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The Centre for Mathematics and Computer Science (CWI) is the research in-
stitute of the Stichting Mathematisch Centrum (SMC), which was founded on
11 February 1946.

The goal of CWI is to do fundamental and advanced research in mathemat-
ics and computer science, with special attention to those areas to which the
research may have relevant applications. The research is fundamental in that it
is mainly concerned with those problems for which there are as yet no stan-
dard methods of solution. It is advanced in that CWI aims at research work
which is of a high level both nationally and internationally. Preference is given
to those subjects which, from an international point of view, look likely to
have interesting developments.

The research at CWI is organized in eight scientific departments:

Pure Mathematics;

Applied Mathematics;

Mathematical Statistics;

Operations Research and System Theory;

Numerical Mathematics;

Software Technology;

Algorithms and Architecture;

Interactive Systems
There are also a number of supporting sectors, in particular the Computer Sys-
tems and Telematics Sector, and an extensive Library.

The subdivision of the research into eight departments is less rigid than it
appears, for there exists considerable collaboration between the departments.
This is a matter of deliberate policy, not only in the selection of research
topics, but also in the selection of the permanent scientific staff.
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0. INTRODUCTION

Following R. Milner’s development of his widely known Calculus of Commun-
icating Systems, there have been in the last decade several approaches to pro-
cess algebra, i.e. the algebraic treatment of communicating processes. In this
paper we give a short and informal presentation of some developments in pro-
cess algebra which started five years ago at the Centre for Mathematics and
Computer Science, and since two years in cooperation with the University of
Amsterdam and the State University of Utrecht'. Most of the present paper
can be found in the more complete survey [6], where the subjects of
specification and verification of processes are treated in so-called bisimulation
semantics. Here, we adopt a further restriction by concentrating on the
specification issue.

We start with a very simple axiom system for processes called Basic Process
Algebra, in which no communication facilities are present. This system is
interesting not only because it is a nucleus for all process axiom systems that
are devised and analyzed in the ‘Algebra of Communicating Processes’, but
also because it provides a link with the classical and successful theory of for-
mal languages, in particular where regular languages and context-free
languages are concerned. In Section 2 we explain this link.

Next, we introduce more and more operators, leading first to the axiom sys-
tem ACP (Algebra of Communicating Processes) where communication
between processes is possible, and finally to ACP, (Algebra of Communicating
Processes with abstraction). Examples are given showing that the successive
extensions yield more and more specification power; and a culmination point
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is the Finite Specification Theorem for ACP,, stating that every finitely
branching, effectively presented process can be specified in ACP, by a finite
system of recursion equations. Of course, an algebraic system for processes is
only really interesting and useful if also sufficient facilities for process
verification are present. These require an extension with some infinitary proof
rules which will not be discussed here (for these, see the full version of this
paper [6]). We refer also to the same paper for a more extensive list of refer-
ences than the one below.

1. BAsiC PROCESS ALGEBRA

The kernel of all axiom systems for processes that we will consider, is Basic
Process Algebra. Not only is for that reason an analysis of BPA and its models
worth-while, but also because it presents a new angle on some old questions in
the theory of formal languages, in particular about context-free languages and
deterministic push-down automata. First let us explain what is meant by

‘processes’.
The processes that we will consider are capable of performing atomic steps
or actions a,b,c, ..., with the idealization that these actions are events

without positive duration in time; it takes only one moment to execute an
action. The actions are combined into composite processes by the operations
+ and -, with the interpretation that (a +b)-c is the process that first chooses
between executing a or b and, second, performs the action ¢ after which it is
finished. At this stage it does not matter how the choice is made. These opera-
tions, alternative composition and sequential composition (or just sum and pro-
duct), are the basic constructors of processes. Since time has a direction, multi-
plication is not commutative; but addition is, and in fact it is stipulated that
the options (summands) possible at some stage of the process form a set. For-

mally, we will require that processes x,y,z, ... satisfy the following axioms
(where the product sign is suppressed):
BPA
x+ty=y+x
(x+y)tz=x+(y +2)
x+x=x
(x +y)z=xz +yz
(xp)z =x(yz)
TABLE 1

In the Introduction we used the term ‘process algebra’ in the generic sense
of denoting the area of algebraic approaches to concurrency, but we will also
adopt the following technical meaning for it: any model of these axioms will
be a process algebra. The simplest process algebra is the term model of BPA,
whose elements are BPA-expressions (built from the atoms a,b,c, . . . by means
of the basic constructors) modulo the equality generated by the axioms. The
term model itself (let us call it T) is not very exciting: it contains only finite



processes. In order to specify also infinite processes, we introduce recursion
variables X,Y,Z, . .. . Using these, one can specify the process aaaaaa - - -
(performing infinitely many consecutive a-steps) by the recursion equation
X =aX; indeed, by ‘unwinding’ we have X =aX=aaX=aaaX= ---. In gen-
eral, we will admit simultaneous recursion, i.e. systems of recursion equations.
A non-trivial example is the following specification of the process behaviour of
a Stack with data 0,1:

STACK
X=0].YX+1].ZX
Y=01+00.YY+1].ZY
Z=1140).YZ+1|.ZZ

TABLE 2

Here 0] and 07 are the actions ‘push 0’ and ‘pop 0, respectively; likewise for
1. Now Stack is specified by the first recursion variable, X. Indeed, according
to the first equation the process X is capable of performing either the action
0], after which the process is transformed into YX, or 1|, after which the pro-
cess is transformed into ZX. In the first case we have, using the second equa-
tion, YX=(01+0].YY+1.ZY)X=01-X+0].YYX+1].ZYX. This means that
the process YX has three options; after performing the first one (07) it behaves
like the original X. Continuing in this manner we find a transition diagram or
process graph as in Figure 1.

FIGURE 1. Stack

It is not hard to imagine how such a process graph (a rooted, directed, con-
nected, labeled graph) can be associated with a system of recursion equations;
we will not give a formal definition here. Actually, one can use such process
graphs and build various models (graph models) for BPA from them; this will
be discussed now.



2. GRAPH MODELS FOR BPA

Let G be the set of all at most countably branching process graphs gk, . . .
over the action alphabet 4 ={a,b,c,...}. (I.e. a node in such a graph may
have at most countably many one-step successors.) On G we define operations
+ and - as follows: g-h is the result of appending (the root of) & at each termi-
nation node of g, and g+# is the result of identifying the roots of g and A. (To
be more precise, we first have to unwind g and 4 a little bit so as to make their
roots ‘acyclic’, otherwise the sum would not have the intended interpretation of
making an irreversible choice.) Letting a be the graph consisting of a single
arrow with label a, we now have a structure §=G(+,-,a,b,c,...) which
corresponds to the signature of BPA. But it is not a model of BPA. For
instance the law x +x =x does not hold in G, since a+a is not the same as a;
the former is a graph with two arrows and the latter has one arrow.

Here we need the fundamental notion of D. PARK (see [13]), called bisimula-
tion equivalence or bisimilarity. Two graphs g and h are bisimilar if there is a
matching between their nodes (i.e. a binary relation with domain the set of
nodes of g, and codomain the set of nodes of 4) such that (1) the roots are
matched; (2) if nodes s,t in g,h respectively are matched and an a-step is possi-
ble from s to some s’ then in 4 an a-step is possible from ¢ to some ¢’ such that
s" and t" again are matched ; (3) likewise with the roles of g reversed. A
matching satisfying (1-3) is a bisimulation. An example is given in Figure 2,
where (part of) the matching is explicitly displayed; another example is given
in Figure 3 where the matching is between each pair of nodes on the same hor-
izontal level.

FIGURE 2



FIGURE 3

We use the notation g=h to express that g and s are bisimilar. Now one
proves that < is not only an equivalence on G, but even a congruence on .
Thus the quotient G=¢ /< is well-defined, and it is a model of BPA. (G has
constants a=a /< etc., and operations +,- defined by g+h=(g+h) /= for
g=g/< and h=h /=; likewise for -. (For typographical reasons we will not
distinguish between the syntactic +,- and the semantic +,- in our notation.)

Even more, G is a very nice model of BPA: all systems of recursion equa-
tions in the syntax of BPA have a solution in G, and systems of guarded recur-
sion equations like in Table 1 have moreover a unique solution. ‘Guarded’
means that in the right-hand sides of the recursion equations no recursion vari-
able can be accessed without passing an atomic action. (E.g. X=a+ X is not a
guarded equation; it has many solutions: a +b, a+c, . . ..)

Some submodels (all satisfying the axioms of BPA) of G are of interest: Gg,
built from finitely branching process graphs; R, built from finite (but possibly
cycle-containing) graphs; and F, built from finite and acyclic graphs. Also Gp,
has the property of providing unique solutions for systems of guarded recur-
sion equations. Without the condition of guardedness, there need not be solu-
tions. E.g. the equation

X=Xa+ta

cannot be solved in Gg. In the model R of regular processes one can always
find unique solutions for guarded recursion equations provided they are linear,
that is, the expressions (terms) in the equations may only be built by sum and
a restricted form of product called prefix multiplication a-s (‘a’ an atom, s a



general expression) which excludes products of recursion variables as in
Table 1. For a complete proof system for regular processes, see [11].

EXAMPLE
{(X=aX+bY,Y=cX+dY}

is a linear system;
{(X=aXX+bY,Y=cX+dYXY}

1S not.

The model R contains the finite-state processes; hence the notation R for ‘reg-
ular’ as in formal language theory. Finally, F contains only finite processes and
is in fact isomorphic to the term model T.

Some systems of recursion equations should be taken as equivalent. Clearly,
X=aX and X=aaX specify the same process in G. Less clearly, the two sys-
tems

E\={X=a+bYX, Y=c+dXY}
E,={X=a+bU, U=cX+dZX, Y=c+dZ, Z=aY+bUY}

are equivalent in this sense: E; specifies the process graph in Figure 3a above,
and E, specifies the graph in Figure 3b. Moreover, as we already saw, these
two graphs are bisimilar. So E, and E, denote the same process in G. So the
question arises: Is equivalence of recursion equations over BPA, relative to the
graph model G, decidable? At the moment this question is wide open. There is
an interesting connection here with context-free languages, as follows.

A guarded system of recursion equations over BPA corresponds in an obvi-
ous way (for details see [2]) to a context-free grammar (CFG) in Greibach
Normal Form, and vice versa. Hence each context-free language (CFL) can be
obtained as the set of finite traces of a process in G denoted by a system of
guarded recursion equations. (A finite trace is the word obtained by following
a path from the root to a termination node.) In fact, to generate a CFL it is
sufficient to look at certain restricted systems of recursion equations called
‘normed’. A system is normed if in every state (of the corresponding process)
there is a possibility to terminate. E.g. X=aX is not normed, but X=5b+aX
is. There is a simple syntactical check to determine whether a system is
normed or not. Clearly, the property ‘normed’ also pertains to process graphs.
In [2] it is proved that the equivalence problem stated above is solvable for
such normed systems. This is rather surprising in view of the well-known fact
that the equality problem for CFLs is unsolvable. The point is that the process
semantics in G of a CFG bears much more information than the trace set
semantics, which is an abstraction from the process semantics.

The link with deterministic context-free languages resides in the following
observation from [2]:



THEOREM 2.1. Let g,h€G be two normed and deterministic process graphs. Then
g=h iff g and h have the same sets of finite traces.

Here a graph is ‘deterministic’ if two arrows leaving the same node always
have different label. The CFL (i.e. the set of finite traces) determined by a
normed and deterministic graph, corresponding to a system of guarded recur-
sion equations in BPA, is known as a simple CFL; the simple CFLs form a
proper subclass of the deterministic CFLs.

Summarizing, we can state that BPA and its graph model obtained via the
concept of bisimulation provide a new angle on some problems in the theory
of formal languages, concerned with context-free languages. Here we think
especially of deterministic context-free languages (DCFLs), obtained by deter-
ministic push-down automata, with the well-known open problem whether the
equality problem for DCFLs is solvable. Thus, even in the absence of the
many operators for parallellism, abstraction etc. which are still to be intro-
duced below, we have in BPA and its models an interesting theory with poten-
tial implications for the DCFL problem.

3. DEADLOCK

After the excursion to semantics in the preceding section we return to the
development of more syntax for processes. A vital element in the present set-
up of process algebra is the process d, signifying ‘deadlock’. The process ab
performs its two steps and then terminates, succesfully; but the process abd
deadlocks after the a- and b-action: it wants to do a proper (i.e. non-8) action
but it cannot. So & is the acknowledgement of stagnation. With this in mind,
the axioms to which & is subject, may be clear:

DEADLOCK
0+x=x
6x=26

TABLE 3

The axiom system of BPA (Table 1) together with the present axioms for & is
called BPA;. We are now in a position to motivate the absence in BPA of the
‘other’ distributive law: z(x +y)=zx +zy. For, suppose it would be added.
Then ab=a(b+8)=ab +ad. This means that a process with deadlock possibil-
ity is equal to one without, conflicting with our intention to model also
deadlock behaviour of processes.

The essential role of the new process & will only be fully appreciated after
the introduction of communication, below.



4. THE MERGE OPERATOR

If x,y are processes, their ‘parallel composition’ x||y is the process that first
chooses whether to do a step in x or in y, and proceeds as the parallel compo-
sition of the remainders of x,y. In other words, the steps of x,y are interleaved
or merged. Using an auxiliary operator || (with the interpretation that x|y is
like x|ly but with the commitment of choosing the initial step from x) the
operation || can be succinctly defined by the axioms:

FREE MERGE
xlly=xlLy+ylLx
ax|Ly=a(xlly)
ally=ay
x+yllz=xlz+yl z

TABLE 4

The system of nine axioms consisting of BPA and the four axioms for merge
will be called PA. Moreover, if the axioms for § are added, the result will be
PA;. The operators || and [ will also be called merge and lefi-merge respec-
tively.

The merge operator corresponds to what in the theory of formal languages is
called shuffle. The shuffle of the words ab and cd is the set of words
{abcd, acbd, cabd, acdb, cadb, cdab}. Merging the processes ab and cd yields
the process

abllcd=ab|l cd+cd|l_ab=a(bllcd)+c(dllab)
=a(bl_cd+cdll_b)+c(dll_ab+abll _d)
=a(bcd +c(d|lb))+c(dab+a(blld))
=a(bcd+c(db +bd))+c(dab +a(bd +db)),

a process having as trace set the shuffle above.

An example of a process recursively defined in PA, is X=a(bl/X). It turns
out that this process can already be defined in BPA, by the system of recursion
equations

(X=aYX,Y=b+aYY}.

To see that both ways of defining X yield the same process, one may ‘unwind’
according to the given equations:

X=ablX)=a®Bl X+XILb)=a(®dX+ablX)ILb)
=a(bX +a((blIX)llb))
=a(bX+a..)),
while on the other hand
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X=aYX=a(b+aYV)X=a(X+aYYX)=a(bX+a ...).

So at least up to level 2 the processes are equal. By further unwinding they can
be proved equal up to each finite level.

