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SUMMARY

A general purpose of mathematical models is to accurately mimic some observed phe-
nomena in the real world. In financial engineering, for example, one aim is to reproduce
market prices of financial contracts with the help of applied mathematics.

In the Foreign Exchange (FX) market, the so-called implied volatility smile plays a
key role in the pricing and hedging of financial derivative contracts. This volatility smile
is a phenomenon that reflects the prices of European-type options for different strike
prices; the implied volatility tends to be higher for options that are deeper In The Money
and Out of The Money than options that are approximately At The Money. In order for
a pricing model to be accepted in the financial industry, it should at least be able to ac-
curately price back the most simple financial derivative contracts, namely European call
and put options. In other words, the model should calibrate well to the implied volatility
smile observed in the financial market. The calibration should not only be accurate, but
also reasonably fast.

Another feature we wish the financial asset model to possess, is an accurate pric-
ing of so-called exotic financial products. Exotic products are not traded on regular
exchanges, but over-the-counter, i.e. directly between two parties without the super-
vision of an exchange. An example is a barrier option, which is a financial contract of
which its payoff depends on the possible event that the underlying asset price hits a
certain pre-determined level. The model prices of these path-dependent contracts are
determined by the transition densities of the relevant underlying asset(s) between future
time-points. These transition densities are reflected by the forward volatility smile the
model implies; in order for the model to accurately price exotic products, it should yield
realistic forward volatilities.

The models discussed in this thesis can be considered as enhancements of Dupire’s
classical and famous Local Volatility (LV) model [34, 35], which by its non-parametric lo-
cal volatility component yields a perfect calibration to any set of arbitrage-free European-
type options prices. We will consider the addition to the LV model of stochastic volatil-
ity, resulting in the stochastic local volatility (SLV) model [75, 80, 82], and we also add
stochastic interest rates – for both extensions, a perfect calibration is preserved. As an
alternative to the LV model, Hagan et al. [63] introduced the SABR model. We further
enrich this model by time-dependent parameters and propose an efficient calibration
procedure. Also, we introduce a novel asset model dynamics class, the Collocating Lo-
cal Volatility (CLV) model. Similarly to an SLV model, by construction the CLV model is
perfectly calibrated to liquid (i.e. heavily traded) market quotes, while maintaining the
flexibility in accurately capturing the forward volatility smile.

In some more detail, in Chapter 2 we explain for a general SLV model the local volatil-
ity component, which consists of Dupire’s local volatility component and a non-trivial
conditional expectation. We present a Monte Carlo approach for the efficient evalua-
tion of a general SLV model. The approach is based on an intuitive and easy to imple-
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ment non-parametric approximation of the conditional expectation, which consists of
assigning asset path realizations to appropriate ‘bins’. This approximation is embedded
in a simulation scheme that is strongly based on a so-called Quadratic Exponential (QE)
scheme [5], which introduces less bias than more common Euler schemes. We show by
means of numerical experiments and an error analysis that our approach yields accurate
prices for European-type options. Also, we price forward-start options and determine
the corresponding forward volatility smile; we observe that the Heston-SLV model pre-
serves the current shape of the implied volatility smile, which is typically more in line
with financial market observations.

The time-dependent FX-SABR model is discussed in Chapter 3. In contrast to the
constant-parameter SABR model introduced by Hagan et al. [63], the time-dependent
model can be calibrated to an implied volatility surface; in this way, it captures as much
market information as possible. However, the calibration of time-dependent parame-
ters is non-trivial. We propose an efficient calibration approach that is based on effective
parameters, which can be considered as ‘sophisticated averages’ of the corresponding
time-dependent parameters. By considering the qualitative effects of the SABR parame-
ters on the shape of the implied volatility smile, we derive ‘mappings’ between the time-
dependent parameters and their ‘constant counterparts’. The mappings allow for an ef-
ficient calibration of the time-dependent parameters. Numerical experiments confirm
that both the separate and combinated performance of the effective parameters are ac-
curate. Also, we numerically show that the effective parameters derived yield highly sat-
isfactory calibration results. In a barrier option pricing experiment, the time-dependent
FX-SABR model yields more accurate prices than the traditional LV and SABR models.

We consider two types of hybrid local volatility models in Chapter 4, namely the
SABR and Heston models enhanced by Dupire’s local volatility component, and the Lo-
cal Volatility model enriched with stochastic interest rates. For both model classes one
needs to determine an, above mentioned, non-trivial (conditional) expectation, which
is expensive to compute and cannot be extracted from the market quotes. In this chap-
ter, we propose a second generic efficient Monte Carlo approach to these hybrid models,
which consists of two projection steps. The first step is based on stochastic collocation,
where in general a certain ‘expensive’ variable of interest Y is approximated by a function
of a ‘cheaper to evaluate’ random variable X – more concrete, a Lagrange interpolation
is established through so-called optimal collocation points that are determined based
on the distribution of X . The second projection step relies on standard regression tech-
niques. We numerically show that our approach yields a fast Monte Carlo evaluation
and highly accurate pricing results for European-type options. Also, we provide an er-
ror analysis for a model consisting of two correlated Geometric Brownian Motions, the
‘2D-GBM’ model.

In Chapter 5 we introduce a novel asset price model class, namely the Collocating
Local Volatility (CLV) model. The CLV model consists of two elements, a kernel pro-
cess and a local volatility function. The kernel process can be chosen freely and deter-
mines the forward volatility smile the model implies. The local volatility function, which
is constructed based on stochastic collocation, ensures a perfect calibration to finan-
cial market quotes. We compare three different kernel processes within the CLV model
framework, namely the Ornstein-Uhlenbeck (OU) and Cox-Ingersoll-Ros (CIR) process
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and the Heston model. For each of these kernels, we consider the effect of the kernel
parameters on the shape of the forward volatility smile. Subsequently, we calibrate the
OU-CLV, CIR-CLV and Heston-CLV models to FX barrier option prices observed in the
market by means of a Monte Carlo simulation, where we make use of Brownian bridge
techniques.

With the work in this thesis, one is able to price complicated FX derivatives by ef-
ficient Monte Carlo methods, while an accurate calibration to liquid market quotes is
preserved. The work developed in this PhD thesis is based on journal articles, that have
either been published or been submitted during the doctoral research period.





SAMENVATTING

Een doel van wiskundige modellen is om zo nauwkeurig mogelijk bepaalde fenomenen
uit de wereld te modelleren. In de financiële sector is bijvoorbeeld een doel om markt-
prijzen van financiële contracten te reproduceren met behulp van toegepaste wiskunde.

In de buitenlandse valutamarkt (de ‘FX markt’) speelt bijvoorbeeld de zogenoemde
impliciete volatiliteit een belangrijke rol bij het waarderen van financiële derivaten. De
geobserveerde impliciete volatiliteitsfunctie is een fenomeen dat de prijzen van Euro-
pese opties representeert voor verschillende uitoefenprijzen; de impliciete volatiliteit
neigt hoger te zijn voor opties die dieper In The Money en Out The Money zijn, dan voor
opties die bij benadering At The Money zijn. Een andere eis aan een waarderingsmo-
del om geaccepteerd te worden in de financiële industrie, is dat het tenminste de meest
simpele financiële derivaten nauwkeurig kan terugwaarderen, namelijk Europese call-
en putopties. Met andere woorden, het model moet goed gecalibreerd kunnen worden
aan de impliciete volatiliteitsfunctie die in de financiële markt wordt waargenomen. De
calibratie moet niet alleen accuraat zijn, maar ook snel genoeg.

Een andere gewenste eigenschap van een financieel model, is dat het nauwkeurig
zogenoemde exotische financiële producten kan waarderen. Exotische producten wor-
den niet verhandeld op reguliere beurzen, maar direct tussen partijen zonder de tussen-
komst van een beurs. Een voorbeeld is een barrieroptie, waarvan de uitbetaling afhangt
van de mogelijke gebeurtenis dat een onderliggende wisselkoersprijs een vooraf bepaald
niveau bereikt. De modelprijzen van deze padsafhankelijke contracten worden bepaald
door de ‘transitiekansen’ van de relevante onderliggende prijzen, tussen toekomstige
tijdstippen. Deze ‘transitiekansen’ worden gerepresenteerd door de voorwaartse vola-
tiliteitsfunctie die het model impliceert; een model moet een realistische voorwaartse
volatiliteit impliceren om exotische financiële producten accuraat te kunnen waarderen.

De modellen die in dit proefschrift behandeld worden, kunnen beschouwd worden
als verbeteringen van Dupire’s klassieke en beroemde Locale Volatiliteitsmodel (LV) [34,
35], dat vanwege een niet-parametrische locale volatiliteitscomponent perfect gecali-
breerd kan worden aan een willekeurige set van arbitrage-vrije Europese optieprijzen.
We zullen de toevoeging van stochastische volatiliteit aan het LV model beschouwen,
hetgeen resulteert in het zogeheten stochastische locale volatiliteitsmodel (SLV) [75, 80,
82], en we voegen ook stochastische rente toe — met beide uitbreidingen wordt een per-
fecte calibratie behouden. Als een alternatief voor het LV model, introduceerden Hagan
et al. [63] het SABR model. Wij verrijken dit model met tijdsafhankelijke parameters en
stellen een efficiënte calibratieprocedure voor. Ook introduceren we in dit proefschrift
een nieuwe modelklasse, namelijk het Collocerende Locale Volatiliteitsmodel (CLV). Net
als het SLV model, kan het CLV model perfect gecalibreerd worden aan de prijzen van
intensief verhandelde opties, terwijl het model de flexibiliteit behoudt om accuraat de
voorwaartse volatiliteitsfunctie te behouden.

In meer detail, in Hoofdstuk 2 leggen we voor een algemeen SLV model de locale
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volatiliteitscomponent uit, dat bestaat uit Dupire’s locale volatiliteit en een niet-triviale
conditionele verwachting. We presenteren een Monte Carlo methode voor een efficiënte
evaluatie van een algemeen SLV model. De methode is gebaseerd op een intuïtieve niet-
parametrische benadering van de conditionele verwachting, die gemakkelijk geïmple-
menteerd kan worden. In deze methode kennen we de realisaties van de onderliggende
prijzen toe aan de ‘deelintervallen’. De benadering is geïmplementeerd in een simulatie-
schema dat gebaseerd is op het Kwadratische Exponentiële schema [5], dat minder ruis
veroorzaakt dan de conventiële Euler schema’s. Door middel van numerieke experimen-
ten en een foutenanalyse laten we zien dat onze methode accurate prijzen bepaalt voor
Europese opties. Ook waarderen we ‘voorwaartsstartende’ opties en bepalen de bijbe-
horende ‘voorwaartse volatiliteitsfunctie’; we observeren dat het Heston-SLV model de
vorm van de volatiliteitsfunctie behoudt, die in overeenstemming is met observaties in
de financiële markt.

Het tijdsafhankelijke FX-SABR model wordt behandeld in Hoofdstuk 3. In tegenstel-
ling tot het constante SABR model geïntroduceerd door Hagan et al. [63], kan het tijds-
afhankelijke model gecalibreerd worden aan een impliciet volatiliteitsvlak; zodoende
kan het zo veel mogelijk marktinformatie meenemen. De calibratie van tijdsafhanke-
lijke parameters is echter niet triviaal. We stellen een efficiënte calibratiemethode voor
die gebaseerd is op effectieve parameters, die beschouwd kunnen worden als ‘geavan-
ceerde gemiddeldes’ van de bijbehorende tijdsafhankelijke parameters. Door de kwali-
tatieve effecten van de SABR parameters op de vorm van de impliciete volatiliteitsfunc-
tie te beschouwen, leiden we ‘projecties’ af tussen tijdsafhankelijke parameters en de
‘constante tegenhangers’. De projecties leiden tot een efficiënte calibratie van de tijds-
afhankelijke parameters. Numerieke experimenten tonen aan dat zowel de individuele
als de gecombineerde effecten van de effectieve parameters nauwkeurig zijn. Ook tonen
we numeriek aan dat het gebruik van de effectieve parameters tot de gewenste calibra-
tieresultaten leidt. In een experiment waarin we een barrieroptie waarderen, geeft het
tijdsafhankelijke FX-SABR model accuratere prijzen dan de traditionele LV en SABR mo-
dellen.

We beschouwen twee typen hybride locale volatiliteitsmodellen in Hoofdstuk 4, na-
melijk de SABR en Heston modellen die uitgebreid zijn met Dupire’s locale volatiliteits-
component, en het Locale Volatiliteitsmodel waaraan stochastische rente is toegevoegd.
Voor beide modelklassen moet men een, ook bovengenoemde, niet-triviale (conditio-
nele) verwachting bepalen, die numeriek gezien ‘duur’ is om te berekenen en niet uit
marktprijzen kan worden afgeleid. In dit hoofdstuk stellen we een tweede, algemene,
efficiënte Monte Carlo methode voor die uit twee projectiestappen bestaat. De eerste
stap is gebaseerd op stochastische collocatie, waarin in het algemeen een zekere ‘dure’
variabele Y benaderd wordt door een functie van een ‘goedkoper te evalueren’ variabele
X — concreter, we bepalen een Lagrange interpolatie met collocatiepunten die berekend
worden op basis van de verdeling van X. De tweede projectiestap stoelt op standaard re-
gressietechnieken. Numeriek tonen we aan dat onze methode tot een snelle Monte Carlo
evaluatie leidt waarin met een hoge nauwkeurigheid Europese opties gewaardeerd kun-
nen worden. Ook doen we een foutenanalyse voor een model dat uit twee gecorreleerde
geometrische Brownse bewegingen bestaat, het ‘2D-GBM’ model.

In Hoofdstuk 5 introduceren we een nieuwe modelklasse, namelijk het Collocerende
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Locale Volatiliteitsmodel (CLV). Het CLV model bestaat uit twee elementen, een kernpro-
ces en een locale volatiliteitsfunctie. Het kernproces kan vrij gekozen worden en bepaalt
de voorwaartse volatiliteitsfunctie. De locale volatiliteitsfunctie is gebaseerd op stochas-
tische collocatie, en zorgt voor een perfecte calibratie aan de financiële marktprijzen.
We vergelijken drie verschillende kernprocessen binnen het CLV model, de Ornstein-
Uhlenbeck (OU) en Cox-Ingersoll-Ross (CIR) processen en het Heston model. Voor elk
kernproces beschouwen we het effect van de kernparameters op de vorm van de volati-
liteitsfunctie. Vervolgens calibreren we met Monte Carlo simulatie de OU-CLV, CIR-CLV
en Heston-CLV modellen aan prijzen van FX barrieropties in de markt, waarbij we ge-
bruik maken van Brownse brugtechnieken.

Met het werk in dit proefschrift, kunnen niet-triviale FX derivaten gewaardeerd wor-
den met efficiënte Monte Carlo methoden, terwijl een accurate calibratie aan marktprij-
zen behouden blijft. Het werk in dit proefschrift is gebaseerd op artikelen die gepubli-
ceerd of ingediend zijn tijdens het promotietraject.
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1
INTRODUCTION

1.1. BASICS OF RISK-NEUTRAL OPTION PRICING
In the financial industry, a financial derivative is a contract that is based on the value
of some underlying asset, like the price of a stock (i.e. part of a company), commodity
price, interest rate or a foreign exchange (FX) rate. One of the most basic derivatives is
the European option, where a distinction is made between a ‘call’ and ‘put’ variant. A
European call option gives the holder the right, but not the obligation, to buy a certain
amount of the underlying asset for a certain price, the strike K , at a certain time T in
the future. The put variant gives the holder the right to sell. In a mathematical notation,
defining S(t ) as the underlying price at a certain time-point t , the European call option’s
payoff at T can be represented as

C (T,K ) = max(S(T )−K ,0). (1.1.1)

For a European put option we have

P (T,K ) = max(K −S(T ),0).

In order to properly determine the current price of a derivative, we model the dynam-
ics of the underlying price S(·) with a certain stochastic process – in financial mathemat-
ics we typically model this process by a stochastic differential equation (SDE). A well-
known SDE in finance is the Geometric Brownian Motion (GBM), driven by a Brownian
motion W (·) that is described by a Wiener process:

dS(t ) =µS(t )dt +σS(t )dW (t ), S0 := S(0), (1.1.2)

where W (·) is defined under a certain probability measure, and µ and σ determine the
so-called drift and diffusion of the process.

In pricing financial derivatives, we typically work with models that are free of arbi-
trage – that is, one cannot make more risk-free profit than the risk-free interest rate, which
is the theoretical rate of return of some investment with no risk of a financial loss in a

1
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certain time-period. Let r denote the risk-free interest rate on a certain money-savings
account with value M(·), which is determined by dM(t ) = r M(t )dt , M(0) = 1. This im-
plies that 1 euro today, put on the money-savings account, is worth M(T ) = er T at time
T . We can also invert this relation: a certain value at T , X (T ), is worth today X (T )

M(T ) . Now,
the no-arbitrage property of a model is implied by its martingale property, which means
for a certain stochastic quantity X (·):

E

[
X (T )

M(T )

∣∣∣∣F (t )

]
= X (t )

M(t )
, for all 0 ≤ t ≤ T, (1.1.3)

where the σ-field F (t ) represents the filtration, which is all the information that is avail-
able up to and including time t . The probability measure under which (1.1.3) holds is
the so-called risk-neutral measure, which we will refer to by Q. In order for the stochas-
tic process in (1.1.2) to be a martingale under the risk-neutral measure, one can show
that µ= r needs to hold.

In the risk-neutral Q-measure today’s price of a financial contract is determined by
the future payoff you are expecting to receive, as seen from today. Coming back to the
European call option with its payoff specified in (1.1.1), its current value at t is given by

C (t ,K ) = M(t )EQt

[
C (T,K )

M(T )

]
, (1.1.4)

where the Q-superscript indicates that the expectation is taken under the risk-neutral
measure, and the t-subscript denotes the conditioning on the filtration F (t ).

In certain specific cases, the expectation in (1.1.4) can be calculated analytically.
However, in many cases this is not possible, and one may resort to solving a partial differ-
ent equation (PDE). The connection between the PDE and an expectation as the one in
(1.1.4) is formalized by the Feynman-Kac theorem, which loosely states that the solution
u(t , x) of a PDE with a certain form and final condition u(T, x) =ψ(x), can be written as
a conditional expectation in terms of a stochastic variable X (·) that is governed by some
general SDE dX (t ) = µ(t , X (t ))dt +σ(t , X (t ))dW (t ). One of the most famous PDEs in
finance is the Black-Scholes pricing PDE, which was derived based on the concept of a
replicating portfolio [16]. Solving this PDE led to closed-form pricing formulas of Euro-
pean call and put options:

C BS(T,K ,σ) = FN (0,1)(d1)S(t )−FN (0,1)(d2)K e−r (T−t ), (1.1.5)

P BS(T,K ,σ) = FN (0,1)(−d2)K e−r (T−t ) −FN (0,1)(−d1)S(t ), (1.1.6)

where S(t ) denotes today’s price of the underlying asset, FN (0,1)(·) is the standard normal
CDF and d1 and d2 are given by

d1 = 1

σ
p

T − t

[
log

(
S(t )

K

)
+

(
r + σ2

2

)
(T − t )

]
,

d2 = d1 −σ
p

T − t .

Next to a PDE-based solution method, another alternative approach that is widely
applied to calculate the value and risks of financial derivatives, is based on Monte Carlo
simulation, which will be the general solution method in this thesis.
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Figure 1.1.1: The implied volatility smile: its level (left), curvature (middle) and skewness (right).

The prices of European-type options are quoted in the market. It is a convention to
quote the prices in terms of the implied volatility σimplied, which is the value of σ for
which the following equality holds:

C BS(T,K ,σ) =C market(T,K ),

where C BS(·, ·, ·) denotes the Black-Scholes price of a European call option, see equation
(1.1.5), and C market(·, ·) denotes the market price. For every strike K , we generally obtain
a different implied volatility value. In particular, in the FX market we typically observe
a so-called implied volatility smile, as for the lower and higher strikes a higher implied
volatility is observed as for the strikes ‘in the middle’. Related to this, in this thesis we will
refer to the forward volatility smile; this is the implied volatility smile corresponding to
a forward-start option, which is a European call or put option that starts at some time T1

in the future and has a payoff at T2 > T1 given by:

VForw.St.Call(T2,K ) = max(S(T2)−K S(T1),0).

In this thesis, we will refer to the level, curvature and skewness of the implied volatility
smile. In Figure 1.1.1 we display these smile properties. Loosely speaking, the level is the
‘height’ of the smile, the curvature is a measure for the ‘convexity’, and the skewness can
be seen as the ‘steepness’ of the smile.

The observations of an implied volatility smile and a forward volatility smile in the
market, led to a more advanced modelling of volatility, which will be discussed in the
next section.

1.2. VOLATILITY MODELLING IN THE FX MARKET
Over the last decades, the foreign exchange (FX) market has rapidly grown to become
the world’s largest and most liquid OTC market [1, 125]. According to the latest triennial
survey by the Bank for International Settlements [2], an estimated $5.09 trillion changes
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hands every day. Foreign exchange swaps are the most actively traded instruments, fol-
lowed by spot trading. Spot trading is characterized by immediate delivery of a foreign
currency or commodity ‘on the spot’, as opposed to futures contracts, which typically
expire before a physical delivery.

The fast expansion of the FX market, together with the rise of complex products1,
led to an increasing demand for modelling FX rates in a sophisticated way. As a con-
sequence, there is ample literature on modelling FX rates and many stochastic models
are available. In the financial industry typically a so-called three-factor pricing model is
used [42, 97, 111], where FX dynamics are assumed to be lognormal and the domestic
and foreign interest rates follow a Hull-White one factor Gaussian model [67]. However,
this model is not capable though of generating a skew effect which we observe in the FX
market. In order to overcome this issue, several researchers applied local volatility [97]
and stochastic volatility models [56, 122] in an FX context, which will be discussed in
Sections 1.2.1 and 1.2.2, respectively. Later, the class of stochastic local volatility models
gained popularity – see Section 1.2.3. Also, a novel model class was introduced, the Col-
locating Local Volatility model [54], that can be calibrated to liquid market quotes and at
the same time FX exotic options – see Section 1.2.4.

1.2.1. THE LOCAL VOLATILITY MODEL

For many years the Local Volatility (LV) model, introduced by Dupire [35] and Derman
& Kani [34], has been considered a standard model for pricing and managing the risk of
structured financial products. Given S(·) as the underlying price, the LV model is rep-
resented by the following stochastic differential equation (SDE), under the risk-neutral
Q-measure:

dS(t ) = r S(t )dt +σLV(t ,S(t ))S(t )dW (t ), S0 := S(0),

where r is a constant interest rate and σLV(·,S(·)) is the local volatility term, which is
expressed in terms of derivatives of arbitrage-free prices of European call options:

σ2
LV(t ,K ) =

∂C (t ,K )
∂t + r K ∂C (t ,K )

∂K

1
2 K 2 ∂2C (t ,K )

dK 2

. (1.2.1)

Here C (t ,K ) denotes the price of a European call option with maturity t and strike K .
By the non-parametric local volatility term in (1.2.1) the LV model satisfies a necessary
condition to be accepted in the financial industry; by its construction, the LV model can
be perfectly calibrated to any set of arbitrage-free European-type option prices.

Despite for its desirable property of a perfect calibration, the LV model has certain
drawbacks. It exhibits a flattening forward smile, which may not be in line with market
observations. As a result, the LV model is possibly not well-capable of pricing financial
contracts that are sensitive to the forward volatility smile, such as cliquets and barrier
options [23, 101]. This problem is often addressed by adopting a so-called sticky-skew
technique which is based on the forward volatilities “as seen today”.

1Like the so-called Power-Reverse Dual-Currency [111] and the Equity-CMS Chameleon, but also more stan-
dard barrier options.
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Also, the LV model does not always accurately predict the direction of the smile move-
ment with respect to a change in value of the underlying, which could imply unstable
hedges [10, 63, 76].

Further, the model assumes deterministic interest rates, which may imply mispric-
ing of long-term interest rate sensitive hybrids, like the Power-Reverse Dual-Currency
(PRDC) notes in the FX market, see e.g. [17, 32, 97]. Introducing a short-rate process in
the model, like Vasicek, Black & Karasinkski [15] and Hull & White [67] may enhance the
pricing results.

1.2.2. STOCHASTIC VOLATILITY MODELS
To overcome potential issues with the Local Volatility model, one may resort to the class
of stochastic volatility models, which have also been widely employed in the financial
industry. Stochastic volatility (SV) models can be characterized by a volatility term which
is driven by an additional SDE. For example, a well-established SV model, the Heston
model [66], is governed by the following set of SDEs, where the variance V (·) is driven by
CIR dynamics [26]:

dS(t ) = r S(t )dt +
√

V (t )S(t )dWx (t ), S0 := S(0),

dV (t ) = κ(V −V (t ))dt +γ
√

V (t )dWv (t ), V0 :=V (0),

with dWx (t )dWv (t ) = ρx,v dt , γ denoting the volatility of the variance – also denoted by
‘vol-vol’ – andκ is the speed of mean reversion to the long-term variance V . The SV mod-
els can be considered as more appropriate choices [37, 46] for pricing forward volatility
sensitive derivatives. Also, in the SV models the volatilities change, to a certain extent,
independently of a spot price change – local volatility models do not possess this char-
acteristic [104].

Although the SV models certainly have beneficial features, they typically cannot be
very well calibrated to a given set of arbitrage-free European vanilla option prices. In par-
ticular, the pricing of short-maturity options in the equity market by the Heston model
may often be unsatisfactory [37].

1.2.3. STOCHASTIC LOCAL VOLATILITY MODELS
As an alternative to the ‘pure’ LV model and SV models and with the purpose to com-
bine features of both, the class of stochastic local volatility (SLV) models was developed
around the year 2000 [75, 80, 82]. Since then, SLV models2 have been given a lot of at-
tention – e.g. [23, 75, 80, 93, 104, 117]. According to Lipton et al., SLV models are the
de facto standard for pricing FX options in practice [81]. They combine the beneficial
characteristics of the standard Local Volatility model – an almost perfect calibration to
liquid European-type options – and well-established stochastic volatility models such as
the Heston model, which often yield more realistic forward smiles and prices of exotic
options.

2Formally, we should make a distinction between SLV models with a parametric local volatility component,
such as the SABR model [63], and SLV model with a non-parametric local volatility component (which is
expressed in terms of arbitrage-free European-type option prices) – in this section we elaborate on the latter
type.
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The general SLV model can be represented by

dS(t ) = r S(t )dt +σSLV(t ,S(t ))ψ(S(t ),V (t ))S(t )dWx (t ), S0 := S(0), (1.2.2)

dV (t ) = av (t ,V (t ))dt +bv (t ,V (t ))dWv (t ), V0 :=V (0), (1.2.3)

with dWx (t )dWv (t ) = ρx,v dt and ψ(S(·),V (·)) controlling the stochastic volatility. The
drift and diffusion of the variance process are determined by av (·,V (·)) and bv (·,V (·)),
respectively.

Note that the general SLV model described by the system of the SDEs in (1.2.2) and
(1.2.3) can collapse to either the pure SV model or to the LV model. If we set the lo-
cal volatility component σSLV(t ,S(t )) = 1, then the model boils down to a pure stochas-
tic volatility model. On the other hand, if the stochastic component of the variance
bv (t ,V (t )) is equal to 0, the model reduces to a local volatility model. Two popular
stochastic volatility models which fit into our framework are the Heston SV model [66],
with the variance process driven by the CIR dynamics [26], ψ(V (t )) =p

V (t ) with
av (t ,V (t )) = κ(v̄−V (t )) and bv (t ,V (t )) = γpV (t ), and the Schöbel-Zhu model [108] with
ψ(V (t )) = V (t ) and av (t ,V (t )) = κ(v̄ −V (t )), bv (t ,V (t )) = γ. Parameter κ controls the
speed of mean-reversion, v̄ controls a long-term mean and γ determines the volatility of
the process V (t ).

An essential part of SLV models involves a particular conditional expectation, which
is present in the term σSLV(·,S(·)):

σ2
SLV(t ,K ) = σ2

LV(t ,K )

E
[
ψ2(S(t ),V (t ))

∣∣S(t ) = K
] , (1.2.4)

whereσ2
LV(·, ·) is ‘Dupire’s local volatility’, see (1.2.1). The conditional expectation is non-

trivial, as the joint distribution of S(·) and V (·) in its denominator is unknown. Also,
there is no direct link with the market quotes. Nonetheless, several approaches have
been developed to evaluate SLV models, amongst others solving a Kolmogorov forward
PDE forward one step at a time [23, 32, 104], recovering simultaneously the conditional
expectation and the complete stochastic local volatility component. In this iterative pro-
cedure the joint density of S(·) and V (·) is solved for all time-points. PDE-discretization
techniques are common practice in the financial industry in a hybrid local volatility con-
text. As an alternative to the standard ADI methods, Lipton et al. [81], in a Quadratic Lo-
cal Stochastic Volatility (QLSV) framework, introduce a Galerkin-Ritz inspired method
for solving a system of PDEs and demonstrate that it is efficient. Another approach to
handle the problem of computational burden is presented in [117], who employ GPUs to
accelerate the computations.

The Markovian projection technique has also been applied in an SLV context [64, 98].
Although this method is generally applicable, it involves several conditional expecta-
tions that typically need to be approximated. Moreover, the technique does not pre-
serve marginal distributions of order higher than one. This may result in a significant
mismatch in prices of contracts depending on stock values at multiple times, such as
American and barrier options, implied by the original and projected models.

Other attempts for solving the SLV model are presented in [115], where a Levenberg-
Marquardt optimization technique for a non-linear Fokker-Planck equation is applied
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and in [32], where zero correlation is assumed between the volatility process and the un-
derlying asset, yielding an efficient simulation of the extended Schöbel-Zhu model [108].
In a more general framework, based on the theory of generalized Wiener functionals, see
e.g. [124], An and Li [4] provide closed-form expansions for evaluating a general condi-
tional expectation that involves marginal distributions which are generated by stochas-
tic differential equations. In [86] for a general class of stochastic local volatility models
a family of asymptotic expansions for European-style option prices and implied volatil-
ities is derived. Further, in [93] the authors derive an asymptotic expansion for forward-
starting options in a multi-factor local-stochastic volatility model, which results in ex-
plicit approximation formulas for the forward implied volatility. Recent developments
on stochastic local volatility models have been made by e.g. [27, 28, 86, 123, 129]

1.2.4. THE COLLOCATING LOCAL VOLATILITY MODEL
The original idea of stochastic collocation is to project uncertainty onto a probability
space with known properties and conditions [9, 131]. Collocation methods have been
addressed in various disciplines for uncertainty quantification, see e.g. [45, 127]. Gen-
erally speaking, in collocation methods the purpose is to satisfy governing differential
equations at a discrete set of points, in the corresponding probability space. Two of the
main approaches of high-order stochastic collocation methods are the Lagrange inter-
polation approach, see e.g. [131], and the pseudo-spectral generalized polynomial chaos
approach from e.g. [130].

Recently, the stochastic collocation method was applied in a financial context [57,
58], where in a sampling setting a particular stochastic variable of interest Y , of which

computing samples yn = F−1
Y (un) (with un drawn from U

d=U ([0,1])) is an expensive ex-
ercise, was approximated by a function of a more convenient ‘cheap to evaluate’ random
variable X . The approximation relies on the fact that the CDFs of Y and X are equal in
distribution, i.e.

FY (Y )
d=U

d= FX (X ), where U
d= U ([0,1]),

which implies for a certain function g (·):

FY (g (xn)) = FX (xn), yn = g (xn),

where xn and yn denote samples of their corresponding distributions. Once an approx-
imation for g (·) has been determined – we can establish an N th order Lagrange poly-
nomial gN (·) interpolating through the ‘expensive’ collocation values yi = F−1

Y (FX (xi )) –
sampling from the ‘expensive’ distribution Y can be performed via sampling from the
‘cheap’ distribution X .

A model class that can serve as an alternative to the more well-established volatility
models discussed in Sections 1.2.1-1.2.3, is the novel Collocating Local Volatility (CLV)
model, introduced in [54]. The CLV model can be represented as follows3:

S(t ) = gN (t , X (t )),

dX (t ) = µ(t , X (t ))dt +σ(t , X (t ))dW (t ), X0 := X (0),

3For notation purposes, the general dynamics of a 1-dimensional kernel process are given – the dynamics of
an n-dimensional kernel process are presented in Chapter 4.
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where gN (·, X (·)) is a local volatility function and X (t ) denotes a kernel process. The
kernel process can be any stochastic process and is able to control the forward volatility
smile implied by the CLV model. By an appropriate choice of the kernel process and
its parameter values, the CLV model can accurately price exotic options. At the same
time, a perfect calibration to arbitrage-free European-type option prices is preserved by
the local volatility function gN (·, X (·)), which is constructed by means of the stochastic
collocation described above.

1.3. OUTLINE OF THE THESIS
This thesis is organized as follows. In Chapter 2 we discuss SLV models in general, and
in particular the Heston-SLV model. We develop a ‘non-parametric method’ that ad-
mits a rapid Monte Carlo evaluation. Essentially, the non-parametric method consists of
assigning every (s, v)-realization in a Monte Carlo simulation to an appropriate ‘bin’, re-
sulting in an accurate approximation of the non-trivial conditional expectation in (1.2.4),
discussed in Section 1.2.3.

Subsequently, in Chapter 3 we address the problem of calibrating the time-dependent
FX-SABR model by determining ‘mappings’ between time-dependent parameters and
their constant parameter ‘equivalents’, the so-called ‘effective parameters’. We use real
FX market data to assess the performance of the time-dependent FX-SABR model for
pricing FX barrier options, and compare them against the prices implied by the Local
Volatility model, the constant parameter FX-SABR model and the time-dependent FX-
SABR model enhanced by a non-parametric local volatility component.

We study hybrid local volatility models in Chapter 4, in particular the Local Volatility
model enhanced by stochastic interest rates and the SLV models SABR-LV and Heston-
SLV, which are the SABR and Heston models to which a local volatility component is
added. Based on stochastic collocation, in combination with standard regression tech-
niques, we establish approximations for the relevant non-trivial (conditional) expecta-
tions.

Next, in Chapter 5 we discuss the novel Collocating Local Volatility model. We con-
sider three different kernel processes, the Ornstein-Uhlenbeck and Cox-Ingersoll-Ros
processes and the Heston model. For these kernel processes we study the effect of the
kernel parameters on the forward volatility smile. In addition, we calibrate the kernel
processes to FX barrier option prices.

Lastly, Chapter 6 concludes and we give an outlook for future research.
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THE HESTON STOCHASTIC-LOCAL

VOLATILITY MODEL: EFFICIENT

MONTE CARLO SIMULATION

In this chapter we propose an efficient Monte Carlo scheme for simulating the stochas-
tic volatility model of Heston [66] enhanced by a non-parametric local volatility compo-
nent. This hybrid model combines the main advantages of the Heston model and the local
volatility model introduced by Dupire [35] and Derman & Kani [34]. In particular, the ad-
ditional local volatility component acts as a “compensator” that bridges the mismatch be-
tween a non-perfectly calibrated Heston model and the market quotes for European-type
options. By means of numerical experiments we show that our scheme enables a consis-
tent and fast pricing of products that are sensitive to the forward volatility skew. Detailed
error analysis is also provided.

Keywords: Heston Stochastic-Local Volatility, HSLV, Stochastic Volatility, Local Volatil-
ity, Heston, Hybrid Models, Calibration, Monte Carlo.

2.1. INTRODUCTION
In this chapter we consider a hybrid model which includes stochastic as well as local
volatility. We focus on the Heston stochastic volatility model enhanced by a non-parametric
local volatility component. Such a model, by construction, allows a high-quality calibra-
tion to plain vanilla options, even for an initial set of Heston parameters which is not
very well calibrated to market data.

The evaluation of these stochastic-local volatility (SLV) models is however not trivial.
As the stock’s overall volatility consists of two different types of volatilities (the stochastic
and the local) it is challenging to account, in the calibration process, for the correlation

This chapter is based on the article ‘The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Sim-
ulation’, published in International Journal of Theoretical and Applied Finance, 17(7):1450045, 2014 [118].
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between these two.
Although the SLV hybrid models are rather new in the financial industry, a number

of attempts for efficient model evaluation have been made already. Ren et al. [104] pro-
posed a stochastic volatility model driven by a lognormal volatility process and devel-
oped a tailor-made algorithm for solving the corresponding Kolmogorov forward PDE.
An extension of this technique to the Heston SLV was presented in [37] where a finite vol-
ume scheme for the model evaluation was used. Clark [23] discusses SLV models in an
FX context. He mentions that for solving the forward Kolmogorov equation, one can e.g.
use explicit finite differencing or ADI timestepping. Although the PDE-discretization
techniques are common practice in the financial industry in the context of the local-
volatility component, explicit finite differences methods are typically only stable for a
very large number of time-grid points requiring significant computational burden. In
[129] a Modified Craig-Sneyd (MCS) scheme was used in the context of stochastic lo-
cal volatility models, which is unconditionally stable for two-dimensional convection-
diffusion equations with a mixed derivative term [69, 70]. Tian et al. engaged a parallel
GPU platform to accelerate these computations [116].

The authors in [99] moved away from the direct solution of the SLV model and de-
rived via the Markovian projection closed-form approximations to prices of European
options on various underlyings. Work on Markovian projections in the context of the
SLV models has also been presented in [64], where a so-called “effective local volatility”
was derived. The Markovian projections can be widely applied but require a number of
conditional expectations to be determined. Very often these expectations are not avail-
able analytically and brute-force assumptions need to be imposed so that approxima-
tions can be defined [98]. Although mathematically appealing the Markovian projection
technique preserves only marginal densities and does not keep marginal distributions
of orders higher than one intact. Due to this, prices of financial securities depending on
stock values at multiple times, such as American options and barriers, may significantly
differ between the original model and the projected model.

Another attempt for solving the SLV model was presented in [115], where a Levenberg-
Marquardt optimization technique for a non-linear Fokker-Planck equation was applied.
Another approach for simulation was proposed in [32] by Deelstra and Rayée. By assum-
ing zero correlation between the volatility process and the underlying asset, it is possible
to efficiently simulate the extended Schöbel-Zhu model.

We present a Monte Carlo approach for efficient simulation of the Heston SLV model.
In particular, we develop a non-parametric numerical scheme for efficient model eval-
uation. The scheme is model independent and can be applied to all SLV hybrid models,
including those based on the SABR model. The technique introduced does not require
any advanced methods which makes it intuitive and easy to implement. A similar idea
was presented in [60, 77], based on kernel estimators in an interacting particle system.

The outline of this chapter is as follows. In Section 2.2 we derive the full-scale SLV
model and highlight the issues related to efficient model evaluation. Section 2.3 consti-
tutes the core of this chapter. We show there how, for a Monte Carlo simulation scheme,
nontrivial conditional expectations can be evaluated efficiently. We also discuss the sim-
ulation of the full-scale model and present how the “unbiased” Monte Carlo scheme
for the Heston model [5] can be adopted to the Heston SLV (HSLV) model. In Section
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2.4 some numerical examples are presented. We particularly concentrate on forward-
volatilities implied by the Heston SLV model. Section 2.5 focuses on the theoretical as-
sessment of the model error and Section 2.6 concludes.

2.2. STOCHASTIC-LOCAL VOLATILITY MODEL
The stochastic-local volatility (SLV) model under consideration is driven by the following
system of Stochastic Differential Equations (SDEs):

dS(t )/S(t ) = r dt +σ(t ,S(t ))ψ(V (t ))dWx (t ), (2.2.1)

dV (t ) = av (t ,V (t ))dt +bv (t ,V (t ))dWv (t ), (2.2.2)

dWx (t )dWv (t ) = ρx,v dt , (2.2.3)

with correlationρx,v between the corresponding Brownian motions,σ(t ,S(t )) is the local
volatility component, ψ(V (t )) controls the stochastic volatility, parameters av (t ,V (t ))
and bv (t ,V (t )) determine the drift and diffusion of the variance process, respectively,
and r is a constant interest rate.

The SLV model described by equations (2.2.1) and (2.2.2) is not completely deter-
mined as σ(t ,S(t )) is left unspecified. This function can take different forms. It can be,
for example, given by the constant elasticity of variance model, i.e. σ(t ,S(t )) = σ̂Sβ(t ),
which is a well-known parametric form for describing the volatility movements in terms
of the underlying asset S(t ). Choosing a parametric form for the local volatility,σ(t ,S(t )),
although very flexible and well-accepted, has an undesired feature which is the need for
model calibration, i.e. one needs to determine the SV parameters and the LV parameters
in the calibration procedure. As the calibration may not always guarantee a sufficiently-
well fit to market data, we concentrate on non-parametric forms for σ(t ,S(t )) here.

The main concept for deriving a non-parametric LV component σ(t ,S(t )) is as fol-
lows: it is well-known that from market data for the European-style options one can de-
termine the market implied density1, f̂S (x), of the stock S(T ). Furthermore, by deriving
the Kolmogorov forward equation for the underlying model, we are able to determine the
density, fS (x), of the stock driven by the SDEs (2.2.1) and (2.2.2). In a general setting these
densities differ and only for a perfectly calibrated model they are identical. As in the SLV
framework we have one free parameter available, namely σ(t ,S(t )), we may choose the
local component so that the densities implied from the market and the model are equal.
In the following we derive an expression for the local volatility component σ(t ,S(t )) in
the stochastic-local volatility model. Although the main result of the derivations (equa-
tion (2.2.9)) can be found in the literature (e.g. [104]), we include these to emphasize the
role of the local volatility component as a “compensator”, which is explicitly defined in
terms of market prices.

2.2.1. SPECIFYING σ(t ,S(t ))
Let us start with a European call option whose price is given by:

C (t0, t ,S(t0),K ) = M(t0)

M(t )
E
[
(S(t )−K )+ |F (t0)

]
,

1This result is shown in Lemma 2.2.1
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where the expectation is evaluated under the risk-neutral measure Q and the money-
savings account M(t ) is given by dM(t ) = r M(t )dt (with constant interest rate r and
M(t0) = 1). In the following derivations, we leave filtration F (t0) out in the notation and
we introduce the short-hand notation C (t ,K ) :=C (t0, t ,S(t0),K ).

In order to obtain the dynamics of the call option price, we apply Itô’s lemma:

dC (t ,K ) =
(
d

1

M(t )

)
E
[
(S(t )−K )+

]+ 1

M(t )
dE

[
(S(t )−K )+

]
= − r

M(t )
E
[
(S(t )−K )+

]
dt + 1

M(t )
E
[
d(S(t )−K )+

]
, (2.2.4)

where Fubini’s theorem justifies the equality dE
[
(S(t )−K )+

]= E[
d(S(t )−K )+

]
. Regard-

ing the right-hand side in (2.2.4), we cannot apply Itô’s lemma for the evaluation of
d(S(t )−K )+, as the convex function h(x) = (x − a)+ is not differentiable at point x = a.
Therefore, we will make use of a generalized version of Itô’s lemma, known as the Tanaka-
Meyer formula [78, 100]:

Theorem 2.2.1 (Tanaka-Meyer formula). Given a probability space (Ω,F ,Q), t0 ≤ t <∞,
let X (t ) = X (t0)+ M̃(t )+ Ñ (t ) be a continuous semimartingale, where M̃ = {M̃(t ),F (t )} is
a continuous local martingale2, Ñ = {Ñ (t ),F (t )} is a càdlàg adapted process3 of locally
bounded variation. Then, for h(x) = (x −a)+ := max(x −a,0) with a ∈R:

h(X (t )) = h(X (t0))+
∫ t

t0

1X (u)>adM̃(u)+
∫ t

t0

1X (u)>adV (u)+ 1

2

∫ t

t0

h′′(X (u))(dM̃(u))2.

Proof. A full proof can be found in Tanaka [114].

Applying the Tanaka-Meyer formula4, we get

(S(t )−K )+ = (S(t0)−K )++
∫ t

t0

1S(u)>K dS(u)+ 1

2

∫ t

t0

δ (S(u)−K ) (dS(u))2,

which in a differential form is given by:

d(S(t )−K )+ =1S(t )>K dS(t )+ 1

2
δ (S(t )−K ) (dS(t ))2,

where δ(·) is defined as the Dirac delta function, which could be characterized as:

δ(x) =
{
+∞ x = 0,

0 x 6= 0.

2M̃ is a local martingale provided that there is a nondecreasing sequence {τk } of stopping times with the prop-
erty that P(τk →∞ as k →∞) = 1 and such that for each k the stopped process M̃(t )(k) = M̃(t ∧τk )−M̃(t0) is
a martingale.

3Ñ (t ) is defined on the real numbers (or a subset of them) and is everywhere right-continuous and has left
limits everywhere.

