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Foreword

by P.C. Baayen (Scientific Director of CWI)

With pleasure and satisfaction we present the first issue of our new quar-
terly ‘CWI Newsletter’. The CWI - Centrum voor Wiskunde en Informatica,
that is, Centre for Mathematics and Computer Science - has been known
under this name since September 1, 1983. However, as the Mathematical
Centre it has been around since 1946, and has contributed to both mathemat-
ics and computer science since its inception. Its old name was eminently suit-
able in a period of history in which mathematics and mathematicians contri-
buted significantly to the burgeoning new field of computers and computing.
Now that Computer Science has come of age as an important and indepen-
dent discipline, the Board of Trustees of the Centre have recognized this by
changing the name of our institute.

The designation has changed - not so the designatum. Both Mathematics
and Computer Science were taken to heart in the ‘Mathematical Centre’, and
both will be given due attention under the banner of CWI, Centre for
Mathematics and Computer Science. We are fully convinced that the practice
of both computer science and mathematics in one and the same scientific
institute can be benificial and stimulating for both sciences. In a sense, the
new name of our institute is both a programme and a challenge. We want to
do mathematical research in an environment where the exciting and powerful
methods and tools developed by computer science are readily available. At
the same time, we prefer to conduct research in computer science in a
mathematical milieu, where mathematicians can contribute not only a point
of view and a mental discipline, but also actual methods for developing and
streamlining algorithms or for studying complexity, or logical foundations.

The old ‘Mathematical Centre’ maintained strong ties with computer
scientists and mathematicians all over the world. Many hundreds visited the
institute for a longer or shorter period. Many scientific workers of the Cen-
tre, in their turn, visited research institutes abroad. Sometimes these contacts
led to cooperation in research, resulting in common papers; on other occa-
sions the very real benefits of these scientific contacts were less directly trace-
able in print. Of course, the Centre publishes an ‘Annual Report’ in which
everything of importance is duly reported; but this Annual Report is in
Dutch and therefore enjoys only a limited circulation. For a long time we
have felt the need of some form of regular communication with our many
friends and colleagues, not only within but also outside the domain of the
Dutch language.

So, it is indeed with pleasure and satisfaction that we present this first
issue of the ‘CWI Newsletter’. Using the recent name-change of our institute
as a catalyst we now create a medium which, we hope. will reach all our
many friends and will keep them informed about what is going on in and



around our institute. We were lucky in having at hand dr. Arjeh M. Cohen
and in being able to convince him of the need to act as editor of this
Newsletter. We hope that this CWI Newsletter will contribute to interna-
tional cooperation in Computer Science and in Mathematics, and also,
equally important, to maintaining and cultivating friendship and appreciation
between mathematicians and computer scientists.
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Geometry of the Energy Momentum Mapping of the
Spherical Pendulum

by R. Cushman

0. Introduction

Reconsideration of the spherical pendulum of classical mechanics with
modern mathematical techniques has revealed the occurrence of monodromy in
the way level sets of the energy momentum mapping fit together.

This phenomenon has been observed in Duistermaat [1], where the proof of
its existence uses rather heavy results. Monodromy is a phenomenon which
was not classically investigated because it deals with how certain families of
energy momentum level sets fit together and hence can not be observed by
looking at motions of a fixed energy and angular momentum. The main point
of this article is to give a visual geometric argument which computes the mono-
dromy in the spherical pendulum.

The first part of this article treats the spherical pendulum of classical
mechanics from the point of view of Smale’s program [4]. Specifically, we
study the energy momentum mapping of the spherical pendulum which assigns
to every point in phase space (the tangent bundle of the two sphere) the pair
of real numbers given by the values of the total energy and angular momentum
at that point. Because energy and angular momentum are conserved quantities
[2,5], the spherical pendulum is completely integrable. Moreover the fibers of
the energy momentum mapping are the sets of all positions and velocities with
a given energy and angular momentum.

A well-known theorem of Arnold [1] seems to say that all the fibers, if con-
nected, compact and smooth, are two dimensional tori. But this is only true if
the derivative of the energy momentum mapping is surjective. Arnold’s
theorem does not apply to those motions of the spherical pendulum which are
circles parallel to the equator of the two sphere. Thus we give here a careful
geometric treatment of the topology of the fibers of the energy momentum
mapping of the spherical pendulum. But this is not a complete qualitative
description of the spherical pendulum, because the energy momentum mapping
has monodromy. The monodromy will be treated in the second part of this
article. Proofs are by pictures!

1. Smale’s program
a. The energy momentum mapping.
We start with the construction of the energy momentum mapping of the

spherical pendulum. For the basic physics of the spherical pendulum, see [5]
p- 334 or [6]. Recall that the spherical pendulum is a particle of unit mass



moving on a two sphere S? of unit radius under a constant vertical gravita-
tional force of unit strength. Therefore phase space is the tangent bundle T'S?
of S2, that is,

xt+x%+x2=1

2 — IR 3
= = v XR
TS (x,v)=(x1,%2x3V1,v2,v3) ER Xwit+xvy+x3v3=0

with projection 7:7S?—>S8%(x v )ox.
Pictorially elements of the tangent
space T, S? to S? at x are represented
by arrows with tail at x and perpen-
dicular to x (Figure 1). TS? is the dis-
joint union of all tangent spaces. The
Hamiltonian function of the spherical
pendulum is the sum of the kinetic

Figure 1. s s
A tangent plane T, 5? to the 2-sphere 52 and .potentlal energy of the particle
at the point x. and is the function

H: TS’ZS R:(xv) o %IvIP+x; = %2 +vi+v2)+x,
Since a rotation of S? about the x;—axis is a symmetry of the spherical pen-
dulum, there is a corresponding conserved quantity (=integral) called the
angular momentum, which is the function
L: TSZ—) R :(x,v) P XV —X V).
Combining the energy and the angular momentum gives the energy momentum
mapping
EM: TS* > R%(x,v) » (H(x,v),L(xwy)).

b. Critical points and critical values
To analyze the energy momentum mapping, the first order of business is to

find its critical points, that is, points where its derivative D &9 is not surjec-
tive. The rank of D& is zero at the critical points of H (= critical points of

L). These are precisely the L
equilibrium points of the /

spherical pendulum where
the particle does not move, /
that is (n,0), (s,0)E7TS?
where n (respectively s) are \

the  north  (respectively \
south) pole of S2. The

. g8 Figure 2.
correspondmg critical values Image of energy momentum mapping of spherical pendulum.

of &M are (1,0) and (—1,0). Darkened curve is energy momentum values of relative equilibria.
Large dots are energy momentum values of equilibria.



The rank of D& is one when the derivatives of H and L are linearly depen-
dent. This dependency occurs only on those orbits of the Hamiltonian system
which are also orbits of the axial symmetry. Such orbits are called relative
equilibria. In the spherical pendulum the relative equilibria are circles on § 2
which lie in a horizontal plane cutting the southern hemisphere. Calculations
show that for a given noncritical value h of H, the angular momentum L
attains its maximum and minimum values on the relative equilibria. Further-
more, calculations show that the darkened curves in Figure 2 are the critical
values of 69N corresponding to the relative equilibria. The image of &9 is the
region in Figure 2 bounded by the darkened curves.

c. Regular fibers

The set of regular values ® of the energy momentum mapping consists of
those points in the image which are not critical values. If r =(h,/) ER, then
g, =69 (r) is a regular fiber. Our next task is to determine the topological
type of the regular fibers. Because r is a regular value of &I, Arnold’s
theorem [1] implies that each connected component of 9, is a smooth two
dimensional torus. The following discussion not only shows that ¥, is con-
nected but also shows how to visualize the torus. The basic idea is to describe
5, as some sort of bundle lying over U, =m(%,)CS% The next argument
shows that U, is the closed region of S? which is shaded in Figure 5. Suppose
(x,v)€Y, and x#n,s. Then on T, S? the inverse image L™ (/) is the affine
line

I = xv1—xvy

with x,540 or x,540. The closest point of L~'(/) to the origin of T,S? is the
vector

0 _ /
v = ———(x5,—x,0).
praww LRl

Since [Iv 2= IvOI12 for all v €L~ Y(J)N T, S?, using 1=x? +x7 +x7, we obtain
g

2
2Ah —x3) = 2AH (x,v)—x3) = 2H(xy°)—x3)= )

1—x?

(see Figure 3). Thus U, is the set of all x €S? satisfying (*). Consider the
cubic polynomial

V(x3) = (1=x3)h —x3)

By

40

Figure 3.
Geometry of H '(h) and L™'(!) in a fixed tangent space T. 5%
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(see Figure 4). Then V'~ '([%4/%,00[)=[z _,z ;] is the set of all x;E[—1,1] which

v‘[\ v}

e 1h2 e (¢2
2 By N Wi A .
=iz Z+M X3 =T 7 zy 1 h er

-1 h 1 h 1
A
v
m 1’
/—I Zo J Zy 1 7:
h =1
Figure 4.

Graph of ¥ with ¥ ~!( [4l?%,00] ),1i*< g?a)l(”V(x) indicated by hatched interval [z _,z ,].
x -5

satisfy (*). As long as

0<Wi*<V,, = max V(x;)
x€E[-1L1]
the interval [z _,z ;] does not degenerate to a point and also is properly con-
tained in [—1,1]. Thus U, is the closed annular region of S? bounded by the
two circles C,:x3=z; and C;:x3=z_. When /=0 and —1<h <1, U, is the
closed region of S? containing the south pole s and bounded by C,:x;=h.

Q(
;
(

PN

/

\\</

Figure 5.
Description of T, as a bundle over U,.

