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Abstract. Quality is a complicated and multifarious topic in contemporary Linked Data research. The
aspect of literal quality in particular has not yet been rigorously studied. Nevertheless, analyzing and
improving the quality of literals is important since literals form a substantial (one in seven statements)
and crucial part of the Semantic Web. Specifically, literals allow infinite value spaces to be expressed
and they provide the linguistic entry point to the LOD Cloud. We present a toolchain that builds on the
LOD Laundromat data cleaning and republishing infrastructure and that allows us to analyze the quality
of literals on a very large scale, using a collection of quality criteria we specify in a systematic way. We
illustrate the viability of our approach by lifting out two particular aspects in which the current LOD Cloud
can be immediately improved by automated means: value canonization and language tagging. Since not
all quality aspects can be addressed algorithmically, we also give an overview of other problems that can
be used to guide future endeavors in tooling, training, and best practice formulation.
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1. Introduction

In this paper we investigate the quality of literals in
the Linked Open Data (LOD) Cloud. A lot of work
has focused on assessing and improving the quality
of Linked Data. However, the particular topic of lit-
eral quality has not yet been thoroughly addressed.
The quality of literals is particularly important because
(i) they provide a concise notation for large (and possi-
bly infinite) value spaces and (ii) they allow text-based
information to be integrated into the RDF data model.

*Corresponding author. E-mail: w.g.j.beek@vu.nl.

Also, one in seven RDF statements contains a literal as
object term.1

Our approach consists of the following steps. We
create a toolchain that allows billions of literals to be
analyzed efficiently by using a stream-based approach.
The toolchain is made available as Open Source code
to the community. We show that the toolchain is easy
to integrate into existing approaches and can be used
in a sustainable manner: Firstly, important parts of
the toolchain are integrated into the ClioPatria triple

1A statistic derived from the LOD Laundromat data collection on
2016-05-18.
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store and RDF library. Secondly, important parts of the
toolchain are integrated into the LOD Laundromat in-
frastructure, and are used for clearning RDF content
that is scraped from the web. Thirdly, the toolchain is
used by Luzzu: a state-of-the-art Linked Data quality
framework. We will use the here presented toolchain
in order perform an analysis of the quality of literals in
the LOD Cloud. Finally, we present automated proce-
dures and concrete suggestions for improving the qual-
ity of literals in today’s Web of Data. An important
property of the here presented approach is that it can be
applied to web-scale data, and ultimately to the LOD
Cloud as a whole.

This paper focuses on a relatively isolated and re-
stricted part of quality: the syntactic, semantic and lin-
guistic aspects of literal terms. As such, it does not
cover quality issues that may arise once more expres-
sive vocabularies such as OWL are interpreted as well.
Specifically, the problem of missing values may oc-
cur in this context, as may constraint violations, e.g.,
uniqueness constraints. These are considered to be fu-
ture work.

This paper is structured as follows. Section 2 dis-
cusses related efforts on quality assessment and im-
provement. In Section 3 we give our motivation for
performing this work. In Section 4 we define a set of
quality criteria for literals. The next section describes
the toolchain and its role in supporting the defined
quality criteria. Section 6 reports our analysis in terms
of the quality criteria defined in the previous section.
In Section 7 we enumerate opportunities for improving
the quality of literals based on our observations in the
previous section. We implement two of those opportu-
nities and evaluate their precision and recall. Section 8
concludes the paper and discusses further opportuni-
ties for research on literals quality.2

2. Related work

Quality assessment for Linked Data is a difficult
and multifarious topic. A taxonomy of problem cat-

2This paper uses the following RDF prefixes for brevity:

dc: http://purl.org/dc/elements/1.1/
dct: http://purl.org/dc/terms/
dt: http://dbpedia.org/datatype/
rdf: http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs: http://www.w3.org/2000/01/rdf-schema#
sysont: http://ns.ontowiki.net/SysOnt/
xsd: http://www.w3.org/2001/XMLSchema#

.

egories for data quality has been developed by [23].
Not all categories are applicable to Linked Data qual-
ity. Firstly, due to its fluid schema and the Open World
Assumption, the absence of an RDF property asser-
tion does not imply a missing value. Secondly, because
RDF does not enforce the Unique Names Assumption,
the problem of value uniqueness does not arise.3 How-
ever, most other data quality categories do apply to
Linked Data and RDF literals: syntax violations, do-
main violations, and the problem of having multiple
representations for the same value (what we will call
‘Non-canonicity’ in Section 4.3).

Empirical observations. The large-scale aspects of
Linked Data quality have been quantified in various
‘LOD Observatory’ studies: [2,16,17]. These studies,
while focusing on Linked Data quality overall, have
only included cursory analyses of quality issues for
RDF literals. In [17], Hogan et al. conduct an empiri-
cal study on Linked Data conformance, assessing RDF
documents against a number of Linked Data best prac-
tices and principles. They specifically cover (i) how re-
sources are named, (ii) how data providers link their
resources to external sources, (iii) how resources are
described, and (iv) how resources are dereferenced.

Metadata. Various metadata descriptions for ex-
pressing Linked Data quality have been proposed. In
Assaf et al. [2], the authors give insight into exist-
ing metadata descriptions. This assessment checks the
metadata of each RDF document for generic informa-
tion, access information, ownership information and
provenance information. No vocabulary for expressing
literal quality metadata exists today. However, the tax-
onomy of literal quality in Section 4.3 may serve as a
starting point for such a vocabulary. There are already
several data quality vocabularies that can be extended,
e.g. [12,15]. The W3C has recently standardized a vo-
cabulary (DQV) for expressing Linked Data quality.4

Quality Frameworks. A number of tools have been
developed for assessing the quality of Linked data
documents [7,11,20,22]. The authors in [20] present
RDFUnit, a SPARQL based approach towards assess-
ing the quality of Linked Data. Their framework uses
SPARQL query templates to express quality metrics.
The benefit of this tool is that it uses SPARQL as an ex-
tensibility framework for formulating new quality cri-
teria. The drawback of this framework is that metrics

3For comparison, if distinct resources are described with the same
value for one of the primary key attributes, then this is considered a
schema violation in relational databases.