Yet there are processes definable in PA but not in BPA. An example (from
[4]) of such a process is given by the recursion equation

X=00-(0tlX)+11-(111X)

describing the process behaviour of a Bag (or multiset), in which arbitrarily
many instances of the data 0,1 can be inserted (the actions 0J,1] respectively)
or retrieved ( 01,17), with the restriction that no more 0’s and 1’s can taken
from the Bag than were put in first. The difference with a Stack or a Queue is
that all order between incoming and outgoing 0’s and I’s is lost. The process
graph corresponding to the process Bag is as in Figure 4.

We conclude this section on PA by mentioning the following fact (see [4]),
which is useful for establishing non-definability results:

THEOREM 4.1. Every process which is recursively defined in PA and has an
infinite trace, has an eventually periodic trace.
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5. COMMUNICATION

So far, the parallel composition or merge (||) did not involve communication in
the process x||y: one could say that x and y are ‘freely’ merged or interleaved.
However, some actions in one process may need an action in another process
for an actual execution, like the act of shaking hands requires simultaneous
acts of two persons. In fact, ‘handshaking’ is the paradigm for the type of
communication which we will introduce now. If 4 ={a,b,c,...,8)} is the
action alphabet, let us adopt a binary communication function |:4 XA4—A
satisfying the axioms in Table 5.

COMMUNICATION FUNCTION
alb=bla
(a|b)|c=al(b|c)

la=é

TABLE 5

Here a,b vary over 4, including 8. We can now specify merge with communica-
tion ; we use the same notation || as for the ‘free’ merge in Section 4 since in
fact ‘free’ merge is an instance of merge with communication by choosing the
communication function trivial, i.e. a|b=4§ for all a,b€A. There are now two
auxiliary operators, allowing a finite axiomatisation: left-merge (L) as before
and | (communication merge or simply ‘bar’), which is an extension of the com-
munication function in Table 5 to all processes, not only the atoms. The
axioms for || and its auxiliary operators are given in Table 6.

MERGE WITH COMMUNICATION
xly=xlLy+yllLx+x|y
ax|Ly=a(xlly)

ally=ay

x+yllz=xlz+yl =

ax|b=(alb)x

a|bx =(alb)x

ax|by =(alb)x )

(x+y)z=x|z+y|z

x|(y+z)=xly +x|z

TABLE 6

We also need the so-called encapsulation operators dy (for every H CA) for
removing unsuccessful attempts at communication:

12



ENCAPSULATION
oy(a)y=aifagH
0y(a)=081faeH
du(x +y)=0u(x)+3u(y)
I (xy)=0n(x)du(y)

TABLE 7

These axioms express that 9y ‘kills’ all atoms mentioned in H, by replacing
them with 8. The axioms for BPA, DEADLOCK together with the present
ones in Tables 5-7 constitute the axiom system ACP (Algebra of Communicat-
ing Processes). Typically, a system of communicating processes xi, . .. ,X, is
now represented in ACP by the expression dy(xll - - - llx,). Prefixing the
encapsulation operator says that the system x, . . .,Xx, is to be perceived as a
separate unit with respect to the communication actions mentioned in H; no
communications between actions in H with an environment are expected or
intended.

A useful theorem to break down such expressions is the Expansion Theorem
(first formulated by Milner, for the case of CCS; see [12]) which holds under
the assumption of the handshaking axiom x|y|z=4. This axiom says that all
communications are binary. (In fact we have to require associativity of ‘||’ first
- see Table 8.)

THEOREM 5.1 (EXPANSION THEOREM).

X |- ||Xk :Exi “_X’k + z(xi|xj)U_X7;éj
i i#j
Here X} denotes the merge of xy, . . ., x; except x;, and X}/ denotes the same

merge except X;,x; (k=3). For instance, for k =3:
xlyllz=xILpllz)+yL(xllx)+zIL(xlly)+(pl2)lx +|x)lLy +(x|y)lz.

In order to prove the Expansion Theorem, one first proves by simultaneous
induction on term complexity that for all closed ACP-terms (i.e. ACP-terms
without free variables) the following axioms of standard concurrency hold:

13



AXIOMS OF STANDARD CONCURRENCY
xlyllz=xIL(vllz)

p)Lz=x|(yILz)

x|y =ylx

xlly=yllx

x|(v|2)=(x[y)|z

xllyllz)=(xlly)llz

TABLE 8

As in Section 2 one can construct graph models G,Gp,R,F for ACP; in these
models the axioms in Table 8 are valid. We will discuss the construction of
these models in Section 7. (It is however also possible to construct 'non-
standard’ models of ACP in which these axioms do not hold. We will not be
interested in such pathological models.)

The defining power of ACP is strictly greater than that of PA. The follow-
ing is an example (from [4]) of a process U, recursively defined in ACP, but
not definable in PA: let the alphabet be {a,b,c,d, 8} and let the communication
function be given by c|c=a, d|d=b, and all other communications equal to 8.
Let H={c,d}. Now we recursively define the process U as in Table 9:

U=0y(dcY|Z)
X=cXc+d
Y=dXY
Z=dXcZ

TABLE 9

Then, we claim, U=ba(ba*)?(ba’)*(ba*)* - - - . Indeed, using the axioms in
ACP and putting

U,=0y(dc"YZ)
for n=1, a straightforward computation shows that
U, =ba"ba® t1U, 4.

By Theorem 4.1, U is not definable in PA, since the one infinite trace of U is
not eventually periodic.

We will often adopt a special format for the communication function, called
read-write communication. Let a finite set D of data d and a set {1, ...,p} of
ports be given. Then the alphabet consists of read actions ri(d) and write
actions wi(d), for i=1, ... ,p and deD. The interpretation is: read datum d at
port i, write datum d at port i respectively. Furthermore, the alphabet con-
tains actions ci(d) for i=1,...,p and deD, with interpretation: communicate

14



d at i. These actions will be called transactions. The only non-trivial commun-
ications (i.e. not resulting in 8) are: wi(d)| ri(d) = ci(d). Instead of wi(d) we
will also use the notation si(d) (send d along i). Note that read-write communi-
cation satisfies the handshaking axiom: all communications are binary.

EXAMPLE 5.1.

Using the present read-write communication format we can write the recursion
equation for a Bag B, (cf. Section 4) which reads data deD at port 1 and
writes them at port 2 as follows:

By, = dErl(d)(WZ(d)”Blz)-
eD

6. ABSTRACTION

A fundamental issue in the design and specification of hierarchical (or modu-
larized) systems of communicating processes is abstraction. Without having an
abstraction mechanism enabling us to abstract from the inner workings of
modules to be composed to larger systems, specification of all but very small
systems would be virtually impossible. We will now extend the axiom system
ACP, obtained thus far, with such an abstraction mechanism.

Consider two Bags Bjy, By; (cf. Example 5.1) with action alphabets
{ri(d),s2(d)|[deD} and {r2(d),s3(d)|deD}, respectively. That is, By, is a
bag-like channel reading data d at port 1, sending them to port 2; B,; reads
data at 2 and sends them to 3. (That the channels are bags means that, unlike
the case of a queue, the order of incoming data is lost in the transmission.)
Suppose the bags are connected at port 2; so we adopt communications
52(d)|r2(d)=c2(d) where c2(d) is the transaction of d at 2.

1

- ] B -

By

FIGURE 5. Transparent Bag B3

The composite system B3 =0y(B2[lBy3) where H={s2(d),r2(d)|deD},
should, intuitively, be again a Bag between ports 1,3. However, from some
(rather involved) calculations we learn that
Bi3= > r1(d)(c2d)s3(d))lIB3).
deD

So B3 is a ‘transparent’ Bag: the passage of d through 2 is visible as the tran-
saction event ¢2(d). (Note that this terminology conflicts with the usual one in
the area of computer networks, where a network is called transparent if the
internal structure is not visible.)

How can we abstract from such internal events, if we are only interested in
the external behaviour at 1,3? The first step to obtain such an abstraction is to
remove the distinctive identity of the actions to be abstracted, that is, to
rename them all into one designated action which we call, after Milner, 7: the

15



silent action. This renaming is realised by the abstraction operator 7,
parameterized by a set of actions / CA and subject to the following axioms:

ABSTRACTION
T(T)="7
T(@a)=aifael
ti(a)=1ifael
T(x Ty)=7(x)+7/(p)
T1(xp) =T17(x)7(p)

TABLE 10

The second step is to attempt to devise axioms for the silent step 7 by means
of which 7 can be removed from expressions, as e.g. in the equation atbh =ab.
However, it is not possible to remove all s in an expression if one is
interested in a faithful description of deadlock behaviour of processes (at least
in bisimulation semantics, the framework adopted in this paper). For, consider
the process (expression) a +70; this process can deadlock, namely if it chooses
to perform the silent action. Now, if one would propose naively the equations
7x =x71 =X, then a+78 =a+0=a, and the latter process has no deadlock
possibility. It turns out that one of the proposed equations, xT = x, can be
safely adopted, but the other one is wrong. Fortunately, R. Milner has devised
some simple axioms which give a complete description of the properties of the
silent step (complete with respect to a certain semantical notion of process
equivalence called rré-bisimulation, which does respect deadlock behaviour;
this notion is discussed below), as follows.

SILENT STEP
XT=X
TX =TX +X
a(tx+y)=a(tx+y)+ax

TaBLE 11

To return to our example of the ‘transparent’ Bag B3, after abstraction of the
set of transactions / = {c2(d)|deD} the result is indeed an ‘ordinary’ Bag:

1'1("313):’F1(dzrl(ti!')(Cz(d)'S3(0’)”[5513)) (*)
eD
:dzDr1(d)(T‘S3(d)||‘f/(|313)):d21)(’1(d)'T‘S 3(d))L7/(By3)

IdZD(r I(d)s 3(d))lLT1(Bx3):d2Dr 1(d)(s 3(d)lI7/(B13))

16



from which it follows that 7;(B,3) =B 3 (**), the Bag defined by

B3 = X rl(d)s3(d)lIB3).
deD

Here we were able to eliminate all silent actions, but this will not always be
the case. For instance, ‘chaining’ two Stacks instead of Bags as in Figure 5
yields a process with ‘essential’ 7-steps. Likewise for a Bag followed by a
Stack. (Here ‘essential’ means: non-removable in bisimulation semantics.) In
fact, the computation above is not as straightforward as was suggested: to jus-
tify the equations marked with (*) and (**) we need additional proof princi-
ples. As to (**), this equation is justified by the Recursive Specification Princi-
ple (RSP) stating that a guarded system of recursion equations in which no
abstraction operator 1y appears, has a unique solution. We will not discuss the
justification of equation (*) here. The justification of a principle like RSP is
that it is valid in all ‘sensible’ models of our axioms; however note that for for-
mal computations one has to postulate such a principle explicitly.

Combining all the axioms presented above in Tables 1,3,4,5,6,7,10,11 and a
few axioms specifying the interaction between t and communication merge |,
we have arrived at the system ACP,, Algebra of Communicating Processes with
abstraction (see Table 12).

Actually, in spite of our restriction to specification of processes as stated in
the Introduction, the last computation concerned a very simple process
verification, showing that the combined system has the desired external
behaviour of a Bag. Abstraction, realized in ACP, by the abstraction operator
and the silent process 7, clearly is of crucial importance for process
verification. But also for process specification abstraction is important. Let
f:N — {a,b} be a sequence of symbols a,b, and let p, be the proces
fO)f(1)yf(2)..., that is, the unique solution of the infinite system of recur-
sion equations {X, = f(n)X, +1|n=0}. Now we have:

THEOREM 6.1. There is a computable function f such that process ps is not
definable by a finite system of recursion equations in ACP, without abstraction
operator.

On the other hand, according to the Finite Specification Theorem 8.1, every

process p; with computable f is definable by a finite system of recursion equa-
tions in full ACP,.
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ACP,

xty=y+x Al XT=X Tl

x+@y+z)=(x+y)tz A2 ™ +x =7x T2

X +x=x A3 a(tx ty)=a(rx +y)+ax T3

(x +y)z=xz+yz A4

(xy)z=x(yz) AS

x+6=x A6

ox =48 A7

alb =bla Cl

(a|b)|c =a|(b]|c) C2

8la =46 C3

xly=xlLy tyllLx+xly CMI

all x =ax CM2 7l x=7x T™MI

ax|Ly =a(xlly) CM3  wx|Ly =r(xlly) ™2

x+yllz=xllz+yl:z CM4  1x=é TCl1

ax|b=(a|b)x CMS5  x|r=$é TC2

albx =(a|b)x CM6  7x|y=x|y TC3

ax|by =(alb)(xlly) CM7 x|ty =xly TC4

(x +y)lz=x|z +y|z CM8

x|(y +z)=x|y +x|z CM9  dy(r)=r1 DT
T(T)="T1 TI1

oy(a)=aifagH Dl m(a)=aifael TI2

Oy(a)=01faeH D2 n(a)=rifael TI3

3H(x +y)=8H(x)+8H(y) D3 T](.X ‘+‘)1):T| (X)‘l"T](y) T4

() =0u()u(y) D4 m)=rx)m(y) TIS

TABLE 12

7. GRAPH MODELS FOR ACP,

We will now construct graph models for ACP,, in analogy with the construc-
tion of these models for BPA in Section 2. Again we start with a domain of at
most countably branching process graphs G, the only difference being that
arrows may now also bear label 7 and 8. (By abuse of language we use the
same notation G.) Next, we define on G in addition to +,- operations I,
,|,m,0y corresponding to the syntactic operations |,[L,|,7;,dy. We will only
discuss the definition of the first operation ||. Let ab and ed be two process
graphs as in Figure 6, and suppose there are communications a|d=f and
b|c =k, all other communications being trivial (i.e. resulting in §). Then abllcd
is the process graph indicated in Figure 6, a cartesian product with diagonal
edges for the successful communications.
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FIGURE 6

We now have a structure §=G(+,-,Il,lL,|,m,04,7.8,a,b,c, . ..), which is not
yet a model of ACP, but becomes so after dividing out the congruence r7d-
bisimilarity (notation: <,,5), a generalization of the ‘ordinary’ bisimilarity <
of Section 2. Here we say that g=,sh if there is a relation between the nodes
of g and the nodes of h such that (1) the roots are related; (2) a non-root node
is only related to non-root nodes; (3) if nodes s, in g,h respectively are related
and there is in g an a-step from s to some s’, then there is in g a path
77 - - - Tatr - - - 7 (i.e. zero or more 7-steps followed by an a-step followed by
zero or more 7-steps) from ¢ to some ¢’ such that s” and ¢’ are again related;
(4) as (3) with the roles of g, interchanged. (See for an example of such a
rrd-bisimulation Figure 7.) Again, this equivalence is a congruence on § and
putting G=8/<,,5 we have a model for ACP,, in which all systems of
guarded recursion equations have a solution, and even a unique solution if
abstraction operators are absent from the system.

