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1. INTRODUCTION
In this note we present a short historical account of the development of
numerical methods for Volterra integral equations of the second kind, with the
main part of the paper (Section 3) covering the period between about 1920 and
the early 1960s. In order to see this development in its proper context we
begin with a section in which we sketch the origins and some of the classical
theory of Volterra integral equations, and we conclude by subsequently
describing the principal areas of current research and a number of recent
automatic computer codes.

The paper is concerned with linear (one-dimensional) Volterra integral equa-
tions of the second kind, i.e., equations in the (continuous) function y of the
form

y(@) = g(t)+jK(t,s»/(s)ds, tel:=[0,T], (L.1)
0
and
y(t) = g(t)+j(t —s) *y(s)ds, tel, 0<a<l. (1.2)
0
Their nonlinear counterparts are
y(@) = g(t)+jk(t,s,y(s))ds, tel (1.3)
0
and

y(0) = g+ [(t —5)"k(t,s,p(s)ds, tel, 0<a<l. (1.4)
0



It will be assumed that the kernels K(z,s) and k(t,s,y) are given continuous
function of their respective variables and (in the nonlinear case) are such that
there exists a unique solution y € C(I) whenever the given function g is in C(J).
(Generalizations to, e.g., the L,-setting are, of course, possible but will not be
considered here.)

2. A SHORT HISTORY OF VOLTERRA INTEGRAL EQUATIONS
The classical papers of ABEL [1], [2] and of VOLTERRA [89] deal with the ‘inver-
sion of definite integrals’: if g and G are given functions of one and two vari-
ables, respectively, find a (continuous) function y satisfying the first-kind
integral equation
t
f(z—s)‘“G(t,s)y(s)ds = g(t), tel, 0<a<l. (2.1
0
ABEL investigated the special case G(1,5)=1, 0<a<1, and derived the explicit
inversion formula,

y(0) = ST [ gy tg(s)ds) 22
0

He shows that equation (2.1), with G(#,s)=1, describes the problem of deter-
mining the equation of a curve in a vertical plane such that the time taken by
a mass point to slide, under the influence of gravity, along this curve from a
given positive height to the horizontal axis is equal to a prescribed (monotone)
function of the height.

The general case was treated by VOLTERRA [89] in 1896: he showed, both for-
a=0 and for ac(0,1), that if G(,1)50 for all te] and if g and G satisfy some
obvious regularity conditions, then (2.1) can be rewritten as a second-kind
integral equation (1.1) whose kernel is continuous on the domain
S := {(t,s) : 0<s<t<T}. Picard’s method of successive approximations
(proposed in his paper [72] of 1890) can then be employed; it leads, by means
of the iterated kernels:

t
K, (t.5) := [K@V)K, 1(v,s)dv (n=2), K(1,5):=K(L.5) ,
associated with K(z,s) in (1.1), and the corresponding Neumann series:
R(t,s) := D K,(t,s), (ts5)eS (2.3)

n=1

(which, for KeC(S), converges absolutely and uniformly on S), to the ‘inver-
sion formula’

() = gt)+ /R(t,s)g(s)ds, tel, (2.4)
0

This inversion formula is no longer explicit, in the sense of (2.2), since the
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resolvent kernel R(z,s) cannot, in general, be found analytically.
We mention in passing that one of the tools used in the above convergence
analysis is Dirichlet’s formula (dating from 1837; cf. [26] ) which states that

}dt j D(2,s5)ds Z/ads}d)(t,s)dt 5
0 0 0 s

provided @ is a continuous function. (This result was generalized in 1908 by
HurwiTz [49] to include integrands containing weakly singular terms like
AN —sy !, with A>0, p>0.)

Particular cases of the second-kind integral equation (1.1) occur already in
the papers by PoIssoN [73] of 1826, where the kernel K(z,s) is of convolution
type (i.e., depends only on the difference # —s of its arguments 7 and s), and by
L1ouVILLE [58] of 1837. LIOUVILLE seems to have been the first to employ the
idea of successive approximations in an integral equation, thus anticipating
Picard’s suggestion by some fifty years: in loc.cit. he applied it to the integral
equation he had obtained by rewriting the initial-value problem for a second-
order differential equation, and he so established the uniform convergence of
the resulting sequence of approximants. (His idea was subsequently extended
to ordinary linear differential equations of arbitrary order by CAQUE in 1864;
cf. [14] for bibliographical details.) As far as the general integral equation (1.1)
is concerned, one finds the approach used by VOLTERRA already in the thesis
by LE Roux in 1894 (published as [56] a year later); however, LE Roux did
not investigate the uniform convergence of the resulting Neumann series.

By the turn of the century the classical quantitative theory of linear Volterra
integral equations with regular kernels had essentially been established. Later
work on second-kind integral equations by EvANs [31] in 1910/11 concerning
various types of singular kernels, by ANDREOLI [3] in 1914 concerning equa-
tions whose upper limit of integration, ¢, is replaced by some function ®(z),
and by LALEscO, SCHMIDT, and others at about 1908 (see [22], [42], [25] for
details) was already overshadowed by the fundamental work by FREDHOLM in
1900, 1903 ([33]) and by HILBERT in 1904-1910 ([43]). The latter work on
second-kind integral equations with fixed limits of integration marks the birth
of functional analysis. (Compare the recent studies by MONNA [68] and by
DIEUDONNE [25]; see also [30].)

3. EARLY NUMERICAL METHODS

The idea of replacing the integral in (l.1), with 7=z,:=nh
(n=1,..,N; Nh=T), by a finite sum (i.e., by some quadrature formula), thus
obtaining, in a recursive way, approximations {y,} to the exact values {y(z,)},
was introduced by VOLTERRA in [89, pp. 219-220] and, more explicitly, in [90,
pp- 40-45]. Setting

n—1

bo = 8 S Kty =0, 3.1)
i=
he obtained a linear system in RY *! for uy := (yo,y1__ynx)". (Note that the
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right hand side corresponds to a particular Riemann sum, in which the values
of the integrand are taken at the left endpoints of the subintervals
[Gutsal « =00t =1.] The system (3.1) has the form (Iy —hAy)uy=gn.
Here, Iy is the identity matrix, Ay is a strictly lower triangular matrix whose
nontrivial elements are K(z,,) (0<j<n<N), and gy: :(g(to),...,g(tN))T. Due
to the special choice of the quadrature approximation the matrix Iy —hAy is
always nonsingular (for more general quadrature formulas this will hold only
for sufficiently large values of N), and hence (3.1) is uniquely solvable. VoL-
TERRA employed this approach not for the actual numerical solution of (1.1)
but to establish, by ‘passing from finiteness to infinity’ (as he called it), the

identities

R(t,s) = K(t,5)+ fK(t,v)R(v,s)dv

= K(1,5)+ /R(t,v)K(v,s)dv, t,5)€S ,

(now generally referred to as Fredholm identities) between the kernel K(z,s), of
(1.1) and the corresponding resolvent kernel R(z,s) introduced in (2.3).

3.1 Related fields

Before we start discussing the early contributions to the numerical solution of
integral equations, beginning with WHITTAKER’ s paper [92] of 1918, we shall
recall briefly what was known at that time in two fields closely related to
numerical analysis, namely numerical integration (or quadrature) and the
numerical solution of initial-value problems for ordinary differential equations.
(The reader is referred to GOLDSTINE [36], GAUTSCHI [35], MILNE [67], and to
the forthcoming monograph [40] by HAIRER, NoRSETT and WANNER for biblio-
graphical and historical details.)

Numerical quadrature. The origins of numerical quadrature date back to the
work of CAVALIERI (1639), GREGORY (1670), NEWTON (1676), CoTEs (1722),
MACLAURIN (1742), StMPsON (1743), and EULER (1755). The results of Gauss
(1814) on more general quadrature formulas were extended by JacosI (1826)
(who based his theory on the theory of orthogonal polynomials), and by
CHRISTOFFEL (1852). The work of LoBATTO and RADAU on quadrature formu-
las possessing a certain number of prescribed abscissas (either both, or one of
the endpoints of the interval of integration) dates from 1852 and 1880 respec-
tively. Finally, the classical result on the integral representation of the error of
a given quadrature formula, i.e. Peano’s kernel theorem, was published in
1914.

Among the classical quadrature formulas it was the one known as Gregory’s



rule which, as will be seen below, played initially the dominant role in the
numerical solution of Volterra integral equations Gregory’s rule in an exten-
sion of the trapezoidal rule, it has the form

[fis)ds ~ h [%f(to)+f(n)+...+f(zn_1)+%f(tn)] - (32)
0

— S (Ve + (- 187w |
i=1
where 1, :=tg+kh (h>0), 19:=0, Af():=f), Aft):=ftx+1)—flt)s
A :=A(A' 1) (with analogous definitions for the backward difference operator
Y f(te) : = f(t)— fltx —1)), and where the first few coefficients ¢; in the end
corrections are given by ¢; =1/12, ¢, =1/24, ¢3= 19/720, ¢4 =3/360,..., g is a
given integer. Notice that the case ¢ =0 corresponds to the trapezoidal rule.
The above quadrature formula (3.2) is closely related to the Euler-MacLaurin
summation formula (established some seventy years after Gregory’s formula),

[fis)ds = h [%f(zo)+f(zl)+...+f(t,,_l)+%f(z,,)] =
0

m h2k
- ZM [f‘z"")(tn)—f(z"_”(to)} + Ru(f)
Lo @R

where R,,(f):=—t1,h"" 2By 12 f*" T V(&)/2m +2)! (£€[to,1,]); here, the B;
are the Bernoulli numbers (i.e., the coefficients of #//j! in the power series
expansion of t/(e'—1)). Gregory’s rule is obtained by using appropriate
finite-difference approximations to the derivatives of f at the endpoints 7 and
t,, followed by suitable truncation (compare also KRyLOV [54, pp. 35-38]).

Initial-value problems. 1In the development of numerical methods for the
initial-value problem y’ = f(z,y), y(t9)=yo, an idea first encountered in
Euler’s work (1768) was used by GAUCHY in 1840 to derive a viable algorithm
(now generally known as Euler's method), y,+1:= Y +hf(ty,yn) (n=0).
Among the successors of this method are the one-step methods of RUNGE
(1895), HEUN (1900), and KutTa (1901) one of whose explicit four-stage,
fourth order methods was, until fairly recently, simply referred to as the
Runge-Kutta method. The (explicit) linear multistep methods known as
Adams-Bashforth methods which were introduced by BASHFORTH and ADAMS
in 1883 can also be considered as successors to Euler’s method. The analogous
implicit linear multistep methods (the methods of Adams-Moulton) originate
from the work of MOULTON in the 1920s. Nystrom’s method for approximat-
ing the solution to the initial-value problem for a second-order differential
equation dates from 1926. Except for some earlier surveys, the books by CoL-
LATZ [21] and by MILNE [67] (whose first editions were published in 1951 and
1953 respectively) represent the first comprehensive accounts of numerical
methods for ordinary differential equations.
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Returning to Volterra integral equations and to the paper [92] by WHIT-
TAKER of 1918, we observe that his methods for equations of the form (1.1)
with convolution kernel K(z,s)=a(t —s) do not yet reflect the fact that (1.1)
may be viewed as a generalization of the initial-value problem for an ordinary
differential equation, for whose numerical solution one might try to use suit-
able analogues of certain known methods for ordinary differential equations.
Whittaker’s first two methods are based on the assumption that the kernel a(z)
is given in the form of a numerical table. Using De Prony’s method of 1795,
he approximates a(z) by an interpolant which is a linear combination of
exponential functions; its construction involves the solution of a certain non-
linear algebraic equation. The approximation u() to the exact solution is then
of the form

u(t) = g(0)+ [rt —s)g(s)ds, tel
0

where r(z) (which may be regarded as an approximation to the resolvent ker-
nel associated with the kernel a(z); cf. (2.4)) is again a linear combination of
exponential functions whose exponents are given by the roots of the above
nonlinear equation and whose coefficients depend on these roots as well as on
the exponents occurring in the interpolant of a(z). In the second method the
interpolant is a polynomial, while in the third method it is assumed that one
knows the Taylor expansion of a(z); this then permits the computation of the
Taylor expansion of the resolvent kernel. In both cases, the exact solution is
approximated by an expression of the form (3.2).

3.2. The methods of Prasad

Multistep methods. The methods proposed by PRASAD [75] in 1924 are the true
ancestors of most of the present-day numerical methods for (1.1) and (1.3);
moreover, they are applicable not only to integral equations with convolution
kernels but to general equations as well. His linear multistep method is based
on the Gregory rule (3.2); for (1.3) it thus assumes the form
n
Yn = g Th X wy jk(ty,ty,p;), n=¢q+1,..,N, (3.3)
j=0
where 1, :=nh (n=0,..,N; Nh=T), and where the weights {w,;} are easily
obtained from the coefficients characterizing Gregory’s rule (3.2). PRASAD
employs the value ¢=4; in addition to y,=g(0) he thus needs the values
Y1,¥2,3,Y4 to start the recursion (3.3). These starting values may be obtained
by means of the trapezoidal rule and Simpson’s rule, possibly using smaller
initial sub-intervals in order to attain sufficiently accurate approximations.