4See http://www.w3.org/TR/vocab-dqv/.
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that cannot be expressed in SPARQL, such as checking
the correctness of language tags, cannot be assessed in
RDFUnit. In [22], the authors make use of metadata of
named graphs to assess data quality. Their framework,
Sieve, allows for custom quality metrics based on an
XML configuration. WIQA [7] is another quality as-
sessment framework that enables users to create poli-
cies on indicators such as provenance. Luzzu [11] is an
extensible Linked Data quality assessment framework
that enables users to create their own quality metrics
either procedurally, through Java classes, or declara-
tively, through a quality metric DSL.

Crowdsourcing. Some aspects of quality are highly
subjective and cannot be determined by automated
means alone. In order to improve these quality aspects
a human data curator is required. [1] present a crowd-
sourcing approach that allows data quality to be im-
proved. Quality is not a static property of data but
something that can change over time as the data gets
updated. The dynamic aspects of data quality are ob-
served in [19].

3. Motivation

This section gives motivation for analyzing and im-
proving the quality of literals. We first explain the im-
portance of literals overall. We then distinguish three
perspectives from which the assessment and improve-
ment of literal quality is important. We also enumerate
the concrete benefits of improving literal quality.

3.1. The importance of literals

Literals have a crucial syntactic and semantic role
within the Semantic Web’s data model. Firstly, they
introduce a concise notation for infinite value spaces.
While one of the main Linked Data principles is to
“use URIs as names for things” [6], URIs/IRIs are
not a viable option for expressing values from infi-
nite value spaces. The Linked Data principle of using
URIs for everything is carried through to the absurd in
Linked Open Numbers,5 where the authors (jokingly)
present a dataset in which IRIs are minted for the
natural numbers. The Linked Open Numbers dataset
shows the scalability issues of assigning URIs to ev-
erything. In addition, relationships between the values
of infinite value spaces are better expressed intension-
ally (by a shall number of of concisely defined func-

5See http://archive.is/QfNp.

tions) than extensionally (by explicitly asserting an in-
finitely large function graph). Indeed, literals allow an
infinite number of values, and relations between them,
to be represented through intensional definitions. For
instance, floating point numbers, and the relations be-
tween them, are defined by the IEEE floating standard6

and are implemented by operators in most program-
ming languages.

The second main benefit of literals is that they allow
linguistic or text-based information to be expressed
complementary to RDF’s graph-based data model.
While IRIs are (also) intended to be human-readable
[14], a literal can contain natural language or textual
content without syntactic constraints. This allows liter-
als to be used in order to convey human-readable infor-
mation about resources. Also, in some datasets, IRIs
are intentionally left opaque as the human-readability
of universal identifiers may negatively affect their per-
manence [5]. Since the Semantic Web is a universally
shared knowledge base, natural language annotations
are particularly important in order to ease the human
processability of information in different languages.

3.2. Benefits of improved literal quality

Improving the quality of literals has (at least) the
following concrete benefits for the consumption of
Linked Data:

3.2.1. Efficient computation
If a data consumer wants to check whether two

literals are identical she first has to interpret their
values and apply a datatype-specific comparator op-
erator [9]. For example, 2016-01-20T01-01-
01 and 2016-01-20T02-01-01Z-01:00 denote
the same date-time value, but this cannot be deter-
mined by checking for simple (character-for-character)
string equality. Most defined RDF datatypes specify
a canonical representation for each of their values.
Canonicity allows all values in a given value space
to be uniquely represented by exactly one representa-
tion. If all values in a dataset are known to be written
in such a canonical way, many operations can be per-
formed significantly faster. For example, the SPARQL
query select * { ?s ?p "2016-01-01T01-
01-01Z"ˆˆxsd:dateTime } can be efficiently
performed if the ground object term can be directly
matched in the database. If values are not canonically
represented, then all date-time values have to be in-

6See http://ieeexplore.ieee.org/document/4610935/.
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terpreted and compared, which is significantly more
costly. In general the use of canonicity makes oper-
ations such as identity checking and matching more
efficient. For many datatypes the use of canonicity
makes determining the relative order between liter-
als (‘smaller than’ and ‘larger than’) more efficient as
well.

3.2.2. Data enrichment
The availability of reliable language tags that in-

dicate the language of a textual string is an enabler
for data enrichment. Language-informed parsing and
comparing of string literals is an important part of
existing instance matching approaches [13]. Having
language tags associated with string literals allows
various notions of similarity to be defined that move
beyond (plain) string similarity. This includes within-
language similarity notions such as “is synonymous
with” as well as between-language similarity notations
such as “is translation of”.

3.2.3. User eXperience
Knowing the language of user-oriented literals such

as rdfs:label or dc:description helps to im-
prove the User eXperience (UX) of Linked Data User
Interfaces. Provided the language preference of the
user is known or can be dynamically assessed, an ap-
plication can prioritize language-compliant literals in
the display of user-facing literals. Similar remarks ap-
ply to the approach of “value labeling” [24], in which
natural language labels rather than IRIs are used to de-
note resources. Finally, the canonicalization of literals
can result in more readable lexical forms overall (e.g.,
decimal "01.0" is canonicalized to "1.0"). While
the data publisher may have intended to display literals
in a certain serialization format, the utility of such for-
matting is application-specific and should therefore not
be considered a good approach in Linked Data, where
unanticipated reuse is a major goal.

3.2.4. Semantic text search
Tools for semantic text search over Linked Data

such as LOTUS [18] allow literals, and statements
in which they appear, to be retrieved based on tex-
tual relevance criteria. To enable users to obtain rele-
vant information for their use case, these tools use re-
trieval metrics that are calculated based on structured
data and meta-information. High-quality language-
tagged literals allow more reliable relevance metrics
to be calculated. For instance, ‘die’ is a demonstra-
tive pronoun in Dutch but a verb in English. Search-
ing for the Dutch pronoun becomes significantly eas-

ier once occurrences of it in literals are annotated
with the language tag for Dutch (i.e., nl). Besides
language-tagged literals, high-quality datatype infor-
mation also significantly improves the results of se-
mantic search. For example, it allows the weight of
a bag of potatoes, "007"ˆˆdt:kilo, to be dis-
tinguished from the name of a fictional character,
"007"ˆˆxsd:string.

