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The Centre for Mathematics and Computer Science (CWI) is the research
institute of the Stichting Mathematisch Centrum (SMC), which was founded
on 11 February 1946.

The goal of CWI is to carry out fundamental and advanced research in
mathematics and computer science, with special attention to those areas in
which the research may have important applications.

Research at CWI is organized in eight scientific departments:

Pure Mathematics;

Applied Mathematics;

Mathematical Statistics;

Operations Research and System Theory;

Numerical Mathematics;

Software Technology;

Algorithms and Architecture;

Interactive Systems
There are also a number of supporting service divisions, in particular the Com-
puter Systems and Telematics Division, and an extensive Library.

The subdivision of the research into eight departments is less rigid than it
appears, for there exists considerable collaboration between the departments.
This is a matter of deliberate policy, not only in the selection of research
topics, but also in the selection of the permanent scientific staff.



Symplectic Automorphisms of K3-Surfaces

(after S. Mukai and V.V. Nikulin)

Geoffrey Mason
University of California at Santa Cruz

A short, but fairly complete, account is given of the work of Mukali and NIKULIN
on so-called symplectic automorphisms of K3-surfaces. (Nikulin calls such
automorphisms algebraic.)

1. INTRODUCTION

If X is a K3-surface then, essentially by definition, X has a nowhere-vanishing
holomorphic 2-form w. The group G of automorphisms of X which preserves w
is called the group of symplectic automorphisms of X, and the combined work
of Mukal [7] and NIKULIN [8] gives a complete list of the possibilities for the
isomorphism type of G (it is known that G is a finite group). In fact, one can
be much more precise, in particular Mukai shows that there is an imbedding
i:G—M,; where M,; is one of the sporadic Mathieu groups (see below) and
that this induces a QG-isomorphism from the total rational cohomology
V = H"(X,Q) of X to the usual permutation module P (of degree 24) of M,;.
Furthermore by Hodge theory one knows that dimV = 5 (V¢ = the space
of G-invariants in V), so that because of the isomorphism V' = P we find that
i(G) has at least five orbits on the 24 letters being permuted. Mukai shows
that, conversely, if H < M,; has at least five orbits on the 24 letters then
there is a K3-surface on which H acts (effectively) as symplectic automor-
phisms. Because of the surprising connection with M,;, these results are of
interest to finite group-theorists as well as others.

I have taken the opportunity of simplifying Mukai’s group-theoretic analysis
of the possibilities for G. Thus only some standard facts, available in [6] and
the elementary parts of [4], are needed, and the only classification results we
use are the results of BRAUER [2] giving the simple groups of order 2¢-3°-5
(needed only if @ < 7, b < 2!). There is almost nothing new here, although
we should comment that for the possibility G = Z, X Zg Mukai has to refer to
Nikulin, whose proof that this cannot occur is quite intricate. In fact we will
eliminate this possibility quite easily at the outset, making the overall proof
reasonably short.



2. K 3-SURFACES

We recall some pertinent facts about K 3-surfaces. K 3-surfaces were named
(by A. Weil) after Kummer, Kihler, Kodaira and the beautiful mountain K2
in Kashmir. They form one of 10 classes of minimal models of compact con-
nected 2-dimensional complex manifolds in the Enriques-Kodaira classification
(and one of 5 classes of such manifolds with Kodaira dimension 0). Double
coverings of the complex projective plane with a branch curve of degree 6 hav-
ing only simple singularities are examples, but there are K 3-surfaces that can-
not be constructed in this way. (In fact, the set of algebraic K 3-surfaces is a
union of countably many 19-dimensional families in the 20-dimensional family
of all K3-surfaces.) For background material on K3-surfaces we refer the
reader to [1]. Those readers not familiar with K3-surfaces may take the
relevant results below as axioms without impairing their understanding of the
later group-theoretic analysis.

We may define a K3-surface X to be a compact, 2-dimensional complex
manifold such that X has first Betti number 0 and trivial canonical bundle.
Then the cohomology space V = H*(X,Q) is even, that is the groups
H'(X,Q) and H 3(X,Q) are trivial. The Hodge decomposition yields a
representation of V" as a direct sum

V = HYX)OH> (X)X ®H" (X)®H* (X)®H*(X) , Q.1
each of the five summands being non-trivial. In fact we have
dimH® = dimH>" = dimH"? = dimH* = 1 and dimH"' = 20 . (22

In particular dimV = 24. Now the group G of symplectic automorphisms of
X is the group of automorphisms of X which acts trivially on H>°(X). Then by
duality G is trivial on H 0.2(X), as well as being trivial on H 0(X) and H*(X).
Mukai establishes that H"!(X) also has a non-zero G-invariant, whence

dimv® = 5. 2.3)

3. THE REPRESENTATION OF G ON H*(X,Q)

We have already remarked that G is a finite group, and Mukai’s method is to
first compute the character of G on the rational G-space V. This proceeds as
follows: first fix a point p € X, and let G, = {g € Glgp = p} be the
corresponding isotropy group. Then G, acts on the tangent space T, at p
(essentially via the map g ~ dg sending an element g €G, to its differential).
This action is faithful, so realizing G, as a subgroup of GL(T,) = GL,(C).
But in fact, because G, preserves the 2-form w, G, preserves a non-degenerate
symplectic form on T, yielding

There is an imbedding G, — SLy(C). In particular, the abelian subgroups (3.1)
of G, are cyclic.

Of course, all finite subgroups of SL,(C) are well known. Next, one knows



that for each g € G, the set F(g) = {peXlgp = p} of fixed-points of g is
finite. Using a version of the Atiyah-Singer index theorem Mukai proves the
following crucial result.

The cardinality |F(g)| of the g-fixed-points depends only on the order |g| (3.2)

24 1
=T H1+—}%

5 L0
Here, n = |g| = 2, and p ranges over the prime divisors of n. This determines
the character of G on V; because of the fact that H*(X,Q) is even and F(g) is
finite, the Lefschetz fixed-point-formula tells us the following:

If V.= H'(X,Q) affords the character x of g then for all 1 #+ g € G we (3.3)
have x(g) = |F(g)l.
We complete this section with the possibilities for x(g) which follow from (2.2),
(3.2) and (3.3). We may write x(n) instead of x(g) if g has order n, and we
obtain the following

of g, and is given by the formula |Fg| =

n 12345678911 121516 23

(3.4)

xn) 2486442322 2 1 1 1 1

All we need, to determine the nature of G, are the results (2.3) and (3.1)-(3.4),
and as we said these may be taken as axioms in the following since nothing
more concerning the nature of x will be needed.

4. THE MATHIEU GROUPS M3 AND M,
We record some results concerning the Mathieu groups. Let £ be a set of car-
dinality 24 on which the symmetric group 2,4 acts in the usual fashion. 2y,
contains a (maximal) subgroup M, (which acts quintuply transitively!) on Q.
It can be defined as the stabilizer in 2,4 of a collection of 759 subsets of £ of
size 8 with the property that no two have more than 4 elements of £ in com-
mon, and is closely related to the so-called extended binary Golay code. See
[3] for more details. My, is a simple group, as is the subgroup M,; which is
by definition the isotropy group (in M) of a point of . Both M3 and My,
are among the so-called sporadic simple groups, which accounts for the
interest of the results to group-theorists. However, both the simplicity and
sporadic nature of these groups is irrelevant as regards the present discussion.
Exactly why M,; plays a role is presently unclear.

Next we list those isomorphism types of subgroups of M,; which, up to con-
jugacy, are maximal subject to having at least five orbits on 2. The results can
be readily checked, for example, from table 3 of [3].

(1) PSLy(T(=SL3(2))

(i1) Ag(=PSL,(9))

(ii1) Zs

@iv) E ¢ : As (no elements of order 6)
v) Eq : Qg



(Vl) Eg : Dg

(vii) (A4XAy) : Z, (a 3-Sylow being inverted by an involution)

(viii) E ¢ : D, (trivial center)

(ix) (Q3*Q3g) : Z3 (no elements of order 12)

(x) E ¢ : 24 (no elements of order 6)

(x1) GLy(3)(=Qs : 23)

Here, we have used fairly standard notation: 4, is the alternating group on n
letters, =, the corresponding symmetric group, E, the elementary abelian
group of order p” for a prime p, Qg the quaternion group of order 8 and Dy
the dihedral group of order 2k. Furthermore, if 4 and B are groups, then
A : B denotes a semidirect product with normal subgroup 4, and A*B a cen-
tral product of A4 and B (i.e., a quotient of 4 X B by a subgroup of its centre).
The information provided specifies a unique group in each of (i)-(xi).

We remark that the requirement of having at least five orbits on £ does not
prevent some of the groups listed exhibiting several different orbit structures
(though it is evident that the number of orbits depends only on the group).
Thus M,; contains a conjugacy class of PSL,(7) with orbit lengths 1,1,1,7,14
and another with orbits 1,1,7,7,8.

Denote by P the permutation module for M,4 obtained from its action on
Q. We regard P as a QH-module for each subgroup H of My, by restriction. If
P affords the character 7 then of course for g € M, one has

m(g) = # of letters in § fixed by g.
It is readily verified that the following holds:

If geM 3 then the value of m(g) depends only on the order of g and is (4.1)

given by the same formula as in (3.2), viz. w(g) = 2‘—1-1—[(1 + i) where
n = |g|. n o P

5. MUKATI’S RESULTS
It was Mukai who first noticed the strange coincidence of (4.1) and (3.2) and
used it to prove the following results:

THEOREM (MUKAI). If G is a group of symplectic automorphisms of the K3-
surface X then there is an imbedding i:G — M3 such that i(G) is a subgroup of
one of the groups listed in (i)-(xi) above.

THEOREM. If V = H*(X,Q) and P are as above then the imbedding i induces a
QG-isomorphism of modules a:V — P.

REMARKS
(1) Granted the existence of i, the second theorem is a consequence of
4.1).

(i)  Granted the existence of any imbedding G — M3, a still exists, whence
by (2.3) we can conclude that i(G) has at least five orbits on Q and
hence is in one of the groups (i)-(xi). Thus to prove the theorems, we
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only need some imbedding G — M ;.
(i)  Mukai exhibits K 3-surfaces admitting each of the groups (i)-(xi) as sym-
plectic automorphisms, but we will not deal with that result here.

The remainder of this paper is concerned with a proof of Mukai’s theorem. As
we already mentioned, we use only the results (2.3), (3.1)-(3.4), together with
the following facts concerning M ;.

6. SOME PROPERTIES OF M ;
We list here some more technical results concerning the 2-structure of M,;.

First we introduce the group A, the (universal) central extension of 4 by Z,,
Le., the non-split extension 1 — Z, — A3 — Ag — 1. This group will play a
role in what follows. For now we need only the following:

;18 and M3 have isomorphic Sylow 2—subgroups, of order 27, (6.1)

(See [5].) Let T be a 2-Sylow subgroup of M,3;. As M,; has a subgroup of the
shape E ¢ : A4, the following properties of T are easily verified.

Let J = J(T) be the subgroup of T generated by all abelian subgroups of (6.2)
maximal order (which order is 16). Then J has order 2° and it contains
exactly two subgroups of type E g, three of type Z4 X124, and no others of

order 16 which are abelian.

An immediate consequence is

T has no subgroup isomorphic to Z, XZg . (6.3)

7. NIKULIN’S RESULT
Given our group G of symplectic automorphisms, let a(n) =
#{geGl|g| = n}. Then of course we have

>a(n) = |G|

n=1

and it is also well known that, in the notation of (3.3),
|G| ' Za(n)x(n) = dimv°

this latter quantity being =5 by (2.3). For example if |G| is a prime p we get
a(l) = l,a(p) = p—1, x(1) = 24, x(p) = 24/p+1 and find that

|G|~ 'Za(n)x(n) = 48/p+1 = 5.

This forces p < 7, and a similar analysis shows that if G is cyclic of order
n=|G| then the inequality n = 9 leads to |G|~ 'Za(n)x(n) < 5. So we get

If g € G then |g| < 8. 7.1)

Next we prove



If teG is an involution then C(t) is isomorphic to a subgroup of A 3- (7.2)
As a corollary, we obtain

A 2-Sylow subgroup of G is isomorphic to a subgroup of M ;. (7.3)

The corollary follows from (7.2) and (6.1). To prove (7.2), let F = F(t) be the
points of the K 3-surface X fixed by 7, so that |F| = 8 by (3.4). Of course the
group C = Cg(t) preserves F. Now if an element g € C fixes each point of F
then |g| = 1 or 2 by (3.4), whereas by (3.1) no two distinct involutions of G
can fix a common point of X. This shows that only <z> fixes each point of
F, yielding an imbedding C/<t> = Zg. Let us write C = C/<t>, thinking
of C as a group permuting F.

Suppose that C contains an odd permutation. Then it contains a permuta-
tion x of the shape (12), (1234), (12)(34)(56), (123456), or (12345678). In the
first four cases x fixes points of F, as does the group <x,7>. By (3.1) we get
<x,t> cyclic, so |x|=2|x|=4, 8, 4 or 12, respectively. So the fourth case is
out by (7.1). In the first three cases, x(x) = 4, 2, or 4 by (3.4), whereas since
F(x)C F we see that |F(x)| = 6, 4, or 2 respectively. This contradiction
shows that X can only be an 8-cycle.

Now as G has no elements of order 16 by (7.1) then <x,t> =Z, XZg. Let
u be the unique involution of <x,7> which has a square root in <x,t>, and
apply a similar procedure to Cg(u) = B, say, setting E = F(u). Of course
<x,0> < B. Moreover as t % u then ¢ fixes no element of E by (3.1),
whereas any element y € <x,t> of order 8 must satisfy y* = u, so y fixes
just 2 points of E by (3.4), so y has shape (1234)(56) in its action on E as y
induces an element of order 4. Thus <x,z > induces a group of even permu-
tations of E, putting <x,t>/<u><=>Ajg. .

