

19

31

33

40

43

51

54

Contents

The Generator Paradigm in Smalltalk,
by Tim Budd

Mathematics as a Cultural Force and as a
Productive Force, by G. Alberts

The MC Fortieth Anniversary,
by P.C. Baayen

The Tetrahexes Puzzle, by Herman J.J. te Riele &
D.T. Winter

New Factorization Records on Supercomputers,
by Herman J.J. te Riele, Walter M. Lioen &
Dik T. Winter

Abstract of Recent CWI Publications
Activities at CWI, Spring 1986

Visitors to CWI from Abroad

4

Centre for Mathematics
and Compltet-Seience

Centrumrvoor Wisklihdé’én Informatica

The Generator Paradigm in Smalltalk

Tim Budd'

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The method of generators is a powerful programming technique for many prob-
lems. Unfortunately, it is not widely known or employed. This paper describes
the generator paradigm, illustrating the use of the technique by several pro-
grams in the language Smalltalk.

INTRODUCTION

In computer science, as in many other areas of human endeavor, people fre-
quently attempt to solve problems by relating them to a paradigm, that is an
example or model. Students, for example, when presented with a novel prob-
lem, will often try to formulate it in a manner similar to problems they have
already been shown or solved for themselves. This is only natural, and is one
reason why it is important for students in computer science to be exposed to a
wide variety (not necessarily a wide number) of computer languages. Just as
with natural languages, the computer language in which a problem is solved
colors in a forceful way the type of solution employed. The wider the variety
of languages a student is exposed to, the larger the number of paradigms they
will have seen, and the broader will be their outlook on a new problem.

This paper describes one such programming paradigm, that of generators.
The concept of generators occurs in many computer languages, but unfor-
tunately is not a natural technique in the languages most commonly encoun-
tered by the student (Pascal, C, Fortran). Thus, while it is a valuable problem
solving method for many classes of problems, it is not widely known or
employed.

The generator paradigm is most useful in situations where there may not be
a single, unambiguous, correct answer to a given question. This occurs fre-
quently in such fields as pattern matching, data base systems, artificial intelli-
gence as well as others. To illustrate, consider the pattern matching question

1 This paper was written while the author was on leave from the University of Arizona. The
author’s present address is: Department of Computer Science, Oregon State University, Corvallis,
Oregon, 97331 USA.

“At what location does the letter ‘" occur in the word ‘Mississippi’?” A single
answer, such as 2, is correct but unsatisfactory. For example, this question
might be a result of a larger problem, such as “at what location does the string
‘ip” occur in the word ‘Mississippi’?” Thus it is not sufficient to consider only
the first answer to a question, but one must produce al/l answers to the ques-
tion. One possibility is to return a set of answers. This works if the set of
solutions is small, but becomes unwieldy if the set of answers is large or
infinite. The generator paradigm is an attractive alternative.

For the purposes of this paper we will say a generator is any object (pro-
cedure, module, abstract datatype, class instance, or whatever) that can
respond with a sequence of answers to a given query, one at a time. A genera-
tor for our example problem when asked for the position of ‘i’ in the word
‘Mississippi” would first respond 2’. When asked again it would respond ‘5’,
then ‘8’, then ‘11°, and finally ‘no more answers’.

Generators can be written in any language that supports co-routines, such as
Simula [1], or SL5 [7]. They are used, although not always in ways that are
obvious to the programmer, in Prolog [4]. They appear as a fundamental pro-
gramming technique in the language Icon [6]. They can even be written, with
the aid of a little run-time support, in C [2]. In this paper we will discuss the
use of generators in Smalltalk [5], and in particular the examples will use the
dialect of Smalltalk called Little Smalltalk [3].

SMALLTALK AND OBJECT ORIENTED PROGRAMMING

There is not sufficient space to present more than an elementary introduction
to the Smalltalk language, however a few concepts are central to the discussion
and must be advanced. A more complete description of the language can be
found in [3,5].

The traditional model describing the behavior of a computer executing a
program can be characterized as the process-state, or ‘pigeon-hole’ model. In
this view the computer is a data manager, following some pattern of instruc-
tions, wandering through memory pulling values out of various slots (memory
addresses), transforming them in some manner, and pushing the results back
into other slots. By examining the values in the slots one can determine the
state of the machine, or the results produced by the computation. While this
may be a more or less accurate picture of what is physically taking place in a
computer, it does little to help us understand how to solve problems using the
computer and is certainly not the way most people (pigeons and postmen
excepted) go about solving problems.

Let us examine a real world situation and then ask how we might make the
solution of problems on a computer more closely model the methods people
use in everyday life. Suppose I wish to send flowers to my grandmother for
her birthday. She, however, lives in a city many miles away. It is a task easy
enough to do; I merely go to a local florist, describe the nature and number of
flowers I desire, and I can be assured that they will be automatically delivered.
If T stopped to investigate how this gets accomplished I would probably dis-
cover that my florist sends a message describing my order to another florist in

3

my grandmother’s city, who then takes care of the actual delivery. I might
inquire further to find out how the florist in my grandmother’s city obtains the
flowers, finding perhaps that they are obtained in bulk in the morning from a
flower wholesaler. If I persist, I might even be able to follow the chain all the
way back to the farmer who grows the flowers, and discover what requests
were made by each member of the chain in order to solicit the desired out-
come from the next.

The important point, however, is that I do not need to, indeed most of the
time do not want to, know how my simple directive ‘send flowers to my grand-
mother’ is going to be carried out. In real life we call this process ‘delegation
of authority’. In computer science it is called ‘abstraction’ or ‘information hid-
ing’. At the heart, these terms amount to the same thing. There is a resource
(a florist, a file server) that I wish to use. In order to communicate, I must
know the commands the resource will respond to (send flowers to my grand-
mother, return a copy of the file named ‘chapterl’). The steps the resource
must take in order to respond to my request are in all likelihood much more
complex than I realize, but in any case there is no reason for me to know the
details of how my directive is implemented, as long as the response (the
delivery of the flowers, receiving a copy of my file) is well defined and predict-
able.

The object-oriented model of problem solving views the computer in much
the same fashion as just described. Indeed many people who have no training
in computer science and no idea how a computer works find the object-
oriented model of problem solving quite natural. Surprisingly, however, many
people who have a traditional background in computer programming initially
think there is something strange about the object-oriented view. The notion
that ‘7’ is an object, and ‘+’ a request for an addition, may at first seem
strange. But soon, the uniformity, power, and flexibility the object-message
metaphor brings to problem solving makes this interpretation seem natural.

As we have been suggesting, the Smalltalk universe is inhabited by objects.
If we invert the metaphor, using it to describe my flower example, I am an
object and the flower shop (or the florist in it) is another object. Actions are
instigated by sending requests (or messages) between objects. I transmitted the
request ‘send flowers to my grandmother’ to the florist-object. The reaction of
the receiver for the message is to execute some sequence of actions, or method,
to satisfy my request. It may be the case that the receiver can immediately
satisfy my request. On the other hand it will often be the case that in order to
meet my needs, the receiver is required to transmit other messages to yet more
objects (the message my florist sends to the florist in my grandmothers city, or
a command to a disk drive). In addition, there is an explicit response (a
receipt, for example, or a result code) returned directly back to me. DAN
INGALLS describes the Smalltalk philosophy [8]:

‘Instead of a bit-grinding processor raping and plundering data
structures, we have a universe of well-behaved objects that courte-
ously ask each other to carry out their various desires.’

4

Such anthropomorphic viewpoints are common among Smalltalk program-
mers. In subsequent sections we will see how the Smalltalk language embodies
this object-oriented view of programming. By describing the solution of
several problems in Smalltalk, we hope to show how the object-oriented model
aids in the creation of software systems, and assists in the solution of problems
using the computer.

SMALLTALK SYNTAX
In this section we present a brief overview of Smalltalk syntax, just enough to
make the examples presented later in the paper understandable. Once more,
the reader interested in further information should consult the references.

An object can be a literal object, such as a number (2, for example), or a
named object, such as an identifier (x, for example). An assignment arrow is
used to associate a name with an object. The statement

X « 2

makes the identifier x temporarily represent the same object as the literal
object 2. This assignment may be later overwritten by other assignments to
the same identifier.

Action is initiated by sending messages to objects. A message can simply be
a command, with no arguments. For example, the following statement:

X squared

illustrates the message squared being sent to the object x. In response, the
object x will return a new object. The particular nature of the response is
always defined by the category (in Smalltalk terms, the Class) of the recipient
for the message. If x is a number, the response to the message squared will be
the object representing the value of the number multiplied by itself. Thus, the
following example will make the identifier y represent the object 4.

y « x squared

Messages can also take arguments. The arithmetic operations, for example,
are interpreted as messages to the left side, having the right side as argument.
Thus the expression:

x + 3

shows the message ‘+’ being passed to the object x, accompanied by argument
3.

A third form of message is permitted to take an arbitrary number of argu-
ments. This form of message is written as a sequence of keywords, that is
names followed by colons, separating the receiver and arguments. For exam-
ple:

x between : 2 and : 4

shows the message berween:and: being passed to the object x, accompanied by
two arguments. Messages can be composed, with messages having no

5

arguments taking precedence over binary (arithmetic style) messages, and
binary messages taking precedence over keyword messages. Parenthesis can be
used to provide alternative groupings.

Some messages have side effects, in addition to returning a value. The mes-
sage print, for example, will display a value on an output device. Thus:

(x squared + 3) print

will cause the value 7 to be displayed.

A novel feature of Smalltalk is the ability to easily encapsulate actions for
performance at a later time. This is accomplished using a block, which is writ-
ten as a pair of square braces surrounding a list of Smalltalk statements.
Because a block is an object, it can be assigned to an identifier or used as an
argument in an expression, like other objects. For example:

z « [x print. x « x+1]

assigns a block to the identifier z. Note that a period is used to separate the
statements within the block. These statements are not immediately executed;
instead, they are executed when the message value is passed to the block. If at
some later time the statement:

z value

is executed, the value 2 (the current binding of the object x) will be displayed
and x will be updated. The block continues to exist, and the actions can be
repeated merely by sending the value message to the block again, as often as
necessary. Note that the binding for the identifier x derives from the sur-
rounding context of the definition of the block, and not from the context in
which the message value is used.

Blocks are used to implement a number of control structures in Smalltalk.
For example the conditional execution statement is constructed as a message
passed to an object of type boolean using a block as an argument.

(x < 3)ifTrue: [x « x+1]

If the boolean (the recipient of the ifTrue: message) is true, the block is exe-
cuted; otherwise not. Similarly the while loop is constructed using a block for
both the recipient and the argument.

[x < 10] whileTrue: [x print. x— x+1]

Blocks can also be written so as to take parameter values, and thus in many
ways act like statically scoped in-line procedures. For example, the following
block:

w « [:a| a squared print]

defines w to be a block taking one argument. The keyword message value: is
used to invoke such a block. For example:

w value: 6

will result in the value 36 being displayed.

The sequence of actions to be executed in response to a message is described
by a method, which corresponds in some ways to a procedure in a conventional
language. For example, the following method describes the message squared :

squared

1 self * self
Within a method, the identifier self refers to the receiver of the message.
The up arrow (1) precedes the value to be returned in response to the message.
A method for a message that takes arguments must provide identifier names
for the arguments:

between: lower and: upper

1 (self > = lower) & (self <= upper)

One final bit of syntax is useful in situations that might otherwise require
the introduction of temporary variables. A cascade is formed from an expres-
sion, and one or more continuations of messages (messages without a receiver)
separated by semicolons. An example might be:

(x +2), squared

The result of a cascade is the result of the expression to the left of the first
semicolon. This value is also used as the receiver for messages to the right of
the semicolon, and whatever response they produce is discarded. In almost all
situations where a cascade is used the expression to the left is creating a new
object, and the message on the right is initializing it in some fashion. The cas-
cade is used for the side effect whatever message on the right side may have,
not for the response it will return.

GENERATORS
A generator is any object that represents a collection of other objects and that
responds to the following two messages:

Sirst The response should be an element of the collection, or the special
value nil if there are no elements in the collection.
next The response should be another element in the collection, or nil if

there are no more elements in the collection.

We do not require that the collections be in any specific order, only that all
elements will eventually be produced if a sufficient number of nex: messages
are received and no element will be produced more than once.

A simple generator is one used to produce values in arithmetic sequence.
The message fo:, used in conjunction with numbers, produces such a generator.