Runge-Kutta methods. In order to avoid methods that depend on starting
values, PRASAD shows how the ideas of RUNGE, KUTTA and others can be
adapted to generate approximations at f,=nh to the solution of (1.3). His
starting point is one of the explicit four-stage, fourth-order methods introduced
by KUTTA in 1901: in current notation (i.e., in terms of the so-called Butcher
array: see, e.g., [40] ) this method is characterized by

00 0 0 O

1 1
3|3 0 0 O

c|A 9 1
"F::?_? 1 0 0
1 1 —11 0
1l 3 3 1
8 8 8§ 8

Hence, for t€[t,,t, +1] the integral equation (1.3) is discretized by setting

Yui1 = Fylty 1)+ h - Dbkt 412t t ek, Y (3.4a)
i=1
where the Y, ; are obtained from
- i—1
Yn.i = F"(tn +C,h)+h * 2 a,-,jk(t,, +C,'h,t" +th, Yn,j) § (34b)
j=1

G=1.. m).

Here, m =4, and i’,,(t) denotes a suitable approximation to the lag term

1,

F(t) := g(O)+ [k(t,5,y(s))ds, 1€[tn,t41], (3.5)
0

of the equation (1.3), and the numbers b;,¢;, and g;; are the elements of the
vectors b,c and of the matrix A, respectively, in the above array. PRASAD how-
ever, dismisses Runge-Kutta methods of the form (3.4) as being ‘not so good
as’ the method based on Gregory’s rule; they found a renewed interest only
some thirty years later.

We note in passing the the first ‘practical’ application of a method of the
form (3.3) (involving Gregory’s rule (3.2) with 4=0) seems to occur in the
book [20] by CARSON (pp. 145-146) in 1926; the method is employed to solve
numerically a linear Volterra integral equation with convolution kernel found
in the theory of electric circuits.



3.3. Convergence analysis
The first convergence analysis for quadrature methods (3.3) applied to the
linear equation (1.1), exhibiting the relation between the errors of the underly-
ing quadrature formula and the resulting order of the approximation error
e, :=y(t,)—y, of the method, was given by MIKELADZE [65] in 1935. The
main tool in his analysis is a discrete version of Gronwall’s inequality,

n—1

Z, <hC1 . 22,~+C2, HIO,...,N 5

i=0
with z;=0, C,>0, C,>0 (see also below, Section 4). The methods studied by
MIKELADZE are essentially those based on the various Gregory rules. The
author’s motivation for considering these methods lies in the numerical solu-
tion of higher-order linear differential equations: he suggests their being rewrit-
ten as Volterra integral equations of the second kind. An analogous idea is
also used for second-order linear partial differential equations, here, the result-
ing integral equations contain double integrals.

The paper by KrRyLOV [54] of 1949 deals also with the quadrature method
(3.3) employing the Gregory rule (in the Russian literature this rule is often
called the Euler-Laplace formula). Moreover, KRryLOV introduces block
methods for the simultaneous computation of the starting values yi,y, (if
g=2), or y1,y2,y3,ya (if g=4) needed in (3.3). These starting methods are
obtained by choosing sets of ¢ quadrature formulas of the same length ( ¢ +1
abscissas) and with the same degree of precision. (Compare also Wolkenfelt’s
thesis and his paper [94] for these and other starting methods.) These block
methods involve kernel values K(z,s) or k(t,s,y) for s>t which have to be
found by a suitable extrapolation procedure; moreover, a linear (or, in the case
(1.3), a nonlinear) system in R? or in R* has to be solved. Although these
starting methods are chosen so that their orders of accuracy are consistent with
the orders of accuracy of Gregory rules underlying (3.3), there is no conver-
gence analysis. MIKELADZE" s paper [65] of 1951 takes up the ideas of Krylov
and suggests a number of marginal improvements in the implementation of the
methods.

In the early 1950s, explicit Runge-Kutta methods of the form (3.4) were con-
sidered once more, namely in the paper [84] by SuyaMA and NAKAMORL
Here, the interest was focused on the derivation of the so-called order condi-
tions which the parameters c;,b;, and g, in (3.4a), (3.4b) have to satisfy if the
method is to have (local) order p=4. In other words, suppose that the lag
term approximations F,, in (3.4a) and (3.4b) are replaced by the exact lag term
F, introduced in (3.5) (i.e., the given integral equation (1.3) is solved /locally on
[t4,2, +1], by assuming that y(r) be known exactly on [0,z,]); let the resulting
approximation at t=1,; be denoted by y, ;. What algebraic equations do
the parameters ¢;, b, and ga;; have to satisfy in order that
V(24 +1)—Vn+1|<Ch?, where C is a constant not depending on h ? These
order conditions are derived by Taylor expansion techniques (compare also
[18] for a more elegant approach which is based on certain concepts from
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graph theory and which extends the analogous theory of Butcher for Runge-
Kutta methods in ordinary differential equations). However, questions regard-
ing the convergence or the practical implementation of (3.4) (including the
problem of how to generate suitable lag term approximations F,) are not
touched upon.

The first systematic convergence analysis for explicit Runge-Kutta methods
(3.4) is due to POUZET and may be found in his thesis of 1962 and in [74]; see
also GAMONDI and ITALIANI [34] for closely related results. POUzET showed
that if the lag term approximations F, are based on quadrature formulas
characterized by the weights b; and the abscissas # +¢;h (i=1,...,4; k<<n), and
if the Runge-Kutta method (3.4) has local order p =4, then the approximation
error e, : =y(t,)—y, satisfies max|e,| = O(h?), as h|0, Nh=const. Analogous

results hold for other, suitably (gﬁosen lag term approximations.

A different class of explicit Runge-Kutta methods for (1.3) was introduced
by BEL’TYUKOV [9] in 1965. Here, the underlying arrays of parameters are no
longer those given by a Runge-Kutta method for a differential equation. We
now have, instead of (3.4),

Yus1 = Fylty s 1) +h - Shik(t, +dh, t,+¢h, ya,)

i=1

with

o i—1
i = Fy(tyteh)+h Y a; jk(t, +dih, t,+cih, o) (j=1,....m).
j=1
BEL'TYUKOV analyzed the methods corresponding to m<3 and satisfying the
conditions d; =¢; for all values of i. Even though these methods require fewer
kernel evaluations than the methods (3.4) studied by Pouzker it turns out (cf.
[18]) that the construction of higher-order methods (of order p =4) is quite
difficult; in particular, there does not exist an explicit Bel'tyukov method with
p =m =4 (recall that, as shown by POUZET p =m =4 is possible for (3.4)).

As far as high-order methods of Runge-Kutta type are concerned, we note
that ScHOEDON [80] in 1970 studied a class of such methods based on certain
Hermite quadrature formulas.

Returning briefly to linear multistep methods of the form (3.3), we point out
the paper [52] by JONES of 1961: this paper contains a detailed convergence
analysis of the trapezoidal method when applied to second-kind integral equa-
tions with convolution kernels (or to systems of such equations). Later analyses
of linear multistep methods (3.3) were largely influenced by the fundamental
work of DAHLQUIST and HENRICI on linear multistep methods for ordinary
differential equations (dating from the late 1950s and the early 1960s). The
first papers to extend their theory to Volterra integral equations are due to
SPOHN [83] (1965) and to KoBAyasI [53] (1966).

Up to the early 1960s, almost no attention had been paid to the numerical
solution of Volterra integral equations (1.2) and (1.4) whose kernels contain a
weak (integrable) singularity of the form (1 —s)™*, with 0<<a<<1. PRASAD [75,
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p. 58] briefly mentions the possibility of rewriting (1.2), with rational
a=p/q (p,qeN ; p and ¢ coprime), as an equation with regular kernel; the
underlying change of variable implies that the upper limit of integration in
(1.1) now becomes ¢'/4. However, he gives no further details. WAGNER [91] in
1954 seems to be the first source suggesting in detail a numerical method for
(1.3) and (1.4). Using, and at the same time generalizing, ideas contained
implicitly in the paper [48] of HUBER (1939), he employs continuous, piecewise
quadratic polynomials to approximate the solution to the given integral equa-
tion; this approximation is determined by so-called collocation techniques.
While the application of this method to Volterra integral equations arising in
heat conduction problems is given particular attention, there is no analysis of
its convergence properties.

The subsequent development of numerical methods for Volterra integral
equations possessing weakly singular kernels was based mainly on the work of
YOUNG [96] of 1954 on product integration techniques. We refer the reader to
the relevant references in [59] and [15] for additional details.

3.4. Conclusion

When surveying the contributions to the numerical solution of second-kind
Volterra integral equations up to about 1965 one is perhaps struck by the fact
that, with the possible exception of WHITTAKER [92] and MIKELADZE [65], they
all deal with specific examples of methods and that a more unified view is still
very much lacking. It seems interesting to observe that there emerges a rather
different picture if one looks at the early development of numerical methods
for Fredholm integral equations of the second-kind,

T
y(t) = gt)+A fK(z,s)y(s)ds, tel:
0

here, the two earliest methods, Bateman’s method ([7]) of 1922 and Nystroms
method ([71]) of 1928 represent very general approaches to generating numeri-
cal approximations to the solutions of such equations.

We conclude this section by mentioning that early surveys of numerical
methods for Volterra and Fredholm integral equations (containing most, but
not all, of the methods described here) may be found in BERNIER [10], Fox
and GOODWIN [32], MAYERs [63], and NOBLE [69]. In addition, see also [85]
and the extensive bibliography [70] by NOBLE.

4. RECENT DEVELOPMENTS

For the sake of completeness we name a few references to recent work on the

approximate solution of second-kind Volterra equations.

(i) A very general analysis of quadrature methods (3.3) for (1.1) and (1.3)
was recently given by WOLKENFELT [94] (see also his thesis of 1981). Gen-
eralizations of such methods are discussed in WOLKENFELT [95] and in
VAN DER HOUWEN and TE RIELE [46], [47]. Compare also BRUNNER and
VAN DER HouUweN [19, Ch. 3]. Fractional quadrature methods for
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(i)

(ii1)

(iv)

)

(Vi)

equations with weakly singular kernels were introduced by LUBICH [62].

A particular class of implicit Runge-Kutta methods (3.4) was analyzed in
detail by DE HooG and WEiss [45]. The general Runge-Kutta theory for
Volterra equations (1.3) with smooth kernels was established by BRUNNER,
HAIRER and NeRsETT [18]; a comprehensive convergence analysis for gen-
eral one-step methods (including Runge-Kutta methods of Pouzet and
Bel'tyukov type) is due to HAIRER, LUBICH and NeRSETT [38]. LuUBICH
[61] extended the Runge-Kutta theory of [18] to weakly singular Volterra
equations (1.4).

A recent account of collocation methods based on polynomial splines may
be found in BRUNNER [14]; see also [16]. While these papers focus on Vol-
terra equations with regular kernels, [15] and [17] are concerned with the
problem of generating high-order approximations to (nonsmooth) solution
of equations with weakly singular kernels. Compare also TE RIELE [78]
where non-polynomial spline functions are employed to obtain such
approximations.

Abstract convergence analysis (including numerous examples) of discreti-
zation methods for second-kind Volterra integral equations may be found
in Scorr [81] and in DixoN and McKEE [28].

There still exists only very few relatively general analyses of numerical sta-
bility of methods for second-kind Volterra equations. The two principal
ones, dealing with convolution kernels, are those by LusicH [60] (for qua-
drature methods) and by HAIRER and LusicH [37] (for Runge-Kutta
methods (3.4)). As regards equations with more general kernels, we refer
to [19, Ch. 7]. The problem of numerical stability when solving weakly
singular Volterra equations is still very much in the open; see, however,
LuUBICH [62].

The principal tool in the convergence analysis of numerical methods is the
discrete Gronwall inequality, ‘

n—1
7 &= Gt ™ > (n—i)y"%z+C,;, n=0,.,N, 0<a<l,
i=0

where z; =0, C;>0, C,>0, and Nh <c<oco. As mentioned in Section
3, the first occurrence of such an inequality (with a=0) seems to be in
MIKELADZE [65, p. 259]. Of the more recent contributions in this area we
mention the ones by JONES [50] and, especially, by BEESACK [8]. The case
0<<a< is treated in detail in McKEE [64], DixoN and McKEE [27], and
Scorr [81].

(vii) Recent surveys of numerical methods for Volterra integral equations may

be found in TE RIELE [77], BRUNNER [13], and BAKER [5]. The proceedings
[24], [6] and [41] provide a good indication as to the current activities in
the numerical analysis of Volterra equations. The first comprehensive
monograph on the numerical treatment of Volterra (and Fredholm)
integral equations, BAKER [4], is of quite recent origin: it appeared in
1977. More recent treatises are LiNz [57] and BRUNNER and VAN DER
Houwen [19].
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5. AUTOMATIC COMPUTER CODES

The development of efficient and reliable software for second-kind Volterra

integral equations is a very new activity (compare the comments in [30, p. 13];

see also DELVES [23] and the article by MILLER in [24, pp. 247-256]). At the

time of writing, both the IMSL and NAG libraries did not contain any pro-
cedures for such equations. For historical reasons we mention the collection of

ALGOL procedures [76] where one finds a number of non-automatic codes

based on Pouzet’s work on Runge-Kutta methods and Adams-type quadrature

methods. In addition see also [88].

In the following we list some of the recently developed codes involving local
or global error estimation and/or automatic stepsize change.

(i) The code of Bownds and Appelbaum [12] is based on kernel approxima-
tion techniques, the resulting integral equation is then equivalent to a sys-
tem of (nonlinear) ordinary differential equations which are solved by a
standard Adams or Runge-Kutta-Fehlberg code. See also the pertinent
comments in [82] on the choice of the differential equation code if the sys-
tem turns out to be stiff.

(il) Codes using specific quadrature methods of the form (3.3) were written by
LOGAN [59] (Simpson’s method, with a block-by-block option); Hock [44]
(midpoint method, followed by extrapolation techniques); KUNKEL [55],
WiLLiaMs and McKEE [93], and JonEs [51] (predictor-corrector tech-
niques). The only automatic code for weakly singular equations (1.4) with
a=1% is due to LOGAN [59] (product Simpson’s method, used in block-by-
block mode).