4By taking X (t ) := S(t ) we immediately notice that S(t ) is a semimartingale, as S(t ) = S(t0)+r
∫ t

t0
S(u)du+M̃(t ),

where
∫ t

t0
S(u)du is a càdlàg adapted process of locally bounded variation and M̃(t ) is an H 1 martingale and

thus a local martingale as well (every martingale is a local martingale).
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Substituting the dynamics of S(t ), we obtain:

d(S(t )−K )+ = 1S(t )>K
(
r S(t )dt +σ(t ,S(t ))ψ(V (t ))S(t )dWx (t )

)
+1

2
δ (S(t )−K )σ2(t ,S(t ))ψ2(V (t ))S2(t )dt .

The dynamics of the call price can be written as:

dC (t ,K ) = − r

M(t )
E
[
(S(t )−K )+

]
dt

+ 1

M(t )
E
[
1S(t )>K

(
r S(t )dt +σ(t ,S(t ))ψ(V (t ))S(t )dWx (t )

)]
+ 1

2M(t )
E
[
δ (S(t )−K )σ2(t ,S(t ))ψ2(V (t ))S2(t )

]
dt .

We simplify this equation by using the equality

E
[
(S(t )−K )+

] = E
[
1S(t )>K (S(t )−K )

]
= E

[
1S(t )>K S(t )

]−KE
[
1S(t )>K

]
.

This gives us the following preliminary result:

Result 2.2.1. The dynamics of the European call option price C (t ,K ) := C (t0, t ,S(t0),K )
with S(t ) and V (t ) following the dynamics as given in (2.2.1) and (2.2.2), respectively, are
given by

dC (t ,K ) = r K

M(t )
E
[
1S(t )>K

]
dt + 1

2M(t )
E
[
δ (S(t )−K )σ2(t ,S(t ))ψ2(V (t ))S2(t )

]
dt ,

where each expectation is conditional on F (t0).

In the following, we use another result in our derivations:

Lemma 2.2.1. The European call option price C (t ,K ) with S(t ) and V (t ) following dy-
namics as given in (2.2.1) and (2.2.2), respectively, satisfies

− ∂C (t ,K )

∂K
= 1

M(t )
E
[
1S(t )>K |F (t0)

]
and

∂C 2(t )

∂K 2 = fS (K )

M(t )
,

where fS is the marginal probability density function of S(t ).

Lemma 2.2.1 states a well-established result, see e.g. [46]. We return to the dynamics
of the call price given in Result 2.2.1 where we include the results from Lemma 2.2.1, i.e.

dC (t ,K ) =−r K
∂C (t ,K )

∂K
dt + 1

2M(t )
E
[
δ (S(t )−K )σ2(t ,S(t ))ψ2(V (t ))S2(t )

]
dt ,

which is equivalent to:

2M(t )

(
dC (t ,K )+ r K

∂C (t ,K )

∂K
dt

)
= E

[
δ (S(t )−K )σ2(t ,S(t ))ψ2(V (t ))S2(t )

]
dt =: A(t )dt .



2

14
2. THE HESTON STOCHASTIC-LOCAL VOLATILITY MODEL: EFFICIENT MONTE CARLO

SIMULATION

We denote by A(t ),

A(t ) =
Ï
R
δ (s −K )σ2(t , s)ψ2(u)s2 fV ,S (u, s)dsdu

=
∫
R
ψ2(u)

(∫
R
δ(s −K )s2σ2(t , s) fV ,S (u, s)ds

)
du. (2.2.5)

Using properties of the Dirac delta function 5 the inner integral simplifies to:∫
R
δ(s −K )s2σ2(t , s) fV ,S (u, s)ds = K 2σ2(t ,K ) fV ,S (u,K ). (2.2.6)

Then, the expression for A(t ) is given by

A(t ) = K 2σ2(t ,K )
∫
R
ψ2(u) fV ,S (u,K )du, (2.2.7)

which is equivalent to:

A(t ) = K 2σ2(t ,K ) fS (K )E
[
ψ2(V (t ))|S(t ) = K

]
.

The dynamics are given by:

dC (t ,K ) =−r K
∂C (t ,K )

∂K
dt + 1

2M(t )
K 2σ2(t ,K ) fS (K )E

[
ψ2(V (t ))|S(t ) = K

]
dt .

Using the second equation in Lemma 2.2.1, we obtain:

dC (t ,K ) =
(
−r K

∂C (t ,K )

∂K
− 1

2
K 2σ2(t ,K )E

[
ψ2(V (t ))|S(t ) = K

] ∂2C (t ,K )

∂K 2

)
dt , (2.2.8)

which can be expressed as:

σ2(t ,K )E
[
ψ2(V (t ))|S(t ) = K

]= ∂C (t ,K )
∂t + r K ∂C (t ,K )

∂K

1
2 K 2 ∂2C (t ,K )

∂K 2

=:σ2
LV(t ,K ),

where σLV(t ,K ) denotes Dupire’s local volatility [35]. We eventually find the following
relation:

σ2(t ,K ) = σ2
LV(t ,K )

E
[
ψ2(V (t ))|S(t ) = K

] . (2.2.9)

The local volatility component σ2(t ,K ) consists of two ingredients: the deterministic
local volatility σLV(t ,K ) and the conditional expectation E[ψ2(V (t ))|S(t ) = K ]. Numer-
ical evaluation of σLV(t ,K ) is already well-established in the literature, see for exam-
ple [6, 24, 30]. On the other hand, the efficient computation of the conditional expec-
tation in (2.2.9) is not yet established. The difficulty lies in the fact that the joint distri-
bution of the variance V and the stock S, fV ,S , is unknown. This is due to the fact that
the stock process, S(t ), contains a local-volatility component σLV(t ,S) which is also not
known analytically. The evaluation of the unknown expectation can be either derived by
solving a Kolmogorov forward PDE (e.g. [32, 37]) or by applying a Markovian projection
approximation [64, 98, 99]. In this chapter we concentrate on the Monte Carlo evalua-
tion of the stochastic-local volatility model. In the next section we present a numerical
method which leads to efficient Monte Carlo model evaluation.
5∫
Rδ(t −T ) f (t )dt = f (T )



2.3. NOVEL TECHNIQUE FOR E
[
ψ2(V (t ))|S(t ) = K

]

2

15

2.3. NOVEL TECHNIQUE FOR E
[
ψ2(V (t ))|S(t ) = K

]
In this section we present a new efficient evaluation of a general stochastic-local volatil-
ity model. In particular, by an Euler discretization we simulate the SLV model (2.2.1)-
(2.2.2), as follows:

si+1, j = si , j + r si , j∆t +σ(ti , si , j )si , jψ(vi , j )
√
∆t Zx , s0, j = S(t0), (2.3.1)

vi+1, j = vi , j +av (ti , vi , j )∆t +bv (ti , vi , j )
√
∆t Zv , v0, j = v(t0), (2.3.2)

for j = 1, . . . , N and i = 0, . . . , M where Zx = Z1, Zv = ρx,v Z1 + (1−ρ2
x,v )1/2Z2, with Z1 and

Z2 two independent standard normal variables. Further, ∆t is the equidistant time-step,
given by ∆t = i T

M , with M indicating the number of time steps and T stands for final
time. N corresponds to the total number of Monte Carlo paths.

Using expression (2.2.9) for σ(t ,S), System (2.3.1)-(2.3.2) becomes:

si+1, j = si , j + r si , j∆t +
√√√√ σ2

LV(ti , si , j )

E
[
ψ2(V (ti ))|S(ti ) = si , j

] si , jψ(vi , j )
√
∆t Zx , (2.3.3)

vi+1, j = vi , j +av (ti , vi , j )∆t +bv (ti , vi , j )
√
∆t Zv . (2.3.4)

To determine the values of the paths for the next time-step, ti+1, one needs to establish
two main components, σ2

LV(ti , si , j ) and E
[
ψ2(V (ti ))|S(ti ) = si , j

]
. As indicated, efficient

evaluation of σ2
LV(ti , si , j ) is already well-established in the literature [6, 30]. This is not

the case for evaluation of the conditional expectation. The main difficulty in its evalu-
ation is that the conditioning has to be performed on each individual stock realization
si , j , i.e. as we simulate a discretized system for (S,V ), each realization of si , j has exactly
one corresponding realization of the variance vi , j and this makes the evaluation of the
conditional expectation difficult.

In the next subsection we present a non-parametric method for evaluating the con-
ditional expectation.

2.3.1. NON-PARAMETRIC METHOD
Suppose that for a given time ti , i = 1, . . . , M we have N pairs of Monte Carlo realiza-
tions (si ,1, vi ,1), (si ,2, vi ,2), . . . , (si ,N , vi ,N ) for which we wish to evaluate the conditional
expectation in (2.3.3). As for each si , j we have exactly one value vi , j the conditional
expectation will always be equal toψ2(vi , j ), which is undesired. Such a problem is a nat-
ural consequence of discretization of the continuous system (S,V ). Obviously, in order
to obtain an accurate estimate we would need to have an infinite set of paths, which is
practically unfeasible.

The idea to overcome this problem is to group the pairs of realizations into bundles
which would provide a more accurate estimate for the desired expectation. Let us divide
the range of S(ti ) into `mutually exclusive bins (b1,b2], (b2,b3], . . . , (b`,b`+1], with b1 ≥ 0
and b`+1 <∞.

Now, for any particular stock realization si , j , for which si , j ∈ (bk ,bk+1] for some k ∈
{1,2, . . . ,`}, we introduce the following approximation:

E
[
ψ2(V (ti ))|S(ti ) = si , j

]≈ E[
ψ2(V (ti ))|S(ti ) ∈ (bk ,bk+1]

]
. (2.3.5)
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If we define the left and right boundaries of (bk ,bk+1] to be si , j−ε and si , j+ε, respectively,
we obtain the following:

E
[
ψ2(V (ti ))|S(ti ) = si , j

] = lim
ε→0+

E
[
ψ2(V (ti ))|S(ti ) ∈ (si , j −ε, si , j +ε]

]
= lim

ε→0+

E
[
ψ2(V (ti ))1S(ti )∈(si , j −ε,si , j +ε]

]
Q

[
S(ti ) ∈ (si , j −ε, si , j +ε]

] . (2.3.6)

In the limiting case where both boundaries of the bin are equal to si , j the approximation
of the conditional expectation boils down to its exact value. This is an indication for the
appropriateness of the approximation in (2.3.5). The open question that remains is how
to choose proper bin boundaries bk for k = 1, . . . ,`+ 1. We consider the two following
choices in a Monte Carlo simulation framework.

We first order all the stock paths si ,1, si ,2, . . . , si ,N and obtain the following sequence:
s̄i ,1 ≤ s̄i ,2 ≤ ·· · ≤ s̄i ,N , where s̄i ,1 and s̄i ,N are the minimal and maximal values at time-
step i , respectively. Then, we choose the bin boundaries bi ,k , k = 1, . . . ,`+1. A straight-
forward way is specifying these such that the bins have the same size. We can also choose
the boundaries depending on the number of paths per bin. These two choices are estab-
lished as follows:

1. Define the bins with respect to an equidistant grid specified on the domain s̄i ,1 =
bi ,1 < bi ,2 < ·· · < bi ,`+1 = s̄i ,N such that for any u, v ∈ {1, . . . ,`}, u 6= v , bi ,u+1 −bi ,u =
bi ,v+1 −bi ,v . This is established by:

bi ,k = s̄i ,1 + k −1

`
(s̄i ,N − s̄i ,1), k = 1. . .`+1. (2.3.7)

2. Specify the bins so that each bin contains an approximately equal number of Monte
Carlo paths:

bi ,1 = s̄i ,1, bi ,`+1 = s̄i ,N , bi ,k = s̄i ,(k−1)N /`, k = 2. . .`. (2.3.8)

After determination of the bins, each pair (si , j , vi , j ) is assigned to a bin according to its
si , j value. Let us denote the path numbers corresponding to the kth bin Bk at time ti by
Ji ,k , that is Ji ,k := { j |(si , j , vi , j ) ∈ Bk }. Further, Nk is defined as the number of paths in
the kth bin, so Nk = |Ji ,k |. We then have:

E
[
ψ2(V (ti ))

∣∣S(ti ) = si , j
] ≈

E
[
ψ2(V (ti ))1S(ti )∈(bi ,k ,bi ,k+1]

]
Q

[
S(ti ) ∈ (

bi ,k ,bi ,k+1
]]

≈
1
N

∑N
j=1ψ

2(vi , j )1si , j ∈(bi ,k ,bi ,k+1]

Q
[
S(ti ) ∈ (

bi ,k ,bi ,k+1
]]

= 1

Nα(k)

∑
j∈Ji ,k

ψ2(vi , j ), (2.3.9)

where α(k) :=Q[
S(ti ) ∈ (

bi ,k ,bi ,k+1
]]

represents the probability of the stock being in the
kth bin. The second approximation is established by switching between the expectation
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and the average, which is based on a finite number of (si , j , vi , j )-pairs. The value of α(k)
depends on the way the bins are chosen:

α(k) =
{

Nk /N , k = 1. . .` for bins defined as in (2.3.7),
1/` for bins defined as in (2.3.8).

Remark 2.3.1. As it will be shown in Section 2.5.3, the choice of bins affects the conver-
gence of the non-parametric method. If we define the bins according to (2.3.8), bins close
to the mean of the joint density are much smaller than bins in the tails. This is desirable
as the region close to the mean contains many more observations, requiring a higher ac-
curacy and thus smaller bin sizes. We will choose bins according to (2.3.8) in numerical
experiments.

We summarize the non-parametric method in Algorithm 1.

for each time-step ti , i = 1. . . M do
1 Generate N pairs of observations (si , j ,ψ2(vi , j )), j = 1. . . N .

2 Order the elements s̄i , j : s̄i ,1 ≤ s̄i ,2 ≤ ·· · ≤ s̄i ,N .

3 Determine the boundaries of ` bins (bi ,k ,bi ,k+1], k = 1. . .` according to either (2.3.7)
or (2.3.8).

4 For the kth bin approximate the conditional expectation by

E
[
ψ2(V (ti ))

∣∣S(ti ) ∈ (bi ,k ,bi ,k+1]
]≈ 1

Nα(k)
∑

j∈Ji ,k
ψ2(vi , j ), where Ji ,k is the set of

path numbers j for which the observations are in the kth bin at the i th time-step and
α(k) represents the probability of the stock being in the kth bin, which is determined
by the choice of bins.

end

Algorithm 1: Non-parametric method

We present two illustrative examples where this method for calculating the condi-
tional expectation is applied. Error analysis will be discussed in Section 2.5.

Experiment 2.3.1 (Illustrative examples). In order to illustrate how the introduced al-
gorithm works we present two experiments. First, we consider a simple Monte Carlo
simulation consisting of 9 paths. In the second experiment we apply the algorithm to
calculate the conditional expectation for the Heston model. We start with some as-
sumptions. The initial values for the stock and variance process are S(t0) = s0 = 1 and
V (t0) = v0 = 0.1, respectively.

In order to obtain path realizations at time t1, we need to determine the conditional
expectation E[V (t0)|S(t0) = s0], which trivially gives E[V (t0)|S(t0) = s0] = v0 = 0.1. This
holds for all paths in this experiment. To determine the paths at time t2 we calculate the
expectation E[V (t1)|S(t1) = s1, j ], j = 1. . .9, as follows. First, we choose the number of
bins, ` = 3, and sort the pairs (s1, j , v1, j ) according to their s1, j values. Then, we assign
each pair to a bin – also according to the s1, j values. Finally, we calculate for each bin an
approximation of the conditional expectation. The procedure is illustrated in the tables
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below:

j t0 t1

(s0, v0) E[V (t0)] (s1, j , v1, j )
1 (1,0.1) 0.1 (1.9,0.09)
2 (1,0.1) 0.1 (0.9,0.15)
3 (1,0.1) 0.1 (1.2,0.15)
4 (1,0.1) 0.1 (0.5,0.20)
5 (1,0.1) 0.1 (1.6,0.06)
6 (1,0.1) 0.1 (1.1,0.07)
7 (1,0.1) 0.1 (1.7,0.05)
8 (1,0.1) 0.1 (1.2,0.08)
9 (1,0.1) 0.1 (0.4,0.25)

⇒

j t1

(s1, j , v1, j )
9 (0.4,0.25)

4 (0.5,0.20)
2 (0.9,0.15)
6 (1.1,0.07)

3 (1.2,0.15)
8 (1.3,0.08)
5 (1.6,0.06)

7 (1.7,0.05)
1 (1.9,0.09)

⇒ E[V (t1)|S(t1) ∈ (0,0.9]]
≈ 1

3

∑
j v1, j = 0.2,

⇒ E[V (t1)|S(t1) ∈ (0.9,1.3]]
≈ 1

3

∑
j v1, j = 0.1,

⇒ E[V (t1)|S(t1) ∈ (1.3,1.9]]
≈ 1

3

∑
j v1, j = 0.067.

Let us consider a more practical example. We consider the Heston stochastic volatility
model. In this modelψ(x) =p

x and the conditional expectation reads E
[
V (ti )|S(ti ) = si , j

]
.

The reason for considering the pure Heston model is that we are able to determine the
conditional expectation by the 2D-COS method [105]. A discussion of this calculation is
provided in Section 2.5.2.

In Figure 2.3.1 we compare the results for the conditional expectation from the pro-
posed scheme and the reference obtained by Fourier expansions. Each plot includes a
contour plot of the recovered density, the corresponding conditional expectation, and
its approximation. In the simulations we considered 105 Monte Carlo paths with 2, 5
and 20 bins, respectively. We choose bins that contain equal numbers of realizations.
This yields smaller bins close to the mean of the joint density, see also Remark 2.3.1. The
approximation obtained by the algorithm introduced converges to the reference.
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Figure 2.3.1: The approximation obtained by the non-parametric method converges to the conditional
expectation recovered by the COS method as the number of bins increases (2, 5 and 20 respectively).

Remark 2.3.2. An alternative method for estimating E
[
ψ2(V (ti ))|S(ti ) = si , j

]
is by pro-

jecting ψ2(V (ti )) on a set of orthogonal polynomials ζk (·), k = 1. . .n :
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ψ2(V (ti )) =∑n
k=1βkζk (S(ti ))+ε. By regressingψ2(V (ti )) on functions ζk (·) the conditional

expectation can be calculated, as

E
[
ψ2(V (ti ))|S(ti ) = si , j

]≈ E[
n∑

k=1
βkζk (S(ti ))

∣∣∣S(ti ) = si , j

]
=

n∑
k=1

βkζk (si , j ). (2.3.10)

The above approximation for ψ2(V (ti )) is based on the assumption that the condi-
tional expectation is an element of the L2-space of square integrable functions. The con-
ditional expectation can be represented as a linear function of elements of a countable
orthonormal basis. Applying the approximation in (2.3.10) the discrete scheme described
by (2.3.3) and (2.3.4) becomes:

si+1, j = si , j + r si , j∆t +
√√√√ σ2

LV(ti , si , j )∑n
k=1βkζk (si , j )

si , jψ(vi , j )
√
∆t Zx ,

vi+1, j = vi , j +κ(v̄ − vi , j )∆t +γ√
vi , j

√
∆t Zv , (2.3.11)

where κ is the speed of mean-reversion, v̄ is the long-run variance and γ is the volatility of
the variance process (‘vol-vol’). Although intuitive and straightforward, the regression-
based alternative possesses the drawback that the Feller condition must be satisfied to
guarantee a positive conditional expectation for the whole range of arguments. We show a
numerical test in Figure 2.3.2, where we consider a simple quadratic polynomial: ζ1(x) =
1, ζ2(x) = x and ζ3(x) = x2.
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Figure 2.3.2: The regression-based alternative: Feller satisfied (left) and not satisfied (right). Feller must be
satisfied in order to guarantee a non-negative approximation of the conditional expectation. The

non-parametric method does not suffer from this restriction, as we see on the right.

Since in practice the Feller condition is often violated, regression-based methods re-
quire additional tuning like including high-order polynomials or constraining of regres-
sion coefficients. As such model improvements need to be done on case-by-case basis we
consider the non-parametric approach as preferable and use it throughout this chapter.
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2.3.2. CONTINUOUS APPROXIMATION
As the conditional expectation is continuously differentiable, we prefer its approxima-
tion to satisfy this property too. Furthermore, at the right-hand side of Figure 2.3.2 we
observe that at the left boundary of the strike range the fit of the non-parametric approx-
imation to the reference may be improved. In order to obtain a continuous approxima-
tion that establishes this, we consider a linearization of the estimated expectation ob-
tained by the non-parametric method. This can be done by connecting the mid-points
of the approximations of the non-parametric method, see Figure 2.3.3. The mid-point
approximation is continuous, but not necessarily continuously differentiable.

0.8 0.9 1 1.1 1.2

S

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

v

Observations
COS 2D
Non-parametric
Non-parametric CA

Figure 2.3.3: The continuous approximation (‘CA’) gives a better fit to the theoretical conditional expectation,
which is recovered by the COS method.

In the following we refer to the continuous approximation as ‘non-parametric method’.

Remark 2.3.3 (Generalization to early-exercise options). The approximation of the ex-
pectation in the definition of the stochastic-local volatility model by means of the con-
tinuous approximation based on the bins does not depend on any specific option type or
payoff. In this respect it can be combined with European, forward starting options (as pre-
sented in this chapter), but for example also with early-exercise options where it can be
combined with the Least Squares Method [83] or Stochastic Grid Bundling Method [73].

2.3.3. EFFICIENT SIMULATION SCHEME
The CIR-type process used for the dynamics of the variance in the Heston model does
not allow for negative realizations. Unfortunately, when applying the basic Euler dis-
cretization scheme the variance process can become negative with non-zero probabil-
ity. Although several fixes like “absorption at zero” for handling negative variance real-
izations are known in the literature (see [85] for an overview), these improved methods
are typically not free of bias.
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In this section we adopt the Quadratic Exponential (QE) scheme introduced by An-
dersen [5] and apply it for simulating the Heston SLV model. The main difference for
Monte Carlo simulation between the pure Heston and the Heston SLV models lies in
the fact that the variance of the latter is not only driven by the stochastic volatility, but
also by the local volatility component, which is state-dependent. This requires an addi-
tional “freezing approximation", which is not present in the derivation of the original QE
scheme. Numerical experiments show that the additional approximation still yields an
accurate simulation scheme.

We start by recalling the dynamics of the Heston SLV model, expressed in terms of
independent Brownian motions:

dS(t )/S(t ) = r dt +σ(t ,S(t ))
√

V (t )

(
ρx,v dW̃v (t )+

√
1−ρ2

x,v dW̃x (t )

)
,

dV (t ) = κ(V̄ −V (t ))dt +γ
√

V (t )dW̃v (t ),

where ρx,v denotes correlation between the S(t ) and V (t ) processes. The discretization
of X (t ) := log(S(t )) (“log-stock”), with σ̂(t , X (t )) :=σ(t ,eX (t )), reads:

X (t +∆t ) = X (t )+
∫ t+∆t

t

(
r − 1

2
σ̂2(s, X (s))V (s)

)
ds (2.3.12)

+ρx,v

∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃v (s)+

√
1−ρ2

x,v

∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃x (s).

The variance process V (t +∆t ) follows a scaled non-central chi-squared distribution, i.e.

V (t +∆t ) ∼ c(∆t )χ2(d ,λ(t ,V (t ))),

with

c(∆t ) = γ2

4κ
(1−e−κ∆t ), d = 4κV̄

γ2 , λ(t ,V (t )) = 4κe−κ∆t

γ2(1−e−κ∆t )
V (t ), (2.3.13)

and χ2(d ,λ(t ,V (t ))) representing a noncentral chi-squared distribution with d degrees
of freedom and non-centrality parameter λ(t ,V (t )). Furthermore, by integrating the
variance process, we find:∫ t+∆t

t

√
V (s)dW̃v (s) = 1

γ

(
V (t +∆t )−V (t )−κV̄∆t +κ

∫ t+∆t

t
V (s)ds

)
. (2.3.14)

In the last integral in (2.3.12) the local and stochastic volatilities are coupled. This com-
plicates the simulation as we are not able to directly use the integrated variance from (2.3.14).
As any Monte Carlo simulation involving a local-volatility component requires many
time-steps, we perform local-freezing of σ̂(s, X (s)) in (2.3.12), i.e.∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃v (s) ≈ σ̂(t , X (t ))

∫ t+∆t

t

√
V (s)dW̃v (s). (2.3.15)
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Due to the approximation in (2.3.15), we can use (2.3.14) in (2.3.12):

X (t +∆t ) ≈ X (t )+
∫ t+∆t

t

(
r − 1

2
σ̂2(s, X (s))V (s)

)
ds

+ρx,v σ̂(t , X (t ))

γ

(
V (t +∆t )−V (t )−κV̄∆t +κ

∫ t+∆t

t
V (s)ds

)
(2.3.16)

+
√

1−ρ2
x,v

∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃x (s).

In the Euler discretization all integrals w.r.t. time can be approximated by
∫ b

a f (x)dx ≈
(b −a) f (a). The discretized process for X (t ) then reads:

X (t +∆t ) ≈ X (t )+ r∆t − 1

2
σ̂2(t , X (t ))V (t )∆t

+ 1

γ
ρx,v σ̂(t , X (t ))

(
V (t +∆t )−V (t )−κV̄∆t +κV (t )∆t

)
+

√
1−ρ2

x,v

∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃x (s).

Furthermore, by the Itô isometry we have∫ t+∆t

t
σ̂(s, X (s))

√
V (s)dW̃x (s) ∼ Z̃x

√∫ t+∆t

t
σ̂2(s, X (s))V (s)ds, (2.3.17)

where Z̃x ∼ N (0,1). The integral at the right-side of (2.3.17) can also be approximated by
the Euler discretization, i.e.

∫ t+∆t
t σ̂2(s, X (s))V (s)ds ≈ σ̂2(t , X (t ))V (t )∆t . With this, the

discretization scheme becomes

vi+1, j ∼ c(∆t )χ2(d ,λ(ti , vi , j )),

xi+1, j = xi , j + r∆t − 1

2
σ̂2(ti , xi , j )vi , j∆t +

ρx,v

γ
σ̂(ti , xi , j )

(
vi+1, j −κv̄∆t + vi , j c1

)
+ρ1

√
σ̂2(ti , xi , j )vi , j∆t Z̃x ,

with ρ1 = (1−ρ2
x,v )1/2, c1 = κ∆t −1, where c(∆t ), d and λ(t ,V (t )) are defined in (2.3.13)

and

σ̂2(ti , xi , j )
def= σ2(ti ,exi , j ) = σ2

LV(ti , si , j )

E
[
V (ti )|S(ti ) = si , j

] . (2.3.18)

In (2.3.18) we compute Dupire’s local volatility,

σ2
LV(ti , si , j ) =

∂C (t , s)

∂t
+ r s

∂C (ti , s)

∂s

1
2 s2 ∂

2C (ti , s)

∂s2

∣∣∣∣∣∣∣∣
s=si , j ,t=ti

,

by using the following finite difference approximations:

∂C (t , si , j )

∂t

∣∣∣
t=ti

≈ C (ti +h1, si , j )−C (ti , si , j )

h1
,
∂C (ti , s)

∂s

∣∣∣
s=si , j

≈ C (ti , si , j +h2)−C (ti , si , j )

h2
,
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and
∂2C (ti , s)

∂s2

∣∣∣∣
s=si , j

≈ C (ti , si , j +h2)−2C (ti , si , j )+C (ti , si , j −h2)

h2
2

. (2.3.19)

For stability reasons the derivatives are often expressed in terms of the implied volatil-
ities [32]. As in practice a continuum of European call prices in time-to-maturity and
strike is not available, some interpolation may be required. Detailed discussion on this
is provided in the literature (e.g. [6]).

Numerical comparisons between the Euler and the original QE scheme have been
provided in the literature too [5]. We perform an experiment with our version of the
Monte Carlo scheme in the follow-up section, because our scheme is slightly different
due to the local volatility component which requires an additional approximation (local
freezing of the state-dependent local volatility).

Experiment 2.3.2 (Efficient simulation scheme). We compare the scheme we propose
with the basic Euler discretization scheme. We consider parameter values based on Case
III of Andersen [5], i.e. for T = 5 we consider the Heston SLV model with κ = 1.05, γ =
0.95, v̄ = 0.0855, v0 = 0.0945, ρx,v =−0.315 and r = 0. We perform a Monte Carlo simu-
lation consisting of 20 seeds, 5 ·104 paths per seed. The number of bins is set to 20.

For different time-step sizes ∆t and strike prices K we calculate the absolute error in
the implied volatilities |σ̄market−σ̄SLV|, where σ̄market and σ̄SLV denote volatilities implied
by the market and by the HSLV model, respectively. As in [5], we generate synthetic refer-
ence implied volatility values given a pure Heston model, applying a Fourier-based pric-
ing technique. Analogously, we calculate by means of finite difference approximations
the derivatives of European call prices involved in Dupire’s local volatility component.

Results are presented in Table 2.1. The efficient (‘low-bias’) simulation scheme out-
performs the Euler scheme: it gives a higher accuracy and we observe faster convergence
to the reference for a decaying time-step size.

Error (%): |σ̄market − σ̄SLV|
K 70% 100% 150%
∆t Euler Low-bias Euler Low-bias Euler Low-bias

1 6.05 (0.08) 5.91 (0.11) 6.06 (0.09) 5.65 (0.11) 5.23 (0.17) 4.67 (0.16)
1/2 3.81 (0.12) 1.53 (0.14) 4.12 (0.12) 1.37 (0.17) 3.51 (0.19) 0.86 (0.25)
1/4 2.70 (0.12) 0.64 (0.14) 3.01 (0.13) 0.55 (0.14) 2.66 (0.20) 0.31 (0.24)
1/8 1.71 (0.13) 0.31 (0.19) 1.92 (0.15) 0.25 (0.20) 1.74 (0.23) 0.13 (0.25)

1/16 0.98 (0.16) 0.22 (0.17) 1.08 (0.17) 0.19 (0.19) 1.04 (0.22) 0.13 (0.27)
1/32 0.41 (0.26) 0.15 (0.18) 0.45 (0.30) 0.12 (0.18) 0.37 (0.42) 0.07 (0.23)

Table 2.1: Average error |σ̄market − σ̄SLV| from Monte Carlo simulations of the HSLV model with the Euler and
efficient (‘low-bias’) schemes using 20 random seeds, for multiple time-step sizes ∆t and strikes K . Numbers

in parentheses are standard deviations over the seeds.

2.4. NUMERICAL RESULTS
Using the simulation scheme introduced in the previous section, we perform some Monte
Carlo experiments for the pricing of European call and forward-starting options with the
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Heston SLV model. The results are compared against the Heston and the standard local
volatility models.

In this experiment we investigate the performance of the Heston SLV model with
respect to the quality of a pre-calibrated Heston model. In the case the Heston model is
well calibrated, we expect a limited contribution of the local volatility component. On
the other hand, if the underlying Heston model is not sufficiently well calibrated, the
local volatility contribution should be more pronounced. We then expect the quality of
the fit to be more sensitive to the estimation of the conditional expectation discussed in
the previous sections. In the simulations we thus distinguish two cases: a case in which
the Heston model is well calibrated and one in which it is insufficiently well calibrated.
Each of these variants of the Heston model is used in the Heston SLV model.

The simulation of the European-style options is performed for maturities (in years)
T = {0.5,2,5,8,10}, while the pricing of the forward starting options will be done for the
following pairs: {T1,T2} = {2,4} and {T1,T2} = {6,8}. Our Monte Carlo simulation is per-
formed with 5 ·105 paths and 100 time-steps per year. The number of bins is set to 20. In
Section 2.5.3 we show that the accuracy of the non-parametric method is already satis-
factory for a smaller number of bins.

2.4.1. EUROPEAN CALL OPTIONS
In this experiment we consider some real-life examples. As described the input for the
Heston SLV model is a calibrated Heston model. It is therefore important to check how
well the Heston SLV model performs depending on the quality of the pre-calibrated He-
ston model. In this section we consider two scenarios where the Heston model is well
and insufficiently calibrated to market data.

In the first experiment we consider the Heston SLV model with the well-calibrated
underlying Heston model. For times to maturity 2 and 8, years we display the results in
Figure 2.4.1. As the mismatch between the pure Heston model and the market is small,
the contribution of the local-volatility component σLV(t ,S(t )) is limited in the first test.
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Figure 2.4.1: Implied volatility European call option. T = 2 (left), T = 8 (right), well calibrated Heston model.

In Figure 2.4.2 we display results of the second experiment, in which the Heston
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model is insufficiently calibrated. We observe that in this case the local volatility term
can compensate for the large gap between the market and the Heston model.
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Figure 2.4.2: Implied volatility European call option. T = 2 (left), T = 8 (right), insufficiently calibrated Heston
model.

For times to maturity 0.5, 2, 5, 8 and 10 years, results are given in Table 2.2 where we
display the market implied volatility σ̄market and the error in implied volatilities εmodel :=
σ̄market − σ̄model, where σ̄model denotes the volatility implied by a particular model. We
observe a good fit of the LV model as well as the Heston SLV model to the quotes. The
fit of the Heston SLV model can be explained by the mimicking theorem of Gyöngy [62],
which states that given a general Itô process, a Markov process containing a local volatil-
ity component with the same marginal distributions exists.

For illustration purposes, in Appendix 2.A we show the pricing errors for Case II, T = 2
obtained by using 20, 30 and 40 bins. The error for close-to-ATM strikes decreases when
20, 30 and 40 bins are chosen, respectively.

2.4.2. FORWARD STARTING OPTIONS
With the pricing of European call options we see that the local volatility term in the He-
ston SLV model acts a compensator that bridges the gap between the market and cali-
brated Heston SV prices – even in the case of an unsatisfactory calibration. In this exper-
iment we price forward starting options that start at time T1 years and mature at time
T2. As prices of forward starting options are not observable in the market, we discrim-
inate between the LV, SLV and the calibrated Heston models. We first consider the case
with T1 = 2, T2 = 4 and a well calibrated Heston model, see the plot on the left side in
Figure 2.4.3. We observe that the volatility implied by the LV model is much flatter than
the volatilities implied by the Heston SV and SLV models. Although it has approximately
the same value at the lower and upper bounds of the strike range, this does not hold in
the ATM region. As the Heston model is almost perfectly calibrated, it is no surprise that
the Heston and SLV implied volatilities are almost identical.

For the case where the Heston model is insufficiently calibrated, we observe that the
SLV model provides a forward smile that is located between the ones implied by the He-
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European call options – error in implied volatilities [%]
Case I Case II

T Strike σ̄market εLV εSLV εH εSLV εH

0.81 25.17 0.05 0.06 -0.32 -0.04 -1.87
0.90 21.75 -0.03 0.01 -0.47 -0.15 -3.03

0.5y 1.00 17.70 -0.11 -0.06 -0.63 -0.32 -4.45
1.11 15.26 -0.12 -0.01 -0.28 -0.24 -3.71
1.24 16.00 -0.10 -0.08 0.16 0.21 0.18
0.73 23.38 0.00 0.08 -0.33 -0.04 -1.82
0.81 20.82 -0.02 0.05 -0.39 -0.09 -2.46

2y 1.00 15.28 -0.01 0.02 -0.45 -0.20 -3.44
1.24 13.65 0.01 0.10 0.08 -0.06 0.07
1.53 15.94 0.03 -0.18 0.42 0.06 4.15
0.60 22.70 0.02 0.12 -0.16 -0.04 -0.39
0.75 19.23 0.01 0.09 -0.22 -0.09 -0.99

5y 1.00 14.69 0.01 0.07 -0.24 -0.13 -1.45
1.32 12.79 0.02 0.09 0.14 -0.12 0.97
1.75 14.41 0.06 -0.09 0.46 -0.06 4.44
0.52 22.46 -0.01 0.08 -0.06 -0.05 0.49
0.70 19.16 -0.01 0.06 -0.12 -0.08 -0.09

8y 0.99 14.88 -0.01 0.05 -0.15 -0.10 -0.55
1.41 12.76 -0.01 0.05 0.17 -0.09 1.38
1.87 13.66 -0.02 -0.09 0.45 -0.06 4.14
0.48 22.40 0.03 0.08 -0.02 -0.04 0.87
0.66 19.22 0.02 0.06 -0.08 -0.06 0.30

10y 0.98 15.09 0.01 0.04 -0.12 -0.07 -0.18
1.46 12.82 0.01 0.04 0.18 -0.06 1.46
2.17 13.83 -0.02 -0.20 0.50 0.00 4.62

Table 2.2: Errors in implied volatilities for the local volatility (εLV), Heston SLV (εSLV) and the pure Heston (εH)
models for a well (Case I) and insufficiently (Case II) calibrated Heston model for multiple times to maturity

and strikes.

ston and the LV models. One may consider the results by the SLV model to represent
somehow “advanced interpolation” between the Heston and the local volatility models,
i.e. the SLV model can be considered as a non-linear combination of the LV and the SV
models.

The results we obtain are in line with those of Engelmann et al. [37], who observe that
the forward SLV implied volatilities do not become flat as for the local volatility model
and preserve a shape very similar to the Heston model. For T1 = 6 and T2 = 8 similar
results are observed, see Figure 2.4.4.

2.4.3. CALCULATION TIME

Considering the speed of the non-parametric method, we calculate the time it takes to
evaluate the conditional expectation for a given number of paths or bins. First, we inves-
tigate the relation between calculation time and the number of bins. We fix the number
of paths at 105. Table 2.3 shows that the calculation time behaves linearly in the number
of bins. This also holds for the relation between the calculation time and the number of
paths (the number of bins is fixed at 20), see Table 2.4.
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Figure 2.4.3: Implied volatility forward starting option. T1 = 2, T2 = 4, well calibrated (left) and insufficiently
well calibrated (right) Heston model.

In our numerical experiments we choose 20 bins and 105 paths, which implies that
the calculation of the conditional expectation by the non-parametric method takes less
than 2.5 ·10−2 seconds per time step6. As an indication regarding the total CPU time, we
can solve the problem for T = 1 with 5 · 104 paths, 100 time-steps a year, and 5 bins in
approximately 14 seconds (in Matlab on a i5-2400 CPU @3.10GHz, 4GB). In Section 2.5.3
we consider the dependence of the accuracy and the number of bins in more detail for
the non-parametric method. A result of this analysis is that the accuracy of the method
is quite insensitive to the number of bins.

#Bins 10 20 30 40 50 60 70 80 90 100
Time [ms] 15.6 23.7 32.9 41.6 49.9 59.0 67.9 75.9 84.5 93.9

Table 2.3: Timing results for different numbers of bins (number of paths fixed at 105).

#Paths [105] 1 2 3 4 5 6 7 8 9 10
Time [ms] 28.0 51.1 77.9 105.0 131.5 158.9 185.9 214.1 244.3 269.0

Table 2.4: Timing results for different numbers of paths (number of bins fixed at 20).

2.5. ERROR ANALYSIS
In Section 2.3 we tested the performance of the non-parametric method (and of the
regression-based alternative) for a pure Heston SV model. We considered this model, as

6Theoretically, both experiments should result in exactly the same calculation time, i.e., the second time in
Table 2.3 should be equal to the first time in Table 2.4. This is not the case due to Monte Carlo noise.
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Figure 2.4.4: Implied volatility forward starting option. T1 = 6, T2 = 8, well calibrated (left) and poorly
calibrated (right) Heston model.

the 2D-COS method [105] provided us with an accurate approximation of the conditional
expectation. In particular, we compared an approximation from the non-parametric
method to the recovered conditional expectation. However, our main interest lies in
the Heston SLV model. In the Monte Carlo pricing of European call options and for-
ward starting options a bias is introduced, which is due to three error sources. The first
error originates from approximations in the calculation of Dupire’s local volatility term
(2.3.18). In particular, we use finite differences for the three derivatives in (2.3.19). Fur-
ther, the discretization of the continuous dynamics to the efficient simulation scheme
introduced a discretization error. Last, at each time step we approximate E [V (t )|S(t ) = s]
by means of the non-parametric method. These three sources of error generate an error
e = C − C̃ , where C is the call price from the “original” Heston SLV model and C̃ is the
price obtained by the discrete Heston SLV model.

Ignoring the bias originating from the finite differences and the discretization (since
these errors are well understood), the price mismatch is driven by the difference in con-
ditional expectations ‖g − ĝ‖, based on the governing PDEs, as in [59]. Here g (s) :=
E [V (t )|S(t ) = s] denotes the conditional expectation (in the Heston SLV model) and ĝ is
its piecewise linear continuous approximation we obtain by the non-parametric method.
We now provide a pricing error bound that is implied by the mismatch between g and ĝ .

2.5.1. BOUND ON PRICING ERROR

In this section we turn to classical PDE error analysis, to make some statements about
the approximation errors encountered.

By non-arbitrage assumptions, one can derive the HSLV PDE, which defines the value
of a European-style option:
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0 = ∂C

∂t
+ r s

∂C

∂s
+κ(V̄ −V )

∂C

∂V
+ 1

2
V s2σ

2
LV(t , s)

g (s)

∂2C

∂s2 + 1

2
γ2V

∂2C

∂V 2

+ρx,vγV s

√
σ2

LV(t , s)

g (s)

∂2C

∂s∂V
− rC , (2.5.1)

with t ∈ [0,T ), g (s) = E[V (t )|S(t ) = s] and spatial coordinates {s,V } ∈ [0,+∞)× [0,+∞).
Of course, we will solve the discrete version of the PDE on a finite domain.

Since the expectation in (2.5.1) is not known analytically we can estimate it by means
of Monte Carlo simulation. The resulting, approximating pricing PDE then reads:

0 = ∂C̃

∂t
+ r s

∂C̃

∂s
+κ(V̄ −V )

∂C̃

∂V
+ 1

2
V s2σ

2
LV(t , s)

ĝ (s)

∂2C̃

∂s2 + 1

2
γ2V

∂2C̃

∂V 2

+ρx,vγV s

√
σ2

LV(t , s)

ĝ (s)

∂2C̃

∂s∂V
− r C̃ , (2.5.2)

with the pre-calibrated function ĝ (s), as described in Section 2.3.1. The PDEs in (2.5.1)
and (2.5.2) can be written, in shorthand notation, as follows:

∂C

∂t
+L1C = 0,

∂C̃

∂t
+L2C̃ = 0, (2.5.3)

with the corresponding operators L1, as in (2.5.1) and L2, as in (2.5.2). Again, C is the so-
lution from the full-scale HSLV PDE, whereas C̃ is the solution from the approximating
PDE with the estimated function ĝ (t ). Both PDEs are accompanied by the same bound-
ary and final conditions. For the error, e :=C − C̃ , we find:

∂e

∂t
+L1C −L2C̃ = 0, (2.5.4)

which can be re-written as:

∂e

∂t
+L1C − (

L1C̃ + (L2 −L1)C̃
)= 0, (2.5.5)

and we arrive at the following equation:

∂e

∂t
+L1e = (L2 −L1)C̃ , (2.5.6)

subject to homogeneous boundary and final conditions. Notice that the right-hand side
of the equation serves as a source term.

Based on the form in (2.5.6), multiplying both sides by e, and integration over domain
Ω, gives us: ∫

Ω
e
∂e

∂t
dΩ+

∫
Ω

eL1edΩ=
∫
Ω

e(L2 −L1)C̃ dΩ. (2.5.7)

Integration by parts, as follows,∫
Ω

e
∂e

∂t
dΩ = 1

2

d

dt

∫
Ω

e2dΩ= 1

2

d

dt
‖e‖2

L2(Ω), (2.5.8)
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inserted in equation (2.5.7), results in:

1

2

d

dt
‖e‖2

L2(Ω) =−
∫
Ω

eL1edΩ+
∫
Ω

e(L2 −L1)C̃ dΩ. (2.5.9)

Applying classical PDE theory, in particular the Lax-Friedrich inequality and Grönwall’s
lemma (for more details, see [59, 89]), gives:

‖e‖L2(Ω) ≤
∫ t

0
‖(L2 −L1)C̃‖L2(Ω)e

α(s−t )ds

≤ 1

α

(
1−e−αt ) sup

s∈(0,t )
‖(L2 −L1)C̃‖L2(Ω)

≤ 1

α
sup

s∈(0,t )
‖(L2 −L1)C̃‖L2(Ω),

whereα is some positive constant, related to the V −ellipticity of the form
∫
Ω eL1edΩ [89].

We use the notation U := (L2 −L1)C̃ and find the following operator:

U = 1

2
Vσ2

LV(t , s)s2
[

ĝ (s)− g (s)

ĝ (s)g (s)

]
∂2C̃

∂s2 +ρx,vγV sσLV(t , s)

[√
ĝ (s)−√

g (s)√
ĝ (s)g (s)

]
∂2C̃

∂s∂V
.