For example:

X<« 3to:9
x first

3
X next

4

The following method describes a useful message for dealing with genera-
tors, the message do..

do: aBlock | item |

item < self first.
[item notNil | whileTrue:

[aBlock value: item . item « self next].
1 nil

We will explain several features of this method. There is a temporary vari-
able named item used in the method; this variable is declared by placing it in a
list surrounded by vertical bars following the pattern describing the names of
the method and of the arguments. This particular method appears as part of
the description of all generators. The special identifier self refers to the reci-
pient of the do: message. Since this must be able to respond to first and next,
it must be a generator. The body of the method is a simple loop. Before
entering the loop the temporary variable irem is assigned the result of passing
the message first to the recipient. While item is not nil the value is used as an
argument in a message value:, passed to the variable aBlock. The variable item
is then updated by requesting the next value from the sequence.

The argument used with this message must be a one argument block. The
block is executed on each element of the collection. For example:

(0 to: 5) do: [:x | x squared print |

Subsequent sections will illustrate the utility of the generator concept.

A SIMPLE EXAMPLE

An example will illustrate how generators can be written in Smalltalk. Con-
sider the problem of producing prime numbers. By definition, a prime number
is a value having only two distinct divisors, itself and 1. A generator for prime
numbers will produce the first prime value (namely 2) when offered the mes-
sage first, and successive prime numbers in response to each next message. If a
number n divides a number m, then the prime factors of n must also divide m.
Thus to tell if a number m is prime we need not test all values less than m,
only those values that are prime. Therefore a simple generator for primes can
be constructed by merely retaining the previously generated primes in a List, a
data structure that will maintain elements in their order of insertion. Each
time a value is requested, an object representing the last prime produced is
incremented and tested until a value having no factors is found. The new
value is then appended to the list and returned. Keeping the primes in order
allows the loop to terminate as soon as a value larger than \/; is encountered,
where n is the value to be tested.

The methods for each type of object in the Smalltalk language are gathered
together to form what is known as a class. For example all integers are ele-
ments of class Integer, all arrays of class Array and so on. The response of an
object when presented with any given message is determined by the methods
associated with the class of that object. The following is a class description for
a prime number generator. Each instance of this class will, in response to the
messages first and next, return a stream of prime numbers. The variables
prevPrimes and lastPrime, listed following the class name, are local variables
for the class. Each instance of the class maintains its own copies of these vari-
ables, and they can be used only in the methods for the class.

New instances of a class are created using the message new. In this exam-
ple, a new instance of the class List is created and stored in the identifier
prevprimes. A List is a simple data structure that maintains elements in the
order that they are inserted (using the message add:). Like most data struc-
tures in Smalltalk, a List is also a generator, and thus responds to the message
do:

Class Primes
| prevPrimes lastPrime |

[

first
prevPrimes « List new.
prevPrimes add: (lastPrime < 2).
1 lastPrime

next

[lastPrime « lastPrime + 1.

self testNumber: lastPrime | whileFalse.
prevPrimes add: lastPrime.

1 lastPrime

testNumber: n
prevPrimes do: | x|
(x squared > n) ifTrue: [1 true].
(n \ '\ x = 0) ifTrue: [1 false]]
]

The message testNumber: is used to determine whether a proposed number
is prime. It accomplishes this by performing a modular division (\ \) of the
number with previous primes. If the remainder after division is zero, a previ-
ous prime divides the number and it cannot be prime. If no number less than
the square root of the proposed number divides the number, then it must be
prime.

An obvious problem with this prime number generator is that it requires an
ever increasing amount of storage to maintain the list of previous primes. If
one were constructing a long list of prime values, the size of this storage could
easily become a problem. A recursive version is possible which trades longer
computation time for reduced storage. This is analogous to a recursive pro-
cedure in programming languages such as Pascal. The following program does
not maintain the list of previous primes, but instead regenerates the list each
time a new number is to be tested. The expression ‘Primes new’ produces a
new instance of the prime generator each time the message testNumber: is
received.

10

Class Primes
| lastPrime |
[
first
1 (lastPrime « 2)

next
[lastPrime < lastPrime + 1.
self testNumber: lastPrime | whileFalse.
1 lastPrime

testNumber: n
(Primes new) do: [:x |
(x squared > n) ifTrue: [1 true].
(n \'\ x = 0) ifTrue: [1 false | |

FILTERS

An entirely different program, solving the same task as the prime number gen-
erators described in the last section, will illustrate another programming tech-
nique that is frequently useful in conjunction with generators, which is the
notion of filters. A filter is a generator that filters, or modifies, the values of
another underlying generator. The class FactorFilter (below) exemplifies some
of the essential features of a filter. Instances of FactorFilter are initialized by
giving them a generator and a specific nonnegative value, using the message
remove:from:. In response to next (the message first is in this case replaced by
the initialization protocol remove.from:), values from the underlying generator
are requested, and returned, with the exception of values for which the given
number is a factor, which are repressed. Thus the sequence returned by an
instance of FactorFilter is exactly the same as that given by the underlying
generator, with the exception that values for which the given number is a fac-
tor are filtered out. (The symbol "= is the Smalltalk message representing ‘not
equals’).

11

Class FactorFilter
| myFactor generator |
[
remove: factorValue from: generatorValue
myFactor « factorValue.
generator « generatorValue

next | possible |
[(possible < generator next) notNil |
whileTrue:
[(possible \ \ myFactor "= 0)
ifTrue: [1 possible |].
1 nil
]

Using FactorFilter, a simple generator for prime numbers can be con-
structed. An instance of Interval (the generator that merely returns numbers
in arithmetic progression) is first constructed generating all numbers from 2 to
some fixed limit. As each value is removed, a filter is inserted in front of the
generator to insure that all subsequent multiples of the value will be elim-
inated. A new value is then requested from the updated generator.

Class Primes
| primeGenerator lastFactor |

[
first

primeGenerator « 2 to: 100 .

lastFactor « primeGenerator first .
P

1 lastFactor

next
primeGenerator « FactorFilter new;
remove: lastFactor from: primeGenerator
lastFactor « primeGenerator next .
1 lastFactor

]

Pictorially, the underlying generator constructed by the first occurrence of
the message next can be viewed as follows:

2to:n
generator

= 2 filter

When asked for the next prime, the generator is modified by adding a filter,
this time for the last prime value returned, the number 3.

12

2 to:n

=1 3 filter 2 filter
generator

The program continues, each time a new prime is requested a filter is con-
structed to remove all factors of the previous prime. In this fashion, all the
primes are eventually generated.

2 to:n

< | nfilter 3 filter 2 filter
generator|

Of course, like the first two programs in the last section, the storage required
for the chain of filters is proportional to the number of primes generated so
far. Despite this, actual timings on running programs show that the filter pro-
gram is the fastest of the three prime number generating programs described
here. However, we should note that these programs do not represent the
fastest algorithms known for producing prime numbers, but are merely
intended as instructive examples of classes and generators in Smalltalk.

GOAL DIRECTED EVALUATION

A useful programming technique when used in conjunction with generators is
goal directed evaluation. Using this technique, a generator is repeatedly queried
for values until some condition is satisfied. In a certain sense the notion of
filters we have just described represents a simple form of goal directed evalua-
tion. The goal of instances of FactorFilter, for example, is to find a value from
the underlying generator for which the given number is not a factor. In the
more general case of goal directed evaluation the condition frequently involves
the outcome of several generators acting together. An example will illustrate
this method.

Consider the problem of placing eight queens on a chess board in such a
way that no queen can attack any other queen (illustrated below). In this sec-
tion we will describe how such a problem can be formulated and solved using
generators, filters, and goal directed evaluation.

We first observe that in any solution, no two queens can occupy the same
column, and that no column can be empty. We can therefore assign a specific
column to each queen at the start, and reduce the problem to finding a correct
row assignment for each of the eight queens.

In general terms, our approach will be to place queens from left to right (the
order in which we assign numbers to columns). An acceptable solution for
columns 1 through n is one in which no queen in columns 1 through n can
attack any other queen in those columns. Once we have found an acceptable
solution for columns 1 through 8 we are finished. Before that, however, we
can formulate the problem of finding an acceptable solution for columns 1

© VLB W -
le)

Q

A solution to the eight queens problem

through n recursively, as follows:

1.If n > 1, find an acceptable solution for columns 1 through n—1. If there
is none, return nil, there is no acceptable solution. Otherwise place the
queen for column » in row 1. Go to step 2.

2. Test to see if any queen in columns 1 through n—1 can attack the queen in
column n. If not, then an acceptable solution has been found. If some
other queen can attack, then go to step 3.

3. If the queen for column n is in row 8, then go to step 4, otherwise advance
the queen by one row and go back to step 2.

4. Find the next acceptable solution for columns 1 through n—1. If there is
none, return nil, otherwise place the queen for column » in row 1 and go to
step 2.

Of course, all positions are acceptable in column 1. Responding to first
corresponds to starting in step 1, whereas responding to next corresponds to
starting in step 3. We represent each queen by a separate object, an
instance of class Queen. Each queen maintains its own position in a pair of
variables, and also a pointer to the immediate neighbor on the left. A skele-
ton for the class Queen can be given as follows:

Class Queen
| row column neighbor |

(

setColumn: aNumber neighbor: aQueen
column < aNumber.
neighbor « aQueen

|
]

Using this skeleton, our eight queens can be initialized as follows:

14

lastQueen « nil
(1 to: 8) do: [:i | lastQueen < Queen new ;
setColumn: i neighbor: lastQueen |

Following the execution of this code the variable lastQueen points to the last
(rightmost) queen.

We have already described our algorithm in terms of finding the first accept-
able position and finding the next acceptable position. It is therefore easy to
apply our generator paradigm (using the messages first and nexi) to this situa-
tion. Step 1, for example, corresponds to the following method

first
(neighbor notNil)
ifTrue: | neighbor first].
row « 1.
1 self testPosition

Rather than falling directly into step 2, as we did in the informal description
of the algorithm, an explicit message (testPosition) is used to perform steps 2, 3
and 4. Thus one can read self testPosition as being the equivalent of ‘go to
step 2 in the informal description. Before describing the method for this mes-
sage, we describe the method used to find the next acceptable position, which
is a combination of steps 3 and 4 in our description.

next
(row = 8)
ifTrue: [((neighbor isNil) or: [neighbor next isNil])
ifTrue: [1 nil].
row « 0].
row <« row + 1.
1 self testPosition

A coding trick is used here; the zero assigned to the identifier row is
immediately incremented, resulting in the queen being placed into row 1.
Once more the ‘self testPosition’ message can be interpreted as ‘go to step 2.

All that remains is to test a position to see if any queen to the left can
attack. As we have already noted, any position is acceptable to the leftmost
queen. Suppose a queen, call her Q, is not the leftmost queen. We pass a
message to the neighbor of Q asking if she can attack the position of the queen
Q. If the neighbor queen can attack, she will return true, otherwise she will
pass the message on to her neighbor, and so on until the leftmost queen is
reached. If the leftmost queen cannot attack, she will return false. Notice the
recursive use of the message next to find the next acceptable position, in case
an attack is possible. This corresponds to the directive ‘go to step 3’ found in
step 2 of our informal description.

15

testPosition
(neighbor isNil) ifTrue: [1 self].
(neighbor checkRow: row column: column)
ifTrue: [1 self next |
ifFalse: | 1 self]

We have reduced the problem to the much simplier one of each queen taking a
pair of coordinates for a queen positioned to the right, and responding
whether she or any queen to the left can attack that position. Since we know
the queen to the right is in a different column from the queen to the left, she
can only be attacked if she is in the same row or if the differences in the
columns is equal to the differences in the rows (i.e., a diagonal).

checkRow: testRow column: testColumn | columnDifference |
columnDifference « testColumn — column.
(((row = testRow) or:
[row + columnDifference = testRow]) or:
[row — columnDifference = testRow])
ifTrue: [1 true].
(neighbor notNil)
ifTrue: | 1 neighbor checkRow: testRow
column: testColumn)

ifFalse: [1 false |

A final method is useful for producing the answer in a visual form:

printBoard
(neighbor notNil)
ifTrue: [neighbor printBoard).
(‘column °, column, * tow ’, row) print

Putting all the methods for class Queen together, we could type the following
example script:

lastQueen « nil.
(1 to: 8) do: [:i | lastQueen «— Queen new,
setColumn: i neighbor: lastQueen |

16

lastQueen first
lastQueen printBoard

column 1 row 1
column 2 row 5
column 3 row 8
column 4 row 6
column 5 row 3
column 6 row 7
column 7 row 2
column 8 row 4

lastQueen next
lastQueen printBoard

column 1 row 1
column 2 row 6
column 3 row 8
column 4 row 3
column 5 row 7
column 6 row 4
column 7 row 2
column 8 row 5

SUMMARY

We have, unfortunately, been able to present only the briefest glimpse of two
topics in the paper; namely generators and the language Smalltalk. Readers
interested in the first topic would do well to read the contrasting presentation
of generators using the language Icon [6]. Readers interested in further infor-
mation on Smalltalk can find the definitive description in the book by GoLD-
BERG and ROBSON [5]. The material in this paper is condensed from a fuller
exposition in Chapter 8 of [3].