Finally, this means either <x,t><Z, X Ag or <x,t><>Ag, and since nei-
ther Z, XAy nor Ag contains Z, XZg (cf. (6.1)«(6.3)), this shows that x does
not exist. _ .

Thus we get C=>Ag, so that C=>Z; XAg or C=>Ajg. Assume the first case.
Then no involution of C fixes a point of F by (3.1), so a Sylow 2-subgroup of
C has order at most 8. Also, C cannot contain an element of the shape (123)
by (3.4), and it has no elements of order 5 or 7 since there are no elements of
order 2p for p=5 by (7.1). Thus |C| divides 24 and we easily verify that,
whatever the possibility for C, the group 43 has a subgroup isomorphic to C.
So in any case C=>Ay as required.

Let A<G be an abelian subgroup of even order. Then A is isomorphic to a (7.4)
subgroup of one of the following groups: E g, Z4XZs, Lg, Iy X L.

PROOF. A contains an involution 7, so by (7.2) we get A=>Ayg. If 4 is a 2-
group then we may take 4 < T, a 2-Sylow of Ay, in which case one of the
first three possibilities applies by (6.2). If 4 is not a 2-group, it must have
order 293 for some a since there are no elements of order 2p for primes



p = 5. Similarly there are no elements of order 12, so the 2-Sylow subgroup
of Ais Ey and A = Ey-' XZ¢. Finally, setting A = A/<t> < Ay as in
the proof of (7.2), it was shown there that an element of A of order 3 neces-
sarily has the shape (123)(456). Then if 4|4 | then A contains an involution b
fixing both 7 and 8. Then b pulls back to an element of order 4 in 4 < Ag,
and as 4 contains no such element this is impossible. So 4f |4 |, thatisa < 2
and (7.4) follows.

We can use similar arguments to that of the proof of (7.2), applied to elements
of odd prime order p. If x is such an element then Cg(x) acts on the set
F(x) = F of fixed points of x in its action on the surface X. Again the group
Cs(x)/<x > induces a group of permutations on X. If p = 5 then [X| <p
by (3.4), so pt |Cs(x):<x >|, which forces <x> to be already a p-Sylow
subgroup of G. If p = 3 then | X| = 6 and Cg(x)/<x> < Z. In this case
no element of Cg(x)/<<x> of order 3 can be a permutation of the shape
(123) (by (3.1) and (7.1)), so |Cg(x)/<x>| cannot be divisible by 9, that is
| Cg(x)| is not divisible by P, By taking x to be an element in the center of a
3-Sylow subgroup, say R, of G, we deduce that |R|<9. Hence, we have
proved

|G| divides 27-3%57 . (7.5)

(NIKULIN). Any abelian subgroup of G is contained in one of the following (7.6)
groups: E g, Zy X2y, Zg, Ly XL, Eg, Zs or Z1.

PrOOF. We are done by (7.4) if the abelian group has even order. If not, it has
order dividing 32-5-7 by (7.5) and each element has order 3, 5, or 7 by (7.1).
The result follows.

8. THE CASE WHERE |G| IS DIVISIBLE BY 7
We show in this section
If 7| | G| then G is isomorphic to a subgroup of L, (7). 8.1)

We fix a 7-Sylow subgroup S of G, so that |S| = 7 by (7.5). By (7.1) we see
that S is its own centralizer in G, that is S = Cg(S). Set N = Ng(S).

The order of N is odd. (8.2)

Proor. Otherwise there is an involution 1 € N, and since ¢ does not centralize
S then <S,1> = Dy,. Setting H = <S,t>, H contains the identity, 6 ele-
ments of order 7 and 7 of order 2. This yields

dimVE = 114 24+63+78) = 7.

On the other hand we also have



dimVS = %(24+6-3) = 6,

putting us in the situation that S < H and yet dimvH > dimVS. This is
impossible, and the result follows.

S normalizes no non-trivial subgroup of G of order coprime 10 7. 8.3)

PrOOF. For let 1 5= H < G satisfy H < HS and 7t|H|. By a well known
result [4, Theorem 6.2.] we can take H to be a p-group for some prime p. As
S = Cg(S) we must have 7| |[H|—1, so by (7.5) we see that p = 2. More-
over S acts on Z(H), and by (7.6) together with 7||Z (H)| —1 we find that
Z(H) = Eg. Set K = Z(H)'S. Then K contains 48 elements of order 7 and 7
involutions, yielding

dimvk = —5%(24+7-8+48-3) = 4,

This contradicts (2.3), and completes the proof.
If G is solvable then G = Z; or 2,25 . (8.4)

PROOF. Since S normalizes the Fitting subgroup F(G) of G it normalizes each
of the p-Sylow subgroups of F(G) also. By (8.3), such a p-Sylow subgroup of
F(G) is trivial if p 57, so we must have F(G) = S < G since
Co(F(G)) < F(G) ensures that F(G) is non-trivial. Since Cg(S) = S then
G/S < Aut(S) = Z¢. Now the result follows from (8.2).

If G is non-solvable then G is non-abelian simple and | N | = 21. (8.5)

PROOF. Let E be a minimal (non-trivial) normal subgroup of G. By (8.3) we
get 7| | E|, so that S < E. If E = S then G is solvable, the converse being
true by (8.4).

Suppose E = S. Since E is the direct product of isomorphic simple groups
E must itself be simple and non-abelian. Now by a theorem of BURNSIDE [4,
Theorem 7.43], if Ng(S) = S then E = K:S for some group K of order
coprime to 7. This is impossible by (8.3), so Ng(S) > S. After (8.2) we get
Ng(S) = N has order 21.

Finally, the Frattini argument [4, Theorem 1.37]  yields
G = E‘Ng(S) = E'N = E,sothat G = E is non-abelian simple, and we are
done.

The order of G is not divisible by 5 . (8.6)

PrOOF. If false, G has a Sylow 5-subgroup F of order 5, and Cg(F) = F by
(7.1). If Ng(F) = F then G = K:F for some group K of order prime to 5 by
Burnside’s theorem [loc cit], against the simplicity of G (cf. (8.4) and (8.5)). So
we have | Ng(F):F| = 2 or 4 since Ng(F)/F < Aut(F) = Z,.

10



Now after (8.5) we have |G| = 29-3%-57 with b = 1. Moreover by Sylow’s
theorem applied to both Ng(S) and Ng(F) we have |G:Ng(F)| = 1 (mod 5)
and |G:Ng(S)|=1 (mod 7), and in the latter case we even know that
INg(S)| = 21. The only possibilities are the following:

(i) INg(F)| =10,|G| = 26-32:57.
() INg(F)| =20,|G| = 2*-3%:57.

We use the equations |G| = Za(n) and dimV® = |G| 'Za(n)x(n)=5,

eliminate a(2) from them, and arrive at the inequalities
16

0<|G | '[2a(3)+4a(4)+4a(5)+6a(6)+5a(7)+6a(8)]<3+ T *)

In case (i) we have a(5) = 2|G|/5 and a(7) = 2| G|/7, which gives

0<IGI"[2a(3)+4a(4)—+—6a(6)+6a(8)]<3+I—IG6|——% - 17—0,
in particular O<—|1—G6T = % Thus |G|=<16-35, a contradiction.

In case (ii)) we have a(5) = |G|/5, a(7) = 2|G|/7. Moreover in this case
Ng(F) contains an element x of order 4. By (7.1) C5(x) is a 2-group, of order
at most 8 since |Cs(x)| divides |G |. So either |Cg(x)| = 8 and x is not con-
jugate to its inverse, or else Cs(x) = <x > and x is conjugate to its inverse.

lZ' . Now (*) yields

In either case we get a(4)=

0<1G1'2a(d)+6a(B) +6a®)<3+ o — T~ T -1,

yielding | G| <70, contradiction.

PROOF OF (8.1). We may assume G non-solvable by (8.4), whence it is simple
of order 2°-3-7 by (8.6) and (8.5). In fact (8.5) and Sylow’s theorem force
|G| = 2437 with a = 3 or 6. If a = 3 then G = L,(7), being a simple
group of order 168.

It remains to show that a = 6 is impossible. In fact we will show that G has
a subgroup of index 7, which clearly suffices. Now by a theorem of FROBENIUS
[4, Theorem 7.4.5(a)] there is a 2-group U in G such that Ng(U)/Cg(U) is not
a 2-group. Choose U with |U| maximal. By (8.3), Ng(U) has order 2b-3 for
some b. Let T be a 2-Sylow of G containing U with T} = Np(U) a 2-Sylow of
Ng(U). If T; = T then Ng(U) has index 7 in G as required, so we can assume
that T\<T. Hence |UI<16 since |T| =25  Note that

Cs(U)<U = 0,(Ng(U)) by choice of U. Let R = Z be a 3-Sylow of Ng(U).
Suppose first that |U|<4. Then R acts faithfully on U, so U = E4 and
U = Cs(U). Now from (6.2), we see that T (having index 2 in a 2-Sylow of
M 3) certainly has a normal subgroup E isomorphic to Eg. Then one checks
that | Cgy(U)| =8, against U = Cg(U). So |U|=8.
Next, since Cq(U)<U then certainly Z(T'<Z(U). So if R centralizes Z(U)
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then N (Z(T)) contains both 7 and R and hence has index 7 in G since Z(T)
cannot be normal in G by simplicity. So R does not centralize Z(U), and this
is enough to ensure that U is abelian.

If U= E then U T since all Eig’s in a 2-Sylow of M,; are normal.
This is false, so if |U| = 16 then U = Z,XZ,4 by (6.2). Then U is the unique
subgroup of T of type Z4 X2, so U is characteristic in 7', whence normal in
T. So in fact |U| = 8 and since R does not centralize U then U = Eg. Let
Uy = Cy(R)=1Z,, so that Uy = Z(Ng(U)). By choice of U,
Ng(Up) = Ng(U).

Now |T,:U| = 2 and U is not the only Eg-subgroup of T',. Thus T has
exactly two Eg-subgroups, call them U and U,, and T, = UU,. This forces
T, = Ny(T)) to satisfy |T,:T| = 2. Then U,U, are not the only two Eg-
subgroups of T, (otherwise Nr(U)<T)), so there is x € T, \ T lying in an
Eg-subgroup of T,. Since U* = U,, the only possibility is that x centralizes
U N U,(=E,), in particular x € C5(Up)=Ng(U), so x € T,. This is not
the case and (8.1) is proved.

9. THE CASE WHERE |G| IS DIVISIBLE BY 5
Here we prove

If 5 divides |G| then G is isomorphic to a subgroup of one of the groups: (9.1)
Zs, Ag, Er6:A5s.

We fix a Sylow 5-subgroup F of G. By (7.1) we have Cg(F) = F. Let
N = Ng(F). Then N/F<Aut(F) = Z,.

If A is a non-trivial F-invariant subgroup of G of order prime to 5 then (9.2)
A= El6~

PrOOF. By [4, Theorem 6.2.2] F normalizes a p-Sylow subgroup of 4 for each
prime p; call such an A-invariant p-Sylow S,. By (7.1) we get 5||S, | — 1, which
forces A = S,. Similarly as C4(F) = 1 by (7.1) we must have [4] = 16
since |A | <27, and the result follows easily.

The conclusions of (9.1) hold if G is solvable . 9.3)

PrOOF. If F < F(G) then F = F(G) by (7.1) and the nilpotence of F(G).
Then G/F<Aut(F) = Z;,50 G < Zs-Z4 < Zs.

If F < F(G) then F(G) = E ¢ by (9.2). Moreover F-F(G)]G, in fact
F-F(G)/F(G) = F(G/F(G)), so G < E ¢ (Zs'Z,). But this latter group con-
tains, besides the identity, 35 involutions, 5-28 elements of order 4, 5:16 ele-

ments of order 8 and 2° elements of order 5. This yields
dimV® = 3—;0(24+8-35 +4528+2:516+42°) = 4,

contradiction. So in fact G < E g - Dy < E4'45, as required.
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PROOF OF (9.1). We may assume that G is non-solvable by (9.3). Let E be a
minimal normal subgroup of G, and assume first that 5||E|. If E is solvable
then E is an elementary abelian p-group for some p, whence E = F and G is
solvable. So E is non-solvable, hence non-abelian simple since it must be a
direct product of isomorphic simple groups.

By Brauer’s result [2] we get E =As or A¢ In the first case
G <Aut(E)=3; and we are done. In the second case,
G/E < Out(A¢) = E4, and it is well known that the three subgroups of
index 2 in Aut(A¢) are of type PGL,(9), Z¢ and M, respectively (Mo is the
stabilizer of two points in the action of M, on 12 points). Now PGL,(9) con-
tains an element of order 10, which shows that G is neither PGL,(9) nor the
full automorphism group Aut (4 ).

The enumeration of elements of Z¢ is well known, and leads to dim Ve = 4,
Similarly, a subgroup My in M,; has only four orbits on & as is readily
checked, and hence, since we know that the character of any M, on
V = H*(X,Q) is the same as that of an M}, on P = QR, we must get
dimV° = 4 in this case, too.

So the result is proved if 5||E|. Assume therefore that 5 does not divide
|E|. By (9.1), E = Ejs and E = Cg(E) by (7.6). As G is non-solvable then
so is G/E and hence a minimal normal subgroup of G/E must be isomorphic
to As or Ag. As we have already seen that the group E¢'(Zs'Z4) cannot
occur, it follows that G/E = As or A¢. Now the group M,; contains a sub-
group Es-Ag with 4 orbits on £, and as we have seen before this forces
dIMVG =4if G = E16'A6- So in fact G = E16‘A5.