Assessing the appropriate norm yields:

‖U‖L2(Ω) =
∥∥∥1

2
Vσ2

LV(t , s)s2
[

ĝ (s)− g (s)

ĝ (s)g (s)

]
∂2C̃

∂s2

+ρx,vγV sσLV(t , s)

[√
ĝ (s)−√

g (s)√
ĝ (s)g (s)

]
∂2C̃

∂s∂V

∥∥∥
L2(Ω)

,

which can be bounded by:

‖U‖L2(Ω) ≤ 1

2
s2

maxV |σ2
LV(t , s)|

∣∣∣ ĝ (s)− g (s)

ĝ (s)g (s)

∣∣∣ ‖∂2C̃

∂s2 ‖L2(Ω)

+|ρx,v |γsmaxV |σLV(t , s)|
∣∣∣√ĝ (s)−√

g (s)√
ĝ (s)g (s)

∣∣∣‖ ∂2C̃

∂s∂V
‖L2(Ω).

Then, we have:

‖e‖L2(Ω) ≤ 1

α
sup

s∈(0,t )

(
1

2
s2

maxV |σ2
LV(t , s)|

∣∣∣ ĝ (s)− g (s)

ĝ (s)g (s)

∣∣∣ ‖∂2C̃

∂s2 ‖L2(Ω)

+|ρx,v |γsmaxV |σLV(t , s)|
∣∣∣√ĝ (s)−√

g (s)√
ĝ (s)g (s)

∣∣∣‖ ∂2C̃

∂s∂V
‖L2(Ω)

)
. (2.5.10)

This latter inequality bound gives a representation of the parameters and functions that
have an impact on the error made when solving for C̃ , as an approximation for C . As

both ∂2C̃
∂s∂V and ∂2C̃

∂s2 are small for large V -values, the error is governed by the difference
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between the conditional expectation g from the HSLV model and its approximation ĝ ,
which is obtained from the non-parametric method, as discussed in Section 2.3.1.

Regarding the difference in conditional expectations g and ĝ , it is clear that the ac-
curacy of the approximation ĝ improves if the number of paths and bins simultaneously
approach infinity, i.e.

lim
N→∞, `→∞

‖g − ĝ‖ = 0,

where N and ` denote the number of paths and bins, respectively. In the following, we
quantify the performance of the non-parametric method by considering the pure Heston
SV model.

2.5.2. PERFORMANCE

To assess the performance of the non-parametric method, we need to determine a highly
accurate reference value. As pointed out, it is difficult to find this conditional expecta-
tion explicitly. We can analyze the performance of approximating the conditional expec-
tation for the case of the pure Heston model, i.e. the case where σLV(t , s) = 1.

We make use of the COS method [38, 105]. This introduces a well-understood error
between the recovered and the theoretical conditional expectation for the Heston SV
model. For a more detailed discussion on this, see [38].

Let gH(s) be the conditional expectation in the Heston SV model, obtained by the
2D-COS method. We determine an approximation ĝH by means of the non-parametric
method. To measure the performance of the non-parametric method, we are interested
in the mismatch in conditional expectations ‖gH − ĝH‖. In the L2-norm, the mismatch
from the Monte Carlo simulation can be written as:

M∑
i=1

‖gH − ĝH‖2
L2(Ω) =

M∑
i=1

∑̀
k=1

∫
Bi ,k

(gH(s)− ĝH(s))2ds, (2.5.11)

where Ω is the s domain and Bi ,k denotes the kth bin at the i th time-step, k = 1. . .`,
i = 1. . . M . Note that gH is a smooth function, whereas ĝH is piecewise linear.

We now specify the error
∫
Bi ,k

(gH(s)− ĝH(s))2ds for one particular bin and time-step,
which we state in a lemma.

Lemma 2.5.1. For an arbitrary bin B with boundaries [bl ,br ], the error between gH and
ĝH has size

‖gH − ĝH‖2
L2(B) = c2

1∆s + 1

12

(
c2

2 −2c1g (2)
H (sm)

)
∆s3

+ 1

240

(
2(g (2)

H (sm))2 − c1g (4)
H (sm)− c2g (3)

H (sm)

)
∆s5 +O (∆s7),

where sm denotes the midpoint of [bl ,br ] and ∆s := br −bl , ∆ĝH := ĝH(br )− ĝH(bl ), c1 :=
1
2

(
(gH(bl )− ĝH(bl ))+ (gH(br )− ĝH(br ))

)
and c2 :=−g (1)

H (sm)+ ∆ĝH
∆s .

Proof. For a proof, see Appendix 2.B.
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2.5.3. NUMERICAL EXPERIMENT: CHOICE OF BINS
We now discuss the performance of the non-parametric method with respect to the
choice of bins. In particular, we consider the error |gH(K )−ĝH(K )| for K = 40%, K = 100%
and K = 160%. The bins are either chosen with respect to an equidistant grid – see
(2.3.7) – or are equally weighted as in (2.3.8). Parameter values are γ= 0.2, κ= 0.2, r = 0,
ρx,v =−0.6, S0 = 1, v0 = 0.04, v̄ = 0.04 and we consider the error at particular time t = 2.
We choose the number of bins between 1 and 20. Our Monte Carlo simulation is per-
formed with 106 paths. Results are displayed in Figure 2.5.1.
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Figure 2.5.1: Convergence of the non-parametric method for two choices of bins.

For deep in-the-money and out-the-money strikes the choice of bins does not affect
the performance of the non-parametric method. However, at K = 100% choosing equally
weighted bins yields a faster convergence to the reference gH(100) than when we choose
bins equidistantly. This is due to the natural weighting of the bins defined by (2.3.8),
which provides highest accuracy in the ATM region. Further, for all strikes we note that
in order to have a high-quality estimate of the conditional expectation, it is not required
to use a large number of bins.

In Figure 2.5.1 we observe highly satisfactory convergence up to 15 bins. With a fur-
ther increase of the number of bins convergence may stagnate since there is an insuffi-
cient number of paths in each bin. In such a case the number of Monte Carlo paths may
need to be increased and we should improve the interpolation (continuous approxima-
tion, see Section 2.3.2).

2.6. CONCLUSION
In this chapter we have presented a new Monte Carlo scheme for the efficient evalu-
ation of a general Stochastic-Local Volatility model. We have considered the Heston
Stochastic-Local Volatility model in numerical experiments. For evaluating this model
we have approximated a non-trivial conditional expectation in a non-parametric way,
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which is intuitive and easy to implement. This approximation is embedded in a simu-
lation scheme that is strongly based on the QE scheme of Andersen [5] and introduces
less bias than more common Euler schemes. By means of numerical experiments and
an error analysis we have shown that European-style options can accurately be priced
by our method. Furthermore, it enables a consistent and fast pricing of products that
are sensitive to the forward volatility smile.





APPENDIX

2.A. ADDITIONAL PRICING EXPERIMENTS
In this appendix, we price some more European call options (T = 2) with the Heston
SLV model using 20, 30 and 40 bins, where the Heston model is insufficiently calibrated
(Case II in Table 2.2). Results are given in Table 2.A.1. The error for close-to-ATM strikes
decreases when 20, 30 and 40 bins are chosen, respectively.

σ̄market − σ̄SLV [%], Case II, T = 2
Strike 20 bins 30 bins 40 bins
0.73 -0.04 -0.01 -0.02
0.81 -0.09 -0.03 -0.02
1.00 -0.2 -0.07 -0.05
1.24 -0.06 -0.03 0.00
1.53 0.06 0.02 0.08

Table 2.A.1: SLV pricing errors for Case II, T = 2, with 20, 30 and 40 bins.

2.B. PROOF OF LEMMA 2.5.1
For an arbitrary bin B with boundaries [bl ,br ], the piecewise linear continuous approx-
imation of g (s) can be specified by

ĝH(s) = ∆ĝH

∆s
s + ĝH(bl )br − ĝH(br )bl

∆s
, (2.B.1)

where ĝH(bl ) and ĝH(br ) are approximations of gH(bl ) and gH(br ), respectively, and
∆s := br − bl and ∆ĝH := ĝH(br ) − ĝH(bl ). As gH(s) is smooth, we can express it as a
Taylor series around the midpoint of [bl ,br ], which we call sm :

gH(s) = gH(sm)+
∞∑

n=1

g (n)
H (sm)

n!
(s − sm)n . (2.B.2)

Assuming ∆s to be small, we compute the square of the local L2 error

‖gH − ĝH‖2
L2(B) =

∫
B

(gH(s)− ĝH(s))2ds =
∫ br

bl

(gH(s)− ĝH(s))2ds, (2.B.3)

where we use (2.B.1) and (2.B.2) up to some significant order. Combining (2.B.2) and
(2.B.3):

‖gH − ĝH‖2
L2(B) =

∫ br

bl

(
gH(sm)− ĝH(s)+

∞∑
n=1

g (n)
H (sm)

n!
(s − sm)n

)2

ds. (2.B.4)
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We now derive an expression for gH(sm)− ĝH(s). The first step is plugging in (2.B.1). This
gives:

gH(sm)− ĝH(s) = gH(sm)− ∆ĝH

∆s
s − ĝH(bl )br − ĝH(br )bl

∆s
. (2.B.5)

Using the Taylor series expression in (2.B.2), we have for an arbitrary s:

gH(sm) = gH(s)−
∞∑

n=1

g (n)
H (sm)

n!
(s − sm)n .

Expanding gH(sm) at the boundary points and by plugging this result into (2.B.5) we find

gH(sm)− ĝH(s) = 1

2

(
gH(bl )+ gH(br )

)− 1

2

( ∞∑
n=1

g (n)
H (sm)

n!
(−1

2
∆s)n +

∞∑
n=1

g (n)
H (sm)

n!
(

1

2
∆s)n

)

−∆ĝH

∆s
s − ĝH(bl )br − ĝH(br )bl

∆s
,

where we have used the relations bl − sm = − 1
2∆s and br − sm = 1

2∆s. Odd terms in the
two Taylor series cancel each other out. Even terms are equal. This results in:

gH(sm)− ĝH(s) = 1

2

(
gH(bl )+ gH(br )

)− ∑
n=2,4,6

g (n)
H (sm)

n!
(

1

2
∆s)n − ∆ĝH

∆s
s − ĝH(bl )br − ĝH(br )bl

∆s
.

Now, after some algebraic manipulations we end up with

gH(sm)− ĝH(s) =− ∑
n=2,4,6

g (n)
H (sm)

2n ·n!
(∆s)n − (s − sm)∆ĝH

∆s
+ c1 +O (∆s8),

where

c1 := 1

2

(
(gH(bl )− ĝH(bl ))+ (gH(br )− ĝH(br ))

)
.

The constant c1 can be considered as the average error at the boundaries of the interval.
Plugging this result into (2.B.4) yields

‖gH − ĝH‖2
L2(B) = (2.B.6)∫ br

bl

( 6∑
n=1

g (n)
H (sm)

n!
(s − sm)n − ∑

n=2,4,6

g (n)
H (sm)

2n ·n!
(∆s)n − (s − sm)∆ĝH

∆s
+ c1 +O (∆s8)

)2

ds

Evaluating (2.B.6) yields the result in Lemma 2.5.1.
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THE TIME-DEPENDENT FX-SABR
MODEL: EFFICIENT CALIBRATION

BASED ON EFFECTIVE PARAMETERS

We present a framework for efficient calibration of the time-dependent SABR model [40,
63, 92] in an FX context. In a similar fashion as in [96], we derive effective parameters,
which yield an accurate and efficient calibration. On top of the calibrated FX-SABR model,
we add a non-parametric local volatility component, which naturally compensates for
possible calibration errors. By means of Monte Carlo pricing experiments we show that
the time-dependent FX-SABR model enables an accurate and consistent pricing of barrier
options and outperforms the constant-parameter SABR model and the traditional local
volatility model [34, 35]. We also discuss the role of the local volatility component in the
valuation of barrier options.

Keywords: Time-Dependent SABR, FX, Calibration, Effective Parameters, local volatil-
ity, Monte Carlo, Path-Dependent.

3.1. INTRODUCTION
The pricing and hedging of complex path-dependent financial products requires an ac-
curate calibration to prices of European-type options with different expiry dates, which
contain information about the market behaviour through time. The model should also
reflect realistic implied volatility smile dynamics, both with respect to the forward smile
[115] and, secondly, to the underlying.

The payoff of a path-dependent product is determined by the evolution of the un-
derlying through time, i.e. its price depends on the transition densities from one future

This chapter is based on the article ‘The Time-Dependent FX-SABR Model: Efficient Calibration based on
Effective Parameters’, published in International Journal of Theoretical and Applied Finance, 18(6):1550042,
2015 [119].
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state to another [10]. The future transition densities implied by a particular model are
reflected by the forward implied volatility smiles it produces. Although the local volatil-
ity model [34, 35] can be calibrated perfectly to any set of arbitrage-free European-type
option prices, it exhibits a flattening of the forward smile. This may lead to a mispric-
ing of financial products that are sensitive to the forward implied volatility skew, like
forward starting options, cliquets and path-dependent products. Alternatives for pric-
ing such contracts are stochastic volatility models, which predict that the forward smile
has a comparable shape as the smile observed today and typically yield more accurate
results [10, 37, 46].

The ‘local dynamics’ of the implied volatility smile, i.e. with respect to the under-
lying, are also relevant, especially for hedging purposes. One of the main motivations
for Hagan et al. [63] to introduce the SABR model was the typically inaccurate smile
movement as the underlying changes predicted by the local volatility model. In particu-
lar, this model predicts that the smile shifts to higher prices as the underlying moves to
lower prices, which is more extreme than the market behavior or may be even opposite
to it, resulting in unstable hedges [10, 63, 76]. In contrast, the smile implied by the SABR
model ‘follows’ the underlying1.

On the base of the previous discussion, we consider here the time-dependent SABR
model in an FX context. As this model involves time-dependent parameters, it allows
for calibration to European-type option prices with different expiry dates. Furthermore,
compared to the local volatility model, it yields more realistic forward implied volatility
smiles and thirdly, this model is able of capturing the smile dynamics with respect to the
underlying more accurately.

In [63] the time-dependent SABR model was already presented. Osajima [92] derived
an asymptotic expression for the implied volatility. Furthermore, he introduced a new
‘FX hybrid SABR model’ and gave an asymptotic expansion formula for implied volatil-
ities. Fernandez et al. [40] apply GPU technology for the Monte Carlo calibration of the
static and time-dependent SABR models. They assume a time-dependent vol-vol pa-
rameter and correlation under the condition that these parameters decrease over time.
In [50] the authors assume piecewise-constant parameters and show how the asymp-
totic expansion of the bivariate transition density of the underlying and its stochastic
volatility presented in [128] are used in the calibration. Further, in [79] a closed-form
approximation of the option price for the time-dependent SABR model is derived.

From a theoretical point of view, implied volatility expansion formulas, as in e.g.
[79, 92], yield highly efficient calibration. However, in a practical sense these formulas
typically only work under certain parameter conditions.

In this chapter, we calibrate the time-dependent SABR model by means of effective
parameters. Effective parameters can be considered as ‘sophisticated averages’ of the
corresponding time-dependent parameters. In [96] the effective parameters approach
has been followed with respect to the time-dependent Displaced Diffusion Stochastic
Volatility (DDSV) model. In a similar fashion, we derive here effective parameters by
considering the qualitative effects of the SABR parameters on the shape of the implied

1Rebonato [102] supports the conclusions of Hagan et al. regarding the dynamics of the smile with respect to
the underlying in an FX context, but he points out that these may not be valid when stochastic interest rates
are involved.
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volatility smile. By means of numerical experiments we show that our approach yields an
accurate and efficient calibration. Moreover, the idea behind the effective parameters is
intuitive and the resulting formulas are straightforward and relatively easy to implement.

As the calibration may not be perfect due to e.g. possible inaccuracies in the mapping
of the time-dependent to effective parameters, we add a non-parametric local volatil-
ity component (see e.g. [104]), which ‘bridges’ the mismatch between the prices in the
market and the ones implied by the calibrated model. See also the model in the previous
chapter.

The present chapter is organized as follows. In Section 3.2 we present the dynam-
ics of the time-dependent FX-SABR model. We also specify the non-parametric local
volatility component. In Section 3.3 we describe the calibration problem for the time-
dependent SABR model and in which way effective parameters facilitate efficient cali-
bration. Thereafter, in Sections 3.4.1, 3.4.2 and 3.4.3 we state results regarding the ef-
fective vol-vol, term structure and correlation parameters, respectively. Subsequently,
we calibrate the time-dependent SABR model in Section 3.5. We show that the local
volatility component yields an enhancement in the experimental results. Further, we
price standard barrier options and compare results for the constant-parameter FX-SABR
model, the local volatility model and the time-dependent FX-SABR model. We also dis-
cuss the role of the local volatility component. Section 3.6 concludes.

3.2. TIME-DEPENDENT FX-SABR MODEL WITH LOCAL VOLATIL-
ITY

In this section we present the time-dependent FX-SABR model. As the spot dynamics
involve time-dependent zero-coupon bonds, we cannot directly apply Hagan’s formulas
[63]. We resolve this issue by fixing the expiry of the zero-coupon bonds at the largest
time to maturity, which represents the terminal payment date.

We first calibrate the time-dependent FX-SABR model. Subsequently we add a non-
parametric local volatility component, which compensates for possible calibration inac-
curacies. The local volatility component can compensate for any calibration error, which
is a consequence of the mimicking theorem of Gyöngy [62]2. A perfect fit to a European-
type option price can be obtained, as its price is determined by the distribution of the
underlying at a particular point in time.

Despite this feature of the local volatility component, the stochastic volatility param-
eters need to be calibrated accurately. European-type option prices with different expiry
dates provide insight in the market behavior over time and our target is to ‘capture’ this
information in the model by replicating these prices. Further, for the hedging and pric-
ing of path-dependent products, a model should reflect realistic smile dynamics, both
with respect to the forward implied volatility smile and regarding changes in the un-
derlying. As the SABR model, compared to the local volatility model, typically captures
these features more accurately[10, 46, 63, 76], we will reduce the contribution of the local
volatility component by an accurate calibration.

2The theorem states that given a general Itô process, a Markov process containing a local volatility component
with the same marginal distributions as the former exists.
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3.2.1. TIME-DEPENDENT FX-SABR MODEL

Let rd (t ) and r f (t ) denote the deterministic domestic and foreign interest rates, respec-
tively, and Md (t ) and M f (t ) are corresponding money accounts, determined by

dMd (t ) = rd (t )Md (t )dt , dM f (t ) = r f (t )M f (t )dt .

Let y(t ) be the spot FX, expressed in units of domestic currency per unit of a foreign
currency. Further, define

Pd (t ,T ) := Md (t )EQ
[

1

Md (T )

∣∣∣∣F (t )

]
, P f (t ,T ) := M f (t )EQ

f
[

1

M f (T )

∣∣∣∣F (t )

]

as the domestic and foreign zero-coupon bonds, respectively, see e.g. [88, 97].
The time-dependent FX-SABR model assumes the following dynamics under the do-

mestic risk-neutralQ-measure:

dy(t ) = (
rd (t )− r f (t )

)
y(t )dt +ω(t )σ(t )

(
Pd (t ,T )

P f (t ,T )

)1−β
yβ(t )dW Q

y (t ), (3.2.1)

dσ(t ) = γ(t )σ(t )dW Q
σ (t ), (3.2.2)

with y(0) = y0, σ(0) = 1, dW Q
y (t )dW Q

σ (t ) = ρy,σ(t )dt and ρy,σ(t ), γ(t ) and β denoting the
correlation, vol-vol parameter and skew parameter, respectively. Further, T denotes the
maturity time. The skew parameter is typically set at β = 0.5 [103]. For calibration pur-
poses the volatility dynamics are scaled, which introduces the term structure parameter
ω(t ) in (3.2.1).

As this work aims to apply the SABR model in an FX context, it is convenient to
price under the forward measure. The traditional SABR model describes the dynamics
of the forward under the corresponding forward measure. Assuming a grid of N expiries

Ti , 1,2, . . . N , the FX forward yTi (t ) := y(t )
P f (t ,Ti )
Pd (t ,Ti ) is a martingale under the domestic Ti -

forward measure and the SABR model consistently prices an option with expiry date Ti .
However, simultaneous pricing of options with different expiries raises consistency is-
sues when using a single set of time-dependent parameters. We resolve this by writing
the dynamics of yTi (·) with respect to TN , which represents the terminal payment date3.

More concretely, let T1, T2,. . ., TN be a set of expiries and suppose that the spot dy-
namics (3.2.1)-(3.2.2) involve the zero-coupon bonds Pd (t ,TN ) and P f (t ,TN ). The dy-
namics of the forward yTi (t ) corresponding to an arbitrary expiry Ti then read:

dyTi (t ) = d

(
y(t )

P f (t ,Ti )

Pd (t ,Ti )

)
= P f (t ,Ti )

Pd (t ,Ti )
dy(t )+ (

r f (t )− rd (t )
)

y(t )
P f (t ,Ti )

Pd (t ,Ti )
dt .

3A similar approach was followed in [50]. The authors in [21] resolve the issue in a stochastic interest rates
framework by projecting the volatility term on a lognormal distribution, which yields forward dynamics that
are in the desired SABR form.
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Substituting the dynamics of y(t ) in (3.2.1) yields4:

dyTi (t ) =
(

P f (t ,Ti )

Pd (t ,Ti )

)β (
P f (t ,Ti )

Pd (t ,Ti )

)1−β
ω(t )σ(t )

(
Pd (t ,TN )

P f (t ,TN )

)1−β
yβ(t )dW Ti

y (t ).

By definition of the zero-coupon bond, we have, for deterministic interest rates P (Ti ,TN ) =
P (t ,TN )
P (t ,Ti ) :

dyTi (t ) =ω(t )σ(t )

(
Pd (Ti ,TN )

P f (Ti ,TN )

)1−β (
yTi (t )

)β
dW Ti

y (t ).

Scaling the forward dynamics results in the following model:

dyTi (t ) = ω1(t )σ(t )
(
yTi (t )

)β
dW Ti

y (t ), yTi (0) =: yTi
0 = 1, (3.2.3)

dσ(t ) = γ(t )σ(t )dW Ti
σ , σ(0) = 1, (3.2.4)

with dW Ti
y (t )dW Ti

σ (t ) = ρy,σ(t )dt and

ω1(t ) :=ω(t )

(
Pd (Ti ,TN )

yTi
0 P f (Ti ,TN )

)1−β
. (3.2.5)

As model (3.2.3)-(3.2.4) is in ‘SABR form’, we can apply Hagan’s formulas [63] under
the assumption of constant parameter values. This is a particularly useful property for
the calibration framework we propose, which is based on effective parameters (see Sec-
tion 3.3). The additional constants Pd (Ti ,TN ) and P f (Ti ,TN ) in (3.2.5) allow for the cal-
ibration of model (3.2.1)-(3.2.2) across multiple expiries. Without these terms the spot
dynamics are forward dependent, i.e. from the forward dynamics of yTi (·) and yT j (·),
i 6= j different dynamics for the spot FX and thus different models can be derived.

For the sake of notation, yTi (t ) and σ(t ) denote the scaled forward and volatility dy-
namics, respectively, unless otherwise mentioned. An exception holds for the initial for-
ward: yTi

0 denotes the original initial forward and yTi
0 = 1 corresponds to the model with

scaled forward dynamics.

3.2.2. LOCAL VOLATILITY COMPENSATOR

Calibration of model (3.2.1)-(3.2.2) may not be perfect. For this reason, we add a non-
parametric local volatility component that acts as a ‘compensator’ for the mismatch be-
tween the market and calibrated model prices.

Adding the local volatility component σSLV(t , y(t )) to model (3.2.1)-(3.2.2) yields the
following y(t ) dynamics:

dy(t ) = (
rd (t )− r f (t )

)
y(t )dt +σSLV(t , y(t ))ω(t )

√
V (t )

(
Pd (t ,T )

P f (t ,T )

)1−β
yβ(t )dW Q

y (t ),

4As the Radon-Nikodym derivative [48] isΛ
Ti
Q

= Pd (t ,Ti )M(0)
Pd (0,Ti )M(t ) = 1, we have dW

Ti
y (t ) = dWQ

y (t ).
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where V (t ) denotes variance to avoid double use of the letter σ. Defining5

ψ(y(t ),V (t )) :=ω(t )
√

V (t )

(
Pd (t ,T )

P f (t ,T )

)1−β
yβ−1(t ), (3.2.6)

the spot dynamics are given by:

dy(t )/y(t ) = (
rd (t )− r f (t )

)
dt +σSLV(t , y(t ))ψ(y(t ),V (t ))dW Q

y (t ), (3.2.7)

dV (t ) = γ2(t )V (t )dt +2γ(t )V (t )dW Q
σ (t ), V (0) = 1, (3.2.8)

with y(0) = y0 and dW Q
y (t )dW Q

σ (t ) = ρy,σ(t )dt .
In the previous chapter and in [118] we applied the Tanaka-Meyer formula [114] and

well-known relations between the option price and the underlying’s marginal density
based on the mimicking theory of Gyöngy [46, 62] to obtain the following result:

σ2
SLV(t ,K ) = σ2

LV(t ,K )

E
[
ψ2(y(t ),V (t ))|y(t ) = K

] .

Here σ2
LV(·) denotes Dupire’s local volatility term [35], which is either expressed in terms

of European call prices or in implied volatilities σ(·). In the numerical experiments we
choose the latter:

σ2
LV(t ,K ) =

σ2(T,K )+2σ(T,K )T
(
∂σ(T,K )
∂T + r K ∂σ(T,K )

∂K

)
(
1− K y

σ(T,K )
∂σ(T,K )
∂K

)2 +Kσ(T,K )T

(
∂σ(T,K )
∂K − 1

4 Kσ(T,K )T
(
∂σ(T,K )
∂K

)2 +K ∂2σ(T,K )
∂K 2

)
∣∣∣∣∣∣∣∣
T=t

.

Substituting (3.2.6) yields

σ2
SLV(t ,K ) = σ2

LV(t ,K )

E

[(
ω(t )

p
V (t )

(
Pd (t ,T )/P f (t ,T )

)1−β yβ−1(t )
)2

∣∣∣∣ y(t ) = K

]
= σ2

LV(t ,K )

ω2(t )
(
Pd (t ,T )/P f (t ,T )

)2−2βK 2β−2E
[
V (t )|y(t ) = K

] . (3.2.9)

The conditional expectation appearing in (3.2.9) can be evaluated efficiently by the non-
parametric method presented in the previous chapter.

3.3. CALIBRATION PROBLEM
In this section we discuss an important target of this work, namely the calibration of
model (3.2.1)-(3.2.2). For this we need to price basic options on the FX rate with dis-
counted value

C (t ,T,K ) = EQ
[

Md (t )

Md (T )

(
y(T )−K

)+∣∣∣∣F (t )

]
,

5For this model ψ(·) also depends on the underlying, y(t ), in contrast to the Heston-SLV model discussed in
[118] and the previous chapter. As we condition on y(t ) = K though, this issue is resolved in a natural way.
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where Q denotes the domestic risk-neutral measure. As we mentioned at the beginning
of Section 3.2, we will calibrate model (3.2.1)-(3.2.2) as accurately as possible in order
to enable an accurate and consistent pricing and hedging of path-dependent and other
forward volatility sensitive products.

In the calibration we make use of effective parameters, which are ‘sophisticated av-
erages’ of their corresponding time-dependent counterparts. In this section we discuss
how effective parameters facilitate efficient calibration.

The effective FX-SABR model is given by the following dynamics under the Ti -forward
measure, i = 1, . . . , N :

dỹTi (t ) = ω̃1σ̃(t )
(
ỹTi (t )

)β
dW Ti

y (t ), ỹTi (0) = yTi
0 = 1, (3.3.1)

dσ̃(t ) = γ̃σ̃(t )dW Ti
σ (t ), σ̃(0) = 1, (3.3.2)

with dW Ti
y (t )dW Ti

σ (t ) = ρ̃y,σdt and

ω̃1 := ω̃
(

Pd (Ti ,TN )

yTi
0 P f (Ti ,TN )

)1−β
, ω̃ :=σ0. (3.3.3)

This is just the constant-parameter version of model (3.2.3)-(3.2.4), derived in Section
3.2.

Remark 3.3.1. We have defined model (3.2.3)-(3.2.4) such that yTi
0 = 1. Therefore, the for-

mulas in this section can be simplified. However, for the sake of completeness we include
the term yTi

0 .

In model (3.3.1)-(3.3.2) the vol-vol parameter γ̃ mainly accounts for curvature [103].
A second-order effect is that a higher vol-vol value results in a higher smile level. This ef-
fect may be negligible, but for the given set of parameter values6 it is significant. Further,
γ̃ slightly affects skew. The effects are displayed in the left-hand graph of Figure 3.3.1.

The initial volatility ω̃ mainly affects the smile level, as can be observed in the graph
in the middle of Figure 3.3.1. On the base of an approximation formula, Hagan et al. [63]
discuss that the ATM level of the implied volatility smile traverses along the backbone
ω̃/(yTi

0 )1−β. The initial volatility has a secondary, but marginal skew effect [103].
Correlation ρ̃y,σ also has two effects. It primarily affects the skew, as we see in the

right-hand graph of Figure 3.3.1. Hagan et al. [63] quantify this effect as 1
2 ρ̃y,σλ log(K /yTi

0 ),

which they refer to as ‘vanna skew’, with λ = (γ̃/ω̃)(yTi
0 )1−β measuring the ‘strength’ of

the vol-vol parameter γ̃ compared to the local volatility ω̃/(yTi
0 )1−β. A second-order ef-

fect of correlation is curvature adjustment: a more negative value for ρ̃y,σ yields a de-
crease in curvature. The effect of the skew parameter β is threefold. We first mention
its skew effect. A smaller value for β implies a more negative skew (a ‘steeper downward
slope’ of the implied volatility smile). This effect is most clearly visible for the initial
forward rate equal to 1, see the graph in the middle of Figure 3.3.2. Hagan et al. [63] de-
termine − 1

2 (1−β) log(K /yTi
0 ) as being the skew implied by the skew parameter. Secondly,

for an initial forward rate smaller than 1, a higher β value implies a downward shifting,

6In all figures the parameter values, if not varying, are: y0 = 2, β= 0.5, γ̃= 0.5, ω̃= 0.1, ρ̃y,σ = 0 and Ti = 1.
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Figure 3.3.1: Effect of vol-vol parameter γ̃ (left), initial volatility ω̃ (middle) and correlation ρ̃y,σ
(right) on the shape of the implied volatility smile, y0 = 2, β= 0.5, Ti = 1.

whereas for initial forward rate larger than 1 this effect is opposite (left-hand graph and
right-hand graph of Figure 3.3.2, respectively). This effect is quantified by the backbone
ω̃/(yTi

0 )1−β. Last, β has a third-order curvature effect [103]. As we have defined model

(3.3.1)-(3.3.2) such that yTi
0 = 1, the middle graph of Figure 3.3.2 applies.

Based on the smile effects just described, we will derive the effective parameters.
We subsequently use the effective model (3.3.1)-(3.3.2) to calibrate the time-dependent
parameters γ(t ),ω(t ) and ρy,σ(t ). It will turn out that calibrating γ(t ) and ρy,σ(t ) yields a
fit to the market in both curvature and skew. What remains, is a mismatch in level, which
is compensated for by calibrating ω(t ). We will add a local volatility component on top
of the calibrated time-dependent SABR model to compensate for possible calibration
inaccuracies.

3.3.1. CALIBRATION SET-UP

The difficulty of calibrating time-dependent parameters lies in the following. It is market
practice to calibrate model (3.3.1)-(3.3.2) for a grid of – say N – expiries. The N param-
eter values obtained hold from t = 0 up to the corresponding expiries. In the case of a
time-dependent parameter though, we are interested in calibrating one time-dependent
function that is consistent with the market prices at all (N ) expiries.

Let us elaborate on this problem. By means of calibrating the effective model (3.3.1)-
(3.3.2) in the common way we find, amongst others, vol-vol parameter values γ̃mar

1 , γ̃mar
2 ,

. . ., γ̃mar
N that correspond to the time-intervals [0,T1], [0,T2] , . . . , [0,TN ], respectively. We

call these ‘market effective’ parameters. Intuitively, γ̃mar
i ‘captures’ all information up to

Ti . We can also extract market effective term structure values ω̃mar
1 , ω̃mar

2 , . . . , ω̃mar
N and

correlations ρ̃mar
y,σ,1, ρ̃mar

y,σ,2, . . . , ρ̃mar
y,σ,N . In the following, we only describe how the time-

dependent vol-vol parameter γ(t ) is obtained. The same procedure applies for finding
ω(t ) and ρy,σ(t ).



3.3. CALIBRATION PROBLEM

3

45

0.4 0.5 0.6
10

15

20

25

Strike

Im
pl

ie
d 

vo
la

til
ity

 [%
]

BS Imp.Vol., initial forward = 0.5

 

 

β = 0.1

β = 0.3

β = 0.5

β = 0.8

β = 0.95

0.8 1 1.2
10.5

11

11.5

12

12.5

13

13.5

Strike

Im
pl

ie
d 

vo
la

til
ity

 [%
]

BS Imp.Vol., initial forward = 1

 

 

β = 0.1

β = 0.3

β = 0.5

β = 0.8

β = 0.95

1.5 2 2.5
5

6

7

8

9

10

11

12

13

14

Strike

Im
pl

ie
d 

vo
la

til
ity

 [%
]

BS Imp.Vol., initial forward = 2

 

 

β = 0.1

β = 0.3

β = 0.5

β = 0.8

β = 0.95

Figure 3.3.2: Effect of β on the shape of the implied volatility smile for initial forward values

yTi
0 = 0.5 (left), yTi

0 = 1 (middle) and yTi
0 = 2 (right), γ̃= 0.5, ω̃= 0.1, ρ̃y,σ = 0, Ti = 1.

The time-dependent vol-vol parameter γ(t ) has to satisfy two requirements. The first
one is trivial: our goal is to determine one time-dependent function. Secondly, it should
relate to all expiries Ti , i = 1, 2, . . . , N given in the market. That is, at the given expiries
the values of the time-dependent parameter γ(Ti ) must yield the same implied volatility
as the market effective parameter γ̃mar

i does.

If only the latter requirement had to be satisfied, we could just chooseγ(Ti ) = γ̃mar
i for

all expiries. In this case we would have N constant functions γ(·) that ‘live’ on different
time-intervals. The first requirement though complicates the problem of finding a time-
dependent parameter: mapping the set of market effective parameters

{
γ̃mar

1 , γ̃mar
2 , . . . , γ̃mar

N

}
onto one time-dependent parameter γ(t ) is not straightforward. An easier problem is to
transfer from a time-dependent parameter to its ‘effective equivalent’, so to find a map-
ping

{
γ(t ), 0 ≤ t ≤ TN

}→ {
γ̃mod

1 , γ̃mod
2 , . . . , γ̃mod

N

}
, (3.3.4)

where γ̃mod
i , i = 1, 2, . . . , N , denote the effective vol-vol parameter values implied by the

model, in particular by the time-dependent vol-vol parameter.

Suppose we have established mapping (3.3.4). Subsequently, in the calibration we
numerically find γ(t ) such that γ̃mod

i = γ̃mar
i , i = 1, . . . , N , or on the base of the matching

implied volatilities obtained using γ̃mod
i and γ̃mar

i , respectively. From a computational
point of view, finding γ(t ) in this way is significantly less expensive than repeatedly apply-
ing a pricing method in the calibration that is suitable for time-dependent parameters
[96] (e.g. Monte Carlo simulation or a PDE-based approach). In a similar way we find
ω(t ) and ρy,σ(t ).
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3.4. EFFECTIVE PARAMETERS
Based on their effects on the shape of the implied volatility smile, we derive the effective
parameters. In the following subsections we derive mappings for the effective vol-vol
parameter, term structure and correlation, respectively. The results obtained are used in
the calibration in Section 3.5.

3.4.1. EFFECTIVE VOL-VOL PARAMETER

The vol-vol parameter mainly affects curvature. Curvature is introduced7 by adding
stochastic volatility to the CEV model [25], which results in the SABR model. An ap-
propriate measure for curvature is the ‘realized volatility’, which is defined as∫ Ti

0
ω1(t )σ(t )dW Ti (t ),

where ω1(t ) is a deterministic scaling parameter specified by (3.2.5).
We determine the effective vol-vol parameter such that the realized volatilities of the

time-dependent and effective models are equal in distribution, that is∫ Ti

0
ω1(t )σ(t )dW Ti (t )

d=
∫ Ti

0
ω̃1σ̃(t )dW Ti (t ).

More concretely, we obtain the effective vol-vol parameter by matching the moments of
the realized volatilities.

In the following lemma we first state the main result of this section. We subsequently
provide a proof for it.

Lemma 3.4.1 (Effective vol-vol parameter). By matching moments of the realized volatil-
ities of the time-dependent and effective models, the effective vol-vol parameter γ̃ corre-
sponding to the expiry Ti is obtained by the following equation:∫ Ti

0
ω2

1(t )

(∫ t

0
ω2

1(s)e6
∫ s

0 γ
2(u)du+∫ t

s γ
2(u)duds

)
dt

= 1

5

(∫ Ti
0 ω2

1(t )e
∫ t

0 γ
2(u)dudt

eγ̃2Ti −1

)2 (
1

6
e6γ̃2Ti −eγ̃

2Ti + 5

6

)
.

Proof. It is easy to see that first moment matching of the realized volatilities does not

give conclusive results: trivially, E
[∫ Ti

0 ω1(t )σ(t )dW Ti (t )
]
= E

[∫ Ti
0 ω̃1σ̃(t )dW Ti (t )

]
= 0.

We therefore proceed by matching the variances of the realized volatilities, i.e.

E

[(∫ Ti

0
ω1(t )σ(t )dW Ti (t )

)2
]

= E

[(∫ Ti

0
ω̃1σ̃(t )dW Ti (t )

)2
]

⇔
∫ Ti

0
ω2

1(t )E
[
σ2(t )

]
dt = ω̃2

1

∫ Ti

0
E
[
σ̃2(t )

]
dt ,

7Neglecting the higher-order curvature effects of the correlation and skew parameter.
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which gives

ω̃2
1 =

∫ Ti
0 ω2

1(t )E
[
σ2(t )

]
dt∫ Ti

0 E
[
σ̃2(t )

]
dt

.

As
E
[
σ2(t )

]= e
∫ t

0 γ
2(u)du , E

[
σ̃2(t )

]= eγ̃
2t ,

we have

ω̃2
1 =

∫ Ti
0 ω2

1(t )e
∫ t

0 γ
2(u)dudt∫ Ti

0 eγ̃2t dt
= γ̃2

∫ Ti
0 ω2

1(t )e
∫ t

0 γ
2(u)dudt

eγ̃2Ti −1
. (3.4.1)

Equation (3.4.1) yields two unknowns: ω̃1 and γ̃. In order to have a system with two
equations and two unknowns that we can solve for γ̃, we match another higher moment
as follows:

E

[(∫ Ti

0
ω2

1(t )σ2(t )dt

)2
]
= ω̃4

1E

[(∫ Ti

0
σ̃2(t )dt

)2
]

. (3.4.2)

Evaluating the left-hand side of (3.4.2) gives:

E

[(∫ Ti

0
ω2

1(t )σ2(t )dt

)2
]
= E

[∫ Ti

0

(∫ Ti

0
ω2

1(s)σ2(s)ds

)
ω2

1(t )σ2(t )dt

]
.

By symmetry around the point s = t , we have

E

[(∫ Ti

0
ω2

1(t )σ2(t )dt

)2
]

= 2E

[∫ Ti

0

∫ t

0
ω2

1(s)σ2(s)ω2
1(t )σ2(t )dsdt

]

= 2
∫ Ti

0
ω2

1(t )
∫ t

0
ω2

1(s)E
[
σ2(s)σ2(t )

]
dsdt . (3.4.3)

To evaluate E
[
σ2(s)σ2(t )

]
, we use the dynamics of the squared volatilityσ2(t ), which can

easily be derived:

dσ2(t ) =σ2(t )
(
γ2(t )dt +2γ(t )dW Ti

σ (t )
)

.

Applying basic Itô calculus yields

E
[
σ2(s)σ2(t )

]= e6
∫ s

0 γ
2(u)du+∫ t

s γ
2(u)du .

Combining this result with (3.4.3) gives for the left-hand side of (3.4.2):

E

[(∫ Ti

0
ω2

1(t )σ2(t )dt

)2
]
= 2

∫ Ti

0
ω2

1(t )

(∫ t

0
ω2

1(s)e6
∫ s

0 γ
2(u)du+∫ t

s γ
2(u)duds

)
dt . (3.4.4)

In a similar way we obtain for the right-hand side

ω̃4
1E

[(∫ Ti

0
σ̃2(t )dt

)2
]
= 2ω̃4

1

5γ̃4

(
1

6
e6γ̃2Ti −eγ̃

2Ti + 5

6

)
. (3.4.5)
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We now substitute (3.4.1) in the right-hand side of (3.4.5) and equation (3.4.2) becomes:∫ Ti

0
ω2

1(t )

(∫ t

0
ω2

1(s)e6
∫ s

0 γ
2(u)du+∫ t

s γ
2(u)duds

)
dt

= 1

5

(∫ Ti
0 ω2

1(t )e
∫ t

0 γ
2(u)dudt

eγ̃2Ti −1

)2 (
1

6
e6γ̃2Ti −eγ̃

2Ti + 5

6

)
.

We numerically solve this equation for γ̃. The other unknown parameter, ω̃1, has van-
ished.

Remark 3.4.1 (Piecewise-constant parameters). In the case of piecewise-constant pa-
rameters we can derive analytical expressions for the integrals in (3.4.1) and (3.4.4), which
significantly speeds up the calibration procedure.

NUMERICAL EXPERIMENT

Let y0 = 2, β= 0.5, ω(t ) = 0.15, rd = 0.05 and r f = 0.02. Further, we assume ρy,σ(t ) = 0.

Remark 3.4.2 (Interest rates). In the calibration ‘effective’ and time-dependent domestic
and foreign interest rates can be extracted from the initial (non-scaled) forward yTi

0 and

spot y0 via the relation yTi
0 := y0

P f (0,Ti )
Pd (0,Ti ) .

Remark 3.4.3 (Zero correlation). In the numerical experiments in this section and Section
3.4.2 we choose the correlation to be zero. Assuming zero correlation yields the advantage
that the exact zero-correlation pricing formula of Antonov et al. [7] can serve as a bench-
mark. In the Monte Carlo simulation we apply a basic first-order Taylor approximation
scheme. Typically, Monte Carlo simulation schemes of the SABR model are biased, espe-
cially for large vol-vol parameter values and small initial forward rates [22]. In order to
make sure that results are not affected by the Monte Carlo bias, we can use the effective pa-
rameters both in a Monte Carlo simulation and in the zero-correlation pricing formula [7]
to price European call options. In the numerical experiments in this section and Sections
3.4.2 and 3.4.3, we have confirmed that the results are free of Monte Carlo bias. We have
also verified that for non-zero correlation values the performance of the effective parame-
ters is similar to the performance as shown in this section and in Section 3.4.2.

We assume values for γ(t ) as given in Table 3.4.1. We choose the vol-vol parameter to
be decreasing over time, as in the FX market the curvature of the implied volatility smile
typically diminishes for longer expiries. Effective vol-vol parameter values are also given
in Table 3.4.1. In Figure 3.4.1 we display the Black-Scholes implied volatility smiles ob-
tained by simulating the time-dependent model (3.2.1)-(3.2.2) and the effective model
(also in spot measure) for T = 1, T = 2 and T = 5 with the corresponding γ̃ values (num-
ber of paths is 5 ·105, number of time-steps per year is 200). The curvature fit is highly
satisfactory8.

8We have derived γ̃ by only considering the vol-vol’s primary effect (which is on the smile’s curvature). Due
to this, a marginal level mismatch occurs between the time-dependent model and the effective model, as the
vol-vol parameter also has a level effect. In order to obtain a level fit again, we adjust the term structure value
of the effective model slightly by exploiting the techniques of Section 3.4.2.
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t [0, 1
2 ) [ 1

2 ,1) [1,2) [2,3) [3,5]
γ(t ) 1 0.8 0.5 0.3 0.2

t 1
2 1 2 3 5

γ̃ 1 0.911 0.785 0.692 0.565

Table 3.4.1: Time-dependent and effective vol-vol values
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Figure 3.4.1: Performance of the effective vol-vol parameter for T = 1 (left), T = 2 (middle) and
T = 5 (right).