When /=0 and h>1, then U, =S To complete our picture of 9, as a



bundle over U, we must determine the fiber 7 {(x)EST, over x EU,. A close
look at Figure 3 shows that if /540 and equality holds in (*), that is, x lies on
the boundary U, of U,, then v must be equal to v%. Thus the fiber of J, over
x €U, is a single vector v° with zero third component. If /0 and strict ine-
quality holds in (*), that is, x lies in the interior of U,, then the fiber 7~ '(x)
of 9, consist of two vectors with nonzero third component. Now suppose / =0
and —1<h<1. Then for x €3U,, that is, xy=h, #_!(x) is the zero vector. If
x €U, —{s}, 7~ !(x) consists of two nonzero vectors of opposite sign. If x =s,
then = '(x) is the circe C*:lvI*=2(h+1) in T,S% since
L~ Y0)NT,S*=T,S%. Finally suppose that /=0 and h>1. Then for
x €U, —{s,n}, 7 !(x) is two nonzero vectors of opposite sign; while 7 1(s) is
the circle C*:v|*=2(h+1) in T,S> and = '(n) is the circle
C":|IvI*=2(h —1) in T,S* (see Figure 5). This completes the description of J,
as a bundle over U,. To see that 9, is a two dimensional torus, we first split
each of the circles C,,C, or C*,C" into two disjoint circles. Over the remain-
ing points of U, the fibers of J, consists of two vectors with nonzero third
component. Taking those vectors with positive (negative) third component, we
construct two cylinders, each with two labeled circles as boundary. Identifying
the circles with the same label gives a two dimensional torus. (cf. Figure 6)

Figure 6.
Identification of regular fiber with a 2-torus

d. Critical fibers

Now we turn our attention to determining the topology of the fibers over
the critical values. The fiber corresponding to the critical value (—1,0) is the
stable equilibrium (s,0), that is, &M (—1,0)=(s,0). By construction the fiber
corresponding to a relative equilibrium with critical value (/, k) is a circle in
TS? corresponding to a positively (negatively) oriented horizontal circle in S
if />0 (/ <0) and its oriented tangent vector of length 4. Only the topology of



J=69M"'(1,0) corresponding to the critical value of the unstable equilibrium
needs to be found. Clearly m(9)=S2 The fiber of J over x ES?—{s, n} con-
sists of two vectors of opposite sign with nonzero third component; the fiber
over s is a circle C*; and the fiber over n is the zero vector (see Figure 7).

Figure 7.
Identification of singular fiber EM ~!(1,0) as one point compactification of a
cylinder.

Cut off a small circle C* near n. Split C* and C* into two circles and form two
cylinders from the vectors in the fiber of J: one from the vectors with positive
third component and the other from the vectors with negative third com-
ponent. Join the circles labeled C* together and collapse both C* circles to a
single point. Thus J is a one point compactification of cylinder. In other
words, 7 is a 2-sphere with its north and south pole pinched to a point.

e. Energy surface

Next we determine the topology of each energy surface H " '(h), h>—1.
Let #=a|H '(h). Suppose —1<h<1. Then H '(h) is smooth. Since
2(h —x3)=IvI*?=0, «(H '(h))={x €S*x3<h} which is topologically a
closed 2-disc D> Over x €D? the fiber # x) of H™'(h) is the circle
{v EerT, S2|Ilv I1>=2(h —Xx3)}; while over x €0D?, # (x) is the zero vector.
Split D* along a diameter £ into two disjoint half open discs D and let &,
u €]—L1[, be a fibering of D .. by parallel half open line segments perpendic-
ular to £ (see Figure 8). For each u €]—1,1[, the inverse image 7 NBF) is
topologically a 2-disc 97, being the union of circles which shrink to a point.
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Therefore # (D), being the union of 2-discs %), over u €]—1,1[, topologi-
cally a 3-disc D3 . As shown in the second row of Figure 8, #~(©) is topolog-
ically a two sphere S§. Therefore H ~I(h) is the union of two 3-discs D3
joined along a 2-sphere S¢. Hence, H '(h) for —1<h <1 is topologically a
three dimensional s?here S3. Now suppose that #>1. Then H ~'(h) is smooth
and #(H (h))=S* As before, over x €52 the fiber # '(x) is a circle in
T,S2. Thus H™\(h) is topologically the tangent unit sphere bundle TS to
S2. But T,S? is the set of all pairs of orthonormal vectors in R >, which in
turn is the set of all right handed orthonormal bases of R >. Therefore H ~'(h)
is the group SO(3) of proper rotations of R>. Since SO(3) is doubly covered
by the special unitary group SU(2), which is topologically a three dimensional
sphere S3, SO(3) is topologically real projective three space R P’. When 4 =1,
H~!(1) is not smooth, since it contains the critical point (n,0). However
#H'(1))=S2. Over x €ES2—{n}, the fiber # '(x) is a circle; while if x =n,
# Y(n)=(n,0). Thus H '(1)is T,S? with the fiber over n pinched to a point.
All the information we have obtained about the topology of the fibers and
energy level sets of the energy momentum map is summarized in Figure 9.

Figure 8.
Some of the building blocks of H ~'(h), —1<h <l.

Figure 9.
Topology of fibers of energy momentum mapping.
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[ Fitting together of fibers

We now show how the fibers of the energy momentum mapping fit
together to form a fixed smooth energy surface. Fix h € 1—1,1[ U ]1,00[ and
let Ly~ be the intersection of the image of &9 and a positive (negative) half
line parallel with the /-axis. The fiber of H ~!(h) over L, is a solid torus ST~
which  topologically is S'XD2. In view of the equation
H7Y(h) = o~ /(L,")Un~(h,00Un (L"), each smooth energy surface is the
union of two solid tori ST joined together along a two dimensional torus
T?=n"'(h,0). More precisely, ST* and ST~ are glued together by an attach-
ing mapping which is a diffeomorphism of 72. The problem is: how to visual-
ize this gluing mapping.

Figure 10.
S? as an S! bundle over S2.

Suppose —1<<h <1, then H ~!(h) is S>. The key observation is that S is a
fiber bundle over S? with fiber S' and group S' [7, p. 7]. Figure 10 gives a
geometric realization of this bundle. Note that S* is thought of as the one
point compactification of R>. Thus the vertical line in the figure is a circle.
All the S' fibers pass transversally through either the 2-disc I or the 2-disc I1,
except the circles 4 and B which are the boundaries of 7 and II respectively.
These 2-discs are identified with the hemispheres of S? with the same
numbers; while the circles 4 and B are identified with the equator of S2. The
set of all fibers over each hemisphere of S? is a solid torus, being the union of
all fibers which pass through either I or I7; while the set of all fibers over the
equator is 72 Figure 11 shows the S' fibers on 72 (oriented according to the
action of the group S') from the point of view of the section “a” or ”b” which
corresponds to 4 or B respectively. All the S' fibers on T? can be throught
of as the flow lines of a linear vectorfield on T2. Taking the A circle as being
horizontal, the flow lines are as depicted in the left hand side of Figure 11. The
difference between the two left hand pictures is that in the first B is vertical
while in the second the flow lines are vertical. This describes the ”a”
viewpoint. The ”b” viewpoint is obtained similarly. The mapping ¢ on T?
given by [ _,__: (1)} , is the change from the ”"a” viewpoint on 77 to the ”b”

11



viewpoint. Moreover,  shows how the solid torus ST™ over

NNOF
~ ~

a b

diagonal lines are S fibers with arrows giving direction of S! action on fiber;
dots joined by light lines give lattice defining T2

7/ NA

b

S fibers are vertical and viewpoint section horizontal; ¢ maps a to a and b

10
tob andis |_, ;| with respect to standard basis.

Figure 11.
The gluing map for the solid torus decomposition of 52,

the upper hemisphere is glued to the solid torus over the lower hemisphere.
Given an orientation of T?, the choice of sign in y is determined by the action
of S! on the fibers [7, p. 135].

Suppose h>1, then H (k) is R P>. Since every proper rotation of R is
uniquely specified by giving an oriented axis of rotation and a right handed
twist less than or equal to a half turn about this axis, R P°’=SO(3) can be
visualized as a closed 3-disc D° in R of radius %. (The length of the oriented
axis, which is a vector in R J gives the fraction of a turn about the axis). On
the boundary 9D°, which is a two dimensional sphere, diametrically opposite
points are identified. Figure 12 gives the geometric realization of R P’ asan S'
bundle over S2. Again there are two 2-discs: I and /I where II is the union
of II’ and II” with diametrically opposite points on the heavy dashed line
identified (see Figure 12).

Figure 12.
RP3 as an S' bundle over S2.

12



All the S'! fibers except A and B, pass transversally through either I or II.
The S? is assembled as in the S* case and also the solid torus decomposition.
The S' fibers on 77 are again drawn from the “a” and ”b” section viewpoints
(see Figure 13). Note that the fiber B wraps twice around the hole of 72 while
wrapping once around the meridian. The mapping § from the ”"a” to the "b”

10
viewpoint is [ ") l] , which is the gluing map of the solid tori in R P,

2 4
oy

|
|
|
b A a
|
|
Figure 13.

The gluing map on T? for the solid torus decomposition of R P>.

2. Bifurcation and monodromy

a. Existence of monodromy.

A glance at Figure 9 discloses that as h passes through 1 the topology of
the energy surface H ~!(h) changes from that of a three dimensional sphere to

13



that of real projective three space. This bifurcation of H ~ I(h) (see Figure 14)

CS

Antipodal points on S? identified

=

h =1

Antipodal points on § 2 identified.
Origin has conelike singularity.

Figure 14.

S? identified to a point.
(Gives double cover of h >1 picture).

is not due to a local bifurcation in the
topology of the fibers of the energy
momentum mapping, because over any
open set U of regular values which
does not contain (1,0),
EM Y U)=U XT? that is, &M has
two dimensional tori as fibers over U.
In fact, the bifurcation of the energy
surfaces signals the presence of mono-
dromy in the energy momentum map-
ping, as the following discussion
shows.

Let v be a circle in the set ¢} of
regular values of &9 with center at
(1,0). Consider the bundle
B=69M"(y) over y with fiber T2. Up
to isomorphism % depends only on the
homotopy class of y in ®. Let I'™ be
paths in the image of &9 as drawn in
Figure 15. Suppose that @ is a trivial
bundle, that is, B is diffeomorphic to
yX T2 Then &M (") s
homeomorphic to &M '(I'"). But
&M (I'") is homeomorphic to
H\(h’) for some h’€]—1,1[, which
in turn is homeomorphic to S*; while
&M (T'*") is homeomorphic to
H™\(#") for some h”>1 which in
turn is homeomorphic to R P>.