There are two possibilities for the isomorphism type of E considered as an
F,As-module. In the first, 45 is transitive on the non-identity elements of E;
in this case G has a subgroup H of index 5, order 263, with a normal 2-Sylow
U and Sylow 3-subgroup R (=Z3) satisfying Cy(R) = 1. Then one finds (see
(10.3)) that U = J(T) in the notation of (6.2), in particular E has a comple-
ment in U, hence in G by a well known result of GAscHUTZ ([6, 1.17.4]). So
G = E ¢ - As is a split extension isomorphic to the group M of [3], and cer-
ta.mly lies in M 23

The other possibility is that there are two orbits in the action on E%, of
lengths 5 and 10. In this case the subgroup H of G or order 26-3 has a normal
2-Sylow U, 3-Sylow R, and Cg(R) = Cy(R) = E,. Then H contains 27 invo-
lutions, 32 elements of order 3, 36 of order 4, and 96 of order 6, yielding

dimV? = Téi(24+8-27+6-32+4~36+2-96) = 4

This contradiction completes the proof of (9.1).
10. THE CASE WHERE |G| IS DIVISIBLE BY 9

We turn to the cases in which neither 5 nor 7 divide |G|. So G is solvable of
order 2¢-3% with @ < 7 and b < 2. Here we prove
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If 9 |IG| then G is isomorphic to a subgroup of one of the following: (10.1)
Eg : Qs, Eg - D3, (A4 XA4)Z,.

PROOF. Let R be a Sylow 3-subgroup of G, so that R = Z3XZ3 by (7.1).
Suppose first that R < F(G). By (7.6) we get R = F(G), so as R = Cg(R)
then G/R < Aut(R) = GL,(3). As G/R is a 2-group it must be isomorphic to
a 2-subgroup of GL,(3). This latter group has three maximal subgroups, of
type Zg, Qg and Dy respectively. Now the group Eg:Zg has 9 involutions, 18
elements of order 4, 36 of order 8, and 8 of order 3, yielding

dimv¢ = %(24+8-9+4-18+2-36+6-8) = 4.
This shows that a 2-Sylow of G cannot contain Zg, hence lies in Qg or Dg,

giving the first two possibilities.
Before continuing the proof of (10.1) we interpolate two useful results.

Suppose B is a 2-group with |B:Z(B)| = 4. Then its derived group B’ (10.2)
has order |B’| = 2.

PrROOF. Let |B| = 2". If x € B\ Z(B) then Cp(x) = Z(B)<x > has index
2 in B. Thus B has exactly 2" >+-(2"—2""?) conjugacy classes, that is
5273 classes. On the other hand let |B’| = 2°. Note that ¢ =1 as B is
non-abelian. Then B has |B:B’| = 2"~ ¢ characters of degree 1, and since the
number of irreducible characters equals the number of conjugacy classes, B has
52" =3 — 2"~¢ irreducible characters of degree =2. Since |G| equals the sum
of the squares of the degrees of the irreducible characters we must have

2" = 2" 4 4(5-20 3270,
This reduces to 2" ¢ = 2" "', whence ¢ = 1 as required.

Suppose B is a 2-group in M3 such that |B| < 2% and B has an auto- (10.3)
morphism « of order 3 satisfying Cg(a) = 1. Then either B is abelian or
else B = J(T) in the notation of (6.2).

PrROOF. Suppose that B is non-abelian. Set Z = Z (B)iB. Since a fixes no

elements of B*¥ the same is also true of Z and B/Z. If |B:Z| = 4 then
|B’| = 2 by (10.2), so « centralizes B’. This is false, so we have |B/Z| = 16
and |Z|=4. In fact, C,(a)=1 forces Z=E,. Again (10.2) together with
Cg z(a)=1 force B/Z abelian, so B/Z = E s or Z;XZ,. In the latter case, if
we choose x e B so that xZ has order 4 in B/Z, then
<x,Z> = Z,XZ, X2, or Z, XZg, and both are impossible by (6.2). So in
fact B/Z = E ¢ and B/Z is generated by subgroups B;/Z of order 4 which
are a-invariant. Now (10.2) yields that each B, is abelian, and the result fol-
lows from (6.2).

We return to the proof of (10.1) and consider next the case that
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RNF(G)=1. Then F =F(G) is a 2-group. Now we have
F = <Cp(Ry)|Z; = Ry<R> by [4, Theorem 6.2.4], and since Cg(R) = 1
by (7.6) then for each R; < R of order 3 the group Cg(R),) satisfies the con-
clusions of (10.3). It follows from (7.6) that Cx(R,) = 1 or E,4 for each such
R,. As |F|<2° there is some Z; = Ry<R with Cx(R,) = 1, so again (10.3)
yields F = E s or F = J(T) with the notation of (6.2). In the latter case we
see that FR contains 27 involutions, 27 + 6-2* elements of order 3, 36 of order
4, 18-2* of order 6, and hence that dimV*R = 4. This is impossible, so that
F = E g and FR = A4XA,.

Finally, G/FR must be a subgroup of Dg. If G/FR has an element of order
4 then G has a subgroup H of the form Es'(Eq'Z,4). This group contains 51
involutions, 80 elements of order 3, 9-28 of order 4, 9-16 of order 8, and 48 of
order 6; we compute that dimV" = 4, contradiction. So G/FR has exponent
2. Let x be an involution of G \ FR. Now FR has just two normal subgroups
isomorphic to A4, so x either fixes or interchanges them.

If x interchanges these two A,4’s then the group H = FR <x > contains 27
involutions, 80 elements of order 3, 36 of order 4 and 144 of order 6; this
leads to the contradiction dimVR<*> = 4. So x normalizes each of the 4,’s
normal in FR. If A, is one of these normal A,’s then 4, <x> = 24 or
Z, X A4. If the second case holds, and if 4, is the other normal 44, we must
have A, <x> = 3, or Z, XA,4, and then FR <x > contains either Z,<XZ;
or Ej, respectively. This contradicts (7.6), so in fact 4,<x> = 2, for
i = 1, 2, which gives the third possibility of (10.1).

It remains to consider the possibility that RNF(G) # 1, R < F(G). Then
RNF(G) = Ry = Z3, and since C5(R) = R by (7.6) we get F(G) = Z3 XE,4
by (7.6) once more. As there are no elements of order 12, another application
of (7.6) shows that Cg(Rg) = F(G)R = Z3XA4 and of course
|G:Cq(Ry)|<2. If G = Cg(Rg) then G < A4 X A4. If |G:C(Rp)| = 2
then |Ng(R):R| = 2 and there is an involution x € Ng(R). We easily see
that G = F(G)R <x> is isomorphic either to a subgroup of the group
(A4 X A4)Z, already considered, or to the group 23 X E4. Butif G = 33 XE,
we easily find that dimV’¢ = 7, whereas for the group K = Z3 X E,4 of index 2
we get dimVX = 6. This contradiction completes the proof of (10.1).

11. END OF PROOF
In this last section we assume that |G| = 2%-3° with b < 1. After (7.3) we
may assume that b = 1. Note that the last paragraph established

G % Sy XE, . (11.1)

We must show, of course, that G is isomorphic to a subgroup of one of the
groups (i)-(xi) in Section 4.

Let R = Z; be a Sylow 3-subgroup of G, and assume first that R < F(G),
that is R <J G. After (7.6) we get Cg(R) = RXE where E is one of 1, Z,, or
E4, and of course |G:Cg(R)|<2. If E = 1 then G = Z; or Z; and we are
done. If E = Z, then either G = C;(R) = Z¢ or else a 2-Sylow of G has
order 4 and hence is E4 or Z4. If E4 then G = Z,XZ2; is contained (for

15



example) in Zs. If Z, then G = Z3-Z, is contained in the group (4,4 XA4)Z,
of (vii).

Finally, assume that E = E4. If G = Cg(R) then G = Z3XE, is con-
tained in A4 X A4. Otherwise, a Sylow 2-subgroup T of G has order 8. If T is
non-abelian then T = Dy and G is again contained in (44XA4)Z,. If T is
isomorphic to Eg then G = =3 X E4, against (11.1). The only other possibility
is T = Z,X1Z,, and we show this to be impossible as follows: let x be the
unique non-identity square in 7. Then G = Cg(x), so G < Ag by (7.2), so
G/ <x>(=Z,XZ;)<Ajg. Referring to the proof of (7.2), we see that, up to
conjugacy, G/<x> must be the subgroup of Ag given by
<(12)(34)(56)(78)> X <(135)(246),(35)(46)>. In particular, a 2-Sylow of
G/<x> has the non-identity elements (12)(34)(56)(78), (12)(36)(45)(78) and
(35)(46). Pulling these back to G, the first two pull back to E,’s, the third to
Z,. So a 2-Sylow of G, of order 8, contains Z, and two distinct E,’s, hence
must be Dg. Thus it is not Z, X Z4, which is the desired contradiction.

We may now assume that R < F(G), in which case F(G) = Q is a 2-group
satisfying C;(Q)<Q. We set Y = £,(Z(Q)), the subgroup of Z(Q) (1) gen-
erated by its involutions. Suppose that | Y|=>4. Then if 0/Y has an element
xY of order =4 then the abelian group <x,Y > contains either Z4 X E4 or
Z3 X Z,. This contradicts (7.6), so Q/Y has exponent 2, that is, it is elementary
abelian. Thus the Frattini subgroup ®(Q) of Q lies in Y. Now in fact this argu-
ment shows that ®(Q)<Y, whenever E4, = Y,<Y. Then we get ®(Q)<NY,
where the intersection runs over the E4-subgroups of Y. If | Y|=>8 this inter-
section is trivial, so that ®(Q) = 1 and Q is itself elementary abelian.

If |Y| =4 then Z(Q) has rank 2. As it admits R, (7.6) yields either
Y = Z(Q) = E, or else Z(Q) = Z4XZ,. In the latter case <x,Z(Q)> is
abelian of order =2° whenever x € Q\ Z(Q), against (7.6). So if
Z(Q)=Z4XZ, then Q=Z(Q). Finally, if |Y| = 2 then Z(Q) is cyclic,
hence centralized by R, so Y = Z(Q) = Z, by (7.6) once more. So there are
the following possibilities for Q:

(@) Q = Ey, 2<a<4.

b) Q =2, X1,

(©) Z(Q) = E4, Q # Z(Q).
d) Z(Q) = 2.

If (b) holds then G < E¢: 24 (group (x)). (11.2)

PrOOF. The group L = E4:2, is the (unique) extension indicated which has
no elements of order 6. By (10.3) we see that O,(L) = J(7) in the notation of
(6.2). Moreover L = J(T):=;. Now a 3-Sylow P of L fixes each of the three
Z,XZ,-subgroups of J(T) (cf. 6.2)), so at least one of these is fixed by
Ny (P) = =3, yielding a subgroup (Z4XZ4):Z; within L.
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Finally, since G = (Z4 XZ4):Z3 or (Z4XZ4):Z3 the result follows.
If (c) holds then Co(R)NZ(Q) = 1. (11.3)

PrOOF. If not then R centralizes Z(Q) = E,, so that Y = Z(Q) = Cp(R)
by (7.6). Now we have already seen that Q/Y is elementary abelian, and since
Cgo/v(R) =1 then Q/Y = E4 or Ej6. In the latter case there are 5 distinct
R-invariant subgroups D/Y of Q/Y of order 16 which partition Q/Y. Since O
is not elementary abelian, some D is not E s, so as Cp(R) = Y then D cannot
even be abelian.

So whatever the possibility for O/, there is a non-abelian subgroup of D of
order 16 which admits R and Cp(R) = Z(D) = E4. Using (10.2) we see that
D = Z,XQg, DR = Z, XSL,(3). But then DR has 3 involutions, 8 elements
of order 3, 12 of order 4, and 24 of order 6. This yields the contradiction

dimVPR = —CQ4+83 68 +412+224) = 4

If (¢c) holds then either |Q| = 2°, Co(R) = 1 and G < E6 : 24 (type (11.4)
X)) or Q| = 2°, Co(R) = Z, and G < E 6 :Dy; (type (viii)).

PrOOF. We have Y = Z(Q) = E,4, Q/Y elementary abelian, and Cy(R) = 1.
If |Q] = 16 then |Q’| = 2 by (10.2), so 1 % Q" < Y N C(R), contradic-
tion. So |Q| = 2°. We have Q/Y = B/YXD/Y where B/Y = Cgy,y(R),
and |B:Y|<4 by (7.6). If B/Y =1 we may apply (10.3) to see that
Q = D = J(T) in the notation of (6.2). If now G = QR then clearly
G < E4 : 34, in fact G = E5:4 4, the subgroup of index 2. If G 7= QR then
a 2-Sylow U of G has order 2’ and G = Q:Z;. In this case each of the two
E\¢’s in Q are normal in U by (6.2) (since U is a 2-Sylow of M»3), hence again
G = E16:24-

Now assume that B/Y 5= 1. Since Cp(R) = 1 we can apply (10.3) to D and
conclude that either D is abelian of order 16 or D =J(T) in the notation of
(6.2). Assume first that D =E . If |B:Y| = 4 then B = Y XCp(R) =E s
(by (7.6)), and the group QR is isomorphic to the group denoted by H in the
last paragraph of the proof of (9.1). That calculation therefore gives
dimVeR = 4 a contradiction. So if D =Es then |B:Y| = 2, that is
Co(R) =Z,. Thus QR = D'R-Cp(R) = Es:Zg. If QR = G we are done. If
there is an involution of G inverting R then G =Es:D), as required. Other-
wise G = E 4:(Z3-Z,), G contains 19 involutions, 32 elements of order 3, 60
of order 4, 32 of order 6, and 48 of order 8, yielding the contradiction

dimVS = —1%(244-8-19+6-32+4-60+2-32+2-48) = 4,

So we may now assume B/Y 7 1 and D = Es. So either D % Z,XZ,4 or
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else D =J(T) and D contains an R-invariant subgroup Do = Z4XZ,.
Choose an involution x € Cg(R) and let H = DR <x > or DyR <x > in the
two cases. Consider O,(H): if all involutions of O,(H) lie in ¥ <x> = Ej
then O,(H) contains 7 involutions and 24 elements of order 4, whence

dimy %) = %(24+8-7+4~24) is not an integer. So there are involutions in

O,(H)—Y <x>. These being permuted by R in cycles of length 3, we see
that Ozgl ) contains 19 involutions and 12 elements of order 4. So in this case
dimV?™ = 1/32(24+819+412) = 7. On the other hand D, = Z,XZ,

satisfies  dimV’>' = —1—(24-+—8-3+4-12) = 6, yielding the contradiction

D, <0,(H), dimV? < dimv° ™ This completes the proof of (11.4).