3.4.2. EFFECTIVE TERM STRUCTURE
In Section 3.3 we mentioned that the parameter ω mainly affects the level of the im-
plied volatility smile. Therefore, in this section we derive the effective term structure ω̃
by matching ‘smile levels’ of the time-dependent and effective models. As the level of
the smile is completely determined by the ATM implied volatility value, we match ATM
prices of the time-dependent and effective models, that is:

E
[(

yTi (Ti )− yTi
0

)+]
= E

[(
ỹTi (Ti )− yTi

0

)+]
, yTi

0 = 1. (3.4.6)

Lemma 3.4.2. We assume in SDE system (3.2.3)-(3.2.4) for the forward yTi lognormal
dynamics. The expected ATM payoff at time Ti is then given by

E
[(

yTi (Ti )−1
)+]

= E[
g (x)

]
,

with

g (x) := 2Φ

(
1

2

p
x

)
−1, x :=

∫ Ti

0
ω2

1(t )σ2(t )dt ,

whereΦ denotes the standard normal cumulative distribution function.

Proof. Assuming lognormal dynamics for the forward, we have

yTi (Ti ) = e−
1
2

∫ Ti
0 ω2

1(t )σ2(t )dt+∫ Ti
0 ω1(t )σ(t )dW

Ti
y (t ).
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Suppose that the path {ω1(t )σ(t ),0 ≤ t ≤ Ti } is given. Defining

Z (Ti ) :=
∫ Ti

0
ω2

1(t )σ2(t )dt , σ̃2 := Z (Ti )

Ti
,

we have

yTi (Ti ) = e−
1
2 σ̃

2Ti+σ̃W
Ti
y (Ti ),

and also
E
[ (

yTi (Ti )−1
)+∣∣∣ω1(t )σ(t ),0 ≤ t ≤ Ti

]
=Φ(d+)−Φ(d−),

with

d± = log(1)± 1
2 σ̃

2Ti

σ̃
p

Ti
=±1

2
σ̃

√
Ti =±1

2

√
Z (Ti ).

As a consequence, the conditional expectation can be written as:

E
[

(yTi (Ti )−1)+
∣∣ω1(t )σ(t ),0 ≤ t ≤ Ti

] = Φ

(
1

2

√
Z (Ti )

)
−Φ

(
−1

2

√
Z (Ti )

)
= 2Φ

(
1

2

√
Z (Ti )

)
−1.

Applying the Tower property yields:

E
[
(yTi (Ti )−1)+

] = E
[
E
[

(yTi (Ti )−1)+
∣∣ω1(t )σ(t ),0 ≤ t ≤ Ti

]]
= E

[
g (x)

]
,

with

g (x) := 2Φ

(
1

2

p
x

)
−1, x :=

∫ Ti

0
ω2

1(t )σ2(t )dt .

Analogously, for the effective model we have E
[
(ỹTi (Ti )−1)+

] = E
[
g (x̃)

]
with x̃ :=

ω̃2
1

∫ Ti
0 σ̃2(t )dt . We continue with approximating g (·) by a simpler function, which yields

an efficient evaluation of the effective term structure.

Remark 3.4.4. In this section we use the superscripts (`) and (r ) to indicate approxima-
tion errors corresponding to the left-hand side and right-hand side of equation (3.4.6),
respectively.

Lemma 3.4.3. Approximating g (·) by the corresponding Taylor series yields

E
[
(yTi (Ti )−1)+

]= 1p
2π
E
[p

x
]+ε(`)

T , (3.4.7)

with

ε(`)
T := 2p

π

(
−1

3
E
[
z3]+ 1

10
E
[
z5]− . . .

)
, z := 1

2

p
x/2, x :=

∫ Ti

0
ω2

1(t )σ2(t )dt .
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Proof. By definition, we have

Φ

(
1

2

p
x

)
= 1

2

[
1+erf

(
1

2

p
x/2

)]
, (3.4.8)

where erf(·) denotes the (Gauss) error function9. Defining

x :=
∫ Ti

0
ω2

1(t )σ2(t )dt , z := 1

2

p
x/2,

we approximate the integrand of the error function by the first term of the corresponding
Taylor series around 0:

erf(z) = 2p
π

∫ z

0

(−t 2)0

0!
dt +ε(`)

T = 2p
π

z +ε(`)
T , (3.4.9)

with

ε(`)
T := 2p

π

(
−1

3
z3 + 1

10
z5 − . . .

)
,

denoting the truncation error. Combining (3.4.8) and (3.4.9) we obtain

g (x) = 1p
2π

p
x +ε(`)

T

and thus

E
[
(yTi (Ti )−1)+

]= E[
g (x)

]= 1p
2π
E
[p

x
]+ε(`)

T ,

with

ε(`)
T := 2p

π

(
−1

3
E
[
z3]+ 1

10
E
[
z5]− . . .

)
.

Remark 3.4.5 (Qualitative analysis of ε(`)
T ). The truncation error ε(`)

T is quantified as fol-

lows. We distinguish between two cases, namely Pd (Ti ,TN )

y
Ti
0 P f (Ti ,TN )

≤ 1 and Pd (Ti ,TN )

y
Ti
0 P f (Ti ,TN )

> 1. For

the former case, by the definition ofω1(·), the truncation error is largest forβ= 1. Typically,
ω(·) =O (10−1) and as β= 1, we have ω1(·) =ω(·) =O (10−1). Further, as the scaled volatil-
ity σ(·) has initial value 1, E [z] = O (10−1). For realistic values for the vol-vol parameter
the leading term in the truncation error is E

[
z3

]
and is assumed to have a lower order of

magnitude than E [z]. For β< 1 the truncation error is smaller. In case Pd (Ti ,TN )

y
Ti
0 P f (Ti ,TN )

> 1, the

truncation error is largest for β= 0, and ω(·) =O (10−1) results in ω2
1(·) =O ((10yTi

0 )−2). As

the scaled volatility σ(·) has initial value 1, typically E [z] =O ((10yTi
0 )−1). Realistic vol-vol

9The Gauss error function is defined as

erf(x) := 2p
π

∫ x

0
e−t 2

dt .
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values imply that E
[
z3

]
is the leading term in the truncation error. A smaller yTi

0 value im-
plies a larger truncation error and the contribution of the non-parametric local volatility
compensator is more significant. For β> 0 the truncation error is smaller. In the numeri-
cal experiments in Section 3.4.2 we show that relatively large ω(·) and γ(·) values imply a
slightly less accurate level fit, which is in line with the former qualitative analysis.

Analogous to the time-dependent model, the expected ATM payoff corresponding to
the effective model is given by

E
[
(ỹTi (Ti )−1)+

]= 1p
2π
E
[p

x̃
]
+ε(r )

T , (3.4.10)

with

ε(r )
T := 2p

π

(
−1

3
E
[
z̃3]+ 1

10
E
[
z̃5]− . . .

)
, z̃ := 1

2

p
x̃/2, x̃ := ω̃2

1

∫ Ti

0
σ̃2(t )dt .

For the truncation error ε(r )
T a similar analysis holds as in Remark 3.4.5. Substitution of

(3.4.7) and (3.4.10) in equation (3.4.6) gives

1p
2π
E

√∫ Ti

0
ω2

1(t )σ2(t )dt

+ε(`)
T = ω̃1p

2π
E

√∫ Ti

0
σ̃2(t )dt

+ε(r )
T . (3.4.11)

In order to evaluate the expectations, we derive closed-form expressions for the ‘ 1
2 th

moments’ of the integrals in (3.4.11).

Lemma 3.4.4 (Effective term structure). An approximation of the expected ATM payoff
corresponding to the time-dependent model in (3.2.3)-(3.2.4) is given by

E
[
(yTi (Ti )−1)+

]= 1p
2π

(
ω1(0)

√
∆t φ̂YM (−1

2
i )

)
+ε(`)

T +ε(`)
I +ε(`)

F , (3.4.12)

with φ̂YM (·) denoting an approximation of the characteristic function of

YM := log

(∑M
j=1

ω2
1(t j )σ2(t j )

ω2
1(0)

)
, with t j = j∆t , ∆t = Ti /M, j = 1, . . . , M. The error ε(`)

I is due

to an integral approximation and ε(`)
F is introduced in the characteristic function approx-

imation. Further, from (3.4.12) and a similar result for the effective model, the effective
term structure corresponding to the expiry Ti is given by

ω̃= ω̃1

(
yTi

0 P f (Ti ,TN )

Pd (Ti ,TN )

)1−β
, with ω̃1 =

ω1(0)φ̂YM (− 1
2 i )

φ̂ỸM
(− 1

2 i )
+ε, (3.4.13)

where φ̂ỸM
(·) is an approximation of the characteristic function of ỸM := log

(∑M
j=1 σ̃

2(t j )
)

and ε represents the different error terms introduced, which are marginal and do not sig-
nificantly affect the performance of the effective term structure parameter.
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Proof. We start with approximating the integral∫ Ti

0
ω2

1(t )σ2(t )dt =∆t

M∑
j=1

ω2
1(t j )σ2(t j )+ε(`)

I , (3.4.14)

with ∆t = Ti /M and ε(`)
I denoting the error term corresponding to the time-interval

[0,Ti ]. Given the integral approximation we have

E

√∫ Ti

0
ω2

1(t )σ2(t )dt

=ω1(0)
√
∆tE

[(
M∑

j=1

ω2
1(t j )σ2(t j )

ω2
1(0)

)1/2]
+ε(`)

I , (3.4.15)

with ∆t = Ti /M and ε(`)
I is due to the integral approximation error ε(`)

I in (3.4.14). We
evaluate the expectation as follows. Given the characteristic function φYM (·) of

YM := log

(
M∑

j=1

ω2
1(t j )σ2(t j )

ω2
1(0)

)
, (3.4.16)

we have

E

[(
M∑

j=1

ω2
1(t j )σ2(t j )

ω2
1(0)

)1/2]
= E

[
e

1
2 YM

]
=φYM (−1

2
i )

and thus

E

√∫ Ti

0
ω2

1(t )σ2(t )dt

=ω1(0)
√
∆t φ̂YM (−1

2
i )+ε(`)

I +ε(`)
F , (3.4.17)

where ε(`)
F denotes the error in the approximation of the characteristic function φ̂YM (·),

which is introduced in the procedure of recovering it. In Appendix 3.A we describe the
recovery procedure, which was developed in the context of Asian options in [132]. Fur-
thermore, combining (3.4.17) with the result in (3.4.7) gives10

E
[
(yTi (Ti )−1)+

]= 1p
2π

(
ω1(0)

√
∆t φ̂YM (−1

2
i )

)
+ε(`)

T +ε(`)
I +ε(`)

F . (3.4.18)

For the effective model we can derive

E
[
(ỹTi (Ti )−1)+

]= 1p
2π

(
ω̃1

√
∆t φ̂ỸM

(−1

2
i )

)
+ε(r )

T +ε(r )
I +ε(r )

F , (3.4.19)

where φ̂ỸM
(·) is an approximation of the characteristic function of ỸM := log

(∑M
j=1 σ̃

2(t j )
)
.

Given the identities (3.4.18) and (3.4.19), equation (3.4.11) can be written as

1p
2π

(
ω1(0)

√
∆t φ̂YM (−1

2
i )

)
+ε(`)

I +ε(`)
F +ε(`)

T = ω̃1p
2π

(√
∆t φ̂ỸM

(−1

2
i )

)
+ε(r )

I +ε(r )
F +ε(r )

T

10In this step the error terms ε(`)
I and ε(`)

F are divided by
p

2π and we keep the same notation for the ‘new’ error
terms.
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and we obtain

ω̃1 =
ω1(0)φ̂YM (− 1

2 i )+ε(`)
I +ε(`)

F +ε(`)
T −ε(r )

T

φ̂ỸM
(− 1

2 i )+ε(r )
I +ε(r )

F

= ω1(0)φ̂YM (− 1
2 i )

φ̂ỸM
(− 1

2 i )
+ε,

where ε represents the different error terms. By definition (3.3.3) we arrive at the result
in equation (3.4.13).

Lemma 3.4.5. For the integral approximation error ε(`)
I in (3.4.12) it holds that: lim

M→∞

∥∥∥ε(`)
I

∥∥∥2

L2
=

0.

Proof. For the error ε(`)
I introduced in (3.4.14) we have:

E
∣∣∣ε(`)

I

∣∣∣2 = E

[∣∣∣∣∣
∫ Ti

0
ω2

1(t )σ2(t )dt −∆t

M∑
j=1

ω2
1(t j )σ2(t j )

∣∣∣∣∣
2]

= E

[∣∣∣∣∣ M∑
j=1

∫ t j

t j−1

{
ω2

1(t )σ2(t )−ω2
1(t j )σ2(t j )

}
dt

∣∣∣∣∣
2]

≤
M∑

j=1
E

[∫ t j

t j−1

∣∣ω2
1(t )σ2(t )−ω2

1(t j )σ2(t j )
∣∣2

dt

]
. (3.4.20)

Convergence of the integral approximations is evident. An important result in stochastic
calculus (see e.g. [78, 109]) states that for each fixed T > 0 and for any bounded, adapted
and measurable process X (·), there exists a sequence {X (M)(·)}∞M=1 of simple processes
(which are, by definition, bounded11) such that

lim
M→∞

E

[∫ T

0

∣∣X (M)(t )−X (t )
∣∣2

dt

]
= 0.

In our case, defining X (t ) := ω2
1(t )σ2(t ) and X (M)(t ) :=

M−1∑
j=1

ω2
1(t j )σ2(t j )1{t j−1≤t<t j }(t )+

ω2
1(tM )σ2(tM )1{tM−1≤t≤tM }(t ) as a simple process approximating X (t ) on the interval [0, tM ]

with tM = Ti (both X (·) and X (M)(·) satisfy the regular conditions), we have:

lim
M→∞E

[∫ Ti

0

∣∣∣∣∣M−1∑
j=1

ω2
1(t j )σ2(t j )1{t j−1≤t<t j }(t )+ω2

1(tM )σ2(tM )1{tM−1≤t≤tM }(t )−ω2
1(t )σ2(t )

∣∣∣∣∣
2

dt

]
= 0

⇔ lim
M→∞E

[
M∑

j=1

∫ t j

t j−1

∣∣∣ω2
1(t j )σ2(t j )−ω2

1(t )σ2(t )
∣∣∣2

dt

]
= 0

and thus

lim
M→∞

M∑
j=1

E

[∫ t j

t j−1

∣∣ω2
1(t j )σ2(t j )−ω2

1(t )σ2(t )
∣∣2

dt

]
= 0. (3.4.21)

11Besides the boundedness, the random variable in each piece of the simple process – σ2(t j ) in our case – is
F (t j−1)-measurable.
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Combining (3.4.20) and (3.4.21) yields

lim
M→∞

∥∥∥ε(`)
I

∥∥∥2

L2
:= lim

M→∞
E
∣∣∣ε(`)

I

∣∣∣2 = 0,

where ‖X ‖L2 := (
E|X |2)1/2

is defined as the norm in L2 space. As the error ε(`)
I in (3.4.15)

propagates from ε(`)
I , we have lim

M→∞

∥∥∥ε(`)
I

∥∥∥2

L2
= 0.

Remark 3.4.6 (Analysis of ε(`)
F ). As stated by [132], three different types of errors are in-

volved in the characteristic function recovery, namely a truncation error εt, an error of the
Fourier cosine expansion εf and an error term introduced by applying the Clenshaw-Curtis
quadrature εq. The truncation error is defined as

εt(YM ) :=
∫
R\[a,b]

fYM (y)dy, (3.4.22)

with fYM (·) denoting the probability density function of YM defined in (3.4.16). By defini-
tion (3.4.22), the truncation error decreases as the interval [a,b] increases and the error is
not dominant for a sufficiently large integration range. Further, from [38] we know that
for a probability density function f (y |x) ∈ C∞[a,b] the error εf of the Fourier cosine ex-
pansion is bounded by

|εf(N , [a,b])| ≤ R(N )e−(N−1)ξ, (3.4.23)

where ξ > 0 is a constant and the term R(N ) is changing less than exponentially with re-
spect to N , the number of Fourier cosine terms. So εf decays exponentially with respect to
N , i.e. lim

N→∞
εf(N , [a,b]) = 0. This error is related to ε(`)

F , the error in the recovered charac-

teristic function φ̂YM (·), as follows:∣∣∣ε(`)
F

∣∣∣=O
(
(M −1)

(|εf|+ |εq|
))

. (3.4.24)

Equations (3.4.23) and (3.4.24) show that if the number of monitoring dates M increases,
we need to increase the number of Fourier expansion terms N to compensate for this and
to reach a specified level of accuracy, i.e. lim

M ,N→∞
ε(`)

F = 0 (neglecting the error εq).

For the effective model we can also show that for the integral approximation error

ε(r )
I in (3.4.19) limM→∞

∥∥∥ε(r )
I

∥∥∥2

L2
= 0 and lim

M ,N→∞
ε(r )

F = 0.

Remark 3.4.7 (Level effect). The assumption of lognormal dynamics in (3.2.3)-(3.2.4)
does not significantly affect the quality of the effective term structure for β 6= 1. The reason
for this is the marginal ATM level effect of the CEV exponent, as we have defined model
(3.2.3)-(3.2.4) such that yTi

0 = 1. We could already see this when discussing the smile ef-
fects of the skew parameter in Section 3.3. For the effective model we can quantify the
ATM level effect of β on the base of Hagan’s formula for ATM options [63]. Our numer-
ical experiments in Section 3.4.2 confirm that the lognormality assumption still yields
accurate results when assuming β = 0.5. Further, in the calibration procedure we add a
non-parametric local volatility component that compensates for possible calibration in-
accuracies introduced by the lognormality assumption.
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Remark 3.4.8 (Alternative approaches). We have followed two alternative approaches
to find the effective term structure. From the characteristic functions φ̂YM (·) and φ̂ỸM

(·)
the corresponding probability density functions are derived. Successively, we compute ap-
proximations of E

[
g (x)

]
and E

[
g (x̃)

]
with x and x̃ as defined earlier, without approx-

imating g (·). As a second approach, we have implemented Curran’s Asian option pric-
ing method [29] and the enhanced “Curran 2M+” method [31, 84]. From a grid of Asian
option prices with underlyings

∑M
j=1ω

2
1(t j )σ2(t j )/M and

∑M
j=1 σ̃

2(t j )/M the correspond-

ing densities are derived by the well-known relation f (K ,T ; y0) = ∂2C (·)/∂K 2 [35] and we
successively calculate approximations of E

[
g (x)

]
and E

[
g (x̃)

]
. In both approaches ω̃1 is

determined by an optimization procedure in which E
[
g (x)

]
and E

[
g (x̃)

]
are repeatedly

recalculated. The problem remains how to efficiently determine the effective term struc-
ture value. In contrast, the benefit of equation (3.4.11) is the closed-form approximation
of ω̃1, which yields an efficient evaluation and highly accurate results (see Section 3.4.2).

NUMERICAL EXPERIMENT

In this section we test the performance of the effective term structure ω̃ given by (3.4.13)
for four cases. For all experiments y0 = 2, β= 0.5, domestic and foreign interest rates are
rd = 0.05 and r f = 0.02, respectively, and ρy,σ(t ) = 0.

We first test the stand-alone performance of ω̃ in the Cases I, II and III (the Monte
Carlo simulation consists of 5 ·105 paths and 200 time-steps per year). Time-dependent
parameter values are given in Table 3.4.2. We only consider the last expiry T = 5. In Case

t [0, 1
2 ) [ 1

2 ,1) [1,2) [2,3) [3,5]

Case I γ(t ) 0.7 0.7 0.7 0.7 0.7
ω(t ) 0.1 0.12 0.14 0.16 0.18

Case II γ(t ) 0.3 0.3 0.3 0.3 0.3
ω(t ) 0.1 0.12 0.14 0.16 0.18

Case III γ(t ) 0.3 0.3 0.3 0.3 0.3
ω(t ) 0.3 0.36 0.42 0.48 0.54

Case IV γ(t ) 1 0.8 0.5 0.3 0.2
ω(t ) 0.1 0.12 0.14 0.16 0.18

Table 3.4.2: Time-dependent parameter values

I γ(t ) has a rather extreme value, especially for the larger times to maturity, whereas the
ω(t ) value is chosen to be moderate. For Case III the opposite holds. In Case II both
γ(t ) andω(t ) have moderate values. In Case IV we test the combined performance of the
effective vol-vol and effective term structure parameters across multiple expiries. In this
case we assume parameter values which we typically observe in the FX markets.

The effective parameter values are given in Table 3.4.3. Results are displayed in Fig-
ures 3.4.2 and 3.4.3. The Cases II and IV yield a highly satisfactory fit. Results are slightly
less accurate for a relatively large vol-vol parameter (Case I) or term structure (Case III).
The reason for this is that the truncation error corresponding to the Taylor approxima-
tion of erf(z) in (3.4.9) increases for larger z values, see Remark 3.4.5. This is a minor
issue, as for typical FX marketsω(t ) and – for relatively large expiries – γ(t ) assume mod-
erate values, which are comparable with the values in Case IV.
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Case I II III

t 5 5 5

γ̃ 0.679 0.316 0.316
ω̃ 0.157 0.156 0.466

Case IV

t 1 2 3 5
γ̃ 0.937 0.803 0.707 0.575
ω̃ 0.110 0.123 0.132 0.146

Table 3.4.3: Effective parameter values
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Figure 3.4.2: Stand-alone performance of the effective term structure parameter for Cases I, II and
III, T = 5 (γ(·) is constant over time).

3.4.3. EFFECTIVE CORRELATION
At this point, we have determined the effective vol-vol and term structure parameters.
As the numerical experiments in Section 3.4.2 show, the combined use of these effective
parameters yields an accurate fit in both curvature and level. In the experiments we
assumed zero correlation and set β= 0.5. By assuming these parameters to be constant,
a time-dependent skew effect cannot be accounted for. To resolve this, we derive an
effective correlation.

We obtain the effective correlation by considering the vanna skew of the SABR model.
Based on an approximation of their main pricing formula (‘Hagan’s formula’), Hagan et
al. [63] define the vanna skew (corresponding to the effective model (3.3.1)-(3.3.2) as12:

ν̃(ρ̃y,σ) := 1

2
ρ̃y,σλ̃ log

(
K

yTi
0

)
, λ̃= γ̃

ω̃
(yTi

0 )1−β.

The vanna skew is the part of the skew which is caused by ρ̃y,σ. The other part of the skew

is mainly caused by the skew parameterβ (see Remark 3.4.9). The parameter λ̃measures
the ‘strength’ of the vol-vol parameter γ̃ compared to the local volatility, ω̃/(yTi

0 )1−β.

12We have defined model (3.2.3)-(3.2.4) such that y
Ti
0 = 1 and we can simplify the formulas. However, for the

sake of completeness we include the term y
Ti
0 .
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Figure 3.4.3: Combined performance of the effective vol-vol and term structure parameters for
Case IV, T = 1 (left), T = 2 (middle) and T = 5 (right).

We define the effective correlation corresponding to the expiry Ti as:

ρ̃y,σ := argmin
ρ

(
ν̃(ρ)− 1

Ti

∫ Ti

0
ν(ρy,σ(t ))dt

)
, (3.4.25)

with

ν(ρy,σ(t )) := 1

2
ρy,σ(t )λ(t ) log

(
K

yTi
0

)
, λ(t ) = γ(t )

ω(t )
(yTi

0 )1−β.

In other words, the effective correlation ρ̃y,σ is defined as the correlation value for which
the vanna skew corresponding to the effective model at t = Ti equals the average vanna
skew corresponding to the time-dependent model over [0,Ti ].

Lemma 3.4.6 (Effective correlation). Suppose that the effective term structure ω̃ and ef-
fective vol-vol parameter γ̃ have been established. From definition (3.4.25) it follows that
the effective correlation corresponding to the expiry Ti is given by:

ρ̃y,σ = ω̃

γ̃Ti

∫ Ti

0

ρy,σ(t )γ(t )

ω(t )
dt . (3.4.26)

Proof. By its definition (3.4.25), we obtain the effective correlation by solving

ν̃(ρ̃y,σ) = 1

Ti

∫ Ti

0
ν(ρy,σ(t ))dt

⇔ 1

2
ρ̃y,σλ̃ log

(
K

yTi
0

)
= 1

2Ti
log

(
K

yTi
0

)∫ Ti

0
ρy,σ(t )λ(t )dt , (3.4.27)

with

λ(t ) = γ(t )

ω(t )
(yTi

0 )1−β.
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Equation (3.4.27) yields

ρ̃y,σ = 1

λ̃Ti

∫ Ti

0
ρy,σ(t )λ(t )dt = ω̃

γ̃Ti

∫ Ti

0

ρy,σ(t )γ(t )

ω(t )
dt .

The effective correlation parameter is independent of the initial forward and β.

Remark 3.4.9 (Effective skew parameter). Hagan et al. [63] determine− 1
2 (1−β) log

(
K /yTi

0

)
as being the skew implied by the skew parameter. In a similar fashion as for the effective
correlation, we may derive an effective skew parameter. We do not include the derivations
though, as we do not assume a time-dependent skew parameter.

NUMERICAL EXPERIMENT

In this section we test the combined performance of the effective vol-vol parameter γ̃, ef-
fective term structure ω̃ and effective correlation ρ̃y,σ (the Monte Carlo simulation con-
sists of 5 ·105 paths and 200 time-steps per year).

Let y0 = 2, β= 0.5, rd = 0.05 and r f = 0.02. Time-dependent and effective parameter
values are provided by Tables 3.4.4 and 3.4.5, respectively. Results are highly satisfactory,
see Figure 3.4.4.

t [0, 1
2 ) [ 1

2 ,1) [1,2) [2,3) [3,5]

γ(t ) 1 0.8 0.5 0.3 0.2
ω(t ) 0.1 0.12 0.14 0.16 0.18
ρy,σ(t ) -0.9 -0.8 -0.7 -0.6 -0.5

Table 3.4.4: Time-dependent parameter values

3.5. CALIBRATION & PRICING
In this section we calibrate the time-dependent FX-SABR model to market data. We com-
pare the calibration results for this model and the constant-parameter FX-SABR and lo-
cal volatility models. We perform three calibration experiments. In each experiment
we calibrate the time-dependent model to 2 expiries. Subsequently, in Section 3.5.3, we
price barrier options with corresponding times to maturity.

We consider USD/AUD FX market prices quoted on 12 June 2013 from a market data
vendor. Domestic currency is USD, foreign currency is AUD. Initial spot is y0 = 0.9548.
Implied volatilities are quoted for 5 different strikes. The third strike corresponds to the

t 1
2 1 2 3 5

γ̃ 1.000 0.937 0.803 0.707 0.575
ω̃ 0.100 0.110 0.123 0.132 0.146
ρ̃y,σ -0.900 -0.840 -0.739 -0.673 -0.606

Table 3.4.5: Effective parameter values
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Figure 3.4.4: Combined performance of the effective vol-vol parameter, effective term structure
and effective correlation for T = 1 (left), T = 2 (middle) and T = 5 (right).

ATM level. Data is provided for expiries between 1 day and 5 years. The ATM term struc-
ture exhibits a downward trend up to 1 year. For longer expiries the ATM level moves
in the opposite direction. Also, an increasingly pronounced skew can be observed over
time, whereas the amount of curvature slightly declines. Further, the market data con-
sists of mid-prices and bid-ask spreads of up-out barrier put options with expiries of 3
months, 1 year and 2 years.

Remark 3.5.1 (Deterministic interest rates). In Section 3.2 we introduced the time-dependent
FX-SABR model with deterministic interest rates. The deterministic interest rates assump-
tion merely serves the purpose of transparency and readability. Assuming stochastic in-
terest rates would complicate notation. The mappings of the effective parameters are not
affected by the deterministic interest rates assumption. As our numerical experiments in
this section confirm, the effective parameters facilitate accurate calibration to the FX mar-
ket, also for longer times to maturity when stochastic interest rate effects become more
important.

3.5.1. CALIBRATION PROCEDURE
The (implicit) mappings derived for effective parameters imply the following functional
dependencies:

γ̃mod = f1
(
γ(t ),ω(t )

)
, ω̃mod = f2

(
γ(t ),ω(t ), γ̃mod

)
, ρ̃mod

y,σ = f3

(
γ(t ),ω(t ),ρy,σ(t ), γ̃mod,ω̃mod

)
,

whereγ(t ),ω(t ) andρy,σ(t ) are time-dependent parameters in the time-dependent model
(3.2.1)-(3.2.2) and γ̃mod, ω̃mod and ρ̃mod

y,σ are their ‘effective equivalents’. Similar as in the
experiments in Sections 3.4.1, 3.4.2 and 3.4.3, we assume that the time-dependent pa-
rameters are piecewise-constant.

The calibration consists of four stages. First, we calibrate the effective SABR model



3.5. CALIBRATION & PRICING

3

61

(3.3.1)-(3.3.2) using Hagan’s formulas13. For each expiry we obtain a set of market ef-
fective parameters {γ̃mar, ω̃mar, ρ̃mar

y,σ } – see also Section 3.3. Secondly, we calibrate the
time-dependent SABR model (3.2.1)-(3.2.2). As γ(t ) and ρy,σ(t ) both have a curvature
(and skew) effect, we calibrate these parameters simultaneously on the base of the im-
plied volatilities. As at this pointω(t ) is not established yet, we apply the approximations

f1
(
γ(t ),ω(t )

) ≈ f1
(
γ(t ),ω̃mar) , (3.5.1)

f3

(
γ(t ),ω(t ),ρy,σ(t ), γ̃mod,ω̃mod

)
≈ f3

(
γ(t ),ρy,σ(t ), γ̃mod,ω̃mar

)
. (3.5.2)

Successively, we calibrate ω(t ) in order to obtain a level fit. Thirdly, to compensate for
the approximation (3.5.2) in the effective correlation mapping f3(·), we perform another
calibration iteration for ρy,σ(t ) separately, given the values for γ(t ) and ω(t ) obtained in
the second calibration stage. We observe that an additional calibration iteration for γ(t )
(to compensate for the f1(·) mapping approximation (3.5.1)) does not yield a significant
improvement in results. In the fourth stage, we add the local volatility componentσSLV(·)
specified in Section 3.2.2 on top of the time-dependent SABR model to compensate for
calibration inaccuracies. We summarize the calibration routine in Algorithm 2.

Calibration routine:
1 Calibrate the effective SABR model (3.3.1)-(3.3.2). This yields market effective parameters

{γ̃mar
i , ω̃mar

i , ρ̃mar
y,σ,i }, i = 1, . . . , N .

2 Calibrate ρy,σ(t ) and γ(t ) simultaneously. For this the mapping approximations (3.5.1) and
(3.5.2) are required. Successively, calibrate ω(t ) separately in order to obtain a level fit.

3 Calibrate ρy,σ(t ) separately, given the values for ω(t ) and γ(t ) just obtained. Now the
original mapping on the left-hand side of (3.5.2) can be applied.

4 Add the local volatility component σSLV(·) to compensate for calibration inaccuracies.

Algorithm 2: Calibration procedure

3.5.2. CALIBRATION RESULTS
In Tables 3.5.1-3.5.3 the calibration errors are given, defined as σi ,mod −σi ,mar, where
σi ,mod and σi ,mar are the corresponding model and market implied volatilities in per-
centages, respectively (i denotes the strike). The total absolute error εtot :=∑5

i=1 |σi ,mod−
σi ,mar| is also provided. The results (also for the constant-parameter SABR model) are
obtained by Monte Carlo simulation runs consisting of 5 ·105 paths and 1000 time-steps
per year for Experiment I and 200 time-steps per year for Experiments II and III.

For the local volatility model and the time-dependent model with the local volatil-
ity component the calibration results are most accurate. Comparing the calibration er-
rors of the time-dependent model with and without the local volatility component, we

13It is well-known that Hagan’s formulas are biased for extreme strikes and large times to maturity, see e.g.
[71, 91, 94, 113]. In [7] it is pointed out that for maturities larger than 10 years the error in implied volatility
can be 1% or more, even for ATM values. However, in this chapter no bias as a result of Hagan’s formulas is
introduced. We have confirmed this for the effective model by assuming zero correlation and applying the
analytical pricing method of Antonov et al. [7]. We obtain the same ATM level, which implies that our results
are free of bias due to Hagan’s formula or the Monte Carlo simulation (correlation does not affect smile level,
see Section 3.3).
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observe that the local volatility component reduces the calibration error. By its con-
struction, it naturally ‘bridges’ the mismatch between the market and (time-dependent
FX-SABR) model prices (see e.g. [118]). Further, except for Experiment I, the constant-
parameter and time-dependent SABR models overall yield a similar calibration accuracy
for the second expiry date. For the constant-parameter SABR model the calibration er-
ror is substantial for the intermediate expiry, as we calibrate this model to the last expiry
date. For illustration purposes the implied volatility smiles corresponding to Experiment
III are displayed in Figure 3.5.1. The calibration of the time-dependent model is accu-
rate. Inclusion of the non-parametric local volatility component yields a highly satisfac-
tory fit to the market. Similar figures were obtained for Experiments I and II.

Expiry Strike Time-dep.+LV Time-dep. LV Constant

2M

0.87 0.031 0.276 0.109 -0.802
0.91 -0.037 -0.011 -0.011 -0.655
0.95 0.015 0.042 0.035 -0.431
0.98 0.016 0.289 0.040 -0.347
1.01 -0.026 0.616 0.020 -0.404
εtot 0.125 1.234 0.215 2.638

3M

0.85 -0.050 0.346 0.110 -0.195
0.91 -0.100 -0.033 -0.017 -0.164
0.95 -0.025 0.012 0.035 0.004
0.99 -0.015 0.361 0.044 0.095
1.02 -0.081 0.821 0.022 0.089
εtot 0.272 1.572 0.228 0.548

Table 3.5.1: Calibration errors in Experiment I (in %). εtot :=∑5
i=1 |σi ,mod −σi ,mar|, where i

indicates strike.

Expiry Strike Time-dep.+LV Time-dep. LV Constant

6M

0.81 -0.029 -0.261 0.166 -1.303
0.89 -0.084 -0.208 -0.003 -0.959
0.94 -0.013 0.047 0.037 -0.476
1.00 0.039 0.301 0.091 -0.213
1.04 -0.080 0.314 -0.002 -0.424
εtot 0.246 1.131 0.298 3.374

1Y

0.76 -0.088 0.222 0.160 -0.443
0.86 -0.167 -0.105 -0.063 -0.325
0.93 -0.046 -0.038 0.028 -0.032
1.00 0.035 0.246 0.113 0.171
1.07 -0.127 0.409 -0.032 0.016
εtot 0.463 1.019 0.396 0.986

Table 3.5.2: Calibration errors in Experiment II (in %). εtot :=∑5
i=1 |σi ,mod −σi ,mar|, where i

indicates strike.

Calibrated parameter values are provided by Table 3.5.4. The time-dependent vol-
vol parameter decreases over time, which implies that curvature in the model implied
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Expiry Strike Time-dep.+LV Time-dep. LV Constant

1Y

0.76 0.002 -0.769 0.153 -1.638
0.86 -0.098 -0.406 -0.066 -0.674
0.93 0.020 0.059 0.025 0.114
1.00 0.102 0.291 0.102 0.432
1.07 -0.062 -0.003 -0.047 -0.039
εtot 0.285 1.529 0.393 2.898

2Y

0.69 0.014 0.314 0.155 -0.410
0.82 -0.100 -0.060 -0.068 -0.326
0.91 0.029 -0.024 0.038 -0.047
1.01 0.144 0.230 0.140 0.173
1.11 -0.030 0.362 -0.038 -0.007
εtot 0.317 0.990 0.439 0.965

Table 3.5.3: Calibration errors in Experiment III (in %). εtot :=∑5
i=1 |σi ,mod −σi ,mar|, where i

indicates strike.

volatility surface declines. This effect was also observed in the market data. Further, the
term structure parameter decreases in Experiments I and II and increases in Experiment
III, which is in line with the observation in the market of a decreasing term structure up
to 1 year and an increase for longer expiries. Further, the correlation becomes more neg-
ative, which implies a more pronounced skew effect implied by the model. The market
surface exhibits the same feature.

Exper. γ1 γ2 ω1 ω2 ρ1 ρ2

I 1.597 0.468 0.117 0.107 -0.389 -0.996
II 1.008 0.468 0.110 0.100 -0.440 -0.611
III 0.695 0.203 0.106 0.111 -0.456 -0.944

Table 3.5.4: Calibrated piecewise-constant parameter values

Remark 3.5.2 (Multiple expiries). We only show and discuss the barrier option pricing
results for the model that we calibrated to 2 expiries in Experiments I, II and III. The reason
for this is the following. For this particular dataset the improvement in the pricing of
barrier options (see the follow-up section) turns out to be marginal when we calibrate the
model to more than 2 expiries. This is a property of this specific dataset and not a model
property: for this dataset we do not need to calibrate to more than 2 expiries, although
the model – by means of the effective parameters derived – can be calibrated accurately to
multiple expiries if necessary. In Appendix 3.B we calibrate to 4 expiries, namely 1, 2, 3
and 4 years.

As an indication regarding CPU times, we calibrate the piecewise-constantω(t ), γ(t )
and ρy,σ(t ) for Experiment III in approximately 14 seconds (in Matlab on an i5-2400 CPU
@3.10GHz, 3101Mhz, 4 Cores, 4 Logical Processors).
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Figure 3.5.1: Black-Scholes implied volatility smiles for Experiment III: 1 year (left) and 2 years
(right).

3.5.3. PRICING BARRIER OPTIONS
In this section we price barrier options by the local volatility model, the constant-parameter
SABR model and the time-dependent SABR model with and without local volatility com-
ponent. In contrast to European-type options, the prices of barrier options do not only
depend on the distribution of the underlying at the time to maturity, but also on the dy-
namics of the implied volatility smile through time [115]. The prices are determined by
the underlying’s future transition densities, which are reflected by the forward implied
volatility smiles a particular model produces [10]. The dynamics of the implied volatility
smile with respect to the underlying are also relevant, especially for hedging purposes.

We price up-out barrier put options with different strikes and barriers. The value of
an up-out barrier put option is given as follows. Define B as the barrier level and assume
for the initial spot FX rate y0 < B . The discounted value of an up-out put option with
strike K and expiry T at at an arbitrary time t ∈ [0,T ] reads

PUO(t ,T,K ) := EQ
[

Md (t )

Md (T )

(
K − y(T )

)+
1( max

t∈[0,T ]
y(t ) < B)

∣∣∣∣F (t )

]
,

where Md (·) is the domestic moneyness account determined by dMd (t ) = rd (t )Md (t )dt ,
with rd (·) denoting the domestic interest rate. In the numerical experiments we assume
K < y0 < B , so each option starts out-of-the-money. Pricing results are provided in Table
3.5.5.

In each experiment the local volatility model gives rise to significantly higher prices
compared to the other stochastic volatility models: 6 of 9 prices are higher than the ask
price observed in the market. Each of the models with stochastic volatility only yields
one price that is not within the bid-ask spread. Also, the errors corresponding to the
stochastic volatility models are significantly smaller. This suggests that the market con-
sensus seems to price barrier options with a ‘SABR-like’ stochastic volatility model, in-
stead of the local volatility model. A plausible reason for this is the fact that the latter
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Exper. Expiry Barrier Strike LV Constant Time-dep. Time-dep.+LV

I
3M 1 0.9 97.53 92.76 91.12 90.39
3M 1 0.85 37.41 34.51 36.50 33.08
3M 0.97 0.9 (70.12) 62.91 60.35 59.54

II
1Y 1 0.8 (114.17) 92.71 95.40 93.08
1Y 1 0.85 (178.39) (153.26) (152.67) (152.11)
1Y 0.97 0.8 (72.05) 54.19 55.48 54.55

III
2Y 1 0.75 (165.25) 129.96 135.67 134.24
2Y 1.05 0.7 140.48 117.44 127.46 121.33
2Y 0.97 0.75 (91.82) 69.14 72.16 72.08

εtot 146.00 51.43 38.97 46.53

Table 3.5.5: Model prices up-out put options multiplied by a factor 104. Results in brackets are not
within bid-ask spread. The error is defined as εtot :=∑9

i=1 |Bi ,mod −Bi ,mar|, where i indicates the
particular barrier option and Bi ,mod and Bi ,mar are the corresponding model and mid-market

prices, respectively.

typically does not accurately ‘capture’ the forward implied volatility smile [37, 46]. As
we mentioned at the beginning of this section, e.g. in [115] the relevance of the smile
dynamics for the pricing of path-dependent derivatives is pointed out. Besides this, the
predicted implied volatility smile moves with respect to the underlying are also relevant,
especially for the hedging of complex products [63, 76]14.

To price the up-out put option correctly, the model should not only imply the cor-
rect smile dynamics. It should also price plain vanilla options accurately across a grid
of multiple expiries, as these provide information about the market behavior over time.
In Tables 3.5.1-3.5.3 we observed that the constant-parameter SABR model is only well-
calibrated to the last expiry. This is trivial, as the calibrated parameter values only corre-
spond to this maturity. By assuming time-dependent parameters the calibration error at
an intermediate expiry date is reduced significantly: the plain vanilla options are priced
more accurately across multiple expiries. We observe that the time-dependent model
yields prices which are closer to the reference compared to the constant-parameter SABR
model.

By incorporating the non-parametric local volatility component the time-dependent
model yields less accurate up-out put option prices. This may be due to the fact that
the local volatility model predicts inaccurate smile dynamics. However, the calibration
error reduces significantly (see Tables 3.5.1-3.5.3). We therefore tend to prefer the model
with the local volatility component, as it may reduce the additional costs of hedging the
barrier option due to a better calibration performance.

Last, the results indicate that for each model and expiry, the up-out put option prices

14Barrier options can be prices and hedged in a dynamic or (quasi-)static way. Dynamic hedging models
price an exotic option on the base of the costs of dynamically hedging the product with a portfolio of the
underlying asset and European-type options (in an analogous way the Black-Scholes model prices vanilla
European options based on the costs of a time-dependent hedge with the underlying asset). In this approach
the hedging risks and costs may be substantial, as pointed out by e.g. Derman, Ergener and Kani [33]. As
an alternative, they adopt a static hedging model, which values the barrier option based on the cost of a
replication strategy which requires an unchanging hedge portfolio consisting of European-type options.
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are consistent across different barriers and strikes. More specifically, each model yields a
higher up-out put option price for a higher barrier and/or higher strike. This is intuitive,
as a higher barrier implies a smaller probability that the barrier is reached and that the
option becomes worthless. Also, a higher strike means that the underlying can be sold
for a larger amount of money.

3.6. CONCLUSION
In this chapter we have presented a framework for accurate and efficient calibration of
the time-dependent SABR model in an FX context. By considering the effects of the
SABR parameters on the shape of the implied volatility smile, we have derived ‘effective
equivalents’ of the time-dependent vol-vol, term structure and correlation parameters.
Numerical experiments show that both the separate and combined performance of the
effective parameters are accurate, which results into highly satisfactory calibration re-
sults. A non-parametric local volatility component can compensate for the calibration
inaccuracies. In our barrier option pricing experiments, the time-dependent FX-SABR
model outperforms the traditional local volatility and constant-parameter SABR models.
Our results seem to indicate that there is a market consensus of pricing barrier options
by a ‘SABR-like’ stochastic volatility model. Plausible reasons are the facts that the lo-
cal volatility model typically does not accurately ‘capture’ the forward implied volatility
smile and the implied volatility smile moves with respect to the underlying, which are
relevant features for the accurate pricing and hedging of path-dependent derivatives.



APPENDIX

3.A. CHARACTERISTIC FUNCTION RECOVERY
Define

R j := log

(
ω2

1(t j )σ2(t j )

ω2
1(t j−1)σ2(t j−1)

)
, j = 1, . . . , M , (3.A.1)

and stochastic process Y j , which is given by

Y j := log

(
ω2

1(tM− j+1)σ2(tM− j+1)

ω2
1(tM− j )σ2(tM− j )

+ ω2
1(tM− j+2)σ2(tM− j+2)

ω2
1(tM− j )σ2(tM− j )

+ . . .+ ω2
1(tM )σ2(tM )

ω2
1(tM− j )σ2(tM− j )

)
.

(3.A.2)
It is easy to see that

Y1 = log

(
ω2

1(tM )σ2(tM )

ω2
1(tM−1)σ2(tM−1)

)
= RM

and

YM = log

(
M∑

j=1

ω2
1(t j )σ2(t j )

ω2
1(0)σ2

0

)
= log

(
M∑

j=1

ω2
1(t j )σ2(t j )

ω2
1(0)

)
(3.A.3)

as σ0 = 1. To recover the approximated characteristic function φ̂YM (·) corresponding to
YM , we need to know the distribution of R j , j = 1, . . . , M in (3.A.1).

3.A.1. DISTRIBUTION OF R j
We determine the distribution of R j , j = 1, . . . , M defined in (3.A.1) by first deriving the
dynamics of Z (t ) :=ω2

1(t )σ2(t ). As the σ2(t )-dynamics are given by

dσ2(t ) =σ2(t )
(
γ2(t )dt +2γ(t )dWσ(t )

)
,

we obtain:

dZ (t ) = [
dω2

1(t )
]
σ2(t )+ω2

1(t )dσ2(t )+dω2
1(t )dσ2(t )

=
(
γ2(t )+ dω2

1(t )

dt

1

ω2
1(t )

)
Z (t )dt +2γ(t )Z (t )dWσ(t ).