(iii) The following codes employ Runge-Kutta type methods: TANFULLA and
RiBIGHINI [86] (explicit, embedded Pouzet methods of orders 4 and 5); "
DUNCAN [29] (explicit, embedded 6-stage and 8-stage methods of Pouzet
type and with orders 5 and 6); SCHLICHTE [79] (implicit method of DE
HooG and WEIss [45]); HAIRER, LuBICH and SCHLICHTE [39] (explicit 4-
stage Pouzet method of order 4, combined with fast Fourier transform
techniques; this method is devised for equations with convolution ker-
nels); and BLoM and BRUNNER [11] (implicit Pouzet-type methods of vari-
able orders, combined with discretized iterated collocation; the resulting
local superconvergence properties are used to obtain error estimates). All
of these codes are designed for Volterra integral equations possessing reg-
ular (bounded) kernels.

A more detailed description of the above codes may be bound in [19, Ch. 8].
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The Amoeba Distributed Operating System
(Part 1)

Sape J. Mullender
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The Amoeba Project is a distributed project on distributed operating systems.
The project, which started as the author’'s PhD research project in 1978 [8], is
now a joint project of CWI and Vrije Universiteit in Amsterdam. About a dozen
people are working on the project, led by prof.dr. A.S. Tanenbaum (VU) and
the author (CWI). This article describes the interprocess communication facili-
ties and protection mechanisms of the Amoeba system. Part 2, which will
appear in the next Newsletter, will be devoted to the services provided by the
Amoeba Distributed Operating System.

1. INTRODUCTION

Distributed information processing has long been practised by living organ-
isms. The human brain, one of the most complicated living organs, functions
in a highly distributed manner; different parts of the brain have specialised to
perform different functions, such as speech and vision. Yet there does not
seem to be any central control in the brain, ‘consciousness’ cannot be pin-
pointed to one specific group of brain cells. Not a single function of the brain
seems to be impaired when any cell in the brain dies. The individual cells in
living organisms die, are replaced by others, and yet, the organism as a whole
continues to function uninterruptedly. Most life forms use distributed control
of some form or another. Even simple life forms, such as the one-celled
amoebe —which have no single ‘command centre’ to decide where to go and
how to get there—are somehow capable of co-ordinated action.

Imitating nature in all aspects, man has finally begun to incorporate the
principles of distributed information processing in his most complicated
artifacts, computers. In their desire to construct better, faster and more reli-
able information processing systems, researchers are building networks of
many computers which co-operate to preform their task more quickly and
more reliably.

The technology for connecting computers is available; many varieties of
local-area networks are on the market, and most are fast and reliable.
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However, the infrastructure which is necessary to manage and control distri-
buted information has hardly been developed. The subject of our research at
CWI is the design of such an infrastructure, a model that allows people to
understand distributed computer systems and describe their actions.

Distributed computing is a new research area, one that introduces a whole
range of new problems to be solved, problems of managing information sys-
tems without global and up-to-date information of their state, of finding ways
to prevent inconsistencies in large bodies of data caused by unsynchronised
simultaneous changes. Mechanisms must be found for protecting information
against unauthorised access. The potential in distributed systems of much
greater reliability must be used by designing services that can survive failures
of individual components of the system. For some of these problems, solu-
tions had already been found in traditional, centralised operating systems;
other problems did not even exist before the advent of distributed computing.

Take the exploitation of parallelism, for instance: If there are two different
programs to be run, two processors are evidently more powerful than one; the
work can be divided. But this is not so evident if there is only one program to
be run. It is then much harder to put the available parallelism to use. Tradi-
tional system design methods and software engineering principles do not pro-
vide adequate methods of splitting up algorithms in independent parts which
can be executed in parallel. Building distributed systems is easy. Using them
is hard.

Potentially, systems built up of many processors are more reliable than trad-
itional computers with a single cpu. If the single processor of a centralised sys-
tem fails, the system comes to a halt. In a distributed system, this does not
have to be the case. Every single component of the system can be replicated,
so that, no matter what component fails, a subsystem is left behind that can be
made to work. If one processing element fails, others can take over the work.
If a disk fails, a copy of the information can still be available on another disk.

As it turns out, designing software that exploits this fault-tolerant property
of such a configuration is surprisingly difficult. Standard techniques for
software development are all based on the assumption that the underlying
hardware is infallible. This is a perfectly proper assumption in traditional sys-
tems, where, if part of the system fails, the whole system stops working, but it
is no longer true in a distributed system.

Distributed systems research concentrates on the problem of structuring the
hardware and designing the operating system software in such a way that we
can profit from the architecture’s two most important potentials, parallelism
and fault tolerance.

Distributed control plays a central role in ‘avoiding single points of failure.’
Specialisation and control cannot be obtained through a simple hierarchical
structure as exemplified by most armies. Again, the analogy with nature
teaches us that extensive hierarchical systems can exist with a control structure
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that provides enough redundancy to survive ‘simple’ failures.

The realisation of distributed control in all parts of the system is a key goal
of the research: Any centralised part will be a potential bottleneck when the
system grows, and a liability in the face of crashes. It is because of the impor-
tance of distributed control that we have named the distributed operating sys-
tem emerging from our research Amoeba, after that one-celled creature using
distributed control to move about.

2. THE AMOEBA DISTRIBUTED OPERATING SYSTEM

The price of processors and memory is decreasing at an incredible rate. Extra-
polating from the current trend, it is likely that a single board containing a
powerful CPU, a substantial fraction of a megabyte of memory, and a fast net-
work interface will be available for a manufacturing cost of a few hundred dol-
lars in 1990. Our intention, therefore, has been to do research on the architec-
ture and software of machines built up of a large number of such modules.

In particular, we envision three classes of machines: (1) personal computers
consisting of a high-quality bit-mapped display and a few processor-memory
modules; (2) departmental machines consisting of hundreds of such modules;
and (3) large mainframes consisting of thousands of them. The primary
difference between these machines is the number of modules, rather than the
type of the modules. In principle, any of these machines can be gracefully
increased in size to improve performance by adding new modules or decreased
in size to allow removal and repair of defective modules. The software run-
ning on the various machines should be in essence identical. Furthermore, it
should be possible to connect different machines together to form even larger
machines and to partition existing machines into disjoint pieces when neces-
sary, all in a way transparent to the user level software.

This model is superior to the oft-proposed ‘Personal Computer Model (as
exemplified by XEROX PARC [5]) in a number of ways. In the personal com-
puter model, each user has a dedicated minicomputer, complete with disks, in
the office, or at home. Unfortunately, when people work together on large
projects, having numerous local file systems can lead to multiple, inconsistent
copies of many files. Also, the noise generated by disks in every office, and the
maintenance problems generated by having machines spread all over many
buildings can be annoying.

Furthermore, computer usage is very ‘bursty’: most of the time the user does
not need any computing power, but once in a while he may need a very large
amount of computing power for a short time (e.g., when recompiling a pro-
gram consisting of 100 files after changing a basic shared declaration). The
fifth-generation computer we propose is especially well suited to bursty compu-
tation. When a user has a heavy computation to do, an appropriate number
of processor-memory modules are temporarily assigned to him. When the
computation is completed, they are returned to the idle pool for use by other
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users. This contrasts with the Cambridge Distributed Operating System [9],
which also has a ‘processor bank,” but assigns a processor to a user for the
duration of a login session.

A machine of the type described above requires radically different system
software than existing machines. Not only must the operating system
effectively use and manage a very large number of processors, but the com-
munication and protection aspects are very different from those of existing sys-
tems.

Traditional networks and distributed systems are based on the concept of
two processes Or processors communicating via connections. The connections
are typically managed by a hierarchy of complex protocols, usually leading to
complex software and extreme inefficiency. (An effective transfer rate of 0.5
megabit/sec over a 10 megabit/sec local network, which is only 5% utilisation,
is frequently barely achievable.)

We reject this traditional approach of viewing a distributed system as a col-
lection of discrete processes communicating via multilayer (e.g., 1S0) protocols,
not only because it is inefficient, but because it puts too much emphasis on
specific processes, and by inference, on processors. Instead we propose to base
the software design on a different conceptual model—the object model. In this
model, the system deals with abstract objects, each of which has some set of
abstract operations that can be performed on it.

Associated with each object are one or more ‘capabilities’ [3] which are used
to control access to the object, both in terms of who may use the object and
what operations he may perform on it. At the user level, the basic system
primitive is performing an operation on an object, rather than such things as
establishing connections, sending and receiving messages, and closing connec-
tions. For example, a typical object is the file, with operations to read and
write portions of it.

The object model is well-known in the programming languages community
under the name of ‘abstract data type’ [6]. This model is especially well-suited
to a distributed system, because in many cases an abstract data type can be
implemented on one of the processor-memory modules described above.
When a user process executes one of the visible functions in an abstract data
type, the system arranges for the necessary underlying message transport from
the user’s machine to that of the abstract data type and back. The header of
the message can specify which operation is to be performed on which object.
This arrangement gives a very clear separation between users and objects, and
makes it impossible for a user to directly inspect the representation of an
abstract data type by bypassing the functional interface.

A major advantage of the object or abstract data type model is that the
semantics are inherently location independent. The concept of performing an
operation on an object does not require the user to be aware of where objects
are located or how the communication is actually implemented. This property
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gives the system the possibility of moving objects around to position them
close to where they are frequently used. Furthermore, the issue of how many
processes are involved in carrying out an operation, and where they are located
is also hidden from the user.

It is convenient to implement the object model in terms of clients (users)
who send messages to services [2,9,1]. A service is defined by a set of com-
mands and responses. Each service is handled by one or more server processes
that accept messages from clients, carry out the required work, and send back
replies. The design of these servers and the design of the protocols they use
form an important part of the system software of our proposed fifth-generation
computers.

As an example of the problems that must be solved, consider a file server.
Among other design issues that must be dealt with are how and where infor-
mation is stored, how and when it is moved, how it is backed up, how con-
current reads and writes are controlled, how local caches are maintained, how
information is named, and how accounting and protection are accomplished.
Furthermore, the internal structure of the service must be designed: how many
Server processes are there, where are they located, how and when do they com-
municate, what happens when one of them fails, how is a server process organ-
ised internally for both reliability and high performance, and so on. Analo-
gous questions arise for all the other servers that comprise the basic system
software.

3. COMMUNICATION PRIMITIVES AND PROTOCOLS

In the literature about computer networks, one finds much discussion of the
150 Reference Model for Open Systems Interconnection (osI) [12] these days.
It is our belief that the price that must be paid in terms of complexity and per-
formance in order to achieve an ‘open’ system in the 1SO sense is much too
high, so we have developed a much simpler set of communication primitives,
which we will now describe.

Instead of a 7-layer protocol, we effectively have a 4-layer protocol. The
bottom layer is the Physical Layer, and deals with the electrical, mechanical
and similar aspects of the network hardware. The next layer is the Port Layer,
and deals with the location of services, the transport of (32K byte) datagrams
(packets whose delivery is not guaranteed) from source to destination and
enforces the protection mechanism, which will be discussed in the next section.
On top of this we have a layer that deals with the reliable transport of
bounded length (32K byte) requests and replies between client and server. We
have called this layer the Transaction Layer. The final layer has to do with the
semantics of the requests and replies, for example, given that one can talk to
the file server, what commands does it understand. The bottom three layers
(Physical, Port, and Transaction) are implemented by the kernel and hardware;
only the Transaction Layer interface is visible to users. User programs execute
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in the fourth layer, the Application Layer.

The main function of the Transaction Layer is to provide an end-to-end
message service built on top of the underlying datagram service, the main
difference being that the former uses timers and acknowledgements to guaran-
tee delivery whereas the latter does not.

The Transaction Layer protocol is straightforward. A server process makes a
call to getreq (an abbreviation of ger request) to tell the Transaction Layer it is
ready to receive a request from a client. The client sends a request by calling
trans (for transaction), which makes the Transaction Layer send a request and
wait until a reply comes back from the server. The client is blocked until this
reply arrives. The server, after carrying out the request, returns a reply by a
call to putrep.

When the client does a trans, a packet, or sequence of packets, containing
the request is sent to the server, the client is blocked, and a timer is started
(inside the Transaction Layer). If the server does not acknowledge receipt of
the request packet before the timer expires (usually by sending the reply, but
in some special cases by sending a separate acknowledgement packet), the
Transaction Layer retransmits the packet again and restarts the timer. When
the reply finally comes in, the client sends back an acknowledgement (possibly
piggybacked onto the next request packet) to allow the server to release any
resources, such as buffers, that were acquired for this transaction. Under nor-
mal circumstances, reading a long file, for example, consists of the sequence

From client: request for block 0
From server: here is block 0
From client: acknowledgement for block 0 and request for block 1
From server: here is block 1
elc.

The protocol can handle the situation of a server crashing and being rebooted
quite easily since each request contains the identity of the file to be read and
the position in the file to start reading. Between requests, the server has no
‘activation record’ or other table entry whose loss during a crash causes the
server to forget which files were open, efc., because no concept of an open file
or a current position in a file exists on the server’s side. Each new request is
completely self-contained. Of course for efficiency reasons, a server may keep
a cache of frequently accessed i-nodes, file blocks ezc., but these are not essen-
tial and their loss during a crash will merely slow the server down slightly
while they are being dynamically refreshed after a reboot.