If (d) holds then either G < GL(3) (type (xi)) or G = (Q3*Q3):Z3 (yype (11.5)
(ix)).

PrROOF. Let Y = Z(Q)=2Z,. If |Q| =8 we must have Q = Qg and
OR = SL,(3). If G = QR we are done and if there is an involution in
G\ QR then G = GL,(3). Otherwise, a 2-Sylow of G is isomorphic to Qi6, G
has 1 involution, 8 elements of order 3, 18 of order 4, 8 of order 6, and 12 of
order 8, yielding

A — 4—18(24%—8+6-8+4-18+2-8+2-12) — 4
So we may now assume that |Q| = 16.

Note that by (7.2), we get G/Y < Ag, in particular |Q/Y| < 2. If Q/Yis
elementary abelian then ®(Q) = Z(Q) = Y, so Q = Q3*Qs (cf. [4, Theorem
5.49]) and QR = (Qg*Qg):Z3. Thus if G = QR we are done. If not, we see
that, up to conjugacy, G/Y is the group
<(12)(34),(13)(24),(56)(78),(57)(68),(123)(456),(23)(56)>. Then using (3.4), we
see that G itself contains 19 involutions, 32 elements of order 3, 60 of order 4,
32 of order 6, and 48 of order 8. This gives

dimV° = 1—;2(24+8-19+6-32+4-60+2-32+2-48) = 4.

Now assume that Q/Y is not elementary abelian. If Cy,y(R) = 1 then
|Q:Y| = 16 and we get Q/Y = Z,XZ, by (10.2). As Ag has no subgroup of
the shape (Z4XZ4):Z5 this is impossible, so Cy,y(R) = Z; and Cyp(R) = E,.
Setting B = Cy(R), since Ny(B) > B and R acts on Ny(B)/B without non-
trivial fixed-points, it must be the case that Cy(B) = Ny(B) has order 24 or
2% Since |Q| <2% and Z(Q)=1Z, we must have |Cy(B)l = 2* and
|Q| = 2°. Looking at the subgroups of 43 (=QR/Y), we see that Q/Y has a
subgroup D/Y = E s which admits R with Cp(R) = Y. Then D = Qg*Qs,
OR = (Q3*03):Z¢ and QR contains 27 involutions, 32 elements of order 3,
36 of order 4, and 96 of order 6. This yields
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dimVoR = —1;—2(24+ 827+632+436+2:96) = 4,
a contradiction. This completes the proof of (11.5).

It remains to consider case (a), i.e., Q elementary abelian. This is easy. If
Q=E sthen G =A4or 2. If Q = Eg then QR = Z;, XA,4. If G = QR or
if there is an involution inverting R then G < Z, X Z,, which is contained in
the group (44X A4):Z, (type (vii)). If there is no involution inverting R and
G % QR then G = E,(Z3Z,;) is still isomorphic to a subgroup of
(A4 X A4):Z, (type (vii)).

Finally assume that Q = Es. If Co(R) = 1 then G<Es:Z;3<E5:24
(type (x)). If Co(R)# 1 then Co(R)=E, If G = QR then
G = E4 X A4<(A4XA4):Z, (type (vii)), and if there is an involution x invert-
ing R then x cannot centralize Cy(R) by (7.6) (for in this case Q <x > con-
tains Z,XZ,XZ,). Thus Cyo(R)<x> = Dy and again G<(A4XA44):Z;
(type (vii)). The last possibility is that no involution of G inverts R. In this
case the group Ng(R) has 2-Sylow Z, XZ,, and we showed earlier (when con-
sidering the case R<F(G)) that G cannot contain such a group. This com-
pletes the proof of the Main Theorem.
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In the evenly-tempered 12-note chromatic scale of western music, two impor-
tant intervals are well-approximated - the pure fifth with ratio 3/2, and the
major third with ratio 5/4. After taking log-ratios, the musical scale can be
viewed as an example of the approximation of two irrational numbers by a pair
of rational numbers with the same denominator (in this case, 12). A general
approach to such problems is provided by the theory of ternary continued frac-
tions.

1. INTRODUCTION

The most important intervals in music are the octave, pure fifth, and major
third. Perhaps they are consonant to the ear because they are based on simple
whole number ratios (2:1, 3:2, and 5:4, respectively). These intervals arise
naturally out of the overtone series for a vibrating string. A string vibrating at
a frequency f also vibrates at 2f, 3f, 4f, etc. The ratios between the overtones
include these basic intervals. There are more complicated intervals than the
major third, but they are not heard by the ear strongly enough to be a major
factor in tuning. :

It is impossible to tune a scale so that all of these intervals come out exact
for all the notes. In every system of tuning the ratio of two notes an octave
apart is always taken to be exactly 2:1. The attempt of most systems of tuning
has been to approximate the fifth and major third, although the accuracy of
the fifth often predominates.

cis
c'd’c f!g’a’b c
| 2:1

| |
3:2
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For example, the Pythagorean system of tuning is based only on the octave
and fifth. All the fifths but one have a ratio of 3:2. It works well for unison
melodies and simple melodies with fourths and fifths, but for more compli-
cated melodies with thirds and sixths it sounds dissonant. Furthermore,
because some half-steps have different ratios than others, some keys sound
more consonant than others. A piece played in C will sound more in tune than
a piece in F#.

The problems of different tunings in different keys can be avoided by res-
tricting attention to tunings in which all the half-steps have the same ratio.
Such a scale is called evenly-tempered. The modern day piano and many other
instruments are tuned to the 12-note evenly-tempered scale. The basic interval
is the half-step.

More generally, we might consider an evenly-tempered scale of n notes in
which each unit interval has a ratio 2/":1. If there are k notes in the approxi-
mation to the pure fifth, then this interval has a ratio of 2¥/":1. This will be an
irrational number and so can never be exactly 3:2. Similarly for the major
third. Thus, in a good evenly-tempered n-note scale there will be numbers &
and k such that 2""~5/4 and 2*/"~3/2. That is, h/n~log,5/4 and
k/n=log,3/2.

In fact, logarithms make intuitive sense in dealing with intervals. The ear
hears a half-step above a half-step as a whole step, so it seems more natural to
add the logarithms of the ratios than to multiply the ratios. If one divides the
octave into 1200 logarithmic units known as cents, each half-step of the 12-
note scale is 100 cents. A true major third has a value of 1200(log,5/4) ~ 386
cents and a true pure fifth has a value of 1200(log,3/2) ~ 702 cents. Thus in
the 12-note scale the major third is 14 cents sharper than a true major third
and the fifth is 2 cents flat.

The object of this paper is to find evenly-tempered scales which give good
approximations to the true major third and pure fifth. We are looking for a
sequence of pairs of rational numbers with the same denominator, which
approximate log,5/4 and log,3/2. The process by which this is done is known
as the theory of ternary continued fractions, and it forms an extension of the
idea of ordinary continued fractions. Ordinary continued fractions are used to
approximate one number; ternary continued fractions are used to approximate
two numbers. They were developed by Jacosi [6]. We will discuss Jacobi’s
expansion in Section 3 and then an alternative expansion known as the
reversed expansion in Section 4. These two expansions can be combined (Sec-
tion 5) in a way to give us a sequence of approximations which include many
of the scales proposed by musical theorists (Section 6).

The main ideas of this paper are due to BARBOUR ([2], and [3], Chapter 6);
who gives further details about the musical implications of these results. Here
we shall concentrate in more detail on the mathematical development of ter-
nary continued fractions.
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2. ORDINARY CONTINUED FRACTIONS

The theory of ordinary continued fractions provides a powerful method of
finding a sequence of rational approximations to an irrational number; see, for
example HARDY and WRIGHT ([5], Chapter 10) or BAKER ([1], Chapter 6).

For our purposes we shall restrict attention to the case where ay<1 is an
irrational positive number. The continued fraction expansion for ay can be
developed as follows. Define a sequence of integers p;=1 and positive real
numbers o; <1 by

— pe=Il —_ -1 .
pi=la;i’l, a1 =a; "—p;, i =0,

where [ . ] denotes integer part. At each stage we approximate a remainder by
the integer part of its reciprocal. Thus,

o = [a; 1 +pil " 2.1

If for some j we approximate a; ,,~0 and use backwards recursion in (2.1),
then we obtain a rational approximation for &y which can be written as a ratio
of integers, 4,/ B; say.

For more formal mathematical work it is convenient to set out this pro-
cedure in terms of linear transformations. Set Uy = ay, Vo = 1, and define
sequences of positive real numbers by

Ui 1 —pi 1 U
1 0

Vi1 Vi
where p; = [V;/U;]. Thus V;/U; is the same as a; ! above. Next define
sequences of integers 4;, B; by
1
Pi

A; Ai—3 A
10
— {0 1}"

B, B, Bi,
Then A;/B; is called the i-th convergent for ay and A;/B;—aq as i—oo. This
is classically expressed by the equality
_ 1
0 1
Pot 1
Pt
Pzt
Further it can be shown that the speed of convergence is quite rapid,
| A;/B; — ag | <1/B?. 2.2

The multivariate version of Dirichlet’s theorem (see for example HARDY and
WRIGHT [5], pp. 169-170, or BAKER [1], pp. 56-59) says that, given positive
numbers By, ..., B, and an integer Q° >0, there exist integers Q<Q" and
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with initial conditions
B _, B_,




P,, ..., P, such that
|Pj/Q—Bj|<Q_l—l/m, jzl,,m

From (2.2) we see that ordinary continued fractions (m = 1) always achieve
this inequality. Unfortunately the approximations from ternary continued
expansions (m = 2) are not so powerful in general.

3. JACOBI'S TERNARY CONTINUED FRACTION EXPANSION

Let Uy<Vo<W, = 1 be three positive numbers. The objective is to find
integers (4,, B;, C;) such that 4;: B;: C; approximates Uy: Vo: Wy. To ensure
the expansion is well defined, suppose Uy, Vo, W, are linearly independent
over the rationals.

First define sequences U;, V;, W; by the following recurrence formulae for
i =0,

Ui+ -pi 10 U
Vier| = |—a 01| |V (3.1)
Wi 1 00| |W

where
pi =Vi/ul , ¢ = [Wi/U].

Next define 3 sequences of integers recursively for i=0 by

A; A3 Ai—y A 1
Bi| = |Bi—3 B;—2 Bi_1| |pi (3.2)
G Ci-s Ci—2 G| |4

with initial conditions

A 3 A5 A, 100
B#3 B_2 B..] = 0 1 O v
C 3 €5 € 001

This is the Jacobi expansion for (U, Vo, Wo) (JACOBI [6]); see also DAUS [4].
The triple (4;, B;, C;) is known as the i-th convergent set, the pair (g;, pi) is the
i-th partial quotient set, and the triple (U;, V;, W) is the i-th complete quotient
set. Thus, the approximation of Uy: V: W can be depicted as

Pt p31+...
gy = ===
1 g3 + -
l:p0+ ] Iq0+ ]
e ————— e +________
p2+q3+... P2 gy + -
a1+ 91+
p3s t+ ps t
e e — gy +——



The 3 X 3-matrix in (3.1) has determinant +1, so that (U; 11, V41, W;4) will
be linearly independent when (U;, V;, W;) are. In particular U; ;5 0 which is
the only requirement that needs to be satisfied in order to continue the expan-
sion for another step. Thus, the expansion can be continued infinitely when
(Uy, Vo, Wy) are linearly independent.

From the definition of p; and ¢; we see that U, ;, <U; and V; ,; <U,. Thus,
since W, = U;, we get

Un<Wi, Viaqg<Wiy,.

Therefore, at each step 0<p,<g¢,; and ¢,=>1.

Let 0y,=V;/U;, 6,;=W;/U,. Then 0,;<0,; and 0,,>1 at each step. Note

that o, ; and o, play a role similar to that of a; !in Section 2. Inverting the
matrix in (3.1) we see that

U; 00 1||U+
Vil = [10p||Via (3.3)
Wi 01 g| [Win
Thus
1 01,i+1
oi:i+ ,o,i:i+—’——’
b P 02 +1 2 9 02, +1
where

1/0’2‘,~+1<1 and 01’i+]/02‘i+1<1 s

Also, if p; =g;, then, since 0, ;<<0,;, we must have 0,;;>1, and so p; 4, =1.
It can be shown (PERRON [7], [8]) that these properties of the partial quo-
tient sets (that is, that 0<p;<g¢; and ¢;=1 for all i, and that p,=¢;=p; +1=1)
guarantee that the expansion is unique.
The first convergent sets are

Ao =1 Bg =po Co = qo

A, =q By =qpotl C; = qigotp: -
Thus

A4,>0, B;>0, C;>0.