As before in Section 2, G has submodels R,F (regular and finite processes,
respectively). Remarkably, as observed in [1], there is no model Gy, based on
all finitely branching graphs now. (For ACP such a model does exist.) The rea-
son is that there is no structure 84, since Gp, is not closed under the opera-
tions ||, L_,|,7;. The auxiliary operator | is the culprit here.
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FIGURE 7. Example of rré-bisimulation: nodes of the same colour are
related

8. THE FINITE SPECIFICATION THEOREM
ACP, is a powerful specification mechanism; in a sense it is a universal
specification mechanism: every finitely branching, computable process in the
graph model G can be finitely specified in ACP,. (We use the word
‘specification’ for ‘system of recursion equations’.) We have to be more precise
about the notion of ‘computable process’. First, an intuitive explanation: sup-
pose a finitely branching process graph geG is ‘actually’ given; the labels may
include 7, and there may be even infinite 7-traces. That g is ‘actually’ given
means that the process graph g must be ‘computable’: g can be described by
some coding of the nodes in natural numbers and recursive functions giving
in-degree, out-degree, edge-labels, etc. This notion of a computable process
graph is rather obvious, and we will not give details of the definition here.
Now even if the computable graph g is an infinite process graph, it can trivi-
ally be specified by an infinite computable specification, as follows. First
rename all T-edges in g to t-edges, for a ‘fresh’ atom r. Call the resulting pro-
cess graph: g,. Next assign to each node s of g, a recursion variable X; and
write down the recursion equation for X; according to the outgoing edges of
node s. Let X; be the variable corresponding to the root s, of g,. As g is com-

putable, g, is computable and the resulting ‘direct’ specification
E = {X; = Ty(X)|sesNODES(g,)}

is evidently also computable (i.e.: the nodes can be numbered as s, (n=0), and
after coding the sequence e, of codes of equations E,:X; =T, (X) is a
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computable sequence). Now the infinite specification which uniquely deter-
mines g, is simply: {Y =7(,(X;,)}UE. In fact all specifications below will
have the form {X = 7/(Xy), X, = T,(X)[n=0} where the guarded expressions
T,(X) (= T,(X;,, . .., X)) contain no abstraction operators 7;. They may
contain all other process operators. We will say that such specifications have
restricted abstraction.

However, we want more than a computable infinite specification with res-
tricted abstraction: to describe process graph g we would like to find a finite
specification with restricted abstraction for g. Indeed this is possible:

THEOREM 8.1 (FINITE SPECIFICATION THEOREM). Let the finitely branching and
computable process graph g determine g in the graph model G of ACP,. Then
there is a finite specification with restricted abstraction E in ACP, such that
[E1=g Here [E] is the solution of E in G.

The proof in [1] is by constructing a Turing machine in ACP;; the ‘tape’ is
obtained by glueing together two Stacks as defined in Table 2. There does not
seem to be an essential difficulty in removing the condition ‘finitely branching’
in the theorem, in favour of ‘at most countably branching’.

9. CONCLUDING REMARKS

Even though the Finite Specification Theorem declares the set of operators of
ACP, to be sufficient for all specifications, in practice one will need more
operators to make specifications not only theoretically but also practically pos-
sible. Therefore some additional operators have been defined and studied in
the present branch of process algebra, notably an operator by means of which
different priorities can be given to different atomic actions, and a state opera-
tor taking into account information from a suitable state space. Using priori-
ties imposed on atomic actions enables us to model interrupts in a system of
communicating processes; the state operator has turned out to be indispens-
able in the construction of process algebra semantics for some object-oriented
programming languages. For these developments we refer to [6]. Lately, some
thorough studies have been made about extending ACP, with some new con-
stants: € for the empty process and n for an alternative to the silent step 7
([16,3]). The typical equation here is 7 =n + €.

A substantial amount of effort has been invested in extending ACP; to a
suitable framework also for process verification, which was barely discussed in
the present paper. Process verifications have been realized now for several
non-trivial protocols ([14,9]), and recently also for some systolic algorithms
([10,15]) for tasks like palindrome recognition, matrix-vector multiplication.
Some positive experience was also obtained using process algebra for the
specification and verification of a simple production control system for a
configuration of workcells.

Finally we mention that bisimulation semantics, as adopted in the present
paper, is by no means the only process semantics. It is possible to identify

21



many processes which are different in bisimulation semantics while still retain-
ing an adequate description of relevant aspects such as deadlock behaviour,
leading for instance to readiness semantics or failure semantics, embodying
different views on processes. For a study in this area we refer to [7]. For an
investigation of models of ACP, based on Petri Nets, see [8].
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Translating Programs into Delay-Insensitive Circuits
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Dept. of Computer Science and Mathematics
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1. INTRODUCTION

In 1938 Claude E. Shannon wrote his seminal paper [23] entitled ‘A Symbolic
Analysis of Relay and Switching Circuits’. He demonstrated that Boolean
algebra could be used elegantly in the design of switching circuits. The idea
was to specify a circuit by a set of Boolean equations, to manipulate these
equations by means of a calculus, and to realize this specification by a connec-
tion of basic elements. The result was that only a few basic elements, or even
one element such as the 2-input NAND gate, suffice to synthesize any switch-
ing function specified by a set of Boolean equations. Shannon’s idea proved to
be very fertile and out of it grew a complete theory, called switching theory,
which is used by most circuit designers nowadays.

In the thesis [5] a method is presented for designing delay-insensitive circuits.
(Operationally speaking, a delay-insensitive circuit is a connection of basic ele-
ments whose functional operation is insensitive to delays in wires or elements.)
The principal idea of this method is similar to that in Shannon’s paper: to
design a circuit as a connection of basic elements and to construct this connec-
tion with the aid of a formalism. The method of constructing such a circuit, as
described in [5], is by translating programs satisfying a certain syntax. The
result of such a translation is a delay-insensitive connection of elements chosen
from a finite set of basic elements. Moreover, this translation has the property
that the number of basic elements in the connection is proportional to the
length of the program. Furthermore, in [5] a rigorous formalization is given of
what it means for such a connection to be delay-insensitive.

In this paper1 we briefly describe some of the history of designing delay-

1, The research reported in this paper was carried out while the author was working at CWI in
Amsterdam.
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insensitive circuits and some of the reasons why we would like to design
delay-insensitive circuits. By means of an example we convey the idea of
designing delay-insensitive circuits. We conclude with an outline of the
method described in [5].

2. SOME HISTORY
Delay-insensitive circuits are a special type of circuits. We briefly describe
their origins and how they are related to other types of circuits and design
techniques. The most common distinction usually made between types of cir-
cuits is the distinction between synchronous circuits and asynchronous circuits.
Synchronous circuits are circuits that perform their (sequential) computa-
tions based on the successive pulses of the clock. From the time of the first
computer designs many designers have chosen to build a computer with syn-
chronous circuits. In [25] Alan Turing, one of the first computer designers, has
motivated this choice as follows:

We might say that the clock enables us to introduce a discreteness
into time, so that time for some purposes can be regarded as a suc-
cession of instants instead of a continuous flow. A digital machine
must essentially deal with discrete objects, and in the case of the
ACE (Automatic Computing Engine) this is made possible by the
use of a clock. All other digital computing machines except for
human and other brains that I know of do the same. One can
think up ways of avoiding it, but they are very awkward.

In the past fifty years many techniques for the design of synchronous cir-
cuits have been developed and are described by means of switching theory [11,
15]. The correctness of synchronous systems relies on the bounds of delays in
elements and wires. The satisfaction of these delay requirements cannot be
guaranteed under all circumstances, and for this reason problems can crop up
in the design of synchronous systems. (Some of these problems are described
in the next section.) In order to avoid these problems interest arose in the
design of circuits without a clock. Such circuits have generally been called
asynchronous circuits.

The design of asynchronous circuits has always been and still is a difficult
subject. Several techniques for the design of such circuits have been developed
and are discussed in, for example, [11, 15, 28]. For special types of such cir-
cuits formalizations and other design techniques have been proposed and dis-
cussed. David E. Muller has given a formalization of a type of circuits which
he coined by the name of speed-independent circuits. An account of this for-
malization is given in [16].

From a design discipline that was applied in the Macromodules project
[3, 4] at Washington University in St. Louis, the concept of a special type of
circuit evolved which was given the name delay-insensitive circuit. It was real-
ized that a proper formalization of this concept was needed in order to specify
and design such circuits in a well-defined manner. A formalization of the
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concept of a delay-insensitive circuit was later given in [26]. For the design
and specification of delay-insensitive circuits several methods have been
developed based on, for example, Petri Nets and techniques derived from
switching theory [17].

Another name that is frequently used in the design of asynchronous circuits
is self-timed systems. This name was introduced by C. L. Seitz in [22] in order
to describe a method of system design without making any reference to timing
except in the design of the self-timed elements.

Recently, Alain Martin has proposed some interesting and promising design
techniques for circuits of which the functional operation is unaffected by
delays in elements or wires [12, 13]. His techniques are based on the compila-
tion of CSP-like programs into connections of basic elements. The techniques
presented in [5] exhibit a similarity with the techniques applied by Alain Mar-
tin.

3. WHY DELAY-INSENSITIVE CIRCUITS ?

The reasons for designing delay-insensitive systems are manifold. One reason
why there has always been an interest in asynchronous systems is that synchro-
nous systems tend to reflect a worst-case behavior, while asynchronous systems
tend to reflect an average-case behavior. A synchronous system is divided into
several parts, each of which performs a specific computation. At a certain
clock pulse, input data are sent to each of these parts and at the next clock
pulse the output data, i.e. the results of the computations, are sampled and
sent to the next parts. The correct operation of such an organization is esta-
blished by making the clock period larger than the worst-case delay for any
subcomputation. Accordingly, this worst-case behavior may be disadvanta-
geous in comparison with the average-case behavior of asynchronous systems.

Another more important reason for designing delay-insensitive systems is the
so-called glitch phenomenon. A glitch is the occurrence of metastable behavior
in circuits. Any computer circuit that has a number of stable states also has
metastable states. When such a circuit gets into a metastable state, it can
remain there for an indefinite period of time before it resolves into a stable
state. For example, it may stay in the metastable state for a period larger than
the clock period. Consequently, when a glitch occurs in a synchronous system,
erroneous data may be sampled at the time of the clock pulses. In a delay-
insensitive system it does not matter whether a glitch occurs: the computation
is delayed until the metastable behavior has disappeared and the element has
resolved into a stable state. One frequent cause for glitches are, for example,
the asynchronous communications between independently clocked parts of a
system.

The first mention of the glitch problem appears to date back to 1952 (cf.
[1]). The first publication of experimental results of the glitch problem and a
broad recognition of the fundamental nature of the problem came only after
1973 [2, 8] due to the pioneering work on this phenomenon at the Washington
University in St. Louis.

A third reason is due to the effects of scaling. This phenomenon became
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prominent with the advent of integrated circuit technology. Because of the
improvements of this technology, circuits could be made smaller and smaller.
It turned out, however, that if all characteristic dimensions of a circuit are
scaled down by a certain factor, including the clock period, delays in long
wires do not scale down proportional to the clock period [13, 21]. As a conse-
quence, some VLSI designs when scaled down may no longer work properly
anymore, because delays for some computations have become larger than the
clock period. Delay-insensitive systems do not have to suffer from this
phenomenon if the basic elements are chosen small enough so that the effects
of scaling are negligible with respect to the functional behavior of these ele-
ments [24].

A fourth reason is the clear separation between functional and physical
correctness concerns that can be applied in the design of delay-insensitive sys-
tems. The correctness of the behavior of basic elements is proved by means of
physical principles only. The correctness of the behavior of connections of
basic elements is proved by mathematical principles only. Thus, it is in the
design of the basic elements only that considerations with respect to delays in
wires play a role. In the design of a connection of basic elements no reference
to delays in wires or elements is made. This does not hold for synchronous
systems where the functional correctness of a circuit also depends on timing
considerations. For example, for a synchronous system one has to calculate
the worst-case delay for each part of the system and for any computation in
order to satisfy the requirement that this delay must be smaller than the clock
period.

As a last reason, we believe that the translation of parallel programs into
delay-insensitive circuits offers a number of advantages compared to the trans-
lation of parallel programs into synchronous systems. In [5] a method is
presented with which the synchronization and communication between parallel
parts of a system can be programmed and realized in a natural way.

4. AN EXAMPLE

In order to get an idea of designing delay-insensitive circuits we describe in an
informal way a small example. Consider the modulo-3 counter specified by
the following communication behavior. The modulo-3 counter has three com-
munication actions: one input, denoted by a?, and two outputs, denoted by p'!
and ¢!. The communication behavior is an alternation of inputs and outputs,
starting with an input. The outputs depend on the inputs as follows. After
the n-th input, where n >0, if nmod3 =40, then output g! is produced, else
output p! is produced. This behavior is expressed in the following program, or
so-called command,

EO0 = prefla?;q';a%qa?p!].

Here, [E] denotes repetition of the enclosed behavior E and E1;E2 denotes
concatenation of E 1 and E2. The notation pref E denotes the prefix-closure of
the behavior E, i.e. if the string of symbols (also called trace) a?q'a?q'a?p!
is a possible behavior of E, then also each prefix of this trace is a possible
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behavior of pref E.

The following physical interpretation may be associated with the symbols.
With each symbol corresponds a terminal of the circuit and with each
occurrence of that symbol in a trace corresponds a voltage transition (either a
high-going or a low-going transition) in that terminal. Voltage transitions
corresponding to inputs are caused by the environment of the circuit; voltage
transitions corresponding to outputs are caused by the circuit itself.

In the same way the basic TOGGLE and XOR component can be specified
as given in Figure 1.

—y 1
pref[a?;b';a%c!] a?._<
!
a? o
pref[(a?|b7);c'] b?::‘)i > " )

FIGURE 1

The first component is the TOGGLE component and can be considered as a
modulo-2 counter. The second component is an XOR component and has the
following repetitive behavior. First, the environment provides either an input
a? or an input b? (the | separates the alternatives), and then the component
produces an output ¢!. After the environment has received an output ¢! it
may produce a new input again, and so on. (Notice that the behaviors of
components are specified as orderings of events instead of as logical functions.)

We emphasize that all specifications must be understood as prescriptions for
the behavior of the component and environment. Consequently, in construct-
ing a decomposition for the modulo-3 counter £0 we assume that the environ-
ment satisfies the prescribed behavior in E0, i.e. the environment provides new
inputs a? only when an output has been received. Under this assumption the
modulo-3 counter can be decomposed as depicted in Figure 2.

et

FIGURE 2

Notice that in the decomposition the prescription for the environment of
every basic component is not violated. Without much difficulty we can con-
vince ourselves that the functional behavior of this decomposition is unaffected
by delays in connection wires or in basic elements. In other words, we could
say that the modulo-3 counter is realized by a delay-insensitive connection of
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basic elements. Knowing how to construct a modulo-3 counter the reader may
try, as an exercise, to construct a modulo-17 counter from TOGGLE and
XOR components. (There exist several solutions, some more efficient than
others.)

5. OUTLINE OF THE METHOD

The method presented in [5] for designing delay-insensitive circuits is briefly
described as follows. An abstraction of a circuit is called a component; com-
ponents are specified by programs written in a notation based on trace theory.
Trace theory was inspired by Hoare’s CSP [6, 7] and developed by a number
of people at the University of Technology in Eindhoven. It has proven to be a
good tool in reasoning about parallel computations [18, 19, 24, 9] and, in par-
ticular, about delay-insensitive circuits [10, 20, 21, 26, 27].

The programs are called commands and can be considered as an extension
of the notation for regular expressions. Any component represented by a com-
mand can also be represented by a regular expression, i.e. it is also a regular
component. The notation for commands, however, allows for a more concise
representation of a component due to the additional programming primitives
in this notation. These extra programming primitives include operations to
express parallelism, tail recursion (for representing finite state machines), and
projection (for introducing internal symbols).