REFERENCES

1.

2.

G.M. BIRTWISTLE, O.J. DHAL, B. MYHRHAUG, K. NYGAARD. (1973).
Simula Begin, Studentlitteratur, Lund, Sweden.

T.A. BupD. (1982). An implementation of generators in C. J. Com-
puter Lang. 7, 2, 69-88.

T.A. Bupp. A Little Smalltalk, Addison-Wesley (to be published in
1986).

W.F. CrocksiN, C.S. MEeLLisH. (1981). Programming in Prolog,
Springer-Verlag, New York.

A. GOLDBERG, D. ROBSON, (1984). Smalltalk-80: The language and Its
Implentation, Addison-Wesley.

R.E. GriswoLD, M.T. GRISWOLD, (1983). The Icon Programming
Language, Prentice-Hall, Inc., Englewood Cliffs, NJ.

17

D.R. HaNsON, R.E. GrRiswoLD (1978). The SLS procedure mechanism.
Comm. ACM 21, 392-400.

D.H. INGALLs (1981). Design principles behind smalltalk. BYTE 6, &,
286-302.

18

Mathematics as a Cultural

and as a Productive Force
- The Mathematical Centre founded February 11, 1946 -

G. Alberts

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

As of so many institutions entering their forties, the founding of the
Mathematical Centre can only be properly understood within the context of
post-war optimism. Optimism however does not account for its existence up to
this day. The foundation of the Centre envisaged putting mathematics to the
service of society. It meant the birth of the idea of a new societal role for
mathematics, and apparently the time was right for it.

Key ideas of post-war optimism in the Netherlands were breakthrough and
reconstruction: breakthrough of a new pattern of social and political values,
reconstruction in the sense of rebuilding and restructuring society along more
rational lines. The drum was beaten for the idea of reconstruction to counter
what was conceived as a situation of cultural and economic distress.

The fact that mathematicians claimed their part in overcoming what they
felt was a cultural and economic lag, certainly meant a great turn. Indeed,
what then might be the contribution that mathematics had to offer to this
reconstruction of society? Both D. van Dantzig and J.G. van der Corput, two
of the founding fathers of the Mathematical Centre, had their ideas on this
point. Mathematics in their view is a cultural force, ‘a primordial asset of civil-
ization’, and simultaneously a productive force. The latter idea, mathematics in
direct service of economic welfare, is a memorable breakthrough. This break-
through is primarily due (in the Netherlands) to van Dantzig. We will show
that van Dantzig took radical consequences of this new view on mathematics.
A topologist at the outset, he specialized in mathematical statistics from 1939
and made a major contribution to the development of mathematical modelling
in the Netherlands. In fact van der Corput stated in 1946 that, where the
Mathematical Centre stands on the two pillars of pure mathematics and
application-orientedness, this combination was van Dantzig’s idea in the first
place [2].

19

At the time the combination of pure research with consultation was interna-
tionally unique. In the same period around 1950 a number of Computation
Centres, Statistical and Econometric Institutes were founded in several coun-
tries. Also the systematic funding of pure research was an international trend,
exemplified by the NSF in the US 1945.

TOWARDS A SCIENCE POLICY

In 1945 the stimulation of science in the Netherlands was taken up at great
pace. Not only scientists but also the government launched initiatives. G. van
der Leeuw, Minister of Education, Arts and Sciences, took a crucial role. Tak-
ing the first steps towards what was to become in 1950 ZWO, the Netherlands
Organization for the Advancement of Pure Research, he found immediate sup-
port with the Prime-Minister Schermerhorn. Inviting the members to the com-
mittee studying the possibilities for a ZWO to be founded Schermerhorn
writes: March 1946 ‘As you undoubtedly will know, the Government intends
to stimulate and support on unprecedented scale fundamental scientific
research in the Netherlands both in the field of science and in the humanities.
The final goal of such research will be that the results benefit the welfare of
Dutch society’ [21, pp. 6,7].

Reconstruction indeed, and, more than that, restructuring: new goals and
new directions were set for pure scientific research. Both scientists and policy
makers held great expectations of pure science. We have to keep in mind here
that TNO, the Organization for Applied Scientific Research, had already been
founded in 1930.

The new development on the side of pure science was that groups of scien-
tists ascribed direct societal interest to their abstract activities and that they
tried to organize this interest. A new feature on the other side is that policy
makers recognized this importance of pure science and drew the consequences
of a governmental role. From 1945 onwards the first elements of a science
policy can be discerned.

In 1949 on the occasion of the parliamental debate on the definitive estab-
lishment of ZWO the Minister of Education, Arts and Sciences, Th. Rutten,
quotes the founders (1945) of the US National Science Foundation, stating
that: “Today no nation is stronger than its scientific resources’ [21 p. 26].

GRONINGEN RECONSTRUCTION IDEALS

Van der Leeuw, a Groningen professor of theology, stressed in 1945 the equal
importance of the humanities and the natural sciences [21 p. 3]. According to
his views the sciences had to play a role in economic and in spiritual welfare in
order to counter distress. Van der Leeuw and van der Corput - cofounder of
the Mathematical Centre - were among the authors of a manifesto The
Renewal of the University [20] published immediately after the liberation in
1945. This manifesto also calls for a fundamental restructuring of the universi-
ties, not just a rebuilding.

20

‘A new spirit should create a new academic order’ [20, p.4], because ‘Univer-
sity stands amidst the “crisis of certainties” ... and ... science as such is not in
high esteem’ [20, p.6]. The authors held that, particularly in those days, the
scientist bears the social responsibility to offer spiritual (and economic) gui-
dance. To this end they proposed a truly academic and social training of stu-
dents, an active exchange between science and society, between science and
industry in particular, and cooperation on a national scale. Science should
step outside its specialized and isolated institutes: ‘There is great need of a
point from which the whole Dutch higher education system can be surveyed
and controlled. ... What is needed is a Universitas Neerlandica’ [20, p.8].

In minister van der Leeuw’s innovative plans science was to put itself at the

service of society by taking a leading role:

- firstly by the above mentioned spiritual guidance;

- secondly through closer contacts with society, namely with industry;

- thirdly by cooperative efforts to make science in the Netherlands meet high,
i.e. international, standards.

In conformity with this view institutes were created where scientific activity
could be built up at greater pace and to a higher level than the reconstruction
of the separate universities would allow. The Mathematical Centre was the first
such institute to be founded (February 11, 1946). Its regulations perfectly
reflect the new science policy:

‘Article 2: The foundation resides in Amsterdam and pursues the
object of stimulating the systematic study of pure and applied
mathematics in the Netherlands, in order to increase on the one
hand the contribution of these fields of science to the rise of the
level of welfare and civilization in the Netherlands, and in order to
increase on the other hand the contribution of the Netherlands to
the international civilization’ [18, p.1].

>

21

THE FOUNDING

October 26, 1945, the Minister of Education, Arts and Sciences, G. van der
Leeuw, set up the committee for the Coordination of the Higher Education of
Mathematics in the Netherlands. The committee was chaired by J.G. van der
Corput, the aforementioned professor of mathematics from Groningen, with
one of his pupils J.F. Koksma, mathematics professor at the Free University of
Amsterdam, as a secretary. Further members were D. van Dantzig, Delft
University of Technology mathematics professor; J.A. Schouten who had given
up his Delft professorship in 1941 for disappointment in the lack of resistance
against the Nazi occupier; the Leiden professor of physics H.A. Kramers and
the astronomer, professor M.G.J. Minnaert, from Utrecht.

It was a strong committee in that its members were influential in the Dutch
mathematics scene and agreed in new reconstruction-like ideas about univer-
sity. Moreover it was extremely powerful by its assignment firstly to coordi-
nate in filling up the many vacant chairs of mathematics, and secondly and
more importantly, ‘to study the possibility and desirability of scientific
mathematical activity, and likewise to design the means of establishing closer
contacts between pure mathematics and its applications to other fields’ [14].

Apparently the minister knew what he was asking for. The response was
accordingly quick, in November 1945 the first blueprint was written and on 11
February 1946 the foundation of the Mathematical Centre was a fact, the six
members of the Committee themselves acting as its founders. The Centre was
supported by the city of Amsterdam and by the Government. Later on it
received smaller contributions from various industries.

THE FOUNDERS: TWO IDEAS
A changing view of the societal role of mathematics can be found in so many
words in the writings of Van der Corput and Van Dantzig.

To Van der Corput is attributed the ambition to take up the role of prewar
Gottingen, centre of mathematical Europe. This ambition is written down on
paper only once, in a draft version of a letter to F.A. Vening Meinesz who was
at the moment visiting the USA to study their ways of funding pure research.
Later on it reads: ‘to increase the contribution of the Netherlands to interna-
tional culture’ [18, 14]. In such an ambition mathematics is viewed as merely
an asset of civilisation. The contribution to civilization is then made simply by
cherishing this asset: by studying mathematics up to a high level.

Van der Corput wanted in fact more than that. Others should be brought
into contact with this asset and learn to benefit from it. According to his view
mathematicians have a duty towards society to disseminate their knowledge. In
1940 and 1941 in Groningen Van der Corput organized summer schools in
mathematics for teachers and others.

The summer school was to become the oldest tradition at the Mathematical
Centre, being held annually from 1946 onwards. In those first years the Centre
organized courses of continuing education all over the country. Van der

22

Corput propagated these disseminating activities with a true spirit of mission

[5].

“The only explanation of why someone chooses to study mathemat-
ics is that he gets caught by this science. No one should become a
mathematician in search of personal success, but only to contribute
to the expansion of a science which is of great importance to
mankind. In doing the latter he will be a happy man, because he
will enjoy what he does. But he will do this not only for joy, but
also for sense of duty, because society sustaining him has a right to
demand that he spends his talents to its interest. Hardy may say
that it is not all that bad if a few university dons spend their lives
on unimportant things, I think it is bad for society.” [3].

On the relation of mathematics to its fields of application Van der Corput
speaks in terms of Cinderella who, from handmaiden, came to be the queen of
science. Sometimes she must come down to the kitchen to the aid of her sisters
- and now is such a time, Van der Corput states in 1947 - but she must not
dwell there because another, a royal task is awaiting her [1,4].

In this view mathematics remains an autonomous force of culture, guiding
the other sciences, guiding culture while it can, but not itself affected by this
work.

A slightly different view was held by J.A. Schouten. Mathematics and the field
of application - theoretical physics in his case - intermittently help and inspire
each other. Contact with work outside mathematics is thus an exchange and
does not depend on sense of duty, it is simply a vital neccessity for progress
within mathematics [17]. In this view mathematics is no longer purely auto-
nomous.

Schouten’s view preludes the other idea (due to Van Dantzig) behind the
Mathematical Centre: mathematics as a productive force. There must be no
misunderstanding about it that Van Dantzig discerned the cultural role of
mathematics as well. He was even very explicit about it, calling the mathemati-
cal way of thinking a general pattern of clear thought. Mathematical thought
would (through so-called signific analysis) help clarify vague concepts in our
language and mind [8]. Thus mathematics is seen not just as a cultural asset
but as a cultural force.

More crucial with respect to the history of the Mathematical Centre, how-
ever, is Van Dantzig’s recognition of mathematics as a productive force. He
diagnosed the need of mathematicians with a special training in a variety of
fields, such as in government, in industries, in insurance companies. As early
as 1940 he proposed a curriculum offering such training at the Delft University
of Technology. Only in 1958 could professor R. Timman start the program of
educating mathematical engineers. Van Dantzig had further plans for a

23

mathematical service department. ‘Equip a team with calculating devices and
let them calculate, let them compute in service of others’, he is remembered to
have exclaimed in 1940 [10].