Let S; stand for either 4;, B;, or C;. Then (3.2) together with the facts that
¢;=>1 and S;>0 for i=1 show that §;>S5; | for i=4. Therefore {S;}>3
forms a strictly increasing sequence ( DAUSs [4], p. 281).

The following identity is easily proved by induction for ;=0 using (3.3):

Uy A3 Ai—qa Ai| | U
Vo| = |Bi-s Bi—2 Bi||Vi]|. 3.4)
Wy Ci-a G G-l | W
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Dividing two rows in (3.4) by U; and taking their ratio gives
Uo Ai_3to,; iy toy 4o
We  Cios to1; Ci—2to0y; Cioy
If we approximate o;; by p; and o,; by ¢; we might hope that we would get
an approximation to Uy/W,. That is, we would hope,
Ai3tpi Ai—2tq A _A_: " _UL

Ci—3tp: Ci—2t+gq; G G Wy

In fact 4;/C; and B;/C; do converge to Uy/W, and V,/W, respectively,
but convergence is not nearly so swift as it is for ordinary continued fractions.
We shall show that

| 4;/C;—Uo/ Wy | + | Bi/Ci—Vo/ Wy | = O(CTY)

(3.5)

in contrast to (2.2) for ordinary continued fractions.

THEOREM 1. ( VAISALA [9]). Let Uy<V,<Wj be positive numbers linearly
independent over the rationals. Let (A;, B;, C;) be the i-th convergent set in the
Jacobi expansion. Then A;/C;—Uy/ W, and B;/C;—V /W as i—oo0.
PROOF. Set H; = A;—(Uy/Wy)C; and K; = B;,—(Vo/Wy)C;. Then

Ai/Ci - UO/ WO :H,-/C,- 3 B,‘/C,‘ - V()/ W() :K,/C, .

Now C; 1 oo so if there is an upper bound on H; and K;, convergence is

guaranteed.
From (3.5) we see that
Hi_3+o,; Hi +d2,i By =40.
Therefore,
Hiy = —ley; Hi—s101,; Hi-s) .
Replacing i by i +1 we get
H; = —l/6y; 41 [Hi-2 101,41 Hi—1].- (3.6)
Also, from (3.2) we have
H; = H; 3+p;, H;_»+q; H;—, . (3.7

There are two cases to consider. If H; _,, H;_, have the same sign, then by
(3.6) H; has the opposite sign, so from (3.7)

|H; | = |Hi—s | —pi | Hi—2 | —qi | Hi-1 | <|Hi-5|.
If H;, _,, H;_, have the opposite signs, then from (3.6)
| H; | < max {03,'+1 | Hi—y |, (01:41/02,+1) | Hi—1 |}
< max | H_|.|Hi |}
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Therefore in either case | H; | < max { | H;—3 |, | Hi—2 |, | Hi—1 | }.
Thus | H; | is bounded above by max { | Hy |, | H,, | H; | }. Similarly
reasoning puts an upper bound on | K; |. Hence the theorem follows. a

In the theory of ordinary continued fractions, we know that any infinite
sequence of positive integers is the continued fraction expansion of some posi-
tive irrational number. We have an analogous result for ternary continued frac-
tions. Let {(p;, ¢;)}; be a sequence of pairs of integers such that
0<p;<gq;, ¢;=1 for all i, and if p,=g¢; then p; .;=1. Then {(p;, ¢;)}; is the
Jacobi expansion for some pair of positive numbers ay and By and {ag, By, 1}
are linearly independent over the rationals. For further details see PERRON [7],
[8].

The methods of this section can be extended in a straightforward way to
give a sequence of simultaneous rational approximations to more than two
irrational numbers; see PERRON [7].

4. THE REVERSED EXPANSION

There is another expansion due to BARBOUR [2] that can be used to get
approximations to Uy: V: Wy. In the Jacobi expansion one always divided
by U; at the i-th step. In the following, the reversed expansion, one divides by
V;. It is defined by the following recursion formulae in matrix form,

Ui+ 1 —p; O | U
Vier | = |0 —q; 1| |V 4.1)
Wi 0 1 oW
where
pi = [Ui/Vi]and g; = [Wi/V}].
Set
A; 1 A5 A | |pi
B;| = |0 B, B;_1]||1 “4.2)
C; 0 Ci, CG_1||9

with the same initial conditions as the Jacobi expansion (cf. (3.2)). Schemati-
cally, we can write for this approximation of Uy:V: W)

P3+...
P2t T .-
pt £
1
.+_
72 g3t - 1
Pot 1 1:got+ ]
91+ 1 g1+ ]
+ +
92 gt - 92 gt
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It is interesting to note that {g;};>¢ is just the ordinary continued fraction
expansion for Vo/W,. Also, the B;/C; are just the ordinary convergents. Thus
the reversed expansion is not as symmetrical as the Jacobi expansion. [

Since the 3X3-matrix in (4.1) has determinant 1, we have again that, if
U, V;, W; are linearly independent over the rationals, then U; ,, V41, Wi4
will be, and in particular V; 5% 0. Thus, if Uy, V,, W, are linearly indepen-
dent, we can define an infinite reversed expansion for them.

In matrix form we have the following identities for i=0,

Uo 1 4,5 Ai || U
Vol = |0 Bi—y Bi||V;
Wo 0 G-y G| |W:
which follow easily from (4.1) by induction as
Ui 10 pif |Uin
Vil =100 1] |Vi 4.3)
Wi 01 g Wi

L

g = UlVe my = WiV,
Then the recursion formulae become

T = Pit i/ T T = it 114
where

TLi+1/Ti+1<l and 1/7p,;4<I.

As in the Jacobi expansion we have convergence of A4;: B;: C; to Uy: Vo: W,
but the proof will be postponed until the next section where a more general
theorem is proved.

5. THE MIXED EXPANSION

In the problem of finding evenly-tempered scales one is interested in scales
with small numbers of notes. In both the Jacobi and reversed expansions C;
increases too rapidly to give many interesting scales; see Tables 1(a) and 1(b).
So the slow mixed expansion was devised by BARBOUR [2] to slow the growth
of C;. At each step of the slow mixed expansion, one divides by U; or V;
whichever is larger.
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TABLE 1. Ternary continued expansions for (log,5/4, log,3/2, 1), adapted from
BARBOUR [2].

(a) Jacobi Expansion
Pi 49 Ai B,‘ C,' Error A,‘ Error Bi Total Error Hi+3 Ki+3

1 3 14 —302 316 0.03 —0.75

1 3 1

01 1 2 3 14 98 112 0.03 0.24
17 8 15 25 —2 18 20 —0.04 0.37
01 9 16 28 —1 —16 17 —0.01 —0.38
0110 18 31 08 — 52 6.0 0.02 —0.13
0 2 28 51 8 —0.1 14 1.5 —0.008 0.1

(b) Reversed Expansion
pi ¢ Ai B; C; Error 4; Error B, Total Error H; .3 K43

01 0 1 1 —386 498 884 —0.32 0.42
01 0 1 2 —38 —102 488 —0.64 —0.17
12 1 3 5 —146 18 164 —0.61 —0.08
22 4 7 12 14 — 2 16 0.14 —0.02
0 313 24 41 — 6 1 7 —0.20 0.02
0117 31 53 — 14 — 0.1 1.5 —0.06 —0.003
(c) Slow Mixed Expansion
Step p; ¢; A; B; C; Error A; Error B; Total Error H; .3 K43
R 01 0 1 1 —386 498 884 —0.32 0.41
R 01 0 1 2 —38 —102 488 —0.64 —0.17
J o1 1 1 2 214 —102 316 036 —0.17
J o1 1 2 3 14 98 112 0.03 0.25
R 01 2 3 5 94 18 112 0.39 0.08
J 01 2 4 7 —43 — 16 59 —0.25 —0.09
R 01 4 7 12 14 — 2 16 0.14 —0.02
R 01 6 11 19 — 7 — 1 14 —0.12 —0.11
R 01 10 18 31 08 — 52 6.0 0.02 —0.13
J 0111 20 34 1.9 39 5.8 0.05 0.11
J 0117 31 53 14 — 0.1 1.5 —0.06 —0.003
(d) Other Scales
A; B; C; Error A; Error B; Total Error
5 10 17 -—33 4 37
7 13 22 —4 7 12

In a general mixed expansion, the choice of divisor at each stage can be
arbitrary. The formulae for U; 4, Vi+1, Wiy are the same as for the Jacobi
or the reversed expansion depending on whether one divides by U; or V; at
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step i. However, new formulae for 4;, B;, C; are needed.

Let J denote a Jacobi step and R a reversed step. Let k = k(i) denote the
number of steps between the present step, i, and the last previous J step. Let
k=i if there have been no J steps. Let S; stand for either 4;, B;, or C;. Then
define S; by the following recursion formula,

S,‘ = Di S,‘_k_:; +S,'_2 +q, S,'_] if Step iis R (5.1)
S,' = Si—k—3 +P, S,‘_2+q,‘ S,'_] l.f Step i ISJ 5 (5.2)

with the same initial conditions as for the Jacobi expansion. It is still clear that
C;—oo as i—oo. The following identities are useful and can be proved by
induction.

Uy Ay -z A3 Ay ] |G
¥o| = |Bisa-3 Bi-3 Bii| | Vs (3.3)
Wo Ci—k-3 Ci—2 G| |W;

If i=0, then k=0 and the formulae follow from the initial conditions. Suppose
they hold at step i. If step i is J then from (3.3) and (5.2)

USi—k-3tViSi—2+ WS =
i
U+| (01 0)|Si-k-3
Vier| |0 0 1[1]8i-2
Wia| U Pi 4|8y
= Uis18i—a+Vis18i-1 + Wi S;

which is correct because at the (i + 1)-th step k becomes 0.
Similarly, if step i is R then from (4.3) and (5.1),

UiSi—k-3tViSi2 + WSy
= Uin1tpiWir1)Si—k—3+Win1Si2 +(Vit1 +qi Wi+ 1)Si
=Uin1 Si-2-k+1yTVit1 Sic1 Wi S,
which is correct because at the (i +1)-th step k becomes k£ +1. Hence (5.3).
BARBOUR [2] does not discuss the convergence properties of the reversed and

slow mixed expansions, but the argument of theorem 1 can be extended to
prove the following result.

THEOREM 2. Let Uy<V <W, be positive numbers linearly independent over
the rationals. Given an arbitrary sequence of Jacobi and reversed steps we can
expand them in an infinite mixed expansion. Let A;, B;, C; be defined as above.
Then hmA,/C,=U0/W0 and ].llIlB,/C‘l = Vo/Wo.

1—00 1—00
PROOF. As in the proof for the Jacobi expansion we only need to show that
H; = A,—(Uy/Wy)C; and K; = B,—(Vy/W,)C; are bounded in absolute
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value. Letting 0,; = V;/U;, 0,; = W;/U;, 7; = U;/V;, 1p; = W;/V; then we
still know that o,;>1, 0;,/0,;>1, 7,>1, 7,;/7;>1 since U;<W, and
V;<W; for all i=0.

There are two cases to consider.

1. Suppose step i is J. Then H;=H; , 3+pH; ,+qH;_;, and H;=
—Voyin[Hi—2to; 41 Hi] ot Hi= —1/my; 1[1y i1 Hi 2 +H; ]
depending on whether step i+1is J or R. If H; _,, H;_, have opposite signs,

then

| H; | <max{ |H;,— |, |Hi-|}.

If H; 5, H;—, have the same sign, then H; has the opposite sign and

| H; | < | Hi—-3 |

2. Suppose step i is R. Then H,= pH,_, _3+H;,_,+qH;_,, and H;=
—VoyiilHi—k—3+oriiHi—1]or Hi= —1/7y; [T +1H; —x 3+ H; 4]

depending on whether step i+1 is J or R. If H;,_,_3, H;_; have opposite

signs, then

| H; | <max { |H;—x—3|,|Hi—1|}.

If H; ,_3, H;_; have the same sign, then H; has the opposite sign and
| H; | < | H;_, |. Therefore, in any case

| H; | <max { | Hi—x—3 |, |Hi—2 |, | Hi—1 | }.

Thus the | H; | sequence is bounded. Similar reasoning shows that the | K; |
sequence is bounded and so the theorem follows. [

The proof of the above theorem does not depend on the particular sequence of
Jacobi and reversed steps used, so the convergence of the Jacobi, reversed, and
slow mixed expansions follow as special cases.

Note that we could reverse the order of U, and ¥, in Section 3 without
affecting the validity of the Jacobi expansion. The effect would be the same as
using a mixed expansion with one R step followed thereafter by J steps under
the original order.

The slow mixed expansion of this section has been devised to slow the
growth of the denominator C;. Alternatively we could divide by the smaller of
U; and V; at each step in order to speed the growth of C;. We shall not
explore this possibility further here.

6. DISCUSSION OF MUSICAL SCALES

Tables 1(a), 1(b) and 1(c) give the results of the Jacobi, reversed, and slow
mixed expansions applied to the numbers U,=log,5/4 ~ 0.3219,
Vo=log,3/2 ~ 0.5850, W, =1. Here C; represents the number of notes in an
octave, 4; the number of notes in the major third, and B; the number of notes
in the fifth. In order for 4; and B; to be the best approximations for the
denominator C; we must have

1 1
| H; |= | A4i—(Uog/ Wo)C; | <7 and | K; |= | B;—(Vo/Wy)C; | <7
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For all of the interesting cases these inequalities are easily satisfied.
The errors in A;/C; and B;/C; are measured in cents,

Error A, = 1200(4;/C;— Uo/ Wy)
Erl‘or B,' = 1200(B,/C,—V0/W0)

The total error is taken to be | Error 4; | + | Error B; |.