The Port Layer is responsible for the speedy transmission of 32K byte
datagrams. The Port Layer need only do this reasonably reliably, and does
not have to make an effort to guarantee the correct delivery of every datagram.
This is the responsibility of the Transaction Layer. Our results show that,
compared to other approaches, our’s leads to significantly higher transmission
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speeds, due to simpler protocols.

Theoretically, very high speeds are achievable in modern local-area net-
works. A typical transfer rate of a modern local-area network is 500,000
bytes/sec point-to-point if there were no protocol overhead. In practice, how-
ever, speeds of 100,000 bytes per second between user processes have rarely
been achieved. Obviously, to achieve higher transmission rates, the overhead
of the protocol must be kept very low indeed. To do this, a large datagram
size was chosen for the Port Layer, which has to split up the datagrams into
small packets that the network hardware can cope with. This approach allows
the implementor of the Port Layer to exploit the possibilities that the hardware
has to offer to obtain an efficient stream of packets.

Two versions of the algorithm have now been implemented. The one
described above has been implemented on the Amoeba distributed operating
system, and achieves over 300,000 bytes a second from user process to user
process (using M68000s and a Pronet* ring). A second implementation runs
under Unix,} using 2K byte datagrams, which gets 90,000 bytes/sec across the
network between two VAX-750s running a normal load of work, without caus-
ing a significant load on the system itself.

4. PorTs
Every service has one or more ports [7] to which client processes can send mes-
sages to contact the service. Ports consist of large numbers, typically 48 bits,
which are known only to the server processes that comprise the service, and to
the service’s clients. For a public service, such as the system file service, the
port will be generally made known to all users. The ports used by an ordinary
user process will, in general, be kept secret. Knowledge of a port is taken by
the system as prima facie evidence that the sender has a right to communicate
with the service. Of course the service is not required to carry out work for
clients just because they know the port, for example, the public file service may
refuse to read or write files for clients lacking account numbers, appropriate
authorisation, erc.

Communication using ports basically works as follows. One, or several
server processes make a call to

getreq(serverport, - - - );
a client, wishing to have some service rendered, calls
trans(serverport, - - ),

The client’s Transaction Layer generates a (unique) reply port for the client,

* PRONET is a trademark of Proteon Associates, Inc.
+ UNIX is a Trademark of AT&T Bell Laboratories.
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finds an active server process on serverport and sends a message containing

{serverport, replyport, - - -}

to the server. The server processes the request, and returns a reply in a mes-
sage

{replyport, serverport, - - - }

The two ports provide a unique identification of the transaction.

The difference between this approach and that taken by conventional inter-
process communication protocols is that, in principle, messages are addressed
to a service name or port, not to a machine, or a process. Obviously, in
Amoeba, clients never need to know where a service is implemented, or how
many server processes there are. This is none of their business; it is part of
the implementation of the ‘abstract data type’ that is the service.

The transaction mechanisms, however, must deliver requests and replies to
specific processes on specific machines. Obviously, inside the Port
Layer—which is, after all, responsible for message delivery—ports must be
mapped onto networks addresses. So, when a client calls trans, the client’s
Port Layer must find a network node where a getreq on the matching port is
outstanding.

In the local-area network, the technique for locating a port is the following.
The client broadcasts a tiny message, saying ‘anyone listening on port X2, t0
which servers listening on that port reply ‘port x is at machine y!” A similar
technique is used for locating the client for the reply message.

Locating ports is inefficient. It can be sped up, however, by a simple tech-
nique which finds many useful applications in distributed systems: the hint. In
this particular case, hints are stored in a little table of (port, network address)
pairs in every host and they say in effect: ‘If you’re looking for port x, why don’t
you try network address y? 1If the hint works, a port has been located without
sending any extra messages; if not, a message is returned saying that the port
is not known at that address. In the latter case, the hint is scratched out, and
a broadcast locate is done. Incoming packets contain a source address, so they
provide a free hint for their source port.

Although the port mechanism provides a convenient way to provide partial
authentication of clients (‘if you know the port, you may at least talk to the
service’), it does not deal with the authentication of servers. The primitive
operations offered by the system are trans, putreq and getrep. Since everyone
knows the port of the file server, as an example, how does one ensure that mal-
icious users do not execute getregs on the file server’s port, in effect imper-
sonating the file server to the rest of the system?

One approach is to have all ports manipulated by kernels that are presumed
trustworthy and are supposed to know who may getreq from which port [2, 11].
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We reject this strategy because some machines, e.g., personal computers con-
nected to larger multimodule systems, may not be trustworthy, and also
because we believe that by making the kernel as small as possible, we can
enhance the reliability of the system as a whole. Instead, we have chosen a
different solution that can be implemented in either hardware or software.

In the hardware solution, we need to place a small interface box, which we
call an F-box (Function-box) between each processor module and the network.
The most logical place to put it is on the VLsI chip that is used to interface to
the network. Alternatively, it can be put on a small printed circuit board
inside the wall socket through which personal computers attach to the network.
In those cases where the processors have user mode and kernel mode and a
trusted operating system running in kernel mode, it can also be put into
operating system software. In any event, we assume that somehow or other all
packets entering and leaving every processor undergo a simple transformation
that users cannot bypass.

The transformation works like this. Each port is really a pair of ports, P,
and G, related by: P = F(G), where Fis a (publicly-known) one-way function
[13,10,4] performed by the F-box. The one-way function has the property
that given G it is a straightforward computation to find P, but that given P,
finding G is so difficult that the only approach is to try every possible G to see
which one produces P. If P and G contain sufficient bits, this approach can be
made to take millions of years on the world’s largest supercomputer, thus mak-
ing it effectively impossible to find G given only P. Note that a one-way func-
tion differs from a cryptographic transformation in that the latter must have
an inverse to be useful, but the former has been carefully chosen so that no
inverse can be found.

Using the one-way F-box, the server authentication can be handled in a sim-
ple way, illustrated in FIGURE 1. Each server chooses a get-port, G, and com-
putes the corresponding put-port, P. The get-port is kept secret; the put-port
is distributed to potential clients, or, in the case of public servers, is published.
When the server is ready to accept client requests, it does a getreq(G, cap, req).
The F-box then computes P = F(G) and waits for packets containing P to
arrive. When one arrives, it is given to the appropriate process. To send a
packet to the server, the client merely does rans (cap, req, rep). Cap is a capa-
bility*, giving the identity of the object the user wants to access, which con-
tains the port field, P, of the service managing the object. This will cause a
datagram to be sent by the local F-box with P in the destination-port field of
the header. The F-box on the sender’s side does not perform any transforma-
tion on the P field of the outgoing packet.

* Capabilities are explained in the next section.
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INTRUDER

Intruder doesn’t
know G
®
F-box also says -box actually listens
send to P for P = F(G)
®
Client says Server says
send to P listen for G
CLIENT SERVER
FIGURE 1.

Now let us consider the system from an intruder’s point of view. To imper-
sonate a server, the intruder must do getreq(G, --- ). However, G is a well-
kept secret, and is never transmitted on the network. Since we have assumed
that G cannot be deduced from P (the one-way property of F) and that the
intruder cannot circumvent the F-box, he cannot intercept packets not
intended for him. Replies from the server to the client are protected the same
way: The client’s Transaction Layer picks a get-port for the reply, say, G’, and
the client’s F-box transforms G’ into P’ = F(G’) in the request packet for the
server to use as the put-port to send the reply to.

The presence of the F-box makes it easy to implement digital signatures for
still further authentication, if that is desired. To do so, each client chooses a
random signature, S, and publishes F(S). The F-box must be designed to
work as follows. Each packet presented to the F-box contains three special
header fields: destination (P), reply (G’), and signature (S). The F-box applies
the one-way function to the second and third of these, transmitting the three
ports as: P, F(G’), and F(S), respectively. The first is used by the receiver’s
F-box to admit only packets for which the corresponding getreq has been
done, the second is used as the put-port for the reply, and the third can be
used to authenticate the sender, since only the true owner of the signature will
know what number to put in the third field to ensure that the publicly-known
F(S) comes out.

It is important to note that the F-box arrangement merely provides a simple
mechanism for implementing security and protection, but gives operating sys-
tem designers considerable latitude for choosing various policies. The
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mechanism is sufficiently flexible and general that it should be possible to put
it into hardware without precluding many as-yet-unthought-of operating sys-
tems to be designed in the future.

5. CAPABILITIES

In any object-based system, a mechanism is needed to keep track of which
processes may access which objects and in what way. The normal way is to
associate a capability with each object, with bits in the capability indicating
which operations the holder of the capability may perform. In a distributed
system this mechanism should itself be distributed, that is, not centralised in a
single monolithic ‘capability manager’. In our proposed scheme, each object is
managed by some service, which is a user (as opposed to kernel) program, and
which understands the capabilities for its objects.

SERVER OBJECT RIGHTS CHECK

FIGURE 2.

A capability typically consists of four fields, as illustrated in FIGURE 2:

1. The put-port of the service that manages the object

2. An Object Number meaningful only to the service managing the object
3. A Rights Field, which contains a 1 bit for each permitted operation

4. A Check Field for protecting each object

The basic model of how capabilities are used can be illustrated by a simple
example: a client wishes to create a file using the file service, write some data
into the file, and then give another client permission to read (but not modify)
the file just written. To start with, the client sends a message to the file
service’s put-port specifying that a file is to be created. The request might con-
tain a file name, account number and similar attributes, depending on the
exact nature of the file service. The server would then pick a random number,
store this number in its object table, and insert it into the newly-formed object
capability. The reply would contain this capability for the newly created
(empty) file. .

To write the file, the client would send a message containing the capability
and some data. When the write request arrived at the file server process, the
server would normally use the object number contained in the capability as as
index into its tables to find the object. For a Unix-like file server, the object
number would be the i-node number, which could be used to locate the i-node.
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Several object protection systems are possible using this framework. In the
simplest one, the server merely compares the random number in the file table
(put there by the server when the object was created) to the one contained in
the capability. If they agree, the capability is assumed to be genuine, and all
operations on the file are allowed. This system is easy to implement, but does
not distinguish between read, write, delete, and other operations that may be
performed on objects.

However, it can easily be modified to provide that distinction. In the
modified version, when a file (object) is created, the check field is computed by
applying a one-way function to Object Number, Rights Field, and the Ran-
dom Number stored with the object. When the capability is returned for use,
the server uses the object number to find the file table and hence the random
number. If the result of recomputing the Check Field leads to the Check Field
in the capability, it is almost assuredly valid, and the Rights Field can be
believed. Clearly, an encryption function that mixes the bits thoroughly is
required to ensure that tampering with the Rights Field also affects the Check
Field.

When this modified protection system is used, the owner of the object can
easily give an exact copy of the capability to another process by just sending it
the bit pattern, but passing, say, read-only access, is harder. To accomplish
this task, the process must send the capability back to the server with a bit-
map saying which bits to strip off the Rights Field. By choosing the bit mask
carefully, the capability owner can mask out any operations that the recipient
is not permitted to carry out.
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B for the IBM PC

A prototype version of B (see Newsletter 3) is now available for the IBM PC
and compatibles. This version is functionally equivalent to the one currently
distributed for UNIX systems.

FEATURES OF THE IMPLEMENTATION

The full B language as described in the Draft Proposal is implemented.

The structured editor is used to enter and edit units, immediate commands,
input to  READ  commands, and permanent targets.

The editor suggests possible command continuations and closing brackets.
It uses function and arrow keys to move the focus around, change its size,
etc.. You can undo the last 20 key strokes. Text can be moved or dupli-
cated within or between units and immediate commands. A sequence of
keystrokes can be recorded. and played back later. You can recall the last
command. (A more detailed description of the B editor can be found in the
first B Newsletter.) By default all editing operations are bound to single
keys. You can rebind the editing operations to other than the default keys,
to suit your own taste, or to overcome deficiencies in your particular key-
board.

Since different compatibles have different ways of addressing the screen, and
not all screens have the same size, you can define an environment variable
to reconfigure B for use with the *ANSI’ screen driver, or for different screen
widths and heights. There is a program supplied to help you decide what
sort of screen you have.

There are utility programs for such things as workspace recovery, and for
listing the units in a workspace.
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SMALL VERSION

The full implementation needs at least 384 K bytes. There is a smaller version
available, without the built-in editor, for those with only 256 K bytes. In this
case commands must be typed in in full. To edit units the EDLIN editor is
used.

DOCUMENTATION

The documentation sent with the package includes ‘The B Programmer’s
Handbook’ and a quick reference guide. The book describes the B language
proper, the use of the system, the editor commands, and the use of the other
utilities.

REQUIRED SYSTEM CONFIGURATION

In order to run the B system you must have an IBM PC or compatible with

- at least 384 K bytes, or 256 K bytes for the small version (this includes
space used for MS-DOS);

- MS-DOS version 2.x (we've only tested it with 2.0 and 2.11, but it should
also run on MS-DOS 3.x or higher);

- one double-sided disk drive.

The system is expected to run on most IBM-PC compatible computers, and we
have tried it on many, but we cannot guarantee this because we haven’t tried
them all. We know, however, that the system runs at least on the following
compatibles: Olivetti M24, Apricot Portable, Apricot F1, GRID Case, Tulip
Extend, Goupil.

(If your copy runs fine on a machine which is not on the list, please tell us so
we know we can extend the list. If your copy doesn’t run, also tell us and
we'll try to see what is the cause.)

BEWARE

IT IS NOT A PRODUCTION VERSION!

The system is sometimes slow, and imposes severe limits on the maximum sizes
of the targets and units in the work space. We do appreciate reports of bugs.
but we don’t promise we’ll fix them: we’ll do what we can.