Based on trace theory the concepts of decomposition of a component and of
delay-insensitivity are formalized. The decomposition of a component is
intended to represent the realization of that component by means of a connec-
tion of circuits. Several theorems are presented that are helpful in finding
decompositions of a component. Delay-insensitivity is formalized by the
definition of DI decomposition. A DI decomposition represents a realization of
a component by means of a delay-insensitive connection of circuits. In order
to link decomposition and DI decomposition, the definition of a DI com-
ponent is introduced. Operationally speaking a DI component represents a
circuit for which the communication between circuit and environment takes
place in a delay-insensitive way. (It turns out that the definition of a DI com-
ponent is equivalent with Udding’s formalization of a delay-insensitive circuit.)
By means of the definition of a DI component one of the fundamental
theorems in the thesis can be formulated as follows: DI decomposition and
decomposition are equivalent if all components involved are DI components.

This theorem is applied as follows to the example described in the previous
section. We showed, informally, that the modulo-3 counter can be decom-
posed into TOGGLE and XOR components. Furthermore, we have that the
TOGGLE component, XOR component, and modulo-3 counter E 0 are DI
components. Consequently, it follows by the above mentioned theorem that
the decomposition of Figure 2 forms a DI decomposition of the modulo-3
counter.

Because of the above mentioned theorem, it is important to have techniques
to recognize DI components. For this purpose a number of so-called DI gram-
mars are developed, i.e. grammars for which any command generated by these
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grammars represents a (regular) DI component.

Based on these grammars syntax-directed translations of commands into DI
decompositions of components represented by these commands are developed.
With these grammars the language £ of commands is defined. It is shown
that any regular DI component represented by a command in the language £
can be decomposed in a syntax-directed way into the finite set B of basic DI
components and so-called CAL components. CAL components are also DI
components. Consequently, since all components involved are DI components,
the decomposition into these components is, by the above theorem, also a DI
decomposition.

The set of all CAL components is, however, not finite. In order to show
that a decomposition into a finite basis of components exists, two decomposi-
tions of CAL components are discussed: one decomposition into the finite
basis BO and one decomposition into the finite basis B1. The decomposition
of CAL components into the basis B1 is in general nor a DI decomposition,
since not every component in B1 is a DI component. This decomposition,
however, is in general simpler than the decomposition into BO and can be
realized in a simple way if so-called isochronic forks are used in the realization.
The decomposition of CAL components into the basis BO is an interesting but
difficult subject. Since every component in BO is a DI component, every
decomposition into BO is therefore also a DI decomposition. In [5] a general
procedure for the decomposition of CAL components into the basis BO is
described, which is conjectured to be correct

. The complete decomposition method can be described as a syntax-directed
translation of commands in £ into commands of the basic components in BO
or B1. Consequently, the decomposition method is a constructive method and
can be completely automated: as soon as we have a specification of a com-
ponent expressed as a command in £ we can find mechanically a decomposi-
tion of this component into BO or B1. Moreover, it is shown that the result of
the complete decomposition of any component expressed in £ can be linear in
the length of the command, i.e. the number of basic elements in the resulting
connection is proportional to the length of the command.

Although many regular DI components can be expressed in the language £,
which is the starting point of the translation method, probably not every regu-
lar DI component can be expressed in this way. Nevertheless, it is also shown
that for any regular DI component there exists a decomposition into com-
ponents expressed in £4, which can then be translated by the method
presented.

6. CONCLUDING REMARKS

The research described in [5] has been fascinating and many-sided. It

includes, for example, aspects of

- Language design: which programming primitives do we include in the
language in order to be able to present a clear and concise program for a
component?

- Programming methodology: do there exist techniques to design programs
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from specifications for components in the language of commands?
Translation techniques: how do we translate programs into connections of
basic elements?

Syntax and semantics: how we can satisfy semantic properties (like a DI
component) by imposing syntactic requirements on programs?

VLSI design: what physical constraints must be met in order to realize the
circuit designs obtained in the VLSI medium?

In the thesis the aim of delay-insensitive design has been pursued as far as
possible, ie. correctness arguments based on delay-assumptions have been
postponed as far as possible, in order to see what sort of designs such a pur-
suit would lead to. In this approach our first concern has been the correctness
of the designs and only in the second place have we addressed their efficiency.
Accordingly, although the number of basic components is already proportional
to the length of the program, still many optimizations are possible in translat-
ing programs into delay-insensitive circuits.
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Book Review

E.P. van den Ban

Department of Mathematics, University of Utrecht
Budapestlaan 6, 3584 CD Utrecht, The Netherlands

S. HELGASON (1984). Groups and Geometric Analysis (Integral Geometry,
Invariant Differential Operators and Spherical Functions), Academic Press,
New York, 654 pp.

Nowadays, harmonic analysis on Riemannian symmetric spaces (of Euclidean,
compact or non-compact type) is a rather advanced field with many different
aspects. Helgason’s Groups and Geometric Analysis offers an introduction to
those aspects which have been among the main research interests of the author
in the last thirty years. The diversity of subjects treated is great. Nevertheless
the author has managed to achieve coherence of presentation by clearly put-
ting forward a few main themes and basic problems. To illustrate this I intend
to systematically go through the contents of the book.

Two main themes of harmonic analysis dominate the first part of the book:
firstly the theme of integral transforms (mainly Radon transforms, a few orbi-
tal integrals), and secondly that of invariant differential operators. The second
part of the book deals with the analysis of spherical functions on Riemannian
symmetric spaces, especially those of non-compact type: it provides a beautiful
illustration of the themes mentioned.

All of the above are illuminated in an introductory chapter which gives a
detailed treatment of the three basic examples: R>=M(2)/O(2)=group of
isometries of R? modulo the stabilizer of the origin (Euclidean type),
§?=0(3)/0(2) (compact type: spherical harmonics) and finally the hyperbolic
disk D={z€eC; |z|<1} viewed as the homogeneous space SU(1,1)/SO(2) (of
non-compact type). A reader having no background in Lie group theory will
get an excellent impression of the role group actions play in harmonic analysis
on these spaces.

The next chapter gives a thorough treatment of the d-Radon transform
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(integration over d-planes) in R”". Treated are: the inversion, the support and
the Plancherel theorem. Applications to PDE’s and radiography (X-ray
transform) are briefly mentioned. After this the group theoretic structure which
underlies the Radon transform is analyzed and formulated in greater general-
ity. Since I found it illuminating, I'll briefly discuss this point of view here.

Let X=R" and let Y be the smooth manifold of all hyperplanes in R". Then
the (n —1)-Radon transform Ry is the map C(X)—C>(Y) defined by

Ryf(y) = [fix)dmy(x),
Y

for fe CZ(X). Here dm,(x) denotes (n —1)-dimensional Euclidean measure on
the hyperplane y C X corresponding to the point yeY. There is also a dual
Radon transform Ry: C®(Y)—=C®(X). If ¢ CX(Y) then Ryd(x) is defined
by integrating ¢ over the closed submanifold x={yeY; xey} of Y. The map
Ry is the transposed of Ry. For fe CZ(X), one has the beautiful inversion for-
mula

+(n—1

f= F(%)I‘(n/Z)_‘(—ﬁA) RyRyf,

involving a fractional power of the Laplacian A. This formula goes back to
RADON [14] for n =3 and to JoHN [11] for n>3. Its generalization to the d-
plane transform is due to HELGASON [7]. We'll now see how group theory
enters. In a natural fashion the group M(n) of isometries of R" acts transi-
tively on both X and Y. Thus X=M(n)/O(n) and Y=M(n)/F, where
F=Z,XM(n—1) is the stabilizer of the hyperplane x; =0 in R". The crucial
observation now is that Ry is equivariant for the natural actions of M(n) on
C®(X) and C*(Y). Thus representation theory enters the scene. Moreover, the
property of equivariance suggests a generalization of the Radon transform to
more homogeneous spaces X=G/Hy and Y=G/Hy for the same Lie group
G. Two elements x e X and y €Y are called incident if x Ny~ @ as cosets in G.
A generalized Radon transform can now be defined by integrating functions
on X over sets y={xeX; x and y incident}. Similarly a dual transform Ry
can be defined. By the way, if G=U@4), Hy=U(1)XU(3) and
Hy=U(2)X U(2), then the maps y+-y and x>x"are Penrose correspondences,
see PENROSE [13].

Using the general set up indicated above, the author discusses the analysis
of Radon transforms for the non-Euclidean Riemannian symmetric spaces of
rank 1.

The second chapter deals with the algebra D(G/H) of invariant differential
operators on a homogeneous space G/H of a Lie group G. Geometric con-
structions such as separation of variables and taking radial parts are discussed
in generality. For Riemannian symmetric spaces G/H the algebra D(G/H) is
analyzed in great detail. From this point on the book may be considered as a
continuation of Helgason’s previous book [10].

Chapter 3 deals with linear group actions (in particular by finite reflection
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groups), and the corresponding invariant and harmonic polynomials. At the
end the Kostant-Rallis theory of adjoint orbits in a symmetric space is dis-
cussed.

Chapter 4 is devoted to the study of spherical functions and spherical
transforms on a Riemannian symmetric space X=G/K of the non-compact
type. Here G is a real semisimple Lie group with a maximal compact subgroup
K. The algebra D(X) of invariant differential operators is commutative. Its
joint eigenspaces

E(X,x) = {feC>®(X); Df=x(D)f, DeD(X)}

are parametrized by characters xeD(XJ. The spaces E(X,x) are invariant for

the left regular representation L of G on C*(X). Basic problems put forward

by the author are:

(1) to describe the joint eigenspaces E(X,x),

(2) to determine for which xeD (X}, the restriction of L to E(X,x) is irreduci-
ble,

(3) to decompose functions on X in terms of joint eigenfunctions (Fourier
decomposition).

Historically, the third of these problems was solved first, by Harish-Chandra

[5]. The set D(X) can be parametrized in a natural fashion by ag¢ /W, where a

is a maximal abelian linear subspace of the Killing orthocomplement of Lie(K)

in Lie(G), and where W is the finite reflection group determined by the a-roots

in Lie(G). If Aeag, then the corresponding element of D(X) is denoted Xy.

The space Ex(X)=E(X,x)) contains a unique left K-invariant function ¢, with

or(e)=1, the so-called elementary or zonal spherical function. Explicitly, ¢

can be given as a Radon transform of a function of exponential type. Any K-

invariant function feC(X) can be decomposed as

fG) = [aE/W]e®|dA

Here d\ denotes suitably normalized Lebesgue measure on ia". Moreover,
fN)=[xf (x)¢-r(x)dx is the so called spherical Fourier transform of f.
Finally, ¢(A) is the famous c-function, which occurs as leading coefficient in a
converging series expansion describing the asymptotics of ¢)(x) as x tends to
infinity in X. Originally, Harish-Chandra proved this result in [5] for a space &
of K-invariant rapidly decreasing functions on X (the proper analogue of the
Euclidean Schwartz space), subject to two conjectures being true. One of these
conjectures involved an estimate for the c-function, the other density of a space
of wave packets in S. The first conjecture was solved by GINDIKIN and KAR-
PELEVIC [4], who expressed the c-function as a product of quotients of I'-
functions. The other was solved by HARISH-CHANDRA [6].

Using the above inversion formula for C-functions, HELGASON [8] proved
a Paley-Wiener theorem for the spherical Fourier transform, except for certain
estimates for the coefficients in the series expansion of ¢,. The missing esti-
mates were provided by GANGOLLI [3]. ROSENBERG [15] discovered that it was
possible to first prove a support result on wave packets
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with 4 a W-invariant entire function of Paley-Wiener type on a¢, and to use
this to give a much simpler proof of the inversion formula for C-functions.
The present book is the first to give a self contained account of these short
proofs of the inversion and the Paley-Wiener theorem. It may be interesting to
know that after the appearance of this book an even shorter proof of the
Paley-Wiener theorem has been discovered by FLENSTED-JENSEN [2]. His proof
completely avoids the consideration of asymptotics of spherical functions:
instead via an ingenious variation on Hermann Weyl’s unitary trick a reduc-
tion to the complex and then the Euclidean case is given. A drawback of this
method is that it does not give the inversion formula.

The above questions (1) and (2), taken up first by HELGASON [9] have also
given rise to some beautiful developments in the subject. In the book they are
only dealt with for the case of the hyperbolic disk D, in the introductory
chapter. It turns out that E)(D) can be characterized as the image under a
generalized Poisson transformation of the space of hyperfunctions on the
boundary 0D ={zeC:|z|=1}: the classical integral representation of harmonic
functions on the disk is a special case of this. The analogue of the above
description of eigenfunctions by Poisson transformations for a general Rieman-
nian symmetric space of the non-compact type was conjectured and partially
proved by HELGASON [9] and finally proved by KASHIWARA ET AL. [12]. An
excellent introduction to this material can be found in SCHLICHTKRULL [16].

The book ends with a chapter on (the relatively standard) Fourier analysis
on a Riemannian symmetric space of the compact type.

Each chapter of the book concludes with a set of exercises and in addition a
set of historical notes which is usually very complete and helpful. In fact I
noticed only one omission: in the discussion of asymptotics of zonal spherical
functions a reference to the enlightening paper of CASSELMAN and MILICIC [1]
is missing.

The first third of the book can certainly be used as a textbook for beginning
graduate students. The rest requires a greater knowledge of Lie group theory
which however nowhere goes beyond the contents of the author’s previous
book [10]. The present book will also be an excellent source of reference for
experts. No doubt it will become a new standard in the field.
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The Radon Transform: First Steps

N.M. Temme

In this note we discuss some aspects of the Radon transform mentioned in the
review of Helgason’s book in this Newsletter.

In short, the Radon transform of a function f(x,y) of two variables is the
set of line integrals, with obvious generalizations to higher dimensions. It plays
a fundamental role in a large class of applications which fall under the heading
of tomography. In a narrow sense, tomography is the problem of reconstruct-
ing the interior of an object by passing radiation through it and recording the
resulting intensity over a range of directions. It is the problem of finding f
from the above mentioned line integrals and is related to the inversion of the
Radon transform.

Before discussing a simple example of how to compute the Radon transform,
we will tell more about the background of the applications. In mathematical
physics there is a notorious class of difficult problems: the ill-posed problems.
The notion of a well-posed problem is due to Hadamard: a solution must exist,
be unique, and depend continuously on the data. In ill-posed problems the last
condition may be violated, and then important difficulties may arise, especially
when the data are not complete or not accurate. Tomography falls in this class
of ill-posed problems.

Probably the most widely known applications of tomography are in medi-
cine. Computer assisted tomography (CAT-scan) uses X-rays directed from a
range of directions to reconstruct the density in a thin slice of the body (the
Greek word Topos means section). Recent advances in medical tomography
include nuclear magnetic resonance (NMR), where strong magnetic fields are
used to make hydrogen atoms resonate. One advantage over the CAT-scan is
that the use of potentially harmful X-rays can be avoided.