The solution then leads

Z (t ) = Z0 exp

(∫ t

0
−γ2(s)ds +2

∫ t

0
γ(s)dWσ(s)

)
exp

(∫ t

0

dω2
1(s)

ds

1

ω2
1(s)

ds

)
.

The integral in the second exponential term is simplified to:∫ t

0

dω2
1(s)

ds

1

ω2
1(s)

ds =
∫ t

0

dω2
1(s)

ω2
1(s)

= [
log

(
ω2

1(s)
)]s=t

s=0 = log

(
ω2

1(t )

ω2
1(0)

)
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and the solution becomes15:

Z (t ) = Z0 exp

(
−

∫ t

0
γ2(s)ds +2

∫ t

0
γ(s)dWσ(s)

)
ω2

1(t )

ω2
1(0)

= ω2
1(t )exp

(
−

∫ t

0
γ2(s)ds +2

∫ t

0
γ(s)dWσ(s)

)
. (3.A.4)

Thus, we have:

R j = log

 ω2
1(t j )exp

(
−∫ t j

0 γ2(s)ds +2
∫ t j

0 γ(s)dWσ(s)
)

ω2
1(t j−1)exp

(
−∫ t j−1

0 γ2(s)ds +2
∫ t j−1

0 γ(s)dWσ(s)
)


= log

(
ω2

1(t j )

ω2
1(t j−1)

)
−

∫ t j

t j−1

γ2(s)ds +2
∫ t j

t j−1

γ(s)dWσ(s).

So R j is distributed as follows:

R j ∼ N (µR, j ,σ2
R, j ), µR, j = log

(
ω2

1(t j )

ω2
1(t j−1)

)
−

∫ t j

t j−1

γ2(s)ds, σ2
R, j = 4

∫ t j

t j−1

γ2(s)ds.

Hence, the characteristic function of R j is specified by

φR j (u) = e
i uµR, j − 1

2 u2σ2
R, j , (3.A.5)

with µR, j and σ2
R, j given above.

3.A.2. RECOVERY PROCEDURE
Given the characteristic function (3.A.5), we recover the characteristic function of YM as
follows. Let k = 0,1, . . . , N −1 and l = 0,1, . . . , N −1 and define uk := kπ

b−a and ul = lπ
b−a .

We follow a recursion procedure, which starts at the end of the time-interval. By the
definition of Y j in (3.A.2) and R j in (3.A.1), we have

Y1 = log

(
ω2

1(tM )σ2(tM )

ω2
1(tM−1)σ2(tM−1)

)
= RM .

We now proceed according to the following recovery procedure:

1. As Y1 = RM , we have φY1 (uk ) =φRM (uk ).

2. If we go one step further, we obtainφY2 (uk ) =φRM−1 (uk )φZ1 (uk ) ≈φRM−1 (uk )φ̂Z1 (uk ) =:
φ̂Y2 (uk ), with

φ̂Z1 (uk ) = 2

b −a

N−1∑′
l=0

Re
{
φY1 (ul )e−i aul

}∫ b

a

(
ex +1

)i uk cos((x −a)ul )dx.

15Equation (3.A.4) makes sense, as Z (t )/ω2
1(t ) = exp

(∫ t
0 −γ2(s)ds +2

∫ t
0 γ(s)dWσ(s)

)
or equivalently σ2(t ) =

exp
(
−∫ t

0 γ
2(s)ds +2

∫ t
0 γ(s)dWσ(s)

)
.
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3. In the next iteration we obtain φ̂Y3 (uk ) =φRM−2 (uk )φ̂Z2 (uk ), with

φ̂Z2 (uk ) = 2

b −a

N−1∑′
l=0

Re
{
φ̂Y2 (ul )e−i aul

}∫ b

a

(
ex +1

)i uk cos((x −a)ul )dx.

4. We continue in this way until we have obtained φ̂YM−1 (uk ).

In the last, Mth step, we set u =− 1
2 i and we calculate

φ̂YM (u) =φR1 (u)φ̂ZM−1 (u),

with

φ̂ZM−1 (u) = 2

b −a

N−1∑′
l=0

Re
{
φ̂YM−1 (ul )e−i aul

}∫ b

a

(
ex +1

)i u cos((x −a)ul )dx.

In the recursion, the integral
∫ b

a (ex +1)i uk cos((x −a)ul )dx, k, l = 0, . . . , N −1 has to be
calculated only once (except for the Mth step, where uk = u). One can either approx-
imate it numerically by the Clenshaw-Curtis quadrature rule, which is based on an ex-
pansion of the integrand in terms of Chebyshev polynomials, or evaluate the integrals
numerically. The Clenshaw-Curtis quadrature rule is described in detail by [132].

3.B. ADDITIONAL CALIBRATION EXPERIMENT
For the dataset described in Section 3.5 we perform an additional calibration experi-
ment. We calibrate the time-dependent FX-SABR model to expiries 1, 2, 3 and 4 years.
Results are provided in Figure 3.B.1. Except for the first expiry, the calibration of the
time-dependent model is accurate. Also for the first expiry the improvement of the time-
dependent model compared to the constant-parameter model is significant.
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Figure 3.B.1: Black-Scholes implied volatility smiles for 1,2,3 and 4 years.



4
A NOVEL MONTE CARLO

APPROACH TO

HYBRID LOCAL VOLATILITY

MODELS

We present in a Monte Carlo simulation framework a novel approach for the evaluation
of hybrid local volatility [34, 35] models. In particular, we consider the stochastic local
volatility model – see e.g. [80, 81, 98, 115] and Chapter 2 – and the local volatility model
incorporating stochastic interest rates – see e.g. [8, 32, 97, 104]. For both model classes,
a particular (conditional) expectation needs to be evaluated, which cannot be extracted
from the market and is expensive to compute. We establish accurate and ‘cheap to eval-
uate’ approximations for the expectations by means of the stochastic collocation method
[9, 12, 90, 107, 131], which was recently applied in the financial context [57, 58], combined
with standard regression techniques. Monte Carlo pricing experiments confirm that our
method is highly accurate and fast.

Keywords: Local volatility, Monte Carlo, hybrid, stochastic volatility, stochastic lo-
cal volatility, stochastic interest rates, stochastic collocation, regression, SABR, Heston,
Hull-White.

4.1. INTRODUCTION
In this chapter, we propose for two types of hybrid local volatility models a novel, highly
efficient Monte Carlo simulation method. We consider stochastic local volatility (SLV)
models and the local volatility model incorporating stochastic interest rates. By con-
struction, these hybrid models can be calibrated perfectly to the plain vanilla market.

This chapter is based on the article ‘A Novel Monte Carlo Approach to Hybrid Local Volatility Models’, published
in Quantitative Finance, 17(9):1347-1366, 2017 [120].
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While (partially) inheriting particular desirable features from their ‘pure’ stochastic volatil-
ity counterparts or including stochastic interest rates, these hybrid models yield an en-
hancement in the pricing of long-dated FX and equity-linked structured financial prod-
ucts. Although this makes these models attractive to the financial industry, their evalua-
tion is not trivial. A particular (conditional) expectation needs to be established, which
cannot be extracted from the market quotes. The stochastic collocation method [9, 12, 90,
107, 131], see Section 1.2.4, which was recently applied in the financial context [57, 58],
allows us to determine for both types of hybrid local volatility models the expectation in
a way that is highly accurate and fast.

In this chapter we consider the SABR and Heston models, enhanced by a non-parametric
local volatility component, which we refer to as the SABR-Local Volatility1 (SABR-LV)
and Heston-Stochastic Local Volatility (Heston-SLV or H-SLV) models. Also, we study
the local volatility model incorporating stochastic interest rates governed by Hull-White
dynamics, the so-called Local Volatility-Hull White (LV-HW) model. The SABR-LV and
Heston-SLV models, compared to the traditional local volatility model, typically yield a
more stable hedging performance and a more accurate pricing of forward volatility sen-
sitive products. Enriching the local volatility model with (Hull-White) stochastic interest
rates enhances the pricing of long-dated FX and equity-linked structures. We evaluate
the SABR-LV, Heston-SLV and LV-HW models based on a method that combines stochas-
tic collocation and standard regression techniques.

The chapter is organized as follows. We briefly touch upon stochastic local volatil-
ity models in Section 4.1.1. Subsequently, in Section 4.1.2, we provide an overview of
the evaluation approaches for the local volatility model incorporating stochastic inter-
est rates. The basics of stochastic collocation are discussed in Section 4.1.3. In Section
4.2 we present and numerically test the stochastic collocation based approach for the
evaluation of stochastic local volatility models. We subsequently apply this method to
the local volatility model enhanced by stochastic interest rates in Section 4.3. Section 4.4
concludes this chapter’s work.

4.1.1. STOCHASTIC LOCAL VOLATILITY MODELS
The class of stochastic local volatility models was developed by Jex et al. [75] and Lip-
ton [80, 82]2, amongst others. As e.g. pointed out in [23] and [81], for the pricing of FX
options SLV models are typically used. Also in the Bloomberg note [115] stochastic local
volatility models are presented in an FX context. SLV methods have been described in
detail in Section 1.2.3 and also in Chapter 2 of this thesis.

In an SLV framework the conditional expectation of the form E
[
ψ2(V (t ))

∣∣S(t ) = K
]

needs to be established, see e.g. [36]. The exact form of ψ(·) depends on the choice
of stochastic volatility model, e.g. for the Heston model ψ(x) = p

x. The conditional
expectation cannot be extracted from the market.

In Chapter 2 we introduced in a Monte Carlo setting a non-parametric method for
the evaluation of the problematic conditional expectation, which relies on splitting the
Monte Carlo realizations in bins. A similar idea was presented in e.g. [61], based on

1Note that, in fact, the ‘pure’ SABR model is already a stochastic local volatility model with a parametric local
volatility component.

2In [82] Lipton and McGhee present a more general form of stochastic local volatility models including jumps.
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kernel estimators in an interacting particle system. All the above-mentioned numerical
techniques are found to be relatively costly, or limited in applicability.

4.1.2. LOCAL VOLATILITY MODEL WITH STOCHASTIC INTEREST RATES

Regarding local volatility in a stochastic interest rates (SIR) framework, the literature is
not very rich. In [8] Gyöngy’s [62] mimicking techniques are used to incorporate stochas-
tic interest rates in a local volatility framework. More generally, it is shown how Gyöngy’s
theorem can be used to relate any continuous stochastic volatility model with stochastic
interest rates to a local volatility with deterministic interest rates.

In [97] Piterbarg states that the slope of the FX volatility is a major factor affecting
the values of Power Reverse Dual Currency swaps. He therefore comes up with a skew-
enabled model, namely the local volatility model with domestic and foreign interest rates
following Hull-White dynamics, which serves as an extension to the traditional three-
factor log-normal model (without skew). For the stability of the calibration, a CEV spec-
ification for the local volatility function is chosen. This yields an essentially instanta-
neous calibration procedure, which is based on a Markovian representation technique3

of the dynamics of the forward FX rate and skew averaging techniques. The calibration
basically ‘captures’ mainly the slope of the implied volatility.

Further, in [104] an expression is derived for the local volatility in a stochastic in-
terest rates framework, consisting of the particular expectation ET

[
r (T )1S(T )>K

]
, which

they compute by iteratively solving the corresponding Kolmogorov forward equation for-
ward in time. Benhamou et al. [14] specify the bias between the local volatility with and
without stochastic interest rates. By means of numerical experiments they illustrate the
importance of this bias which, in line with intuition, gets larger for longer maturity. In
another chapter, based on his work on perturbation methods for local volatility models,
Benhamou [13] presents and numerically tests the expansions approximating the prices
of European options in a local volatility model with stochastic interest rates. In numer-
ical experiments, similar as in [97], a CEV diffusion for the spot is chosen. In [32] the
authors present, in an FX context with stochastic interest rates, four methods to com-
pute the local volatility function for different strike prices and time-points. Although
this paper provides a clear overview of the ways the local volatility component can be
computed, no concrete calibration or pricing experiments are included. Last, in [61]
the authors evaluate the Ho-Lee/Dupire hybrid model by an approach that is based on
McKean’s particle method.

4.1.3. STOCHASTIC COLLOCATION BASICS

In this section, we briefly discuss the basics of the stochastic collocation method. The
original idea of stochastic collocation is to project uncertainty onto a probability space
with known properties and conditions [9, 131]. In particular, we approximate a variable
of interest, Y , which is expensive to compute, by a function of a more convenient ‘cheap
to evaluate’ random variable X .

Collocation methods have been studied and employed in various disciplines for un-
certainty quantification, see e.g. [45, 127, 131]. In collocation methods the target is

3In [98] Piterbarg formalizes this procedure as the Markovian projection method.
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to satisfy the governing differential equations at a discrete set of points, in the corre-
sponding probability space. Two of the main approaches of high-order stochastic collo-
cation methods are the Lagrange interpolation approach, see e.g. [131], and the pseudo-
spectral generalized polynomial chaos approach from e.g. [130].

We explain the stochastic collocation method in a sampling setting. Suppose we wish
to sample values yn from the distribution of Y . This is typically established by first draw-

ing samples un from a standard uniform distribution U
d= U ([0,1]) and subsequently

applying the inversions yn = F−1
Y (un). However, this sampling approach is not preferred

in the case that the inversion F−1
Y (·) is expensive – the sampling is not performed in an

efficient way. By the stochastic collocation method this issue is overcome.

The stochastic collocation technique relies on the fact that FY (Y )
d= U

d= FX (X ), for

an arbitrary random variable X , with U
d=U ([0,1]), i.e. the CDFs of Y and X (not Y and

X themselves) are equal in distribution. In a sampling setting, with yn and xn denoting
samples from the distributions of Y and X , respectively, the target is to find a function
g (·) such that

FY (g (xn)) = FX (xn), yn = g (xn). (4.1.1)

When the function g (·) is determined, sampling from Y can be performed by sampling
from X , without performing the expensive inversion F−1

Y (·), which is needed when sam-
pling in the traditional way. Trivially, equation (4.1.1) implies g (·) = F−1

Y (FX (·)). However,
the task is to find a function which does not require many expensive inversions F−1

Y (·).
This can be achieved in a polynomial chaos expansion framework, where a sample yn

is approximated in terms of Lagrange basis polynomials `(·) evaluated at a sample of X ,
xn , as

yn = g (xn) ≈ gN (xn) :=
N∑

i=1
yi`i (xn), `i (xn) :=

N∏
j=1, j 6=i

xn −x j

xi −x j
,

where xi and x j are so-called collocation points, yi is the exact ‘expensive’ evaluation at
the collocation point xi , i.e. yi = F−1

Y (FX (xi )). Choosing the interpolation polynomial in
the Lagrange form is well-accepted in the field of Uncertainty Quantification (when the
stochastic collocation method is applied), see e.g. [107]. By a change of basis it can be
written in terms of monomials, gN (xn) = a0 + a1xn + a2x2

n + . . .+ aN−1xN−1
n , where the

coefficients a0, a1, . . ., aN−1 are obtained by solving a linear system Va = y, with matrix V
denoting the Vandermonde matrix (see e.g. [58] for more details).

Once the function gN (·) is established by N expensive inversions F−1
Y (·), we are able

to generate any number of samples yn without significant additional cost. The colloca-
tion points xi can basically be chosen arbitrarily, however we choose them in an optimal
way, i.e. based on the zeros of an orthogonal polynomial.

In this chapter we choose X to be standard normally distributed. This implies that
the optimal collocation points are the zeros of the Hermite polynomials (abscissas of
the Gauss-Hermite quadrature)[3, 58]. It turns out that choosing X to be normally dis-
tributed works highly satisfactory; the method is accurate and efficient, as the inversion
of a normal distribution is ‘cheap’. We therefore do not consider other distributions for X ,
which may yield a method with similar accuracy, but more expensive inversions. What is
more, the Cameron-Martin Theorem [19] states that polynomial chaos approximations
based on the normal distribution converge to any distribution.



4.2. STOCHASTIC LOCAL VOLATILITY MODELS

4

75

In the following sections we employ the stochastic collocation method for the effi-
cient Monte Carlo evaluation of stochastic local volatility models and the local volatility
model incorporating stochastic interest rates.

4.2. STOCHASTIC LOCAL VOLATILITY MODELS
In this section we discuss stochastic local volatility models. In [75, 80, 82], amongst oth-
ers, the class of stochastic local volatility models was introduced, which combine prop-
erties of the traditional local volatility model [33, 35] and stochastic volatility models,
like the SABR model [63] and the Heston model [66]. According to Clark [23] neither the
‘sticky-delta’ property of stochastic volatility models nor the ‘sticky-strike’ characteristic
corresponding to the local volatility model is in line with the actual smile behaviour in
FX markets; the reality is somewhere between the two and therefore typically a stochas-
tic local volatility model is used. In line with this, as pointed out in [81], SLV models are
de facto standard for pricing FX options.

Assuming constant deterministic interest rate r , no dividends and instantaneous
correlation ρs,v , the general SLV model dynamics under the risk-neutral Q-measure4

read

dS(t )/S(t ) = r dt +σ(t ,S(t ))ψ(S(t ),V (t ))dW Q
s (t ), S(0) = S0, (4.2.1)

dV (t ) = av (t ,V (t ))dt +bv (t ,V (t ))dW Q
v (t ), V (0) =V0, (4.2.2)

with dW Q
s (t )dW Q

v (t ) = ρs,v dt andσ2(t ,K ) =σ2
LV(t ,K )/EQ

[
ψ2(S(t ),V (t ))

∣∣S(t ) = K
]
, where

σ2
LV(t ,K ) denotes Dupire’s local volatility component [35]:

σ2
LV(t ,K ) =

∂C (t ,K )
∂t + r K ∂C (t ,K )

∂K

1
2 K 2 ∂2C (t ,K )

∂K 2

.

For notation purposes, we suppress the Q-superscript from this point on. By choosing
ψ(S(t ),V (t )) =p

V (t )Sβ−1(t ), av (t ,V (t )) = γ2V (t ) and bv (t ,V (t )) = 2γV (t ) we obtain the
SABR-LV model5:

dS(t )/S(t ) = r dt +σ(t ,S(t ))
√

V (t )Sβ−1(t )dWs (t ), S(0) = S0, (4.2.3)

dV (t ) = γ2V (t )dt +2γV (t )dWv (t ), V (0) =V0, (4.2.4)

with dWs (t )dWv (t ) = ρs,v dt . In the SABR-LV model the local volatility component is
specified by

σ2(t ,K ) = σ2
LV(t ,K )

K 2β−2E [V (t )|S(t ) = K ]
. (4.2.5)

4Note that the general SLV model as described by equations (2)-(3) is an incomplete market model, which
implies that a unique risk-neutral pricing measure does not exist, see e.g. [41].

5To prevent double use of theσ-notation we write the variance dynamics instead of the more common volatil-
ity dynamics. The traditional SABR model dynamics are given by the following two SDEs [63, 103]:

dF T (t ) =σ(t )(F T (t ))βdW T
s (t ), dσ(t ) = γσ(t )dW T

v (t ),

with F T (·) denoting the forward corresponding to expiry T and dW T
s (t )dW T

v (t ) = ρs,v dt .
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We use a standard Euler discretization scheme to simulate the SABR-LV model.
The choices ψ(S(t ),V (t )) =p

V (t ), av (t ,V (t )) = κ(V̄ −V (t )) and bv (t ,V (t )) = γpV (t )
provide us with the Heston-SLV (H-SLV) model:

dS(t )/S(t ) = r dt +σ(t ,S(t ))
√

V (t )dWs (t ), S(0) = S0, (4.2.6)

dV (t ) = κ
(
V̄ −V (t )

)
dt +γ

√
V (t )dWv (t ), V (0) =V0, (4.2.7)

with dWs (t )dWv (t ) = ρs,v dt and

σ2(t ,K ) = σ2
LV(t ,K )

E [V (t )|S(t ) = K ]
. (4.2.8)

Similar dynamics are presented in the chapter of Jex et al. [75]. In order to simulate the
Heston-SLV model, we use an adapted version of the Quadratic Exponential (QE) scheme
introduced in [5], which we derive in [118]. The difference between the original and
the adapted version lies in the fact that only the latter incorporates the local volatility
component. Let i = 0,1, . . . , M and j = 1,2, . . . , N indicate the time-step and path, respec-
tively. Defining ∆t := T /M as the time-step size, the discretization scheme for V (·) and
X (·) := log(S(·)) reads

vi+1, j ∼ c(∆t )χ2(d ,λ(ti , vi , j )), v0, j =V0 (4.2.9)

xi+1, j = xi , j + r∆t − 1

2
σ̂2(ti , xi , j )vi , j∆t +

ρs,v

γ
σ̂(ti , xi , j )

(
vi+1, j −κv̄∆t + vi , j c1

)
+ρ1

√
σ̂2(ti , xi , j )vi , j∆t Z , x0, j = log(S0) (4.2.10)

with Z
d=N (0,1), ρ1 := (1−ρ2

s,v )1/2, c1 := κ∆t −1 and

c(∆t ) := γ2

4κ
(1−e−κ∆t ), d := 4κV̄

γ2 , λ(t ,V (t )) := 4κe−κ∆t

γ2(1−e−κ∆t )
V (t ), (4.2.11)

where χ2(d ,λ(t ,V (t ))) represents a noncentral chi-squared distribution with d degrees
of freedom and non-centrality parameter λ(t ,V (t )). Further, the local volatility compo-
nent reads

σ̂2(ti , xi , j )
def= σ2(ti ,exi , j ) = σ2

LV(ti , si , j )

E
[
V (ti )|S(ti ) = si , j

] . (4.2.12)

Numerical comparisons between the Euler and the original QE scheme have been pro-
vided in the literature [5]. In Chapter 2 we numerically demonstrated that the adapted
QE scheme outperforms the standard Euler scheme: it yields a higher accuracy and a
faster convergence to the reference for a decaying time-step size.

Equation (4.2.12) makes clear that in a Monte Carlo simulation framework, for both
the SABR-LV model and the Heston-SLV model, we need to evaluate the conditional ex-
pectation for each path, at each time-step. A closed-form representation does not exist,
as the joint distribution of S(·) and V (·) is unknown. We require the evaluation to be
efficient and accurate – if it is not, the error introduced accumulates in the simulation
and the results are biased. The principle of stochastic collocation [9, 131], discussed in
Section 4.1.3, allows for an evaluation that satisfies both requirements.
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4.2.1. ESTABLISHING E [V (t )|S(t ) = K ]
In this section we evaluate the conditional expectation of interest E [V (t )|S(t ) = K ], which
is present in both the SABR-LV model (4.2.3)-(4.2.4) and the Heston-SLV model (4.2.6)-
(4.2.7). Our approach essentially consists of two projection steps. We first project V (·)
and S(·) on standard normal random variables, where, by means of stochastic colloca-
tion, E[V (t )|S(t ) = K ] is decomposed into a series of conditional expectations. Secondly,
similar to e.g [73, 83], each of these conditional expectations, which are expressed in
terms of standard normal random variables, is approximated by a projection on a set of
basis functions and applying standard regression techniques.

We start by projecting S(·) at a given fixed time t , on a standard normal random vari-

able X
d=N (0,1) via the function g (·), defined by

g (·) := F−1
S(t )(FX (·)), (4.2.13)

which ensures

S(t )
d= g (X )

and, moreover, for elements S(t ) = s and X = x:

s = g (x). (4.2.14)

In a similar way, we project V (t ) on a standard normal random variable Z
d=N (0,1):

V (t )
d= h(Z ), h(·) := F−1

V (t )(FZ (·)), (4.2.15)

which also yields for elements V (t ) = v and Z = z:

v = h(z). (4.2.16)

The conditional expectation can be written in terms of X and Z :

E [V (t )|S(t ) = K ] = E[
h(Z )|g (X ) = K

]
. (4.2.17)

The joint distribution of X and Z is not known analytically. Although X and Z are both
normally distributed, the joint distribution of X and Z is not bivariate normal6 – only
the reverse holds in general. We therefore cannot evaluate the right-hand side of (4.2.17)
analytically and we proceed by determining an approximation for it. This is established
by approximating the function h(·) by a polynomial hNV (·) with degree NV −1, which is
obtained by the stochastic collocation method with NV collocation points. In particular,
given the collocation points zi , that are a priori known, we compute the corresponding
exact evaluations of V (t ):

vi = h(zi ) = F−1
V (t ) (FZ (zi )) , i = 1,2, . . . , NV . (4.2.18)

6A well-known test for multi-variate normality is Mardia’s, see [87], which is based on multivariate extensions
of skewness and kurtosis measures.
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Next, we apply Lagrangian interpolation through the vi -values – choosing the interpola-
tion polynomial in the Lagrange form is well-accepted in the field of uncertainty quan-
tification (when the stochastic collocation method is applied), see e.g. [107]. For an
arbitrary value V (t ) = v , it holds that

v = hNV (z)+ε1(z) :=
NV∑
i=1

vi`i (z)+ε1(z), `i (z) :=
NV∏

k=1,k 6=i

z − zk

zi − zk
, (4.2.19)

where ε1(z) denotes the interpolation error corresponding to the particular argument z.
By a change of basis we can write the Lagrange polynomial in terms of monomials:

hNV (z) = a0 +a1z + . . .+aNV −1zNV −1, (4.2.20)

where the coefficients a0, a1, . . ., aNV −1 are obtained by solving a linear system involving
a Vandermonde matrix, see [58] for more details. Given (4.2.20), we approximate the
conditional expectation on the right-hand side of (4.2.17) as follows:

E
[

h(Z )|g (X ) = K
]

= E[
hNV (Z )+ε1(Z )

∣∣g (X ) = K
]

= E[
hNV (Z )

∣∣g (X ) = K
]+E[

ε1(Z )|g (X ) = K
]

= a0 +a1E
[

Z |X = g−1 (K )
]+ . . .+aNV −1E

[
Z NV −1∣∣ X = g−1 (K )

]
+ε1(K ), (4.2.21)

with ε1(K ) := E
[
ε1(Z )|g (X ) = K

]
. The inversions of functions g (·) and h(·), defined in

(4.2.13) and (4.2.15), respectively, are cheap, as both merely consist of (1) the inversion
of a standard normal random variable and (2) the evaluation of FS(t )(·) or FV (t )(·). As
CDFs are strictly monotonic, the inversions of g (·) and h(·) provide a bijective mapping
between the original probability space and the new space.

As we mentioned, the joint distribution of X and Z is not analytically known. To ap-
proximate the conditional expectations in (4.2.21), we assume that we can approximate
the conditional expectation E [ Z p |X = x] in terms of functions of x, the basis functions
ψkp (·), k = 1,2, . . . ,n, p = 1,2, . . . , NV −1:

E
[

Z p ∣∣ X = x
]= n∑

k=1
bkpψkp (x)+ε2p . (4.2.22)

Equation (4.2.22) is motivated rigorously by assuming that the conditional expectations
in (4.2.21) are elements of the L2-space of square integrable functions. As the L2-space is
a Hilbert space, it possesses a countable orthonormal basis and the conditional expec-
tations (which are deterministic functions) can be expressed as a linear combination of
the elements of this basis. A similar idea is used in [83] in the context of valuing Ameri-
can options by simulation, where the value of continuing with the option is expressed as
a conditional expectation. We approximate the conditional expectation in (4.2.22) by us-
ing the first n orthogonal polynomials7 {1, x, x2, . . . xn−1} and, similar as in e.g. [73, 83],

7Other, more complex types of basis functions we may use are the Laguerre, Hermite, Legendre, Chebyshev,
Gegenbauer and Jacobi polynomials, see e.g. Chapter 22 of [3]. In this chapter we do not consider these basis
functions, as the set of simple polynomials {1, x, . . . , xn−1} already yields highly satisfactory results, see the
numerical experiments in Section 4.2.3.
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we apply OLS regression to compute the corresponding coefficients, which yields

E
[

Z p ∣∣ X = g−1(K )
]= Ê[

Z p ∣∣ X = g−1(K )
]+ ε̂2p , (4.2.23)

with Ê
[

Z p |X = g−1(K )
]= β̂0p+β̂1p g−1 (K )+β̂2p

(
g−1 (K )

)2+. . .+β̂n−1,p
(
g−1 (K )

)n−1
. Com-

bining this result with (4.2.21) yields

E [V (t )|S(t ) = K ] = a0 +
NV −1∑
p=1

ap

n−1∑
k=0

β̂kp
(
g−1(K )

)k +ε1(K )+ε2, (4.2.24)

with g (·) defined in (4.2.13), ε1(K ) := E[
ε1(Z )|X = g−1(K )

]
and ε2 :=∑NV −1

p=1 ε̂2p .

A brief analysis of the errors ε1(·) and ε2 can be found in Appendix 4.A. In [9], in
an elliptic PDE framework, a rigorous convergence analysis of the stochastic colloca-
tion method is provided, where exponential convergence with respect to the number of
“Gauss points” is proven. Our numerical experiments in Section 4.2.3 for a base case are
in line with this.

Computation of the approximation in (4.2.24) is efficient, as it only requires NV inver-
sions of FV (t )(·), see (4.2.18). Determining x and z and the OLS estimates β̂0p , β̂1p , . . . , β̂n−1,p

does not involve significant computational cost. In the following, we refer to the ap-
proach presented in this section as the ‘stochastic collocation – regression’ or ‘SC–R’ ap-
proach.

In a Monte Carlo simulation framework, we apply the SC-R approach as described
in Algorithm 3. In this algorithm i = 1,2, . . . , M denotes the time-step and j = 1,2, . . . , N
indicates the path. For simulating the SABR-LV model we use a standard Euler discretiza-
tion scheme, whereas for the Heston-SLV model we apply the adapted version of the QE
scheme, see equations (4.2.9)-(4.2.11). After the Monte Carlo simulation described in
Algorithm 3 we price European call options based on the obtained values for S(·) at the
time of maturity. This results in the model implied volatility values σmodel displayed in
Figures 4.2.4 and 4.2.5 and the errors reported in Tables 4.2.2 and 4.2.3. In the Monte
Carlo simulation, it may be necessary to apply one or more of the enhancements we
describe in the follow-up section.

for each time-step ti , i = 1,2, . . . , M do
1 Generate N pairs (si , j , vi , j ), j = 1,2, . . . , N by going forward one time-step in the Euler

scheme (SABR-LV model) or the adapted QE scheme (Heston-SLV model).

2 Compute E
[

V (ti )
∣∣S(ti ) = si , j

]
using the SC-R approach, see equation (4.2.24).

3 Establish the local volatility component σ2(ti , si , j ) by equation (4.2.5) for the SABR-LV
model or equation (4.2.8) for the Heston-SLV model – use its value in step 1.

end
4 Price European call options based on the obtained values for S(·) at the time to maturity.

Algorithm 3: Pricing European call options by a Monte Carlo simulation of the
SABR-LV and Heston-SLV models, incorporating the SC-R approach (Section 4.2.1).

Remark 4.2.1. In a stochastic local volatility framework, directly applying OLS regression
may yield reasonable results as well. However, as we describe in Remark 2.3.2 of Chap-
ter 2, non-negativity of the conditional expectation cannot be guaranteed for cases where
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the Feller condition is violated and improvements must be made. Further, by applying
stochastic collocation we can use the analytical expression of the CDF of V (·) in order to
obtain values for the coefficients a0, a1, . . .. Moreover, in the context of the local volatility
model with stochastic interest rates, see Section 4.3, by projecting S(·) on a standard nor-
mal random variable we can employ the analytical expression for moments of a truncated
standard normal random variable, see Result 4.3.1.

4.2.2. ENHANCEMENTS
In this section, we discuss three adaptations to the stochastic collocation – regression
method which may enhance the results.

First, we observe that at the boundaries of the X -domain (recall X := g−1(K )
= F−1

X (FS(t )(K ))) the performance of the regression deteriorates due to the presence of a
small number of observations, which may yield a significant increase of ε2. We therefore
set for K ≤ smin: E [V (t )|S(t ) = K ] = E [V (t )|S(t ) ≤ smin] and for K ≥ smax: E [V (t )|S(t ) = K ]
= E [V (t )|S(t ) ≥ smax], where smin and smax are percentiles of the S(t )-distribution, i.e.
smin = F−1

S(t )(ps,min) and smax = F−1
S(t )(ps,max). Here 0 ≤ ps,min < ps,max ≤ 1 denote fractions

of the total number of Monte Carlo realizations. In all pricing experiments in Section
4.2.3, we apply this adaptation and choose ps,min = 0.1 and ps,max = 0.9.

The approximation of the expectation in (4.2.24) is not guaranteed to be positive.
This may be problematic in the case that a significant part of the variance realizations is
close to zero, e.g. if the Feller condition in the Heston-SLV model is strongly violated. In
this case we may split the conditional expectation in two parts in the following way:

E [V (t )|S(t ) = K ] = E
[

V (t )|S(t ) = K ,V (t ) ≤ v∗]
Q[V (t ) ≤ v∗]

+E[
V (t )|S(t ) = K ,V (t ) > v∗](

1−Q[V (t ) ≤ v∗]
)

. (4.2.25)

The first conditional expectation we approximate by E [V (t )|V (t ) ≤ v∗], the second con-
ditional expectation is approximated by the stochastic collocation – regression approach.
We can choose v∗ to be a fixed value, or based on a fixed percentile p∗

v , i.e. v∗ = F−1
V (t )(p∗

v ).
We prefer the latter, as in this case at each time-step in the Monte Carlo simulation we
naturally control the fraction of the total number of observations on which we apply the
stochastic collocation – regression approach. So we obtain

E [V (t )|S(t ) = K ] = (
E
[

V (t )|V (t ) ≤ v∗]+ε3
)

FV (t )(v∗)

+
(

a0 +
NV −1∑
p=1

ap

n−1∑
k=0

β̂kp
(
g−1(K )

)k +ε1(K )+ε2

)(
1−FV (t )(v∗)

)
:= V (K )+ε, (4.2.26)

where ε denotes the approximation error. By means of this adaptation we leave out the
smallest variance realizations when applying the stochastic collocation – regression ap-
proach, which makes it less likely that the corresponding SC–R approximation yields
negativity. To this approximation we moreover add the positive term (E [V (t )|V (t ) ≤ v∗])
·FV (t )(v∗).

Although the former adaptation guarantees non-negativity for V (K ) in (4.2.26), in
extreme cases the fraction of V (·)-realizations close to zero is substantial, and we would
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need to choose a relatively large value for p∗
v to ensure non-negativity of V (K ). This

would make the approximation for the conditional expectation inaccurate, as in this case
it is for a large part determined by the naive approximation E [V (t )|V (t ) ≤ v∗]FV (t )(v∗).
Therefore, in the case that the approximation V (K ) still yields negative values for an ap-
propriate value of pv∗ (in our numerical experiments we choose p∗

v in the range 0.01−
0.1), we apply another correction, namely

E [V (t )|S(t ) = K ] = V (K )+ε−min
K

{0, (1+δ)V (K )} ,

with 0 < δ< 1. This correction is interpreted as follows: in the case that a part of V (K ) is
negative, we apply a vertical “shift” such that it becomes positive. If V (K ) is completely
non-negative, the vertical shift is zero8. This correction guarantees non-negativity of the
approximation of the conditional expectation.

4.2.3. NUMERICAL EXPERIMENTS
In this section we test the accuracy of the approximation of the conditional expectation
in (4.2.24). We first test the method for a base case where an analytical reference value
is available. Subsequently, we consider the SABR-LV and Heston-SLV models in a Monte
Carlo simulation framework. In particular, given a pre-specified market, we add to an
either poorly or satisfactorily calibrated ‘pure’ SABR or Heston model the local volatility
component, consisting of Dupire’s local volatility and the conditional expectation ap-
proximation (4.2.24),

THE 2D-GBM MODEL: A BASE CASE

We start by testing the approximation of the conditional expectation (4.2.24) for a model
which is given by two correlated Geometric Brownian Motions (GBMs):

dY1(t ) =σ1Y1(t )dW1(t ), dY2(t ) =σ2Y2(t )dW2(t ), Y1(0) = y10, Y2(0) = y20, (4.2.27)

with dW1(t )dW2(t ) = ρdt . The expectation of Y2(t ) conditional on the event Y1(t ) = y1 is
[4]

E
[
Y2(t )|Y1(t ) = y1

]= y20

(
y1

y10

)ρ σ2
σ1

et
( 1

2ρσ1σ2− 1
2σ

2
2ρ

2)
. (4.2.28)

Let y10 = 1, y20 = 0.05, ρ = −0.5 and t = 5. In a stochastic volatility model these
parameter values are representative choices for S0, V0 and ρs,v , respectively. As a first
experiment, suppose we choose NY2 = 6 collocation points and n = 7 basis functions. In
Figure 4.2.1 we compare the reference (4.2.28) and the approximation (4.2.24) obtained
by the stochastic collocation – regression (SC–R) approach for a moderate case (left,σ1 =
σ2 = 0.3) and a more extreme case (right, σ1 =σ2 = 0.9). An excellent fit is obtained.

The reference (4.2.28) allows for a numerical analysis of the errors ε1(·) and ε2, which
are introduced by the stochastic collocation method and the regression step, respec-
tively. We choose the parameter values just mentioned and σ1 = σ2 = 0.3. We make use
of the result in the following lemma.

8Numerical experiments demonstrate that merely applying the third correction, i.e. applying a vertical shift,
typically yields worse pricing results compared to combining the second and third corrections mentioned in
Section 4.2.2.
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Figure 4.2.1: Comparison of the reference (4.2.28) and the SC–R approximation (4.2.24) for a moderate case
(left) and a more extreme case (right).

Lemma 4.2.1. Given the two-dimensional model (4.2.27). Let X and Z denote standard
normal random variables and assume for an arbitrary t that the elements Yi (t ) = yi , i =
1,2, X = x, Z = z are related by y1 = g (x), y2 = h(z), with g (·) and h(·) defined in (4.2.13)
and (4.2.15), respectively. This implies that X and Z are jointly bivariate normally dis-
tributed.

Proof. For a proof of Lemma 4.2.1, see Appendix 4.B.

Recall the error due to the stochastic collocation method: ε1(K ) := E[
ε1(Z )|g (X ) = K

]
.

In a Monte Carlo simulation framework, for a fixed t , let ε1(y1 j ) denote the error corre-
sponding to the j th realization of Y1(t ), y1 j . From (4.2.21) and (4.2.28) it follows that it is
given by

ε1(y1 j ) = y20

(
y1 j

y10

)ρ σ2
σ1

et
( 1

2ρσ1σ2− 1
2σ

2
2ρ

2)
− f (y1 j ),

with

f (y1 j ) := a0 +a1E
[

Z |X = g−1 (
y1 j

)]+ . . .+aNY2−1E
[

Z NY2−1∣∣ X = g−1 (
y1 j

)]
. (4.2.29)

As Z and X are jointly bivariate normally distributed, see Lemma 4.2.1, we are able to
evaluate each conditional expectation in (4.2.29) analytically. For arbitrary p ∈ {1,2, . . . , NY2−
1}, applying the Cholesky decomposition, straightforward calculus yields

E
[

Z p ∣∣ X = g−1(y1 j )
]= p∑

k=0

(
p

k

)
ρp−k (

1−ρ2) k
2
(
g−1(y1 j )

)p−k
µk , (4.2.30)

with µk = (k−1)!! if k is even and µk = 0 if k is odd. The double exclamation marks stand
for the “double factorial”. For an even integer n > 0 it is defined as n!! = n · (n −2) · (n −
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4) . . .6 ·4 ·2 and for an odd integer n > 0 it is n!! = n · (n −2) · (n −4) . . .5 ·3 ·1 and, by an
extension, −1!! = 1. Further, by definition, 0!! = 1.

Given (4.2.30), for different NY2 values we compute E1 := log
(

1
N

∑N
j=1

∣∣ε1(y1 j )
∣∣), where

N denotes the total number of observations. In Figure 4.2.2 on the left-hand side E1 is
displayed against the number of collocation points. An exponential convergence is ob-
served, which is in line with [9], where in an elliptic PDE framework a rigorous proof
for exponential convergence of the stochastic collocation method is provided. The error
does not decrease further for NY2 > 14, as machine precision has been reached (exp(−36) ≈
2 ·10−16).
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Figure 4.2.2: Left: the relation between the error E1 = log
(

1
N

∑N
j=1 |ε1(y1 j )|

)
and the number of collocation

points NY2 (N = 106). Middle: the relation between the error E2 = log
(

1
N

∑N
j=1 ε

2
2 j

)
and the logarithm of the

number of realizations N (NY2 = 14, n = 5). Right: the relation between the error E2 and the number of basis

functions n (NY2 = 14, N = 106).

We proceed with analyzing ε2 :=∑NY2−1
p=1 ε̂2p , the error due to regression. Define ε2 j :=∑NY2−1

p=1 ε̂2p j = f (y1 j )− f̂ (y1 j ), j = 1,2, . . . , N , with f (·) given by (4.2.29), where the condi-

tional expectations E
[

Z p |X = g−1(y1 j )
]

, p = 1,2, . . . , NY2 −1 are evaluated by the analyt-

ical formula (4.2.30), and f̂ (·) denotes

f̂ (y1 j ) := a0 +a1Ê
[

Z |X = g−1 (
y1 j

)]+ . . .+aNY2−1Ê
[

Z NY2−1∣∣ X = g−1 (
y1 j

)]
, (4.2.31)

where Ê
[

Z p |X = g−1(y1 j )
]

, p = 1,2, . . . , NY2 −1 is obtained by OLS regression. We con-

sider the logarithm of the mean squared error: E2 := log
(

1
N

∑N
j=1 ε

2
2 j

)
. We observe for E2

a convergence of order O (− log(N )), see the plot in the middle of Figure 4.2.2, where we
consider N = 103, 5 ·103, 104, 5 ·104, 105, 5 ·105, 106, 5 ·106, 107.

Last, we study the dependence of E2 on the number of basis functions, see the right-
hand plot of Figure 4.2.2, where we consider n = 1,2, . . . ,12 basis functions. We observe
that for n = 5 the smallest error is achieved. For n > 5 the increase in E2 is due to overfit-
ting, where oscillations in the approximation of the conditional expectation may occur.
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In practice, for the Heston-SLV and SABR-LV models we typically choose 4−6 collo-
cation points; our numerical experiments confirm that with this number of collocation
points sufficiently accurate results are obtained. In general, we choose the number of
basis functions n in the range 5− 9, depending on how extreme the parameters of the
calibrated ‘pure’ Heston or SABR model are. In the follow-up section we consider the
performance of the stochastic collocation – regression approach for the Heston-SLV and
SABR-LV models in more detail.

THE SABR-LV AND HESTON-SLV MODELS

In this section we test the performance of the stochastic collocation – regression ap-
proach for the SABR-LV model (4.2.3)-(4.2.4) and the Heston-SLV model (4.2.6)-(4.2.7).
Stochastic local volatility models, that are considered as the standard for pricing in an
FX context, combine desirable features of a stochastic volatility model, e.g. preserving
the shape of the forward volatility smile and reflecting more realistic smile dynamics,
and the local volatility model, namely a perfect calibration to arbitrage-free European
plain vanilla options.

We first consider the SABR-LV model. Let S0 = 1, V0 = 0.05, β= 0.5, γ= 0.5, ρ =−0.5
and t = 2. We generate for this parameter set (S,V )-realizations by simulating the ‘pure’
SABR model. Given the realizations at t = 2, for different numbers of basis functions we
compare approximations obtained by the stochastic collocation – regression approach
(4.2.24) and the non-parametric approach, see Chapter 2, using 10 bins, which serves as
a reference. We consider NV = 4 and n = 3,5,7. Results are displayed in Figure 4.2.3. For
n > 7 no significant increase in accuracy was observed. For the Heston-SLV model we
expect a similar increase in accuracy of the stochastic collocation – regression approach.
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Figure 4.2.3: The conditional expectation approximation (4.2.24) obtained by the stochastic collocation –
regression approach for n = 3 (left), n = 5 (middle) and n = 7 (right) compared to the non-parametric method

[118]. Number of collocation points is NV = 4.

To assess whether for a given number of collocation points NV and basis functions n
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the stochastic collocation – regression approach performs sufficiently accurate, we per-
form pricing experiments. In particular, given a priori specified market implied volatil-
ities, we price European call options by a ‘pure’ Heston or SABR model and the Heston-
SLV (‘H-SLV’) and SABR-LV model, respectively. By definition of stochastic local volatil-
ity, the Heston-SLV and SABR-LV models should yield implied volatilities that perfectly
match the ones corresponding to the market. At each time-step in the Monte Carlo sim-
ulation we establish the conditional expectation according to (4.2.24). The Monte Carlo
simulation consists of 2 ·105 paths (20 seeds, each seed constitutes 104 paths) and 200
time-steps per year, unless otherwise mentioned. We generate synthetic market prices
by the Heston model, which we assume to be calibrated perfectly to the market. For
this we choose some parameter sets from [23] which may be encountered in typical FX
markets, see Table 4.2.1 (market data as of 16 September 2008).