The scales from these expansions include many of the important scales pro-
posed by musical theorists and several scales in use by various non-western
cultures. The following comments are taken from BARBOUR ([2] and [3],
Chapter 6) who discusses these and other scales in more detail.

Two of the scales with fewer than 12 notes are worth mentioning. Accord-
ing to Barbour, Javanese music is based on an evenly-tempered 5-note scale,
and Siamese music, on an evenly-tempered 7-note scale.

In western 12-note music there are 5 whole steps and 2 (diatonic) half-steps
in the octave. If each whole step is split into a diatonic and a chromatic half-
step, there are 7 diatonic and 5 chromatic half-steps. In an evenly-tempered
tuning the ratio between these two kinds of half-step is taken as 1:1. If instead
one takes the ratio to be 2:1 one gets 7X2+5X1=19 notes in the octave.
Thus, one can get a non-evenly-tempered 12-note scale by taking 12 notes out
of an evenly-tempered 19 scale.

Other important scales in Table 1(c) which can be interpreted in this way
are those with 31 notes (ratio 3:2) and 53 notes (ratio 4:5).

Arabian music is based on a 17-note evenly-tempered scale. This scale has a
good fifth (within 4 cents), but the major third is very flat being about midway
between a true major third and minor third. The poorness of the third prob-
ably explains why it does not appear in the expansions.

The 22-note scale is one important scale missing from these tables though it
appears under a more general mixed expansion. It is interesting to note that
both the 19 and 22-note scales form better approximations in terms of total
error than the 25-note scale in the Jacobi expansion. Thus from this point of
view, the convergents of the Jacobi expansion are not necessarily best possible
approximations. In this respect Jacobi ternary continued fractions are weaker
than ordinary continued fractions, because in ordinary continued fractions one
gets a best possible approximation at every step.

From the musical point of view, the accuracy of the pure fifth is more
important than the accuracy of the major third. The concept of total error
does not take this feature into account. The 12-note scale has a better pure
fifth than any evenly-tempered scale with fewer than 41 notes.

The only possible systems of multiple division of the octave which could
have any practical significance are the 19 and 22-note scales. Any more notes
than that would make an instrument extremely unwieldy to play. Further, as
it does not seem likely that the 19- or 22-note scales will come into widespread
acceptance, most music seems destined to remain in the evenly-tempered 12-
note scale.
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Multiple Correspondence Analysis
and
Ordered Latent Structure Models

B.F. Schriever

Nederlandse Philips Bedrijven B.V., Centre for Quantitative Methods
P.O. Box 218, 5600 MD Eindhoven

This paper discusses application of multiple correspondence analysis in
ordered latent structure models. Such models are frequently used in psycho-
logical measurement theory to analyse ability (or attitude) tests, e.g. intelligence
tests. The models considered are related to those of Mokken. It turns out that,
under realistic assumptions, multiple correspondence analysis orders the ques-
tions (items) in the test according to their difficulty and orders individuals
according to their ability (or attitude).

1. INTRODUCTION

Multiple correspondence analysis (abbreviated MCA) is a modern statistical
technique for describing the association between categorical (i.e. discrete) vari-
ables. The technique is commonly used to analyse large data sets. It gives
insight into the complex dependence structure of such data sets by making
plots. MCA has proved to be an important and useful tool for analysing the
association which is present in data sets with many variables. In this paper we
discuss MCA in a more unusual situation and we need not consider its graphi-
cal representation. We apply MCA in the analysis of ordered latent structure
models. Such models are developed for the following situation which fre-
quently arises in e.g. psychology and medicine. In a population individuals
must be ordered according to their value on an unobservable characteristic (e.g.
intelligence, knowledge of a subject, attitude in a given context, a specific
disease). For this purpose responses on a set of variables related to the charac-
teristic are collected for each individual (e.g. an intelligence test). We restrict
attention to the simple case in which there is only one such characteristic,
called the latent variable, and in which the collected response variables, called
items, are dichotomous (i.e. have only two response categories; for example
‘correct’ and ‘wrong’). The set of all items is called the rest. Since the charac-
teristic of interest is often hard to separate from other characteristics, the
assumption that responses on the items (i.e. the response variables) systemati-
cally depend on only one latent variable is for most applications more restric-
tive than the dichotomy assumption.
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The paper is organized as follows. Section 2 reviews the definition of the
technique MCA. In Section 3 we introduce latent structure models with
ordered items. These ordered models are special cases of the models intro-
duced by MOKKEN [17]. Our main result is given in Section 4. It demonstrates
that the ordering of items is reflected in the MCA scores. This implies that
MCA orders the individuals according to their latent value and orders the
items according to their difficulty. In the last section it is shown that most
well-known examples of latent structure models possess the orderings of Sec-
tion 3. Gir1 ([5], Chap. 9) already noted the ordering property of MCA for
these specific examples, but proofs were not given.

The result presented in this paper also appeared in SCHRIEVER [23].

2. MULTIPLE CORRESPONDENCE ANALYSIS

Let X,,X,,..., X, be categorical random variables. The technique MCA seeks k
real valued functions ¢,,¢,1,...,¢x 1, defined on the categories (possible values)
of X;,X,,..,X, respectively, such that the first principal component of the
correlation matrix of ¢;;(X;),¢21(X2),....0%1(Xx) has maximal variance. This
principal component is called the first MCA component. It describes the most
informative part of the variation between the categorical variables. Clearly, it is
no restriction to assume that the derived variables ¢;;(X;) have expectation
zero and variance unity, for / = 1,..,k. Subsequently, MCA seeks a second
component which has maximal variance but which is uncorrelated with the
first. This procedure is continued with a third component, a fourth com-
ponent, etc. until no new component which is uncorrelated with the previous
components can be found.

DEFINITION. The t—th MCA component is the linear combination  of
transformed variables

k
Y, = 2 a, oy (X))

I=1
for which u, = Var(Y,) is maximal subject to
E¢u(X) = 0, Var(¢u(X) = 1 for I = 1,...k,

and the normalization constraint

k
Sal =1, @.1)
=1

Corr(Y,,Y,) = 0 fors = 1,..,t — 1.

The MCA solution consists of all k +1 tuples (i, a;,¢1,(X 1), ..., (X)) for
t = 1,2,.... The value a;¢,(x) is called the category score on the t-th MCA
component of the category x of X;; = 1,..k;t = 1.2,...

The present definition of MCA may depart from other definitions given in
the literature with respect to the normalization of the variable weights
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The illustration shows the result of a classical correspondence analysis. Respon-
dents were asked to characterize each of a number of Dutch politicians. The pic-
ture shows the embedding of politicians and characteristics in a two-dimensional
space which preserves as closely as possible chi-square type measures of distance

derived from the data.
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ay,,...,04,. Also, different names for this technique are used in the literature,
e.g. homogeneity analysis (GIFI [5]) and first order correspondence analysis
(HiLL [9)).

It follows directly from the definition that

kK
Var(Y,) = E 2 ajrahCorr(d)jt(xj),‘ph(xl))
j=1=1
which means that MCA only considers the bivariate marginals of the k-
dimensional probability distribution of Xi,...,X. It is well-known (cf. GIFI
[5]; GREENACRE [6]; HiLL [9]; LEBART et al. [13]; SCHRIEVER [23]) that an
MCA solution always exists and can be obtained by solving a generalized
eigenvalue problem of the super matrix containing all bivariate marginal pro-
bability distributions.

MCA can be seen as a generalization of principal component analysis to
nominal variables. Moreover, when X, X>,..., X} are all dichotomous, e.g. 0—1
variables, then by the normalization (2.1), ¢ (1) = ((1—m)/m)* and
¢,(0) = —(m/(1—m))>, where =, = P{X, =1} =1-P{X;, =0} for
| = 1,2,...k and ¢t = 1,2,.... (Note that the signs of ¢,(1) and ¢,(0) may be
taken arbitrary but opposite.) Hence the variance of Y, is only maximized with
respect to the variable weights ay,,ay,,...,a, for ¢ = 1,2,.... Therefore, MCA in
the dichotomous case is equivalent to finding the principal components of the
covariance matrix of ¢;(X),¢21(X2),....0x1(Xy), that is, of the correlation
matrix of Xl,Xz,...,Xk.

For further properties, for different approaches and for applications of MCA
consult DE LEeuw [2], GiF1 [5], GREENACRE [6], LEBART et al. [13] and
NisHISATO [20].

3. ORDERED LATENT STRUCTURE MODELS

The latent structure model we consider supposes that the responses of the indi-
viduals on the k dichotomous items (variables) X, X>,...,X; can be accounted
for, to a substantial degree, by one latent variable Z. It is assumed that condi-
tionally on Z the items X, X,,..,X; are stochastically independent. This
assumption of local independence means that each individual responds indepen-
dently on the items. This implies that the (global) dependence structure between
the items is caused and hence can completely be explained by variation in the
latent variable. Local independence is essential in latent structure models; if it
does not hold then the latent variable cannot be distinguished from other
interactions between the items.

Let the probability distribution function of Z be denoted by H; ie.
H(z) = P{Z<z}. Our results are not based on any assumption on H and
thus hold for any (sampled) population. Let the response categories of each
item be labeled with 1 (‘correct’) and 0 (‘wrong’). The probability of a correct
response on item X; for an individual with latent value z is denoted by

m(z) = P{X; = 11Z = 1} forzeR; [ = 1,..,1
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It can be interpreted as the (local) difficulty of item X, for this individual. The
function a;(+) is called the trace line of item X;; | = 1,...,k. The unconditional
probability of a correct response on item X,
m = P{X, = 1} = [ m(2)dH (2),
]

is the (global) difficulty of this item for the population. By local independence,
the joint probability of correct responses to both item X; and item X, j 7 /,
for an individual with latent value z is given by #;(z)m/(z). The unconditional
joint probability of correct responses to both items is denoted by

m = fm(z)'n'j(z)dH(z) for j = 1,...k; 1 5 j,
R

but we define m; = =, for / = 1,..,k. It is easily shown that the correlation
between the items X; and X; equals

e
oy = (7T1j—‘7T[7Tj)/(7Tj(l—7Tj)7T1(1-‘7T1))2 for ,j = 1,..,k.

The correlation matrix of the items X, X,,..., X, is denoted by j? = (ay).

MOKKEN [17] imposes two natural conditions on the trace lines of the items
in the test. First, he assumes for each item that the probability of a correct
response increases as the individual has a higher latent value, ie., for
I = 1,...k:

zy) <z, = m(z,) < m(z,) and not almost everywhere (dH)—equality; (3.1)

Secondly, Mokken assumes that if for one individual an item is more difficult
than another item, then it must be more difficult for all individuals. In other
words, the trace lines of the items may not cross each other. This means that
the items in the test can be indexed such that

1 <! <j<k= m(z) = mi(z) for all z and not dH — a.e. equality. (3.2)

The items in the test are then indexed from easy to difficult. Tests satisfying
(3.1) and (3.2) are called doubly monotone. More about interpretation and
examples of doubly monotone tests can be found in MOKKEN [17]. In many
examples, see for instance those of Section 5, double monotonicity typically
occurs in combination with the following stronger ordering of trace lines,

z) < zy, 1</ <j < k= 771(21)7Tj(22) = W[(Zz)ﬂj(zl). (3.3)

In this case the trace lines in the test are said to be totally positive of order
2 (TP,). Also, a similar TP, property with respect to the wrong responses,

21<zy, Isl<j<k=(1-mz )1 —mj(z2))=(1 —m(22))1 —m;(z1)) 34

frequently holds.
The increasing property (3.1) implies that all items are positively correlated,
because

my—mm; = 5 [ [ —mE)Nm @) —m@ VdHE)dHE) >0 (3.5)
R
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for I,j = 1,..,k. Thus the correlations o, for [,j = 1,..,k are even strictly
positive. Moreover, it trivially follows from (3.2) that

1 </ <j <k = K] > 7Tj and Ty = 7Tj,' for i Sﬁj (3.6)

Large departures from double monotonicity violate (3.5) and (3.6) and might
be detected by inspection of these properties. Notice that (3.5) and (3.6) only
concern properties of the observable items.

All these assumptions concern the underlying (population) model. We make
some remarks on the statistical problems which arise when one has only a
finite sample of real data at the end of the next section.

4. ANALYSIS OF THE MODEL WITH MCA

Analysis with MCA of the latent structure model described in the previous sec-
tion may be motivated by the interpretation of this technique and by the main
result of this section. Recall that in the dichotomous case the first MCA com-
ponent Y, equals the first principal component of the correlation matrix 3 of
the items X, X>,..., Xx. Therefore, Y, ‘best explains’ the dependence structure
between the items among all linear combinations of items. Since the latent
variable completely explains this dependence structure, Y, can be interpreted
as the linear combination of items which best fits the latent variable Z in this
sense. So the model will be analysed using the correct and wrong category
scores, v;; = a;¢;1(1) and w;; = a;;9,1(0) for I = 1,...,k, on the first MCA

component. It follows from Section 2 that
1

Y = ((1_7’1)/771)70‘11 and w;; = —(771/(1_771))70‘11

for | = 1,...,k, where a; = (ayy,...,ax;)" is the eigenvector of i corresponding
to the largest eigenvalue. (The superscript 7' denotes the transposition of a vec-
tor.)

Now suppose that a subset of items in the test satisfies the double monotoni-
city and TP, conditions. Then these items possess strong orderings with
respect to their (local and global) difficulties. The next theorem shows that
these orderings are reflected in the correct and wrong category scores of these
items, even when the remaining items do not match the orderings of the items
in the subset.