But S* and }P? are not topologically equivalent. Hence % is not a trivial bun-
dle. Let ¢ €y, then ®'=6M (y—{c}) is a trivial T? bundle, since y—{c} is
contractible. Therefore B is obtained from %’ by a gluing diffeomorphism ¢ of
T2=69"(c) into itself. The mapping ¢ is called the monodromy mapping of
the bundle %. Since isotopic monodromy mappings give rise to isomorphic
bundles over v, the fact that % is nontrivial implies that ¢ is not isotopic to the

identity.

14



b. Calculation of monodromy.

A technical argument which is given below shows that the gluing maps of

p 10
the S' bundles &M '(I'") and &MY ") are respectively ¢ = _9 1] and
10 - 10
¥"=|_; |- Therefore the monodromy is ¢=@ ) 'y =|, | . We
now give the technical argument. The nonexpert reader is advised to skip the

remainder of the subsection.

In order to compute the monodromy of % we introduce a certain
Ehresmann connection [8] on % which allows us to parallel transport geometric
objects from one fiber of 8 to another. Using a partition of unity it suffices to
construct the connection locally. A nice local trivialization of ¥ over vy is given
by a choice of action angle coordinates [1]. For each (h, /) in some connected
open subset V' of y the construction of action angle coordinates gives a
Hamiltonian vectorfield Xz on the fiber T ,,2,1 of B over (h,/) such that
1) XF is a linear combination of the Hamiltonian vectorfields X; and Xj

associated with the Hamiltonian functions L and H respectively;
2) Xr on T}, has only periodic orbits of period one;
3) X; and Xy generate a lattice L,, which defines T,,2,1 and depends
smoothly on (h,/)EV.
Thus @y, the piece of B over V, is diffeomorphic to ¥ XT2 On %, we
define the vertical vector-
fields of our Ehresmann
connection to be vectorfields /
which are linear combina-
tions of X; and Xy while
the horizontal vectorfields
are nonzero vectorfields on
V. Using this connection,
parallel translation ¢~ along
the piece I'" of y which
joins P to Q transports the
lattice Lp into the lattice L,
(see Figure 15). Thus ¢~ is a ——
diffeomorphism of sz onto Monodromy and bifurcation of the energy surfaces.
Té which is the gluing map

(h",0) h

\

10 \
4 1] of the bundle &M '(I'7). Similarly, parallel translation ¢* along

10
the piece I'* of y joining P to Q is the gluing map [ 42 1] of the bundle

EMNTH).
We now have to answer the delicate question of which sign to choose in ¢~
and ¢*. As remarked earlier the sign choice is determined by the orientation

15



of the bundle space (which induces an orientation on the two dimensional
torus T?) and the orientation induced by the action of the group S' on the
oriented fiber S'. In our case we determine the sign as follows. Let p €I'™
and p ET2 Suppose that Xy (p) and Xp(p) are linearly independent at p.
(This does not depend on the choice of p € Tz) We say that the Hamiltonian
vectorfield Xy on 7, has positive sense wnth respect to the ordered basis
{XL@), Xp(@)} of the lattice L,, if Xy(p)=aX,(p)+BXr(p) where either
a>0 and B>0 or a<0 and B<0; otherwise Xy has negative sense. When
parallel transporting L, along I' from P to Q, Xy and X are linear depen-
dent only at R™ (see Figure 15) that is, when / =0, because only then does Xy
have a periodic flow on T}%;,. As / changes sign, X; does also; more precisely,
X, (p)=—X.(p) where p=(h,/)ET™, [>0 and p’=(h,—I)ET™*. Since Xy
and Xy are continuous, when / changes sign, the sense of Xy changes as p
passes through R*. Since the only sense change occurs at R™ and by a suit-
able choice of Xy the sense of Xy at P can be made positive, the sense of Xy
at Q, after being transported along I'" (I'") from P to Q, is negative. There-
fore the signs of both attaching maps ¢ are negative. Hence parallel transla-
tion along I'” from P to Q followed by parallel translation along the inverse
of I'* from Q to P defines a diffeomorphism ¢ of T# into itself which is given

by
e [ 10]7'[ 10 10
¢=0@) ¢ = 21| |[-11|7 11|

¢ is the monodromy mapping of the bundle &M~ (y) where y=(T")"1oI'".

c. Other calculations of monodromy.

In addition to the above calculation, there are three other entirely different
arguments which compute the monodromy of the spherical pendulum. The first
is a physical geometric argument of Duistermaat [1] which will not be repeated
here. The second one due to F. Ehlers in Bonn in essence shows that &9 for
values close to (1,0) is isomonodromic with its 2-jet at (n,0). This result is
nontrivial because (n,0) is not a finitely determined singularity of &9 On the
other hand, the 2-jet of &N at (n,0) is the energy momentum mapping of the
two dimensional harmonic oscillator, for which the monodromy is easy to com-
pute. For further details see [9]. In this same paper Min Oo in Bonn gives the
following sequence of pictures (Figure 16) which geometrically computes the
map ¢« :H(T,)—H (T;}) on homology induced by the monodromy ¢. (Notice
that the conventmns in Flgure 16 are the same as those in Figure 5). Here it is
sketched how the two generators 8y,¢y of the homology group are transformed
when moved around the isolated singular value on y.

16



Figure 16.

Monodromy on Homology.

For 1=1,2,3,4 cycles §,,¢, are basis of homology of T,,l‘, obtained by homoto-
py from 61,,(,_,, 1=1,23,4. ¢ is homologous to € +8; and &4 and §,. Thus

10
=11

on homology.

17



3. Acknowledgements

To the expert reader my debt to Prof. J.J. Duistermaat in Utrecht is obvi-
ous. Also I would like to thank Drs. Min Oo and F. Ehlers for showing me
their alternative methods for calculating the monodromy. Finally the
geometric visualization of the gluing maps given in Figures 9-12 is due to Dr.
Tim Poston of UCLA.

4. References

[1] J.J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl.
Math., 33 (1980), 687-706.

[2] H. Goldstein, Classical mechanics, 1 ed., Addison-Wesley, Reading,
Mass., 1959.

[3] V.I. Arnold, Mathematical methods of classical mechanics, Springer Ver-
lag, New York, 1978.

[4] S. Smale, Topology and mechanics I, Invent. Math., 10 (1970), 305-331.

[5] K. Symon, Mechanics, Addison-Wesley, Reading, Mass, 1961.

[6] A.G. Webster, The dynamics of particles and rigid, elastic, and fluid
bodies, 2™ ed., Dover, 1959.

7 N. Steenrod, Topology of fiber bundles, Princeton Univ. Press, Prince-
ton, 1951.

[8] J. Wolf, Differentiable fibre spaces and mappings compatible with
Riemann metrics, Mich. Math. J., 11 (1964), 65-70.

[9] R. Cushman, F. Ehlers, and Min Oo, Three proofs of monodromy in the
spherical pendulum (in preparation).

‘Author s address:
Mathematics Institute
Rijksuniversiteit Utrecht
Budapestlaan 6

3508 TA Utrecht

The Netherlands

18



The Dynamics of Structured Populations

by Odo Diekmann

Physiological processes within individuals and behavioural patterns
displayed by individuals are some of the subjects studied by biologists.
Matters like growth, the succession of larval stages and reproduction are
pieces of a sometimes remarkably complicated jig-saw puzzle called the life
cycle.

On the other hand biologists also study the past and present state of large
populations and try to predict their future development by calculating how
the number of individuals changes as a consequence of reproduction and
interaction (for example, competition for food).

Structured population models are intended to bridge the gap between the
individual and the population level. The aim is to derive information about
the dynamics of the population from information about the dynamics of the
individuals or vice versa (cf. [1]).

The following three examples illustrate some of the main ideas.

1. If a predator eats (too) much prey he is not hungry any more and he
will hunt with less zeal. Thus one expects that the functional response F (i.e.,
the number of prey eaten per predator per unit of time as a function of the
prey density x) will be given by a graph as shown in Figure 1.

FT P

Figure 1.
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Assuming that the state of each predator can be completely characterized by
its satiation s =0 (i.e., some measure for the contents of stomach and gut) the
population can be descnbed by the satiation-density function s—n(z, s)

depending on time ¢. Thus n(t s)ds represents the number of predators
P g s P P

with satiation between s; and s, at time ¢.
One can then derive the following equation:

%—': (t,s) = — E;’T(g(s)n(t, s)—x(b(s)n(t,s)—b(s—w)n(t,s—w))

The first term at the right hand side describes the changes due to digestion
(with rate g(s)), and the second term describes changes due to the consump-
tion of preys of constant weight w which are caught with rate xb(s). Han-
dling times and changes in prey density x are neglected here because of
differences in time-scale: prey capture and digestion are fast processes com-
pared with reproduction, and slow processes compared with the actual han-
dling of the prey.

As t—oo the solution approaches a stable distribution 7i(s) and the func-
tional response is explicitly given by

F(x) =x {g(s)n‘(s)ds.

Numerical calculations based on this formula confirm the qualitative form of
Figure 1. Moreover, one can use experimental measurements ofg and b to
determine F quantitatively and subsequently use the result as an input for a
prey-predator total population model at the time-scale of reproduction. We
refer to [2] for further details.

2. Consider a population of unicellular organisms (bacteria or algae) and
assume that the physiological state of an arbitrary cell is completely
described by one quantity x which obeys a physical conservation law (for

§ \\L
\ <
N

SN~
\Q/ O

example, total mass or the amount of nitrogen atoms in the cell). We shall
call x ‘size’. Furthermore, assume that cells reproduce by binary fission into
two exactly equal daughters. The balance of growth, death and division
(with rates g, p and b, respectively) leads to the equation

%’; (t,x) = ——(g(x)n(t x)—mx)n(t, x)—b(x)n(t, x)+4b(2x)n(t, 2x),

which shows marked mathematical similarities to the equation in the first
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example. It turns out that the existence of a stable distribution hinges on the
biologically interpretable condition that x —g(2x) and x—2 g(x) are not
identical.

Density dependence (as a consequence of limited resources) can be incor-
porated by specifying how g depends on the available nutrients and how,
conversely, the food supply is influenced by consumption. References [3] are
an elaborate presentation of this example.

3. Predators may prefer mature prey above young prey or they may, on
the contrary, eat only eggs. Individuals of many species change their diet at
various stages in the life cycle and thus one may have to distinguish the

O—"O_*’—wé—u’O
L]

reproduction

predator according to its maturity. Cannibalism seems to be a major regulat-
ing mechanism for many species. In all of these situations one needs a popu-
lation structure (in terms of age, size, larval stadia ...) in order to describe the
interaction properly. See [4] for some models and results.