An important feature of the medical applications of tomography is its

4]



‘nondestructive’ character. Also in industry there is a considerable need to
investigate the integrity and remaining reliable lifetime of components and
structures by using nondestructive evaluation. Once again the components are
subjected to penetrating radiation with the aim of deducing information about
their internal states.

The search for oil depends heavily upon the analysis of seismic data. This is
another example of the reconstruction of internal features of a body from
monitored reflections of radiation or energy flows.

The Radon transform is an interesting example of a mathematical problem
that was considered and solved long before its applicability was seen. In fact,
this problem, as well as its three-dimensional version, was solved by J. Radon
in 1917 and later rediscovered in various settings such as probability theory
(recovering a probability distribution from its marginal distributions) and
astronomy (determining the velocity distribution of stars from the distribution
of radial velocities in various directions). Of course, much work was needed to
adapt the Radon inversion formula to the incomplete information available in
practice. The computational solution of ill-posed problems of the form arising
in the general area of tomography is a very active research topic in computa-
tional mathematics. Although the last decade has yielded very useful algo-
rithms, much work remains to be done; for instance in 3-D problems. At CWI
research on reconstruction problems started quite recently. There are pro-
missing contacts with industry (on NMR and seismic problems) and with
researchers from medical disciplines.

To describe the rdle of line integrals in tomography we start with the equation
I1=1 oe""" "

for the beam density of a narrow beam of X-ray photons through some homo-
geneous material, where I, is the input intensity (number of photons per
second per unit cross-sectional area) and I is the observed intensity after the
beam passes the distance x through the material. The linear artenuation
coefficient p. depends, among other things, on the density of the material. This
formula has to be changed for material that is inhomogeneous, where p
depends on a space parameter. In two variables the analogue of the above
equation becomes

I = Ioexpl— [u(x,p)ds),
L

where the line integral is along the beam path L, which is parametrized by s
(see figure 1).

By moving the source and detector it is possible to obtain a set of line
integrals. Taking logarithms, this constitutes a sampling of the Radon
transform. Then an appropriate inversion or reconstruction algorithm is
applied to recover an approximation to the attenuation coefficient distribution
over a transverse section of some portion of the human body.
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FIGURE 1. The beam passes through the region characterized by p(x,y)
along the line L

A typical coordinate system for setting up the Radon transform is the follow-
ing. A line L, in R? with distance s from the origin O = (0,0) in x,y-plane is
further characterized by an angle 6 (see figure 2)

N

B B = (scos#b, ssinf)
is a fixed point on L

0 N L)
FIGURE 2

So each line has two parameters s, which look like polar coordinates, but in
fact they are not: if s = 0 different values of 6 yield different lines Ly(0).
Let A = (x,y) = (rcos¢,rsing) (polar coordinates) denote a variable point
on L,(6). Then, if the distance from A to B equals ¢, we have
{x = scosf—1tsinb,

y = ssinf+rcosd. (L)

To define the Radon transform we assume that f: R,— R is continuous and
integrable, and we write

Rf(s,0) = [ f(xp)dt, (x.y)€Ls(0), )
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where ¢ appears in the above notation for (x,y)eL(f). By allowing negative
values of s, we can restrict the #-domain to [0,7], since
Rf (s,0) = Rf (—s,7m+8).

In practical problems f is compactly supported, that is f = 0 if r is large
enough, say r=1.

For higher dimensions a vector notation is very useful. For R, we start with
the unit vector w with polar angle 6. So the point B in figure 2 can be written
as the vector B = sw, with scalar s. L((6) runs through the origin and is paral-
lel with Ly(6). Let y € Lo(). Then wy = 0. So Ly(6) is characterized by the set
of end points of vectors x that can be written as

x = y+sw, with wy =0,

or as the set of end points of vectors x R, satisfying x-w = 5. Hence, the
Radon transform can be written as

Rf(s,0) = [ fy+sa)dy = [ f(x)dx,
yw=0 X'w=s
where, for convenience, we now suppose that the argument of fis a vector.

The above definition is for x,y,weR,. However, by integrating over (hyper)
planes, the same notation can be used for R,,.

Especially fruitful is the introduction of the §-function notation. Recall that
this generalized function has the property

00

[ £ ()8(x)dx = f(0)

— 00

for smooth functions f. So the line integral over the X-axis can be expressed as

RF(0,0) = [f(x,00dx = [{ [f(xp)3(y)dy)dy.

—00 — o0

In general we can write

Rf (s,0) = f f f(x,9)8(s —xcos 8 — ysin )dxdy

= /ff(x)8(s —x'w)dx, x€R,,
and for n-dimensions we can use the same notation

Rf(s.0) = [ [f(x)8(s —x-w)dx,

seR, x,weR,; 6 is now a (n—1)-dimensional vector containing the polar
angles for defining a (n —1)-dimensional hyperplane in R,, and w is the
corresponding unit vector.



EXAMPLE. Let f(x,y) = cxp(—x2 —y?) = exp(—rz). We use

f f f(x,y)8(s —xcos §— ysin O)dxdy.
The transformation (rotation)
u| [ cos sinf | |x
v| = |—sinf cosf| |y
yields directions of integration parallel and perpendicular to L(f). From
x?+y? = u?+v? (the mapping is an isometry), we obtain

00

Rf (s,0) = ffexp(—uz—v2)8(s—u)dudv = Vae 5.

On the other hand, using (1), r* = x2+y? = s?+¢2, and definition (2) we
easily obtain the same result. It follows that the Radon transform of the Gaus-
sian distribution yields again a Gaussian.

The theory of the Radon transform can be put in the framework of the Fourier
transforms. Since for the latter inversion formulas are readily available, the
inversion of Radon transformations is, in principle, established. Radon was not
aware of this link with Fourier transformation, and he put the inversion in the
following form: Let Fy(g) be the mean of Rf (s,6) over all Li(6) on a distance
g from a point Q = (x,y) = (rcos¢,rsing), L.,

2
Folg) = 5= [ Rflg-+rcosto—0)81as

then

) e
fy) = —— Of g~ 'dFo(q) (3)

(in the notation of a Stieltjes integral).
The conditions on f are: continuous and compactly supported. For a recent
elementary proof see NIEVERGELT [4].

For the pure mathematician this may give an end to the matter. For the

applied mathematician there are two important difficulties:

- the inversion of Radon transforms is an ill-posed problem (inaccurate
data may produce instabilities)

- the number of line integrals (i.e., data) is limited; also the directions (6-
values) may be restricted to a narrow range.

The numerical analyst usually applies algebraic inversion techniques for

integral equations, instead of using the analytical inversion theorem. The

latter, however, plays a fundamental role in diverse areas of Radon transfor-

mations and tomography, especially when it is written in terms of Fourier

transforms.
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For a very nice introductory monograph the reader is referred to DEANS [1].
The book of NATTERER [3] goes further in the direction of mathematical foun-
dation of this topic. The IEEE-Special Issue [5] gives an interesting introduc-
tion to both the mathematical and the applied aspects of tomography. In the
references below excellent bibliographics are included. Recent contributions in
which reconstruction is considered as a statistical problem by modelling both
noise and the to be reconstructed object f as stochastic processes are described
in VARDI ET AL. [6] and GEMAN and McCLURE [2].
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 35. M.L. Eaton. Lectures on Topics in Probability Inequalities.

AMS 60E15, 62H05; 197 pp.

Abstract: The material in this book is based on a set of lectures given at the University of Amster-
dam in the first half of 1985. The lectures highlighted the following topics: i) majorization results
and their extensions to reflection groups; ii) association and the FKG inequality; iii) log concavity,
Anderson’s theorem and related topics. To a large extent the treatment of the material is
mathematically self-contained, although the examples sometimes require a bit of specialized statist-
ical knowledge.

CWI Tract 36. A.H.P. van der Burgh, R M.M. Mattheij (eds.). Proceedings of
the First International Conference on Industrial and Applied Mathematics
(ICIAM 87). Contributions from the Netherlands. (433 pp.).

Abstract: This tract contains the contributions from the Netherlands to the First International
Conference on Industrial and Applied Mathematics (ICIAM 87). The papers cover the following
topics: applied mathematical analysis, scientific computing, control theory and signal processing,
computational geometry, applied probability and statistics, mathematics of natural sciences,
software and hardware aspects.

CWI Tract 37. L. Stougie. Design and Analysis of Algorithms for Stochastic
Integer Programming.
AMS 90C15, 90C27, 90C39, 90B35; 92 pp.

Abstract: Stochastic programming problems are mathematical programming problems in which
some of the parameters are modeled as random variables to represent uncertainty about their
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value. Integrality constraints imposed on some of the decision variables leads us into the field of
stochastic integer programming. Due to the stochasticity and the combinatorial nature, the prob-
lems are extremely hard to solve and therefore the ideal of optimality is usually abolished and an
approximation of the optimal solution is settled for. A framework for the theoretical analysis of
the quality of approximations is presented. For various specific stochastic integer programming
problems approximation algorithms are designed and analyzed. For some specific problems of
small size dynamic programming algorithms are presented to obtain an optimal solution.

CWI Tract 38. J.B.G. Frenk. On Banach Algebras, Renewal Measures and
Regenerative Processes.
AMS 60K05, 13J05; 201 pp.

Abstract: Consider the following problem: Suppose X;,X;,... is a sequence of independent and
identically distributed random variables with probability distribution F. Set Sy =0,

S, = EXk, n=1 and consider for every bounded Borel set % the measure U(%)
k=

=& 2 I(s,c)]- This measure is called the renewal measure and it plays an important role in the

analysxs of regenerative processes. In this CWI Tract a self-contained treatment of the asymplonc
behaviour of the renewal measure under various assumptions on the probability distribution F is
given using Fourier analysis and the theory of commutative Banach algebras.

CWI Tract 39. HJ.M. Peters, O.J. Vrieze (eds.). Surveys in Game Theory and
Related Topics.

AMS 90Dxx, 90D05, 90D10, 90D12, 90D13, 90D15, 90D30, 90D35, 90DA40;
330 pp.

Abstract: This book consists of eleven surveys in game theory and two on related topics (2). Each
chapter is self-contained. The authors are specialists in the respective fields and in the last section
of each chapter they discuss some of their latest results. The whole field of game theory is covered.
We mention: Refinements of equilibrium concepts, Games with incomplete information, Stochastic
games, Combinatorial games, Games of linear optimization problems, Simple games, Solution con-
cepts for cooperative games, Bargaining solutions. The ‘related topics’ are concerned with social
choice theory and the relation between decision theory and game theory.

CWI Tract 40. J.L. Geluk, L. de Haan. Regular Variation, Extensions and Tau-
berian Theorems.

AMS 26A12, 40E05; 132 pp.

Abstract: Functions of regular variation were invented by Karamata in 1930 as a suitable class of
functions in connection with a Tauberian theorem for Laplace transforms. Many other applica-
tions are known. The present text intends to give a self-contained, smooth and coherent introduc-
tion to the theory of regular variation and its main extensions. Disregarding the possible applica-
tions we show how these classes of functions are a natural setting for Tauberian theorems of the
Laplace type. Also some results are given for general kernel transforms. In the text there is a clear
separation between the various classes of functions. We have tried to stick to the main line of the
theory putting little emphasis on various refinements, minimality of conditions and other special-
ized topics. The theory is built in circles. After a full treatment of regularly varying (RV) functions
sections on the function classes II and I' follow. The theory of these function classes parallels
closely the theory of regular variation. Next (Chapter 2) Tauberian theorems for Laplace
transforms are treated in which these function classes (RV, I and TI') play a central role. Finally
(Chapter 3 and 4) the theory is further extended. Here limits are replaced by upper and lower
bounds. Chapter 3 gives the theory of these further generalizations of regular variation and in
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Chapter 4 Tauberian theorems are given in which these generalizations play a central role.

CWI Tract 41. S.J. Mullender (ed.). The Amoeba Distributed Operating System:
Selected papers 1984-1987.

AMS 68A05; CR C0, C2, D4; 308 pp.

Abstract: This tract contains selected papers relating to the Amoeba Distributed Operating System
which were published between 1984 and 1987. The papers reflect a joint effort between the Centre
for Mathematics and Computer Science, and the Vrije Universiteit, both located in Amsterdam,
the Netherlands.

CWI Tract 42. P.R.J. Asveld, A. Nijholt (eds.). Essays on Concepts, Formal-
isms, and Tools.

AMS 68-02, 68-03, 68B05, 68C01, 68C05, 68C20, 68C30, 68C40, 68D22,
68D25, 68D35,68Fxx, 68F05, 68F10, 68F20, 68F25, 68G15, 68G99; CR D.1.2,
D.14, D.22, D.3.1-4, F.0, F.1.1-3, F.2.2, F.3.2-3, F.4.0-3, G.1.0, [.1.1-2, 12.3,
K.2.; 278 pp.

Abstract: This book contains a collection of papers in which different aspects of modeling subject
matters can be recognized. Most papers in this volume deal with ‘artificial’ situations. Their sub-
ject matters are human-defined or human-constructed languages and systems. The authors intro-
duce and study formalisms, show how a subject matter can be modeled, or discuss the building
and usefulness of tools for the generation of programs that facilitate the writing or processing of
user programs. Ultimately, the introduction and study of the formalisms that are discussed in these
papers have been inspired by practical considerations. Practical considerations may lead to intrigu-
ing theoretical problems, though sometimes no foreseeable practical application of the results of
investigations into these problems can be given.

CWI Syllabus 13. M.J. Bergvelt, G.M. Tuynman, A.P.E. ten Kroode. Proceed-
ings Seminar 1983-1985 Mathematical Structures in Field Theories, Vol. 2.

AMS 70Hxx, 53Bxx; 206 pp.

Abstract: These proceedings cover part of the lectures given in the seminar ‘Mathematical Struc-
tures in Field Theories’, held at the University of Amsterdam during the academic years 1983-1984
and 1984-1985 (see CWI-Syllabi 2, 6 and 8). Chapter 1 gives an introduction to classical mechan-
ics and symplectic geometry and is an introduction to the next two chapters. In the second chapter
Yang-Mills theory is treated as a classical, albeit singular, dynamical system; the mathematical
framework is in terms of differential geometry and the paper is an application of the work by
Gotay, Nester and Hinds to the Yang-Mills system. The third chapter is devoted to the geometri-
cal description of the Toda lattice. This lattice is described as a Hamiltonian system on a co-
adjoint orbit in the dual of a Lie algebra. The symplectic structure is the Kostant-Kirillov sym-
plectic form.

CWI Syllabus 14. Vacantiecursus 1987: De personal computer en de wiskunde op

school.

Abstract: This course (for high school mathematics teachers) contains four possible applications of
a personal computer in teaching mathematics. The topics are fractals, number theory, numerical
mathematics and general mathematics. This syllabus has been written in Dutch.

CS-R8707. B. Awerbuch, L.M. Kirousis, E. Kranakis & P.M.B. Vitanyi. On

proving register atomicity.
AMS 68C05, 68C25, 68A05, 68B20; CR B.3.2, B.4.3, D.4.1, D.4.4; 24 pp.; key
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words: register, run, atomic, regular, reader, writer, proof method.