FINALLY

The disk is not copy protected. You may make copies, and give them away. as
long as you don’t sell the copies, and as long as these same conditions are
passed on to the people you give copies to. Fair enough?
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HOW TO ORDER B8 for the IBM PC:

To order the prototype of the implementation of B for the IBM PC or com-
patibles, running under MS-DOS versions 2.0 (or higher), you should fill in
the order form below, and send it to:

B Group, PC distribution
Informatics / AA

CWI

POB 4079

1009 AB Amsterdam
The Netherlands

To cover materials and handling, you should either enclose a cheque or
money order, payable to Stichting Mathematisch Centrum - Amsterdam, or
(if you live in The Netherlands) transfer to the postgiro account below.

You will then receive:

® a floppy with the binary;
® The B Programmer’s Handbook;
® a B Quick Reference Card.
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ORDER FORM

Please send me a copy of the prototype B system for the IBM PC, including
documentation.

O I enclose a cheque or international money order, payable to Stichting
Mathematisch Centrum - Amsterdam, for Dfl 100 (or US §$ 35).

O I have transferred Dfl 100 to postgiro account 462890, Stichting
Mathematisch Centrum - Amsterdam, mentioning "B voor de IBM
PC”,

FATIN/ INSEITUUE:: sssuissssssvnssnssnssrnnsvassassssussass eonssons s55esss Ve85 5 sss seunssgenssssmisssssasssurwassesvoos
AAALEEST woecssmremvivessessnssrasssmmmsessssssmansasassssssnss suvasssonssass sussassssssanssamoanssssas i sEiATRIFIFHRETHE
COUNLTY: et et
TIEPROME: ecuusisisssmsrmsomsrormumnsass s AT S Sres S AS F SHR p ovavessvevev e warsas

INEEWOTK AAATESS: oottt e e eeeeeeeeeeenraeeeeeeesannaaeeesesnsneeeeeeaeemnnneeees

Machine(s): O IBM PC O IBM XT O Olivetti M24
O Apricot Portable [ Apricot F1 O other: ......

Required media:

O 5%” double sided, double density floppy disk
O 3%” double sided floppy disk

Required version:
O full implementation (at least 384 K bytes)
(0 small version (only 256 K)

Signature and Date:
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Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 22. J.C.S.P. van der Woude. Topological Dynamix.

AMS 54H20; 298 pp.

Abstract: In this book several topics from abstract topological dynamics are dealt with. The
(mostly implicit) main theme is the structure theory for minimal flows, following the tradition set
by the works of (among others): J. Auslander, R. Ellis, H. Furstenberg, S. Glasner and W.A.
Veech. The central notions are: quasifactors of minimal flows; (weak) disjointness of flow
homomorphisms; the equicontinuous structure relation. For notation and consistent reference an
extensive introduction to the basics of abstract topological dynamics is given in Chapter 1. Chapter
II deals with the induced action on the hyperspace of the phase space. 9-topology techniques and
the equicontinuous structure relation are studied in Chapter IIL. In Chapters IV and V highly
proximal homomorphisms are studied and related to Gleason extensions and orbit closures of cer-
tain closed subsets of the universal minimal flow. Disjointness and disjointness relations are the
main subject of Chapter VI, while Chapter VII deals with weak disjointness related to invariant
measures and the equicontinuous structure relation. The final Chapter deals with a strong form of
regional proximality, connecting prolongational limit sets with the equicontinuous structure rela-
tion. The underlying problem is the transitivity of the regionally proximal relation.

CWI Tract 23. A.F. Monna. Methods, Concepts and Ideas in Mathematics:
Aspects of an Evolution.

AMS 01-02. 170 pp.

Abstract: This book consists of three parts which are basically a revised version - in English - of
three papers published earlier in French by the same author in the series: ‘Communication of the
Mathematical Institute Rijksuniversiteit Utrecht’, scil.: ‘L’algébrisation de la Mathématique’
(1977), ‘Evolutions de proble\:mes d’existence en Analyse’ (1979) and ‘Evolutions en Mathématique’
(1981). The first part, entitled: ‘The algebraization of Mathematics’ deals with the penetration of
algebra in the different regions of Mathematics’; ‘Algebra’ considered as ‘the study of explicit
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structure of postulationally defined systems closed with respect to one or more operations’. The
author illustrates this phenomenon with the help of many examples from different regions of
mathematics: geometry, topology, integration theory, Lie groups, number theory etc. He also
discusses the role of the limit concept in this context and the formal aspects of the derivative. The
second part: ‘Evolutions of existence problems’ broaches the problem concerning existence, espe-
cially in analysis. The author sketches the chaning character of analysis since the last decades of
the past century: ‘classical’ analysis had a clearly constructive character, whereas in ‘modern’
analysis non-constructive methods and existence theorems prevail. As a starting point the author
considers Cantor’s set theory. Again many examples elucidate the author’s standpoint, e.g. an
extensive description of the ‘Collection Borel’, a characterization of the ‘Polish school’ and the
‘Infinitir Kalkiil of du Bois-Reymond’, to give only an impression. Where the author gives his
own opinion, he does this with great reserve. The third part: “The evolution of Mathematics’ falls
apart into two sections. In the first one, the author continues his reflections on existence and dis-
tinguished ‘strong’ existence from ‘weak’ existence, that means a distinction between constructive
and non-constructive existence proofs. Much attention is devoted to the origin and the develop-
ment of fundamental notions such as: construction, axiom, function, group etc. In this context the
author considers the role of geometry. In his opinion geometrical insight and geometrical presenta-
tion paved the way to abstract theories and generalizations just as earlier physical insight showed
the way. At the end of each of the three parts there is a number of notes referring to the related
passages in the text. An extensive bibliography (160 titles) and an index of mathematicians con-
clude the book.

CWI Tract 24. J.CM. Baeten. Filters and Ultrafilters over Definable Subsets of
Admissible Ordinals.
AMS 03D60, 03E45, 03ESS, 04A20; 85 pp.

Abstract: The search for a recursive analogue of a measurable cardinal leads to a study of ordinals
that have a filter, which is complete, normal or an ultrafilter on a Boolean algebra of definable
subsets, not on the whole power set. The study of these so-called definable filters combines tech-
niques from definability theory, set theory and recursion theory, and uses the hierarchy of con-
structible sets. The existence of definable filters is related to admissibility, and we find that the-
existence of a definable normal (ultra)filter is not equivalent to the existence of a definable
(ultra)filter. We look at the analogues of certain classical filters, namely the co-finite filter and the
normal filter of closed unbounded sets. We prove that on a countable ordinal, we can extend a
definable filter to a definable ultrafilter, and a definable normal filter to a definable normal
ultrafilter.

CWI Tract 25. AW.J. Kolen. Tree Network and Planar Rectilinear Location
Theory.

AMS 90C10, 05C05, 05C70; 85 pp.

Abstract: Many location problems on networks can be solved as one or as a sequence of covering
problems. It is shown that chordal graphs and totally-balanced matrices are useful tools in finding
strong duality results and polynomial time algorithms for tree network location problems. For
planar location problems using the rectilinear (Manhattan) distance it is shown that Farkas’
lemma can be used successfully.

CWI Tract 27. A.JJM. van Engelen. Homogeneous Zero-Dimensional Absolute
Borel Sets.
AMS 54H05, 03E15; 133 pp.

Abstract: Topological characterizations of such well-known homogeneous zero-dimensional spaces
(here, space means: separable metric space) as the Cantor set C, the irrationals P, and the ration-
als @ have been known since the beginning of this century. E.g. ‘if X is a non-empty zero-
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dimensional compact space without isolated points, then X is homeomorphic to C’. Much later,
around 1980, some other homogeneous zero-dimensional absolute Borel sets were characterized by
van Mill and van Douwen. In this monograph, similar characterizations are given of all homogene-
ous zero-dimensional absolute Borel sets; there turn out to be w; topological types of such spaces.
The characterization of the Cantor set above consists largely of a precise indication of its place in
the Borel hierarchy (compactness); in the same way, our characterizations mainly consist of a
description of the level in the Borel hierarchy of the spaces under consideration. However, the
‘usual’ Borel hierarchy (F,,Gs,Fq5,Gs,, €tc.) is not sufficiently fine to distinguish between the
different homogeneous spaces, and therefore we use (existing) refinements of the Borel hierarchy,
viz. the hierarchy of small Borel classes (Kuratowski), and the Wadge hierarchy (Wadge). Using
techniques for extending homeomorphisms on nowhere dense sets we arrive at internal topological
characterizations of those absolute Borel sets that are both of class F,s and of class Gg,, in terms
of the small Borel classes. The Wadge hierarchy, based on reduction by continuous mappings, is
used for Borel sets of higher class; here the characterizations, although topological, are not inter-
nal. As an application of our results, we prove that non-trivial rigid zero-dimensional absolute
Borel sets do not exist, answering a question of van Douwen.

CWI Syllabus 10. Vacation-course 1986: Matrices.
162 pp. (in Dutch)

Abstract: Matrices appear in almost all parts of mathematics and there are many ways in which
they can be used. In this course (for high school mathematics teachers) a number of applications
of matrices will be covered. Many different types of matrices (real, positive, complex, integer, par-
titioned, ...) exist as well as many classes of matrices with special properties, each requiring its
own ‘theory’. However, in the syllabus, the emphasis is on applications. Some questions arising
outside of mathematics are dealt with that can be answered by use of matrices, but without requir-
ing prior knowledge of their theoretical properties.

CS-R8610. T. Budd. The cleaning person algorithm.

CR E.2, D.3.3, D.3.2; 12 pp.; key words: programming language implementa-
tion, data types and structures, B.

Abstract: The language B is intended to provide a powerful tool that can nevertheless be used by
novice programmers in the solution of nontrivial problems. Part of the design of B involves remov-
ing from the programmer’s concern limitations imposed by such factors as machine word size or
memory size. This paper describes an algorithm that permits values to migrate easily between pri-
mary and secondary memory (or disk), permitting the B system to act as if the amount of memory
was essentially limitless.

CS-R8611. E. Kranakis & P.M.B. Vitanyi. Distributed control in computer net-
works and cross-sections of colored multidimensional bodies.

AMS 68C05, 68C25, 26B15, 28A75; CR C.2.1, F.2.2, G.2.2; 13 pp.; key words:
distributed match-making, computer network, distributed control, name server,
mutual exclusion, colored body, measure.

Abstract: The number of messages to match a pair of processes in a multiprocessor network with
mobile processes is a measure for the cost of setting up temporary communication between
processes. We establish lower bounds on the average number of point-to-point transmissions
between any pair of nodes in this context. The present analysis allows for the possibility of multi-
ple transmissions (as opposed to a single one) between any two nodes, and also for the possibility
of multiple queries (as opposed to the two, i.e. post and a single query, considered before). Appli-
cations of the results include lower bounds on the number of messages for distributed s-matching,
that is, matching a group of s processes, and distributed s-mutual exclusion, that is, s-1 processes
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may enter a critical section simultaneously, but s processes may not, for s =2. The idea of the
proof of the combinatorial result needed for this analysis is further extended to obtain a lower
bound on the average number of colors occurring in random cross-sections of colored, multidimen-
sional bodies in terms of the total (multidimensional) volume of each color in the whole body.

CS-R8612. Ming Li, Luc Longpré & P.M.B. Vitanyi. The power of the queue.
AMS 68C40, 68C25, 68C05, 94B60, 10-00; CR F.1.1, F.1.3, F.2.3; 17 pp.; key
words: tape, stack, queue, pushdown stores, determinism, nondeterminism, off-
line, time complexity, lower bound, upper bound, simulation algorithmic infor-
mation theory, Kolmogorov complexity.

Abstract: Queues, stacks (pushdown stores), and tapes are storage models which have direct appli-
cations in compiler design and the general design of algorithms. Whereas stacks (pushdown store
or last-in-first-out storage) have been thoroughly investigated and are well understood, this is
much less the case for queues (first-in-first-out storage). This paper contains a comprehensive
study comparing queues to stacks and tapes. We address off-line machines with a one-way input,
both deterministic and nondeterministic. The techniques rely on algorithmic information theory
(Kolmogorov Complexity).

CS-R8613. P.J.F. Lucas. Knowledge representation and inference in rule-based

systems.
AMS 69K11, 69K14; CR 1.2.1, 1.2.4; 17 pp.; key words: expert systems,

knowledge-based systems, inference.

Abstract: In this paper a review is presented of various approaches to representing and applying
human knowledge in expert systems, in particular in rule-based systems. The paper also provides
an introduction to some equivalent methods of representation. Some emphasis is put on low-level
operations and also on inference procedures that are applied in extracting useful knowledge from a
knowledge base. This investigation is partly based on work done in the design and the implemen-
tation of the DELFI-2 system at Delft University of Technology and recently at the Centre of
Mathematics and Computer Science. It has been particularly influenced by concepts from logic-
programming.

CS-R8614. J.W. Klop & E. Kranakis. Lower bounds for a class of Kostka
numbers.

AMS 05A10, 05A20; 9 pp.; key words: 0,1 matrix, binomial coefficient, lower
bound, upper bound, Stirling’s formula, binary entropy, Kostka numbers.

Abstract: A simple proof of a lower bound on the number of 2m X 2m matrices with 0,1 entries

and each of whose rows and columns adds to the fixed sum m is presented. In fact, it is sl}ro)\\ynn
2m|"

that for any fixed 0 < A < % the number of such matrices is asymptotically at least

The inductive proof employed in the present paper might also turn out to be useful in obtaining
lower bounds for other types of Kostka numbers.