At the Mathematical Centre these projects were realized. Van Dantzig is
considered to be the spiritual father of the institute. His was the idea of com-
bining pure and applied mathematics within one institution. ‘Time will come,
when many positions in commerce will be claimed by mathematicians, which
are today still occupied by lawyers and economists’, Van Dantzig predicted in
1947 [16].

The Mathematical Centre sets out to offer mathematicians another profes-
sional perspective besides that of becoming a teacher. Orientating courses and
seminars in applicable mathematics were set up. Certainly some students and
some of the few industrial mathematicians in those days benefitted profesion-
ally from these courses. All of the mathematicians who got jobs at the Centre
in these early years however became academic professors of mathematics soon
afterwards (cf. [13, appendix]).

The Mathematical Centre did develop active service branches: the Comput-
ing Department, the Consultation Division of the Statistical Department and,
to a lesser extent, the Department of Applied Mathematics.!

New fields were opened for mathematics to prove its usefulness. Besides the
traditional application to the physical sciences new opportunities arose in med-
ical and biological science, in social science, and in the fields of organization
and policy making. The exploitation of mathematical thought took new direc-
tions, which placed mathematics in a new societal role. With its changing role
mathematics itself changed accordingly. New branches of mathematical theory
were developed and, perhaps most important, mathematicians adopted a new
commitment.

Van Dantzig was one of those mathematicians seeking adequate forms of
mathematics to meet the expanding use of mathematical thought, and he drew
the consequences radically. Being a topologist at the outset he cooperated with
J.A. Schouten in geometrical theories for mathematical physics during the thir-
ties. But then starting in 1939 he specialized in probability and mathematical
statistics [6]. Not only did he change subject, but he also committed himself to
(statistical) consultation, after and during the war (when he was expelled from
Delft and had to go in hiding for some time). The consulting statistician bears,
according to Van Dantzig, a dual responsibility: first the responsibility of
doing mathematics right and second the commitment to deliver an amenable
result within due time [9].

At this point the difference in view with Van der Corput is at its greatest. In

1. Surprisingly, operations research only started to play a role at the Mathematical Centre from
about 1954; Dutch industry was earlier.

24

Van der Corput’s view the contact with field of application is a rather one-
directional affair. Mathematics is not affected. With Van Dantzig this contact
is not only an exchange but so much of a mutual influence that the expanding
role of mathematics gives rise to a change of commitment in doing mathemat-
ics; in particular a commitment to extra-mathematical goals.

What combines the two ideas, mathematics as a productive and as a cultural
force, is service. Mathematics was to be put at the service of society. The idea
of mathematics for its own sake was definitely left behind.

REALIZATION

What was realized of these ideas of mathematics as a productive and cultural
force can only be briefly indicated here. The board of directors consisted of
Van der Corput, Van Dantzig, Koksma and Van der Waerden. As a result of
‘coordinating higher education in mathematics in the Netherlands’ Van der
Corput and Van Dantzig had meanwhile acquired chairs at the University of
Amsterdam. B.L. Van der Waerden worked at the time with Shell Research in
The Hague. With A. van Wijngaarden, the head of the Computing Depart-
ment, the members of the board remained the only workers at the Centre for
the first year of its existence.

The board, in particular the first three Van der Corput, Van Dantzig and
Koksma, met with high frequency: at least once every week. Their first task
was to prove the existence of the Mathematical Centre as an institution. Apart
from their scientific work they fulfilled this task with discernable personal
accents. Koksma was the man of the internal organization of the institute. He
was the ideal secretary of the board. If service is the common part of the ideas
behind the Mathematical Centre, Koksma was service in person. Van Dantzig
could be named the ‘philosopher’ within the board of directors. As we saw, he
was the main inventor of the Centre as an institute of pure and serviceable
research. His publications [6, ..., 9] show a developing thought on the servicea-
bility of mathematics. Van der Corput was the director-in-chief and the one
who stepped most to the foreground in the public and political scene. Basi-
cally, however, they worked in close cooperation. As far as proving the
existence of their institute is concerned, they spent fine hours in meetings with
industry and with centres of applied scientific research. Fine hours, because in

25

general first reactions to their proposals were sceptical. Industries favoured the
initiatives from the part of the mathematicians, but stated to do their own
mathematical research or ‘to manage without’. All the same contributions were
acquired. Shell and Philips had representatives in the Board of Trustees, and a
seminar on applicable mathematics was set up. One extreme was a visit of the
complete Board of Directors to the meteorological institute, the KNMI,
headed by the aforementioned Vening Meinesz, which by misinterpretation
wound up as a working visit solving mathematical problems instead of an
introductory talk. The other extreme was a rather ‘existential’ debate with
TNO, the Netherlands Organization for Applied Scientific Research, in which
financial support asked from TNO was at stake. The Mathematical Centre
had to prove its right of existence next to TNO’s own statistical department.
After an exchange of formal arguments TNO’s president had to give in, inun-
dated by Van Dantzig and Van der Corput under a stream of examples of sta-
tistical and numerical problems occurring in applied science [16].

Starting slowly in 1947, a stream of computational, statistical (and later
operations research) consultation projects built up during the late forties, sta-
bilizing in the fifties. As far as computation is concerned we have to keep in
mind that the work was done by hand, by a team of lady calculators handling
electromechanical devices. Among the work were calculations of function
tables, which no one would think of doing anymore today, but which were at
the limits of computational capacity at that time. The Computing Department
did build computers but the first machine actually working in service was not
completed until 1954. The Computing Department has its own history which is
not touched upon here any further.

The Statistical Department handled a growing number of statistical consul-
tations. From 1950 a series of ready made Memoranda, explaining statistical
tests, were published and added as appendices to reports. J. Hemelrijk, head
of the statistical consultation division from 1948, built up an individual routine
and style of consultation.

MATHEMATICAL MODELLING

One part of the developments after 1945 was, as we saw, a change of opinions
among mathematicians and a change of expectations in society concerning sci-
ence in general and concerning mathematics in particular. The broad support
for a more application oriented view can be judged from the members of the
Board of Advisors of the Mathematical Centre. All professors of mathematics
and some from related fields had been invited to participate in the Board of
Advisors, actually serving as a recommending committee, and practically all
accepted.

A change of opinions, however, is not sufficient to make mathematics in fact
serviceable. In order to be engaged in the pursuit of practical purposes,
mathematics must first be taken to an adequate serviceable form. Mathemati-
cal modelling is such a form. In looking back we can now see that at that time

26

mathematical modelling was just becoming generally accepted as a common
procedure. Mathematical modelling extends the activity of mathematics in a
form amenable to practical purposes. Thus mathematics can be engaged
directly for economic welfare.

It was again Van Dantzig and later on Timman who propagated this way of
making mathematics useful [7,19]. They both describe the procedure of
mathematical modelling extensively and offer their views on its scope and limi-
tations. The expression ‘mathematical modelling’ was apparently not com-
monly known and accepted in those days. Though ‘mathematical model’ does
occur as an expression with both authors, they do not present it as a keyword.
Van Dantzig, following Mannoury, speaks of ‘switching on’ and ‘switching off”
the formalism [7,15]. The ‘general pattern of clear thinking’ which mathemat-
ics has to offer, according to Van Dantzig, has a concrete version through
mathematical modelling.

Van Dantzig’s example was of course mathematical statistics, which he calls
a matter of ‘testing probability-theoretical models’. Timman’s example was
applied scientific research: “Technology raises questions and demands an
answer to them. Applied mathematics can proceed no other way than attack-
ing such problems by ‘third degree’ methods in order to acquire the desired
results. Consequently applied mathematics must be aware that it should take
utmost care in drawing conclusions from results aquired this way” [19, p.15].
Timman worked with the Centre for a short period only, heading the Applied
Mathematics Department in 1951-1952. He did however maintain close con-
tacts from 1947 onwards.

REFLECTING THE CONTEXT

The Mathematical Centre was founded in 1946 in the societal context of recon-
struction. The Minister of Education, Arts and Sciences, Van der Leeuw, and
the Prime Minister Schermerhorn staked out the policy frames for a new socie-
tal role of science. Their ideals of science guiding civilization and producing
welfare were reflected for the particular case of mathematics in the background
ideas of the Mathematical Centre: mathematics as a cultural force and as a
productive force.

The general acceptance of such tendency towards a new societal role of
mathematics certainly did mean a breakthrough in the usual sense for the
Dutch mathematical community. This change in view was not merely an
academic matter. The abstract science of mathematics proved to have in fact
something to contribute to reconstruction. In the concrete form of mathemati-
cal modelling mathematics was made serviceable to industry and commerce, to
society in general. Developing a tradition of mathematical modelling was one
of the characteristics of the Mathematical Centre. Thus the postwar context
was not only reflected in views concerning the particular case of mathematics
but also given concrete form.

Being the reflection of a general cultural and political context the

27

Mathematical Centre was not unique. Others than the founders of the Centre,
and of course others abroad, held similar views on mathematics. Outside the
academic scene mathematical modelling was practiced and further developed,
particularly in the fields of econometrics, statistics and operations research.
Industry and commerce had not been waiting and had some right to be scepti-
cal in the talks with the Centre’s Board of Directors.

What is special about the Mathematical Centre is the fact that academic
mathematicians were engaged in developing here practice-oriented mathemat-
ics, although here as well no uniqueness can be claimed. A singularly beautiful
example of academic-commercial cooperation is given by Freudenthal (Utrecht
State University) and Sittig (advisor for Applied Statistics, Rotterdam) con-
ducting a large scale statistical enquiry in order to develop a sizing system for
clothing [11]. At the Mathematical Centre however the pursuit of serviceable
mathematics was systematic and institutionalized. Still in 1959 Hemelrijk
claimed worldwide uniqueness for the Mathematical Centre as an institution
engaging mathematicians in the combination of pure and application oriented
mathematics [12].

In the Netherlands the Mathematical Centre acquired a central position in
this field. Today a majority of Dutch academic computer scientists and statisti-
cians count Van Wijngaarden and Van Dantzig respectively as their scientific
father, grandfather, or great grandfather... . Indeed at the crossroads of appli-
cation oriented mathematics and pure scientific research the Centre played an
initiating and forerunning role in those early years. Part of this role was taken
over when the Universities of Technology established a program for the educa-
tion of Mathematical Engineers, for the first time at Delft in 1958, initiated by
Timman.

When in 1952 Timman was called away from the Mathematical Centre to
take a chair of mathematics in Delft he consolidated the attained changes and
preluded further development [19, p.16]: ‘It is my impression that a large
influx of mathematicians with an insight in technology or of engineers with a
sound knowledge of mathematical methods will be welcomed with joy in many
places. Also in our country the road has been opened for mathematics to a
new social function and I hope that the opportunity will be found to make it
hold this function with honour’.

Y 4

REFERENCES

1.

2.

10.

11.

12.

13.

14.

15.

16.
17.

19.

J.G. vaN DErR CorpUT (1940). Wiskunde. Wegen der Wetenschap,
Wolters, Groningen, 29-44.

J.G. vAN DER CORPUT (1946). Het Mathematisch Centrum, P. NoordhofT,
Groningen.

J.G. vAN DER CORPUT (1946). Het Mathematisch Centrum en het Mid-
delbaar Onderwijs, Archivalia CWI.

J.G. vAN DER CORPUT (1947). Betekenis der Wiskunde Heden ten Dage
voor Andere Wetenschappen, Diligentia, ’s Gravenhage.

J.G. vaN DER CorpuUT. Wordings of prof.dr. J. Korevaar remembering
van der Corput in an interview with the author.

D. vAN DANTZIG (1941). Mathematische en empirische grondslagen der
waarschijnlijkheidsrekening. Ned. Tijdschrift voor Natuurkunde 8, 70-93.
D. vaN DANTzIG (1947). General procedures of empirical science. Syn-
these V-1, 1-15.

D. VAN DANTZIG (1948). Over de maatschappelijke functie van zuivere
en toegepaste wetenschap. De Functie der Wetenschap, H.P. Leopolds, ’s
Gravenhage.