Given the market data, we assume a both satisfactorily and poorly calibrated Hes-
ton model (parameter values are 20% and 80% off, respectively). On top of this model
we add the local volatility component to compensate for the calibration error. For each
set in Table 4.2.1, we consider the implied volatilities corresponding to (1) the market
(the perfectly calibrated Heston model with parameters given in Table 4.2.1), (2) the
(satisfactorily or poorly) calibrated ‘pure’ Heston model, (3) the Heston-SLV model and
(4) the traditional local volatility model. Given the expiry T , similar as in [97] we con-
sider the strike prices Ki = exp(0.1δi

p
T ) (we choose S0 = 1 and zero interest rate), with

δi =−1.5,−1.0,−0.5,0.0,0.5,1.0,1.5. We simulate the Heston-SLV model according to the
adapted QE scheme given by equations (4.2.9)-(4.2.12). Implied volatilities for the ‘pure’
Heston model are obtained by a standard Fourier pricing technique.

For all cases we choose NV = 6. For ‘market’ Sets 1 and 2 we choose n = 5 basis
functions. For Set 3 n = 7 for the poorly calibrated case and n = 15 for the satisfactorily
calibrated case. For Set 4 these numbers are n = 5 and n = 9, respectively. As mentioned
earlier, in all pricing experiments we apply the first adaptation to the method described
in Section 4.2.2. Further, for Sets 3 and 4, the satisfactorily calibrated case, we make use
of the second and third adaptation specified in Section 4.2.2; we choose p∗

v = 0.01 and
δ = 0.1. For Sets 1 and 3 the results are provided by Tables 4.2.2 and 4.2.3, respectively.
Given the standard deviations, we observe that for both the local volatility model and
the Heston-SLV model for all strike prices the reference is within the 95%-confidence in-
terval9. A lower standard deviation can be obtained by increasing the number of Monte
Carlo paths10. For Set 4 we report the implied volatilities in Figure 4.2.4. The results for
Set 2 are essentially the same as these for Set 1 and therefore, to save some space, they
are not presented.

We proceed with similar pricing experiments for the SABR-LV model; we consider the
cases where the ‘pure’ SABR model is satisfactorily and poorly calibrated to the market
data (generated by the Heston model with the parameters as specified in Table 4.2.1).

9The boundaries of the 95%-confidence interval are µ(σ1,model,σ2,model,σ3,model, . . .) ± 1.96 ·
σ(σ1,model,σ2,model,σ3,model, . . .), with µ(·) and σ(·) denoting the mean and standard deviation, respectively,
and σi ,model stands for the model implied volatility (obtained from Monte Carlo) corresponding to the i th
seed.

10E.g., when repeating the experiment for the Heston-SLV model (NV = 6, n = 5), given ‘Heston market’ Set 1,
with 20 seeds, 5 · 105 paths per seed, we obtain the errors 0.02, 0.00, 0.01, 0.01, 0.00, 0.03, 0.01 and corre-
sponding standard deviations 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02.
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Set Ccypair T V0 ρs,v γ κ V

1 EURGBP 1 0.01 0.23 0.21 1.50 0.01
2 EURUSD 2 0.02 −0.14 0.20 0.75 0.02
3 AUDJPY 3 0.07 −0.54 0.93 0.50 0.07
4 USDJPY 5 0.02 −0.71 0.39 0.30 0.02

Table 4.2.1: Heston parameters in typical FX markets (market data as of 16 September 2008, see [23]).

‘Heston market’ Set 1
Sat. calibrated Poorly calibrated

K εH εH-SLV εLV εH εH-SLV εLV

0.86 0.32 0.04 (0.09) 0.04 (0.11) 1.48 0.01 (0.11) 0.02 (0.09)
0.90 0.10 0.04 (0.08) 0.05 (0.09) 1.00 0.01 (0.09) 0.01 (0.08)
0.95 0.09 0.05 (0.08) 0.06 (0.09) 0.72 0.01 (0.09) 0.01 (0.09)
1.00 0.15 0.04 (0.09) 0.04 (0.09) 0.77 0.01 (0.11) 0.01 (0.10)
1.05 0.08 0.01 (0.10) 0.03 (0.10) 1.13 0.02 (0.12) 0.02 (0.11)
1.11 0.06 0.03 (0.13) 0.03 (0.12) 1.64 0.01 (0.12) 0.02 (0.15)
1.16 0.22 0.00 (0.17) 0.02 (0.14) 2.20 0.01 (0.15) 0.03 (0.19)

Table 4.2.2: Errors εmodel := |σmarket −σmodel| in % corresponding to ‘Heston market’ Set 1. ‘Sat.’ stands for
the satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in

parentheses are standard deviations over the seeds.

Contrary to the Heston-SLV case, we report the results for Set 3 in Figure 4.2.5 and for
Sets 2 and 4 in Tables 4.2.4 and 4.2.5, respectively. Given the standard deviations, we
observe that for the SABR-LV model for all strikes – except for K = 0.72 and K = 0.80 for
the ‘Heston market’ Set 4 – the reference is within the 95%-confidence interval. Further,
for the standard SABR model, only for ‘Heston market’ Set 2, the satisfactorily calibrated
case, the reference is within the 95%-confidence interval. Here we leave out the highly
accurate results corresponding to Set 1, to save some space. All results are obtained with
NV = 4, n = 5 (Sets 1, 2) and n = 7 basis functions (Sets 3, 4) – these numbers correspond
to the first experiment in this section. In all pricing experiments we apply the first adap-
tation to the method described in Section 4.2.2. Both the second and the third correction
mentioned in Section 4.2.2 are not used. However, for Sets 3 and 4, in the calibration of
the ‘pure’ SABR model we include a constraint on the vol-vol parameter, see Remark
4.2.2.

Remark 4.2.2 (Limitations of the SC-R approach). Considering expiries up to 6 years, for
the Heston-SLV model the stochastic collocation – regression approach yields highly ac-

curate results for the calibrated ‘pure’ Heston parameters that satisfy F := 2κV̄
γ2 −1 ≥−0.8,

regardless of the ‘Heston market’ we assume. For extreme cases for which F ≈−0.8 we typ-
ically choose NV = 6, the number of basis functions n in the range 7−9 and make use of
all enhancements described in Section 4.2.2, with p∗

v in the range 0.01−0.1 and δ = 0.1.
Trivially, in the calibration one can control to which extent the Feller condition is violated
by imposing constraints on the parameters, such that the stochastic collocation – regres-
sion approach works without the enhancements of Section 4.2.2 and for lower numbers of
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‘Heston market’ Set 3
Sat. calibrated Poorly calibrated

K εH εH-SLV εLV εH εH-SLV εLV

0.77 1.14 0.01 (0.20) 0.04 (0.18) 1.09 0.13 (0.18) 0.05 (0.20)
0.84 1.26 0.05 (0.18) 0.04 (0.17) 2.17 0.09 (0.18) 0.05 (0.18)
0.92 1.35 0.07 (0.18) 0.04 (0.18) 3.19 0.06 (0.19) 0.04 (0.16)
1.00 1.33 0.11 (0.19) 0.04 (0.19) 4.01 0.03 (0.19) 0.03 (0.15)
1.09 1.03 0.14 (0.22) 0.01 (0.21) 4.30 0.01 (0.20) 0.02 (0.17)
1.19 0.34 0.07 (0.28) 0.01 (0.25) 3.66 0.05 (0.21) 0.02 (0.22)
1.30 0.44 0.10 (0.35) 0.01 (0.30) 2.18 0.06 (0.24) 0.04 (0.27)

Table 4.2.3: Errors εmodel := |σmarket −σmodel| in % corresponding to ‘Heston market’ Set 3. ‘Sat.’ stands for
the satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in

parentheses are standard deviations over the seeds.

‘Heston market’ Set 2
Sat. calibrated Poorly calibrated

K εSABR εSABR-LV εSABR εSABR-LV

0.81 0.02 (0.23) 0.01 (0.25) 2.93 (0.21) 0.04 (0.25)
0.87 0.03 (0.18) 0.04 (0.19) 2.87 (0.14) 0.05 (0.19)
0.93 0.04 (0.14) 0.04 (0.16) 2.79 (0.11) 0.04 (0.16)
1.00 0.03 (0.13) 0.02 (0.14) 2.73 (0.10) 0.03 (0.15)
1.07 0.04 (0.14) 0.00 (0.15) 2.72 (0.11) 0.01 (0.16)
1.15 0.08 (0.14) 0.05 (0.16) 2.78 (0.12) 0.03 (0.17)
1.24 0.15 (0.17) 0.16 (0.20) 2.90 (0.14) 0.11 (0.21)

Table 4.2.4: Errors εmodel := |σmarket −σmodel| in % corresponding to ‘Heston market’ Set 2. ‘Sat.’ stands for
the satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in

parentheses are standard deviations over the seeds.

collocation points and basis functions. For our approach to work for the SABR-LV model,
for the ‘Heston market’ Sets 3 and 4 we need to impose in the calibration of the ‘pure’ SABR
model the constraints γ < 0.55 and γ < 0.4, respectively, which seems very reasonable in
practice.

4.3. LOCAL VOLATILITY MODEL WITH STOCHASTIC RATES
In this section, we present an evaluation approach for the local volatility model extended
with stochastic interest rates. The method is similar as the one employed in the stochas-
tic local volatility context; based on the fact that cumulative distribution functions are
equally distributed, we first project S(·) on a standard normal random variable. Subse-
quently, we apply regression to approximate a conditional expectation.

As pointed out in [32], in the long-dated FX options market the effect of interest rate
volatility becomes increasingly relevant for a longer expiry and may become as impor-
tant as that of the FX spot volatility. Further, also in an FX context, Piterbarg [97] con-
siders for the pricing of Power-Reverse Dual-Currency (PRDC) swaps, the local volatility
model incorporating stochastic interest rates, assuming that the domestic and foreign
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Figure 4.2.4: Black-Scholes implied volatilities corresponding to Set 4 with the satisfactorily (left) and poorly
(right) calibrated Heston model. ‘H-SLV’ stands for the Heston-Stochastic Local Volatility model. Results are

obtained with 2 ·105 paths (2 seeds, each seed constitutes 105 paths) and 200 time-steps per year.

interest rates follow Hull-White dynamics. He states that FX options exhibit a signifi-
cant volatility skew and, moreover, that PRDC swaps, due to their structure, are highly
sensitive to it. Therefore, the assumption of lognormality of the FX rates in the stan-
dard three-factor pricing model is not appropriate to price and hedge long-dated FX
products. Further, as pointed out in [13], long-term callable path-dependent equity op-
tions require an appropriate modelling of the underlying asset process and, moreover,
the early-exercise feature – in particular for a large time-span – suggests interest rates
risk. Enhancing the local volatility model with stochastic interest rates is also the subject
of research in [8, 61, 104], amongst others.

Similar in e.g. [13, 32, 97], let the interest rate be governed by Hull-White dynam-
ics, which is also the case in the traditional three-factor pricing model. Under the risk-
neutral Q-measure, the dynamics of the Local Volatility-Hull White (LV-HW) model are
given by the following system of equations (see e.g. [8]):

dS(t )/S(t ) = r (t )dt +σ(t ,S(t ))dW Q
s (t ), (4.3.1)

dr (t ) = λ (θ(t )− r (t ))dt +ηdW Q
r (t ), (4.3.2)

with dW Q
s (t )dW Q

r (t ) = ρr,s dt . In the interest rate process the speed of mean reversion λ
and the volatility coefficient η are related with the time-dependent term structure func-

tion θ(·) via θ(t ) = f (0, t )+ 1
λ
∂
∂t f (0, t )+ η2

2λ2

(
1−e−2λt

)
(the expression for θ(·) is obtained

by decomposing the Hull-White model, see e.g. [95]), which yields a model fit with
the initial yield curve, where f (0, t ) denotes the initial instantaneous forward rate cor-
responding to expiry t , defined by f (0, t ) = −∂ log(P (0, t ))/∂t and P (0, t ) is the current
value of the zero-coupon bond, which is given by

P (0, t ) = exp

(
−

∫ t

0
ψ(s)ds + A(t )

)
, (4.3.3)
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‘Heston market’ Set 4
Sat. calibrated Poorly calibrated

K εSABR εSABR-LV εSABR εSABR-LV

0.72 1.08 (0.21) 0.54 (0.22) 2.44 (0.22) 0.44 (0.21)
0.80 0.78 (0.14) 0.32 (0.13) 1.98 (0.14) 0.25 (0.13)
0.89 0.32 (0.09) 0.11 (0.08) 1.33 (0.08) 0.10 (0.08)
1.00 0.35 (0.06) 0.10 (0.06) 0.46 (0.05) 0.03 (0.06)
1.12 0.73 (0.06) 0.10 (0.08) 0.14 (0.06) 0.04 (0.07)
1.25 0.10 (0.09) 0.01 (0.09) 0.32 (0.08) 0.00 (0.09)
1.40 0.44 (0.13) 0.11 (0.14) 0.82 (0.13) 0.09 (0.14)

Table 4.2.5: Errors εmodel := |σmarket −σmodel| in % corresponding to ‘Heston market’ Set 4. ‘Sat.’ stands for
the satisfactorily calibrated Heston model and σ denotes the Black-Scholes implied volatility. Numbers in

parentheses are standard deviations over the seeds.

with ψ(t ) = r0e−λt +λ∫ t
0 θ(s)e−λ(t−s)ds and A(t ) = η2

2λ3

(
λt −2(1−e−λt )+ 1

2

(
1−e−2λt

))
.

From the expression for the instantaneous forward rate, the initial interest rate r0 is
implied by the identity r (t ) = f (t , t ). Further, the local volatility component reads

σ2(t ,K ) =
∂C (t ,K )
∂t −KEQ

[
r (t )

M(t )1S(t )>K

∣∣∣F (t0)
]

1
2 K 2 ∂2C (t ,K )

∂K 2

, (4.3.4)

where M(·) denotes the value of the money account, determined by dM(t ) = r (t )M(t )dt .
As we always consider t0 = 0, we leave out the filtration for notational purposes from now
on.

In the local volatility component the expectation EQ
[

r (t )
M(t )1S(t )>K

]
is problematic in

a calibration sense, as no direct link with the market quotes can be observed [32]. Also,
no analytical expressions for the joint distribution of r (t )/M(t ) and S(t ) are available.
Further, the discretization scheme suggests that for each time-step in the simulation, the
expectation, which in principle is a deterministic function of si , j , needs to be evaluated
for each path. This is expensive and undesirable. In the following section we present a
novel approach for the evaluation of the expectation, which is both efficient and accu-
rate.

4.3.1. ESTABLISHING EQ
[

r (t )
M(t )1S(t )>K

]
In this section, we determine an approximation for the non-trivial expectation in the
local volatility component (4.3.4). Similar to the approach for evaluating stochastic local
volatility models, the method essentially consists of two projection steps. We first apply a
projection on a standard normal random variable, employing the equality in distribution
of cumulative distribution functions, and subsequently we make use of ordinary least
squares regression.

We start by applying a change of measure:

EQ
[

r (t )

M(t )
1S(t )>K

]
= P (0, t )Et [

r (t )1S(t )>K
]

. (4.3.5)
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Figure 4.2.5: Black-Scholes implied volatilities corresponding to Set 3 with the satisfactorily (left) and poorly
(right) calibrated SABR model. Results are obtained with 2 ·105 paths (2 seeds, each seed constitutes 105

paths) and 200 time-steps per year.

At the right-hand side, under the t-forward measure, r (·) is normally distributed with
mean

µt
r (t ) = r (0)e−λt +

∫ t

0
θ̃(u)e−λ(t−u)du, θ̃(u) :=λθ(u)+ η2

λ

(
e−λ(t−u) −1

)
,

and standard deviation

σt
r (t ) =

(
η2

2λ

(
1−e−2λt

))1/2

.

Further, the CDF of S(t ) under the t-forward measure, denoted by F t
S(t )(·), can be derived

from the following well-known relation (see e.g. [46]):

∂C (t ,K )

∂K
=−P (0, t )Qt [S(t ) > K ] ,

where C (t ,K ) is the price at t = 0 (‘today’) of a European call option with maturity t and
strike K and P (0, t ) denotes the zero-coupon bond with expiry t . This relation directly
implies

F t
S(t )(K ) = 1−Qt [S(t ) > K ] = 1+ 1

P (0, t )

∂C (t ,K )

∂K
.

To evaluate the expectation at the right-hand side of equation (4.3.5), for a fixed t we

project S(t ) onto a standard normal distribution X
d= N (0,1) via the function g (·), de-

fined by11 g (·) := F−1
S(t )(FX (·)), which ensures S(t )

d= g (X ) and, moreover, for elements

S(t ) = s and X = x: s = g (x). This element-wise equality implies x = g−1(s) = F−1
X (F t

S(t )(s)),

11For notation purposes we suppress the t-superscript in the inverse of the CDF of S(t ).



4.3. LOCAL VOLATILITY MODEL WITH STOCHASTIC RATES

4

91

which yields for the expectation in (4.3.5):

EQ
[

r (t )

M(t )
1S(t )>K

]
= P (0, t )Et [

r (t )1g (X )>K
]= P (0, t )Et

[
r (t )1X>g−1(K )

]
. (4.3.6)

We proceed with the second projection step. Trivially, from (4.3.6) we write
(as FX (g−1(K )) = F t

S(t )(K )),

EQ
[

r (t )

M(t )
1S(t )>K

]
= P (0, t )Et [

r (t )|X > g−1(K )
](

1−FX (g−1(K ))
)

= P (0, t )
(
µt

r (t )+σt
r (t )Et [

Z |X > g−1(K )
])(

1−F t
S(t )(K )

)
,

where Z is a standard normal random variable. Similar to the approach presented in
the stochastic local volatility setting, to evaluate the conditional expectation, we apply a
projection on a set of basis functions ψk (·), k = 1,2, . . . ,n (n <∞) which depend on X .
We again choose the simple set of orthogonal polynomials {1, x, x2, . . . , xn−1} and apply
OLS regression to compute the corresponding coefficients, which yields

E
[

Z |X > g−1(K )
] = β̂0 + β̂1E

[
X |X > g−1(K )

]+ β̂2E
[

X 2∣∣ X > g−1(K )
]

+ . . .+ β̂n−1E
[

X n−1∣∣ X > g−1(K )
]+ε.

The truncated moments of X allow for an analytic evaluation, which we state in Result
4.3.1.

Result 4.3.1 (Moments of a truncated standard normal random variable). Given X
d=N (0,1)

and define mi := E[
X i

∣∣ X > a
]
, with a ∈R. The truncated moments are given by

mi = (i −1)mi−2 +
ai−1 fN (0,1)(a)

1−FN (0,1)(a)
, i = 1,2, . . . ,

with m−1 = 0, m0 = 1 and fN (0,1)(·) and FN (0,1) denoting the standard normal probability
density and cumulative distribution functions, respectively.

Combining results yields

EQ
[

r (t )

M(t )
1S(t )>K

]
= P (0, t )

(
µt

r (t )+σt
r (t )

(
β̂0 + β̂1E

[
X |X > g−1(K )

]+ β̂2E
[

X 2∣∣ X > g−1(K )
]

+ . . .+ β̂n−1E
[

X n−1∣∣ X > g−1(K )
]))(

1−F t
S(t )(K )

)+ε. (4.3.7)

The error ε is introduced in the regression step and is discussed in Appendix 4.A. In Sec-
tion 4.2.3 we demonstrated a decrease of this error with respect to the number of Monte
Carlo realizations.

ALTERNATIVE APPROACH

Instead of applying regression, an alternative approach is based on the assumption that
r (·) and X in (4.3.6) are governed by a joint bivariate normal distribution. For two jointly
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normally distributed random variables X1
d= N (µ1,σ1) and X2

d= N (µ2,σ2), correlated
with correlation parameter ρ, the following result holds:

E
[

X11X2>k
]=

µ1 +ρσ1

fN (0,1)

(
k−µ2
σ2

)
1−FN (0,1)

(
k−µ2
σ2

)
(

1−FX2 (k)
)

, (4.3.8)

where fN (0,1)(·) and FN (0,1)(·) are the standard normal PDF and CDF, respectively, and
FX2 (·) is the CDF corresponding to the random variable X2. A proof of this result is given
in Appendix 4.B.

By the result in (4.3.8) the expectation in (4.3.6) is approximated as follows:

Et
[

r (t )1X>g−1(K )

]
=

(
µt

r (t )+ρt
r,X (t )σt

r (t )
fN (0,1)

(
g−1(K )

)
1−FN (0,1)

(
g−1(K )

))(
1−FX (g−1(K ))

)+ε,

with g−1(K ) = F−1
X (F t

S(t )(K )), where the error term ε is introduced by assuming that r (t )
and X are jointly bivariate normally distributed under the t-forward measure. Further,
as FX (g−1(K )) = F t

S(t )(K ), we have

EQ
[

r (t )

M(t )
1S(t )>K

]
= P (0, t )

(
µt

r (t )+ρt
r,X (t )σt

r (t )
fN (0,1)

(
g−1(K )

)
1−F t

S(t )(K )

)(
1−F t

S(t )(K )
)+ε,

(4.3.9)
where the correlation parameter is numerically (i.e. based on the Monte Carlo paths)
established by applying a change of measure:

ρt
r,X (t )

def= Et [r (t )X ]−Et [r (t )]Et [X ]

σt
r (t )σt

X

= Et [r (t )X ]

σt
r (t )

= 1

P (0, t )σt
r (t )

EQ
[

r (t )

M(t )
X

]
,

with X = g−1(K ), P (0, t ) is defined in (4.3.3) and σt
r (t ) =

(
η2

2λ (1−e−2λt )
)1/2

.

A comparison of (4.3.7) and (4.3.9) makes clear that the latter can be considered as
a special case of the more generic expression in (4.3.7). We apply the SC-R approach in
(4.3.7) or the alternative in (4.3.9) in a Monte Carlo simulation framework according to
Algorithm 4. As for Algorithm 3, the indices i = 1,2, . . . , M and j = 1,2, . . . , N denote the
time-step and path, respectively.

Our numerical experiments in Section 4.3.2 indicate that the approximations (4.3.7)
and (4.3.9) show a similar performance for the shorter expiries, whereas for the longer
expiry dates the former outperforms the latter. The reason for this is the fact that the
error due to the bivariate normality assumption becomes more pronounced for longer
expiries, i.e. the joint distribution of r (·) and X in (4.3.6) then resembles less a bivariate
normal distribution.

4.3.2. NUMERICAL EXPERIMENTS
In this section we test the accuracy of the approximation in (4.3.7) and the alternative
(4.3.9). We price European call options by means of a Monte Carlo simulation of the
Local Volatility-Hull White model. The Monte Carlo simulation consists of 2 ·105 paths
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for each time-step ti , i = 1,2, . . . , M do
1 Generate N pairs (si , j ,ri , j ), j = 1,2, . . . , N by going forward one time-step in the

standard Euler discretization scheme of the Local Volatility-Hull White model.

2 Compute EQ
[

r (ti )
M(ti )1S(ti )>si , j

]
according to either (4.3.7) or the alternative in (4.3.9).

3 Establish the local volatility component σ2(ti , si , j ) by equation (4.3.4) – use its value in
step 1.

end
4 Price European call options based on the obtained values for S(·) at the time to maturity.

Algorithm 4: Pricing European call options by a Monte Carlo simulation of the LV-
HW model, incorporating the SC-R approach (4.3.7) or the alternative (4.3.9).

Set T λ η ρr,s

A 1, 2, 5 0.01 0.01 0.6
B 5, 10, 15 0.01 0.007 −0.15

Table 4.3.1: Hull-White model parameters as in [55] (Set A) and
[56, 97] (Set B).

Set V0 ρs,v γ κ V

1 0.04 −0.9 1 0.5 0.04
2 0.04 −0.5 0.9 0.3 0.04
3 0.09 −0.3 1 1 0.09

Table 4.3.2: ‘Heston market’ parameters as in [5].

(20 seeds, each seed constitutes 104 paths) and 200 time-steps per year, unless otherwise
mentioned. At each time-step in the simulation we either use the approximation (4.3.7)
or approximate the expectation according to (4.3.9). We consider two sets of Hull-White
parameters in the literature, see Table 4.3.1. In line from the literature we choose for both
sets r0 = 0.02.

We generate synthetic market data by applying Fourier techniques to the Heston
model, which we assume to be calibrated perfectly to the market. We choose three sets
of Heston parameters for which the Feller condition is strongly violated, namely the pa-
rameter sets presented in [5], see Table 4.3.2. In the regression we choose n = 5 basis
functions, so we consider the first four moments of the truncated standard normal distri-
bution. Similar to [97], given the expiry T we consider the strikes Ki = F T

0 exp(0.1δi
p

T ),
with F T

0 = S0/P (0,T ) = 1/P (0,T ) (as S0 = 1) denoting the initial forward and δi = −1.5,
−1.0, −0.5, 0.0, 0.5, 1.0, 1.5.

For the two shortest expiries per Hull-White set the results are provided by Tables
4.3.3, 4.3.4 (‘Heston market’ Set 1), 4.3.5, 4.3.6 (‘Heston market’ Set 2), 4.3.7 and 4.3.8
(‘Heston market’ Set 3). We report the absolute error ε := |σmarket −σLV-HW| in %, with σ
denoting the Black-Scholes implied volatility. The error εalternative corresponds to the al-
ternative approach of Section 4.3.1. Given the standard deviations, we observe that for all
LV-HW experiments both the SC-R approach and the alternative yield 95%-confidence
intervals12 that cover the reference implied volatility, except for one case: the alternative
approach with ‘Heston market’ Set 1, Hull-White Set B, T = 10. For the expiries T = 5 and
T = 15 corresponding to Hull-White Sets A and B, respectively, the results are displayed

12The boundaries of the 95%-confidence interval are µ(σ1,model,σ2,model,σ3,model, . . .) ± 1.96 ·
σ(σ1,model,σ2,model,σ3,model, . . .), with µ(·) and σ(·) denoting the mean and standard deviation, re-
spectively, and σi ,model stands for the model implied volatility (obtained from Monte Carlo) corresponding
to the i th seed.
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‘Heston market’ Set 1, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.00 (0.27) 0.01 (0.25) 0.84 0.01 (0.22) 0.03 (0.21)
0.92 0.01 (0.23) 0.01 (0.22) 0.90 0.01 (0.20) 0.02 (0.18)
0.97 0.02 (0.21) 0.02 (0.19) 0.97 0.01 (0.18) 0.01 (0.16)
1.02 0.04 (0.17) 0.04 (0.16) 1.04 0.03 (0.15) 0.01 (0.13)
1.07 0.05 (0.13) 0.05 (0.11) 1.12 0.04 (0.11) 0.06 (0.08)
1.13 0.05 (0.10) 0.05 (0.09) 1.20 0.01 (0.12) 0.02 (0.10)
1.19 0.04 (0.11) 0.04 (0.10) 1.29 0.02 (0.15) 0.03 (0.15)

Table 4.3.3: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 1, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 1, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.04 (0.15) 0.13 (0.14) 0.76 0.01 (0.11) 0.38 (0.10)
0.88 0.03 (0.13) 0.11 (0.12) 0.89 0.00 (0.11) 0.31 (0.08)
0.90 0.02 (0.12) 0.07 (0.10) 1.04 0.01 (0.10) 0.21 (0.08)
1.11 0.00 (0.09) 0.02 (0.08) 1.22 0.03 (0.09) 0.05 (0.07)
1.24 0.01 (0.08) 0.09 (0.07) 1.43 0.06 (0.08) 0.26 (0.06)
1.38 0.01 (0.11) 0.10 (0.10) 1.68 0.01 (0.08) 0.50 (0.05)
1.55 0.02 (0.16) 0.03 (0.14) 1.96 0.01 (0.18) 0.28 (0.14)

Table 4.3.4: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 1, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

in Figures 4.3.1 and 4.3.2. With ‘LV-HW alt.’ we denote the alternative approach.
In general, for both the approximation (4.3.7) and its alternative (4.3.9) the results are

highly satisfactory. For the shorter expiries the two methods show a comparable perfor-
mance, however for T = 10 and T = 15 we observe that the regression-based approach
outperforms the alternative – we clearly observe this in Figure 4.3.2. The reason for this
is that the alternative approach relies on the bivariate normality assumption of r (·) and
X in (4.3.6). The error introduced by the bivariate normality assumption becomes more
pronounced for longer expiries, since the joint distribution of r (·) and X resembles less a
bivariate normal distribution when going forward in time. In the left-hand plot of Figure
4.3.2 we observe a slight mismatch at the right-hand side of the strike range. This is not
due to the performance of the approximation methods, but due to general Monte Carlo
bias. We conclude this based on a simulation of the LV-HW model applying an ‘exact’,

‘brute-force’ approach to compute the expectation EQ
[

r (t )
M(t )1S(t )>K

]
. The same bias was

observed.

4.4. CONCLUSION
In this chapter we considered in a Monte Carlo simulation framework two classes of
hybrid local volatility models, namely stochastic local volatility models and the local
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Figure 4.3.1: Black-Scholes implied volatilities corresponding to Hull-White Set A, T = 5 and the ‘Heston
market’ Sets 1 (left), 2 (middle) and 3 (right), using 200 time-steps per year for Sets 1 and 2. For Set 3 500

time-steps per year are used, as 200 time-steps did not yield highly satisfactory results. ‘LV-HW alt.’ denotes
the alternative approach presented in Section 4.3.1. Results are obtained with 2 ·105 paths (2 seeds, each seed

constitutes 105 paths).

‘Heston market’ Set 2, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.09 (0.27) 0.09 (0.27) 0.84 0.05 (0.23) 0.07 (0.23)
0.92 0.08 (0.24) 0.07 (0.24) 0.90 0.05 (0.21) 0.06 (0.21)
0.97 0.06 (0.21) 0.06 (0.20) 0.97 0.05 (0.19) 0.05 (0.18)
1.02 0.05 (0.17) 0.04 (0.16) 1.04 0.04 (0.18) 0.03 (0.17)
1.07 0.05 (0.16) 0.04 (0.16) 1.12 0.05 (0.20) 0.04 (0.19)
1.13 0.05 (0.17) 0.05 (0.17) 1.20 0.09 (0.24) 0.08 (0.24)
1.19 0.08 (0.19) 0.07 (0.19) 1.29 0.14 (0.31) 0.13 (0.31)

Table 4.3.5: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 2, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 2, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.08 (0.20) 0.11 (0.20) 0.76 0.05 (0.15) 0.20 (0.15)
0.88 0.07 (0.18) 0.09 (0.18) 0.89 0.04 (0.14) 0.14 (0.15)
0.90 0.05 (0.16) 0.05 (0.16) 1.04 0.01 (0.14) 0.04 (0.14)
1.11 0.03 (0.16) 0.00 (0.16) 1.22 0.02 (0.15) 0.09 (0.16)
1.24 0.04 (0.18) 0.00 (0.19) 1.43 0.00 (0.20) 0.13 (0.19)
1.38 0.06 (0.24) 0.04 (0.24) 1.68 0.05 (0.28) 0.05 (0.27)
1.55 0.10 (0.32) 0.09 (0.32) 1.96 0.06 (0.37) 0.05 (0.35)

Table 4.3.6: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 2, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.
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Figure 4.3.2: Black-Scholes implied volatilities corresponding to Hull-White Set B, T = 15 and the ‘Heston
market’ Sets 1 (left), 2 (middle) and 3 (right). ‘LV-HW alt.’ denotes the alternative approach presented in
Section 4.3.1. Results are obtained with 2 ·105 paths (2 seeds, each seed constitutes 105 paths) and 200

time-steps per year.

‘Heston market’ Set 3, Hull-White Set A
T = 1 T = 2

K ε εalternative K ε εalternative
0.88 0.14 (0.26) 0.14 (0.26) 0.84 0.09 (0.29) 0.10 (0.29)
0.92 0.13 (0.24) 0.13 (0.24) 0.90 0.08 (0.28) 0.09 (0.28)
0.97 0.12 (0.23) 0.11 (0.23) 0.97 0.08 (0.28) 0.08 (0.27)
1.02 0.11 (0.24) 0.11 (0.24) 1.04 0.08 (0.29) 0.08 (0.28)
1.07 0.10 (0.25) 0.10 (0.25) 1.12 0.08 (0.31) 0.08 (0.31)
1.13 0.09 (0.27) 0.09 (0.27) 1.20 0.09 (0.34) 0.09 (0.34)
1.19 0.09 (0.29) 0.09 (0.29) 1.29 0.11 (0.37) 0.11 (0.37)

Table 4.3.7: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 3, Hull-White Set A (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.

‘Heston market’ Set 3, Hull-White Set B
T = 5 T = 10

K ε εalternative K ε εalternative
0.79 0.04 (0.27) 0.04 (0.28) 0.76 0.01 (0.35) 0.01 (0.38)
0.88 0.03 (0.28) 0.03 (0.29) 0.89 0.00 (0.36) 0.01 (0.38)
0.90 0.03 (0.30) 0.03 (0.30) 1.04 0.00 (0.38) 0.01 (0.40)
1.11 0.03 (0.31) 0.03 (0.32) 1.22 0.02 (0.40) 0.01 (0.43)
1.24 0.04 (0.32) 0.03 (0.33) 1.43 0.02 (0.43) 0.01 (0.45)
1.38 0.05 (0.34) 0.04 (0.35) 1.68 0.03 (0.46) 0.01 (0.48)
1.55 0.05 (0.38) 0.04 (0.39) 1.96 0.04 (0.49) 0.01 (0.52)

Table 4.3.8: Errors ε := |σmarket−σLV-HW| in % corresponding to the ‘Heston market’ Set 3, Hull-White Set B (σ
denotes the Black-Scholes implied volatility). Numbers in parentheses are standard deviations over the seeds.



4.4. CONCLUSION

4

97

volatility model extended with stochastic interest rates. For both model classes a non-
trivial (conditional) expectation needs to be evaluated, which cannot be extracted from
the market quotes and is expensive to compute. In this chapter we presented a novel,
efficient approach to the evaluation of these expectations. The method essentially con-
sists of two projection steps; the first projection employs the equality in distribution of
cumulative distribution functions, which stands at the basis of the stochastic collocation
method, the second projection step relies on standard regression techniques. By means
of numerical experiments we confirm that our approach facilitates an efficient Monte
Carlo evaluation and yields highly accurate pricing results for European-type options.





APPENDIX

4.A. ERROR ANALYSIS & DISCUSSION
In this section we briefly discuss the (asymptotics of the) errors in (4.2.24), which are due
to the stochastic collocation method (ε1(·)) and the projection on an orthonormal basis
and subsequently applying regression (ε2).

4.A.1. STOCHASTIC COLLOCATION ERROR

The first error is ε1(K ) := E[
ε1(Z )|X = g−1(K )

]
, with Z denoting a standard normal ran-

dom variable. It is introduced by projecting, for a given t , the random variable V (t ) on
Z via a Lagrange polynomial hNV (·), which interpolates through the collocation values
vi = F−1

V (t )(FZ (zi )), where the collocation points zi are chosen in an optimal way, namely
based on the zeros of Hermite polynomials.

We start the analysis of ε1(·) by the following (in)equalities:∣∣E[
h(Z )−hNV (Z )

]∣∣ ≤ E
[∣∣h(Z )−hNV (Z )

∣∣] (by Jensen’s inequality) (4.A.1)

≤
(
E
[(

h(Z )−hNV (Z )
)2

])1/2
, (4.A.2)

where the latter inequality is a standard relation between Lp -norms, see e.g. [112].
As pointed out in the error analysis in [58], the advantage of using optimal collocation

points is that the stochastic collocation method can be connected to the computation of
integrals by Gauss quadrature, which for the general functionΨ(·), weight function fZ (·)
and quadrature weights ωi , i = 1,2, . . . , NV reads:

E [Ψ(Z )] =
∫
R
Ψ(z) fZ (z)dz =

NV∑
i=1
Ψ(zi )ωi +εNV . (4.A.3)

In this chapter we choose the collocation variable Z
d= N (0,1), for which a simple rela-

tion between the ‘stochastic collocation pairs’ {zi ,ωi }NV
i=1 and the Gauss-Hermite quadra-

ture pairs {zH
i ,ωH

i }NV
i=1 exists. Whereas in the stochastic collocation method the weight

function fZ (z) = 1p
2π

exp
(− 1

2 z2
)

is used, Gauss-Hermite quadrature is based on fZ (z) =
exp(−z2). However, standard calculus yields

∫
RΨ(z) 1p

2π
e−

1
2 z2

dz = ∫
RΨ(z

p
2) 1p

π
e−z2

dz.

From this one can show the relations zH
i = zi /

p
2 andωH

i =ωi
p
π, which implies that for

a standard normal collocation variable the error due to stochastic collocation is given by
the error for the Gauss-Hermite quadrature, which is, see e.g. [3], given by:

εNV = NV !
p
π

2NV

Ψ(2NV )(ξ̂)

(2NV )!
, (4.A.4)
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with ξ̂ ∈ [min(z)max(z)], z = (z1, z2, . . . , zNV ). By choosing Ψ(z) = (h(z)−hNV (z))2, with
h(·) = F−1

V (t )(FZ (·)) and hNV (·) the corresponding approximating Lagrange polynomial,
equation (4.A.3) yields the error:

E
[
(h(Z )−hNV (Z ))2] =

∫
R

(h(z)−hNV (z))2 fZ (z)dz

=
NV∑
i=1

(h(zi )−hNV (zi ))2ωi +εNV

= εNV ,

as h(zi ) = hNV (zi ). Ψ(z) = (h(z)−hNV (z))2 can be written more explicitly as the square
of the standard Lagrange interpolation error, see e.g. [3]:

Ψ(z) =
(

1

NV !

dNV h(z)

dzNV

∣∣∣∣
z=ξ̂

NV∏
i=1

(z − zi )

)2

, (4.A.5)

with ξ̂ ∈ [min(z)max(z)], z = (z1, z2, . . . , zNV ). This error may be bounded by choosing

z = ξ̂ for which
∣∣∣ dNV h(z)

dzNV

∣∣∣ attains its maximum.

Substituting (4.A.5) in (4.A.4) yields a complete specification for εNV , and it can be
shown that it converges to zero as NV →∞ (under the condition thatΨ(·) is sufficiently
smooth). Then, from the inequalities (4.A.1) and (4.A.2), combined with the identity

E
[
h(Z )−hNV (Z )

]= ∫
R
E
[

h(Z )−hNV (Z )
∣∣ X = x

]
fX (x)dx,

the error ε1(x) := E
[

h(Z )−hNV (Z )
∣∣ X = x

]
converges to zero as NV → ∞, for arbitrary

x ∈R.

4.A.2. REGRESSION ERROR

The second error term ε2 := ∑NV −1
p=1 ε̂2p is due to the projection of the unknown condi-

tional expectations E
[

Z p |X = g−1(K )
]

on a set of basis functions {1, x, x2, . . . , xn−1} and
applying OLS regression. This is polynomial regression, which is a special case of multi-
ple linear regression. In a Monte Carlo simulation framework, given N observations for
the underlying S(·), s j , we write, as we evaluate the local volatility component in K = s j :

E
[

Z p ∣∣ X = x j
]= b0p +b1p x j + . . .+bn−1,p xn−1

j +ε2p j , j = 1,2, . . . , N , (4.A.6)

with x j := g−1(s j ) and ε2p j is the unobserved error term corresponding to the j th real-

ization. We apply OLS regression to compute β̂kp , k = 0,1, . . . ,n −1, p = 1,2, . . . , NV −1,

which are estimates for bkp . This yields Ê
[

Z p |X = x j
]= β̂0p + β̂1p x j + . . .+ β̂n−1,p xn−1

j +
ε̂2p j , j = 1,2, . . . , N .

Let x = (1 x x2 . . . xn−1) be an N ×n matrix and denote its j th row by x j . Under some
standard assumptions for the regression model (4.A.6), e.g. for j = 1,2, . . . , N the errors
ε2p j should have conditional mean zero, i.e. E[ε2p j |x] = 0 (‘strict exogeneity’), amongst

others, the Gauss-Markov theorem – see e.g. [52] – states that β̂p := (
β̂0p , β̂1p , . . . , β̂n−1,p

)
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is the Best Linear Unbiased Estimator (‘BLUE’) of bp := (
b0p ,b1p , . . . ,bn−1,p

)
amongst

all βp candidates. β̂p is ‘best’ in a least squares sense, i.e. it is the unique value for

βp for which the sum of squared residuals
∑N

j=1

(
zp

j −x jβ
T
p

)2
is minimized, with z j =

F−1
Z (FV (t )(v j )). If we additionally assume that the error terms ε2p j , j = 1,2, . . . , N in

(4.A.6) are independent and identically distributed with mean zero and finite variance
σ2, one can prove that β̂p is a consistent estimator of bp (convergence in probability)

lim
N→∞

P
(∣∣β̂p −bp

∣∣≥ ε)= 0 ∀ε> 0,

and, moreover, applying the central limit theorem, that β̂p is asymptotically normal
(convergence in distribution):

β̂p
d→N

(
bp ,

σ2

N
Q−1

)
if N →∞, with Q defined by lim

N→∞
P

(∣∣∣∣ x ′x
N

−Q

∣∣∣∣≥ ε) ∀ε> 0.

Q is a positive definite matrix.

Remark 4.A.1 (Number of basis functions). Although β̂p is the ‘best’ estimator of bp in
the sense that it has the lowest variance compared to all other unbiased estimatorsβp , the
absolute error can still be significant, e.g. due to an inappropriate choice of the basis func-
tions or the number of basis functions. Tests for the significance of the polynomial terms, in
particular the highest order term, can be conducted, where the null hypothesis states that
β̂kp = 0 for some k = 0, 1, . . . ,n −1. Related to this, one can employ either a forward selec-
tion procedure or a backward elimination procedure, in which the model is successively
fit in increasing or decreasing order under statistical testing, respectively. Other criteria
one can consider to test whether a multiple linear regression model is well-constructed
are e.g. the well-known R2-value (coefficient of determination) and the condition num-
ber of the matrix involved in the regression, which is a measure for the ill-posedness and
multicollinearity of the problem.

4.B. PROOFS OF LEMMA 4.2.1 AND THE RESULT IN SECTION

4.3.1
In this section we provide proofs for Lemma 4.2.1 and the result in Section 4.3.1, which
we state here as Lemmas 4.B.1 and 4.B.2, respectively.

Lemma 4.B.1. Given the two-dimensional model (4.2.27). Let X and Z denote standard
normal random variables and assume for an arbitrary t that the elements Yi (t ) = yi , i =
1,2, X = x, Z = z are related by y1 = g (x), y2 = h(z), with g (·) and h(·) defined in (4.2.13)
and (4.2.15), respectively. This implies that X and Z are jointly bivariate normally dis-
tributed.

Proof. We start by writing (4.2.27) in terms of independent Brownian motions W̃1(·) and
W̃2(·):

dY1(t ) =σ1Y1(t )dW̃1(t ), dY2(t ) =σ2Y2(t )

(
ρdW̃1(t )+

√
1−ρ2dW̃2(t )

)
, (4.B.1)
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with Y1(0) = y10 and Y2(0) = y20. The solution to (4.B.1) reads

Y1(t ) = y10 exp

(
−1

2
σ2

1t +σ1W̃1(t )

)
, Y2(t ) = y20 exp

(
−1

2
σ2

2t +σ2

(
ρW̃1(t )+

√
1−ρ2W̃2(t )

))
,

(4.B.2)

respectively. One can easily show log(Yi (t ))
d= N (µi ,σi ), with µi := log(yi 0)− 1

2σ
2
i t and

σi := σi
p

t , i = 1,2. Further, the element-wise equality y1 = g (x), with g (·) specified in

(4.2.13), implies, as X
d=N (0,1),

x = g−1(y1) = F−1
X (FY1(t )(y1)) = F−1

N (0,1)FN (0,1)

(
log(y1)−µ1

σ1

)
= log(y1)−µ1

σ1
,

which yields for y1 and similarly for y2, substituting the values of µi and σi , i = 1,2:

y1 = y10 exp

(
−1

2
σ2

1t +σ1
p

t x

)
, y2 = y20 exp

(
−1

2
σ2

2t +σ2
p

t z

)
,

thus

Y1(t ) = y10 exp

(
−1

2
σ2

1t +σ1
p

t X

)
, Y2(t ) = y20 exp

(
−1

2
σ2

2t +σ2
p

t Z

)
. (4.B.3)

Equations (4.B.2) and (4.B.3) imply X = 1p
t
W̃1(t ) and Z = 1p

t

(
ρW̃1(t )+

√
1−ρ2W̃2(t )

)
=

ρX +
√

1−ρ2 Z̃ , with Z̃ := 1p
t
W̃2(t ). As we are able to express Z in terms of X via the

Cholesky decomposition, Z and X are jointly bivariate normally distributed.