The metadata on literal datatypes and language tags
can be exploited by search systems to improve the ef-
fectiveness of their search and bring users closer to
their desired results. However, as almost no previous
work has focused on analysis and improvement of
the quality of literals, contemporary semantic search
systems will not make use of this potentially useful
metadata. Certain text search tools allow queries to
be enriched with meta-information about literals even
though the reliability of this information is not high,
which may lead to poor results. For instance, LOTUS
attempts to improve the precision of literal search by
looking up language tags, despite the fact that around
50% of the indexed literals in LOTUS have no lan-
guage tag assigned to them, which could lead to a de-
crease in recall for literals with no language tag. Being
able to assess whether a given dataset has sufficiently
high literal quality would allow Semantic Search sys-
tems to improve their precision and recall.

4. Specifying quality criteria for literals

This section presents a theoretic framework for lit-
eral quality. It defines a taxonomy of quality categories
in terms of the syntax and semantics of literals accord-
ing to current standards. In addition to the taxonomy,
different dimensions of measurement are described.
The quality categories and dimensions of measurement
can be used to formulate concrete quality metrics. Sev-
eral concrete quality metrics that are used in later sec-
tions are specified at the end of this section.

4.1. Syntax of literals

We define the set of literal terms as RDFL :=
(RDFI × LEX) ∪ ({rdf:langString} × LEX ×
LTAG), where RDFI is the set of IRIs as per RFC 3987
[14], LEX is the set of Unicode strings in Normal Form
C,7 and LTAG is the set of language tags as per RFC

7See http://www.unicode.org/reports/tr15/tr15-37.html.

http://www.unicode.org/reports/tr15/tr15-37.html
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5646 (BCP 47).8 Literals that are triples are language-
tagged strings LTS. The first element of a literal is its
datatype IRI, the second element is its lexical form,
and the third element, if present, is its language tag.

According to the RDF 1.1 standard [9], language-
tagged strings are treated differently from other liter-
als. Because the definition of a datatypes does not al-
low language tags to be encoded as part of the lexi-
cal space, language-tagged strings have a datatype IRI
(rdf:langString), but no datatype. Language-
tagged strings do denote values: they are pairs of
strings and language tags. All and only literals with
datatype IRI rdf:langString have a language tag.
We use the term datatyped literal to refer to literals
that have a datatype, i.e., literals that are not language-
tagged strings.

RDF serialization formats such as Turtle allow
some literals to be written without a datatype IRI.
These are abbreviated notations that allow very com-
mon datatype IRIs to be inferred based on their lex-
ical form. The datatype IRI that is associated with
such a lexical form is determined by the serializa-
tion format’s specification. For instance, the Turtle
string false is an abbreviation of the Turtle string
"false"ˆˆxsd:boolean. Both strings denote the
same literal 〈false,xsd:boolean〉.

4.2. Semantics of literals

The meaning of an RDF name, whether IRI or lit-
eral, is the resource it denotes. Its meaning is deter-
mined by the interpretation function I that maps RDF
names to resources R. Let us call the subset of re-
sources that are datatypes D. A datatype IRI i and the
datatype d it denotes are related by the interpretation
function: I (i) = d . In line with XML Schema 1.1
Datatypes, all RDF datatypes must define the follow-
ing components:

1. The set of syntactically well-formed lexical
forms LEXd . This is called the lexical space of
d .

2. The set of resources VALd that can be denoted by
literals of that datatype. This is called the value
space of d .

3. A functional lexical-to-value mapping L2Vd

that maps lexical forms to values. The resource
that is denoted by a literal l is called its value or,
symbolically, I (l).

8See http://www.rfc-editor.org/info/rfc5646.

4. A value-to-lexical mapping V2Ld that maps val-
ues to lexical forms. This mapping need not be
functional.

5. Optionally, a functional canonical value-to-
lexical mapping cd that maps each value to ex-
actly one lexical form.

Suppose we want to define a datatype for colors.
We may choose a lexical space LEXcolor that in-
cludes color names like "red" and "yellow", to-
gether with decimal RGB codes like "255,0,0"
and "255,255,0". If we define our lexical space
in this way, then other strings such as "FF0000"
do not belong to it (even tough this particular string
is commonly used to denote the color red in hex-
adecimal representation). The lexical to value map-
ping L2Vcolor maps lexical forms to the color re-
sources they represent. "red" maps to the value of
redness. "255,255,0" maps to the value of yellow-
ness. "red" and "255,0,0" map to the same value.
For the canonical mapping we have to decide which of
these two lexical forms should be used to canonically
represent redness. Let us say that the decimal RGB no-
tation is canonical (canonicity is a mere convention af-
ter all). It follows that ccolor(L2Vcolor("red")) =
"255,0,0", i.e., the color name maps to the color
resource, which maps to the decimal RGB representa-
tion. The decimal RGB representation maps to itself,
i.e., first to the value of redness and then to the decimal
RDF representation.

The denotation of literal terms is determined by the
partial interpretation function LI : RDFL → R (Def-
inition 1). LI is partial because a lexical form may
not belong to the datatype’s lexical space (i.e., an ill-
formed literal). Which resource is denoted by which
literal is determined by the combination of a specific
datatype IRI i and a lexical form lex. Notice that the
use of I (i) is required in Definition 1 in order to con-
sider cases in which i denotes the same datatype as
rdf:langString, but with a different datatype IRI.
lc is the function that maps strings to their lowercase
variant.

Definition 1 (Literal value).

LI(l) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

lex if l = 〈lex〉
〈lex, lc(tag)〉 if CondA(l)

L2VI (i)(lex) if CondB(l)

undefined otherwise

http://www.rfc-editor.org/info/rfc5646
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Fig. 1. A taxonomy of RDF literal quality. The nodes show the categories a literal’s quality can be classified under. Vertical arrows denote
specialization, from more specific to more generic. For instance, literals that are ‘Invalid’ are also ‘Supported’ and are also ‘Datatyped literals’.
Horizontal arrows denote possibilities for quality improvement. For instance, ‘Non-canonical’ datatyped literals can be made ‘Canonical’.

where

CondA(l)

⇐⇒ l = 〈rdf : langString, lex, tag〉
CondB(l)

⇐⇒ l = 〈i, lex〉 ∧ lex ∈ LEXI (i)

∧ I (i) 
= I (rdf : langString)

RDF processors are not required to recognize
datatype IRIs. Literals with unrecognized datatype
IRIs are semantically treated as unknown names.
An RDF processor that recognizes more datatypes is
therefore not ‘more correct’ but it is able to distinguish
and utilize more subtleties of meaning.