The first step in building these models consists of finding a suitable explicit
parametrization of the state of the individuals (satiation, size, age, ...). The
state of the populatlon is then given by the density function n descnblng the
distribution in the individual state space.

In the course of time the state of each specific individual changes (owing
to digestion, growth, aging, ..). Moreover, individuals are born and die.
(These words have to be interpreted broadly: in the first example a predator
which consumes a prey ”dies” while at the same time a new predator with w
added to the satiation ”is born”.) In the second step one draws up the bal-
ance of these processes to derive a (first order partial) differential equation
for the infinitesimal change in the population state. The coefficients in the
equation describe the functioning and the behaviour of the individuals but
the solution describes (properties of) the population as a whole. Starting
from biological knowledge one can incorporate the interaction of the popula-
tion and its environment (including other populations) by specifying in detail
how the birth, death and growth processes depend on environmental
quantities. Thus, as a rule, the equations become nonlinear.

When suitable boundary conditions are added, an initial condition
n(0,x) = ¢(x) at t=0 singles out a unique solution n(z, x;¢). It is
mathematically convenient to conceive of ¢ and n (¢,  ;¢) as elements of a
function space X (such as L; or C) and to write

n(t, ;¢) = S) ¢
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The family {S(¢)};>o forms a semigroup of (continuous) mappings from X
into X (i.e, S(0)=1 and S(¢;) S(¢2)=S(t;+13), 11,62=>0) such that the bal-
ance equation can be interpreted as

dn
dt

with A the infinitesimal generator of {S(#)},>o. Thus, these problems fit into
the general framework of dynamical systems on infinite dimensional spaces
[5,6]. An important special feature of these population models is the
occurrence of non-local terms (such as the ones with the transformed argu-
ments s —w and 2x) and this gives the problems a certain flavour reminis-
cent of functional differential equations, see [8].

The linear theory of stable distributions is based on positivity (Krein-
Rutman Theorem) and on compactness arguments [2,3]. The qualitative
theory of nonlinear age-structured models has developed rather rapidly in
recent years [4,7). For the general case hardly any work on nonlinear prob-
lems has been done. The objective of the project ‘Dynamics of structured
populations’ at CWI is to develop parts of a qualitative theory little by little,
by applying general techniques, such as bifurcation theory [9], to concrete
problems in this area.

A recent colloquium at CWI has brought about cooperation with several
biologists. Team-work has produced a set of examples (such as the ones
above) which are as simple as possible but yet biologically relevant. Their
mathematical analysis is now in progress. Step by step complexity and real-
ism will be built up in the hope that eventually a coherent general theory will
arise.

= An
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Mertens’ Conjecture disproved

by Herman te Riele *

By means of a rather simple computer program it has been established
that

0,(t) = 1.0615,
for n =2000 and
t = to=— 14045 28968 05929 98046 79036 16303 99781 12740
05919 99789 73803 99659 60762.52150 5

where
on(t) = 23w | 1| LT e,
=2 lo;$"(p))1
k() = (1—7)cos(mr)+ 7 lsin(wr), 0<r<]I,
p; = Ya+tiyj, 1<j<n, is the j-th non-trivial simple zero of the
Riemann zeta function,
and

my; = arg(p;§'(p;)), 1<j<n,

where arg stands for the usual argument of a complex number. Conse-

quently, the old conjecture of F. Mertens ([3], p.779) that | M (x)| <Vx for

all x>1, where M(x)=Z,<,mn) and p is the Mobius function, is false,

since every value of o,(¢) is a lower bound for lim sup M (x)x % ([1], p-
X —>00

329). Mertens’ conjecture would have implied the Riemann hypothesis [5], p.
320).

The major problem in this joint project of CWI and Bell Laboratories was
to find a value of ¢ for which o,(1)>1. The number ¢,, given above, was
found by Andrew Odlyzko by using the so-called lattice basis reduction algo-
rithm ([2], pp. 516-525). t, has the remarkable property that in 70 of the 2000
terms of oy000(2o) all cosine-values are very close to +1. In other words, in
these 70 terms all numbers y;to—m); are very close to a multiple of 27. The
problem of finding such a candidate ¢, is known as the problem of inhomo-
geneous diophantine approximation or Kronecker approximation. That it is
possible to solve this problem for 70 terms has been unthinkable until very
recently.

* This announcement reports on joint research with Andrew Odlyzko of Bell
Laboratories (Murray Hill, New Jersey, USA)
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It took the CRAY 1 computer of Bell Labs about three hours and a con-
siderable amount of memory to find 7.

A second problem was the high-precision computation of the imaginary
parts y; of the first 2000 non-trivial zeros of the Riemann zeta function which
was essential for the computation of

cos(y;to—my;), 1<j<n

in the above formula for o,(¢). This was carried out by the author on the
CDC CYBER 175 - 750 computers of SARA. The zeros were computed with
an accuracy of 105 decimal digits, with the help of a special multi-precision
package of R.P. Brent of the Australian National University. The zeros were
computed with the well-known Newton process from 28 digit approximations
already known ([4]). The total amount of (nightly) computer time needed was
about 40 hours.

The communication between CWI and Bell Labs was not maintained by
letters, but by electronic mail transmitted via the VAX-computers of the two
institutes. This enabled the participants to exchange their data and results
with a very high speed, frequency and reliability. Without this facility the
whole project would have taken at least six months. Now it was completed in
less than two months.

Only five years ago the author still believed that Mertens’ conjecture
could not be disproved “using present day computers and current techniques”
((4), p. 356). Now, the disproof shows how rapidly new algorithms and
super-fast computers have been developed in the past few years.
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Special Functions and Group Theory
Oberwolfach Meeting from 13* to 19 March 1983

by Bob Hoogenboom

The purpose of this meeting was to discuss recent developments in the
theory of special functions, with emphasis on the connections between special
functions and group theory.

First of all, what is a special function? Many (ridiculous) definitions have
been given, most of which exclude some very important examples of special
functions. The one and only good definition I know is by Richard Askey, in
[1]: A function is a special function if it occurs often enough that it gets a
name. Important examples of special functions are the exponential, the
gamma function, the Riemann zeta function, theta functions, Bessel func-
tions, Jacobi polynomials, etc. The first three examples were not discussed at
the meeting; the last three, and many others, were.

Secondly, how do special functions occur? The answer is: in many ways.
Let me give three examples. Theta functions occur in physics, for instance as
periodic solutions of Korteweg - de Vries type equations, and in connection
with completely integrable systems, cf. [2]. Other special functions occur as
solutions of certain second order differential equations, for instance the
hypergeometric function ,F(a,B;y;x), which is defined by

2, (@)n (B)n
FiaB;y;x) := > ———x", )]
2Fi(a,B;y;x) ’zo =%
where the shifted factorial (a), is defined by (a), :=a(a +1)...(a +n —1) for
n =12,... The hypergeometric function ,F is a solution of the equation
d? d . _
x(l—x)dx—zf +[y-—(a+,B+1)x]Ex—f =apf, )

cf. [3, §2.1.1]. Jacobi polynomials P *F)(x) are a special case of (1), namely

2Fi(—n,n +a+B+l;a+l;;—(l—x)). 3)

n+ta
P&P)(x): = [ -

As a third example, I would like to mention representation theory. Some spe-
cial functions appear in the study of linear representations of certain groups,
for instance as matrix entries in irreducible representations of Lie groups. An
example is the nth Bessel function
] 27
J,(x):= _feixsinO-—inﬂdg’ (4)
27

which arises as a matrix entry of the irreducible representations of the group
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of motions of the plane R?, cf. [5, Ch. IV]. I shall discuss some of the talks
grouped around four different themes.

1. Semisimple Lie Groups

Under this category, functions on groups were studied, mostly spherical
functions on semisimple Lie groups and generalizations. A spherical function
on a semisimple Lie group G with respect to a maximal compact subgroup K
is a K-invariant function on G/K which is a joint eigenfunction of all G-
invariant differential operators on G/K.

New interpretations for addition formulas for functions of the second
kind (that is, a second solution of a differential equation of type (2) which is
regular at o0) were given in terms of the  pair
(G, K) =(SO(n,1), SO(n —1,1)). Observe that the subgroup K is not com-
pact. Here the space G/K can be interpreted as the hyperboloid of one sheet
in R" (Talks by Durand, Mizony). Matrix elements of the representations of
S0(n,1) were studied by a global approach, without using Lie algebra theory
(Koornwinder : n =3, Takahashi: partial results for n =4). Other talks in
this category were by Reimann, Terras and Hoogenboom.

2. Special functions and q -analogues

Under this category special functions were studied by analytic methods,
without the use of group theory. The emphasis was put on the generalization
of classical results to the so-called g-analogues of special functions. As
someone told me lately, g-analogues are just the ordinary special functions,
only with all the I’s replaced by a q. There remains only one problem:
where are the 1’s ? To give an example, the binominal theorem
& (@n

a-x)* =3

!
n=0 M-

x" ®)

has the following ¢ -analogue
(ax;9)eo ®, (a:9)n #

X9 n=0(q:9)n *

(6)
(Ix1<1,lg | <1), where

0
@9)e = TT(1—ag"), (5g)s =(1—aX1~ag) -+ (1=ag" ")
n=0

By writing @« =¢“, where a is a nonnegative integer, (6) formally leads to (5)
if g11.

This phenomenon is inspired by the study of (parameters of) permutation
representations of the Chevalley groups (i.e, the finite analogues of Lie
groups), the theory of partitions, etc. (Talks by Gasper, Askey, Rahman).
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Other talks in this section dealt with orthogonal polynomials (Dunkl), and
solutions of differential equations (Sprinkhuizen-Kuyper, Trime’che)

3. Selberg integrals and Dyson conjectures

The classical Beta-integral reads as follows

1
a—1l71__ -1 _ I‘aI‘
{u (—u)du _Mr(wﬁ)’ @)

where I' is the classical gamma function. As I learned at this meeting, this
equation has been generalized in 1944 to the following equation

11
{...!}' gui“_l(l—ui)ﬁ_lg(ui —uj)zydul iy = ®
_ IZI T +nylat@ —Dy)B+@E—1)y)
e I'A+y)L'(a+B+@ +n —2)y) ’

see Selberg [4]. Unfortunately, Selberg published his result in an obscure
Norwegian journal, so that it remained unnoticed for some time. Formula
(8) was used to prove some conjectures by Dyson about the constant term in
a certain Laurent series expansion. The simplest instance of Dyson conjec-
tures is as follows. Here C.T. denotes the constant term in the Laurent series
expansion.

n !
CTII(—xx 1y = @KL )
i) (k"
The talks in this category were devoted to generalizations of these Dyson
conjectures, some of which are still open. (Talks by Macdonald, Stanton,
Metha, Kadell).