CS-R8615. M.L. Kersten & F.H. Schippers. A general object-centered database
language; a preliminary definition.
AMS 69D42, 69H23, 69K14; CR D.3.2, H.2.3, 1.2.4; 21 pp.; key words:

object-oriented languages, database management, knowledge representation.

Abstract: This report describes the programming language Godel, intended for the construction of
knowledge based applications. Godel uses both the object-centered, the rule-oriented, and the pro-
cedural programming paradigms. These paradigms are used in an unconventional way, thereby
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simplifying the maintenance of complex relationships among (static) objects and modelling
dynamic behaviour through actor-like objects, called guardians. This report is a working docu-
ment. It focuses on the syntax and it presents an informal semantic definition. In-depth discus-
sions of topics such as the concurrency philosophy and storage techniques used are presented
separately. The language definition given here assumes a teletype-like user interface, which
simplifies the language specification and its implementation. A functional prototype has been
implemented in C-PROLOG under UNIX BSD4.2.

CS-R8616. L.C. van der Gaag. PROLOG: an expert system building tool.

AMS 69K 11, 69D42; CR 1.2.1, D.3.2; 14 pp.; key words: expert systems, PRO-
LOG, logic programming.

Abstract: For several years, LISP has been the most popular programming language for artificial
intelligence. PROLOG, however, is rapidly becoming the second most popular artificial intelligence
language; for several applications, PROLOG is even preferred to LISP. In this paper, the suitabil-
ity of PROLOG as an expert system building tool is demonstrated: a small expert system shell is
discussed, and compared to the DELFI-2 system, after the example of which the PROLOG system
has been developed.

CS-R8617. J.A. Bergstra, J. Heering & P. Klint. Module algebra.

AMS 68B10; CR D.2.0, D.2.2, D.3.3, F.3.2; 35 pp.; key words: algebraic
specification, first-order specification, signature, module algebra, module com-
position, signature expression, module expression, Craig interpolation lemma,
information hiding, abstraction, export, union of modules, renaming, visible

signature.

Abstract: An axiomatic algebraic calculus of modules is given which is based on the operators
combination/union, export, renaming, and taking the visible signature. Four different models of
module algebra are discussed and compared.

CS-R8619. J.A. Bergstra & J.V. Tucker. Algebraic specifications of computable
and semicomputable datatypes.
AMS 68B10; CR D.2.0, D.2.2, D.3.3, F.3.2; 60 pp.; key words: algebraic

specification, initial algebra semantics, computable algebra, hidden functions.
Abstract: An extensive survey is given of the properties of various specification mechanisms based
on initial algebra semantics.

CS-R8620. J. Heering, J. Sidi & A. Verhoog (eds.). Generation of interactive
programming environments - GIPE. Intermediate report.

AMS 68B99; CR D.2.1, D.2.6, D.3.1, D.3.4, F.3.2; 500 pp.; key words: genera-
tion of programming environments, language definition, syntax definition, type
checking, inference rule semantics, structured operational semantics, algebraic

semantics.

Abstract: The objective of the GIPE-project is to realize a prototype system for generating interac-
tive programming environments from formal language definitions. Partners in this five-years pro-
ject, which has started in November 1984, are BSO/Automation Technology (Utrecht), CWI
(Amsterdam), INRIA (Rocquencourt/-Sophia-Antipolis), and SEMA (Montrouge). In this inter-
mediate report we describe a common development environment, various language definition for-
malisms, and the environment generator itself.

CS-R8621. H.P. Barendregt, J.R. Kennaway, J.W. Klop & M.R. Sleep. Needed
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reduction and spine strategies for the lambda calculus.

AMS 03B40, 68Q99; CR D.1.1, F4.1; 37 pp.; key words: lambda calculus,
reduction strategy, needed redex, spine redex, strictness analysis.

Abstract: A redex R in a lambda-term M is called needed if in every reduction of M to normal
form (residual of) R is contracted. Among others the following results are proved. 1) R is needed
in M if and only if R is contracted in the leftmost reduction path of M. 2) Let
R:Mg——Ro->M, ——R1>M, ——R2... besuchthat Vi 3j=1i R;isneeded in M;.
Then R is normalising, i.e. if M has a normal form, then ® is finite. 3) Neededness is an undecid-
able property, but has several efficiently decidable approximations, various versions of the so-
called spine redexes.

CS-R8622. J.C. Ebergen. A technique for designing delay-insensitive VLSI cir-
cuits.

AMS 68B10, 68D37, 68FXX, 94C99; CR B.6.1, B.7.1, F.1.1; 12 pp.; key
words: delay-insensitive circuit, VLSI design, parallelism, trace semantics,

specification, decomposition.

Abstract: A technique for the hierarchical design of delay-insensitive circuits is presented. The
techniques are developed by means of the trace-theory formalism. The design consists of the for-
mulation of a specification and its decomposition into basic elements. Parallelism is allowed in a
specification. The notion of delay-insensitive circuit is formalized. Three examples are given to
illustrate the technique.

CS-N8601. N.W.P. van Diepen. Algebraic specification of a language with
goto-statements.

AMS 68BXX; CR D.2.1, D.3.1, F.3.1, F.3.2; 12 pp.; key words: algebraic
specifications, ~ initial algebra  semantics, goto-statements, ~modular

specifications.

Abstract: The algebraic specification of the semantics of SMALL - a programming language:
designed to demonstrate specifications in denotational semantics - is given. Focus of attention are
the specification of the semantics of goto-statements and the modular build-up of a language
specification.

CS-N8602. J.C. van Vliet & J.B. Warmer. An annotated bibliography on docu-
ment processing.

AMS 68KO05; CR H.4.1; 12 pp.; key words: word processing.
Abstract: This report contains an annotated bibliography on document processing.

CS-N8603. P. Urzyczyn. Dining philosophers and process algebra.
AMS 68N 10, 68C01, 68D25; 18 pp.; key words: process algebra, dining philo-

sophers, liveness, fairness, probabilistic fairness, fair abstraction.
Abstract: We discuss a lifeness property for merges of regular processes, and we apply this pro-
perty to show correctness of a dining philosophers protocol by means of process algebra.

CS-N8604. S. van Egmond & F.C. Heeman. Inform: prototype of an interactive
formula editor. (In Dutch)
AMS 68U15; CR 1.7.2; 45 pp.; key words: text editing, text formatters,

typesetting, mathematical formulae, interactive editing.
Abstract: At the CWI, a project is under way concerning interactive document preparation. Aim of



the project is to make a system which allows the user to edit a formatted version of a document on
the screen. Documents may contain text, tables, mathematical formulae and pictures. This report
describes the design and implementation of an interactive system for editing mathematical formu-
lae.

CS-N8605. L.C. van der Gaag & P.J.F. Lucas. Introduction to PROLOG. (In
Dutch)

AMS 69K 15, 69D42; 29 pp.; key words: PROLOG, programming languages.
Abstract: From the fields of both theoretical research and applications, there is a growing interest
in the programming language PROLOG. PROLOG is a practical representation of the principles
of logic programming; this has resulted in a number of characteristics which make the language
highly suitable for symbolic computation. This paper introduces the foundations of PROLOG and
its application. Furthermore, some successful applications of PROLOG in a number of areas are
discussed.

CS-N8606. A. Eliéns. Semantics for Occam.
AMS 68B10, 68C01; CR D.1.3, D.3.1, F.1.2, F.3.2, F.3.3; 63 pp.; key words:
Occam, transputer, real time, communication, concurrency, transition-systems,

operational semantics, denotational semantics, alternation, event-structures.
Abstract: A brief description of the language Occam and its relation to the transputer is given. The
problems in specifying a semantics dealing with the real-time instruction WAIT a period of time
and the possibility of allocating distinct processes to distinct processors are indicated. A variety of
semantics is presented, notably a linear time operational semantics on the basis of a transition-
system in the style of Plotkin, a branching time denotational semantics in the tradition of De
Bakker and Zucker and a metric denotational semantics based on the concept of alternation as put
forward by Chandra, Kozan and Stockmeyer. One of the aims of developing the latter semantics
was to investigate the possibility of an event-structure like semantics as proposed by Reisig and
Winskel in a metric denotational framework as developed by De Bakker and Zucker. A sketch is
given of how to interrelate the semantics.

0S-R8604. J.M. Schumacher. Transformations of linear systems under external
equivalence.

AMS 93B17, 93B20, 93C35, 34A30, 15A22, 15A36; 21 pp.; key words: linear
systems, system equivalence, state space, minimal representation, feedback con-

nection.

Abstract: We consider systems of linear differential and algebraic equations in which some of the
variables are distinguished as ‘external variables’. Two systems are called equivalent if the set of
solutions for the external variables is the same for both systems. We give an operational form for
this definition of equivalence, i.e., we describe a set of system transformations having the property
that two systems are equivalent if and only if they can be taken into each other by transforma-
tions from that set. Next, an algorithm is described to transform a given system in general form to
a system in minimal state space form. This algorithm differs from existing methods in that it first
takes the equations to first-order form, so that each subsequent step can be formulated and inter-
preted in state space terms. We also compute the ‘structure indices’ in terms of a state space
description in non-minimal form and use this to prove the minimality of the end result of the algo-
rithm. Finally, an application is shown to the problem of ill-posedness of feedback connections.

0S-R8605. O.J. Boxma & F.G. Forst. Minimizing the expected weighted
number of tardy jobs in stochastic flow shops.
AMS 90B35; 10 pp.; key words: stochastic sequencing, tardiness, flow shop.

45



Abstract: This paper is devoted to two types of stochastic scheduling problems, one involving a
single machine and the other involving a flow shop consisting of an arbitrary number of machines.
In both problem types, all jobs to be processed have due dates, and the objective is to find a job
sequence that minimizes the expected weighted number of tardy jobs. For the single-machine case,
sufficient optimality conditions for job sequences are derived for various choices of due date and
processing time distributions. For the case of a flow shop with an arbitrary number of machines
and identically distributed due dates for all jobs, we prove the following intuitively appealing
results: (i) when all jobs have the same processing time distributions, the expected weighted
number of tardy jobs is minimized by sequencing the jobs in decreasing order of the weights; (i)
when all weights are equal, the jobs should be sequenced according to an increasing stochastic ord-
ering of the processing time distributions.

OS-R8606. O.J. Boxma & W.P. Groenendijk. Pseudo-conservation laws in
cyclic-service systems.

AMS 60K25, 68M20; 12 pp.; key words: queueing system, cyclic service,
switch-over times, mean waiting time, conservation law.

Abstract: This paper considers single-server, multi-queue systems with cyclic service. Non-zero
switch-over times of the server between consecutive queues are assumed. A stochastic decomposi-
tion for the amount of work in such systems is obtained. This decomposition allows a short
derivation of a ‘pseudo-conservation law’ for a weighted sum of the mean waiting times at the
various queues. Thus several recently proved conservation laws are generalised and explained.

OS-N8602. J.L. van den Berg. Queueing analysis of a virtual circuit in a com-
puter communication network with window flow control.

AMS 60K25, 68M20; 53 pp.; key words: flow control, virtual circuit, overflow,
closed queueing model, throughput, end-to-end delay.

Abstract: This note studies a virtual circuit with finite buffer space in a computer communication
network with window flow control. An approximation method is derived for the throughput in this
circuit. The method can also be used to approximate other important performance measures. For -
a special case an exact analysis is presented.

NM-R8605. P.J. van der Houwen & F.W. Wubs. The method of lines and
exponential fitting.

AMS 65M20, 78B15; 9 pp.; key words: numerical analysis, hyperbolic equa-
tions, periodic solutions.

Abstract: When the method of lines is used for solving time-dependent partial differential equa-
tions, finite differences are commonly employed to obtain the semidiscrete equations. Usually, if
the solution is expected to be smooth, symmetric difference formulas are chosen for approximating
the spatial derivatives. These difference formulas are almost invariably based on Lagrange type
differentiation formulas. However, if it is known in advance that periodic components of given
frequency dominate in the solution, more accurate difference formulas, based on exponentials with
imaginary exponents, are available. This paper derives such formulas and presents numerical
results which clearly indicate that the accuracy can be improved considerably by exploiting addi-
tional knowledge on the frequencies of the solution.

NM-R8606. W.H. Hundsdorfer. A4 note on monotonicity of a Rosenbrock
method.

AMS 65120, 65H10; 6 pp.; key words: stiff differential equations, monotoni-
city, Rosenbrock methods, nonlinear algebraic equations, modified methods.
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Abstract: For a dissipative differential equation with stationary solution ", the difference between
any solution U(f) and u " is nonincreasing with . In this note we present necessary and sufficient
conditions in order for a similar monotonicity property to hold for numerical approximations
computed from a Rosenbrock method. Our results also provide global convergence results for
some modifications of Newton’s method.

NM-R8607. K. Burrage & W.H. Hundsdorfer. The order of B-convergence of
algebraically stable Runge-Kutta methods.

AMS 65L05, 7 pp.; key words: numerical analysis, stiff initial value problems,
implicit Runge-Kutta methods, B-convergence.

Abstract: In a paper in Computing we have shown that for a class of semi-linear problems many
high order Runge-Kutta methods have order of optimal B-convergence one higher than the stage
order. In this paper we show that for the more general class of nonlinear dissipative problems such
a result holds only for a small class of Runge-Kutta methods and that such methods have at most
classical order 3.

NM-R8608. J.M. Sanz-Serna & J.G. Verwer. Convergence analysis of one-step
schemes in the method of lines.

AMS 65X02, 65M10, 65M20; CR 5.17; 12 pp.; key words: numerical analysis,
initial boundary value problems in partial differential equations, method of
lines, Runge-Kutta schemes, convergence analysis, order reduction.

