooooooQg

Publications code

CS-R8750
CS-R8751
CS-R8752
CS-R8753
CS-R8754
CS-R8755
CS-R8756
CS-R8757
CS-R8758
CS-R8759
CS-R8761
CS-R8762
OS-R8712
OS-R8713
OS-R8714
OS-R8715
OS-R8716
OS-R8717
OS-R8718
OS-R8719
OS-R8720
OS-R8721
OS-N8702
NM-R8715
NM-R8716
NM-R8717
NM-R8718
NM-R8719
NM-R8720
NM-R8721
NM-R8722
NM-R8723
NM-R8724
NM-R8725
MS-R8707
MS-R8708
MS-R8709
MS-R8710
MS-R8711
MS-R8712
MS-R8713
MS-R8714
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Price per copy

4--
4--
4--

12.70

5.20
6.40
4.--
4
.
4.
4.--
5.20
4.0
4-
-
4
4.

-

5.20
7.70
6.40
4=
4.
4.--
-
4.
4.
4.

Number of copies wanted
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Publications code

AM-R8706
AM-R8707
AM-R8708
AM-R8709
AM-R8710
PM-R8705
PM-R8706
PM-R&707
PM-R8708
PM-R8709
PM-R8710
PM-N8701

Price per copy

v .
4
4--
4.--
B
6.40
4
4-
e
.
7.70
4--

7

Number of copies wanted



If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

NaAME s
SUEEL isssesmsomssi s
City
85111y —
SIGNAtUIE ..o

Date e
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Encyclopaedia o Mathematics

An updated and annotated English edition of the classic
Soviet reference work

VOLUME ONE NOW AVAILABLE!

The indispensable source of information
for all those who use mathematics in
their work...

| This is undoubtedly the most comprehensive, up-to-date
and authoritative mathematics encyclopaedia available
today. Translated from the Russian, edited, annotated
and updated by about 200 Western mathematicians, all
specialists in their respective fields, the 10-volume Ency-
clopaedia of Mathematics contains nearly 7000 articles
together with a wealth of complementary information.

| Explanations of differences in terminology are of historical
interest and help to bridge the gap between Western and
Soviet approaches to mathematics.

THE ENCYCLOPAEDIA OF MATHEMATICS WILL HELP YOU TO:

\/' find the precise definition of a given concept
V' look up and verify terminology
V' find the precise statement of a theorem

V' reach the information you need via AMS classification numbers and/or
keywords phrases

V' check the precise names of concepts and theorems
V find reference literature for a given field
V' find out about applications of a concept and its links with other concepis

Subscription Plan

Subscription price per volume
Dfl. 365.00 / £ 112.50

Write for your free brochure and sample pages today!

hd D. Reidel Publishing Company
'. A member of the Kluwer Academic Publishers Group
P.O. Box 989 3300 AZ Dordrecht, The Netherlands

79



CWI Monographs

The CWI, Centrum voor Wiskunde en Informatica (Centre for Mathematics and Computer
Science), is a research institute of the Stichting Mathematisch Centrum, which was founded in
1946 as a non-profit institution. Its aim is the promotion of mathematics, computer science and

their applications.

One-Parameter Semigroups

By Ph. Clément, H.J.A.M. Heijmans, S. Angenent,
C.J. van Duijn and B. de Pagter

CWI Monographs, 5

The purpose of this book is to illustrate the richness of
the theory of one-parameter semigroups by examining
some of its various aspects. The main subjects are:
semigroups of linear and nonlinear contractions, analytic
semigroups and maximal regularity, positive semigroups
including spectral theory and asymptotic behaviour. Two
whole chapters are devoted to applications, the one to
nonlinear diffusion and the other to structured
population dynamics.

1987 x + 312 pages Price: US $51.25/Dfl. 105.00
ISBN 0-444-70284-9

Mathematics and Computer

Science |l

Fundamental Contributions in The Netherlands

since 1945

Edited by M. Hazewinkel, J.K. Lenstra and
L.G.L.T. Meertens

CWI Monographs, 4

Contents: The Numerical Solution of Partial Differential
Equations (A.O.H. Axelsson). Dynamics in Bio-Mathematical
Perspective (O. Diekmann). The Arch-Enemy Attacked
Mathematically (L. de Haan). Process Algebra: Specification and
Verification in Bisimulation Semantics (J.A. Bergstra and J.W.
Klop). Codes from Algebraic Number Fields (H.W. Lenstra, Jr.)
Infinite-Dimensional Normed Linear Spaces and Domain
Invariance (J. van Mill). Geometric Methods in Discrete
Optimization (A. Schrijver). Archirithmics or Algotecture? (P.M.B.
Vitdnyi).

1986 x+ 162 pages Price: US $34.25/Dfl. 70.00

ISBN 0-444-70122-2

The Numerical Solution of Volterra
Equations

By H. Brunner and P.J. van der Houwen
CWI Monographs, 3

This monograph presents the theory and modern
numerical analysis of Volterra integral and integro-
differential equations, including equations with weakly

singular kernels. The book covers linear methods and
Runge-Kutta methods, collocation methods based on
polynomial spline functions, stability of numerical
methods, and it surveys computer programs for
Volterra equations.

1986 xvi+588 pages Price: US $73.25/Dfl. 150.00
ISBN 0-444-70073-0

Stability of Runge-Kutta Methods for

Stiff Nonlinear Differential Equations
By K. Dekker and J.G. Verwer

CWI Monographs, 2

Presents a unified account of all developments
concerning stability of Runge-Kutta methods for stiff
nonlinear differential equations, which began in 1975
with Dahlquist's G-stability paper and Butcher's B-
stability paper. Designed for the reader with a
background in numerical analysis, the book contains
numerous theoretical and practical results aimed at
giving insight into the treatment of nonlinear problems.
1984 x +308 pages Price: US $46.25/Dfl. 95.00
ISBN 0-444-87634-0

Mathematics and Computer
Science

Proceedings of the CWI Symposium, November
1983

Edited by J.W. de Bakker, M. Hazewinkel and
J.K. Lenstra

CWI Monographs, 1

1986 viii + 352 pages Price: US $73.25/Dfl. 150.00
ISBN 0-444-70024-2

North-Holland

In the U.S.A. and Canada:

Elsevier Science Publishing Co. Inc.,
P.O. Box 1663, Grand Central Station,
New York, NY 10163, U.S.A

In all other countries:

Elsevier Science Publishers,

Book Order Department,

P.O. Box 211, 1000 AE Amsterdam, The Netherlands.

US $ prices are valid only in the USA and Canada. In all other countries the Dutch Guilder (Dfl.) price is definitive.
Customers in the Netherlands, please add 6% B.T.W. In New York State applicable sales tax should be added.

All prices are subject to change without prior notice.
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