D. VAN DANTZIG (1954). De verantwoordelijkheden van de statisticus.
Statistica Neerlandica 7, 199-208.

D. vaN DANTZIG. Van Dantzig as quoted by prof.dr. N.G. de Bruijn in
an interview with the author.

H. FREUDENTHAL, J. SITTIG (1951). De Juiste Maat, Bijenkorf, Amster-
dam.

J. HEMELRUK (1959). In Memoriam prof.dr. D. van Dantzig. Statistica
Neerlandica 13, 416-432.

J.F. KoksMa (1960). Het Mathematisch Centrum 1946-1960, Mathemati-
cal Centre.

LETTER 1945. Letter to F.A. Vening Meinesz by the committee for the
coordination of the higher education of mathematics in the Netherlands.
Archivalia, CWL.

G. MANNOURY (1947). Handboek der Analytische Significa I, F.G.
Kroonder, Bussum.

Minutes of the Board of Directors, Archivalia, CW1.

J.A. SCHOUTEN (1949). Over de Wisselwerking tussen Wiskunde en Phy-
sica in de Laatste 40 Jaren, Noordhoff, Groningen.

Stichtingsakte van de Stichting Mathematisch Centrum (1946).
Archivalia, CWI.

R. TiIMMAN (1952). De Betekenis van de Wiskunde voor het Toegepast
Wetenschappelijk Onderzoek, Waltman, Delft.

29

20. J.H. BROUWER, J.G. VAN DER CORPUT, M.N.J. DIRKSEN, G. VAN DER
Leeuw, C.W. VAN DER PoT, M.J. SIRKS. De Vernieuwing van de Univer-
siteit, J.B. Wolters, Groningen.

21. ZWO Voorbereiding en Werkzaamheden in de Oprichtingsperiode
1945-1949 (1950), ZWO ’s Gravenhage.

Van Dantzig’s car at the Mathematical Centre, 2e Boerhaavestraat 49, Amster-
dam.

30

The MC Fortieth Anniversary

P.C. Baayen

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A few months ago our Centre for Mathematics and Computer Science, CWI,
entered its fifth decade. It is an occasion for reflection, for looking back and
for a look forward.

It is an exciting time for research in computer science and in mathematics.
New results and new products, as well as (sometimes unexpected) combina-
tions of insights won in separate branches, lead to very powerful techniques
indeed. More than ever, mathematics provides the language and the founda-
tions for developments in science, technology and social organization, together
with computer science which in addition furnishes vital and by now absolutely
essential supporting tools, sc. computers, systems for complex information pro-
cessing and, increasingly, for knowledge handling.

In early 1946, when CWI was founded, times were exciting, too. The world
had just passed out of the dark shadows of a terrible and devastating world
war into the bright and hopeful area of rebirth, of rebuilding society and civili-
sation. The founding fathers of the CWI - at that time named Mathematical
Centre, as informatics and computer science had not yet emerged as a separate
discipline - were convinced that mathematics and mathematicians could contri-
bute to the restructuring of society. Their aim, as put down in the charter of
the new centre, was ‘to promote the systematic pursuit of pure and applied
mathematics in the Netherlands, in order to increase, on the one hand the con-
tributions of these disciplines to a higher level of prosperity and civilization in
the Netherlands, on the other hand the contribution of the Netherlands to
international culture’.

Elsewhere in this Newsletter G. Alberts devotes a study to these early days
of the Mathematical Centre/Centre for Mathematics and Computer Science.
He encapsulates the two main aims from the charter in the key words:
mathematics as as Productive and as a Cultural force. Alberts succeeds well in

31

conveying the ideas and the idealism of those early days.

In the fourty years which passed since 1946, the CWI developed into an
institute with a personnel of over 200, of which some 120 are directly involved
with research. Several scores of university professors in the Netherlands and
abroad worked at the CWI as researchers. In many hundreds of cases the CWI
provided mathematical and computational support to technical and scientific
projects, originating from industry, from government organizations or from
other research institutes. The CWI was instrumental in introducing mathemati-
cal statistics and operations research as scientific disciplines into the Dutch
university curriculum, and it was the cradle of computer science in the Nether-
lands. Through the years, several international conferences were organized at
or by the CWI, researchers from all over the world visit us (and sometimes
stay for a considerable time, e.g. a full sabbatical leave), and researchers of the
CWI are regularly invited to visit colleagues or contribute to conferences
abroad. Indeed, the researchers at the CWI have convincingly shown
mathematics to be both a productive and a cultural force.

And what about the future? What will the next decade bring us? Well, as I
already mentioned before, it is again an exciting time for mathematics and
computer science. A recombination and unification is going on of mathemati-
cal subdisciplines. The support provided by the products of computer science
have postered new developments in computational mathematics that are of
great importance both for theory and for applications. The traditional supersti-
tion of a division between ‘pure’ and ‘applied’ mathematics is breaking down,
and new applications of mathematical methods are made in fields as disparate
as off-shore technology and the study of epidemics. The development of com-
puter science itself generates interesting mathematical problems, e.g. with
regard to concurrency and distributed systems (parallel algorithms and
mathematical performance analysis are two examples that come to mind).

The CWI is well set up to contribute to the flourishing of computer science
and mathematics. Both fields are well represented in our present research pro-
gram. Good cooperation between the research groups provides an excellent
basis for mutual support and interaction. Access to practical applications
through cooperation with industrial groups provides vital stimuli.

Recently the government has increased its support of the information sci-
ences, and in this framework computer science at the CWI has expanded con-
siderably. The aim is to let the CWI become a ‘centre of exellence’ in this field.
At the same time however the Board of Trustees of the CWI is cautious to
maintain at the institute a balance between research in mathematics and com-
puter science, in the conviction that the flourishing on one needs the support
of the other. Only the future will learn if we will succeed in realising our
ideals. We are convinced we will.

32

The Tetrahexes Puzzle

Herman J.J. te Riele & D.T. Winter

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

During the celebration of the 40-th anniversary of the Mathematical Centre on
February 11, 1986, the participants received a small puzzle consisting of the
following seven pieces, sawn from perspex:

| P P s

worm pistol wave arch propeller bee

These pieces represent the seven different ways to join four congruent hexa-
gons.!

In the June 1967 issue of Scientific American, MARTIN GARDNER devoted a
part of his famous column to this puzzle. He proposed to call the pieces
‘polyhexes’ after DAVID KLARNER, who was one of the first to investigate them
(pieces consisting of four hexagons are called tetrahexes, pieces consisting of
five hexagons are called pentahexes, and so on). The number of pentahexes is
22; computer programs have counted 82 hexahexes, 333 heptahexes and 1448
octahexes. No formula is known to determine the number of n-hexes for a
given value of n. Together with the puzzle, 15 figures were provided as exer-
cise material (the exercise being to form each figure with the seven tetrahexes).

1. A limited number of copies of this puzzle is available to visitors of the CWI who sign the guest
book.

33

Below, we give 49 figures including 8 out of these 15. All of them (except the
first one, see below) can be composed, in at least one way, by the seven
different tetrahexes. The readers are invited to find solutions and, if possible,
to find them all!

The first figure, the triangle, is to many the most appealing one which con-
sists of 28 hexagons. Unfortunately, it has no solution with the seven different
pieces, as will be shown below. Figures 2-35 represent all the solvable convex
figures (by convex we mean that the curve which connects the midpoints of the
outer hexagons is convex) with at most one convex hole and at least one sym-
metry (i.e. mirror or rotation symmetry). Although the hexagon has a 6-fold
rotational symmetry, we found only one solvable pattern with 3-fold rotational
symmetry (Figure 36). Figures 37-49 are solvable ‘rectangular-like’ figures with
at most one hole and at least one symmetry. There may be others. For the tri-
angle, DAVID KLARNER showed that it has no solution. As far as we know,
Klarner’s proof has not been published. Here, we will give a proof which we
suspect to be similar to Klarner’s proof.

PROOF THAT THE TRIANGLE CAN NOT BE COMPOSED OF THE SEVEN TETRAHEXES.

The positions of the triangle are numbered 1 - 28 as follows.

11 12 13 14 15
16 17 18 19 20 21
22 23 24 25 26 27 28

As Klarner did, we start by observing that the propeller can only be placed in
a limited number of positions, viz., in positions 4 8 9 12,58 7 13 and 8 13 14
18 (apart from mirror-image forms). When the propeller is in position 4 8 9 12,
the bee should be in position 1 2 3 5. Next, there are three possible locations
for the arch; and so on. The complete proof is given in a tree below.

Some abbreviations are being used: the different pieces are identified by
their first two characters. An ‘x’ after a piece indicates that this can not be
placed, or it splits the figure in parts with numbers of free hexagons which are
not a multiple of four. A ‘d” after a piece means that it should be placed some-
where in the figure, but has been placed somewhere else earlier.

34

pr 4 8 9 12
be 1 2 3 5
ar 6 10 13 14
wa 15 20 19 25
pi 21 28 27 26
ba 7 11 16 22
wo X
wa 18 19 26 27
pi 20 15 21 28
ba 7 11 16 22
WO X
ba 22 23 24 25
WO X
ar 7 11 17 18
pt 16 22 23 24
wa 6 10 14 20
ba x
wa 25 19 20 15
ba x
ar 18 13 14 20
ba 6 10 15 21
wa X

pr 8 13 14 18
ar 5 4 7 12
pi 2136
wa 19 20 27 18
wo 9 10 15 21
be x
ar 7 4 5 9
pi 2136
wa X

pr 7 8 5 13
pi 3124
ar 9 14 19 18
ba 6 10 15 21

pi d
wo 6 10 15 20
pi d
ar 12 18 24 23
pi d
ar 12 18 19 14
pi d
ar 12 17 24 25
pi d
ar 16 11 12 18
pi d

ar 11 12 18 24
be 17 16 23 22
wa 6 9 14 19
WO X
wa 14 20 21 28
ba x
wa 25 19 20 15
ba x

The reader is invited to find a shorter proof (than this 54-lines one).

Of course, our method also finds solutions, if they exist. For example, for
figure 38, one rather quickly finds two solutions as follows (the complete tree is

very long and yields 21 more solutions).

The positions are numbered as follows:

1 2 3 B
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
25 26 217 28

The solution tree then reads:

pr 3 7 6 11
wa 4 8 12 16
ar 2 1 5 9

ba 17 18 19 20
pi 10 15 14 13
be 21 22 25 26

WO X
be 23 24 27 28
WO X
ba 21 22 23 24
ba d

ba 25 26 27 28
be 10 14 15 18
WO X
be 18 17 22 21
be d
be 20 19 24 23
wo 21 22 18 15
pi 13 17 14 10 first solution
wo 10 15 18 22
pi 13 14 17 21 second solution
be 13 14 17 18
pi x
Of course, this may be programmed very efficiently in a language which
allows for recursiveness. Some manual exercises with the above trees will cer-
tainly help to improve the performance of such programs.

36

5, B T @
7 T G &
Gy P SR

& G

o o e &

.-
SaE

- 44

41

45 - 49

/A \\\\\\\\

)\\\ o \A i
\o\\\\\\ 7 wlh....
O A

\\\\\\\Q\\\(MNNA \\\\\\\\\\

.
= =4,

Y
1h..nll\‘ 0\\\\\\\\\\\\\\.\.

\\\\ «\\\\
- ."‘

39

New Factorization Records on Supercomputers

Herman J.J. te Riele, Walter M. Lioen & Dik T. Winter

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Two new factorization records on supercomputers have been recently settled at
the Centre for Mathematics and Computer Science (CWI) at Amsterdam. The
numbers factorized into their prime factors are the 75-digit composite number:

@7 — 2'% 4+ 1) / 10474693 =

362232590504406868214617272006414447138055859511851874054762224427178428941 =

104167755499168696693743867494211841 *
3477396520339709531699943780276325113101

(the product of a 36- and a 40-digit prime number)

and the 72-digit composite number:
107 — 10 + 1 =
999999999999999999999999999999999999000000000000000000000000000000000001 =

1726290008991504500177463302688697 *
579276943498154282123686999881829009033

(which is the product of a 34- and a 39-digit prime number).

The factorized numbers were taken from a list of 20 composite numbers whose
factorizations are unknown, and ‘more wanted’, from the book (sometimes
called the factor bible): Factorizations of b"+1, by JOHN BRILLHART, D.H.
LEHMER, J.L. SELFRIDGE, BRYANT TUCKERMAN and S.S. WAGSTAFF, JR. (AMS
Contemporary Mathematics Series, vol. 22, 1983).

40

Interest in factorization and primality testing has increased dramatically
since the discovery, in 1978, by RIVEST, SHAMIR and ADLEMAN. that the
difficulty of breaking certain cryptographic codes depends on the difficulty of
factorization [3].