4.3. A taxonomy of literal quality

The categories of literal quality are shown in Fig. 1.
Because of their fundamentally different syntactic
and semantic properties, the quality categories of
language-tagged strings are specified separately from
those of datatyped literals. The following quality cate-
gories are defined for datatyped literals (the categories
in Fig. 1 are described in the order of a depth-first
traversal):

Undefined A datatyped literal is undefined if its
datatype IRI does not denote a datatype. For-
mally: I (i) /∈ D. Whether an IRI denotes a
datatype or not is not specified in the RDF stan-
dards. We therefore specify this ourselves in
terms of the four or five component definition of
a datatype given in Section 4.2. An IRI is de-
fined iff dereferencing the IRI leads to either (i) a
machine-processable datatype definition; (ii) a
human-readable formal datatype definition; or
(iii) a human-readable informal datatype defini-
tion that can be unambiguously turned into a for-
mal one. For instance, the XSD datatype IRIs
point to the XML Schema 1.1 Part 2: Datatypes
specification, which includes (i) and (ii).

Defined A defined datatyped literal has a datatype IRI
that denotes a defined datatype. Formally: I (i) ∈
D.

Invalid A defined datatyped literal is invalid if its lex-
ical form cannot be mapped to a legal value. For-
mally: L2Vd(lex) /∈ VALd .

Type violation A supported datatyped literal has a
type violation if its lexical form cannot be parsed
according to the grammar associated with its
datatype. Formally: lex /∈ LEXd . Example:
"nineteen hundred" violates the grammar



W. Beek et al. / Literally better: Analyzing and improving the quality of literals 137

of datatype xsd:gYear. However, "1900"
does not violate that grammar.

Domain violation A supported datatyped literal has
a domain violation if its lexical form can be
parsed according to the grammar associated with
its datatype, but the parsed value violates some
additional domain restriction. Formally: lex ∈
LEXd ∧ L2Vd(lex) /∈ VALd . Example: "300000
0000" can be parsed according to the gram-
mar for integer representations, but its value vi-
olates the maximum value restriction of datatype
xsd:int. However, the same value does belong
to the domain of xsd:integer which does not
have a maximum value restriction.

Valid Supported datatyped literals whose lexical form
can be mapped to a value that satisfies all addi-
tional constraints for its datatype are valid. For-
mally: L2Vd(lex) ∈ VALd . Valid literals are of
higher quality than invalid ones because they ex-
pose more meaning, i.e., the RDF processor does
not treat them as unknown names.

Underspecified A valid datatyped literal is under-
specified if its datatype is too generic. Exam-
ple: the number of people in a group can be
correctly represented by a literal with datatype
xsd:integer. However, since a group cannot
contain a negative number of people, it is more
descriptive to use the datatype xsd:nonNe-
gativeInteger instead. A special form of un-
derspecification occurs when no explicit datatype
is given and the datatype xsd:string is used
as a default, even though a more descriptive
datatype could have been chosen. An example of
this is "2016"ˆˆxsd:string. While this is a
correct literal, "2016"ˆˆxsd:gYear is more
descriptive under the assumption that 2016 de-
notes a year in the Gregorian calendar. This qual-
ity issue is difficult to detect by automated means,
because it relies on the intention of the original
data creator.

Well-specified A valid datatyped literal that is not un-
derspecified.

Non-canonical A non-canonical datatyped literal is
a valid datatyped literal for which there are
multiple ways in which the same value can
be represented, and whose lexical form is not
the one that is conventionally identified as the
canonical one. Formally: cd(L2Vd(lex)) 
= lex.
Example: "01"ˆˆxsd:int and "1"ˆˆxsd:
int denote the same value but the former is non-
canonical. Some datatype definitions do not in-

clude a canonical value-to-lexical mapping. For
these datatypes we cannot determine whether
their lexical values are canonical or not.

Canonical A datatyped literal whose lexical form is
canonical for the value denoted by that lexical
form. Formally: cd(L2Vd(lex)) = lex.

Language-tagged strings are sufficiently different
from datatyped literals to receive their own qual-
ity categories. Specifically, language-tagged strings
cannot be undefined (‘Undefined’ in Fig. 1) because
datatype IRI rdf:langString is not supposed to
denote a datatype. In addition, their validity (‘Valid’ in
Fig. 1) cannot be defined in terms of a lexical-to-value
mapping because such a mapping does not exist for
language-tagged strings. We can distinguish the fol-
lowing quality categories for language-tagged strings:

Invalid A language-tagged string is invalid if its lan-
guage tag violates the grammar specified in RFC
5646 (BCP 47). Example: en-US is a well-
formed language tag, but english is mal-
formed. It is also possible for the lexical form
to be invalid, e.g., when a typo or a grammatical
mistake was made.

Valid A language-tagged string is valid if it is not mal-
formed/invalid.

Unregistered A well-formed language-tagged string
is unregistered if the subtags of which its lan-
guage tag is composed are not registered in the
IANA Language Subtag Registry.9 If only some
subtags are not registered then the language-
tagged string is partially unregistered.

Registered A well-formed language-tagged string is
registered if it is not partially unregistered.

Inconsistent Since the values of language-tagged
strings are pairs of strings and language tags, it
is possible for the string to contain content that
is not (primarily) encoded in the natural language
denoted by the language tag. If this occurs then
the string and language tag are inconsistent. Ex-
ample: in language-tagged string "affe"@en
the string "affe" is correct and the language
tag en is both valid and registered, but the word
‘affe’ is a commonly used word in the German
language (denoted by de) but not the English lan-
guage (denoted by en).

9See http://www.iana.org/assignments/language-subtag-registry/
language-subtag-registry.

http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry
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Consistent A registered language-tagged string whose
lexical form is a valid string in the language de-
noted by the language tag.

Underspecified Underspecification occurs when the
language tag of a language-tagged string is cor-
rect, but there exists a more specific language tag
that is also correct. For example, "color"@en
can be more descriptively represented as "col-
or"@en-US. As with underspecified datatyped
literals, this quality issue is difficult to detect by
automated means.

Well-specified A consistent language-tagged string
that is not underspecified.

There is a variant of the quality issue of un-
derspecification that connects the sub-hierarchies of
datatyped and language-tagged literal quality. Liter-
als with datatype xsd:string can be underspeci-
fied in case their lexical form contains linguistic con-
tent in a particular language. For example, "seman-
tics"ˆˆxsd:string can be more descriptively
represented as "semantics"@en.