Abstract: Concurrent access of shared variables by asynchronous processes does not require mutual
exclusion, but can be solved with no waiting. A fruitful paradigm in this context is the notion of a
shared register satisfying a niceness condition called atomicity. The model is rigorously presented,
and then a method is given for proving register atomicity. It is then used to give simple proofs of
the atomicity of two register constructions, the matrix register and the Bloom register, without
assuming the existence of a global clock. (The matrix construction shows how to implement an
atomic, n-writer, n-reader register with value domain V' from n? atomic - or even regular - 1-
writer, 1-reader registers with value domain N X ¥, with N the set of nonnegative integers. Bloom’s
construction shows how to implement an atomic, 2-writer, n-reader register with value domain V,
from two atomic, 1-writer, n — l-reader registers with value domain {0,1} X V. These constructions
are so simple that they may be even practical.)

CS-R8713. S.J. Mullender. Process management in a distributed operating sys-
tem.

CR D4, C.2.4, D.2.5; 12 pp.; key words: distributed operating system, process
management, migration, Amoeba.

Abstract: The Distributed Systems Group at the Centre for Mathematics and Computer Science
and the Vrije Universiteit in Amsterdam has designed a collection of services for the management
of processes in the Amoeba distributed operating system. With a small set of kernel operations, it
is possible to download, debug, migrate, and checkpoint processes. First, the basic kernel mechan-
isms are described, followed by the description of a number of supporting user-space services. The
paper ends with a discussion of the properties of Amoeba that made this design possible.

CS-R8714. P.H. Rodenburg. Algebraic specifications for parametrized data
types: the case of minimal computable algebras and parameters with equality.
AMS 03D380, 68Q65; CR F.3.2, D.3.3; 14 pp.; key words: parametrized data
type, computable minimal algebra, Kreisel-Lacombe-Shoenfield theorem, alge-
bra with equality, finite equational specification, effective operation.

Abstract: For minimal algebras, and under certain assumptions on the domain of parameters, it is
shown that a persistent parametrized data type with computable parameters is effective if is has a
finite equational specification.

CS-R8715. L.M. Kirousis. On effectively labeling planar projections of polyhe-
dra.

AMS 68T10, 51M20, 68Q20, 68Q25, 68R10; CR 1.2.10, F.2.2, G.2.2; 16 pp.;
key words: polyhedron, labeling, 2-dimensional image of a polyhedron.

Abstract: A well-known method for interpreting planar projections (images) of 3-dimensional
polyhedra is to label their lines by the Clowes-Huffman scheme. However, the question of whether
there is such a labeling has been shown to be NP-complete. In this paper an algorithm is given
linear in time that answers the labelability question under the assumption that some information is
known about those edges of the polyhedron both of whose faces are visible. In many cases, this
information can be derived from the image itself. Moreover, the algorithm has an effective parallel
version, i.e., with polynomially many processors it can be executed in time polynomial in logn.

CS-R8716. J.C.M. Baeten & R.J. van Glabbeek. Merge and termination in pro-
cess algebra.

AMS 68Q10, 68Q55, 68Q45, 68N15; CR F.1.2, F.3.2, F.4.3, D.3.3; 25 pp.; key
words: concurrency, process algebra, empty process, termination, tick.
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Abstract: In Vrancken (reference 14 of this paper), the empty process € was added to the Algebra
of Communicating Processes of Bergstra and Klop. Reconsidering the definition of the parallel
composition operator merge, we found that it is preferable to explicitly state the termination
option. This gives an extra summand in the defining equation of merge, using the auxiliary opera-
tor 1/ (tick). We find that tick can be defined in terms of the encapsulation operator 9. We give
an operational and a denotational semantics for the resulting system ACP V/, and prove that they
are equal. We consider the Limit Rule, and prove it holds in our models.

CS-R8717. T. Tomiyama & P.J.W. ten Hagen. The concept of intelligent

integrated interactive CAD systems.

AMS 69H12, 69H21, 69K 10, 69K 36, 69L60; CR H.2.1, 1.2.1, 1.3.6, J.6; 29 pp.;
key words: CAD, machine design, design theory, knowledge engineering,
interactive systems, conceptual modeling.

Abstract: In this report we first propose the concept of Intelligent Integrated Interactive CAD
(IIICAD) systems, after having analyzed problems of present Computer Aided Design (CAD) sys-
tems. IIICAD is expected to be a large software system based on knowledge engineering technol-
ogy. In order to develop such a complicated system we need to put emphasis on the importance of
theoretical work besides implementational techniques, since these techniques cannot even solve all
problems of conventional CAD systems.

CS-R8718. P.J.W. ten Hagen & R. van Liere. A model for graphical interaction.
AMS 69K32, 69K36; CR 1.3.2, 1.3.6; 26 pp.; key words: graphics systems,

methodology and techniques.

Abstract: A model for graphical interaction is presented which will allow us to precisely and for-
mally describe many important aspects of graphical input, graphical output and various correla-
tions between these two. The model encapsulates the fundamental properties of elementary graph-
ics input devices and their feedback. It also encompasses the operational modes of such devices
and the screen resources they occupy. On top of this, the model allows the description of com-
pound inputs leading to the description of arbitrary complex interaction techniques. Moreover,
these interaction techniques can be very precisely controlled by the application program. The latter
is of importance for incorporating such techniques in a variety of methods. One of the main
achievements of the model is the encapsulation of the concept called I/0-symmetry. Finally, it is
shown how the model can be used to describe various concepts such as user freedom, direct mani-
pulation, error recovery and dialogue scheduling. Directions for further development of the 1/0-
unit model will be outlined.

CS-R8719. P.J.W. ten Hagen & H.J. Schouten. Parallel graphical output from
dialogue cells.

CR 1.3.4, D.1.3; 15 pp.; key words: computer graphics, parallelism, user inter-
face management systems.

Abstract: A system that accepts and processes graphical output from parallel processes using a sin-
gle workstation, and its use in a User Interface Management System called Dialogue Cells, is
described. It allows a programmer to easily, concisely and precisely describe pictures and opera-
tions on them in a highly interactive environment. Each parallel process can do output indepen-
dently, but pictures can also be moved from one process to another. Each process has its own
graphical output environment. The description and implementation of the system is based on
GKs.

CS-R8720. T. Tomiyama & P.J.W. ten Hagen. Organization of design
knowledge in an intelligent CAD environment.
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AMS 69H12, 69H21, 69K 14, 69L60; CR H.1.2, H.2.1, 1.2.4, J.6; 28 pp.; key
words: conceptual modeling, data modeling, knowledge engineering, knowledge
representation, CAD.

Abstract: More and more attention has been paid to the concept of so-called intelligent CAD sys-
tems as a promising approach towards the next generation of integrated engineering environments.
In this paper, first we propose the concept of Intelligent Integrated Interactive CAD systems. We
introduce a language based on predicate logic and the object oriented programming paradigm, and
describe the mechanisms of the system in this language. Then we discuss the possibility of describ-
ing and organizing design knowledge using this language. From this discussion we will see how
design knowledge should be embedded and work in an intelligent, integrated, and interactive CAD
environment.

CS-R8721. J.C.M. Baeten & R.J. van Glabbeek. Abstraction and empty process
in process algebra.

AMS 68Q10, 68Q45, 68Q55, 68N15; CR F.1.2, F.3.2, F.4.3, D.3.3; 24 pp.; key
words: concurrency, process algebra, hidden step, hiding abstraction, silent
step, internal action, empty process, termination.

Abstract: In this paper, we combine the hidden step 1 of the authors’ paper (reference 2 of this
paper) with the empty process € of Vrancken and the authors (references 12 and 3 of this paper).
We formulate a system ACP,, which is a conservative extension of the systems ACP,, ACP v/, but
also of ACP,. This is a general system, in which most relevant issues can be discussed. Abstrac-
tion from internal steps can be achieved in two ways, in two stages: we can abstract to the hidden
step 1, and then from 7 to Milner’s silent step 7.

CS-R8722. LM. Kirousis, E. Kranakis & P.M.B. Vitanyi. Atomic multireader
register.

AMS 68M10, 68P15, 68Q25; CR B.3.2, B4.3, D.4.1, D.4.2, D.4.4; 29 pp.; key
words: register, shared register, atomic, regular, reader, writer.

Abstract: We give implementations for atomic, shared, asynchronous, wait-free registers: (i) A new
implementation of an atomic, 1-writer, 1-reader, b-bit register from O(b) safe, boolean registers
(i.e. from scratch). The solution uses neither repeated writing of the input nor repeated reading of
the output. (ii) An implementation of an atomic, 1-writer, n-reader, multibit register from 0(n?)
atomic, 1-writer, 1-reader, multibit registers. Both constructions rely on the same idea. In a sense
(i) is a generalization of (i). These results show how to construct atomic, multireader registers
from - basically - elementary hardware like flip-flops.

CS-R8723. 1. Shizgal. An Amoeba replicated service organization.
CR C2.4, D.4.4; 7 pp.; key words: Amoeba, multicast, 2-phase commit, distri-

buted service.

Abstract: A technique is described which allows replicated instances of servers on the Amoeba
operating system to dynamically detect other currently active server sites, and for these to
cooperate in the maintenance of replicated data.

CS-R8724. J.N. Kok. A fully abstract semantics for data flow nets.
AMS 68B10; CR D.3.1, F.3.2, F.3.3; 18 pp.; key words: data flow program-
ming, data flow networks, denotational semantics, multivalued functions, con-

currency.
Abstract: Two semantic models for data flow nets are given. The first model is an intuitive opera-
tional model. This model has an important drawback: it is not compositional. An example shows
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the non-compositionality of our model. There exist two nets that have the same semantics, but
when they are placed in a specific context, the semantics of the resulting nets differ. The second
one is obtained by adding information to the first model. The amount of information is enough to
make it compositional. Moreover, we show that we have added the minimal amount of informa-
tion to make the model compositional: the second model is fully abstract with respect to the
equivalence generated by the first model. To be more specific: the first model describes the seman-
tics of a data flow net as a function from (tuples of) sequences of tokens to sets of (tuples of)
sequences of tokens. The second one maps a data flow net to a function from (tuples of) infinite
sequences of finite words to sets of (tuples of) infinite sequences of finite words.

CS-R8725. J.A. Bergstra & J.W. Klop. ACP,: A universal axiom system for pro-

cess specification.

AMS 68Q10, 68Q55, 68Q45, 68N15; CR F.1.2, F.3.2, F.4.3, D.3.3; 17 pp.; key
words: communicating processes, process algebra, bisimulation semantics,
graph models, recursive specifications.

Abstract: Starting with Basic Process Algebra (BPA), an axiom system for alternative composition
(+) and sequential composition (-) of processes, we give a presentation in several intermediate
stages leading to ACP,, Algebra of Communicating Processes with abstraction. At each successive
stage an example is given showing that the specification power is increased. Also some graph
models for the respective axiom systems are informally presented. We conclude with the Finite
Specification Theorem for ACP,, stating that each finitely branching, effectively presented process
(as an element of the graph model) can be specified in ACP, by means of a finite system of
guarded recursion equations.

CS-R8726. V. Akman. Steps into a geometer’s workbench.

CR F22, G.1.5-6, 1.1.2, 1.2.9, 1.3.4-5; 21 pp.; key words: minimal paths, Voro-
noi diagram, polyhedra, computational geometry, geometer’s workbench, algo-
rithm animation, workstation, prototyping, Macsyma, Smalltalk, Model-View-
Controller, Lisp.

Abstract: As computational geometry matures, it becomes crucial to use its techniques in the pro-
fessional environment of graphics and robotics. This however is a nontrivial task since (i) compu-
tational geometry concerns itself with asymptotic analysis, and (ii) in search of elegance it ignores
the special cases which are the bugbear of practical applications. I see experimentation as a way to
resolve these difficulties and propose a software system to act as a ‘Geometer’s Workbench’. This
entails the integration of geometric knowledge with algorithm animation and object-oriented
graphics. The workbench should allow improvisation with geometric objects and is expected to
broaden the way geometry is used in the same style as Macsyma did this for algebra.

CS-R8727. V. Akman. Geometry and graphics applied to robotics.

CR F2.2, G.1.5-6, 1.1.2, 1.2.9, 1.3.4-5; 20 pp.; key words: minimal paths, Voro-
noi diagram, continuum method, visibility, polyhedra, computational geometry,
concrete complexity, geometer’s workbench, algorithm animation, workstation,
prototyping, Macsyma, Smalltalk, Model-View-Controller, Lisp.

Abstract: In the first part of this paper, I review the recent efforts on integrating robotics and com-
puter science ideas. Specifically, I advocate the view that applying results from areas of computer
science such as concrete complexity, symbolic computation, and computational geometry will sim-
plify the work of robot programmers. In the second part, the discussion takes place in the context
of model-based robotics. I argue that the time has come to build a ‘Geometer’s Workbench’, a sys-
tem integrating geometric knowhow with algorithm animation techniques and interactive graphics
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to visualize complex situations as encountered in robotics. Such a system is expected to broaden
the way geometry is practiced in the same style as Macsyma did this for algebra.

CS-R8728. T. Tomiyama & P.J.W. ten Hagen. Representing knowledge in two
distinct descriptions: extensional vs. intensional.

CR H.12, H2.1, 124, 1.6; 19 pp.; key words: conceptual modeling, data
modeling, knowledge engineering, knowledge representation, CAD.

Abstract: This paper describes a theory of knowledge on which future CAD systems can be based.
First, we present two distinct description methods, viz. extensional and intensional. Second, these
two are compared in the context of CAD applications and their advantages and disadvantages are
clarified. Finally, we propose a new data description method which combines extensional and
intensional description methods.

CS-R8729. J.C. Mulder & W.P. Weijland. Verification of an algorithm for log-
time sorting by square comparison.

AMS 68Q35, 68Q60, 68Q10, 68Q55; CR B.7.1, D.2.4, F.1.2, F.3.2; 25 pp.; key
words: concurrency, process algebra, sorting, correctness proof, rank sort,

orthogonal tree network, asynchronous cooperation, delay-insensitive.

Abstract: In this paper a concurrent sorting algorithm called RANKSORT is presented, able to
sort an input sequence of length n in log n time, using n? processors. The algorithm is formally
specified as a delay-insensitive circuit. Then, a formal correctness proof is given, using bisimulation
semantics in the language ACP of Bergstra & Klop. The algorithm has area - time* = O(n?log*n)
complexity which is slightly suboptimal with respect to the lower bound of AT? = Q(n’logn).

CS-R8730. J.W. Klop & A. Middeldorp. Strongly sequential term rewriting sys-
tems.
AMS 68Q50; CR F.4.1, F.4.2; 38 pp.; key words: regular term rewriting sys-

tems, normalizing reduction strategy, needed redex.

Abstract: For regular term rewriting systems, G. Huet and J.-J. Lévy have introduced the property
of “strong sequentiality’. A strongly sequential regular term rewriting system admits an efficiently
computable normalizing one-step reduction strategy. As shown by Huet and Lévy, strong sequen-
tiality is a decidable property. In this paper we present a structural analysis of strongly sequential
term rewriting systems, leading to two new and simplified proofs of the decidability of this pro-

perty.

CS-R8731. B. Veth. An integrated data description language for coding design
knowledge.