THEOREM. Suppose the test consists of m items which all satisfy (3.1) with k
replaced by m. Furthermore, suppose k of the items, which without loss of general-
ity can be taken as the first k, can be indexed such that (3.2) and (3.3) hold. Then
the correct scores of these k items satisfy :

0<vn <va <o< Y1 4.1)
Similarly, if (3.1), (3.2) and (3.4) hold for these first k items, then

o < wyy << wiy < 0. 4.2)
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PROOF. Let S denote the k X k lower triangular matrix with unit elements on
and below the diagonal and all other elements zero. Its inverse S~ ! is the
matrix with unit elements on the main diagonal, with elements —1 adjacent
and below the diagonal (i.e. on the first sub diagonal) and all other elements
zero. Denote by T the mXm block diagonal matrix with diagonal blocks S
and the (m —k)X(m —k) identity matrix /. Then its inverse 7! is a block
diagonal matrix with diagonal blocks S ! and I.

Note that the vector y; = (Yi1,...,Ym1) is an eigenvector corresponding to
the  largest  eigenvalue of the matrix C  with elements
¢ = (my—mm;)/(m(1—m;)) for I,j = 1,...,m. Since T is non-singular, y; is an
eigenvector corresponding to the largest eigenvalue of C iff d = T~ !y, is an
eigenvector corresponding to the largest eigenvalue of D = T~ 'CT.

Under the conditions of the theorem, all elements of D turn out to be posi-
tive (i.e. larger than or equal to zero) and all elements of D? even turn out to
be strictly positive. This can be verified as follows. The elements of the matrix
== (by) equal

by = (mj—mm)/(m(1—m;)) for I =1 k+1,..m;j=1,..,m,
by = (m_ymy—mm )/ (mm_(1—m;)) for I =2,..k;j =1,..m

Since (3.1) holds for all m items, it follows that all correlations are strictly
positive and hence bj > 0forl = Lk +1,..,m; j = 1,..,m. Furthermore, by
(3.4), 7/ 'm(z) can be interpreted as a density (with respect to the measure
dH) which has the monotone likelihood ratio or TP, property. Therefore,
since m;(z) is increasing in z for each j = 1,..,m, it follows from LEHMANN
[14], p. 74) or KARLIN ([10], p. 22) that f wf'vr,(z)vrj(z)dH(z) is increasing in
I. Thus, @ _ymj—mm_1; =0 and hence by =0 for | =2,.,k and
J # 1 —1,1. Obviously, b; > 0 and b;_; < 0 for / = 2,...,k. So the matrix B
has positive elements except for b, _,; / = 2,...k. But by (3.2), m_, > m
which implies that b, _; + by > 0 for / = 2,...,k. Therefore, D = BT has
positive elements. Moreover, since bj >0 for /= 1k+1,.,m and
Jj = 1,..,m and since by;_; + by > 0 for | = 2,....k, it follows that the ele-
ments in the first row of D and the elements in the first column of D are
strictly positive. This implies that all elements of D? are strictly positive.

Application of the Perron-Frobenius theorem (cf. GANTMACHER [4], p. 53 or
RAO [21], p. 46) yields that the eigenvector d = (d,,...,d,,)T corresponding to
the largest eigenvalue of D? (or of D) has strictly positive components. Since
d=Ty, or equivalently d, = vy,; for/ = LLk+1,...,mand d, = v;; —vy,_n,
for I = 2,...,k, the result (4.1) follows. The proof of (4.2) is similar. [

The conditions (3.2), (3.3) and (3.4) of the theorem can be relaxed; see SCHRI-
EVER [23].

This result shows that the MCA correct and wrong category scores reflect
the difficulties of the items. Since these scores do not depend on the order in
which items are presented to MCA, this ordering property can be used, in
combination with (3.5) and (3.6), for a first investigation of the model
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assumptions. Moreover, the theorem suggests that ordering the individuals
according to their MCA test score Y is reasonable: responding to a difficult
item correctly yields a large contribution to this test score and responding to it
wrongly does not cost much, whereas for an easy item it is the other way
around. The test score Y, is a weighted sum of items with small weights for
items which are less related to the latent variable than other items.

Analysis with MCA is an alternative to the method proposed by MOKKEN
[17] in which individuals are ordered according to the unweighted sum of
correct responses. It is unknown, however, in which cases which method actu-
ally works better. An advantage of the MCA approach is that our results can
be generalized, in a natural fashion, to the case where items have three or more
response categories. Such a generalization of Mokken’s method, as discussed
by MOLENAAR [19], is quite complicated and less natural.

In practice the probabilities 7, and = for j,/ = 1,..,m have to be estimated
by the relative frequencies of correct responses. Although the MCA scores
based on these estimates need not reflect the difficulties of the items even when
the underlying model satisfies the assumptions of the theorem, one would
expect the total score Y to reflect the appropriate ordering of the individuals
quite well. It is, however, difficult to derive precise and useful statistical pro-
perties of such qualitative aspects.

5. EXAMPLES OF MODELS
Latent structure models for dichotomous variables studied in the literature (e.g.
ANDERSEN [1]; FiscHer [3]; Lorp and Novick [16] are commonly of
parametric form, that is, the functional form of the trace lines is specified.
Often there is, however, no evidence that the specificd functional form is actu-
ally present in the test at hand. The parametric examples below generally
satisfy the double monotonicity and TP, conditions and, therefore, analysis
both with MCA and with Mokken’s method is legitimate. These examples are
also discussed in MOKKEN [17] and MOLENAAR [18]; the ordering property of
MCA under these models are mentioned, but not proved in GIFI [5].

In Guttman’s model the responses on the items are deterministic functions of
the latent variable. The trace lines are given by

1 if z=4,
m(z) = 0 if z<8, for I = 1,..,k,

where the item parameters satisfy 8; < 8, <... < 8. In this model an indivi-
dual cannot respond correctly to a difficult item and wrongly to an easier item.
Hence a perfect analysis is possible. Double monotonicity and TP, of trace
lines are easily verified and thus by the theorem the correct and wrong
category scores of the items (on the first MCA component) increase as the item
becomes more difficult. Moreover, it is demonstrated in SCHRIEVER [23] that
the correct and wrong category scores on higher MCA component are oscillat-
ing functions of the item difficulty. The practical relevance of these stronger
ordering properties is, however, limited. (Slightly weaker oscillatory properties
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for the principal components aj,...,a; of i are proved in GUTTMAN [7] and
interpreted in GUTTMAN [8].)

A somewhat more realistic generalization of the previous model is the latent
distance model of LAZARSFELD and HENRY [12]. The trace lines of this model

satisfy
1"{[ if 228[
m(z) = g if 2 <8, forl = 1.k

where 8] < 82 =, < 81( and g < 1"§1 for | = 1,...,k. If € > 0 and {[ >0
for / = 1,..,k, then double monotonicity and TP, cannot hold simultane-
ously. But the weaker conditions for our main theorem are satisfied when
Ty > Wy, M€ = Ty € and ’171(1“§1_1) = '17171(1_9) for [ = 2,...,]( and
hence (4.1) and (4.2) remain valid (cf. SCHRIEVER [23]).

In the linear model of Lazarsfeld the trace lines satisfy m(z) = a;z +b; pro-
vided 0 < gz +b, < 1 for [ = 1,...,k. The conditions (3.1) and (3.2) are for
instance satisfied when q,_; < g; and b, = b, for [l = 2,...,k. The TP, con-
ditions 3.3) and (3.4) hold when a;_1b; < aqb,_, and
a_(1+b) = aq(1+b_y) forl = 2,. k.

RascH [22] developed a model in which the unweighted sum of all correct
responses is sufficient for Z. The trace lines are given by m)(z) = z/(z +§;) or
=0asz = 0orz <0, where 0 < §, <...,6;. This model is a special case of
a model considered by Birnbaum (cf. Chap. 17-20, Lorp and Novick [16]).).
In Rasch’s model the unweighted sum of correct responses ‘uniformly best
discriminates’ the individuals (cf. MOKKEN [17], p. 141). Double monotonicity
and TP, of trace lines is easily verified.

The last example consists of models based on shifts in distribution functions.
For an univariate distribution function F the trace lines are defined by
m(z) = F(z—§,) for I = 1,..,k and 8; < §, <...< §;. Double monotonicity
is obvious. The TP, conditions hold when the density p of F (with respect to
some measure) is log concave. Special choices of such distributions F yield
well-known models, e.g. degenerate distribution (Guttman’s model), logistic
distribution (Rasch’s model), normal distribution (models of LAWLEY [11] and
Lorp [15]). Other examples of such distribution functions are the gamma,
Poisson and binomial distribution function.
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Book Review

Sara van de Geer

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

D. POLLARD (1984). Convergence of Stochastic Processes, Springer Series in
Statistics, Springer Verlag, New York etc.

One of the reasons for studying convergence of probability measures on metric
spaces is to obtain useful approximation theorems in statistics. For instance,
suppose X1,X»,... are independent observations from a probability distribution
P on R. Let P, be the empirical measure, i.e. P, puts equal mass n~! at each
of the first n sample points B, T For example,
P,((—o0,a]) = n~ ' {#X;<a, i<n}, and for general sets A,
P,(A) = n~'{#X,€A, i<n}. By the Glivenko-Cantelli Theorem
lim  sup|P,((—o0,a])=P((—o0,a])| = 0, 8
n—oo ae
almost surely. The uniformity in a implies the almost sure convergence of cer-
tain functionals of P,((—0,"]). A more refined result says that the empirical
process

vp((— 00,a]): = Vn(P,((— 00,a])— P((— 0,a]))

converges weakly to a Brownian bridge. This suggests e.g. an approximation
for the level of the Kolmogorov-Smirnov test.

A famous book on weak convergence of v,(-) as random element of a space
D of functions on R is Billingsley’s Convergence of Probability Measures [1].
Pollard organizes some of the more recent theory on convergence of random
elements of %, % being some space of functions with domain %, where ¥ is a
class of functions on a probability space (S,$,P). The emphasis is on empirical
processes indexed by functions fe% — or sets 4 €@ —, which are indeed ele-
ments of such an abstract space .
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The book covers a broad field, from which everyone can choose his or her
favourite subject. I shall mainly highlight the extension of the Glivenko-
Cantelli Theorem to vector-valued random variables (Chapter II of the book).
Here, the concept of empirical processes indexed by sets already comes up
naturally. Let X;,X;,... be independently sampled from a distribution P on
R?. Let @ be a class of measurable subsets 4 CR?. By the law of large
numbers, for each measurable A

|Pn(A)—P(A)|—>0 almost surely,

i.e. relative frequencies converge to probabilities. The problem is now to find
conditions on the class @ such that the almost sure convergence holds uni-
formly in 4 €@.

ExaMpPLE 1. In the Glivenko-Cantelli Theorem, d =1, @={(—0,a], aeR}
and (1) can be written as
iug|P,, (4)—P(A)|—>0 almost surely.
Obviously, if @ is finite, then the law of large numbers holds uniformly over

@ Now, no matter how large @, the number of different 4 €@ one can distin-
guish from a sample of size n is always at most 2". Formally, if we define

AN Xy, X)) = # {AN{X},... X, }:A @),

then A%(X,,..,X,)<2". We say that two sets A and A dlﬁer for P, if
P, (AAA) = 0, where AAA is the symmetric difference (4 N4 )U(A ﬂA)

P,(AAA) = 0

Let {A4,,..,A,} be such that for each Ae@ P,(4A4;) =0 for some
Aje{A,,...,An}. Then A%(X,,...,X,) is the smallest value of m for which such a
collection {A4,,...,A,, } exists.

ExAMPLE 1 continued. Take
A; = (—0,X;), j = 1L2,..,n+1

where X ;) <X(; <...<X(, are the order statistics, and X(, +1) = oo. Then for
A = (—ow,a), P,(A04)) = 0 for X;_p<a<X . Thus A%X,,...X,)
<n+1.

If A%X,,...,X,) = 2", one says that @ shatters {X,,..., X, ).
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EXaMPLE 2. Let @ be the collection of all closed convex sets in R?. If
X1,..,X, all lie on their convex hull, then A%(X},...,X,) = 2". And if X,
falls inside this convex hull, then any closed convex set containing {X},...,X, }
must also contain X, 4, i.e.

(X10s X, Y E{AN (X5, X, Xy 41 ): AER).

X3
X,

X,

So @ shatters {X,...,X, }, but does not shatter {X;,...,X,, X,+1}.

The rate of growth of A%(X,,...,X,) determines whether or not the uniform law
of large numbers holds.

ExaMPLE 3. Let @ be the collection of all finite subsets of [0,1], and P the uni-
form distribution. Then P(4) = O for all 4 €&, whereas P,({X},...,X,}) = 1
for all n. Thus

sup|Pn(4)—P(4)| = 1.
Moreover, A%(X},...,X,) = 2" for all n.

VapNIK and CHERVONENKIS [3] show that (neglecting some measurability
problems),

P
n~'logA%(Xy,...,X,)—0 Q)
iff
iug|P,, (4)—P(A)|—>0 almost surely . 3)

Measurability conditions are necessary because @ might be uncountable. For
instance the event A%(X;) = 1 occurs iff X, &( N A)U((M A°). However, the
e e

intersection of uncountable many measurable sets need not be measurable. The
same is true for the supremum over an uncountable @ Thus, (2) and (3) do not
always make sense. In Pollard’s book, there is a thorough treatment of
measurability issues.

Pollard’s contributions to laws of large numbers are his methods of proof
and the extension to classes & of, not necessarily uniformly bounded,
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measurable functions f. A collection @ of sets can be regarded as a special case
by identifying @ with the class {1,:4 €@} of indicator functions. As with sets,
the notation P,(f) = f fdP, and P(f) = f fdP is used. The distance for P,
between f and fis defined as P,(|f— f]). Thus, for sets

P,(|1,—1i]) = Pn(4AA).