There are issues with the ‘Underspecified’ language-
tagged string category in Fig. 1. The current standards
are insufficient for annotating natural language strings
in several cases. For instance, proper nouns are of-
ten spelled the same way in different languages. Cur-
rently, the only option is to add distinct triples for
each language in which the proper noun is used (e.g.,
"Amsterdam"@en, "Amsterdam"@nl, etc.). This
can obviously results in a prohibitively large number
of triples. Unfortunately, leaving the string untagged
(e.g., "Amsterdam"ˆˆxsd:string) is not a good
option either, because there is no way to distinguish a
universally interpretable or cross-language string from
a single-language string that just happens to be un-
tagged.

Another limitation of the current standards surfaces
when dealing with multi-lingual strings. The only so-
lution for tagging these strings is to make assertions in
which the string appears in the subject position and an
RDF name that denotes a language appears in the ob-
ject position. The predicate must denote a property that
relates strings to one of the languages to which some
of the string content belongs:

"Amsterdam"
ex:hasLanguage ex:english,

ex:dutch.

Since literals are normally not allowed to appear in
the subject position, a blank node to literal mapping
has to be maintained as well:

_:1 <-> "Amsterdam"
_:1 ex:hasLanguage ex:english,

ex:dutch.

Because language tags cannot be used as RDF
names, there is no way to link the object term identifier
to its corresponding language tag.

4.4. Quality metrics

The quality of literals can be assessed at different
levels of granularity. We distinguish between at least
the following three levels:

Term level The quality of individual literals.
Datatype level The quality of literals that have the

same datatype.
Document level The quality of literals that appear in

the same document. The quality of literals in a
document is an important ingredient for assessing
the overall quality of that document.

The quality categories in Fig. 1 can be measured at
each of the three granularity levels. Measurements on
the literal level are straightforward: every literal be-
longs to some leaf node(s) in the taxonomy. In most
cases a literal belongs to exactly one leaf node. The
only exception is valid datatyped literals: they belong
to either ‘Underspecified’ or ‘Well-specified’ and to ei-
ther ‘Non-canonical’ or ‘Canonical’.

LOD Laundromat is a stream-based data cleaning
infrastructure that is able to assess the quality of liter-
als at the term and datatype levels. As such, it can give
overviews of the state of literal quality on the LOD
Cloud. Luzzu is a data quality framework that assesses
literal quality at the document level.

More complex quality metrics can be defined in
terms of the atomic quality categories in Fig. 1.
Since Luzzu is an extendable framework, new
composed metrics can be defined in it. For exam-
ple, Luzzu measures the ratio of valid literals, or
|Valid−Datatyped−Literal|

|Datatyped−Literal| . It also calculates the ratio of

consistent language-tagged strings, or |Valid−LTS|
|LTS| .

The literal quality metrics introduced in this section
are used in the analyses performed in Section 6. The
first analysis is conducted in LOD Laundromat and
covers the term and datatype levels. The second anal-
ysis is conducted in Luzzu and covers the document
level.
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5. Implementation

In this section we describe the data and software that
are used for the analysis in Section 6 and the automatic
quality improvements in Section 7.

5.1. Data

The analysis and the evaluation of the improve-
ment modules are conducted over the LOD Laundro-
mat [4] data collection, which currently consists of
about 650 thousand RDF documents that contain 38
billion ground statements. The data is collected from
data catalogs (e.g., Datahub10) and contains datasets
that users have uploaded through the Web API.11 As
such, the LOD Laundromat data collection only con-
tains a subset of the Linked Open Datasets that are cur-
rently available on the web. Since it includes data that
has been registered in Datahub, it at least includes the
data that has traditionally been thought of as making
up the LOD Cloud. The LOD Laundromat collection
contains approximately 12.4 billion literals.

Since the LOD Laundromat only includes syntac-
tically processable statements, it is missing all liter-
als that are part of syntactically malformed statements.
The reason for this is that whenever a statement is syn-
tactically malformed it is impossible to reliably de-
termine whether a literal term is present and, if so,
where it occurs. For example, the syntactically mal-
formed line (A) inside a Turtle document may be fixed
to a triple (B), a quadruple (C) or two triples (D). The
‘right’ fix cannot be determined by automated means.

(i) <a> <b> "c, d> .
(ii) <a> <b> <c,d> .
(iii) <a> <b> "c," <d>.
(iv) <a> <b> "c", <d>.

The absence of literals that appear within syntac-
tically malformed statements does not influence the
meaning of an RDF graph or dataset. A statement
must (at least) be syntactically well-formed in order
to be interpretable. RDF semantics describes mean-
ing in terms of truth-conditions at the granularity of
statements: I (〈s, p, o〉) = 1 ⇐⇒ 〈I (s), I (o)〉 ∈
EXT(I (p)), where I is the interpretation function
mapping terms to resources and EXT is the exten-
sion function mapping properties to pairs of resources.

10See http://datahub.io.
11See http://lodlaundromat.org/basket.

Even though a literal denotes a resource, that denota-
tion alone does not express a basic thought or propo-
sition. Paraphrasing Frege, it is only in the context of
a (syntactically well-formed) triple that a literal has
meaning.

Since we focus on the quality of literals, we do not
cover quality issues that are not specific to literals. This
mainly includes various encoding issues. For instance,
a Turtle file that uses Latin-1 encoding, whereas the
Turtle specification requires the use of UTF-8. When
the encoding of a file is wrong or unknown, the file
may contain characters that are probably not intended
by the original data publishers. Such characters can
then also appear in literals.12

5.2. Toolchain

The toolchain consists of the following components:

ClioPatria The RDF libraries used for parsing, inter-
preting and serializing RDF data, including the
literals.

LOD Laundromat The data cleaning and republish-
ing framework whose data is used in our evalu-
ations. The LOD Washing Machine uses ClioPa-
tria libraries.

Frank A command-line tool that provides easy re-
mote access to the LOD Laundromat data collec-
tion.

ALD libraries Existing libraries for detecting natural
languages. These are run over data supplied by
Frank.

Luzzu A quality assessment framework for RDF doc-
uments. This is run over data supplied by Frank.

All components of the toolchain are (of course) pub-
lished as Open Source software and/or as web services
to the community. We now describe each component
in more detail.