Lemma 4.B.2. For two jointly normally distributed random variables X1
d= N (µ1,σ1)

and X2
d=N (µ2,σ2), correlated with correlation parameter ρ, the following result holds:

E
[

X11X2>k
]=

µ1 +ρσ1

fN (0,1)

(
k−µ2
σ2

)
1−FN (0,1)

(
k−µ2
σ2

)
(

1−FX2 (k)
)

,

where fN (0,1)(·) and FN (0,1)(·) are the standard normal PDF and CDF, respectively, and
FX2 (·) is the CDF corresponding to the random variable X2.

Proof. We start by writing

E
[

X11X2>k
]= E[

E
(

X11X2>k
∣∣ X2 > k

)]= E[
1X2>kE ( X1|X2 > k)

]
. (4.B.4)

For the inner expectation we set X2 = σ2Z2 +µ2 and X1 = σ1

(
ρZ2 +

√
1−ρ2Z1

)
+µ1,

where Z2 and Z1 are independent standard normal random variables. The expression
of X1 in terms of Z2 is established by assuming that X1 and X2 are bivariate normally
distributed (the joint distribution of two normal random variables does not need to be
bivariate normal. Only the reverse holds in general.). Straightforward calculus yields
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E ( X1|X2 > k) = ρσ1E
(

Z2|Z2 > (k −µ2)/σ2
)+µ1. The conditional expectation is given by

E
(

Z2|Z2 > (k −µ2)/σ2
)= fN (0,1)

(
k−µ2
σ2

)
1−FN (0,1)

(
k−µ2
σ2

) . So

E ( X1|X2 > k) = ρσ1

fN (0,1)

(
k−µ2
σ2

)
1−FN (0,1)

(
k−µ2
σ2

) +µ1.

Substituting this result in (4.B.4) yields the result in the lemma.





5
COLLOCATING LOCAL VOLATILITY:

A COMPETITIVE ALTERNATIVE TO

STOCHASTIC LOCAL VOLATILITY

MODELS

We discuss a competitive alternative to the stochastic local volatility models, namely the
Collocating Local Volatility (CLV) model, introduced in [54]. The CLV model consists of
two elements, a ‘kernel process’ that can be efficiently evaluated and a local volatility func-
tion. The latter, based on stochastic collocation – e.g. [9, 45, 127, 131] – connects the kernel
process to the market and allows the CLV model to be perfectly calibrated to European-type
options. In this chapter we consider three different kernel process choices: the Ornstein-
Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes and the Heston model. The ker-
nel process controls the forward smile and allows for an accurate and efficient calibration
to exotic options, while the perfect calibration to liquid market quotes is preserved. We
confirm this by numerical experiments, in which we calibrate the OU-CLV, CIR-CLV and
Heston-CLV models to FX barrier options.

Keywords: Collocating Local Volatility, stochastic local volatility, Monte Carlo, stochas-
tic collocation, calibration, forward volatility, barrier options.

5.1. INTRODUCTION
In this chapter we consider an alternative to SLV models, namely the Collocating Local
Volatility (CLV) model, introduced in [54]. The CLV model is composed of a kernel pro-
cess and a local volatility function, which is constructed based on stochastic collocation

This chapter is based on the article ‘Collocating Local Volatility: A Competitive Alternative to Stochastic Local
Volatility Models’, submitted for publication, 2018 [121].
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[9, 12, 90, 107, 131] and, as a consequence, admits a perfect calibration to arbitrage-free
European-type option prices. The kernel process can be any stochastic process – in the
case however that the moments of the kernel variable exist and are numerically stable,
optimal collocation points can be determined by which the local volatility function is
defined [58].

The CLV model allows for flexibility regarding the forward smile. The forward smile
is governed by the kernel process and reflects the transition densities between future
states of the underlying, which determine the price of a path-dependent product [10].
By an appropriate choice of the kernel process and its parameter values, the CLV model
is well-capable of pricing exotic options, while maintaining a fit to liquid European-
style options. In this chapter we consider three different kernel processes: the Ornstein-
Uhlenbeck (OU) and Cox-Ingersoll-Ross (CIR) processes and the Heston model.

Another advantageous property of the CLV model is the fact that the local volatility
function only needs to be evaluated at the time-points of interest. In addition, the kernel
process typically allows for large time-steps in a simulation. This particularly holds if an
analytical solution is available (as for e.g. the OU and CIR kernel processes), however
also for other processes efficient simulation schemes exist, e.g. the Heston model can be
efficiently simulated by Andersen’s QE scheme [5].

The CLV model, by its flexibility in controlling the forward smile and its rapid Monte
Carlo evaluation, allows for an efficient Monte Carlo calibration to exotic options, while
the fit to European-type options is preserved.

The present chapter is organized as follows. In Section 5.2 we present the CLV model
and elaborate on its advantageous properties. We establish the corresponding pricing
PDE along the lines of the derivation of the Black-Scholes pricing PDE – we employ the
notion of martingales. Also, for application purposes we describe the evaluation steps
of the CLV model in a Monte Carlo simulation framework. Subsequently, in Section 5.3
we consider three choices for the kernel process, namely OU and CIR dynamics and
the Heston model; we describe the characteristics and consider the effect of the kernel
parameters on the shape of the forward smile. Based on this analysis, in Section 5.4 we
calibrate the OU, CIR and Heston kernel processes to FX barrier options. Last, Section
5.5 concludes.

5.2. THE COLLOCATING LOCAL VOLATILITY MODEL
In this section we discuss the main characteristics of the Collocating Local Volatility
(CLV) model [54]. Also, we write the model in a standard form and derive its pricing
PDE.

The CLV model is represented as follows, under the risk-neutralQ-measure:

S(t ) = gN (t ,X(t )), (5.2.1)

dX(t ) = µ(t ,X(t ))dt +σ(t ,X(t ))dWQ(t ), X(t0) = X0, (5.2.2)

where gN (·,X(·)) : [t0,T ]×Rn →R,µ(·,X(·)) : [t0,T ]×Rn →Rn ,σ(·,X(·)) : [t0,T ]×Rn →Rn×d

and WQ(·) is an n-dimensional Brownian motion. The model consists of two elements
that are evaluated separately. The first building block is the kernel process X(·) in (5.2.2).
The second building block is the CLV element (5.2.1), which connects the kernel process
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to liquid market quotes via the local volatility function gN (·, ·), which is based on the
stochastic collocation method [9, 12, 90, 107, 131].

An advantageous property of the CLV model is that, by construction, function gN (·, ·)
guarantees an almost perfect calibration to arbitrage-free European-type option prices,
independently of the kernel parameter values. Basically this function, given liquid mar-
ket quotes for expiries T1, . . . ,TM , yields a highly accurate interpolation through the pairs
(xi , j , si , j ), i = 1, . . . , M , j = 1, . . . , N , with xi ,1, . . . , xi ,N and si ,1, . . . , si ,N representing the col-
location points and collocation values corresponding to Ti , respectively. The collocation
points may be established based on the moments of the kernel variable (see Remark
5.2.1). The collocation values are computed by

si , j = F−1
S(Ti )(FX (Ti )(xi , j )),

where the cumulative distribution function of S(Ti ) under the risk-neutral measure is
specified by equation (5.2.3) in Lemma 5.2.1.

The function gN (·, ·) is an interpolation through the si , j -values, given particular t
and X (·) values. Choosing gN (·, ·) in the Lagrange form is well-accepted in the field
of Uncertainty Quantification, see e.g. [106]. However, this choice does not guarantee
monotonicity in the strike direction, which is a desirable property. We therefore choose
a piecewise cubic Hermite interpolation, which is guaranteed to be monotonic and con-
tinuously differentiable, see e.g. [44].

Lemma 5.2.1 (Market-implied CDF of S(·) under the risk-neutral measure). The market-
implied CDF of S(T ) under the risk-neutralQ-measure is given by

FS(T )(x) = 1+ er T ∂C mkt(T,K )

∂K

∣∣∣∣∣
K=x

, (5.2.3)

with C mkt(T,K ) denoting today’s arbitrage-free price of a European call option with strike
K and expiry T and r denotes a constant interest rate.

Proof. In general, the discounted value of a standard European option with an expiry T
and strike K at time t under the risk-neutralQ-measure is

C (T,K ) = M(t )EQ
[

(S(T )−K )+

M(T )

∣∣∣∣F (t )

]
,

where S(·) is the underlying and M(·) stands for the money account, determined by
dM(t ) = r M(t )dt with a constant interest rate r . The discounted value of the option
is given by (suppressing the filtration notation):

C (T,K ) = e−r T EQ
[
(S(T )−K )+

]= e−r T
∫ ∞

K
(x −K ) fS(T )(x)dx, (5.2.4)

where fS(T )(·) is the market-implied PDF of S(T ) under the Q-measure. Differentiating
and applying Leibniz’ integration rule gives

er T ∂C (T,K )

∂K
=−1+FS(T )(K ),
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which we write for an arbitrary argument x as:

FS(T )(x) = 1+ er T ∂C mkt(T,K )

∂K

∣∣∣∣∣
K=x

,

where we added the ‘mkt’ superscript to emphasize that we obtain the CDF from the
market quotes. This concludes the proof of Lemma 5.2.1.

Remark 5.2.1 (Optimal collocation points). Optimal collocation points xi ,1, . . . , xi ,N can
be calculated based on the first 2N moments of the underlying kernel variable at Ti , X (Ti )
[58]. In this case the collocation points are zeros of the orthogonal polynomial correspond-
ing to (the probability density function of) the kernel variable and can be computed by
an eigenvalue method. By choosing optimal collocation points, the stochastic collocation
method can be connected to the computation of integrals by Gauss quadrature.

Remark 5.2.2 (Relation between X (t ) and S(t )). Ideally, for a given t , the relation be-
tween the distribution of the kernel variable and the market-implied distribution is ap-
proximately linear or, stated differently, the densities of X (t ) and S(t ) resemble each other.
This yields a small approximation error [58] and optimal results.

Besides for its almost perfect calibration, a second beneficial property of the CLV
model is the fact that, in e.g. a Monte Carlo simulation framework, we do not need to
evaluate gN (·, ·) at each time-step, which is the case for the standard Local Volatility
model [34, 35]. For example, for pricing a European-type option we simulate the ker-
nel process (5.2.2) up to the option’s maturity T and subsequently compute gN (T, X (T ))
(5.2.1). In the case that the time-points of interest are specified on a coarse grid, we
prefer a simulation method for the kernel variable which is low-biased for large time-
steps1. Moreover, in the case that the kernel process has an analytical solution (e.g. the
Ornstein-Uhlenbeck and Cox-Ingersoll-Ross processes), it allows for an exact simulation
method with large time-steps.

A third advantageous characteristic of the CLV model is its flexibility in controlling
the forward smile, while maintaining an almost perfect fit to European-type options by
construction. For the CLV model, as discussed in [54], the autocorrelation of the kernel
process affects the forward smile. As such, the choice of kernel process and the ker-
nel parameter values determine the forward smile generated by the CLV model, without
affecting the almost perfect calibration to European-type options. The payoff of a path-
dependent product is determined by the evolution of the underlying through time, i.e.
its price depends on the transition densities from one future state to another [10].

As the CLV model is flexible in controlling the forward smile and can be efficiently
evaluated, it allows for an efficient Monte Carlo calibration to exotic options, while the
fit to European-type options is maintained. In Section 5.3 we consider the forward smile

1For example, in the case of a Heston kernel process we would simulate X (·) by employing the QE scheme of
Andersen [5], which allows for large time-steps. An alternative would be to make use of the so-called exact
simulation scheme proposed by Broadie and Kaya [18], which is based on acceptance-rejection sampling of
the variance process coupled with certain Fourier inversion computations. As presented in [58], by employ-
ing the Stochastic Collocation Monte Carlo sampler the exact simulation can be performed efficiently and
accurately.
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for three different choices of the kernel process, and in Section 5.4 we calibrate the kernel
process to FX barrier options.

Typically, in the field of financial engineering, the dynamics of the underlying S(·) are
presented, as opposed to the non-standard model representation in equations (5.2.1)-
(5.2.2). We can write this model in a more standard way by applying Itô’s lemma. Intro-
ducing the short-hand notation gN := gN (t , X (t )), assuming that X (·) is a one-dimensional
kernel process and that the relevant partial derivatives ∂gN /∂X , ∂2gN /∂X 2 and ∂gN /∂t
exist, S(·) follows an Itô process which is governed by the same Wiener process as X (·),
under the risk-neutralQ-measure:

dS(t ) =
(
∂gN

∂t
+µQ(t , X (t ))

∂gN

∂X
+ 1

2

∂2gN

∂X 2 σ
2(t , X (t ))

)
dt + ∂gN

∂X
σ(t , X (t ))dW Q(t ).

Analogous to the derivation of the Black-Scholes pricing PDE, we derive the CLV pric-
ing PDE. To express the PDE merely in terms of derivatives to X , we define

C̃ (t , X (t )) :=C (t , gN (t , X (t ))) =C (t ,S(t )),

with C (t ,S(t )) representing the value of a European option on the underlying S(·) (‘plain
vanilla contingent claim’).

Lemma 5.2.2 (CLV pricing PDE). Given the CLV model under the risk-neutralQ-measure
with a general one-dimensional kernel process X (·):

S(t ) = gN (t , X (t )),

dX (t ) = µQ(t , X (t ))dt +σ(t , X (t ))dW Q(t ).

Suppose that the partial derivatives of gN := gN (t , X (t )), ∂gN /∂X , ∂2gN /∂X 2 and ∂gN /∂t
exist. Also, assume that the money account M(·) is determined by dM(t ) = r M(t )dt , with
r denoting a constant interest rate. Then C̃ := C̃ (t , X (t )) is governed by

∂C̃

∂t
+µQ(t , X )

∂C̃

∂X
+ 1

2
σ2(t , X )

∂2C̃

∂X 2 − r C̃ = 0, (5.2.5)

with the final condition
C̃ (T, X (T )) =Φ(gN (T, X (T ))),

whereΦ(·) is a payoff function depending on the final state of gN (·, ·).

Proof. By Itô’s lemma, introducing the short-hand notation C̃ := C̃ (t , X (t )), we obtain:

dC̃ (t , X (t )) =
(
∂C̃

∂t
+µQ(t , X (t ))

∂C̃

∂X
+ 1

2
σ2(t , X (t ))

∂2C̃

∂X 2

)
dt +σ(t , X (t ))

∂C̃

∂X
dW Q(t ).

Introducing the short-hand notation

Π(t , X (t )) := C̃ (t , X (t ))

M(t )
,
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and substituting the dynamics of M := M(t ) and C̃ := C̃ (t , X (t )), the dynamics of the
discounted option value are given by

dΠ(t , X (t )) = 1

M

(
∂C̃

∂t
+µQ(t , X (t ))

∂C̃

∂X
+ 1

2
σ2(t , X (t ))

∂2C̃

∂X 2 − r C̃

)
dt+σ(t , X (t ))

M

∂C̃

∂X
dW Q(t ).

In an arbitrage-free world we require that the option value discounted by the money
account is a martingale in the risk-neutralQ-measure. As such, the drift term is zero, i.e.

∂C̃

∂t
+µQ(t , X )

∂C̃

∂X
+ 1

2
σ2(t , X )

∂2C̃

∂X 2 − r C̃ = 0.

The final condition on C̃ (·) is given in terms of the payoff function Φ(·) that depends on
the final state of gN (·, ·):

C̃ (T, X (T )) =Φ(gN (T, X (T ))).

This concludes the proof of Lemma 5.2.2.

The PDE (5.2.5) is solved backwards in time, given the condition at the time to ma-
turity. It follows from the Feynman-Kac theorem that a solution of (5.2.5) at an arbitrary
time t0 < T is given by

C̃ (t0, X (t0))

M(t0)
= EQ

[
Φ(gN (T, X (T )))

M(T )

∣∣∣∣F (t0)

]
.

5.2.1. MARTINGALE CONSIDERATIONS

The CLV method does not necessarily guarantee risk-neutral drift conditions. In partic-
ular, the following condition does not hold for any set of kernel parameter values:

EQ
[

gN (T2, X (T2))

gN (T1, X (T1))

∣∣∣∣F (t0)

]
= F (t0,T2)

F (t0,T1)
, (5.2.6)

with t0 < T1 < T2 and F (t0,T ) = S0er (T−t0) denoting the forward. This implies that S(·) =
gN (·, X (·)) is not a martingale. However, by a proper choice of the kernel process and its
parameter values, we are able of controlling the autocorrelation within the CLV model.
As such, the condition in (5.2.6) can be approximated accurately. In Section 5.2.1 we
will provide numerical evidence for this. In addition, an idea similar to the CLV model
has already been proposed by e.g. Jäckel in [72], where an ‘inverse quantile function’ is
employed to map the quantile of an arbitrary distribution to the level of the underlying.
He establishes a link with the class of Markov-functional models [43, 68], and observes
that the method does not necessarily guarantee risk-neutral drift conditions. Last, there
is a unique scalar diffusion that is perfectly calibrated to the market for any time and
is a martingale, namely Dupire’s Local Volatility (LV) model [34, 35]. Although from a
theoretical point of view (5.2.6) may not necessarily be satisfied by the CLV model, its
construction yields a flexibility that allows for a calibration to exotic options – in a tradi-
tional LV setting this is not possible.
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KERNEL PARAMETER EFFECT ON MARTINGALITY

In this section we numerically show that the condition in (5.2.6) can be accurately ap-
proximated by determining a suitable kernel parameter value. We consider an OU-CLV
model with the OU model parameters X0 = 1, γ = 0.3 and θ = 0.5. We vary the value of
the mean reversion parameter κ and calculate the ratio

ν := E
[

gN (T2, X (T2))

gN (T1, X (T1))

]
(5.2.7)

and compare it against the theoretical ratio of the forwards ν∗ := F (t0,T2)/F (t0,T1) (we
set t0 = 0). We assume a Heston market parameterization with parameters κ = 0.5, γ =
0.3, ρx,v = −0.1 and V0 = V = 0.04 (the Feller condition is violated). Further, we set r =
0.05 and S0 = 1.

Results2 are given by Table 5.3.1 – we report (5.2.7) and the absolute difference in
percentage

ε := 100 ·
∣∣∣∣ν−ν∗ν∗

∣∣∣∣ .

For κ = −0.025 ε is less than 5 basis points and the condition in (5.2.6) is accurately ap-
proximated.

(T1,T2) (1,2) (2,3) (3,4) (4,5)

ν∗ 1.0513 1.0513 1.0513 1.0513

ν for:
κ=−0.1 1.0497 (0.15) 1.0486 (0.26) 1.0473 (0.38) 1.0463 (0.48)
κ=−0.025 1.0513 (0.00) 1.0516 (0.03) 1.0518 (0.05) 1.0515 (0.02)
κ=−0.01 1.0516 (0.03) 1.0522 (0.09) 1.0533 (0.19) 1.0526 (0.12)
κ= 0.01 1.0521 (0.08) 1.0531 (0.18) 1.0539 (0.25) 1.0561 (0.46)
κ= 0.1 1.0541 (0.27) 1.0574 (0.59) 1.0608 (0.91) 1.0658 (1.39)
κ= 0.5 1.0634 (1.16) 1.0790 (2.64) 1.0967 (4.32) 1.1161 (6.17)

Table 5.2.1: Effect of the OU kernel parameter κ on the ratio of underlying prices ν, as defined in (5.2.7).

Between brackets we report the absolute difference in percentage ε := 100 ·
∣∣∣ ν∗−νν∗

∣∣∣. For κ=−0.025 results are

most accurate (in bold).

As was already pointed out in [54], in the OU-CLV model only κ has an effect on the
autocorrelation. Even more accurate results can be expected for richer kernel processes,
like the CIR process or the Heston model, where more parameters affect the autocorre-
lation and can enhance the fit to the theoretical ratio of forward rates.

5.3. THE OU-CLV, CIR-CLV AND HESTON-CLV MODELS
As already mentioned in [54], the kernel process (5.2.2) can be specified in principle
freely. In the case its moments are analytically available and numerically stable, the

2We use N = 6 collocation points and apply a Monte Carlo simulation with 1 time-step per year and 5 seeds,
with 105 paths per seed.
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optimal collocation points can be established (see Remark 5.2.1 and Appendix 5.A) –
however, this is not a strict requirement.

The choice of an appropriate kernel process is subtle. On one hand, the process
should be evaluated efficiently, e.g. the Monte Carlo simulation may consist of large
time-steps. On the other hand, the process should be sufficiently rich to represent real-
istic dynamics, implying a realistic forward smile behaviour.

In this section we discuss three different choices for the kernel process, namely an
Ornstein-Uhlenbeck (OU), a Cox-Ingersoll-Ross (CIR) and a Heston process. We discuss
the main characteristics of the OU-CLV, CIR-CLV and Heston-CLV models and give spe-
cial attention to the forward smiles. More specifically, for each of the kernel processes we
consider the effect of the various kernel parameters on the shape of the forward smile.
Based on this analysis, we calibrate the OU-CLV, CIR-CLV and Heston-CLV models to FX
barrier options in Section 5.4.

5.3.1. THE OU-CLV MODEL
The OU-CLV model is given by the following equations, under the risk-neutralQ-measure:

S(t ) = gN (t , X (t )), (5.3.1)

dX (t ) = κ (θ−X (t ))dt +γdW Q(t ), X (t0) = X0. (5.3.2)

Remark 5.3.1 (Specification of X (·)). Given the filtration at t0 = 0, the solution to (5.3.2)
reads

X (t ) = X0e−κt +θ (
1−e−κt )+ γp

2κ
e−κt W Q

(
e2κt −1

)
, (5.3.3)

which is normally distributed with the mean and variance

µX (t ) = X0e−κt +θ (
1−e−κt ) , σ2

X (t ) = γ2

2κ

(
1−e−2κt ) , (5.3.4)

respectively.

As the moments of X (·) are analytically available and numerically stable, we can cal-
culate the optimal collocation points [54, 58] resulting in exponential convergence with
respect to the number of collocation points. Also, as the distribution of X (·) is known,
for the pricing of a standard European-type option by the OU-CLV model one time-step
is sufficient3.

For the pricing of exotics though, multiple time-steps are necessary, see e.g. the nu-
merical experiment in Appendix 5.B where we price a discretely monitored barrier op-
tion. Whether this price is realistic, depends on the forward smile the OU-CLV model
implies. We therefore consider the smile corresponding to a forward-start option, which
provides the holder at a future time T1 > t0 with a European option with a maturity
T2 > T1 and a strike K ·S(T1). At T2 the pay-off of this option of the ‘call type’ is [88]:

CForw.St. = max(S(T2)−K ·S(T1),0) . (5.3.5)

3In step 3 of Algorithm 5, X (T ) is generated by sampling M realizations xm , m = 1, . . . ,M from a normal
random variable with mean and variance as in equation (5.3.4).
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Numerical experiments make clear that only the mean reversion parameter κ has
an effect on the forward smile corresponding to the OU-CLV model – see Figure4 5.3.1.
On the right-hand side we display the forward volatility smiles omitting the level effect to
make the curvature effect visible (more precisely, we shift the smile downwards such that
its minimum is at 0). The primary effect of the mean reversion parameter is on the level:
an increase in κ yields an increase in level. A secondary effect is on the curvature, see
the right-hand plot of Figure 5.3.1. As mentioned in [54], changing κ affects the filtration
of the Brownian motion of the solution of X (·) in (5.3.3). As such, an OU process with
mean reversion parameter κ1 cannot be expressed as a linear combination of an OU
process with a different mean reversion parameter value κ2. Because of this, a change of
κ affects the autocorrelation of the paths of gN (·, ·) and the forward smile. In Table 5.3.1
we summarize the kernel parameter effects on the shape of the forward smile.
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Figure 5.3.1: Effect of κ on the forward volatility smile for the OU-CLV model, with T1 = 2.5 and T2 = 3. In the
right-hand plot all smiles are shifted to zero level to make the curvature effect more visible. Other OU

parameters are: X0 = 1, γ= 0.3, θ = 0.5.

5.3.2. THE CIR-CLV MODEL
The Cox Ingersoll Ross-Collocating Local Volatility (CIR-CLV) model is represented by
the following two equations, under the risk-neutralQ-measure:

S(t ) = gN (t , X (t )), (5.3.6)

dX (t ) = κ (θ−X (t ))dt +γ
√

X (t )dW Q(t ), X (t0) = X0. (5.3.7)

Result 5.3.1 (Specification of X (·)). Given the filtration at t0 = 0, the solution to (5.3.7) is
distributed as a scaled non-central chi-square random variable χ2(d ,λ(t )) with d degrees

4We omit the pictures corresponding to the other kernel parameters, as no effect was observed. We assume a
Heston market parameterization with parameters κ= 0.5, γ= 0.3, ρx,v =−0.1, V0 = 0.04 and V = 0.04. Also,
r = 0 and S0 = 1. Further, we use N = 6 collocation points and 2 time-steps per year and 5 ·105 paths in the
Monte Carlo simulation (5 seeds, each seed constitutes 105 paths).
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Level Curvature Skewness

κ + - 0
γ 0 0 0

X0 0 0 0
θ 0 0 0

Table 5.3.1: Separate effects of the OU kernel parameters on the level, curvature and skewness of the forward
smile implied by the OU-CLV model. A ‘+’/‘-’ represents a higher/lower volatility smile level, more/less

curvature or more/less skewness in the case of increasing a particular kernel parameter. A ‘0’ stands for no
effect.

of freedom and non-centrality parameter λ(t ), i.e.

X (t )
d= c(t )Λ(t ), with Λ(t )

d=χ2(d ,λ(t )), (5.3.8)

where

c(t ) = 1

4κ
γ2 (

1−e−κt ) , d = 4κθ

γ2 , λ(t ) = 4κX0e−κt

γ2(1−e−κt )
. (5.3.9)

The nth moment ofΛ(t ) is given by

E
[
Λn(t )

]= 2n−1(n −1)!(d +nλ(t ))+
n−1∑
k=1

(n −1)!2k−1

(n −k)!
(d +kλ(t ))E

[
Λn−k (t )

]
.

In computing the first moment, the summation term disappears and 0! = 1, resulting in
E [Λ(t )] = d +λ(t ), thus

E [X (t )] = c(t ) (d +λ(t )) .

For X (·) given by (5.3.8) an explosion of moments may occur. E.g., for the kernel pa-
rameters X0 = 1, θ = 1, κ= 1, γ= 0.1 we have at t = 1 the values d = 400, λ(1) ≈ 233. Given

these values, the 4th moment ofΛ(·) d=χ2(d ,λ(t )) has a value with an order of magnitude
of 1011. Due to the large moment values, numerical instabilities in computing the col-
location points may occur5. As an alternative approach, we use the collocation points

z j , j = 1, . . . , N corresponding to the standard normal random variable Z
d=N (0,1) – see

Remark 5.3.2. Given these, we compute the collocation points corresponding to expiry
Ti , i = 1, . . . , M , as follows:

xi , j := x j (Ti ) = F−1
X (Ti )(FZ (z j )) = c(Ti )F−1

Λ(Ti )(FZ (z j )), i = 1, . . . , M , j = 1, . . . , N .

Note that this implies the collocation values

si , j = F−1
S(Ti )

(
FX (Ti )(xi , j )

)= F−1
S(Ti )

(
FX (Ti )(F−1

X (Ti )(FZ (z j )))
)
= F−1

S(Ti )

(
FZ (z j )

)
, (5.3.10)

which shows that we do not need the CDF of X (·) for computing the collocation values.

5For example, for N = 8 we obtain negative collocation points, although the distribution of X (·) does not allow
for negative values.
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Remark 5.3.2 (Normal distribution). The reason why we choose a standard normal distri-
bution in the alternative approach is twofold. First, even for a fundamental distribution
as the standard normal, results are highly accurate – this is also the case in e.g. [54, 58].
By choosing a different distribution, results may be further enhanced. Secondly, as men-
tioned in [58], choosing the normal distribution is also motivated by the Cameron-Martin
Theorem [19], which states that polynomial chaos approximations based on the normal
distribution converge to any distribution.

Remark 5.3.3 (Loss of optimality of collocation points). A drawback of the alternative
approach from Remark 5.3.2 is that the collocation points are not the zeros of the orthog-
onal polynomial pN (·) that corresponds to the weight function fX (·), with X denoting the
non-central chi-square distributed random variable – see also Appendix 5.A. As a conse-
quence, the method can not be connected to Gauss quadrature, see equations (5.A.1) and
(5.A.2) in Appendix 5.A, as the xi -values do not correspond to the quadrature weights ωi ,
which are one-to-one connected to the weight function fX (·). In fact, there would be a mis-
match between the xi and ωi values and the error is not longer (completely) determined
by the quadrature error.

Remark 5.3.4 (The case γ= 0). In the case γ= 0, the OU and CIR kernel processes (5.3.2)
and (5.3.7) are equivalent and deterministic. This is not a relevant case, as the CLV frame-
work relies on the projection of an ‘expensive’ random variable on a ‘cheaper’ random
variable, which is the essence of stochastic collocation.

EFFECT OF ‘LINEARIZATION’
As we stated in Remark 5.2.2, optimal results are established if for a given t the distribu-
tions of X (t ) and S(t ) approximately resemble each other. For an expiry Ti this implies
a close-to-linear relation between the collocation points xi , j and collocation values si , j ,
through which gN (·, ·) interpolates. Given a set of market data and a set of kernel pa-
rameters, it may turn out though that gN (·, ·) is highly non-linear, which may affect the
performance of the stochastic collocation method and the eventual fit of the CLV model
to European-type market prices negatively.

For illustration purposes, suppose that the market data is parameterized by the He-
ston model, with parameters given by Case II of Andersen [5]: V0 = V = 0.04, κ = 0.3,
γ = 0.9 and ρxv = −0.5. Also, r = 0 and S0 = 1. We choose kernel parameters6 γ = 1.5,
κ = 0.5, θ = 0.5, X0 = 1, and price a European call option with expiry T = 4; results are
displayed in Figure 5.3.2. To judge the performance of the interpolant gN (t , x), we dis-
play the theoretical function

g (t , x) := F−1
Y (t )

(
FX (t )(x)

)= F−1
S(t )

(
FΛ(t )

(
x −a(t )

c(t )b(t )

))
,

with a(·) and b(·) denoting grid-stretching coefficients [58] and Y (t ) = S(t ) representing

the ‘expensive’ random variable which we project on the kernel variable X (t )
d= c(t )Λ(t )

withΛ(t )
d=χ2(d ,λ(t )) (c(t ) and λ(t ) are specified in (5.3.9)).

6We use 8 collocation points and make use of grid-stretching with pmin = 1 ·10−3 and pmax = 0.999 – for more
details on grid-stretching, see e.g. [58]. The Monte Carlo simulation constitutes 105 paths (20 seeds, each
seed constitutes 5 ·103 paths) and 1 time-step per year.
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Figure 5.3.2: Results for the case described in Section 5.3.2, with γ= 1.5. With ‘CDF Smar(T)’ we denote the
market-implied CDF specified in equation (5.2.3).

As we observe in the middle plot of Figure 5.3.2, the CDF of gN (·, ·) is clearly not
in line with the market-implied CDF. As a result, the implied volatility fit for the lower
2 strikes is not accurate. The reason for this lies in the highly non-linear behaviour of
gN (·, ·) close to zero. A way to resolve this issue is by adjusting the kernel parameters
such that the relation between S(·) and X (·) is closer to linear. Setting γ = 0.75 results
in a better performance of the CLV method close to x = 0 and implies a more accurate
implied volatility fit, see Figure 5.3.3.
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Figure 5.3.3: Results for the case described in Section 5.3.2, with γ= 0.75. With ‘CDF Smar(T)’ we denote the
market-implied CDF specified in equation (5.2.3).
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Figure 5.3.4: Effect of γ (left) and κ (right) on the forward volatility smile for the CIR-CLV model, with T1 = 2.5
and T2 = 3. The ‘base case’ CIR parameters (if not varied) are: γ= 0.3, κ= 0.5, θ = 0.5 and X0 = 1.

THE FORWARD SMILE

In this section we consider the effect of the CIR kernel parameters on the forward smile
corresponding to the CIR-CLV model by pricing a forward-start option, with a pay-off at
T2 given by (5.3.5). With a ‘positive effect’ we mean that increasing a particular kernel
parameter results in a higher volatility smile level, more curvature or skewness. Results7

are given in Figures 5.3.4 and 5.3.5. We clearly observe that the volatility of variance has
a positive effect on both the level and the curvature of the forward smile. The speed of
mean reversion has mainly a positive level effect, but also a negative curvature effect,
i.e. a larger value of κ implies less curvature. Further, X0 only has a negative level effect.
Last, θ has a positive level effect and a slightly negative curvature effect.

Some effects may be quite difficult to observe due to the level effect. As such, in
Appendix 5.C we display Figures 5.3.4 and 5.3.5, but without the level effect. In Table
5.3.2 we summarize the effects of the CIR parameters on the forward smile.

5.3.3. THE HESTON-CLV MODEL
The Heston-CLV model is defined as follows:

S(t ) = gN (t , X (t )),

dX (t ) = r X (t )dt +
√

V (t )X (t )dWx (t ), X (0) = X0,

dV (t ) = κ(V −V (t ))dt +γ
√

V (t )dWv (t ), V (0) =V0,

with dWx (t )dWv (t ) = ρx,v dt and where κ, γ, V and ρx,v are the rate of mean rever-
sion, the volatility of variance, the long-term variance and the correlation, respectively.

7We assume a Heston market parameterization with parameters κ = 0.5, γ = 0.3, ρx,v = −0.1, V0 = 0.04 and
V = 0.04. Also, r = 0 and S0 = 1. Further, we use N = 8 collocation points, apply grid-stretching with pmin =
1 ·10−3 and pmax = 0.999 and the Monte Carlo simulation consists of 2 time-steps per year and 5 ·105 paths
(5 seeds, each seed constitutes 105 paths).
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Figure 5.3.5: Effect of X0 (left) and θ (right) on the forward volatility smile for the CIR-CLV model, with
T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters (if not varied) are: γ= 0.3, κ= 0.5, θ = 0.5 and X0 = 1.

Level Curvature Skewness

γ + + 0
κ + – 0

X0 – 0 0
θ + – 0

Table 5.3.2: Separate effects of the CIR kernel parameters on the level, curvature and skewness of the forward
smile implied by the CIR-CLV model. A ‘+’/‘-’ represents a higher/lower volatility smile level, more/less

curvature or more/less skewness in the case of increasing a particular kernel parameter. A ‘0’ stands for no
effect.

According to [74], the Heston model stands out from the class of stochastic volatility
models mainly for two reasons. First, the volatility process is non-negative and mean-
reverting, which is typically observed in the markets. Secondly, a fast and easily imple-
mented semi-analytical solution for the pricing of European-type options is available.
In particular, efficient numerical Fourier-based techniques exist, which allow for a fast
calibration.

ESTABLISHING xi , j AND si , j

From the characteristic function of X̂ (·) := log(X (·)) (see e.g. [38]), which is defined as

φX̂ (t )(u) := E
[

ei uX̂ (t )
∣∣∣F (t0)

]
,

we may compute the kth moment of X (t ) as follows (we suppress the condition on F (t0)
for notation purposes):

φX̂ (t )(−ki ) = E
[

ek X̂ (t )
]
= E

[
ek log(X (t ))

]
= E

[
X k (t )

]
.

From the moments of X (·) we obtain the collocation points xi , j , i = 1,2, . . . , M , j = 1,2, . . . , N .
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There is a drawback to this approach though. One element of the characteristic func-

tion of the Heston model is
√

(κ−γρx,v i u)2 + (u2 + i u)γ2. When an imaginary argument
u is used, it cannot be guaranteed that the expression below the square root is non-
negative, which may result in inaccurate numerical moment values.

As an alternative approach, similar to the CIR-CLV model, we use the collocation

points z j , j = 1, . . . , N corresponding to the standard normal random variable Z
d=N (0,1)

– see also Remark 5.3.2. Given these, we compute the collocation points corresponding
to expiry Ti , i = 1, . . . , M , according to

xi , j := x j (Ti ) = F−1
X (Ti )(FZ (z j )), (5.3.11)

and the collocation values as in (5.3.10).
To compute the collocation points according to (5.3.11), we define X̂ (·) := log(X (·))

and note
FX (Ti )(xi , j ) = FX̂ (Ti )(x̂i , j ).

The CDF of X̂ (·) can be obtained efficiently in a ‘COS-like’ fashion, see [38]. Given the
approximation for its PDF

f X̂ (t )(x) ≈
N−1∑′
k=0

Fk cos
(
kπ

x −a

b −a

)
, Fk = 2

b −a
Re

{
φX̂ (t )

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
,

with N denoting the number of terms, we obtain the CDF of X̂ (·) as follows:

FX̂ (t )(x) =
N−1∑′
k=0

2

b −a
Re

{
φX̂ (t )

(
kπ

b −a

)
·exp

(
−i

kaπ

b −a

)}
ψk (a,b, x),

with

ψ(a,b, x) =
{

b−a
kπ sin

(
kπ x−a

b−a

)
, if k = 1,2, . . . , N −1,

x −a, if k = 0.

Note that
∑′N−1

k=0 represents a summation where the first term (k = 0) is multiplied by
1/2. In our numerical experiments we typically use N = 212, a = −10 and b = 10. Given
the CDF, we obtain x̂i , j = F−1

X̂ (Ti )
(FZ (z j )) and xi , j = ex̂i , j .

CHOICE OF X0 AND r
An initial calibration of the Heston kernel parameters may enhance the performance of
the CLV model, in particular of the stochastic collocation method, as a pre-calibration
may ‘linearize’ the relationship between S(·) and the kernel parameter X (·) – see Remark
5.2.2 and Section 5.3.2. Essentially, this means that we prefer that X (·) and S(·) are sim-
ilar in a distributional sense, which yields a small approximation error [58] and a more
optimal performance of the stochastic collocation method.

A first ‘calibration’ step is done by determining values for certain kernel process pa-
rameters such that the following condition holds (‘first moment matching’):

EQ [X (t )] = F (0, t ), for all t ∈ [0,T ], (5.3.12)
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where the initial forward (in an FX context) is given by

F (0, t ) = S0
P f (0, t )

Pd (0, t )
= S0e(rd−r f )t ,

with P f (0, t ) and Pd (0, t ) denoting the foreign and domestic zero-coupon bond prices,
respectively, extracted from the market quotes. For the Heston kernel process (assuming
constant interest rate r ) a standard result is

EQ
[

X (t )

M(t )

]
= EQ

[
X (t )

M0er t

]
= X0

M0
.

Assuming M0 = 1 without loss of generality, the previous equation implies

EQ [X (t )] = X0M(t ) = X0er t . (5.3.13)

From the result in (5.3.13) we easily see that the condition in (5.3.12) is satisfied by the
kernel process parameter choices X0 = S0, r = rd − r f , for arbitrary time t and arbitrary

values of the other kernel parameters κ, γ, V and V0.

THE FORWARD SMILE

In this section we consider the effect of the Heston kernel parameters on the forward
smile corresponding to the Heston-CLV model by pricing a forward-start option, with
a pay-off at T2 given by (5.3.5). We use the Quadratic Exponential (QE) scheme of An-
dersen [5]. We assume a Heston market parameterization with parameters κ = 0.5, γ =
0.3, ρx,v = −0.1, V0 = 0.04 and V = 0.04. Also, r = 0 and S0 = 1. Further, we use N = 6
collocation points and the Monte Carlo simulation consists of 32 time-steps per year and
5 ·105 paths (5 seeds, each seed constitutes 105 paths). Results are given in Figures 5.3.6,
5.3.7 and 5.3.8.

Increasing γ yields a more pronounced implied volatility smile; the curvature in-
creases. For the parameter κ this effect is opposite; a higher value of κ implies less curva-
ture. The correlation parameter ρx,v yields a rotation of the smile; varying the parameter
from −1 to +1 yields a counterclockwise rotation, i.e. less skewness. Besides for that,
ρx,v also has some positive level effect. Further, the long-run variance V and the initial
variance V0 mainly have a level effect – note that a larger value of V0 yields a lower level.
X0 does not have any effect, which implies that a parallel shift of the kernel variable dis-
tribution is ‘ignored’ by the mapping between the distribution of the kernel variable X
and the market-implied distribution. We summarize the effect of the kernel parameters
on the shape of the forward smile in Table 5.3.3. To observe the curvature and skewness
effects more clearly, in Appendix 5.D we display Figures 5.3.6, 5.3.7 and 5.3.8 without the
level effect.

The effects of the Heston kernel parameters in the Heston-CLV model can be com-
pared to the effects of the parameters in the standard Heston model – see e.g. [126]. In
both the Heston-CLV model and the Heston model the volatility of variance γ (mainly)
has a positive effect on the curvature of the smile8. For both models the initial variance

8In this short paragraph on the qualitative effects of the Heston model parameters we make use of [126], which
merely mentions the first-order effects. It may be possible that the parameters have second-order effects,
which is the case for e.g. the Heston-Displaced Diffusion model, see [96].



5.4. CALIBRATION TO FX BARRIER OPTIONS

5

121

0.6 0.8 1 1.2 1.4

Strike

10

15

20

25

30

35

40
F

or
w

ar
d 

vo
la

til
ity

 [%
]

Forward Volatility, T 1 = 2.5, T2 = 3

 = 0.1
 = 0.3
 = 0.6
 = 0.9

0.6 0.8 1 1.2 1.4

Strike

10

15

20

25

30

35

40

F
or

w
ar

d 
vo

la
til

ity
 [%

]

Forward Volatility, T 1 = 2.5, T2 = 3

 = 0.1
 = 0.5
 = 1
 = 1.5

Figure 5.3.6: Effect of γ (left) and κ (right) on the forward volatility smile for the Heston-CLV model, with
T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied) are:

κ= 0.5, γ= 0.3, ρx,v = 0, V = 0.2, V0 = 0.2 and X0 = 1.

Level Curvature Skewness

γ 0 + 0
κ 0 – 0
ρx,v + 0 –

V + – +
V0 – 0 0
X0 0 0 0

Table 5.3.3: Separate effects of the Heston kernel parameters on the level, curvature and skewness of the
forward smile. A ‘+’/‘-’ represents a higher/lower volatility smile level, more/less curvature or more/less

skewness in the case of increasing a particular kernel parameter. More skewness represents a more negative
slope of the forward smile, i.e. a clockwise rotation. A ‘0’ stands for no effect.

V0 and the long-term variance V have a level effect, although for the Heston-CLV model
V0 has a negative effect on the level, whereas in the Heston model this is positive. In both
the Heston-CLV model and the Heston model the mean reversion parameterκ has a neg-
ative curvature effect. In both models the correlation parameter ρx,v (mainly) accounts
for the skewness (‘steepness’) of the smile – in both models a more negative correlation
implies a more negative slope, i.e. more skewness. For the Heston-CLV model though
ρx,v also has some level effect.

5.4. CALIBRATION TO FX BARRIER OPTIONS
The CLV model, by its flexibility in controlling the forward smile and its rapid Monte
Carlo evaluation, allows for an efficient Monte Carlo calibration to exotic options, while
the fit to European-type options is preserved. In this section we calibrate the OU-CLV,
CIR-CLV and Heston-CLV models to FX barrier options by Monte Carlo simulation.
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Figure 5.3.7: Effect of ρx,v (left) and V (right, denoted by θ) on the forward volatility smile for the Heston-CLV
model, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied) are:

κ= 0.5, γ= 0.3, ρx,v = 0, V = 0.2, V0 = 0.2 and X0 = 1.

The transition densities between future states are reflected by the forward smile a
model implies. As a consequence, in the calibration of the CLV model to barrier options
we should calibrate the kernel parameters which affect the forward smile. Moreover,
ideally, given particular kernel dynamics, to achieve the most accurate calibration we
should calibrate kernel parameters which affect different characteristics of the shape of
the forward smile, namely its level, curvature and skewness.

If the distribution of the kernel variable is analytically known, one time-step is suffi-
cient to price back European-type options – this e.g. holds for the OU-CLV and CIR-CLV
models. In the case of a discretely monitored barrier option, for these models the kernel
process only needs to be simulated on a time grid consisting of the monitoring dates, see
e.g. the numerical example in Appendix 5.B.

In the case of a continuously monitored barrier option, the kernel process needs to
be simulated on a dense time-grid – the barrier option is typically monitored on a daily
basis, which implies 250 time-steps (business days) per year. To accelerate the Monte
Carlo calibration procedure of the kernel parameters to continuously monitored barrier
options, we employ Brownian bridge techniques, which we describe in Section 5.4.2.
First however, in Section 5.4.1 we describe the general steps of applying the CLV model
in a Monte Carlo simulation framework.