4. Signal processing and the Heisenberg group.

The Radon transform plays an important role in the theory of computer-
ized tomography. Also, in radar signal processing the Heisenberg group
arises. Talks in this section were on radar tomography (Grunbaum, Schempp,
Louis), and on the Heisenberg group (Greiner, Auslander).

The other talks (among a total of 37) dealt with Lie groups and physics
(Louck, Milne, Kramer, Onofri), Combinatorics and Special functions (Seidel,
Bannai, Foata), Gelfand pairs and hypergroups (Lasser, Letac), Seperation of
variables (Miller), Theta functions (Hazewinkel), and various subjects (Ron-
veaux, Delvos, Calogero, Hermann).

The meeting was organized by R.A. Askey (Madison), T.H. Koornwinder
(Amsterdam) and W. Schempp (Siegen). The proceedings will be published by
Reidel, Dordrecht, the provisional title being: ‘Special functions: group
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theoretic aspects and applications’ in the series ‘Mathematics and its applica-
tions.’
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Online Mathematical Literature Information

by S.I. Thé

Since the early seventies, online literature information systems have been
successfully used in the Western scientific communities as a profitable supple-
mentary tool to classical methods of literature search. For ‘current aware-
ness’ and SDI (Selected Dissemination of Information) purposes, as well as
for retrospective searching, this new (computerized) application has proven its
usefulness and its cost-effectiveness and is still being expanded in several
directions. Today many universities, research institutes, laboratories and
libraries, especially in the US, have a terminal with the possibility of com-
municating with at least one of the more than 80 hosts, offering hundreds of
databases/databanks searchable online.
Since 1980, the possibility of communicating with American and Euro-
pean hosts has also been available at CWI. Since last year most representa-
tive databases on mathematics - such as the Mathematical Reviews and the
Zentralblatt fir Mathematik - are searchable online. Furthermore - from this
year on - the Citation Index on Computer Science and Mathematics (ISI-
COMPUMATH) is also accessible online. To give a general view of the
databases available online which cover mathematical subjects, we give a sur-
vey of the possibilities of finding mathematical literature in the following list:
COMPENDEX (COMPuterised ENgineering inDEX) is the online version
of the Engineering Index Monthly and covers mainly
applied mathematics/mathematical statistics/computer sci-
ence. (9,600,000 refs. from 1969 to date; monthly update
8400 refs.)

COMPUMATH (COMPUter science and MATHematics citation index)
corresponds to the COMPUMATH Citation Index and
Current Contents and offers possibilities of online citation
from more than 300 ‘core’ journals on these subjects
(275,000 refs. from 1976 to date; monthly update 3000 refs.)

INKA-MATH is the online version of the ‘Zentralblatt fir Mathematik’.
(434,200 refs. from 1972 to date; monthly update 4000 refs.)

INIS (International Nuclear Information Service) - the online ver-
sion of Atomindex - covers applied mathematics. (770,000
refs. from 1970 to date; monthly update 6000 refs.)

INSPEC (International INformation Service for the Physical and
Engineering Communities) is the online version of Physical
Abstracts, Electrical and Electronics Abstracts and Com-
puter and Control Abstracts. (2,026,000 refs. from 1969 to
date; monthly update 14,000 refs.)
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MATHFILE is Mathematical Reviews online. (380,000 refs. from 1973 to
date; monthly update 3000 refs.)

NASA is the product of 2 bi-weekly abstract periodicals: the
Scientific and Technical Aerospace Reports (STAR) and the
International Aerospace Abstracts (IAA). (1,250,000 refs.
from 1962 to date; monthly update 5000 refs.)

NTIS (National Technical Information Service) of the US Dept. of
Commerce covers all scientific and technical research reports
sponsored by the US Government. (994,000 refs. from 1964
to date; biweekly update 2500 refs.)

PASCAL (Programme Appl. a4 la Selection et a la Compilation
Automatique de la Litterature) is the online version of the
French abstract journal ’Bulletin Signalétique’ - a multidisci-
pilinairy database of the Centre National de la Recherche
Scientifique (CNRS). (3,100,000 refs. from 1973 to date;
monthly update 40,000 refs.)

SCISEARCH  (Science Citation Index Online) covers scientific as well as
technical disciplines by citation analysis. (Over 3,700,000
refs. from 1974 to date; monthly update 42,000 refs.)

Finally two databases - ERIC (Educational Resources Information Center)

and MATHDI (MATHematische DIdaktik) - cover the subject Mathematics

Education.

Furthermore there are many databases which are useful for searching
other information in relation with mathematics, viz:

Conference Papers : CPI (Conference Papers Index) & INKA-KONF,
Corporate authorities : CORP database of ca. 50.000 names and addresses
of Scientific Institutes all over the world,

Current Research : SSIE (Smithsonian Sc. Inf. Exchange) Current
Research (in the US) database,
Dissertations/ Theses : CDI (Comprehensive Dissertations Index),

Management & Control : Management Contents,
Mathematical Biology : BIOSIS (BIOSciences Information Services),
Mathematical Geology : GEOREF of the American Geology Institute &

PASCAL
Mathematical Physics : SPIN (Searchable Phys. Inf. Notices) & INKA-
PHYS,
Mathematical Software : ISD (International Software Database) & PASCAL,
Microcomputers : Microcomputer Index,
Report Literature : SIGLE (System for Inf. on Grey Lit. in Europe)

and many other databases covering all kinds of information.

30



Abstracts of Recent CWI Publications

MC Tract 165. P.C.T. van der Hoeven, On Point Processes.

AMS 50G5S, 126pp.

ABSTRACT: In this tract point processes are studied, i.e. probability mechan-
isms according to which a collection of points is chosen in some multi-
dimensional space. We introduce in particular the notion of ‘visibility’ analo-
gously to ‘predictability’, which is defined for random processes in time.
Several smoothness conditions for point processes are considered in the context
of visibility. So-called ‘martingalelike measures’ are defined. Some applications
of this theory are indicated and the relevant quantities are determined in some
examples of point processes.

MC Tract 166. H.B.M. Jonkers, Abstraction, specification and implementation
techniques.

AMS 68B05, 317pp.

ABSTRACT: In this tract a number of ideas concerning abstraction, specifica-
tion and implementation are developed (Chapter 1-3), which are then applied
to the subject of garbage collection (Chapter 4-7).

On the basis of a simple model for abstraction, Chapter 1 discusses how
abstraction can be systematically used in problem solving and in classifying
large classes of problems and their solutions. In Chapter 2 the notion of a
‘structure’ is introduced, which allows arbitrary data structures to be modelled
without the use of ‘pointers’. It is then indicated how this concept could be
used as the basis of a specification language. A loose version of this language
is used in the other chapters for the description of algorithms and data struc-
tures. Chapter 3 describes a simple implementation method for both algo-
rithms and data structures, based on a four-step technique of establishing a
change of data representation. The method is demonstrated by means of a
derivation of the Deutsch-Schorr-Waite marking algorithm.

The purpose of Chapter 4 is the introduction of a model of storage
management, which is used in Chapter 5 to give a survey of the subject of gar-
bage collection. Starting from two abstract algorithms, the main garbage col-
lection and compaction algorithms are derived by means of ‘correctness-
preserving transformations’. The subject of Chapter 6 is the design of a
storage management system for a machine-independent ALGOL 68 implemen-
tation. The method used is that of Chapter 3, where an abstract model is used
to keep complexity under control. The design of the garbage collector, which is
kept abstract in the system developed in Chapter 6, is described in Chapter 7.
The approach is analogous to that of Chapter 6, except that the process of
transformation of the garbage collector is carried through up to the level of
machine code.

MC Tract 167. W.H.M. Zijm, Nonnegative matrices in dynamic programming.
AMS 90C39, 190pp.
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ABSTRACT: In this monograph we study dynamic programming models in
which the transition law is specified by a set of nonnegative matrices. These
models include Markov decision processes with additive and multiplicative util-
ity function, input-output systems with substitution, and controlled multitype
branching processes. It is shown that all these models can be studied within
one general matrix theoretical framework. This framework is built up by using
dynamic programming methods and is based on the theory of sets of general
nonnegative matrices.

In particular, we study asymptotic expansions of the vector function x(n)
defined by the dynamic programming recursion

x(n) = ;ng;(c Px(n—1) n=12,.

(with K a set of nonnegative square matrices with the product property), and
of its continuous-time counterpart

dx -
E(t) = N Qz(r) t€[0,00)

(with I a set of M-matrices with the product property). The results cover
many of well-known and also unknown results in e.g. Markov decision chains
with several performance criteria. Both finite and infinite dimensional models
are investigated.

MC Tract 168. J.H. Evertse, Upper bounds for the numbers of solutions of
diophantine equations.

AMS 10B10, 124pp.

ABSTRACT: In this monograph we derive upper bounds for the numbers of
solutions of diophantine equations taken from several classes. For example,
we show that the so-called Thue equation

F(xy):=apx"+ax" y+.+a,_ " '+a,y"=m in xy €% (*

has at most

n n
15(| 4 +1) 2|5 |G +D)
+ 6X7

n

solutions. (Here m is an integer such that |m | is"composed of ¢ distinct
primes and F(x,) is a binary form of degree n=3 with aq,....a, €Z and
ao70 such that the polynomial F(x,1) has at least three distinct zeros in the
field of algebraic numbers.) In the proof of this result we use an approxima-
tion technique due to Thue and Siegel. In certain special cases, much better
results are derived. For instance if n =3 and m =1 then we show that (*) has
at most twelve solutions. On the other hand, we also derive upper bounds for
the number of solutions of more general equations such as the Thue-Mahler
equation

[F(x,p)l =p’1(‘...p,k' in xpki...k, €7 with ged(x,y)=1,
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where p,...p, are fixed, distinct primes.