ClioPatria13 [25] is a Prolog-based triple store and
RDF library implemented in SWI-Prolog.14 We have
implemented datatype definitions according to the
standards-compliant specification in Section 4.2 for
datatype IRIs that commonly appear in the LOD Laun-
dromat data collection and for which such a specifica-
tion can be found (category ‘Defined’ in Fig. 1).

12An example of what is probably an encoding issue that
appears in a literal: http://lotus.lodlaundromat.org/retrieve?string=
%C3%85%E2%84%A2&match=terms&rank=psf&size=500&
noblank=false.

13See https://github.com/ClioPatria/ClioPatria.
14See http://www.swi-prolog.org.

http://datahub.io
http://lodlaundromat.org/basket
http://lotus.lodlaundromat.org/retrieve?string=%C3%85%E2%84%A2&match=terms&rank=psf&size=500&noblank=false
http://lotus.lodlaundromat.org/retrieve?string=%C3%85%E2%84%A2&match=terms&rank=psf&size=500&noblank=false
http://lotus.lodlaundromat.org/retrieve?string=%C3%85%E2%84%A2&match=terms&rank=psf&size=500&noblank=false
https://github.com/ClioPatria/ClioPatria
http://www.swi-prolog.org
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We have compared the results of our datatype im-
plementation in ClioPatria with RDF4J15 [8], another
Open Source triple store and RDF library. The compar-
ison is carried out to the extent that both libraries now
give the same canonical lexical forms for almost all
standard XSD datatypes. ‘Almost’, since there is still
some deviation in the canonical forms of XSD doubles
and XSD floats. This deviation is allowed by the XML
Schema 1.1 specification.16 In addition, we have im-
plemented several other often occurring datatypes such
as dct:W3CDTF and dct:RFC4646. For these less
common datatypes it is not so easy to check our im-
plementation’s correctness through comparison with
other tools, since very few implementations of these
datatypes exist.

LOD Washing Machine17 is the Linked Data clean-
ing mechanism that powers the LOD Laundromat
ecosystem. The analysis of datatyped literals (Sec-
tion 6.1) is directly implemented into the Washing Ma-
chine. This means that all literals published by the
LOD Laundromat are from now on guaranteed to be
valid and canonical (if a canonical mapping exists).

The LOD Washing Machine cleans the data in a
stream, on a per-tuple basis. This means that mem-
ory consumption is almost negligible. The grammars
of the implemented datatypes are all LL(1) grammars,
i.e. they process the input string from left to right and
return only the leftmost derivation. This implies that
the grammars are deterministic context-free grammars
that leave no choice points during parsing. This means
that the computational complexity of parsing all lexi-
cal forms is linear in the length of the input string.

Frank18 is a command-line tool that allows data
from the LOD Laundromat data collection to be
streamed at the level of triple pattern fragments [3].
This tool is used for the analysis of the quality of
language-tagged strings (Section 6.2) and for the anal-
ysis of the quality of data documents (Section 6.3). It is
also used for the automated improvement of language
tags (Section 7.2).

ALD libraries. For the assessment and improvement
of language-tagged strings we use three existing state-
of-the-art Automatic Language Detection (ALD) li-
braries:

15See http://rdf4j.org/.
16See http://www.w3.org/TR/2012/REC-xmlschema11-2-

20120405/.
17See https://github.com/LOD-Laundromat/LOD-Laundromat.
18See https://github.com/LOD-Laundromat/Frank.

Apache Tika We use a NodeJS wrapper19 for the
1.10 version of Apache Tika.20 Apache Tika con-
structs a language profile of the text to detect and
compares it with the profile of the set of known
languages. The profiles of these languages are
collections of texts which should be representa-
tive for the usage of those languages in practice.
Such language profile is called corpus. The cor-
pus accuracy depends on the profiling algorithm
chosen (word sets, character encoding, N-gram
similarity, etc.). Apache Tika uses 3-gram sim-
ilarity as such three-word groups are useful in
most practical situations. According to the doc-
umentation, this algorithm is expected to work
accurately also with short texts. Tika can detect
18 languages (17 languages with European origin
and Thai language).

Compact Language Detection (CLD) The NodeJS
CLD library21 is built on top of Google’s CLD2
library.22 The original library recognizes text in
83 languages, while the NodeJS wrapper detects
text in over 160 languages. CLD is programmed
as a Naive Bayesian classifier which chooses one
of the following three algorithms: based on uni-
grams, on quadrams or defined by the script itself.
Aiming to improve upon its performance, this li-
brary makes use of hints supplied by the user,
on text encodings, expected language or domain
URL.

Language-detection This library,23 sometimes abbre-
viated as LangDetect or LD, is a Java-based li-
brary that is commonly used as a language detec-
tion plugin for ElasticSearch.24 This library uses
a 3-gram similarity metric and a Naive Bayesian
filter. The language profiles (corpora) used by the
library have been generated from Wikipedia ab-
stracts. This library supports 53 languages and re-
ports a precision of 99.8%.

The chosen ALD libraries are widely used and are
known to have high accuracy for the supported lan-
guages and text sizes. Although the chosen set still re-
mains – to some extent – arbitrary, it is trivial to in-
clude more libraries into our framework, as one sees
fit.

19See https://github.com/ICIJ/node-tika.
20See http://tika.apache.org/1.10/index.html.
21See https://github.com/dachev/node-cld.
22See https://github.com/CLD2Owners/cld2.
23See https://github.com/shuyo/language-detection.
24See https://github.com/jprante/elasticsearch-langdetect.

http://rdf4j.org/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
http://www.w3.org/TR/2012/REC-xmlschema11-2-20120405/
https://github.com/LOD-Laundromat/LOD-Laundromat
https://github.com/LOD-Laundromat/Frank
https://github.com/ICIJ/node-tika
http://tika.apache.org/1.10/index.html
https://github.com/dachev/node-cld
https://github.com/CLD2Owners/cld2
https://github.com/shuyo/language-detection
https://github.com/jprante/elasticsearch-langdetect
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Luzzu25 is a quality assessment framework for
Linked Data. The rationale of Luzzu is to provide an
integrated platform that: (1) assesses the quality of
RDF documents; (2) provides queryable quality meta-
data on the assessed documents; (3) assembles detailed
quality reports on assessed documents. Luzzu allows
the set of quality metrics to be easily extended by users
by defining custom and domain-specific metrics.

The following literal-specific quality metrics are im-
plemented in the Luzzu framework: (i) the validity of
a datatype against its lexical value (category ‘Valid’ in
Fig. 1); and (ii) the consistency between a language-
tagged string’s lexical form and language tag (category
‘Consistent’ in Fig. 1).