The method used is the multiple polynomial version of Peter Montgomery of
the quadratic sieve method of Carl Pomerance as described in a recent paper
by POMERANCE, J.W. SmiTH and R. TULER [2]. The computer used is the 1-
pipe CDC CYBER 205 of SARA at Amsterdam (SARA is the Academic Com-
puter Centre Amsterdam). The total time used was about 4.3 hours CPU-time
for the 72-digit number and 12.2 hours for the 75-digit number. Control Data
Benelux has kindly provided part of the computer time for these (and other)
factorizations. The method was implemented on the CYBER 205 by a team
consisting of Herman J.J. te Riele, Walter M. Lioen and Dik T. Winter from
the Department of Numerical Mathematics of the CWI. Advisory help was
provided by J. Schlichting of Control Data.

The previous record for supercomputers was held by J.A. Davis and D.B.
Holdridge from Sandia Labs (USA) who (in 1984) factorized the number
(10" — 1) /9 (consisting of 71 1's) on a CRAY X/MP-24 of the Los Alamos
Lab (USA) in 9.5 hours CPU-time, using a variant of the quadratic sieve
method found by Davis [1]. This CRAY X/MP is about twice as fast as the
CYBER 205 and has four million words of central memory (the CYBER 205
has one million words). In the heart of the quadratic sieve algorithm. the data
to be handled are stored in non-contiguous memory locations. This is a handi-
cap on the CYBER 205. All this illustrates the power of the Montgomery-
variant of Pomerance’s quadratic sieve.

It should be emphasized that larger difficult numbers have been factorized
already by Robert Silverman, who did not use supercomputers. but VAX- and
SUN-computers. His record is: a 81-digit composite number using a total of
1260 hours on 8 SUN-3/75 computers running in parallel. He also used the
MP-QS method.

41

A few more details of our algorithm for the initiate:

c72 c75
multiplier used: none 5
factor base bound: 130000 160000
primes in the factor base: 6071 7322
length of sieving interval: 6(2'° —1) 6(2'¢ —1)
of completely factorized w’s: 2672 3376
of incompletely factorized w’s: 24747 26062
of large prime equalities in the
incompletely factorized w’s: 3401 3947
bound on the large primes allowed in
incomplete w’s: 30x130000 20x160000
Gauss elimination time
(on a 6073x6072, resp. 7323x7323 linear
system): 21 sec. 37 sec.
of dependencies found: 65 509

REFERENCES

1. J.A. Davis, D.B. HOLDRIDGE, G.J. SIMMONS (1985). Status report on
factoring (at the Sandia National Laboratories). T. BETH, N. Cor, L
INGEMARSSON (eds.). Advances in Cryptology, Proceedings of EURO-

CRYPT 84, 183-215 Springer, Berlin etc.

2, C. POMERANCE, J.W. SMITH, R. TULER (1986). A Pipe-Line Architecture
for Factoring Large Integers with the Quadratic Sieve Algorithm. Preprint.
3. R. Rivest, A. SHAMIR, L. ADLEMAN (1978). A method for obtaining
digital signatures and public-key cryptosystems. Comm. ACM 21, 120-

126.

42

Abstracts

of Recent CWI Publications

When ordering any of the publications listed below please use the order form
at the back of this issue.

CWI Tract 20. B.F. Schriever. Order Dependence.

AMS 62H17, 62H20, 62H10, 62H99; 115 pp.

Abstract: This monograph considers some aspects of the statistical analysis of ordered contingency
tables. An often used method for analysing bivariate tables is Correspondence Analysis (CA).
Basic properties of this technique and asymptotic properties of tests of independence based on
statistics produced by CA are derived. Furthermore, it is shown that CA possesses an ordering
property, which is quite relevant for the practice of CA, when the bivariate contingency table
shows a specific form of ordinal dependence. This form is related to Lehmann’s notion of positive
regression dependence. Tests of independence sensitive to this form of positive dependence are dis-
cussed. Also, a partial ordering for positive dependent distributions is introduced such that these
and other familiar tests become more powerful under ‘increasing’ positive dependence. Finally,
ordering properties of a multivariate generalization of CA are given.

CWI Tract 21. D.P. van der Vecht. Inequalities for Stopped Brownian Motion.
AMS 60-02, 60G40, 60J65, 60G44, 60E10; 88 pp.

Abstract: The Blackwell-Dubins bound is a stochastic upperbound for the maximum of a uni-
formly integrable martingale. In this work it will be derived directly for standardly stopped
Brownian motion. A similar upperbound is obtained for the maximum of the norm of standardly
stopped d-dimensional Brownian motion. To show it is a least upperbound we define Azéma-Yor
type stopping times. These are essentially the only ones for which the bound is attained. The
definition of such a stopping time involves a characteristic of the embedded distribution. We prove
continuity theorems for the involved characteristics.

CWI Syllabus 8. G.M. Tuynman. Proceedings Seminar 1983-1985

43

Mathematical Structures in Field Theories, Vol.1: Geometric Quantization.

AMS 58F06, 81D07; 158 pp.

Abstract: Geometric quantization attempts to give a mathematically rigorous procedure to derive
the quantummechanical description of a physical system from the classical description (in the
Hamilton form). This monograph gives explanations and (heuristic) motivations for the fundamen-
tal concepts of this theory, i.e., the prequantization line bundle (which also appears in classical
mechanics!), polarizations (needed to reduce the ‘size’ of the Hilbert space) and the metalinear
correction (which is needed, among other things, to recover the usual energy shift of %7 of the har-
monic oscillator). After each step several examples are given and for each new feature, the
influence on the example is studied.

CWI Syllabus 9. J. van Leeuwen & J.K. Lenstra. Parallel Computers and Com-

putations.

AMS 68A05, 68B20, 68Cxx, 68Exx, 65Fxx; CR C.1.2, D.1.3, D.47, F.1.0,
F.2.1, F.2.2; 184 pp.

Abstract: In the Autumn of 1983 a series of eight lectures was organized at the University of
Utrecht to focus attention at the new developments in ‘parallel computers and computations’.
Eight experts of different backgrounds were invited to survey or describe an aspect of this field of
research. The lectures covered concrete supercomputer architectures and their programming, the
new challenges for systems programming, the design of numeric and combinatorical parallel algo-
rithms, and the complexity of parallel computations. This volume contains the full versions of the
papers that were presented.

CS-R8601. J.W. de Bakker, J.-J.Ch. Meyer, E.-R. Olderog & J.I. Zucker. Tran-
sition systems, metric spaces and ready sets in the semantics of uniform con-

currency.

AMS 68B10, 68C01, 68D25, 68F20; CR D.3.1, F.3.2, F.3.3; 104 pp.; key
words: concurrency, denotational semantics, operational semantics, transition
systems, metric spaces, ready sets, local nondeterminacy, global nondeter-
minacy, linear time, branching time, guarded recursion, streams, shuffle, merge,
synchronization, parallel execution, interleaving, uniform concurrency,
infinitary languages, processes, completion, merging lemma.

Abstract: Transition systems as proposed by Hennessy and Plotkin are defined for a series of three
languages featuring concurrency. The first has shuffle and local nondeterminacy, the second syn-
chronization merge and local nondeterminacy, and the third synchronization merge and global
nondeterminacy. The languages are all uniform in the sense that the elementary actions are unin-
terpreted. Throughout, infinite behaviour is taken into account and modelled with infinitary
languages in the sense of Nivat. A comparison with denotational semantics is provided. For the
first two languages, a linear time model suffices; for the third language a branching time model
with processes in the sense of De Bakker & Zucker is described. In the comparison an important
role is played by an intermediate semantics in the style of Hoare & Olderog’s specification
oriented semantics. A variant on the notion of ready set is employed here. Precise statements are
given relating the various semantics in terms of a number of abstraction operators.

CS-R8602. P.J.W. ten Hagen & C.G. Trienekens. Pattern representation.
AMS 69K31, 69K33, 69K36; CR 1.3.1, 1.3.3, 1.3.6; 25 pp.; key words: com-

puter graphics, raster displays, pattern representation, scanconversion.
Abstract: This paper introduces a new method of representing area oriented picture primitives.
The representation aims at efficient conversion of these primitives to framebuffers for raster

44

displays. The representation and the conversion to raster can be the basis for area generators
being comparable in speed to vector generators used in conventional vector displays. The
representation is independent of the type and resolution of raster hardware. As a result interactive
graphics on raster display can be of higher quality because of fast responses involving picture
change without compromising picture quality. This paper concentrates on the treatment of the
area’s domain, e.g., definition and manipulation of domains. The generation of the texture in the
domains will be dealt with in a subsequent paper.

CS-R8603. J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog & J.I
Zucker. Contrasting themes in the semantics of imperative concurrency.

AMS 68B10, 68C01; CR D.3.1, F.3.2, F.3.3; 58 pp.; key words: concurrency,
imperative languages, denotational semantics, operational semantics, transition
systems, metric spaces, ready sets, local nondeterminacy, global determinacy,
linear time, branching time, guarded recursion, finite observations, streams,
synchronization, communication, value passing, parallel execution, interleaving,
shuffle, merge, processes, uniform concurrency, nonuniform concurrency,
infinitary languages.

Abstract: A survey is given of work carried out by the authors in recent years concerning the
semantics of imperative concurrency. Four sample languages are presented for which a number of
operational and denotational semantic models are developed. All languages have parallel execution
through interleaving, and the last three have a form of synchronization as well. Three languages
are uniform, ie., they have uninterpreted elementary actions; the fourth is nonuniform and has
assignment, tests and value-passing communication. The operational models build on Hennessy-
Plotkin transition systems; as denotational structures both metric spaces and cpo domains are
employed. Two forms of nondeterminacy are distinguished, viz. the local and global variety. As
associated model-theoretic distinction that of linear time versus branching time is investigated. In
the former we use streams, i.e., finite or infinite sequences of actions; in the latter the (metrically
based) notion of process is introduced. We furthermore study a model with only finite observa-
tions. Ready sets also appear, used as technical tool to compare various semantics. Altogether, ten
models for the four languages are described, and precise statements on (the majority of) their
interrelationships are made. The paper supplies no proofs; for these, references to technical papers
by the authors are provided.

CS-R8604. T. Tomiyama & H. Yoshikawa. Extended general design theory.
AMS 03E30, 54A05, 54D35, 69K 14, 69L60; CR H.2.1, 1.2.4, J.6; 29 pp.; key
words: design theory, axiomatic set theory, machine design, data model,

knowledge representation, CAD.

Abstract: Computer Aided Design (CAD) systems are getting more and more popular in many
industries. Because designing is an intellectual process, CAD systems of the next generation are
supposed to have intelligence. This is why many researchers are recently working on knowledge
based CAD systems. However, despite of these efforts, it is now becoming clear that ad hoc
approaches are unsuccessful and that we need a guiding principle for implementing such CAD sys-
tems. In this paper, we propose a design theory to formalize design processes and design
knowledge. General Design Theory is based on axiomatic set theory, and it clarifies what design-
ing is, how to formalize a design process, and how to describe design knowledge. We begin with
three axioms which define an ideal state. Then, we think about a real problem by adding a
hypothesis about the physical aspect of our world, so that we can deduce theorems about real
design processes and discuss theoretical problems of the data description method of future CAD
systems.

45

CS-R8605. J.N. Kok. Denotational semantics of nets with nondeterminism.

AMS 68B10; CR D.3.1, F.3.2, F.3.3; 12 pp.; key words: dataflow program-
ming, dataflow networks, denotational semantics, metric topology, multivalued
functions, concurrency.

Abstract: We define a topological framework for streams of traces. With this approach Kahn’s
method generalizes to nets with bounded nondeterminism. We consider fixpoints of multivalued
functions. We have a standard fixed point theorem, which can be used to model feed back loops.
These fixed points can also be obtained by iteration. We give a general syntax of nets and see how
we can analyze them in our streamframework. We show how to avoid the Brock-Ackerman and
Keller anomalies. We are able to model the fair merge, which is a continuous function in our
framework, and delay along lines. We prove a lemma that says that the order in which we connect
nodes in our networks does not matter. If we have nets with nodes with unbounded nondetermin-
ism, we can still use these fixpoints, but we do lose in our topological framework our iteration
theorem.

CS-R8606. E. Kranakis. Fixed point equations with parameters in the projective
model.