MC Tract 169. H.R. Bennett, D.J. Lutzer, Topology and order structures. (part
2).

AMS 54Fxx, 107pp.

ABSTRACT: This volume contains papers growing out of a two week
workshop on topology and linear orderings, sponsored jointly by NATO and
Texas Tech. University, in August, 1980. The volume contains four papers on
orderability, four papers on spaces related to linearly ordered spaces, e.g. via
mappings (dendrons, Hahn-Mazurkiewicz theory), nine papers on the general
topology of ordered spaces, plus a section on problems posed at the workshop.

IW232/83. J.A. Bergstra & J.W. Klop, An algebraic specification method for
processes over a finite action set.

AMS 68B10, 13pp., KEY WORDS: concurrency, nondeterministic process,
merge, process algebra, state transition system, algebraic specification, comput-
able process.

ABSTRACT: We combine the techniques of abstract data type specification
and of process algebra thus obtaining a flexible technique for process specifica-
tion, provided a finite action set is used.

IW233/83. A.K. Lenstra, Factoring multivariate polynomials over algebraic
number fields.

AMS 12A20, 15pp., KEY WORDS: polynomial algorithm, polynomial factori-
zation.

ABSTRACT: We present an algorithm for factoring multivariate polynomials
over algebraic number fields that is polynomial-time in the degrees of the poly-
nomial to be factored. The algorithm is an immediate generalization of the
polynomial-time algorithm for factoring univariate polynomials with rational
coefficients.

IW234/83. J.A. Bergstra, JW. Klop & J.V. Tucker, Algebraic tools for system
construction.

AMS 68B10, 11pp., KEY WORDS: hierarchical and modular systems, compo-
sition tools, system architectures, concurrency, communicating processes, pro-
cess algebra, fixed point equations, handshaking.

ABSTRACT: In this paper we consider a variety of computer systems and col-
lect a set of informal principles concerning their hierarchical construction.
These ideas are readily transformed into an elementary formal account of sys-
tems in which levels of abstraction are represented by algebras and the rela-
tionships between levels are represented by homeomorphisms. The algebraic
approach to systems is then exemplified in an algebraic theory of concurrent
systems based on a set of axioms called ACP - axioms for concurrent
processes - in part modelled on the calculi of R. Milner. Several theorems
concerning ACP are discussed.
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IW235/83. J.A. Bergstra & J.W. Klop, The algebra of recursively defined
processes and the algebra of regular processes.

AMS 68B10, 29pp., KEY WORDS: concurrency, nondeterministic process,
merge, process algebra, regular processes, recursively defined processes, fixed
point algebra.

ABSTRACT: We introduce recursively defined processes and regular
processes, both in the presence and absence of communication. It is shown
that both classes are process algebras. An interpretation of CSP in the regular
processes is presented. As an example of recursively defined processes, bag
and stack are discussed in detail. It is shown that the bag cannot be recur-
sively defined without merge. We also introduce fixed point algebras which
have interesting applications in several proofs. An example is presented of a
fixed point algebra which has an undecidable word problem.

IW236/83. J.A. Bergstra & J.V. Tucker, The axiomatic semantics of programs
based on Hoare’s logic.

AMS 35D35, 32 pp., KEY WORDS: programming language definition; pro-
gram specification; program verification; Hoare’s logic; nondeterministic
semantics.

ABSTRACT: This paper is about the Floyd-Hoare Principle which says that
the semantics of a programming language can be formally specified by axioms
and rules of inference for proving the correctness of programs written in the
language. We study the simple language WP of while-programs and Hoare’s
system for partial correctness and we calculate the semantics of WP as this is
determined by Hoare’s logic. This calculation is possible by using relational
semantics to build a completeness theorem for the logic. The resulting seman-
tics AX we call the axiomatic semantics for WP. This AX is not the conven-
tional semantics for WP : it need not be effectively computable or determinis-
tic, for example. A large number of elegant properties of A4S are proved and
the Floyd-Hoare Principle is reconsidered.

IW237/83. J.A. Bergstra & J.-J.Ch. Meyer, On specifying sets of integers.

AMS 68B15, 14pp., KEY WORDS: set-theoretical data types, initial algebra
semantics, equational and conditional specifications.

ABSTRACT: We consider the problem of deriving an algebraic specification
for a rather simple set-theoretical data type called SOI. This is merely a col-
lection of finite sets of integers equipped with an operator for inserting a
number into a set and another for determining the cardinality of a set. We
show that SOI has a finite conditional specification, but no finite equational
specification, under the initial algebra semantics for specifications invented by
the ADJ group.

TW238/83. J.W. de Bakker & J.I. Zucker, Compactness in semantics for merge

and fair merge.
AMS 68B10, 15pp., KEY WORDS: concurrency, merge, recursion,
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compactness, denotial semantics, fair merge, metric topology, Hausdorff
metric, trace theory, hyperspace.

ABSTRACT: An analysis of the role of compactness in defining the semantics
of the merge and fair merge operations is provided. In a suitable context of
hyperspaces (sets of subsets) a set is compact iff it is the limit of a sequence of
finite sets; hence, compactness generalises bounded nondeterminacy. The
merge operation is investigated in the setting of a simple language with ele-
mentary actions, sequential composition, nondeterministic choice and recur-
sion. Metric topology is used as a framework to assign both a linear time and
a branching time semantics to this language. It is then shown that the resulting
meanings are compact trace sets and compact processes, respectively. This
result complements previous work by De Bakker, Bergstra, Klop & Meyer.
For the fair merge, an approach using scheduling through random choice is
adopted - since a direct definition precludes the use of closed, let alone of
compact sets. In the indirect approach, a compactness condition is used to
show that the fair merge of two fair processes yields a fair process.

BW186/83. E.A. van Doorn, Connectivity of circulant digraphs.

AMS 05C40, 14pp., KEY WORDS: circulant (digraph), connectivity.
ABSTRACT: An explicit expression is derived for the connectivity of circulant
digraphs.

BW187/83, P.S. Krishnaprasad, S.I. Marcus & M. Hazewinkel, Current alge-
bras and the identification problem.

AMS 93El11, 46pp., KEY WORDS: identification of linear systems; nonlinear
filtering; estimation algebra; current algebra.

ABSTRACT: In this paper, we investigate the identification problem of linear
system theory from the point of view of nonlinear filtering. Following the
work of Brockett and Mitter, one associates with the problem in a natural way
a certain (infinite dimensional) Lie algebra of differential operators known as
the estimation algebra of the problem. For the identification problem the esti-
mation algebra is a subalgebra of a current algebra. In this paper we study
questions of representations and integrability of current algebras as they
impinge upon the identification problem. A Wei-Norman type procedure for
the associated Cauchy problem is developed which reveals a sequence of func-
tionals of the observations that play the role of joint sufficient statistics for the
identification problem.

BW188/83. J.K. Lenstra A.H.G. Rinnooy Kan, Scheduling theory since 1981:
an annotated bibliography.

AMS 90B35, 27pp., KEY WORDS: deterministic scheduling, jobs, single
machine, parallel machines, open shop, flow shop, job shop, stochastic schedul-
ing, hierarchical scheduling, algorithm, optimization, approximation, worst case
analysis, probabilistic analysis, computational complexity, classification.
ABSTRACT: This is an annotated bibliography of the literature on sequencing
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and scheduling problems that was published in 1981 or later. The literature
prior to 1981 is represented by some books and survey papers. This bibliogra-
phy will appear in Combinatorial Optimization: Annotated Bibliographies, edited
by M. O’hEigeartaigh, J.K. Lenstra and A.H.G. Rinnooy Kan, to be published
by Wiley, Chichester, in 1984.

BW189/83. G.A.P. Kindervater, J.K. Lenstra, Parallel algorithms in combina-
torial optimization: an annotated bibliography.

AMS 90Cxx, 22pp., KEY WORDS: parallel computer, computational com-
plexity, parallel algorithm, evaluation of expressions, recurrence relation,
numerical algebra, nonlinear optimization, sorting, graph, sequencing and
scheduling, maximum flow, linear programming, knapsack, traveling salesman,
dynamic programming, branch-and-bound.

ABSTRACT: This is an annotated bibliography of the literature on parallel
computers and algorithms that is relevant for combinatorial optimization. We
briefly survey the publications on machine models, computational complexity,
and numerical problems, then deal with papers on discrete computer science
and graph theory in more detail, and finally discuss the research reported so
far on specific problems of combinatorial optimization.

NW157/83. P.J. van der Houwen and B.P. Sommeijer, Linear Multistep
methods with minimized truncation error for periodic initial value problems.

AMS 65L05, 11pp., KEY WORDS: periodic initial value problems, linear mul-
tistep methods, accuracy.

ABSTRACT: A common feature of most methods for numerically solving
ordinary differential equations is that they consider the problem as a standard
one without exploiting specific properties the solution may have. Here we con-
sider initial value problems the solution of which is a priori known to possess
an oscillatory behaviour. The methods are of linear multistep type and special
attention is paid to minimization of those terms in the local truncation error
which correspond to the oscillatory solution components. Numerical results
obtained by these methods are reported and compared with those obtained by
the corresponding conventional linear multistep methods and by the methods
developed by Gautschi.

NW158/83. P.W. Hemker, Multigrid methods for problems with a small parame-
ter in the highest derivative.

AMS 65N20, 16pp., KEY WORDS: multigrid methods, convection diffusion
equation, singular perturbation problem, relaxation method.

ABSTRACT: Problems related to the multigrid (MG-) solution of elliptic
PDE'’s are discussed, when the coefficients of the highest derivative contains a
small parameter. For the equation in two dimensions discretizations of finite
element type are used, and for the solution of the resulting systems various
variants of the MG- method are considered. As special cases the anisotropic
diffusion and the convection diffussion PDE’s are studied. For the
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anisotropic diffusion equation it is shown that Incomplete LU (ILU) relaxa-
tion is often an efficient smoother but that it may fail in particular cases.
Incomplete Line LU (ILLU) relaxation is reliable and always has a small
smoothing factor. For the convection-diffussion equation the use of an asym-
metric restriction is investigated, in particular in combination with the
streamline-upwind Petrov-Galerkin discretization. A relation is given between
the choice of the artificial streamline-upwind parameter and the choice of the
asymmetric restriction in the MG-algorithm. An MG -algorithm with ILLU-
relaxation and a coarse grid correction with a (possibly asymmetric) Galerkin
coarse grid discretization appears to be a suitable choice for all problems con-
sidered.