CR D.2.m, F.4.1,12.1,1.2.4, J.6; 19 pp.; key words: CAD, design theory, logic,
theory of knowledge, theory of design objects, qualitative reasoning, object-
oriented programming, logic programming, knowledge engineering, software
engineering, prototyping.

Abstract: We present in a unifying framework the basic notions of IDDL (Integrated Data
Description Language) to code design knowledge in the IIICAD system. IIICAD is an intelligent,
integrated and interactive computer-aided design environment we are currently developing at the
Centre for Mathematics and Computer Science.

CS-R8732. P. America & J.W. de Bakker. Designing equivalent semantic models
for process creation.
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AMS 68B10, 68C01; CR D.1.3, D.3.1, D.3.3, F.1.2, F.3.2; 75 pp.; key words:
operational semantics, denotational semantics, parallelism, process creation,
continuations, domain equations, metric spaces, fixed points.

Abstract: Operational and denotational semantic models are designed for languages with process
creation, and the relationships between the two semantics are investigated. The presentation is
organized in four sections dealing with a uniform and static, a uniform and dynamic, a nonuni-
form and static, and a nonuniform and dynamic language, respectively. Here uniform/nonuniform
refers to a language with uninterpreted/interpreted elementary actions, and static/dynamic to the
distinction between languages with a fixed/growing number of parallel processes. The contrast
between uniform and nonuniform is reflected in the use of linear time versus branching time
models, the latter employing a version of Plotkin’s resumptions. The operational semantics make
use of Hennessy and Plotkin’s transition systems. All models are built on metric structures, and
involve continuations in an essential way. The languages studied are abstractions of the parallel
object-oriented language POOL for which we have designed separate operational and denotational
semantics in earlier work. The paper provides a full analysis of the relationship between the two
semantics for these abstractions. Technically, a key role is played by a new operator which is able
to decide dynamically whether it should act as sequential or parallel composition.

CS-R8733. J.A. Bergstra & J.W. Klop. A convergence theorem in process alge-

bra.

AMS 68Q05, 68Q10, 68Q55, 68Q45; CR F.1.2, F.3.1, F.3.2, F.3.3; 32 pp.; key
words: process algebra, projective limit model, merge, left-merge, recursion
equations, complete metric space, process graph, Approximation Induction
Principle.

Abstract: We study a convergence phenomenon in the projective limit model A* for PA, an axiom
system in the framework of process algebra for processes built from atomic actions by means of
alternative composition (+) and sequential composition (-), and subject to the operations ||
(merge) and || (left-merge). The model A* is also a comglete metric space. Specifically, it is
shown that for every element geA* the sequence g, s(q), s°(¢),...,s"(¢),... converges to a solu-
tion of the (possibly unguarded) recursion equation X =s(X) where s(X) is an expression in the
signature of PA involving the recursion variable X. As the convergence holds for arbitrary starting
points g, this result does not seem readily obtainable by the usual convergence proof techniques.
Furthermore, the connection is studied between projective models and models based on process
graphs. Also these models are compared with the process model introduced by De Bakker and
Zucker.

CS-R8734. L. Kossen & W.P. Weijland. Verification of a systolic algorithm for
string comparison.

AMS 68Q35, 68Q60, 68Q10, 68Q55; CR B.7.1, D.2.4, F.1.2, F.3.2; 34 pp.; key
words: concurrency, process algebra, synchronous communication, asynchro-
nous cooperation, self-timed system, systolic system, VLSI, correctness proof.
Abstract: A self-timed systolic system computing the edit distance between two strings is proved
correct by means of an algebraical concurrency theory ACP (Algebra of Communicating
Processes). A systolic system is a system consisting of a great number of concurrently operating
and cooperating elements. In the system described here, the flow of control is regulated by the ele-
ments themselves: the system is self-timed. A formal approach can be helpful to construct complex
systems such as VLSI-circuits.

CS-N8701. J.W. Klop. Term rewriting systems: a tutorial.
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AMS 03B40, 68Q99; CR D.1.1, F.4.1; 37 pp.; key words: Abstract Reduction
Systems, Term Rewriting Systems, Combinatory Logic, reduction strategies,
regular Term Rewriting Systems.

Abstract: Term Rewriting Systems play an important role in various areas, such as abstract data
type specifications, implementations of functional languages and automated deduction. In this
tutorial we introduce some of the basic concepts and facts for TRS’s. No attempt is made to
present a comprehensive survey: e.g. the tutorial does not contain material about conditional
TRS’s or equational TRS’s. The spirit of the material presented here is syntactic rather than
semantic. An emphasis is put on Abstract Reduction Systems, of which not only TRS’s are
instances, but also Semi-Thue Systems, tree replacement systems, and graph rewrite systems. As an
example of an important termination proof technique we describe the recursive path orderings in a
new presentation.

OS-R8708. J.L. van den Berg, O.J. Boxma & W.P. Groenendijk. Sojourn times
in the M/G/1 queue with deterministic feedback.
AMS 60K25, 68M20; 9 pp.; key words: M/G/1 queue, feedback, sojourn

times.

Abstract: In this paper we consider an M/G/1 queueing model, in which each customer is fed
back a fixed number of times. For the case of negative exponentially distributed service times at
each visit, we determine the joint distribution of the sojourn times of the consecutive visits. As a
by-product we obtain the total sojourn time distribution; it can be related to the sojourn time dis-
tribution in the M/D/1 queue with processor sharing. For the case of generally distributed service
times at each visit, a set of linear equations is derived, from which the mean sojourn times per visit
can be calculated.

0OS-R8709. G.A.P. Kindervater, J.K. Lenstra & A.H.G. Rinnooy Kan. Per-
spectives on parallel computing.

AMS 68MO05, 68Q10, 90Bxx, 90Cxx; 5 pp.; key words: operations research,
parallelism, architectures, computations, computational models.

Abstract: Operations research is one of the areas that is likely to benefit from advances in parallel
computing. We briefly review what has been achieved in recent years and try to sketch what may
be expected in the near future. More realism in theoretical models of parallel computation and
more uniformity in available architectures will be required. Formal techniques will have to be
developed for the design and implementation of efficient parallel algorithms. Only then can paral-
lelism fulfill its promise and considerably expand the range of effectiveness of operations research
methods.

OS-R8710. J.L. van den Berg & O.J. Boxma. Sojourn times in feedback queues.
AMS 60K25, 68M20; 16 pp.; key words: M/M/1 queue, feedback, sojourn

times.

Abstract: This paper considers an M/M/1 queue with a very general feedback mechanism. When
a customer completes his i-th service, he departs from the system with probability 1 — p (i) and he
cycles back with probability p(i). The main result of the paper is a formula for the joint distribu-
tion of the successive sojourn times of a customer in the system. As a by-product, it is shown that
the sojourn times in all individual cycles are identically, negative exponentially, distributed. Also,
the correlation between the sojourn times of the j-th and k-th cycle of a customer is calculated;
furthermore, the distribution of the total sojourn time is derived.

OS-R8711. M.W.P. Savelsbergh. Local search for constrained routing problems.
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AMS 90B05, 90B35, 90C27; 10 pp.; key words: traveling salesman problem,
vehicle routing problem, local search, iterative improvement.

Abstract: We develop local search algorithms for routing problems with various side constraints
such as time windows on vertices and precedence relations between vertices. The algorithms are
based on the k-exchange concept. The presence of side constraints introduces feasibility problems.
Checking the feasibility of a given solution in the straightforward way requires time which is linear
in the number of vertices. Our method reduces this effort to constant time.

NM-R8708. W.H. Hundsdorfer. Stability results for 6-methods applied to a class
of stiff differential-algebraic equations.

AMS 65L05, 65L20; 10 pp.; key words: differential-algebraic equations, stiff
initial value problems.

Abstract: In this paper we consider some simple numerical methods for a class of stiff differential-
algebraic equations (with index 2). The methods are based on the well-known #-method for ordi-
nary differential equations. The stability and some convergence properties of the methods are dis-
cussed.

NM-R8709. M. Bergman. Implementation of elementary functions in Ada.

AMS 69D49, 65-04; 15 pp.; key words: Ada, elementary mathematical func-
tions, portability, scientific libraries.

Abstract: Unlike many other languages, Ada does not define elementary mathematical functions.
Therefore a package of basic mathematical functions has been designed and implemented, which
meets requirements like portability, general usefulness and efficiency. For these purposes Ada
offers a number of interesting and useful features, which will be discussed in brief. Further, a
detailed description is given of the way the elementary functions have been implemented.

NM-R8710. J. Kok. Design and implementation of elementary functions in Ada.
AMS 69D49, 65-04; 20 pp.; key words: Ada, high level language, basic

mathematical functions, scientific libraries, portability.

Abstract: This report describes the design and implementation of the elementary functions in Ada
for the EC-funded project ‘Pilot Implementations of Basic Modules for Large Portable Numerical
Libraries in Ada’. It presents the specification of a generic package for the declaration of the ele-
mentary functions in Ada which employs the project’s library error handling mechanism. Further,
it describes the portable implementation of this package, and the work done on testing and docu-
menting the package.

NM-R8711. J.G. Verwer. Some stability results for the hopscotch difference
method when applied to convection-diffusion equations.

AMS 65M10; CR 5.7.; 9 pp.; key words: partial differential equations,
convection-diffusion equations, hopscotch method, linear stability.

Abstract: The hopscotch method is a time stepping scheme applicable to wide classes of spatially
discretized, multi-space-dimensional, time-dependent partial differential equations (PDEs). In this
contribution attention is focussed on the simple odd-even hopscotch method (OEH). Our aim is to
present some interesting stability properties of this method for convection-diffusion equations
where the space discretization is carried out by standard symmetrical and/or one-sided finite
differences. First, we give a general formulation of the time-stepping scheme and outline its main
computational features. Next, we discuss linear stability properties of the method in the multi-
dimensional case. We present explicit expressions for the critical time step based on the Von Neu-
mann condition. We show that in certain cases an increase of diffusion may render the process
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unstable, an observation which is in clear contrast to the common practice. This strange
phenomenon can occur only in the higher dimensional case. Finally, we discuss the spectral condi-
tion, but only in one space dimension. In accordance with results for the explicit Euler rule, we
conclude that the spectral condition is misleading in the sense that it does not prevent large error
growth.

NM-R8712. W. Hoffmann. NUMVEC FORTRAN Library manual. Chapter :
Simultaneous linear equations Update # 1.

AMS 65V05, 65F05, 15A06; CR 5.14; 8 pp.; key words: Gauss-Jordan elimina-
tion, linear equations, software.

Abstract: This document describes twvo NUMVEC FORTRAN Library routines, INVGJ and
GIPCF. INVG] calculates the approximate inverse of a real square matrix by Gauss-Jordan elim-
ination with partial pivoting using column interchanges. GJIPCF calculates the approximate solu-
tion of a set of real linear equations with multiple right hand sides, AX = B, by Gauss-Jordan
elimination with partial pivoting using column interchanges.

NM-R8713. J.G. Blom, J.M. Sanz-Serna, J.G. Verwer. A Lagrangian moving
grid scheme for one-dimensional evolutionary partial differential equations.

AMS 65M50, 65M99; CR 5.17; 18 pp.; key words: numerical analysis, partial
differential equations, time-dependent problems, moving grid methods, space-
time finite differences.

Abstract: A Lagrangian moving grid finite difference method for one-space-dimensional, evolution-
ary partial differential equations which exhibit sharp transitions in space and time is developed.
The method is based on a Crank-Nicolson type difference scheme derived via a coordinate
transformation governed by equidistribution of the second space derivative. Each time step of our
method involves two stages. First, a static grid numerical integration is carried out, immediately
followed by a de Boor type redistribution of nodes at the forward time level. This stage serves
only to compute the transformation. Second, a moving grid numerical integration is carried out
with the Crank-Nicolson scheme. Numerical experiments show that the method automatically con-
centrates the grid in regions of high spatial activity and is also able to step in time with stepsizes
larger than those needed by static methods, that is, methods which for intervals of time work on a
fixed, nonuniform grid. As a result the method achieves high accuracy with few gridpoints in space
and time.

NM-R8714. P.J. van der Houwen. Stabilization of explicit difference schemes by
smoothing techniques.
AMS 65M, 65N; 11 pp.; key words: numerical analysis, partial differential

equations, difference schemes, smoothing, stability, convergence.

Abstract: We give a survey of applications of smoothing techniques to difference schemes for par-
tial differential equations. Smoothing techniques may improve the stability or convergence of the
difference scheme considerably. We distinguish smoothing of the numerical solution itself, smooth-
ing of the right-hand side of the differential equation, and residue smoothing. Examples are given
for parabolic, hyperbolic and elliptic equations.

NM-N8702. B.P. Sommeijer, W.H. Hundsdorfer, C.T.H. Everaars, P.J. van der
Houwen, J.G. Verwer. A numerical study of a 1D stationary semiconductor
model.

AMS 65N20, 65H10; key words: numerical analysis, partial differential equa-
tions, nonlinear systems, initial approximations.
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Abstract: Based on a 1D model describing the stationary basic semiconductor device equations,
several numerical methods have been investigated to solve this type of problems. The main part of
this work discusses the solution of the nonlinear systems which result from discretization of the
PDFE’s. Emphasis is placed upon finding suitable initial approximations when iterative processes
are employed.

MS-R8703. M.L. Eaton. Admissibility in fair Bayes prediction problems. 1. Gen-
eral theory.
AMS 62C05, 62C15; 37 pp.; key words: prediction, predictive distribution,

Bayes rules, improper prior distributions, fair Bayes loss functions.

Abstract: This paper is concerned with sufficient conditions for the admissibility of posterior
predictive distributions which are derived from improper proper distributions. It is argued that the
relevant loss functions are the so called fair Bayes loss functions. The admissibility results are
valid for a wide class of such loss functions. The main result is applied to the one-dimensional
translation problem with Lebesgue measure as the improper prior to give sufficient conditions for
admissibility of the resulting predictive distribution. A connection with recurrence of an induced
Markov chain is described.

MS-R8704. T.A. Louis, J.K. Bailey. Controlling error rates using prior informa-
tion and marginal totals to select tumor sites.

AMS 62F15, 62H17, 62K99, 62P10; 31 pp.; key words: Bayes methods, bioas-
say, conditional power, multiplicity.

Abstract: Carlin & Louis proposed in 1985 a selection procedure designed to control the problems
of multiplicity associated with P-values reported from carcinogen bioassays. Instead of searching
the data for statistically significant tumor site/type combinations, the procedure uses site/type
specific prior information and conditioning statistics to select sites and types with potentially
significant P-values. Any single P-value selected by this method retains its usual meaning, and the
size of the test procedure is controlled. We apply the Carlin & Louis procedure to a random sam-
ple of bioassays using male and female mice and rats from the National Cancer Institute’s data
base. From these data we estimate priors for lifetime incidence and dose effect. Then, we compare
the performance of the selection procedure to use of Bonferroni adjusted and unadjusted minimum
observed P-values.

MS-R8705. T.A. Louis. Efficient monotone sequential design.
AMS 62K05, 62105, 62L15; 26 pp.; key words: optimal design, sequential

methods, monotone follower problem, regret, scale invariance.