AMS 68B05; 23 pp.; key words: process algebra, process, fixed point equa-
tions, polynomial operator, metric space, continuous, contraction, dense, com-
pact, guard, fixed point.

Abstract: Existence and uniqueness theorems are given for solving infinite and finite systems of
fixed point equations with parameters in the projective model. The three main methods discussed
depend on the topological properties of the projective model and they include: compactness argu-
ment, density argument, and Banach’s contraction principle. As a converse to the uniqueness
theorem it is also shown that in certain signatures guarded equations are the only ones that have
unique fixed points.

CS-R8607. E. Kranakis. Approximating the projective model.

AMS 68B05; 15 pp.; key words: process algebra, projective model, polynomial
operator, positive formula, metric space, approximation principle, ultrafilter,
ultraproduct.

Abstract: An approximation principle for the projective model is given which makes it possible to
prove assertions in this model by proving them in an infinite sequence of certain finite process
algebras. Motivated from this principle a new model for process algebras is defined and its rela-
tionship to the projective model is studied.

CS-R8608. F.W. Vaandrager. Verification of two communication protocols by

means of process algebra.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F4.3, C2.2; 76
pp-; key words: process algebra, concurrency, communication protocol,
verification, fairness, trace set, redundancy, local replacement.

Abstract: A positive acknowledgement with retransmission protocol, and a one bit sliding window
protocol are verified in the framework of ACP,, the algebra of communicating processes with
silent steps, augmented with some additional axioms. We present the Cluster Fair Abstraction
Rule (CFAR), which is a generalization of Koomen’s Fair Abstraction Rule (KFAR), and show
that CFAR can be derived from KFAR;. We introduce the notion of redundancy in a context,
which makes it possible to use trace theoretic arguments in process algebra calculations. For the
verification of the second protocol, we use the technique of local replacement. In this technique a
concurrent system is simplified by repeated replacement of components, replacements which leave

46

the behaviour of the system invariant.

CS-R8609. J.A. Bergstra, J.W. Klop & E.-R. Olderog. Failure semantics with

fair abstraction.

AMS 68B10, 68C01, 68D25, 68F20; CR F.1.1, F.1.2, F.3.2, F.4.3; 68 pp.; key
words: process algebra, concurrency, failure semantics, bisimulation semantics.
Abstract: We consider countably branching processes subject to operations: alternative composi-
tion (+), sequential composition (*) and abstraction (7y). Parallel operators are not yet considered.
Axiom systems are given for such processes which contain & (deadlock), € (empty process), 7 (silent
move) and A (delay). The emphasis is on axiomatising divergence via the new constant 4, both in
the context of bisimulation semantics and failure semantics. A new process model is found which
is intermediate between bisimulation semantics with fair abstraction and failure semantics with
catastrophic divergence.

0S-R8601. R.K. Boel & J.H. van Schuppen. Overload control for switches of
communication systems - A two-phase model for call request processing.

AMS 93E20, 90B22, 60K25; 16 pp.; key words: overload control, stochastic
control, queueing theory, communication systems.

Abstract: In modern telephone networks the switching and connecting operations are performed by
computer controlled switches called Stored Program Control (SPC) exchanges. One of the prob-
lems with these switches is the severe performance degradation during periods in which the
demand for service exceeds the design capacity. The problem of overload control is to decide
whether to admit or not to admit a call request such as to maximize the number of successfully
completed calls. In this paper a new and rather general model for the switch is proposed in which
the delay in processing a call request is modelled by two phases. From this a simplified model is
deduced consisting of a series connection of three random delays. The problem of overload con-
trol is then formulated as a stochastic control problem. The solution is a bang-bang control,
meaning that a customer is either admitted or not admitted to the switch without randomization.

OS-R8602. J.W. Polderman. On the necessity of identifying the true parameter
in adaptive LQ control.
AMS 93C40; 5 pp.; key words: adaptive LQ control, closed loop identification,

certainty equivalence.

Abstract: In adaptive control problems one may drop the requirement of identifying the true sys-
tem in order to simplify the problem of control. It will be shown that in the adaptive LQ control
problem this does not at all lead to an easier problem.

0OS-R8603. O.J. Boxma. Models of two queues: a few new views.
AMS 60K25, 68M20; 24 pp.; key words: survey, two parallel queues, two

queues in series.

Abstract: This paper presents a review of results for models of two queues, with an emphasis on
mathematical analysis techniques. Two classes of models are investigated: (i) two parallel queues
attended by a single server, and (ii) two queues in series.

OS-N8601. W.P. Groenendijk. The M/G/1 queue with randomly alternating
services.
AMS 60K25, 68M20; 84 pp.; key words: M/G/1 queue, randomly alternating,

boundary value problem.
Abstract: In this report the M/G/1 queue with randomly alternating services is analysed with

47

respect to its queue-length process. The queue-length distribution is obtained and explicit expres-
sions are derived for the first moments of various interesting performance measures.

NM-R8524. M. Louter-Nool. BLAS on the Cyber 205.

AMS 65V05, 65Fxx; 24 pp.; key words: vectorization, basic linear algebra sub-
programs, stride problems, operations on sequentially and nonsequentially
stored real and complex vectors.

Abstract: The subject of this paper is to examine the efficiency of a set of linear algebra subpro-
grams, the so-called BLAS, as implemented on a 1-pipe Cyber 205. Beside this implementation, we
have developed an alternative version of the subprograms. The performance of both implementa-
tions is compared. Special attention is paid to operations on nonsequentially stored vector ele-
ments, leading to so-called stride problems. Several routines, appropriate to deal with those stride
problems, are treated. In this paper, we shall only consider the single precision real and complex
BLAS subprograms, with positive strides.

NM-R8525. J.M. Sanz-Serna, J.G. Verwer & W.H. Hundsdorfer. Convergence
and order reduction of Runge-Kutta schemes applied to evolutionary problems in
partial differential equations

AMS 65X02, 65M10, 65M20; CR G.1.7; 12 pp.; key words: numerical
analysis, initial boundary value problems in partial differential equations,

method of lines, Runge-Kutta schemes, convergence analysis, order reduction.
Abstract: We address the question of convergence of fully discrete Runge-Kutta approximations.
We prove, that under certain conditions, the order in time of the fully discrete scheme equals the
conventional order of the Runge-Kutta formula being used. However, these conditions, which are
necessary for the result to hold, are not natural. As a result, in many problems the order in time
will be strictly smaller than the conventional one, a phenomenon called order reduction. This
phenomenon is extensively discussed, both analytically and numerically. As distinct from earlier
contributions we here treat explicit Runge-Kutta schemes. Although our results are valid for both
parabolic and hyperbolic problems, the examples we present are therefore taken from the hyper-
bolic field, as it is in this area that explicit discretizations are most appealing.

NM-R8601. B. Koren. Euler flow solutions for a transonic windtunnel section.
AMS 35B30, 65N50, 76G15, 76HOS; 15 pp.; key words: steady Euler equa-

tions, transonic flows, grid generation and adaptation, boundary conditions.

Abstract: Two dimensional Euler flow computations have been performed for a windtunnel section,
designed for research on transonic shock-wave boundary-layer interaction. For the discretization of
the Euler equations, a finite volume Osher discretization has been applied. The solution method is
a non-linear multigrid iteration with symmetric point Gauss-Seidel as a relaxation method. Initial
finest grid solutions have been obtained by full multigrid. Some grid adaptation has been applied
for obtaining a sharp shock. An indication is given of the mathematical quality of 4 different
boundary conditions for the outlet flow. The solutions of two transonic flows with shock are
presented; a choked and a non-choked flow. Both flow solutions show a good shock capturing.

NM-R8602. P.W. Hemker & G.M. Johnson. Multigrid approaches to the Euler
equations.
AMS 65N30; 13 pp.; key words: Euler equations, multigrid methods, Navier-

Stokes equations.
Abstract: In this report we discuss different approaches to solve the Euler equations for compressi-
ble flow. The emphasis is on the multigrid acceleration of the solution process for finding

48

approximations to the steady state solution.

NM-R8603. W.H. Hundsdorfer & J.G. Verwer. Linear stability of the
hopscotch scheme.

AMS 65M10; CR G.1.7; 9 pp.; key words: partial differential equations,
convection-diffusion equation, hopscotch method, linear stability.

Abstract: This paper is devoted to the hopscotch scheme, which is a numerical integration tech-
nique for time-dependent partial differential equations. We examine its linear stability properties.
A general theorem is presented which provides sufficient conditions for boundedness of the numer-
ical solution during time stepping on a fixed space-time mesh. This theorem has applications in the
field of parabolic problems. For the one-space dimensional convection-diffusion equation we
present a detailed stability analysis of the odd-even scheme combined with central and one-sided
finite differences. We compare stability based on the spectral condition with von Neumann stabil-

ity.

NM-R8604. P.J. van der Houwen, B.P. Sommeijer, K. Strehmel & R. Weiner.
On the numerical integration of second-order initial value problems with a
periodic forcing function.

AMS 65L05; CR G.1.7; G.1.8; 21 pp.; key words: numerical analysis, ordinary
differential equations, Runge-Kutta methods, predictor-corrector methods,
periodic solutions.

Abstract: Runge-Kutta-Nystrom type methods and special predictor-corrector methods are con-
structed for the accurate solution of second-order differential equations of which the solution is
dominated by the forced oscillation originating from an external, periodic forcing term. For a fam-
ily of second-order explicit and linearly implicit Runge-Kutta-Nystrom methods it is shown that
the forced oscillation is represented with zero phase lag. For a family of predictor-corrector
methods of fourth-order, it is shown that both the phase lag order and the dissipation order of the
forced oscillation can be made arbitrarily high. Numerical examples illustrate the effectiveness of
our reduced phase lag methods.

MS-R8601. A.J. van Es & R. Helmers. Elementary symmetric polynomials of
increasing order.

AMS 60F05; 10 pp.; key words: elementary symmetric polynomials of increas-
ing order, normal and non-normal weak limits, Berry-Esseen bound, one-term
Edgeworth expansion.

Abstract: The asymptotic behaviour of elementary symmetric polynomials S of order k, based
on n independent and identically distributed random variables X, ..., X, . is investigated for the
case that both k and n get large. If kK = o(n"), then the distribution function of a suitably normal-
ised S%) is shown to converge to a standard normal limit. The speed of this convergence to nor-
mality is of order O(kn "), provided k =0 (log 'nlog 7 'nn"™) and certain natural moment
assumptions are imposed. This order bound is sharp, and cannot be inferred from one of the exist-
ing Berry-Esseen bounds for U-statistics. If kK — oo at the rate n" then a non-normal weak limit
appears, provided the X;’s are positive and S is standardised appropriately. On the other hand,
if k — oo at a rate faster than n" then it is shown that for positive X,’s there exists no linear
norming which causes S to converge weakly to a non-degenerate weak limit.

MS-N8601. S.G.A.J. Driessen. The sieve method in multi-stage sampling.
AMS 62E15; 70 pp.; key words: sieve sampling, two-stage sampling, Hoeffding
inequalities.

49

Abstract: It is shown that the sieve method (a technique for probability proportional to size sam-
pling) may, under certain conditions, be validly used for two- or three-stage sampling schemes,
even though the statistical evaluation is based on true random sampling.

AM-R8601. O. Diekmann. On the mathematical synthesis of physiological and
behavioural mechanisms and population dynamics.
AMS 92A15; 7 pp.; key words: physiologically structured population models,

first order partial functional differential equations, dual semigroups.
Abstract: A concise description of a mathematical framework for the synthesis of physiological
ecology and population dynamics is presented.

PM-R8601. B. Hoogenboom & T.H. Koornwinder. Fonctions d’entrelacement
sur les groupes de Lie compacts et polynomes orthogonaux de plusieurs variables.
(In French.)

AMS 17B20, 22E46, 33A65, 33A75, 43A75, 43A90; 16 pp.; key words: com-
pact symmetric spaces, spherical functions, intertwining functions, orthogonal

polynomials in several variables, root systems with two commuting involutions.
Abstract: This report, which is written in French, gives a survey of results by Vretare (1976) and
Hoogenboom (1983), who showed that both spherical functions and intertwining functions on
compact symmetric spaces can be written as orthogonal polynomials in several variables. The
paper concludes with a sketchy discussion of orthogonal polynomials in several variables which
can be associated with root systems. Some conjectures are posed for such classes of polynomials.