Abstract: We present an expository account of some fundamental results concerning the analysis of
one-step schemes for semidiscretizations of evolutionary problems in partial differential equations.
In the paper the emphasis lies on the interplay between the stability and convergence properties of
the fully discrete scheme and those of the ordinary differential equations solver. Much attention is
paid to the phenomenon of order reduction.

NM-R8609. H.J.J. te Riele. On the sign of the difference m(x) — li (x).

AMS 11A41, 11M26, 11Y99, 65G99; 6 pp.; key words: prime counting func-
tion, approximation, sign changes, Riemann hypothesis, zeros of the Riemann
zeta function.

Abstract: Let m(x) be the number of primes < x and /i(x) = -[0 (logt)fl dt. It is well known that
m(x) ~ li(x) as x — co and also that m(x) — li(x) changes sign infinitely often. However only
negative values of 7(x) — li(x) have ever been actually computed. Following a method of Sher-
man Lehman we show that between 6.62X 10°™ and 6.69< 10> there are more than 10" succes-
sive integers x for which m(x) — li(x) > 0. This brings down Sherman Lehman’s bound on the
smallest number x for which 7(x) — /i(x) > 0 , namely from 1.65x10"%5 10 6.69%10°7°. Our
result is based on the knowledge of the truth of the Riemann hypothesis for the complex zeros
B + iy of the Riemann zeta function which satisfy |y| < 450,000, and on the knowledge of the
first 15,000 complex zeros to about 28 digits and the next 35,000 to about 14 digits.

NM-R8610. B.P. Sommeijer. NUMVEC FORTRAN Library manual. Chapter:
Parabolic PDEs; Routine:BDMG.
AMS 65M20, 65L05, 65V05; CR 5.17; 16 pp.; key words: software, parabolic

differential equations, multigrid methods, nonlinear Chebeyshev iteration.

Abstract: This document describes the NUMVEC FORTRAN Library routine BDMG, which
integrates in time a semidiscrete scalar parabolic partial differential equation defined over a two-
dimensional rectangular region. The time integration is based on the second-order Backward
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Differentiation method; the resulting implicit relations are solved by employing a Multi Grid tech-
nique.

NM-R8611. S.P. Spekreijse. Multigrid solution of monotone second-order
discretizations of hyperbolic conservation laws.

AMS 35L65, 65N05, 76G15; 19 pp.; key words: conservation laws, multigrid
methods.

Abstract: This paper is concerned with two subjects: the construction of second-order accurate
monotone upwind schemes for hyperbolic conservation laws and the multigrid solution of the
resulting discrete steady state equations. By the use of an appropriate definition of monotonicity, it
is shown that there is no conflict between second-order accuracy and monotonicity (neither in one
nor in more dimensions). It is shown that a symmetric block Gauss-Seidel underrelaxation (each
block is associated with 4 cells) has satisfactory smoothing rates. The success of this relaxation is
due to the fact that, by coupling the unknowns in such blocks, the nine-point stencil of a second-
order 2D upwind discretization changes into a five-point block stencil.

NM-R8612. P.J. van der Houwen & B.P. Sommeijer. Phase-lag analysis of
implicit Runge-Kutta methods.

AMS 65L05, CR G.1.7, G.1.8; 16 pp.; key words: numerical analysis, ordinary
differential equations, Runge-Kutta methods, periodic solutions.

Abstract: We analyse the phase errors introduced by implicit Runge-Kutta methods when a linear
inhomogeneous test equation is integrated. It is shown that the homogeneous phase errors dom-
inate if long interval integrations are performed. Homogeneous dispersion relations for the special
class of DIRK methods are derived and a few high-order dispersive DIRK methods are con-
structed. These methods are applied to systems of linear differential equations with oscillating
solutions and compared with the ‘conventional’ DIRK methods of Ngrsett and Crouzeix.

NM-R8613. E. de Goede. Stabilization of the Lax-Wendroff methods and a
generalized one-step Runge-Kutta method for hyperbolic initial-value problems.
AMS 65M10, 65M20; 12 pp.; key words: stabilization, hyperbolic equations,
smoothing operators.

Abstract: In order to integrate hyperbolic systems explicit time integrators are specialley appropri-
ate. Implicit methods allow large integration steps, but require more storage and are more difficult
to implement than explicit methods. However, explicit methods are subject to a restriction on the
integration step. This restriction is a drawback if the variation of the solution in time is so small
that accuracy considerations would allow a larger integration step. In this report we apply a
smoothing technique in order to stabilize the Lax-Wendroff method and a generalized one-step
Runge-Kutta method. Using this technique, the integration step is not limited by stability con-
siderations.

NM-R8614. W. Hoffmann & W.M. Lioen. NUMVEC FORTRAN Library
manual. Chapter: simultaneous linear equations.
AMS 65V05, 65F05, 15A06; CR 5.14; 33 pp.; key words: Gaussian elimina-

tion, LDU-decomposition, linear equations, software.

Abstract: This document describes a set of NUMVEC FORTRAN Library routines, dealing with
the unique solution of real linear systems. Presently, only highly optimized non-portable imple-
mentations for the CYBER 200 series computer systems are included in the Library.

NM-R8615. J.HM. ten Thije Boonkkamp. The odd-even hopscotch pressure
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correction scheme for the incompressible Navier-Stokes equations.
AMS 65M20, 76D05; 17 pp.; key words: Navier-Stokes equations, odd-even

hopscotch method, pressure correction method.

Abstract: The odd-even hopscotch (OEH) scheme is a time-integration technique for time-
dependent partial differential equations. In this paper we apply the OEH scheme to the
incompressible Navier-Stokes equations in conservative form. In order to decouple the computa-
tion of the velocity and the pressure, the OEH scheme is applied in combination with the pressure
correction technique. The resulting scheme is referred to as the odd-even hopscotch pressure
correction (OEH-PC) scheme. This scheme requires per time step the solution of a Poisson equa-
tion for the computation of the pressure. For space discretization we use standard central
differences. We applied the OEH-PC scheme to the Navier-Stokes equations for the computation
of an exact solution, with the purpose of testing the (order of) accuracy of the scheme in time as
well as in space. It turned out that the OEH-PC scheme behaves as a second order scheme in time
and space. Furthermore we applied the OEH-PC scheme for the computation of the flow in a glass
furnace. Finally, a comparison between two Poisson solvers for the computation of the pressure is
presented.

NM-R8616. B. Koren. Evaluation of second order schemes and defect correction
for the multigrid computation of airfoil flows with the steady Euler equations.
AMS 65N30, 76G15, 76HOS; 17 pp.; key words: steady Euler equations,
second order schemes, defect correction, multigrid methods.

Abstract: Second order accurate Euler flow solutions are presented for some standard airfoil test
cases. Second order accuracy is obtained by a defect correction process. Several schemes are con-
sidered for the computation of the second order defect. In each defect correction cycle, the solu-
tion is computed by a non-linear multigrid iteration, in which Collective Symmetric Gauss-Seidel
relaxation is used as smoothing procedure. A finite volume Osher discretization is applied. The
computational method does not require tuning of parameters. The solutions obtained show a
good resolution of all flow phenomena, and are obtained at low computational costs. The rate of
convergence is grid-independent. The method contributes to the state of the art in efficiently com-
puting airfoil flows with discontinuities.

NM-R8617. P.J. van der Houwen, B.P. Sommeijer & F.W. Wubs. Analysis of
smoothing operators in the solution of partial differential equations by explicit

difference schemes.

AMS 65M10, 65M20; CR 5.17; 18 pp.; key words: numerical analysis, initial
boundary value problems in partial differential equations, method of lines,
explicit integration methods, smoothing, stability.

Abstract: A smoothing technique for the ‘preconditioning’ of the right-hand side of semi-discrete
partial differential equations is analysed. For a parabolic and a hyperbolic model problem optimal
smoothing matrices are constructed which result in a substantial amplification of the maximal
stable integration step of arbitrary explicit time integrators when applied to the smoothed prob-
lem. This smoothing procedure is illustrated by integrating both linear and nonlinear parabolic
and hyperbolic problems. The results show that the stability behaviour is comparable with that of
the Crank-Nicholson method; furthermore, if the problem belongs to the problem class in which
the time derivative of the solution is a smooth function of the space variables, then the accuracy is
also comparable with that of the Crank-Nicholson method.

NM-R8618. J.G. Blom & H. Brunner. Discretized collocation and iterated collo-
cation for nonlinear Volterra integral equations of the second kind.
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AMS 45-04, 65R20, 45D05, 45L10; 18 pp.; key words: systems of nonlinear
Volterra integral equations of the second kind, approximation by polynomial
splines, (iterated) collocation, local superconvergence, error estimations, vari-
able stepsize, numerical methods, computer software.

Abstract: In this paper a FORTRAN code is described for the approximate solution of systems of
nonlinear Volterra integral equations of the second kind. The algorithm is based on polynomial
spline collocation, possibly in combination with the corresponding iterated collocation. It exploits
certain local superconvergence properties for the error estimation and the stepsize strategy.

NM-N8601. E. de Goede. A comparison of finite difference schemes for the
numerical solution of hyperbolic equations. (In Dutch)

AMS 65M10; 10 pp.; key words: hyperbolic equations, finite difference
schemes, stability, efficiency.

Abstract: In this note we compare existing finite difference schemes for first order hyperbolic equa-
tions in two space dimensions. The stability and efficiency of the difference schemes is examined.

MS-R8602. S.A. van de Geer. A new approach to least squares estimation, with
applications.

AMS 60B10, 60G50, 62J05; 5 pp.; key words: consistency, entropy, empirical
measure, uniform convergence.

Abstract: The regression model y=g(x)+e and least squares estimation are studied in a general
context. By making use of empirical process theory, it is shown that the essential condition for

L*-consistency of the least squares estimator g, of g is an entropy condition on the class § of pos-
sible regression functions. This result is applied in parametric and nonparametric regression.

MS-R8603. R.D. Gill & J.A. Wellner. Large sample theory of empirical distri-
butions in biased sampling models.
AMS 62G05, 60F05, 62G30, 60G44; 22 pp.; key words: selection bias models,

Vardi’s estimator, nonparametric Maximum Likelihood.

Abstract: Vardi (1985) introduced an s-sample model for biased sampling, gave conditions which
guarantee the existence and uniqueness of the nonparametric maximum likelihood estimator G,, of
the common underlying distribution G, and discussed numerical methods for calculating the esti-
mator. Here we examine the large sample behaviour of the NPMLE G,, including results on uni-
form consistency of G,, convergence of Vn(6, — G) to a Gaussian process, and asymptotic
efficiency of G,, as an estimator of G. The proofs are based upon recent results for empirical
processes indexed by sets and functions, properties of irreducible M-matrices, and the homotopy
invariance theorem. A final section discusses examples and applications to stratified sampling,
‘choice-based’ sampling in econometrics, and ‘case-control’ studies in biostatistics.

MS-R8604. R.D. Gill. Non- and semi-parametric maximum likelihood estima-
tors and the von Mises method (Part 1).

AMS 62G05, 62G20, 60B12, 60F17, 46A05; 22 pp.; key words: non-parametric
maximum likelihood, von Mises method, compact differentiation, Hadamard

differentiation, asymptotically efficient estimation.

Abstract: After introducing the approach to von Mises derivatives based on compact
differentiation due to Reeds (1976), we show how non-parametric maximum likelihood estimators
can often be defined by solving infinite dimensional score equations. Each component of the score
equation corresponds to the derivative of the log likelihood for a one-dimensional parametric
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submodel. By means of examples we show that it usually is not possible to base consistency and
asymptotic normality theorems on the implicit function theorem. However (in Part II) we show for
a particular class of models, that once consistency (in a rather strong sense) has been established
by other means, asymptotic normality and efficiency of the non-parametric maximum likelihood
estimator can be established by the von Mises method.

AM-R8602. H. Roozen. Equilibrium and extinction in stochastic population

dynamics.

AMS 35A40, 35B40, 35R60, 92A15; 22 pp.; key words: ray method, confidence
region, extinction time, generalized Lotka-Volterra system, numerical simula-
tion of stochastic birth-death processes.

Abstract: Stochastic models of interacting biological populations, with birth and death rates
depending on the population size, are studied in the quasi-stationary state. Confidence regions in
the state space are constructed by a new method for the numerical solution of the ray equations.
The concept of extinction time, which is closely related to the concept of stability for stochastic
systems, is discussed. Results of numerical calculations for two-dimensional stochastic population
models are presented.

AM-R8603. H.J.A.M. Heijmans & J.AJ. Metz. Small parameters in structured
population models and the Trotter-Kato theorem.

AMS 92A15, 35A35, 47D05; 19 pp.; key words: structured population, limit
transition, Co-semigroup, Trotter-Kato theorem.

Abstract: In this paper we discuss by means of two examples the justification of some (often impli-
cit) limit arguments used in the development of structured population models. The first example
considers the usual equation for size dependent population growth, in which it is implicitly
assumed that discrete finitely sized young are produced from infinitesimal contributions by all
potential parents. The second example shows how a pair of sink-source terms may transform into
a side condition relating the appearance of individuals in the interior of the individual state space
to the outflow of individuals at its boundary. The main mathematical tool for dealing with these
example is the Trotter-Kato theorem.

AM-R8604. O. Diekmann. Perturbed dual semigroups and delay equations.

AMS 47D05, 34K05; 8 pp.; key words: Co-semigroups, weak * continuous
semigroups, dual semigroups, bounded perturbation of the generator,
variation-of-constants formula, retarded functional differential equations, delay

equations.