Abstract: Optimal designs for nonlinear problems depend on unknown parameters. With no con-
straints, sequential methods can pick the next design point using prior and accruing information
and ‘home in’ on the optimal design. In monotone designs, observations must be ordered in time
(or other metameter), so design options decrease. For example, in rodent bioassay experiments
where a group of n rodents are simultaneously put on test, sacrifices to discover the presence or
absence of tumors can occur only at ages greater than or equal to the current age. So, if data are
taken beyond the optimal age, it is not possible subsequently to go back to it.

For the class of problems studied, statistical information depends on the time data are taken and
unknown parameters. In this report we consider a class of monotone designs based on a scale
invariant design objective, and two structures for statistical information. One factors into a func-
tion of time and a function of the unknown parameter and results from data from a scale family
for each . The other depends on time divided by the unknown parameter, and results, for exam-
ple, from destructive life tests. We develop and investigate two- and three-stage adaptive rules,
compute the asymptotic order of the regret for these rules relative to the rule taking all data at the
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optimal time, and show that the order is close to the best possible. We find the rate at which the
performance of these rules departs from scale invariance, and report on a simulation study com-
paring the current rule to others in the literature.

MS-R8706. M.L. Eaton. Concentration inequalities for Gauss Markov estimators.
AMS 62H12, 62J05, 62F10; 33 pp.; key words: Gauss Markov estimators, con-
centration inequalities, elliptical densities, log concave densities, majorization,
group induced orderings, reflection groups.

Abstracts: Let M be the regression subspace and y the set of possible covariances for a random
vector Y. The linear model determined by M and vy is regular if the identity is in y and if
S(M)CM for all Sey. For such models, concentration inequalities are given for the Gauss Mar-
kov estimator of the mean vector under various distributional and invariance assumptions on the
error vector. Also, invariance is used to establish monotonicity results relative to a natural group
induced partial ordering.

AM-R8702. H. Roozen. An asymptotic solution to a two-dimensional exit prob-
lem arising in population dynamics.

AMS 35C20, 35J25, 60J60, 60J70, 92A15; 26 pp.; key words: a two-
dimensional exit problem, diffusion matrix singular at boundary.

Abstract: This paper deals with a two-dimensional stochastic system, which is the diffusion approx-
imation to a birth-death process. At the boundary of the state space, the diffusion matrix becomes
singular. The stochastic fluctuations are assumed to be small. By an asymptotic analysis, expres-
sions are derived that determine the probability of exit at each of the two boundaries and the
expectation and variance of the exit time. These expressions contain constants that can be com-
puted numerically.

AM-R8703. J.B.T.M. Roerdink. The biennial life strategy in a random environ-
ment.
AMS 15A52, 60H99, 92A15; 17 pp.; key words: population biology, random

matrix products.

Abstract: A discrete-time population model with two age classes is studied which describes the
growth of biennial plants in a randomly varying environment. A fraction of the oldest age class
delays its flowering each year. The solution of the model involves products of random matrices.
We calculate the exact mean and variance of the long-run geometric growth rate assuming a
gamma distribution for the random number of offspring per flowering plant after one year. It is
shown, both by analytical calculation and numerical examples, that it is profitable for the popula-
tion to delay its flowering, in the sense that the average growth rate increases and the extinction
probability decreases. The optimal values of the flowering fraction depend upon the environmental
and model parameters.

AM-R8704. J. Grasman, J.B.T.M. Roerdink. Stochastic and chaotic relaxation
oscillations.
AMS 34C15, 34E1S, 58F13, 60H10; 15 pp.; key words: relaxation oscillation,

stochastic perturbation, chaos.

Abstract: For relaxation oscillators stochastic and chaotic dynamics are investigated. The effect of
random perturbations upon the period is computed. For an extended system with additional state
variables chaotic behaviour can be expected. As an example the Van der Pol oscillator is changed
into a third order system admitting period doubling and chaos in a certain parameter range. The
distinction between chaotic oscillation and oscillation with noise is explored by studying a time
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series of one of the variables. Return maps, power spectra and Lyapunov exponents are analyzed
for that purpose.

AM-R8705. H.E. de Swart. Low-order spectral models of the atmospheric circu-
lation: a survey.

AMS 86A10, 76E20, 35A35, 34C35; 40 pp.; key words: interaction between
planetary waves and synoptic eddies, low-order models, bifurcation analysis,
vacillation between weather regimes.

Abstract: A quasi-geostrophic potential vorticity equation is derived from the Navier-Stokes equa-
tions for atmospheric motions. It describes the evolution of a quasi-horizontal flow at time scales
of a few days and more. The associated boundary value problem is analyzed by projection of the
equation onto orthonormal eigenfunctions (modes) of a Sturm-Liouville operator. The result is a
spectral model, consisting of an infinite number of nonlinear ordinary differential equations for the
evolution of the mode amplitudes. Low-order spectral models, in which only a few modes are
resolved, appear to have properties which agree with observations of the atmospheric circulation.
However, little justification is available for truncating the spectral expansion at low resolution
numbers. It is argued that stochastic forcing terms should be added to the equations, but it is not
priori clear how they should be specified. A derivation is presented of a specific low-order spectral
model of the quasi-geostrophic potential vorticity equation. Some of its subsystems are analyzed
for their physical and mathematical properties. It appears that topography can act as a triggering
mechanism to generate multiple equilibria. The corresponding flow patterns resemble preference
states of the atmospheric circulation. The systems can vacillate between three characteristic
regimes with transitions provided either by external or internal mechanisms. A discussion is
presented on the validity of stochasticly forced spectral models and deterministic chaotic models
for the atmospheric circulation.

AM-N8701. M. van Herwijnen. IMAGES: A study of Serra’s mathematical
morphology (in Dutch).

44 pp.

Abstract: This report gives an overview of J. Serra’s theory of mathematical morphology, which
provides a powerful, organized and uniform approach to computer image analysis. Images are con-
sidered as subsets of R” and the theory considers the class of ‘morphological transformations’ of
these subsets. Various imperfections in the theory are pointed out. Also implementation of the
transformations on a personal computer is dicussed.

PM-R8703. T.H. Koornwinder. Group theoretic interpretations of Askey’s
scheme of hypergeometric orthogonal polynomials.

AMS 33A65, 33A30, 33A75, 44A20, 22E70; 29 pp.; key words: classical
orthogonal polynomials, Askey’s scheme of hypergeometric orthogonal polyno-
mials, limit transitions between families of special functions, integral
transforms with special function kernels, group theoretic interpretations of spe-
cial functions.

Abstract: This paper gives a survey of various group theoretical interpretations of the classical
hypergeometric orthogonal polynomials which occur in the Askey scheme. Furthermore, a natural
extension of the scheme is discussed, where families of hypergeometric functions are allowed which
may be orthogonal in a generalized sense and which may be of nonpolynomial nature. Limit tran-
sitions and group theoretic interpretations are also given for this extended scheme. It turns out
that the scheme contains many triples of kernels of integral transforms for which the composition
yields identity.
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PM-R8704. SN.M. Ruijsenaars. Action-angle maps and scattering theory for
some finite-dimensional integrable systems. The pure solution case.

AMS 70F10, 70H15, 70H40; 34 pp.; key words: action-angle maps, solitons,
relativistic particle dynamics, scattering theory.

Abstract: We construct an action-angle transformation for the Calogero-Moser systems with repul-
sive potentials, and for relativistic generalizations thereof. This map is shown to be closely related
to the wave transformations for a large class € of Hamiltonians, and is shown to have remarkable
duality properties. All dynamics in € lead to the same scattering transformation, which is obtained
explicitly and exhibits a soliton structure. An auxiliary result concerns the spectral asymptotics of
matrices of the form Mexp(tD) as t—co. It pertains to diagonal matrices D whose diagonal ele-
ments have pairwise different real parts and to matrices M for which certain principal minors are
non-zero.
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CWI Activities
Winter 1987

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWI.

Study group on Analysis on Lie groups. Jointly with University of Leiden.
Biweekly. (T.H. Koornwinder)

Seminar on Integrable Systems. Once a month. (M. Hazewinkel)

Seminar on Algebra and Geometry. Once a month. (A.M. Cohen)
The Cohomology of the Schubert variety and Coxeter groups.

Cryptography working group. Monthly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Seminar on Mathematical Morphology. 21,28 October, 4,11,13,17 November.
(H.J.A.M. Heijmans)

Study group Biomathematics. Lectures by visitors or members of the group.
Jointly with University of Leiden. Bimonthly. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. Weekly. (N.M.
Temme)
New results and open problems on the research topics of the department:
biomathematics, mathematical physics, asymptotic and applied analysis,
image analysis.

Study group on Statistical and Mathematical Image Analysis. Every three
weeks. (R.D. Gill)

Progress meetings of the Mathematical Statistics Department. Biweekly. (K.O.
Dzhaparidze)
Talks by members of the department on recent developments in research
and consultation.
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Workshop on Statistics in Image Analysis. Jointly with University of Aarhus,
Denmark. 28-29 September. (R.D. Gill)

Study group on Empirical Processes. Jointly with University of Amsterdam.
Biweekly. (R.D. Gill)

Lunteren meeting on Stochastics. 16, 17, and 18 November 1987 at ‘De Blije
Werelt’, Lunteren. (R. Helmers)

Invited speakers: A.D. Barbour (Ziirich, Switzerland), M.T. Barlow (Cam-
bridge, USA), P.J. Bickel (Berkeley, USA), R.W. Keener (Ann Arbor, USA),
E. Nummelin (Helsinki, Finland), J.A. Wellner (Seattle, USA).

System Theory Days. Irregular. (J.H. van Schuppen, J.M. Schumacher)

Study group on System Theory. Biweekly. (J.M. Schumacher)

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Irregular. (H.J.J. te Riele)

Conference on Numerical Mathematics. 5 - 7 October 1987 at Zeist. (W.H.
Hundsdorfer)

Invited speakers: B. Gustafsson (Uppsala, Sweden), A. Lerat (Paris, France),
H.D. Mittelman (Tempe, USA), P.L. Roe (Cranfield, UK), H. Schwetlick
(Halle, DDR), A. Spence (Bath, UK).

Study group on Graphics Standards. Monthly. (M. Bakker)

National Study Group on Concurrency. Jointly with Universities of Leiden &
Eindhoven and several industrial research establishments. 25 September, 23
October, 20 November, 11 December. (J.W. de Bakker)

Post-academic Course on Modern Techniques in Software Engineering. (J.C.

van Vliet)
Various lectures present modern techniques and methods for the construc-
tion of complex software systems. The course is meant for persons with a
background in computer science, who are or will be actively involved in the
construction of those systems.

Post-academic Course on PROLOG. 20-21 October. (P.J.F. Lucas)

In this course, both the theoretical foundations of logic programming and
the applications of the programming language PROLOG are discussed. The
course is meant for researchers and engineers who consider using PROLOG
in their projects.

Study group on Logical Aspects on Artificial Intelligence. 5,6,9,10,11
November. (P.J.F. Lucas)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Process Algebra Meeting. Weekly. (J.W. Klop)
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Visitors to CWI from Abroad

W. van Assche (Leuven, Belgium) 11 June. M.L. Balinski (Ecole Polytech-
nique, Paris, France) 6-7 April. M. Borsboom (Van Karmann Institute, Rhode
Sr. Genese, Belgium) 1 April. A. Camina (University of Norwich) 18-20 May.
R. Charron (St. John’s, New Foundland) 27-29 April. H.R. Gail (IBM York-
town Heights, USA) 27 April. L. Gatteschi (Torino, Italy) May. M. Gevers
(Louvain University, Louvain La Neuve, France) 23-24 April. M.L. Glasser
(Clarkson Univesity, Potsdam, USA) 11-13 May. 1. Guessarian (Lab. Informa-
tique Théoretique et Programmation, Paris, France) 22-26 June. Guo Ben-yu
(Technical University Shanghai, China) 22-23 June. J. Halpern (IBM
Research, San Jose, USA) 14-15 April. C. Jennison (University of Bath, Eng-
land) 26 June - 3 July. W.M. Kantor (Eugene, USA) 16-19 May. V.K.
Klonias (University of Crete, Greece) 20-21 May. G. Latouche (University of
Brussels, Belgium) 24 June. Lin Qun (Xiamen University, China) 22-23 June.
J. Mau (University of Tiibingen, West Germany) 17-19 June. H. Matano
(Hiroshima University, Japan) June. A. Mirtz (Humboldt University, Berlin,
East Germany) May. M. Mimura (Hiroshima University, Japan) June. F.
Morain (University of Limoges, France) 13 April. A.M. Odlyzko (AT&T Bells
Labs, Murray Hill, USA) 10 April. J. Pinter (Budapest) 5 June. J. Priiss
(Gesamthochschule Paderborn, West Germany) 12 May. G. Robin (University
of Limoges, France) 13 April. F. Rouviere (Nice, France) 21-25 April. R.L.
Smith (University of Michigan, Ann Arbor, USA) 24 April. G. Steiner (Mc
Master University, Hamilton, Canada) April. D. Venable (Rochester, USA)
26-30 April. J. Walrand (University of California, Berkeley, USA) 9 June.
W.A. Woyczynski (Case Western Reserve Research Institute, Cleveland, USA)
15-17 June. A.l. Zayed (California Polytechnic State University, USA) 29
June - 14 August. R.A. Moyeed (Dhaka, Bangla Desh) May-June. E.V.
Khamaladze (Steklov Inst. Moscow, USSR) June-July.
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Order Form for CWI Publications

Sales Department
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis

Please send the publications marked below with an invoice

Publication code Price per copy Number of copies wanted
CWI Tract 35 *) D, 3040 00 s
CWI Tract 36 *) 3680 0 s
CWI Tract 37 *) 1410 L
CWI Tract 38 *) 30
CWI Tract 39 *) 040 s
CWI Tract 40 *) 2030 000 e
CWI Tract 41 *) 4.70 L
CWI Tract 42 *) 4290 0 e
CWI Syllabus 13 *) 3160 0 s
CWI Syllabus 14 *) 1650 .
CS-R8707 4--
CS-R8713 e e
CS-R8714 B s
CS-R8715 A= e
CS-R8716 4--
CS-R8717 520
CS-R8718 4--

*) not available on exchange
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Publication code Price per copy
CS-R8719 4.--
CS-R8720 5.20
CS-R8721 4.--
CS-R8722 5.20
CS-R8723 4.--
CS-R8724 4.--
CS-R8725 4.--
CS-R8726 4.--
CS-R8727 4.--
CS-R8728 4.--
CS-R8729 4.--
CS-R8730 6.40
CS-R8731 4.--
CS-R8732 11.60
CS-R8733 5.20
CS-R8734 5.20
CS-Ng701 6.40
0S-R8708 4.--
OS-R8709 4.--
OS-R8710 4.--
OS-R8711 4.--
NM-R8708 4.--
NM-R8709 4.--
NM-R8710 4.--
NM-R8711 4.--
NM-R8712 4.--
NM-R8713 4.--
NM-R8714 4.--
NM-N8702 4.--
MS-R8703 6.40
MS-R8704 5.20
MS-R8705 4.--
MS-R8706 5.20
AM-R8702 4.--
AM-R8703 4.--
AM-R8704 4.--
AM-R8705 6.40
PM-R8703 5.20
PM-R8704 5.20

Number of copies wanted



If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.
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