5.4.1. MONTE CARLO SIMULATION FRAMEWORK

We apply the CLV model in a Monte Carlo simulation framework. Its evaluation basi-
cally consists of three parts. First, we compute the collocation points and collocation
values. Subsequently, we simulate the kernel variable and compute the local volatility
function for the time-points of interest. Last, given the local volatility function values,
we establish the price of the relevant financial contract in a standard way. In Algorithm
5 we describe the steps in more detail. Note that in the calibration to exotic options we
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Figure 5.3.8: Effect of V0 (left) and X0 (right) on the forward volatility smile for the Heston-CLV model, with
T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied) are:

κ= 0.5, γ= 0.3, ρx,v = 0, V = 0.2, V0 = 0.2 and X0 = 1.

repeatedly perform the steps 2, 3 and 4 for different kernel parameter value ‘candidates’.
In Appendix 5.B we present a basic numerical experiment in which we perform the steps

1 Given liquid European-type option prices C (Ti ,K`), i = 1, . . . , M , `= 1, . . . ,L,
establish for each expiry Ti the market-implied CDF FS(Ti )(x) as given in
equation (5.2.3), which may be in a parameterized form.

2 For each expiry Ti compute N collocation points xi ,1, . . . , xi ,N and the
corresponding collocation values si ,1, . . . , si ,N via
si , j = F−1

S(Ti
(FX (Ti )(xi , j )), j = 1, . . . , N .

3 Simulate the kernel variable X (·). At relevant time-points tk , k = 1, . . . ,K in the
simulation, compute gN (tk , xk,m), with xk,m denoting the value of X (tk )
corresponding to the mth path, m = 1, . . . ,M .

4 Compute the price of the relevant financial contract.

Algorithm 5: Applying the CLV model in a Monte Carlo simulation framework.

in Algorithm 5 to price a discretely monitored barrier option.

Remark 5.4.1 (Evaluation of the market-implied CDF). Regarding the market-implied
CDF in step 1 in Algorithm 5, the derivative in (5.2.3) may be computed by finite differ-
ences. However, this approach may not be arbitrage-free as inter- and extrapolation of
market volatilities or prices needs to be applied. Another possibility is first calibrating
a particular parameterization to the market quotes, enabling us to compute the deriva-
tive in (5.2.3) (semi-)analytically, by e.g. an arbitrage-free ‘Hagan implied density’ [57] or
Fourier-based pricing techniques, see e.g. [20].

Figure 5.4.1 provides an illustration of the CLV model in a Monte Carlo simulation
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framework. The local volatility function gN (·, ·) transforms the original paths of the ker-
nel variable in such a way that the resulting S(·)-paths yield a perfect calibration to liquid
market quotes.
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Figure 5.4.1: The CLV model in a Monte Carlo simulation framework.

5.4.2. PRICING BARRIER OPTIONS: A BROWNIAN BRIDGE APPROACH
Pricing continuously monitored barrier options by a Monte Carlo simulation implies an
approximation, as we make steps in time and as such monitor on a discrete basis. A
way to reduce the error introduced by this approximation is by making use of Brownian
bridge techniques [11, 49, 51], where the conditional hitting probability is taken into
account.

We explain the concept in more detail by considering an up-out barrier put option –
for other single barrier products similar results hold. Defining S(·) as the underlying, the
price at t0 of an up-out put option with strike K , barrier B , starting time t0 and time to
maturity T is given by:

CUO-Put(t0,T,K ) := Md (t0)

Md (T )
EQ

[
(K −S(T ))+1( max

t∈[t0,T ]
S(t ) < B)

∣∣∣∣F (t0)

]
, (5.4.1)

with Md (·) defined as the domestic money account. As for the CLV framework, S(t ) =
gN (t , X (t )), we have

VUO-Put(t0,T,K ) = Md (t0)

Md (T )
EQ

[(
K − gN (T, X (T ))

)+
1( max

t∈[t0,T ]
(gN (t , X (t )) < B)

∣∣∣∣F (t0)

]
= Md (t0)

Md (T )
EQ

[(
K − gN (T, X (T ))

)+
1( max

t∈[t0,T ]
(X (t ) < g−1

N (B))

∣∣∣∣F (t0)

]
,
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where we employ the fact that by construction gN (·, ·) is a monotone function.
Defining

B := g−1
N (B),

we write the option value – suppressing the discounting, theQ-superscript and filtration,
for notation purposes – as follows:

VUO-Put(t0,T,K ) = E

[
E

[(
K − gN (T, X (T )

)+
1( max

t∈[t0,T ]
X (t ) < B)

∣∣∣∣ X (t0), X (T )

]]
= E

[(
K − gN (T, X (T )

)+ ·
(
1−Q

(
max

t∈[t0,T ]
X (t ) ≥ B

∣∣∣∣ X (t0), X (T )

))]
.

We are interested in the probability

Q

(
max

t∈[t0,T ]
X (t ) ≥ B

∣∣∣∣ X (t0), X (T )

)
, (5.4.2)

i.e. the probability that the maximum of X (·) on [t0,T ] hits or crosses B , given X (t0) and
X (T ) (trivially, if X (t0) ≥ B and/or X (T ) ≥ B , this probability is 1). In the following, we
explain how this conditional hitting probability can be approximated.

Given a general one-dimensional process under theQ-measure:

dX (t ) = a(X (t ))dt +b(X (t ))dW Q(t ), X0 := X (0).

For simulating this process we use the Euler discretization

X̂k+1,m = X̂k,m +a(X̂k,m)∆t +b(X̂k,m)(Wk+1,m −Wk,m), (5.4.3)

with k = 0, . . . ,K −1 and m = 1, . . . ,M indicating the time-step and path, respectively, and
∆t := T /K , X̂0 := X0, X̂k := X̂ (tk ), with tk = k∆t .

Result 5.4.1 (Simulation of the maximum). Given the values X̂k,m and X̂k+1,m , the max-
imum

X k,m := max
t∈[tk ,tk+1]

X̂ (t )

can be simulated by

X k,m = 1

2

(
X̂k+1,m + X̂k,m +

√(
X̂k+1,m − X̂k,m

)2 −2b2(X̂k,m)∆t log(Uk,m)

)
, (5.4.4)

with Uk,m
d= U [0,1] being independent across the time-steps. A step to arrive at (5.4.4) is

that

{X (t ), tk ≤ t ≤ tk+1}

is approximated by an arithmetic Brownian motion with constant parameters a(X̂k,m)
and b(X̂k,m). Conditional on the endpoint X (tk+1), {X (t ), tk ≤ t ≤ tk+1} is a Brownian
bridge.
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Using (5.4.4) in Result 5.4.1, one can compute the probability that the discretized
process hits the barrier B in the kth step, conditional on the values of X̂k,m and X̂k+1,m .
Straightforward calculus yields

Q
(

X k,m ≥ B
∣∣∣ X̂k,m , X̂k+1,m

)
=

{
1 if X̂k,m ≥ B and/or X̂k+1,m ≥ B ,

exp
(
− 2

b2(X̂k,m )∆t
(X̂k,m −B)(X̂k+1,m −B)

)
if X̂k,m < B and X̂k+1,m < B .

(5.4.5)

Applying the discretization scheme in (5.4.3), the conditional hitting probability in (5.4.2)
can be approximated by

Q

(
max

t∈[t0,T ]
X (t ) ≥ B

∣∣∣∣ X (t0), X (T )

)
= 1−Q

(
max

t∈[t0,T ]
X (t ) < B

∣∣∣∣ X (t0), X (T )

)
≈ 1−

K−1∏
k=0

{
1−Q

(
X k,m ≥ B

∣∣∣ X̂k,m , X̂k+1,m

)}
,

withQ
(

X k,m ≥ B
∣∣∣ X̂k,m , X̂k+1,m

)
given in (5.4.5). Substituting this result in (5.4.2) yields:

VUO-Put ≈
Md (t0)

Md (T )
EQ

[(
K − gN (T, X (T ))

)+ ·
K−1∏
k=0

{
1−Q

(
X k ≥ B

∣∣∣ X̂k , X̂k+1

)}]

= 1

M

Md (t0)

Md (T )

M∑
m=1

[(
K − gN

(
T, X̂K ,m

))+ K−1∏
k=0

{
1−Q

(
X k,m ≥ B

∣∣∣ X̂k,m , X̂k+1,m

)}]
, (5.4.6)

with Q
(

X k,m ≥ B
∣∣∣ X̂k,m , X̂k+1,m

)
given in (5.4.5). In the calibration of the CLV model

to continuously monitored barrier options we make use of the expression in equation
(5.4.6).

5.4.3. CALIBRATION OF THE OU-CLV, CIR-CLV AND HESTON-CLV MOD-
ELS TO FX BARRIER OPTIONS

In this section we calibrate the OU-CLV, CIR-CLV and Heston-CLV models to continu-
ously monitored FX barrier option prices. In particular, for these 3 models we perform
the following 2 steps:

1. Calibration: given a particular kernel process, calibrate the relevant kernel pa-
rameter(s) to market barrier option prices by Monte Carlo simulation9. The Monte
Carlo simulation runs consist of 10 time-steps per year and we employ the Brown-
ian bridge technique described in Section 5.4.2 – in particular, we use the result in
equation (5.4.6).

2. Pricing: given the calibrated kernel parameter values, price the up-out barrier put
options by a standard Monte Carlo procedure of the CLV model with 250 time-

9The target function value is
∑N

i=1

(
Vi −V CLV

i

)2
, with Vi and V CLV

i denoting the mid-market price and the CLV

price of the i th up-out put option, respectively, and N is the number of barrier options we calibrate to.
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steps per year to determine the calibration error, which is defined as

ε :=
N∑

i=1
|Vi −V CLV

i |, (5.4.7)

with Vi and V CLV
i denoting the mid-market price and the CLV price of the i th up-

out put option, respectively, and N is the number of barrier options we calibrate
to.

We consider USD/AUD FX market prices quoted on 12 June 2013 from a market data
vendor. Domestic currency is USD, foreign currency is AUD. Initial spot price is S0 =
0.9548. The dataset consists of 7 expiry dates, namely 0.5, 0.75, 1, 2, 3, 4 and 5 years. For
each expiry 5 implied volatility quotes are given, of which the middle (third) one is the
ATM volatility. We calibrate to 9 continuously monitored up-out barrier put options with
different barrier and strike values, of which the price is given by (5.4.1).

For all three kernel process choices (OU, CIR and Heston) we compute xi , j and si , j

values for the expiries 1/365, 2/365, 3/365, 4/365, 1/52, 2/52, 1/12, 1/6, 1/4, 1/2, 3/4, 1
and 2, for which market volatility quotes are available10. In both the calibration and in
the pricing afterwards we use 104 paths11. The target function is defined as the sum of
squared errors of the 9 barrier options together, where the error is defined as the differ-
ence between the model and mid market prices.

THE OU-CLV MODEL

In Section 5.3.1 we observed that only the mean reversion parameter κ of the OU-CLV
model affects the shape of the forward smile. Therefore, we calibrate κ and the other
parameters are set to X0 = 1, θ = 0.1, γ = 0.25, which were just chosen values in [54].
Further, we use 6 collocation points. In the calibration we price for 20 ‘κ candidates’ -1,
-0.9, . . . , 0.9, 1 (excluding κ = 0) up-out barrier put options by (5.4.6) in a Monte Carlo
simulation.

The calibration results in κ = 0.1 and takes 8 seconds12. Results are displayed in
Table 5.4.1. Two barrier option prices are outside the bid-ask spread. By construction,
the OU-CLV model calibrates perfectly to European-type options – in Figure 5.4.2 we
display the implied volatilities corresponding to 3M, 1Y and 2Y corresponding to the
market, market parameterization and the OU-CLV model.

THE CIR-CLV MODEL

In the CIR-CLV model, parameter γ has the most pronounced curvature effect, see Sec-
tion 5.3.2. It also has a level effect. We therefore calibrate γ and leave the other pa-
rameters fixed, namely κ = 0.1, θ = 0.1 and X0 = 1. In the calibration we price for 20 ‘γ
candidates’ on a uniform grid between 0.1 and 1 up-out put options by (5.4.6) in a Monte
Carlo simulation.

10We use a SABR market parameterization.
11In fact, we use 10 seeds with each seed constituting 103 paths. For the OU-CLV case we apply antithetic

sampling, i.e. per seed we use 5 ·102 paths and 5 ·102 ‘antithetic paths’.
12Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz, 3601 Mhz, 4 Core(s), 8 Logical Processor(s). Available

Physical Memory is 9.08 GB of in total 16 GB. Simulated with MATLAB.
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Figure 5.4.2: Implied volatilities corresponding to the OU-CLV model with κ= 0.1, X0 = 1, θ = 0.1, γ= 0.25.

The calibration results in γ = 0.526 and takes 39 seconds12.13 Results are displayed
in Table 5.4.1. Two barrier option prices are outside bid-ask spread. The calibration
accuracy may be further enhanced by calibrating an additional parameter. Additionally,
we obtain an accurate calibration to the European-type options by construction, similar
to the results in Figure 5.4.2 for the OU-CLV model.

THE HESTON-CLV MODEL

As we observed in Section 5.3.3, the mean reversion κ, volatility of variance γ and long-
term variance V have a curvature effect – see also Table 5.3.3. As the curvature effect of
γ is most pronounced, we calibrate γ and fix κ and V . Assuming κ to be constant is jus-
tified by observations in [47], where it is argued that the effect on the implied volatility
surface of increasing κ is similar to decreasing γ. Besides for V , the only parameter hav-
ing a skewness effect is ρx,v . We therefore also calibrate ρx,v . Last, V0 has a level effect.
We can already achieve an accurate level fit a priori by setting V0 = σ2

mkt(KATM,Tmin),
with Tmin = 1/365 and σmkt(K , t ) denoting the market implied volatility corresponding
to strike K and expiry t . The other fixed parameter values are κ = 0.3, X0 = 1, V0 =
σ2

mkt(KATM,Tmin) = 0.0625, with Tmin = 1/365 and V = σ2
mkt(KATM,Tmax) = 0.0137, with

Tmax = 2. We use N = 6 collocation points.
In the calibration we choose 5 γ and 5 ρx,v candidates uniformly between 0.1 and 1

and −1 and 0, respectively – so in total we consider 25 (γ,ρx,v )-pairs. For each of the 25
pairs we price the up-out put options by (5.4.6) in a Monte Carlo simulation.

The calibration results in γ = 0.1 and ρx,v = 0 and takes 16 seconds12. Results are
displayed in Table 5.4.1. One barrier option price is outside bid-ask spread. The total
calibration error (5.4.7) is smaller than for the OU-CLV and CIR-CLV models. The reason
is that the Heston kernel process is richer; compared to the OU-CLV and CIR-CLV model,

13This calibration is relatively slow compared to the calibration of the OU-CLV and Heston-CLV models. The
reason is that the MATLAB functionality ncx2cdf(x,d,λ) is relatively slow for a large value of x (in fact
we divide by a small c(Ti ) value, see (5.3.9)) and λ(Ti ) values, which is the case for the shortest Ti expiries.
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Expiry Barrier Strike OU-CLV CIR-CLV Heston-CLV
3M 1 0.9 97.2 88.8∗ 96.3
3M 1 0.85 36.8 26.0∗ 35.4
3M 0.97 0.9 67.3∗ 60.3 64.3∗
1Y 1 0.8 99.2 92.9 98.7
1Y 1 0.85 161.2 157.9 162.1
1Y 0.97 0.8 50.8 50.8 52.3
2Y 1 0.75 128.4 132.0 147
2Y 1.05 0.7 109.5∗ 121.7 131.1
2Y 0.97 0.75 53.6 61.9 66.4

Calibration error ε 53.9 38.4 33.5
Calibration time12 8s 39s 16s

Table 5.4.1: Pricing up-out put options with the OU-CLV, CIR-CLV and Heston-CLV models after the
calibration. The Monte Carlo simulation consists of 104 paths and 250 time-steps per year. ε is defined as the

sum of absolute errors over the 9 barrier options, i.e. ε :=∑9
i=1 |Vi −V CLV

i |, with Vi and V CLV
i denoting the

mid-market price and the CLV price of the i th up-out put option, respectively. The red values marked by an
asterisk (∗) are not within bid-ask spread.

the Heston-CLV model is more flexible in capturing the forward smile, and as such in the
calibration to forward volatility sensitive products, like barrier options. The calibration
accuracy may be further enhanced by calibrating an additional parameter.

5.5. CONCLUSION
In this chapter we discussed a competitive alternative to stochastic-local volatility mod-
els, namely the Collocation Local Volatility (CLV) model, introduced in [54]. In the CLV
model the local volatility function, based on stochastic collocation [9, 45, 127, 131, 131],
connects a relatively simple and easy to implement kernel process to the market, result-
ing in a perfect calibration to liquid market quotes. The local volatility function only
needs to be evaluated at the time-points of interest, e.g. the monitoring dates of a dis-
crete barrier option. Moreover, efficient simulation schemes for the kernel process exist.
Further, a proper choice of the kernel process allows the CLV model to be flexible to ‘cap-
ture’ the forward smile and, as such, price path-dependent products.

As the CLV model is sufficiently flexible for controlling the forward smile and can be
efficiently evaluated, it allows for a rapid calibration to exotic options, while the fit to
European-type options is preserved. In Section 5.4 we employ Brownian bridge tech-
niques to calibrate the kernel process to continuously monitored barrier options in an
efficient way; the calibration of the Heston-CLV model to the barrier options costs 16
seconds.

Based on the calibration results in Section 5.4, we prefer the Heston-CLV model for
the calibration to continuously monitored path-dependent options. Its calibration is
reasonably fast and yields the smallest calibration error; the reason is that among the
kernel processes considered, the Heston kernel process allows for the most flexibility in
capturing the forward smile. Further, for the Heston model low-bias large time-stepping
Monte Carlo schemes exist, e.g. Andersen’s QE scheme [5], which can be employed for
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the simulation of the Heston kernel.
In the case that we are interested in an exotic option monitored on a coarse grid, the

CIR-CLV model may be preferred. Brownian bridge techniques are not needed as the CIR
kernel process allows for large time-steps. For example, for the pricing of forward-start
options in Section 5.3.2 the Monte Carlo simulation merely consists of 2 time-steps per
year. Additionally, the CIR parameters allow for controlling the level and the curvature
of the forward smile, see Section 5.3.2.

In terms of simplicity and calibration speed (to exotics), the OU-CLV model out-
performs the CIR-CLV and Heston-CLV models. In the OU-CLV model only the mean-
reversion parameter κ has an effect on the forward volatility. As analytical expressions
for its moments are available and the moments are numerically stable, we can compute
optimal collocation points. Similar to the CIR-CLV model, the OU-CLV model allows for
large time-steps.



APPENDIX

5.A. OPTIMAL COLLOCATION POINTS
One of the relevant theorems with respect to computing optimal collocation points is
the following [39]:

Theorem 5.A.1 (Recurrence in orthogonal polynomials). For any given density function
fX (·), a unique sequence of monic orthogonal polynomials pi (x) exists, with deg(pi (x)) =
i , which can be constructed by

pi+1(x) = (x −αi )pi (x)−βi pi−1, i = 0,1, . . . , N −1,

with p−1(x) ≡ 0, p0(x) ≡ 1 and the recurrence coefficients

αi =
E
[

X p2
i (X )

]
E
[
p2

i (X )
] , i = 0,1, . . . , N −1, βi =

E
[
p2

i (X )
]

E
[
p2

i−1(X )
] , i = 1,2, . . . , N −1,

with β0 = 0.

Proof. For a proof, see [39].

The recurrence coefficients αi and βi can be obtained via the moments of X . In
particular, one can express the first N coefficients in terms of the elements of a lower tri-
angular matrix R, which is obtained by the Cholesky decomposition of a matrix M = RT R
that constitutes the first 2N moments of X . Given the recurrence coefficients, the opti-
mal collocation points x1, x2, . . . , xN are the zeros of the orthogonal polynomial pN (x)
and can be computed by an eigenvalue method. Based on this, the only requirement for
X to be an appropriate kernel variable for which we can compute N collocation points,
is the existence of the first 2N moments.

By choosing the collocation points as zeros of the orthogonal polynomial pN (·) – see
Theorem 5.A.1 – the stochastic collocation method can be connected to the computation
of integrals by Gauss quadrature, which for the functionΨ(·) (which is required to be well
approximated by a polynomial function), weight function fX (·) and quadrature weights
ωi , i = 1,2, . . . , N reads:

E [Ψ(X )] =
∫
R
Ψ(x) fX (x)dx =

N∑
i=1
Ψ(xi )ωi +εN . (5.A.1)

By choosing Ψ(x) = (
g (x)− gN (x)

)2, with g (·) = F−1
S (FX (·)) and gN (·) the approximating

polynomial function, we have

E
[(

g (X )− gN (X )
)2

]
=

∫
R

(g (x)− gN (x))2 fX (x)dx =
N∑

i=1
(g (xi )− gN (xi ))ωi +εN = εN ,

(5.A.2)
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since g (xi ) = gN (xi ), i = 1,2, . . . , N . So, in L2 the error is determined by the quadrature
error. Further, when choosing e.g. X to be the standard normal distribution, a simple
linear relation between the stochastic collocation pairs (xi ,ωi ) and the Gauss-Hermite
quadrature pairs (xH

i ,ωH
i ) exists.

5.B. NUMERICAL EXPERIMENT: PRICING A DISCRETELY MON-
ITORED BARRIER OPTION

We present a numerical experiment in which we perform the steps in Algorithm 5 to
price a discretely monitored up-out call option:

VUO-call(t0,T,K ) := EQ
[

(S(T )−K )+

M(T )
1(max

t∈T
S(t ) < B)

∣∣∣∣F (t0)

]
,

with B = 1.5, K = 0.5, T = 3 and quarterly monitoring dates, i.e. T = {3M, 6M, . . ., 3Y}.
We use the Ornstein-Uhlenbeck CLV (OU-CLV) model

S(t ) = gN (t , X (t )),

dX (t ) = κ (θ−X (t ))dt +γdW Q(t ), X (t0) = X0,

with X0 = 1, κ = 1, γ = 0.5 and θ = 0.5. Given the filtration at t0 = 0, the kernel variable
X (·) is normally distributed with mean and variance as in (5.3.4).

We successively apply the steps of Algorithm 5:

1. We generate synthetic market data by the Heston model with the parameters κ =
0.5, γ = 1, ρx,v = −0.7, V0 = 0.04, V = 0.04, r = 0 and S0 = 1. We assume that
liquid market quotes are available for the expiries 1D, 2D, 3D, 4D, 1W, 2W, 1M, 2M,
3M, 6M, 9M, 1Y, 2Y, 3Y, 4Y and 5Y. In the left-hand plot of Figure 5.B.1 the market-
implied CDF is displayed, obtained by Fourier pricing techniques.

2. We use N = 6 collocation points. Given the optimal collocation points z j , j =
1, . . . , N of a standard normal random variable Z

d= N (0,1) (for N = 6 these are
−3,3243, −1.8892, −0.6167, 0.6167, 1.8892, 3.3243), the optimal collocation points
of X (t ) are given by x j (t ) = E [X (t )]+p

Var[X (t )] · z j [54] and as such

xi , j := x j (Ti ) = E [X (Ti )]+
√
Var[X (Ti )] · z j , i = 1, . . . , M , j = 1, . . . , N .

Given the collocation points, by inversion of the market-implied CDF we obtain
the collocation values si , j = F−1

S(Ti )(FX (Ti )(xi , j )). In the right-hand plot of Figure
5.B.1 the triplets (xi , j ,Ti , si , j ) are displayed.

3. We simulate the kernel variable with time-steps of 3 months (4 time-steps per
year). The Monte Carlo simulation consists of 104 paths14. In order to evaluate
gN (·, ·) at time-points that are not part of the market data – so not 0.1, 0.25, 0.5, 1, 2, 3, 4
and 5 years – we interpolate between or extrapolate the si , j values, see e.g. the in-
terpolated gN (2.5, ·)-values in the right-hand plot of Figure 5.B.1.

14In fact, we use 10 seeds, each seed constitutes 103 paths.
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4. Last, we price the up-out call option: VUO-call(t0,T,K ) = 0.4739. The calibration to
the European-type options is guaranteed to be almost perfect, see Figure 5.B.2.

0

0.5

C
D

F
 v

al
ue

2.52

Market-implied CDF

1

T

2

s

1.5
14 0.5

0

0
2

1

s

1

2

4

gN(t,x)

x
T

3

0 2
-1 0

gN(2.5, )

(xi,j,Ti,si,j)-triplet

Figure 5.B.1: The market-implied CDF (left) and the (xi , j , si , j )-pairs (right) corresponding to the numerical
experiment in Appendix 5.B. The red dashed line indicates the monotone interpolation at t = 2.5.
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Figure 5.B.2: The implied volatilities for the expiries T = 0.25, T = 1 and T = 3 corresponding to the numerical
experiment in Appendix 5.B.

5.C. EFFECT OF CIR PARAMETERS, OMITTING THE LEVEL EF-
FECT

In Figures 5.C.1 and 5.C.2 we display the effect of the CIR kernel parameters on the shape
of the forward smile, see Section 5.3.2, but without the level effect.
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Figure 5.C.1: Effect of γ (left) and κ (right) on the forward volatility smile for the CIR-CLV model,
omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters (if not varied) are: γ= 0.3,

κ= 0.5, θ = 0.5 and X0 = 1.

5.D. EFFECT OF HESTON PARAMETERS, OMITTING THE LEVEL

EFFECT
In Figure 5.D.1 we display the effect of γ and κ on the shape of the forward smile, see
Section 5.3.3, but without the level effect. We do not display the effects of all parameters,
to save some space.
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Figure 5.C.2: Effect of X0 (left) and θ (right) on the forward volatility smile for the CIR-CLV model,
omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ CIR parameters (if not varied) are: γ= 0.3,

κ= 0.5, θ = 0.5 and X0 = 1.
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Figure 5.D.1: Effect of γ (left) and κ (right) on the forward volatility smile for the Heston-CLV model,
omitting the level effect, with T1 = 2.5 and T2 = 3. The ‘base case’ Heston parameters (if not varied) are:

κ= 0.5, γ= 0.3, ρx,v = 0, V = 0.2, V0 = 0.2 and X0 = 1.





6
CONCLUSIONS AND OUTLOOK

6.1. CONCLUSIONS
In this thesis we solved various problems with respect to the calibration and pricing of
enhanced local volatility models in an FX context. All our model evaluation methods are
Monte Carlo based.

In Chapter 2 we presented a novel Monte Carlo scheme for the efficient evaluation of
a general stochastic local volatility (SLV) model. In numerical experiments we examined
the Heston-SLV model. We introduced a non-parametric approximation for the non-
trivial conditional expectation, which is intuitive and easy to implement. To enhance
the Monte Carlo evaluation of the SLV model, we incorporated the non-parametric ap-
proximation in a simulation scheme that is based on the QE scheme of Andersen [5].
Numerical experiments confirmed that European-type options can be priced with high
accuracy by our method. Also, we have numerically shown that our method allows for a
consistent pricing of products that are sensitive to the forward volatility smile.

Subsequently, in Chapter 3 we established in an FX context a framework that facili-
tates the accurate and efficient calibration of the time-dependent SABR model. To this
purpose, by considering in detail the effects of the SABR parameters on the shape of
the implied volatility smile, we derived ‘effective parameters’, which are the constant
‘equivalents’ of the time-dependent vol-vol, term structure and correlation parameters.
By numerical experiments we confirmed that the derived mappings between the time-
dependent and effective parameters result into highly accurate calibration results. In an
experiment with real market data, the time-dependent SABR model implies FX barrier
option prices that are closest to the market, compared to the Local Volatility (LV) model,
the constant-parameter SABR model and the time-dependent SABR model enhanced by
a non-parametric local volatility component.

Next, we considered different hybrid local volatility models in Chapter 4, namely the
LV model enhanced with stochastic interest rates, and the SABR and Heston models to
which a local volatility component is added. For all models, a non-trivial (conditional)
expectation needs to be determined. We developed a novel, efficient approach to the
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evaluation of this expectation, which consists of two projection steps; the first projection
step relies on the equality in distribution of cumulative distribution functions, which is
a basic element of stochastic collocation, and the second projection step is based on
standard regression techniques. We numerically showed that our approach results into
an efficient Monte Carlo evaluation and highly accurate pricing results for European-
type options.

Last, in Chapter 5 we discussed the Collocating Local Volatility (CLV) model. We
established the corresponding pricing PDE analogous to the derivation of the Black-
Scholes pricing PDE. For three different kernel processes, namely the Ornstein Uhlen-
beck and CIR processes and the Heston model, we considered the effects of the kernel
parameters on the shape of the forward volatility smile. Based on this, we calibrated the
corresponding CLV models to market prices of continuously monitored FX barrier op-
tion prices. The calibration is Monte Carlo based, where we applied Brownian bridge
techniques to reduce the approximation error introduced by the discrete time-stepping.
Based on the calibration results, we preferred the Heston-CLV model to the OU-CLV and
CIR-CLV models. The Heston-CLV model implied the smallest calibration error and the
calibration was reasonably fast. The OU-CLV model stood out from the other two CLV
models in terms of simplicity and calibration speed.

6.2. OUTLOOK
As a result of the financial crisis, the market’s concern with respect to counterparty risk
grew substantially and implied significant changes to regulatory frameworks. The Basel
II and Basel III accords imposed regulatory requirements on the amount of capital that
financial institutions need to reserve, in order to compensate for potential losses in the
case of a counterparty default. Parallel to the adaption of the financial industry to the
post-crisis regulatory standards, academia also shifted their attention to the modelling
of various risk measures, such as Expected Exposure (EE), Potential Future Exposure
(PFE), and several valuation adjustments, e.g. Credit Valuation Adjustment (CVA), Debt
Valuation Adjustment (DVA) and Funding Valuation Adjustment (FVA), amongs others,
commonly referred to as xVA [53]. Future research could possibly focus on the impact
of different hybrid local volatility model dynamics on the values of xVA risk measures –
as a starting point, the work in [110] could be considered. As risk measure calculations
are portfolio based, one could make a distinction between different portfolio contents.
For example, for a portfolio mainly consisting of forward volatility sensitive products,
stochastic local volatility (SLV) dynamics are expected to be a more appropriate choice
than ‘pure’ local volatility dynamics. In this thesis we put the focus on an efficient Monte
Carlo approach of SLV models – as such, this research fits well in the xVA framework,
where the simulation of market risk drivers plays a key role and, in combination with the
pricing of portfolios, brings along computational challenges.

In another possible research direction, one could consider model calibration with
artificial neural networks (ANNs). In general, ANNs can be considered as an extension
of regression and have increasingly been applied in the fields of image and speed recog-
nition. One could start with further improving the work performed in [65], in which
a single-factor Hull-White model is calibrated utilizing neural networks. Subsequently,
more complicated models can be calibrated, such as the time-dependent FX-SABR model
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discussed in Chapter 2 of this thesis. Also, ANNs may yield an alternative to the Monte
Carlo calibration of the CLV model to FX barrier option prices, performed in Chapter 5.

With these new challenges, there is plenty of exciting research ahead of us.
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Statistics, Series B, pages 115–128, 1974.

[88] M. Musiela and M. Rutkowski. Martingale Methods in Financial Modelling – Sec-
ond Edition. Springer, 1997.

[89] J. Necas. Direct Methods in the Theory of Elliptic Equations. Springer, 2012.

[90] F. Nobile, R. Tempone, and C. G. Webster. A Sparse Grid Stochastic Collocation
Method for Partial Differential Equations with Random Input Data. SIAM Journal
on Numerical Analysis, 46(5):2309–2345, 2008.

[91] J. Oblój. Fine-Tune Your Smile: Correction to Hagan et al. Wilmott Magazine, 2008.

[92] Y. Osajima. The Asymptotic Expansion Formula of Implied Volatility for Dynamic
SABR Model and FX Hybrid Model. Available at SSRN 965265, 2007.

[93] A. Pascucci and A. Mazzon. The Forward Smile in Local-Stochastic Volatility Mod-
els. Journal of Computational Finance, 20(3):1–29, 2016.

[94] L. Paulot. Asymptotic Implied Volatility at the Second Order with Application to
the SABR Model. In Large Deviations and Asymptotic Methods – Springer Proceed-
ings in Mathematics & Statistics 110, 2015.



6

147

[95] A. Pelsser. Efficient Methods for Valuing Interest Rate Derivatives. Springer Science
& Business Media, 2000.

[96] V. Piterbarg. Time to Smile. Risk, 18(5):71–75, 2005.

[97] V. Piterbarg. Cross-Currency Exotics: Smiling Hybrids. Risk, 19(5):66–71, 2006.

[98] V. Piterbarg. Markovian Projection Method for Volatility Calibration. Risk, April
2007.

[99] V. Piterbarg and B. Capital. Modern Approaches to Stochastic Volatility Calibra-
tion. In Proceedings of the WBS 3rd Fixed Income Conference, Amsterdam, vol-
ume 41, 2006.

[100] P. E. Protter. Stochastic Integration and Differential Equations. Springer, 2005.

[101] R. Rebonato. Volatility and Correlation in the Pricing of Equity, FX, and Interest-
rate Options. John Wiley & Sons, Ltd, 1999.

[102] R. Rebonato. Volatility and Correlation: The Perfect Hedger and the Fox. John Wiley
& Sons, 2005.

[103] R. Rebonato, K. McKay, and R. White. The SABR/LIBOR Market Model: Pricing,
Calibration and Hedging for Complex Interest-Rate Derivatives. Wiley.com, 2011.

[104] Y. Ren, D. Madan, and M. Q. Qian. Calibrating and Pricing with Embedded Local
Volatility Models. Risk, 20(9):138–143, 2007.

[105] M. J. Ruijter and C. W. Oosterlee. Two-dimensional Fourier Cosine Series Expan-
sion Method for Pricing Financial Options. SIAM Journal on Scientific Computing,
34(5):B642–B671, 2012.

[106] M. Sankaran. Approximations to the Non-central Chi-square Distribution.
Biometrika, 50:199–204, 1963.

[107] S. Sankaran and A. L. Marsden. A Stochastic Collocation Method for Uncertainty
Quantification and Propagation in Cardiovascular Simulations. Journal of Biome-
chanical Engineering, 133(3):031001, 2011.

[108] R. Schöbel and J. Zhu. Stochastic Volatility with an Ornstein–Uhlenbeck Process:
an Extension. European Finance Review, 3(1):23–46, 1999.

[109] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer,
2004.

[110] S. Simaitis, C. de Graaf, N. Hari, and D. Kandhai. Smile and Default: the Role of
Stochastic Volatility and Interest Rates in Counterparty Credit Risk. Quantitative
Finance, 16(11):1725–1740, 2016.

[111] J. Sippel and S. Ohkoshi. All Power to PRDC Notes. Risk, 15(11):1–3, 2002.



6

148

[112] J. M. Steele. Stochastic Calculus and Financial Applications, volume 45. Springer
Science & Business Media, 2001.

[113] A. Takahashi, K. Takehara, and M. Toda. Computation in an Asymptotic Expansion
Method. John and Wiley & Sons, Ltd, 2007.

[114] H. Tanaka. Note on Continuous Additive Functionals of the 1-Dimensional Brow-
nian Path. Z. Wahrscheinlichkeitstheorie, 1:251–257, 1963.

[115] G. Tataru and T. Fisher. Stochastic Local Volatility. Quantitative Development
Group, Bloomberg Version 1, 2010.

[116] Y. Tian, Z. Zhu, F. Klebaner, and K. Hamza. A Hybrid Stochastic Volatility Model In-
corporating Local Volatility. In Fourth International Conference on Computational
and Information Sciences, pages 333 – 336, 2012.

[117] Y. Tian, Z. Zhu, G. Lee, F. Klebaner, and K. Hamza. Calibrating and Pricing with a
Stochastic-Local Volatility Model. The Journal of Derivatives, 22(3):21–39, 2015.

[118] A. W. van der Stoep, L. A. Grzelak, and C. W. Oosterlee. The Heston Stochastic-
Local Volatility Model: Efficient Monte Carlo Simulation. International Journal of
Theoretical and Applied Finance, 17(7):1450045, 2014.

[119] A. W. van der Stoep, L. A. Grzelak, and C. W. Oosterlee. The Time-Dependent FX-
SABR Model: Efficient Calibration based on Effective Parameters. International
Journal of Theoretical and Applied Finance, 18(6):1550042, 2015.

[120] A. W. van der Stoep, L. A. Grzelak, and C. W. Oosterlee. A Novel Monte Carlo Ap-
proach to Hybrid Local Volatility Models. Quantitative Finance, 17(9):1347–1366,
2017.

[121] A. W. van der Stoep, L. A. Grzelak, and C. W. Oosterlee. Collocating Local Volatil-
ity: a Competitive Alternative to Stochastic Local Volatility Models. Submitted for
publication, 2018.

[122] A. Van Haastrecht and A. Pelsser. Generic Pricing of FX, Inflation and Stock Op-
tions under Stochastic Interest Rates and Stochastic Volatility. Quantitative Fi-
nance, 11(5):665–691, 2011.

[123] L. von Sydow, S. Milovanović, E. Larsson, K. J. In ’t Hout, M. Wiktorsson, C. W.
Oosterlee, V. Shcherbakov, M. Wyns, A. Leitao, S. Jain, T. Haentjens, and J. Waldén.
BENCHOP-SLV: The BENCHmarking Project in Option Pricing – Stochastic and
Local Volatility Problems. International Journal of Computer Mathematics, Forth-
coming, 2019.

[124] S. Watanabe. Analysis of Wiener Functionals (Malliavin Calculus) and its Applica-
tions to Heat Kernels. The Annals of Probability, 15:1–39, 1987.

[125] T. Weithers. Foreign Exchange: a Practical Guide to the FX Markets, volume 309.
John Wiley & Sons, 2006.



149

[126] R. Weron and U. Wystup. Heston’s model and the smile. In Statistical tools for
finance and insurance, pages 161–181. Springer, 2005.

[127] J. A. S. Witteveen and G. Iaccarino. Simplex Stochastic Collocation with Random
Sampling and Extrapolation for Nonhypercube Probability Spaces. SIAM Journal
on Scientific Computing, 34(2):A814–A838, 2012.

[128] Q. Wu. Series Expansion of the SABR Joint Density. Mathematical Finance,
22(2):310–345, 2012.

[129] M. Wyns and K. J. In ’t Hout. An Adjoint Method for the Exact Calibration of
Stochastic Local Volatility Models. Journal of Computational Science, 24:182–194,
2018.

[130] D. Xiu. Efficient Collocational Approach for Parametric Uncertainty Analysis.
Communications in Computational Physics, 2(2):293–309, 2007.

[131] D. Xiu and J. S. Hesthaven. High-Order Collocation Methods for Differential Equa-
tions with Random Inputs. SIAM Journal on Scientific Computing, 27(3):1118–
1139, 2005.

[132] B. Zhang and C. W. Oosterlee. Efficient Pricing of European-Style Asian Options
under Exponential Lévy Processes Based on Fourier Cosine Expansions. SIAM
Journal on Financial Mathematics, 4(1):399–426, 2013.





CURRICULUM VITÆ

Anthonie Willem VAN DER STOEP

05-10-1988 Born in Barendrecht, the Netherlands

EDUCATION
2001–2007 Gymnasium

CSG Calvijn, Rotterdam, the Netherlands

2007–2010 Bachelor Technische Wiskunde (with honours)
University of Twente, Enschede, the Netherlands

2010–2012 Master Applied Mathematics
University of Twente, Enschede, the Netherlands

2012–2019 PhD Researcher
Rabobank, Utrecht, the Netherlands
Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
Delft University of Technology, Delft, the Netherlands

2019 PhD Applied Mathematics
Delft University of Technology, Delft, the Netherlands
Thesis: Pricing and Calibration with Stochastic Local Volatil-

ity Models in a Monte Carlo Setting
Promotor: Prof. dr. ir. C.W. Oosterlee
Copromotor: Dr. ir. L.A. Grzelak

151





LIST OF PUBLICATIONS

4. A.W. van der Stoep, L.A. Grzelak and C.W. Oosterlee, Collocating Local Volatility: a
Competitive Alternative to Stochastic Local Volatility Models. Submitted for pub-
lication, 2018.

3. A.W. van der Stoep, L.A. Grzelak and C.W. Oosterlee, A Novel Monte Carlo Ap-
proach to Hybrid Local Volatility Models, Quantitative Finance, 17(9):1347-1366,
2017.

2. A.W. van der Stoep, L.A. Grzelak and C.W. Oosterlee, The Time-Dependent FX-
SABR Model: Efficient Calibration based on Effective Parameters, International
Journal of Theoretical and Applied Finance, 18(6):1550042, 2015.

1. A.W. van der Stoep, L.A. Grzelak and C.W. Oosterlee, The Heston Stochastic-Local
Volatility Model: Efficient Monte Carlo Simulation, International Journal of Theo-
retical and Applied Finance, 17(7):1450045, 2014.

153





LIST OF ATTENDED CONFERENCES

WITH PRESENTATION

Presentations:

5. 8th General AMaMeF Conference, Amsterdam, the Netherlands, June 2017.

4. Financial Mathematics Winter School, Lunteren, the Netherlands, January 2017.

3. International Conference of Computational Finance, Greenwich, England, Decem-
ber 2015.

2. SIAM Conference on Financial Mathematics and Engineering, Chicago, USA, Novem-
ber 2014.

1. Multi-ITN STRIKE and WWCSC Mini-Workshop in Stochastic Computing and Op-
timization, Würzburg, Germany, October 2014.

Posters:

2. Models and Numerics in Financial Mathematics, Leiden, the Netherlands, May
2015.

1. 38th Woudschoten Conference, Woudschoten, the Netherlands, October 2013.

155


	Summary
	Samenvatting
	Introduction
	Basics of Risk-Neutral Option Pricing
	Volatility Modelling in the FX Market
	The Local Volatility model
	Stochastic Volatility models
	Stochastic Local Volatility models
	The Collocating Local Volatility Model

	Outline of the thesis

	The Heston Stochastic-Local Volatility Model: Efficient Monte Carlo Simulation
	Introduction
	Stochastic-Local Volatility Model
	Specifying (t,S(t))

	Novel Technique for E[2(V(t))|S(t)=K]
	Non-parametric method
	Continuous approximation
	Efficient simulation scheme

	Numerical Results
	European call options
	Forward starting options
	Calculation time

	Error Analysis
	Bound on pricing error
	Performance
	Numerical experiment: choice of bins

	Conclusion
	Additional Pricing Experiments
	Proof of Lemma 2.5.1

	The Time-Dependent FX-SABR Model: Efficient Calibration based on Effective Parameters
	Introduction
	Time-dependent FX-SABR Model with Local Volatility
	Time-dependent FX-SABR model
	Local volatility compensator

	Calibration Problem
	Calibration set-up

	Effective Parameters
	Effective vol-vol parameter
	Effective term structure
	Effective correlation

	Calibration & Pricing
	Calibration procedure
	Calibration results
	Pricing barrier options

	Conclusion
	Characteristic Function Recovery
	Distribution of Rj
	Recovery procedure

	Additional Calibration Experiment

	A Novel Monte Carlo Approach to  Hybrid Local Volatility Models
	Introduction
	Stochastic local volatility models
	Local volatility model with stochastic interest rates
	Stochastic collocation basics

	Stochastic Local Volatility Models
	Establishing E[V(t)|S(t)=K]
	Enhancements
	Numerical experiments

	Local Volatility Model with Stochastic Rates
	Establishing EQ[r(t)M(t)�S(t)>K]
	Numerical experiments

	Conclusion
	Error Analysis & Discussion
	Stochastic collocation error
	Regression error

	Proofs of Lemma 4.2.1 and the result in Section 4.3.1

	Collocating Local Volatility: A Competitive Alternative to Stochastic Local Volatility Models
	Introduction
	The Collocating Local Volatility Model
	Martingale considerations

	The OU-CLV, CIR-CLV and Heston-CLV models
	The OU-CLV model
	The CIR-CLV model
	The Heston-CLV model

	Calibration to FX Barrier Options
	Monte Carlo simulation framework
	Pricing barrier options: a Brownian bridge approach
	Calibration of the OU-CLV, CIR-CLV and Heston-CLV models to FX barrier options

	Conclusion
	Optimal Collocation Points
	Numerical Experiment: Pricing a Discretely Monitored Barrier Option
	Effect of CIR Parameters, Omitting the Level Effect
	Effect of Heston Parameters, Omitting the Level Effect

	Conclusions and Outlook
	Conclusions
	Outlook

	References
	

	Curriculum Vitæ
	List of Publications
	List of Attended Conferences with Presentation