NWI159/83. E.J. van Asselt, Termination strategies for Newton iteration in full
multigrid methods.

AMS 65H10, 16pp., KEY WORDS: full multigrid methods, Newton iteration,
termination strategy, Van der Pol equation.

ABSTRACT: For the solution of nonlinear problems we consider full mul-
tigrid methods, in which each nonlinear discrete system is solved by the New-
ton method. A fixed and an adaptive strategy for terminating the Newton
process on each grid are compared. For the adaptive strategy only the residu-
als outside the possible boundary and interior layers are used to terminate the
Newton process, and the number of Newton iterations is much smaller than
for the fixed strategy. Other advantages for the adaptive strategy are that no
arbitrary termination criterion has to be selected in advance, and boundary
and interior layers are detected automatically. Three numerical examples are
given. These concern two 1—D singular perturbed nonlinear elliptic equa-
tions, and the Van der Pol equation, discretized with the Osher-Engquist
difference scheme.

NWI160/83. E.J. van Asselt, On M -functions and nonlinear relaxation methods.
AMS 65H10, 8pp., KEY WORDS: nonlinear relation methods, Newton-
bisection method, M -functions.

ABSTRACT: Globally convergent nonlinear relaxation methods are considered
for a class of BVPs, where the discretizations are continuous M -functions. It
is shown that the equations with one variable occurring in the nonlinear relax-
ation methods can always be solved by Newton’s method combined with the
bisection method. The nonlinear relaxation methods are used to get an initial
approximation in the domain of attraction of Newton’s method. Numerical
examples are given.

NW161/83. J.G. Verwer & K. Dekker, Step-by-step stability in the numerical
solutions of partial differential equations.

AMS 65M10, 25pp., KEY WORDS: initial value problems, partial differential
equations, stiff ordinary differential equations, nonlinear numerical stability,
energy method, shallow water equations.
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ABSTRACT: The subject of this paper is numerical stability in the time-
integration of evolutionary problems in partial differential equations, primarily
nonlinear problems. Following the method of lines approach, and supported
by the strong developments which have taken place in the field of nonlinear
stiff ordinary differential equations, the authors examine various useful numeri-
cal stability concepts for nonlinear partial differential equations, such as con-
tractivity, monotonicity and conservation. The paper is of an expository
nature. Its main objective is to illustrate the close connections between stiff
problems and partial differential equations with respect to nonlinear stability.
The well-known energy method plays an important role in this respect. Several
examples of partial differential equations are treated so as to illustrate these
connections. Now and then the authors embark upon applications which result
from the nonlinear stability analysis, mainly in the two sections which deal
with the well-known shallow water equations. For these equations a rigorous
nonlinear stability analysis is presented.

SW96/83. A.W. Ambergen & W. Schaafsma, Interval estimates for posterior
probabilities in a multivariate normal classification model.

AMS 62H30, 9pp., KEY WORDS: estimating posterior probabilities, classifi-
cation, discriminant analysis, multivariate normal distributions.

ABSTRACT: This paper is devoted to the asymptotic distribution of estima-
tors for the posterior probability that a p-dimensional observation vector ori-
ginates from one of k normal distributions with identical covariance matrices.
The estimators are based on training samples from the k distributions
involved. Observation vector and prior probabilities are regarded as given
constants. The validity of various estimators and approximate confidence
intervals is investigated by simulation experiments.

SD115/83. B.F. Schriever, Attitude Research on public transport in Rotterdam
and surroundings: a statistical analysis of a survey on hypothetical journeys. (in
Dutch)

KEY WORDS: analysis of variance, general linear model, asymptotically effi-
cient estimators.

ABSTRACT: In this report travelers’ judgements about hypothetical journeys
by public transport are analysed with an analysis of variance model. In the
model a dependence structure is assumed between the different judgements.
The model parameters are asymptotically efficiently estimated.

TW242/83. O. Diekmann, H.J.A.M. Heijmans & H.R. Thieme, On the stability
of the cell size distribution.

AMS 92A15, 32pp., KEY WORDS: size-dependent growth, reproduction by
fission, balance equation, first order partial differential equation, transformed
arguments, stable size distribution.

ABSTRACT: A model for the growth of a size-structured cell population
reproducing by fission into two identical daughters is formulated and analysed.
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The model takes the form of a linear first order partial differential equation
(balance law) in which one term has a transformed argument. Using semi-
group theory and compactness arguments we establish the existence of a stable
size distribution under a certain condition on the growth rate of the individu-
als. An example shows that one cannot dispense with this condition.

TW243/83. H.A. Lauwerier, Chaos and order.

AMS 34C35, 38pp., KEY WORDS: chaotic behaviour, dynamical systems,
strange attractors, Feigenbaum’s constant, KAM theorem.

ABSTRACT: The concept of ‘chaos’ considered here is the apparent stochastic
behaviour of deterministic dynamical systems, such as for example a system of
ordinary differential equations or an iterative planar map. During the last ten
years there has been explosive progress in this field. Partly through the use of
computer experiments, important results have been obtained by both
mathematicians and physicists. An example is Feigenbaum’s period doubling
and the so-called KAM theorem. With examples from biology and experi-
mental physics we give in an illustrative way an impression of the fascinating
and complicated aspects of this field. Particular examples are turbulent flows
of a fluid, the Lorenz attractor, celestial mechanics, the KAM theorem, self-
similarity of strange attractors, the Heénon attractor, the map
X, +1=ax,(1—x,), 0<a <4, Feigenbaum’s constant, the Julia theory, chaotic
behaviour of analytic functions, and finally some variations on a biological
theme.

TW244/83. J.J.E. van der Meer, Clines induced by a geographical barrier.

AMS 35Bxx, 59pp., KEY WORDS: nonlinear diffusion equations, transmis-
sion condition.

ABSTRACT: The consequences of a geographical barrier in the habitat are
studied in the context of a one-dimensional reaction-diffusion model. By the
symmetry of the problem, each steady state solution generates three more - not
necessarily different - solutions. It is proved that only monotone steady state
solutions can be stable. We consider a special type of steady state solutions
which occur in pairs of two by their symmetry. Necessary and sufficient condi-
tions for these steady states to be stable are derived. A cline is a nonconstant
stable steady state solution. It is proved that two is the maximum number of
clines of the special type. Moreover, for large values of the parameter, i.e., for
small penetrability of the barrier, it is proved that only steady state solutions
of the special type can be stable. Finally, it is shown that the w-limit set of
any initial condition is a steady state solution.

TW245/83. H.A. Lauwerier, Bifurcation of a map at resonance 1:4

AMS 39Axx 48pp.,

ABSTRACT: The maps considered here find their origin in a discrete model of
population dynamics of the logistic type and containing a delay term. The
main theme is to obtain full understanding of the various computer plots in
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the case that the multipliers of the equilibrium state are close to =*i. It is
shown how the theory of normal forms can be used here as an effective tool.
For a discussion of the possible limit cycles the mapping is compared to a
corresponding flow. A few new results have been obtained giving additional
information for this hitherto incompletely known case.

TW246/83. H.A. Lauwerier, Local bifurcation of a logistic delay map.

AMS 58F14, 30pp.

ABSTRACT: The difference equation x, +=ax,(1—(1—b)x, —bx, ) is con-
sidered as an iterative Cremona transformation in the projective plane. Only
local bifurcation phenomena are considered here. It is shown that the theory
of normal forms can be used to explain or predict what can be seen on a per-
sonal computer with a visual display. In a set of Appendices the technique of
the normal forms is given with an application to a quadratic map of the kind

x'=y, - y'=dx +By+Cx*+Dxy +Ey2.

Explicit formulas are given for the shape and the size of the Hopf ellipse and
for the axis of the Arnold forms at weak resonance points.

ZW197/83. Andries E. Brouwer and Arjeh M. Cohen, Local recognition of Tits’
geometries of classical type.

AMS 51A05, 12pp., KEY WORDS: building, geometry of Lie type.
ABSTRACT: A method, based on Tits’ work and involving an idea of M.
Ronan, is developed for recognizing geometries which are locally buildings of
classical type as quotients of buildings. Two applications are treated in detail
showing that every finite nearly classical near polygon must be a dual polar
space and that in the finite case of Cooperstein’s theorem characterizing
geometries of Lie type D, the hypotheses can be weakened considerably.

ZW198/83. A.E. Brouwer & A.M. Cohen, Computation of some parameters of
Lie geometries.

AMS 51B25, 21pp., KEY WORDS: Lie geometries, association schemes.
ABSTRACT: In this note we show how one may efficiently compute the
parameters of a finite Lie geometry and we give the results of such computa-
tions in the most interesting cases. We also prove a lemma which is useful for
showing that thick finite buildings do not have quotients which are (locally)
Tits geometries of spherical type.

ZW199/83. T.H. Koornwinder & J.J. Lodder, Generalised functions as linear
functionals on generalized functions.

AMS 46F05, 13pp., KEY WORDS: symmetrical theory of generalised func-
tions, tempered distributions, products of generalised functions.

ABSTRACT: We give a sketch of a rigorous foundation of the model for a
symmetrical theory of generalised functions introduced earlier by the second
author. Starting with a suitable subspace PC of the space S’ of tempered
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distributions, we introduce a space SGF of ‘new’ generalised functions as a
space of linear functionals on PC. Both on PC and SGF we have all the
usual operations including a product. On PC this product operation is some-
what arbitrary but on SGF it is canonical and much nicer. Finally, PC and
SGF are put together into a space GF of linear functionals on SGF.

ZW200/83. J. de Vries, G -spaces: compactifications and pseudocompactness.
AMS 54H15, 11pp., KEY WORDS: G-space, G -compactification, equivariant
embedding, pseudocompactness.