Furthermore, for each >0, N,(8,P,,9) denotes the minimum number of balls
with radius 8 , necessary to cover ¥, i.e. N (8,P,,9) is the smallest value of m
such that there exist f,...,f,, such that for all fe%,

mjin Py([f—fiD<8.

P,(|-<<8

N

////?/////

74

-3

N
S \‘
W

N\

The logarithm of N(8,P,,9) is called the 8-entropy of ¥ for P,. Observe that
for a collection of sets A%(X1,...,X,) = N,(8,P,,{14:4€@)}), 0<6<1/n.
Pollard shows that if both

1" "1ogN (8, P,,%) . 0 )
and

f i};g[ﬂdP<oo )
then

§ug|P,,(f )—P(f)| — 0 almost surely, 6)

again, provided certain measurability conditions are met.

The topics mentioned so far are all part of Chapter II. Let me now briefly
present some of the results concerning weak convergence.

The uniform law of large numbers (6) can be formulated as the almost sure
convergence of P,(") to P() as process in fe%. That is, P,(), n = 1,2,... and
P(°) are considered as elements of some space % of real-valued functions on %,
% being equipped with supremum norm. Note that the question whether or not
P,(") is a random element of % is not really relevant: basically only the
measurability of the supremum of |P,(-)—P(")| is of concern. However, for the
study of weak convergence, v,(*) := \/rT(P,,(-)—P(-)) needs to be viewed as

48



random element of *.

Pollard explains the concept of weak convergence on general metric spaces
and I shall sketch what it means for the process v,(-). Some authors (e.g.
DuDLEY and PHILIP [2]) circumvent the notion by creating large probability
spaces where weak convergence is replaced by convergence in probability.

The supremum metric generally makes % into a nonseparable space. As a
consequence, v,(-) is not Borel-measurable. One already has to face this prob-
lem if % is the space D[0,1] of functions on [0,1] that are right-continuous and
have left-hand limits. The classical solution is to take a different metric on
DJ[0,1] (the Skorohod metric), but to stick to the Borel o-algebra. Pollard ele-
borates on the alternative approach: maintain the supremum metric but
choose a smaller o-algebra for which v,(-) is measurable. Under mild regular-
ity conditions, v,() will be measurable for the o-algebra %% that contains all
closed balls with centres in a separable set in X and that makes all coordinate
projections

Va(f1)sesUn(fn) 5 f1oees fm €T

measurable. In D[0,1], the o-algebra generated by closed balls coincides with
the o-algebra that makes all coordinate projections measurable.

Remember that X is a space of functions y on . Such a y is continuous if
| y(f)—y(H)| — 0 for all f,feF, P(| f—f]*)— 0. A separable set in X is the
collection of all bounded uniformly continuous functions. Now, the limiting
distribution of v,(-), if it exists, must be some Gaussian process on ¥. An
entropy condition on ¥ ensures that there is a version of this Gaussian process
with bounded, uniformly continuous sample paths. In other words, the limiting
distribution concentrates on a separable set. This is important, because if one
defines weak convergence with B° as the o-algebra on %, and if the limiting
distribution concentrates on a separable set, then some useful theorems for the
Euclidean case (the continuous mapping theorem and the almost sure represen-
tation theorem ) go through for weak convergence in more general .

Pollard’s book also contains the equipment for verifying weak convergence.
First, it runs into topics like relative compactness and uniform tightness of a
collection of probability measures. A clear description of the chaining method,
as a technique to prove tightness, is presented.

Several trips are made to other stochastic processes, apart from the empirical
process v,(-). Pollard succeeds in treating difficult topics in a transparent way.
He sometimes jumps back to earlier sections of the book, to recall certain
definitions or results. This helps the reader to keep track. The point of view
he provides to classical situations is enlightning.
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CS-R8636. J.C. van Vliet & J.B. Warmer. Intertable.
AMS 68KO05; CR 1.7.2; 12 pp.; key words: document preparation.

Abstract: Intertable is an interactive program for editing tables. It can be used to create and mani-
pulate tables. The present report describes Intertable, with emphasis on the algorithms used to
incrementally update the widths of rows and columns of a table.

CS-R8637. P.J.W. ten Hagen, A AM. Kuijk & C.G. Trienekens. Display archi-
tecture for VLSI-based graphics workstations.

AMS 69K 31, 69K33, 69K37; 15 pp.; key words: workstation architecture, com-
puter graphics, interaction, raster, VLSL

Abstract: At present, two popular development areas in computer graphics are improvement of
interaction behaviour and more realistic graphics. The architecture for a high quality interactive
workstation proposed in this work is designed such that both demanding and in a sense competing
needs can be served. Calculations for generating realistic full 3-D scenes with lighting, tran-
sparency, reflection, and refraction effects, are done on the workstation itself. Intermediate results
are stored to locally serve high level interaction mechanisms.

0S-R8614. G.A.P. Kindervater & J.K. Lenstra. Parallel computing in combina-
torial optimization.

AMS 90C27, 68Q15, 68Q25, 68Rxx; 27 pp.; key words: parallel computer,
computational complexity, polylog parallel algorithm, 9-completeness, sorting,
shortest paths, minimum spanning tree, matching, maximum flow, linear
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programming, knapsack, scheduling, traveling salesman, dynamic program-
ming, branch and bound.

Abstract: This is a review of the literature on parallel computers and algorithms that is relevant for
combinatorial optimization. We start by describing theoretical as well as realistic machine models
for parallel computations. Next, we deal with the complexity theory for parallel computations and
illustrate the resulting concepts by presenting a number of polylog parallel algorithms and -
completeness results. Finally, we discuss the use of parallelism in enumerative methods.

OS-N8603. J.W. Polderman. Adaptive pole assignment by state feedback.

AMS 93C40; 8 pp.; key words: adaptive poleplacement, self-tuning, certainty-
equivalence.

Abstract: An algorithm for adaptive poleplacement for a restricted class of systems is proposed.
The asymptotic properties of the algorithm are analysed by studying the invariant points and the
asymptotic active part of the state space. A weak form of self-tuning is derived.

NM-R8624. P.M. de Zeeuw. NUMVEC FORTRAN library manual. Chapter:
Elliptic PDEs. Routine: MGD1V and MGDS5V.

AMS 65V05, 65N20, 65F10; CR 5.17; 29 pp.; key words: elliptic PDEs, Galer-
kin approximation, multigrid methods, software, sparse linear systems, ILU
relaxation, ILLU relaxation.

Abstract: The NUMVEC FORTRAN library routines MGD1V and MGDS5V are described. These
solve 7-diagonal linear systems arising from 7-point discretizations of elliptic PDEs on a rectangle,
using a multigrid technique with ILU and ILLU relaxation respectively as smoothing process.

MS-R8613. R. Helmers & F.H. Ruymgaart. Asymptotic normality of general-
ized L-statistics with unbounded scores.

AMS 62G05, 62G30, 62E20; 8 pp.; key words: U-statistics, empirical processes,
L-statistics, unbounded scores, asymptotic normality.

Abstract: A central limit theorem for linear combinations of a function of generalized order statis-
tics with unbounded scores is established. The result supplements previous work of Silverman
(1983), Serfling (1984) and Akritas (1986) concerning the asymptotic normality of generalized L-
statistics. Our proof is patterned after the well-known Chernoff-Savage approach. A linear bound
for the empirical distribution function of U-statistic structure is also derived and subsequently
applied in the treatment of certain remainder terms.

MS-R8614. R.D. Gill & M.N. Voors (eds.). Papers on semiparametric models
at the ISI centenary session, Amsterdam.

AMS 62G05, 62G10; 85 pp.; key words: semiparametric models, asymptotic
efficiency, semiparametric Pareto model, Cox regression model, counting pro-
cess, transformation models.

Abstract: This report contains revised versions of the papers presented at a meeting on semi-
parametric models during the ISI Centenary Session, together with the invited and open discus-
sion, and one further paper. The three papers presented were: Semiparametric models: progress and
problems, by J.A. Wellner; The semiparametric Pareto model for regression analysis of survival times,
by D.G. Clayton and J. Cuzick; and On asymptotic inference about intensity parameters of a count-
ing process, by K. Dzhaparidze. The extra paper by invited discussant P.J. Bickel, is Efficient test-
ing in a class of transformation models.

PM-R8606. M. Hazewinkel. Lie algebraic method in filtering and identification.
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AMS 93E11, 93B30, 93E10, 60H15, 93B15, 17B65, 17B99, 57R25; 17 pp.; key
words: nonlinear filtering, estimation Lie algebra, asymptotic expansion, Weyl
algebra, Heisenberg algebra, Kalman-Bucy filter, conditional density, Duncan-
Mortensen-Zakai equation, BC-principle, identification, Lie algebra of
vectorfields, finite dimensional filter, robustness.

Abstract: These lectures concern (nonlinear) filtering: very roughly, the art of obtaining best esti-
mates for some stochastic time-varying variable x on the basis of observations of another process
y. The more concrete object under consideration is a stochastic dynamical system
dx = f(x)dt + g(x)dw, where w is Wiener noise, with observations dy = h(x)dt + dv, corrupted by
further noise. The subject as presented here involves ideas and techniques from Lie algebra theory,
stochastics, differential topology, approximation theory and partial differential equations and has
relations with quantum theory and stochastic physics. The lectures are addressed to practitioners
in any one of these areas assuming that as a rule they are not experts in the other ones.

PM-R8607. A.M. Cohen & G.M. Seitz. The r-rank of the groups of exceptional
Lie type.

AMS 20G15, 20E15; 7 pp.; key words: groups of Lie type, elementary Abelian
subgroups.

Abstract: In this note, we determine, for each simple group G of exceptional Lie type over an alge-
braically closed field F and each prime r distinct from the characteristic of F, the maximal number
a for which there exists an elementary Abelian subgroup of order r¢ in G. This settles a question
raised in a paper of Borel & Serre (1953).
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CWI Activities
Winter 1986

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWIL.

Study group on Analysis on Lie Groups. Jointly with University of Leiden.
Biweekly. (T.H. Koornwinder)

International mini-conference on Lie Groups. Jointly with University of
Leiden, Utrecht and Groningen. 21-22 April 1987. (T.H. Koornwinder)

Seminar on Integrable Systems. Once a month. (M. Hazewinkel)
A central object of study is the work of Belavin and Drinfeld, especially the
relation between simple Lie algebras and solutions of the so-called classical
Yang-Baxter equation. Also, linearization aspects of nonlinear representa-
tions and lattice KP, KdV will be discussed.

Seminar on Algebra and Geometry. Once a month. (A.M. Cohen)
The Cohomology of the Schubert variety and Coxeter groups.

Cryptography working group. Monthly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Jointly with University of Leiden. Bimonthly (O. Diekmann)
Topics for the next meetings are: stochastic population dynamics, dynamics
of structured populations.

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Jointly with University of Leiden. Bimonthly (O. Diekmann)
The purpose is to follow and investigate recent developments on qualitative
analysis of nonlinear equations.

Progress meetings of the Applied Mathematics Department. Weekly (N.M.
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Temme)
New results and open problems on the research topics of the department:
biomathematics, mathematical physics, asymptotic and applied analysis,
image analysis.

Study group on Statistical and Mathematical Image Analysis. Every three
weeks. (R.D. Gill)
The group is presently studying J. Serra’s approach to image analysis,
‘mathematical morphology’, and recent statistical contributions using Mar-
kov field modelling due to S. and D. Geman, J. Besag and B. Ripley.

Progress meetings of the Mathematical Statistics Department. Biweekly (H.C.P.
Berbee)
Talks by members of the department on recent developments in research
and consultation.

Study group on Empirical Processes. Jointly with University of Amsterdam.
Biweekly (S. van de Geer)
The group is studying the recent book Convergence of Stochastic Processes by
D. Pollard, and related literature.

System Theory Days. Irregular. (J.H. van Schuppen, J.M. Schumacher)

Study group on System Theory. Biweekly. (J.M. Schumacher)
Current topic: Discrete event dynamical systems.

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Irregular. (H.J.J. te Riele)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Process Algebra Meeting. Weekly. (J.W. Klop)
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Visitors to CWI from Abroad

E. Badertscher (University of Bern, Switzerland) 16-19 December. J.A. Ball
(Virginia Tech., Blacksburg, USA) 26 November. L. Baratchart (INRIA,
Sophia Antipolis, Valbonne, France) 26-28 November. R.S. Bird (Oxford
University, England) 10-18 December. R.K. Boel (University of Ghent, Bel-
gium) 18 November. H. Bruneel (University of Ghent, Belgium) 15 December.
H. Brunner (Memorial University of Newfoundland, St. John, Canada) 15-17
October. B.A. Francis (University of Toronto, Canada) 13-17 December. A.
Jakubowicz (University of Szczecin, Poland) 15-24 October. K.E. Karlsson
(ASEA Research and Innovation, Vasteras, Sweden) 8 December. D.A. Leites
(Stockholm University, Sweden) 16 November - 6 December. Y. Moses (Weiz-
man Institute, Rehovot, Israel) 15-16 December. J.M. Sanz-Serna (University
of Valladolid, Spain) 1-4 October. F. Soumis (Ecole Polytechnical, Montreéal,
Canada) 15-17 December. B. Zwahler (EPFL, Lausanne, Switzerland) 9
December.
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Order Form for CWI Publications

Sales Department
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis
Please send the publications marked below with an invoice

Publication code Price per copy

Number of copies wanted

CS-R8636 4--
CS-R8637 4--
OS-R8614 520
OS-N8603 4--
NM-R8624 5200 s
MS-R8613 4--
MS-R8614 12720
PM-R8606 4--
PM-R8607 4--

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,

postal and handling charges.
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