Abstract: The theory of dual semigroups on non-reflexive Banach spaces can be used to define a
natural generalization of the notion of a bounded perturbation of the generator and a new version
of the variation-of-constants formula. This approach was developed in joint work with Ph.
Clément, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme, motivated by some applications to
physiologically structured population growth models. In this paper it is shown that delay
differential equations fit very well into exactly the same functional analytic framework.

PM-R8602. G.F. Helminck. Deformations of connections, the Riemann-Hilbert
problem and « functions.

AMS 35Q15, 35F20; 16 pp.; key words: Riemann-Hilbert problem, integrable
connections, isomonodromic deformation, Fredholm determinant, Grasmann

manifold.
Abstract: We give sufficient conditions for the existence of integrable deformations of a rational
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linear ODE on the projective line and we show when the related connection form obtains a
reduced form. Certain coefficients in this reduced form admit a meromorphic continuation to the
whole parameter space, while their poles coincide with the zero-set of a Fredholm determinant 7.
These properties are similar to the ones holding for the solutions of the KP-hierarchy and form a
generalization of work by Malgrange.
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CWI Activities
Summer 1986

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWI.

Study group on Analysis on Lie groups. Jointly with University of Leiden.
Biweekly. (T.H. Koornwinder)

Seminar on Integrable Systems Theory. Once a month. (M. Hazewinkel)
A central object of study will be the work of Belarin and Drinfeld, especially
the relation between simple Lie algebras and solutions of the so-called classi-
cal Yang-Baxter equation. Furthermore the quantum-Yang-Baxter equation,
the Fundamental Poisson relations, the Fundamental Commuting relations
which form the basis of the ‘Quantum Inverse Spectral Method’ will be dis-
cussed.

Seminar on Algebra and Geometry. Once a month. (A.M. Cohen)
Gordan’s work on covariants of SL,(C) (J. Brinkhuis). Mumford’s con-
struction of an algebraic surface resembling C? (M. van der Put). The
geometry of subgroups of order 3 in certain finite groups (F.G.M.T.
Cuypers).

Cryptography working group. Monthly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Jointly with University of Leiden. Bimonthly (O. Diekmann)
Topics for the next meetings are: stochastic population dynamics, dynamics of
structured populations.

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Jointly with University of Leiden. Bimonthly (O. Diekmann) The
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purpose is: to follow and investigate recent developments on qualitative
analysis of nonlinear equations; to stimulate and support the research of the
participants.

Progress meetings of the Applied Mathematics Department. Weekly (N.M.
Temme)

New results and open problems on the research topics of the department:
biomathematics, mathematical physics, asymptotic and applied analysis,
image analysis.

Colloquium Image Processing: Theory and Practice. Applied Mathematics and
Mathematical Statistics. 9, 30 October, 20 November, 11 December.
(H.J.AM. Heijmans)

The following topics will be treated:

Applications of image processing and analysis in medical science, biology,
physics, astronomy, industry, etc. Mathematical aspects as transformation
techniques, filtering techniques, statistical analysis, topology, etc.; Role of
the computer: hardware and software, architecture of image computers, etc.
Related topics: laser optics (holography), visual observations by human
beings and animals, etc. Long term planning, prospects, etc.

Study group on Statistical and Mathematical Image Analysis. (Parallel with
colloquium ‘Image Analysis’). Every three weeks. (R.D. Gill)

The group is presently studying J. Serra’s approach to image analysis,
‘mathematical morphology’, and recent statistical contributions using Mar-
kov field modelling due to S. and G. Geman, J. Besag and B. Ripley.

Progress meetings of the Mathematical Statistics Department. Biweekly (R.
Helmers)

Talks by members of the department on recent developments in research
and consultation. Also talks by E. Valkeila (Helsinki) on counting processes.

Lunteren meeting on Stochastics. 17, 18 and 19 November 1986 at ‘De Blije
Werelt’, Lunteren. Jointly with Dutch Statistical and Mathematical Societies.
(R. Helmers)

Invited speakers: J. Besag (Durham, U.K.), G.L. O’Brien (Toronto, Canada),
D.R. Cox (London, U.K.), C.M. Goldie (Brighton, U.K.), L. Russo (Rome,
Italy), E.V. Slud (Maryland, USA).

Seminar ‘von Mises and NPMLE’. Jointly with University of Leiden. Weekly.
(R.D. Gill)

A rigorous approach to the von Mises calculus (due to J.A. Reeds) based on
Hadamard differentiability is used to derive properties of nonparametric
maximum likelihood estimators.

Study group on Combinatorial Optimization. Biweekly. (B.J. Lageweg)

System Theory Days. Irregular. (J.H. van Schuppen, J.M. Schumacher)

Study group on System Theory. Biweekly. (J.M. Schumacher)

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)

Conference on Numerical Mathematics. 29 September - 1 October 1986 at
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Zeist. (J.G. Verwer)

Invited speakers: M.J. Baines (University of Reading, England), P.R. Eise-
man (Columbia University, New York, USA), N.P. Weatherill (Aircraft
Research Association Ltd, Bedford, England), M. Crouzeix (University of
Rennes, France), J.M. Sanz-Serna (University of Valladolid, Spain), J.C.
Butcher (University of Auckland, New Zealand).

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Irregular. (H.J.J. te Riele)

Study group on Graphics Standards. Monthly. (M. Bakker)

National Study Group on Concurrency. Jointly with Universities of Leiden
and Eindhoven. 26 September, 24 October, 21 November and 12 December.
(J.W. de Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Study group on Logical Aspects on Artificial Intelligence. Biweekly. (M.L.
Kersten & P.J.F. Lucas)

In this study group recent developments in formal theories in artificial intel-
ligence are discussed. The main topics are: knowledge representation, infer-
ence methods, non-standard logics and plausible reasoning.

Post-academic Course on PROLOG. 20-21 October. (P.J.F. Lucas)

In this course, both the theoretical foundations of logic programming and
the applications of the programming language PROLOG are discussed. The
course is meant for researchers and engineers who consider using PROLOG
in their projects.

Process Algebra Meeting. Weekly. (J.W. Klop)

Post-academic Course on Modern Techniques in Software Engineering. 25-26
September, 9-10 October, 27-28 November, 11-12 December. (J.C. van Vliet)
Various lecturers present modern techniques and methods for the construc-
tion of complex software systems. The course is meant for persons with a
background in computer science, who are or will be actively involved in the
construction of those systems.

Meeting of the ESPRIT project 348 (Generating of Interactive Programming
Environments - GIPE). 20-21 October. (P. Klint)
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Visitors to CWI from Abroad

J.Ph. Anker (University of Lausanne, Switzerland) 11-12 April. K.R. Apt
(L.LT.P., Université Paris VII, France) 21 April - 30 May. D.D. Boos (North
Carolina State University, USA) 4 June. L. de Branges (Purdue University of
Lafayette, USA) 16-18 June. P.E. Caines (McGill University, Montreal,
Canada) 21 April. J.A. van Casteren (Universitaire Instelling Antwerpen, Bel-
gium) 28-29 April. L. Corwin (Rutgers University, New Brunswick, USA)
11-12 April. J. Dongarra (Argonne National Laboratory, USA) 30 May.
W.H. Enright (University of Toronto, Canada) 29 May. M. Flensted-Jensen
(The Royal Veterinary and Agricultural University, Copenhagen, Denmark)
11-12 April. M. Fliess (CNRS, Gif sur Yvette, France) 28-29 April. A.
George (University of Waterloo, Canada) 30 May. 1. Gertsbakh (Ben Gurion
University of the Negev, Beersheva, Israel) 23-24 June. P. Green (University
of Durham, England) 26-30 May. B. Harsoyo (University of Jakarta,
Indonesia) 23 June - 23 Augustus. H. Hirata (Chiba University, Japan) 20
June. N.L. Hjort (Norwegian Computing Centre, Oslo, Norway) 26-30 May.
T. Louis (Harvard School of Public Health, Boston, USA) January-June 1986.
D. Moore (Purdue University, Lafayette, USA) 21 May. M. Nakashima
(RWTH, Aachen, West Germany) 2 June. M. Nevat (LITP, University of
Paris VII, France) 9 June. J.-P. Nicolas (University of Limoges, France) 6-7
May. G. Olafsson (University of Gottingen, West Germany) 11-12 April. D.
O’Leary (University of Maryland, USA) 30 May. S.J. Prokhovnik (University
of New South Wales, Kensington, Australia) 2 May. W. Respondek (Polish
Academy of Science, Warsaw, Poland) 14 May. W.A. Rosenkrantz (University
of Massachusetts, USA) 14-16 April. D. Siegmund (University of Stanford,
USA) 14 May. J. Smith (John Hopkins University, USA) September 1985 -
June 1986. D. Stodolsky (University of Stockholm, Sweden) 1-11 April. F.
Sullivan (National Bureau of Standards, Gaithersburg, USA) 30 May. H.
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Suzuki (University of Tokyo, Japan) 16 May. H. Takagi (IBM Japan Science
Institute, Tokyo, Japan) 7-13 June. S. Ushiki (Kyoto University, Japan) 9
June. J.I. Zucker (University of Buffalo, USA) 21 July - 9 August.
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Order Form for CWI Publications

Sales Department
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

[0 Please send the publications marked below on an exchange basis
[0 Please send the publications marked below with an invoice

Publication code Price per copy Number of copies wanted
O CWI Tract 22 *) Dfl. 4540 ...
O CWI Tract 23 *) 26.70 0 e
O CWI Tract 24 *) 1270 s
O CWI Tract 25 *) 1220 s
O CWI Tract 27 *) 2030
O CWI Syllabus 10 *) 2530 0 e
O CS-R8610 de= s
0 CS-R8611 4--
O CS-R8612 4--
O CS-R8613 4--
O CS-R8614 4--
O CS-R8615 4--
O CS-R8616 4--
O CS-R8617 640 L
O CS-R8619 840 0 s
O CS-R8620 4920
O CS-R8621 640 @ e

*) not available on exchange
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Publication code

CS-R8622
CS-N8601
CS-N8602
CS-N8603
CS-N8604
CS-N8605
CS-N8606
OS-R8604
OS-R8605
OS-R8606
OS-N8602
NM-R8605
NM-R8606
NM-R8607
NM-R8608
NM-R8609
NM-R8610
NM-R8611
NM-R8612
NM-R8613
NM-R8614
NM-R8615
NM-R8616
NM-R8617
NM-R8618
NM-N8601
MS-R8602
MS-R8603
MS-R8604
AM-R8602
AM-R8603
AM-R8604
PM-R8602
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Price per copy

4.--
-
e
4.--
7.70
5.20
10.20
4.--
-
A
8.90
4.~
-
4.--
4.--
.
B
4.--
4.--
4.--
5.20
4.--
4.--
"
4.--
4.--
1
4
4.
4.--
” J
4
4.--

Number of copies wanted



If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

Name  .comeessorssssmmmsmismmssemnss s s
SHEEL = cossssammmmmsssserissassaemsrossasnsas
CUlY oo e s
COUMITY comsonsmmmmessomsmrisssvemmvsssosonsscnsastossessosuorseses
SIZNAtUTE oo

DAt e ean
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204/36

Mathematics, Computer Science, Programming

Mathematics and
Computer Science

Proceedings of the CWI Symposium, November 1983

edited by J. W. De Bakker, M. Hazewinkel and J. K.
Lenstra, Centre for Mathematics and Computer Sci-
ence, Amsterdam, The Netherlands

CWI Monographs, 1

1986 viii + 352 pages
Price: US $55.50 / Dfl. 150.00
ISBN 0-444-70024-2

The rapid development of both mathematics and com-
puter science has created many new interrelations at
their interface. All of the topics covered in this volume
are relevant to both disciplines.

This is the first volume in the series from the Centrum

voor Wiskunde en Informatica (Centre for Mathema-
tics and Computer Science), a non-profit research insti-
tute sponsored by the Dutch Government.

CONTENTS: Stochastic Geometry and Image Analysis
(A.J. Baddeley). Systematic Program Development
(C.B. Jones). Algorithmic Aspects of Some Notions in
Classical Mathematics (L. Lovasz). Problems and
Perspectives in Robotics (J.T. Schwartz). Algebra of
Communicating Processes (J.A. Bergstra and J.W.
Klop). Relaxation Times for Queueing Systems (J.P.C.
Blanc and E.A. van Doorn). Some Current Develop-
ments in Density Estimation (P. Groeneboom). Experi-
mental Mathematics (M. Hazewinkel). Numerical
Analysis of Shallow Water Equations (P.J. van der

Houwen, B.P. Sommeijer, J.G. Verwer and F.W.
Wubs). Primality Testing (H.W. Lenstra, Jr.).
Algorithmics (L.G.L.T. Meertens). Uniform Asymptotic
Expansions of Integrals (N.M. Temme).

Also available:

Stability of Runge-Kutta Methods for Stiff Nonlinear
Differential Equations

(CWI Monographs 2)

by K. DEKKER and J.G. VERWER

1984 x + 308 pages

Price: US $36.50/Dfl. 95.00

ISBN 0-444-87634-0

!
g% NORTH-HOLLAND
&

Amsterdam

ELSEVIER SCIENCE PUBLISHERS

Send your order to your bookseller or
ELSEVIER SCIENCE PUBLISHERS
P O Box 211, 1000 AE Amsterdam The Netherlands

Distributor in the U S A and Canada
ELSEVIER SCIENCE PUBLISHING CO., INC.
P O Box 1663, Grand Central Station New York, NY 10163

Continuation orders for series are accepted

Orders from individuals must be accompanied by a remittance
following which books will be supplied postiree