PM-R8603. J.C. van der Meer & R. Cushman. Constrained normalization of
Hamiltonian systems and perturbed Keplerian motion.

AMS 58F05, 34C29, 70F15, 70F05, 70MO05; 17 pp.; key words: Hamiltonian
system, normal form for a Hamiltonian system, constrained Hamiltonian sys-
tem, constrained normalization of Hamiltonian systems, Kepler system, per-
turbed Kepler system, lunar problem, main problem of artificial satellite

theory.

Abstract: Consider a Hamiltonian system (H,R*',w). Let M be a symplectic submanifold of
(R¥",w). The system (H,R>',w) constrained to M is (H |M,M,w|M). In this paper we give an
algorithm which normalizes the system on R>" in such a way that restricted to M we have normal-
ized the constrained system. This procedure is then applied to normalizing perturbed Kepler sys-
tems such as the lunar problem and the main problem of artificial satellite theory.

50

CWI Activities
Spring 1986

With each activity we mention its frequency and (between parentheses) a con-
tact person at CWI. Sometimes some additional information is supplied, such
as the location if the activity will not take place at CWIL.

Symposium on Science of Industrial Organization. 11 June. Invited speakers:
W.J. Deetman (Minister of Education and Science), F.J. Rauwenhoff (Phi-
lips BV), H.L. Beckers (Shell), P.C. Baayen (CWI), L.G.L.T. Meertens
(CWI), H.J. van der Molen (ZWO). (H.M. Nieland)

Study group on Analysis on Lie groups. Jointly with University of Leiden.
Biweekly. (T.H. Koornwinder)

Seminar on Lie groups. Jointly with Universities of Leiden, Utrecht,
Groningen, Nijmegen, Delft and Amsterdam. 11, 12 April. Invited speak-
ers: G. Heckman (Leiden, The Netherlands), L. Corwin (New Brunswick,
USA), G. Olafsson (Gottingen, West Germany), M. Poel (Utrecht, The
Netherlands), M. Flensted-Jensen (Copenhagen, Denmark), J.-Ph. Anker
(Lausanne, Switzerland). (T.H. Koornwinder)

Seminar on Algebra and Geometry. Once a month. (A.M. Cohen)

Gordan’s work on covariants of SL,,(C) (J. Brinkhuis). Mumford’s con-
struction of an algebraic surface resembling P? (M. van der Put). The
geometry on subgroups of order 3 in certain finite groups (F.G.J.M.
Cuypers).

Cryptography working group. Monthly. (J.H. Evertse)

Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics. Twice a
month. (J. de Vries)

Study group ‘Biomathematics’. Lectures by visitors or members of the group.
Jointly with University of Leiden. Topics for the next meetings are: stochas-
tic population dynamics, dynamics of structured populations. Bimonthly. (J.

51

Grasman)

Study group on Nonlinear Analysis. Lectures by visitors or members of the
group. Jointly with University of Leiden. The purpose is: to follow and
investigate recent developments on qualitative analysis of nonlinear equa-
tions; to stimulate and support the research of the participants. Bimonthly.
(O. Diekmann)

Workshop on Models for Physiologically Structured Populations. 31 August - 6
September at Texel. (O. Diekmann)

Progress meetings of the Applied Mathematics Department. New results and
open problems on the research topics of the department: biomathematics,
mathematical physics, asymptotic and applied analysis, image analysis.
Weekly. (N.M. Temme)

Colloquium and symposium ‘Theory and Practice of Image Processing’. The
departments of Applied Mathematics and Mathematical Statistics are organ-
izing a colloquium on image processing this autumn. Prior to that, on May
15th, a one day symposium will be held. The aim is to create a meeting
place for applied scientists, and mathematicians interested in this topic,
where in particular the latter can be confronted with the challenging new
mathematical problems arising in this area. Invited speakers on May 15th:
JJ. Gerbrands (Technical University of Delft) Introduction to digital picture
processing, BM. ter Haar Romeny (Academic Hospital, Utrecht) Picture pro-
cessing in clinical practice: some examples with background and implementa-
tion, A.C.M. Gieles (Philips, Eindhoven) Industrial application of picture pro-
cessing, J.S. Ploem (Histo- and cytochemical Lab., Univ. of Leiden)
Automatic recognition of cells. (R.D. Gill, HJ.A.M. Heijmans & J.B.T.M.
Roerdink)

Study group on Statistical Image Analysis. Biweekly. (R.D. Gill)

Symposium on Semiparametric Models. Jointly with Dutch Statistical Society.

27 May. (R.D. Gill) Programme:
N.L. Hjort (Norwegian Computing Centre, Oslo) Bootstrapping Cox’s regres-
sion model, A. van der Vaart (University of Leiden) Estimating a real param-
eter in a class of semiparametric, P. Green (University of Durham, UK.
Semiparametric regression by penalized likelihood, including model selection.

Progress meetings of the Mathematical Statistics Department. New results in
research and consultation. Monthly. (H.C.P. Berbee)

Colloquium ‘Models for Discrete Variables’.

The emphasis will be on generalized linear models and variants thereof for
discrete variables. After a short introduction to log-linear models, based on
Fienberg’s book ‘The Analysis of Cross-Classified Categorical Data’ and the
standard package GLIM, we will turn to a number of modern developments
in the data analysis of models for discrete variables, such as: Goodman’s bil-
inear models, comparison with other models and models for continuous
data, comparison of cross products in different tables, Lauritzen and Speed’s
graphical models, computation of asymptotic standard errors, also for more

52

complex sample setups, quasi-likelihood, formalisation of model-selection
and testing with the same data. Biweekly. (A. Verbeek)

Study group on Combinatorial Optimization. Biweekly. (B.J. Lageweg)

System Theory Days. Irregular. (J.H. van Schuppen, J.M. Schumacher)

Study group on System Theory. Biweekly. (J.M. Schumacher)

Colloquium on Queueing Theory and Performance Evaluation. Irregular. (O.J.
Boxma)

International Seminar on Teletraffic Analysis and Computer Performance
Evaluation. 2-6 June. (O.J. Boxma)

Progress meetings on Numerical Mathematics. Weekly. (H.J.J. te Riele)

International Colloquium on Numerical Aspects of Vector and Parallel Proces-
sors. Monthly, every last Friday.
International Meeting: 30 May. Invited speakers:
J. Dongarra (Argonne National Lab., USA), O. Axelsson & V. Eijkhout
(Catholic University Nijmegen, The Netherlands), D.P. O’Leary (University
of Maryland, College Park, USA), F. Sullivan (National Bureau of Stan-
dards, Gaithersburg, USA). (H.J.J. te Riele)

Study group on Numerical Software for Vector Computers. Monthly. (H.J.J.
te Riele)

Study group on Differential and Integral Equations. Lectures by visitors or
group members. Irregular. (H.J.J. te Riele)

Study group on Graphics Standards. Monthly. (M. Bakker)

Study group on Dialogue Programming. (P.J.W. ten Hagen)

Concurrency Colloquium C”/LPC. 15,16 May. Invited speakers:
P. Azema (LAAS, Toulouse, France), 1J.J. Aalbersberg (University of
Leiden, The Netherlands), M. Diaz (LAAS, Toulouse, France), J. Vautherin
(University of Paris-Sud, France), J.P. Banatre (IRISA, University of
Rennes, France), K.R. Apt (LITP, University of Paris VII, France), L. Kott
(IRISA/INRIA, Rennes, France), J.-J.Ch. Meyer (Free University, Amster-
dam, The Netherlands), N. Halbwachs (IMAG, Grenoble, France), R. Koy-
mans (Techn. University Eindhoven, The Netherlands). (J.W. de Bakker)

Post-academic Course on Computer Networks. 19,20,26,27 June. (S.J. Mul-
lender)

Colloquium Knowledge Based Systems. Biweekly. (M.L. Kersten & P.J.F.
Lucas)

Process Algebra Meeting. Weekly. (J.W. Klop)

53

Visitors to CWI from Abroad

P.P. Chen (Louisiana State University, USA) 24 January. N. Christopeit
(University of Bonn, West Germany) 20 March. J.P. Coleman (University of
Durham, England) 19-21 March. P.J. Courtois (Philips Research Laboratory,
Brussels, Belgium) 7 January. P.M. van Dooren (Philips Research Laboratory,
Brussels, Belgium) 7 January. A. Emerson (University of Texas at Austin,
USA) 24 January. J. Griiger (University of Dortmund, West Germany) 17-21
February. Kai-Tai Fang (Academia Sinica, Beijing, People’s Republic of
China) 24-28 February. A.B. Kurzhanski (IIASA, Laxenburg, Austria) 6
February. 1. Meijlijsson (University of Tel Aviv, Israel) 11 February. C.E.
Molnar (Washington University, St. Louis, USA) 5 March. P. Nevai (Ohio
State University, Columbus, USA) 31 January. D. Stanton (University of
Minnesota, Minneapolis, USA) 27 January - 5 February. R. Syski (University
of Maryland, USA) 17 March. J.V. Tucker (University of Leeds, England)
20-27 February. L. Winzgard (Royal Institute of Technology, Stockholm,
Sweden) 14 January. Y. Yamaguchi (University of Tokyo, Japan) March-July.
A. Yashin (ITASA, Laxenburg, Austria) 10-15 February.

54

Fundamental Science:

40 Years of Dutch Research in Mathematics and

Computer Science

6 and 7 October 1986

This year the Foundation Mathematical Centre and its research institute, the
Centre for Mathematics and Computer Science, celebrate their 40th anniver-
sary. To mark this event the CWI is organizing a symposium.

PROGRAMME:
6 October

P.C. Baayen
(Scientific Director of CWI)

H.W. Lenstra, Jr.
(University of Amsterdam)

P.M.B. Vitanyi (CWI)

A.O.H. Axelsson
(Catholic University, Nijmegen)

A. Schrijver
(Catholic University, Tilburg & CWI)

Opening address

Codes from algebraic number
Sields

Archirithmics or algotecture?

The numerical solution of
partial differential equations

Geometric methods in dis-
crete optimization

55

7 October

J. van Mill Infinite-dimensional normed

(Free University, Amsterdam & linear spaces and domain

University of Amsterdam) invariance

J.W. Klop (CWI) Process algebra: a survey of
recent results

O. Diekmann Dynamics in bio-mathemat-

(CWI & State University, Leiden) ical perspective

L.F.M. de Haan Fighting the arch enemy

(Erasmus University, Rotterdam) with mathematics

Further information is available from Prof. M. Hazewinkel, or Mrs. E. Both.

56

O
O

Oo0o0o0oo0ooOooooooad

Order Form for CWI Publications

Sales Department
Centre for Mathematics and Computer Science
Kruislaan 413
1098 SJ Amsterdam
The Netherlands

Please send the publications marked below on an exchange basis

Please send the publications marked below with an invoice

Publication code Price per copy Number of copies wanted
CWI Tract 20 *) Dfl. 1760
CWI Tract 21 *) 1390 asee
CWI Syllabus 8 *) 2390
CWI Syllabus 9 *) 2880
CS-R8601 1630 e
CS-R8602 390 0 ks
CS-R8603 880
CS-R8604 510 e
CS-R8605 390 0 e
CS-R8606 390 G
CS-R8607 390
CS-R8608 1140 L
CS-R8609 10.10 e
OS-R8601 390 0 s

*) not available on exchange

57

Publication code Price per copy Number of copies wanted

O OS-R8602 390 0 s
O OS-R8603 30 L
O OS-N8601 1250 L
O NM-R8524 3% L
O NM-R8525 390 000 e
O NM-R8601 390 s
O NM-R8602 3% L
O NM-R8603 3% Ll
O NM-R8604 390 0 s
O MS-R8601 3% L
O MS-N8601 140 L
O AM-R8601 390 s
O PM-R8601 3% L
O PM-R&8603 390 s

If you wish to order any of the above publications please tick the appropriate
boxes and return the completed form to our Sales Department.

Don’t forget to add your name and address!

Prices are given in Dutch guilders and are subject to change without notice.
Foreign payments are subject to a surcharge per remittance to cover bank,
postal and handling charges.

Name s
SEIEEL o e s
City e
COUNEEY cosoismsssnmmssnsio msssissmms srmmssisnmmmsm e aemins
SIgnature ...

Date onsnssramsmesssassisiisseissis s s

58

BT RSP %ﬂm?'"'_’"m“f.’ﬁ}*
CEWSLE TEF

) e
i W SRS