ABSTRACT: This paper consists of two parts. In the first part, some of the
existing theory on ‘equivariant topology’ is reviewed. It contains almost no
new facts, but the material is used to explain the author’s point of view. In
the second part, some new results are proved. For example, if G is a locally
compact topological group, then the concept of G-pseudocompactness for
Tychonov G -spaces, as introduced by the author in an earlier paper, turns out
to coincide with ordinary pseudocompactness. Also the relationship with G-
pseudocompactness as introduced by Antonyan, namely, the equality of the
maximal G-compactification and the Stone-Cech compactification, is investi-
gated.

ZN105/83. A.E. Brouwer, A note on the uniqueness of the Johnson Scheme.
AMS 05C25, 6pp., KEY WORDS: Johnson scheme, Tetrahedral graph.

n
ABSTRACT: Given a graph with m] vertices, valency m(n —m) such that

each edge is in n —2 triangles and any two nonadjacent vertices have at most 4
common neighbours, Dowling proved that it is isomorphic with the graph of
m-subsets of an n-set with Johnson distance 1 provided that n >2m(m —1)+4.
Here we improve this bound sufficiently to obtain uniqueness in the desired
case m =4, n =24. (Our lower bound for n is n =max(6m — 1,m>+2m —1).)
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CWI Activities
Autumn 1983

With each activity we mention its frequency and (between parentheses) a
contact person at CWL. Sometimes some additional information is supplied,
such as the location if the activity will not take place at CWL

- ‘Mathematics and Computer Science’ Symposium. On the occasion of the
recent change of names from ‘Mathematical Centre’ to ‘Centrum voor
Wiskunde en Informatica’ (= Centre for Mathematics and Computer
Science). 25 Nov. 1983. Invited speakers:

A.J. Baddeley (University of Bath, England)

Stochastic geometry and image analysis.

D.S. Scott (Carnegie Mellon University, Pittsburgh, U.S.A.)
Infinite words.

C.B. Jones (University of Manchester, England)

Systematic program development.

J.T. Schwartz (Courant Institute, New York, US.A.)
Dextrous multifinger manipulation.

L. Lovasz (Eotvos University, Budapest, Hungary)
Combinatorial algorithms.

- Introductory colloquium for teachers. Weekly. (J. de Vries)

- Study group on Analysis on Lie groups. Joint with University of Leiden.
Biweekly. (T.H. Koornwinder)

- Seminar on Theta functions. Biweekly. (G.F. Helminck)

- Lecture series ‘Heisenberg group and Weil representation’. Biweekly. (G.F.
Helminck)

- Seminar on Algebra and Geometry. Biweekly. (A.M. Cohen).

- Study group on Cryptography. Biweekly. (A.E. Brouwer)

- Colloquium ‘STZ’ on System Theory, Applied and Pure Mathematics.
Twice a month. (J. de Vries)

- Study group ‘Biomathematics’. Joint with University of Leiden. (J. Gras-
man)

- Study group ‘Nonlinear analysis’. Joint with University of Leiden. (S.A.
van Gils)

- Progress meetings of the Applied Mathematics Department. Biweekly.
(S.A. van Gils)

- Study group ‘Semiparametric estimation theory’. Biweekly. (R.D. Gill)

- Study group ‘Stochastic processes and their applications’. Joint with Tech-
nological University Delft. Biweekly. (P. Groeneboom)

- Lunteren meeting on Stochastics. 14,15,16 Nov. 1983 at ‘De Blije Werelt’,
Lunteren. The following lecturers have been invited:

AJ. Baddely (Bath), D.M. Mason (Newark), S. Johansen
(Copenhagen), B. Ripley (Glasgow), F. Papangelou (Manchester), H.
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Rost (Heidelberg). (R. Helmers)

- Progress meetings of the Mathematical Statistics Department. Monthly.

(R.D. Gill)

- Ninth Conference on the Mathematics of Operations Research and Systems

Theory. 11,12,13 Jan. 1984 at Lunteren. Part of this conference is the
Benelux Meeting on Systems and Control 1984. Invited lecturers are
R.E. Bixby (Evanston/Bonn), G.L. Nemhauser (Ithaca/Leuven), M.F.
Neuts (Newark/Stuttgart), P.J. Schweitzer (Rochester) on Operation
Research and K.J. Astrom (Lund), A. Benveniste (Rennes) on System
Theory. (E.A. van Doorn)

- National colloquium on Optimization. Twice a year. (J.K. Lenstra)
- System Theory Days. Irregular. (J.H. van Schuppen)
- Study group on System Theory. Biweekly. (J.H. van Schuppen)

- Colloquium on Parallel Computers and Computations. Joint with Univer-

sity of Utrecht. Biweekly, at Utrecht. (J.K. Lenstra)

- Colloquium ‘Numerical Mathematics in Practice’. Biweekly. (J.G. Verwer)
- Study group on Differential and Integral Equations. Biweekly. (H.J.J. te

Riele)

- - Conference on Numerical Mathematics. 26,27,28 Sept. 1983 at Zeist.

Invited speakers: K. Bohmer (Universitat Marburg): Defect correction
and/or a posteriori error estimates;

LS. Duff (AERE Harwell): (1) Basic aspects of numerical software; (2)
Organization of numerical software libraries;

T. Dupont (University of Chicago): A posteriori error estimation for
evolution equations with time-dependent meshes;

H.J. Stetter (Technische Universitit Wien): (1) The role of defect
correction in interval arithmetic, a general approach; (2) Details of
algorithms;

M.J. Kascic (Control Data Minnesota): (1) An introduction to vector
processing with application to numerical methods; (2) Vorton dynam-
ics: a case study of developing a fluid dynamics model for a vector
Processor.

(J.G. Verwer)

- Colloquium ‘From specification to implementation’. Biweekly. (J. Heering)

- Course on B. (L.J.M. Geurts)

- Study group on Graphic Standards. Monthly. (P.J.W. ten Hagen)

- Study group on Semantics of Programming. Triweekly. (J.W. Klop)
- Data Flow Club. Irregular. (A.H. Veen)

- Seminar on ‘Adaptive Estimation’, joint with University of Leiden, 7-9 Dec.

1983; lecturer P. Bickel from Berkeley. (R. Helmers)
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Visitors to CWI from abroad.

R.L. Baber (Bad Homburg, West Germany) 18 November 1983. A. Baddeley
(Bath, UK) 24-25 November 1983. E. Badertscher (University of Bern,
Switzerland) 1983-1984. Y. Benoist (University of Paris VII, France) 4 No-
vember 1983. E. Best (GMD, Bonn, West Germany) 1-31 October 1983.
P.J. Bickel (University of California, Berkeley, USA) 7-9 December 1983.
S.D. Brookes (Carnegie Mellon University, Pittsburgh, USA) 13-16 July
1983. H. Brunner (University of Fribourg, Switzerland) 5 days in December
1983. R. Byrne (Brighton Polytechnics, UK) 20 June - 15 July 1983. K.S.
Chaudhuri (Jadaupur University, Calcutta, India) 12 November 1983. F.
Cirello (Brighton Polytechnics, UK) 20 June - 15 July 1983. J. Darlington
(Imperial College, London, UK) 3-4 November 1983. D.J. Evans (Loughbor-
ough University of Technology, UK) 2 days in October 1983. B.L. Fox
(University of Montreal, Canada) 8-9 August 1983. S. Glasner (Tel Aviv
University, Israel) 4 months in 1983/1984. Glowinski (INRIA, Le Chesney,
France) in 1983/1984. R.L. Griess Jr. (University of Michigan, Ann Arbor,
USA) 4-6 August 1983. F. Gotze (Cologne, West Germany) 19 October 1983.
M. Gyllenberg (Helsinki, Finland) 11-12 July 1983. J.I. Hall (East Lansing,
Michigan, USA) 27-28 October 1983. J. Han (Academica Sinica, Peking,
Rep. of China) 23 October 1983 - 22 January 1984. S. Hubbell (University
of Iowa, USA) 1 November 1983. M. Ianelli (Trento, Italy) 2 or 3 days in
November 1983. P. Janssen (Diepenbeek, Belgium) 28-29 July 1983. E.L.
Lawler (University of California, Berkeley, USA) in August 1983. A. Lerat
(Ecole Nat. Superieure d’Arts et Métiers, Paris, France) 3 days in
January/February 1984. C.L. Liu (University of Illinois, USA) 2 weeks in
March 1984. L. Lovasz (Eotvos University, Budapest, Hungary) 1 week in
November 1983. M.C. Mackay (McGill University, Montreal, Canada) 3
days in September 1983. F. Maffioli (Politecnico di Milano, Italy) 8-26 Au-
gust 1983. D.M. Mason (University of Delaware, USA) 21-22 November
1983. G. Mason (University of California, Santa Cruz, USA) 4-7 July 1984.
H. Matano (Hiroshima University, Japan) 11-12 July 1983. B. Mélése (IN-
RIA, Le Chesnay, France) 21-23 November 1983. S.K. Mitter (MIT, Cam-
bridge, Massachusets, USA) 15-31 August 1983. Th. Neusmann (Darmstadt,
West Germany) 8 July 1983. R. Nisbet (Glasgow University, UK) 1 week in
autumn 1983. T.J. Ott (Bell Lab., Holmdel, USA) 5 July 1983. J.L. Palacios
(Universidad Simon Bolivar, Caracas, Venezuela) 3 August 1983. H.O. Peit-
gen (University of Bremen, West Germany) 17 October 1983. G. Picci
(University of Padua, Italy) in August 1983. A.J. Pritchard (University of
Warwick, Coventry, UK) 6 September 1983. J.M. Sanz-Serna (Univ. de Val-
lodolid, Spain) 1-6 November 1983. G. Schiffner (University of Bremen,
West Germany) 3 November 1983. M. Schumacher (Dortmund, West Ger-
many) 28 November - 2 December 1983. Mrs. J. Scott (Oxford University
Computing Lab., UK) 5 days in December 1983. F. Timmesfeld (Justus-



Liebig-Universitit, Giessen, West Germany) 31 October - 4 November 1983.
J. Tiuryn (Warssaw, Poland) 16 July - 31 August 1983. J.V. Tucker (Leeds
University, UK) 15 July - 31 August 1983. Zhen-Dong Yuan (East China
Normal University, Shanghai, Rep. China) 2 September 1983. J.I. Zucker
(SUNY at Buffalo, USA) 15 July - 31 August 1983.
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