For calculating the ratio of consistent language-
tagged strings (Section 4.4) Luzzu uses natural lan-
guage web services. For single word literals it uses
the Lexvo [10] web service.26 Lexvo is a linguis-
tics knowledge base that encodes relationships be-
tween words (e.g., different meanings and transla-
tions of words). It also contains links to other seman-
tic resources in the LOD Cloud. For language-tagged
strings, a request to the Lexvo API is made and a deref-
erenceable resource-denoting URI is returned. This re-
source is then queried and if a rdfs:seeAlso is
found, then we deem a string literal to have the correct
tag.

For checking the correctness of multi-lingual
language-tagged strings Luzzu uses the Xerox Lan-
guage Identifier.27 This web service identifies the
language of natural language phrases and sentences.
While the service often returns correct results for lan-
guages that commonly occur in the LOD Cloud, this
approach does not guarantee that the correct language
will always be found [21]. The fact that this approach
gives only approximately correct results is taken into
account when encoding the metric into metadata.

6. Analysis

This section presents three analyses that are con-
ducted to explore the framework presented in the pre-
vious section. The first analysis assesses multiple as-
pects of the quality of datatyped literals on a large
scale. The second analysis assesses one quality as-

25See https://github.com/EIS-Bonn/Luzzu.
26See http://lexvo.org.
27See https://services.open.xerox.com/bus/op/LanguageIdentifier/

GetLanguageForString.

Table 1

The ten most occurring datatype IRIs for the literals that were sam-
pled from the LOD Laundromat data collection

Datatype IRI Occurrences Percentage

xsd:string 594,614,300 40.67%

rdf:langString 517,920,696 35.43%

xsd:integer 140,315,796 9.60%

xsd:int 74,920,049 5.12%

xsd:date 54,830,685 3.75%

xsd:float 30,152,391 2.06%

xsd:double 17,862,360 1.22%

xsd:decimal 11,839,366 0.81%

xsd:gYear 5,148,174 0.35%

xsd:nonNegativeInteger 3,535,255 0.24%

Others 10,872,531 0.74%

Total 1,462,011,603 100.00%

pect of language-tagged string, also on a large scale.
The third analysis assesses quality aspects of datatyped
literals and language-tagged string within documents.
These three approaches are complementary, and to-
gether cover a large area of literal term use: datatyped
as well as language-tagged, and LOD Cloud-wide as
well as document-based.

6.1. Analysis 1: The quality of datatyped literals

We analyze 1,457,568,017 datatyped literals from
the LOD Laundromat data collection. Table 1 gives
an overview of the ten most occurring datatype IRIs.
These are all from the RDF and XSD specifications.

For the datatyped literals we investigate the follow-
ing quality categories defined in Section 4.3: unde-
fined, invalid, and non-canonical. Overall we find that
the vast majority of literals are valid and a modest ma-
jority of them are also canonical. However, 76% (or
1,112,534,996 occurrences) of literals are (language-
tagged or XSD) strings (see Table 1). This is not sur-
prising since strings enforce the least syntactic restric-
tions. Specifically, XSD string is often chosen as the
default datatype in case no explicit datatype IRI is pro-
vided. It is relatively uncommon for an XSD string lit-
eral to be invalid, since in order to do so it must contain
unescaped non-visual characters such as the ASCII
control characters. For the more complex datatypes,
e.g., those that denote dates, times and floating point
numbers, the grammar is more strict. In these cases we
see that there is still a lot of room for improvement (see
the results below).

Undefined. Most datatype IRIs do not dereference
to a proper definition of a datatype. Many datatypes

https://github.com/EIS-Bonn/Luzzu
http://lexvo.org
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
https://services.open.xerox.com/bus/op/LanguageIdentifier/GetLanguageForString
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sysont:Markdown a rdfs:Datatype ;
rdfs:comment
"A string literal formated
using markdown syntax." ;

rdfs:label "Markdown formated string" ;
rdfs:seeAlso
"http://daringfireball.net/
projects/markdown/syntax" .

Listing 1. Informal description of the Markdown datatype

that have some form of human-readable informal de-
scription do not provide enough information in or-
der to properly implement them. An example of this
is datatype IRI Susan:Markdown whose ‘defini-
tion’ is shown in Listing 1. This informal specifi-
cation is insufficient in order to define a datatype:
Firstly, the value space can either be defined as the
set of Markdown-formatted strings or in terms of
a formal abstraction of Markdown documents (e.g.,
a parse tree). For comparison, the value space for
rdf:XMLLiteral is defined in terms of the XML
DOM tree model. Secondly, the Markdown grammar
that is pointed to by the rdfs:seeAlso property is
itself not formally specified. Finally, there does not yet
exist a (generally accepted) canonical form for writing
down Markdown.

We notice that there is currently not a strong practice
of defining datatypes in terms of XML Schema. In fact,
we did not find such a definition outside of the orig-
inal XSD specification. Also, while there is no inher-
ent reason why an informally specified datatype should
be ambiguous or incomplete, in practice we have not
found an informal description that is unambiguous and
complete. Table 2 shows the most often occurring un-
defined datatypes. The vast majority of these are DB-
pedia datatype IRIs (namespace dt). For instance, it is
unclear whether dt:second should be able to denote
partial seconds (floating point versus integer number)
or whether it should be able to represent a negative
number of seconds.

Some datatypes are defined but do not include the
optional canonical mapping. An example of such a
datatype IRI is dct:W3CDTF, a temporal datatype
that allows multiple lexical forms to denote the same
point in time. For instance, +01:00 and -23:00 rep-
resent the same time zone. We notice that a canon-
ical mapping is sometimes hard to specify and may
sometimes not be very useful. An example of this is
rdf:HTML which does not specify a canonical map-
ping, which would have to map an arbitrary HTML

Table 2

The most often occurring undefined datatyped literals

Datatype IRI Occurrences Percentage

dt:second 2,326,298 0.160%

dt:minute 682,790 0.047%

dt:squareKilometre 643,493 0.044%

dt:centimetre 382,281 0.026%

dt:kilogram 356,321 0.024%

Table 3

The datatype IRIs with the highest number of invalid literals. The
percentage is calculated relative to the total number of literals with
a given datatype

Datatype IRI Occurrences Percentage

xsd:int 511,741 0.69%

xsd:decimal 122,738 1.28%

xsd:dateTime 98,505 8.54%

xsd:gYearMonth 16,469 15.45%

xsd:gYear 11,957 0.23%

DOM tree to a canonical HTML serialization (includ-
ing white-space use, encoding decisions, canonization
of non-HTML content like CSS or JavaScript, etc.).

Invalid. Table 3 shows the datatypes that have the
highest number of invalid literals. Overall, only 0.11%
of all literals are invalid. However, as was mentioned
before, 79% of all literals are strings for which almost
every lexical form is valid. As soon as the datatype be-
comes more complicated, the percentage of invalid oc-
currences goes up. For example, many integers with
datatype IRI xsd:int exceed the short integer range
constraints. Another example are literals with datatype
IRI xsd:gYearMonth, whose lexical forms often
swap the year and month parts, or where the month part
is often an RFC 822-style month name (e.g., Jan).

Non-canonical. Table 4 shows the five datatypes
with the highest number of non-canonical literals.
Overall, 3.5% of all literals are non-canonical. Again,
simple strings are canonical by definition, since they
map onto themselves. On the other hand, the majority
of the floating-point numbers (either xsd:double or
xsd:float) are non-canonical. The reason for this
is that their canonical format is quite specific: it must
always be written in scientific notation and must use
the uppercase exponent sign ‘E’. In practice, we see
that 1.0 is a much more common serialization of a
floating-point number than its canonical counterpart
1.0E0.
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Table 4

The datatype IRIs with the highest number of non-canonical literals.
The percentages are calculated relative to the number of literals with
a specific datatype IRI

Datatype IRI Occurrences Percentage

xsd:float 30,152,304 99.99%

xsd:double 17,783,414 99.56%

xsd:decimal 2,127,133 1.05%

rdf:XMLLiteral 245,457 100.00%

xsd:dateTime 224,994 7.14%

6.2. Analysis 2: The quality of language-tagged
strings

We want to analyze literals with textual content, in-
cluding textual content that has been explicitly tagged
with a language tag (i.e., language-tagged strings) and
textual content that is untagged (i.e., XSD strings). It
is difficult to reliably determine when a literal contain
textual content, which is an inherently vague notion.
We want to at least exclude many XSD strings that are
obviously non-textual. For this we require the lexical
form of an XSD string to at least contain two consecu-
tive Unicode letters. This coarse filter removes lexical
forms that encode dates, lengths, telephone numbers,
etc. Such non-textual strings are probably stored as
XSD strings because the data publisher was unaware
of an appropriate datatype, and/or did not have enough
time to perform a proper transformation to an existing
datatype.

When we use our coarse filter to distinguish literals
with textual content, this results in 3,54 billion literals.
2.26 billion (or 63.83%) of these are language-tagged
strings (have an explicit language tag). The remain-
ing 1.28 billion (or 36.17%) are XSD strings (do not
contain a language tag). These literals originate from
569,422 documents from the LOD Laundromat data
collection.

The distribution of language tags over this collection
of literals is given in Table 5. By far the most language-
tagged literals are in English, followed by German,
French, Italian and Spanish. This shows that Linked
Data contains a strong representation bias towards
languages of European origin, with the 10 most fre-
quent language tags representing European languages.
73.26% of all language-tagged literals belong to one of
the 10 most frequently occurring languages.

Unregistered. We analyze how many of the
language-tagged literals are ‘Registered’ (see Fig. 1)
by assessing whether their primary language tag be-
longs to the IANA language codes registry. Out of 313

Table 5

The distribution of language tags in the LOD Laundromat data
collection

Language tag Occurrences

en 878,132,881

de 145,868,558

fr 129,738,855

it 104,115,063

es 82,492,537

ru 77,856,452

nl 75,226,900

pl 59,537,848

pt 56,426,484

sv 47,903,859

other language tag 607,012,252

XSD string 1,281,785,207

textual literals 3,544,028,391

Table 6

Unregistered primary language tags that appear in the highest num-
ber of language-tagged strings

Language tag Occurrences

ck 1,191,661

il 1,041,376

x- 155,782

pm 97,898

gs 80,119

two-digit country codes in the LOD Laundromat col-
lection, 186 (59.4%) are also registered in IANA. The
vast majority of language-tagged literals (98.6%) con-
tains a registered language tag. Table 6 presents the
five most frequently occurring unregistered language
tags.

6.3. Analysis 3: The literal quality of documents

In order to illustrate that the here presented toolchain
integrates well with document-based quality frame-
works, we run initial experiments of the Luzzu frame-
work, receiving data and metadata through the Frank
tool. Luzzu quantifies the quality of Linked Data docu-
ments, including the quality of literals. We used Luzzu
in order to process 470 data document from the LOD
Laundromat collection. For each of these documents
Luzzu calculates the ratio of valid literals and the ra-
tio of consistent language-tagged strings (Section 4.4).
For these specific documents Luzzu determines that,
on average, 70% of the language-tagged strings are
consistent with respect to their language tag. On the
other hand, only 39% of literals have a lexical form
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that belongs to the value space denoted by its datatype
IRI (category ‘Valid’ in Fig. 1).

Manual inspection of the sample of documents
whose quality value was less than 40% reveals the fol-
lowing four main issues for language-tagged strings:

– A literal contains linguistic content but lacks
a language tag (category ‘Underspecified’ in
Fig. 1).

– A literal contains both linguistic and non-alpha-
betic content (the multi-linguality problem dis-
cussed in Section 4). Example: "related_
software"@en.

– A literal contains linguistic content with syntax
errors (category ‘Invalid’ in Fig. 1). Example:
"flow cytometer sorter"@en.

– A literal has a language tag that is not supported
by the automated approaches used by Luzzu. Ex-
ample: "article"@en-US.

The majority of problematic triples exhibit the first
issue. The third issue, i.e., lexical forms containing
syntax errors, actually result in incorrect identifica-
tions by the external services that are used to calcu-
late the metrics. For example, in "flow cytome-
ter sorter"@en the term cytometer should have
been written as cytometry. The fourth issue points at
another tooling issue, but one that cannot be so easily
resolved. Although the tag en-US is correctly accord-
ing to RFC 5646 (BCP 47), the Luzzu metric expects
two- or three-letter language tags, these are supported
by most NLP resources, such as the Linked Languages
Resources.28

Interestingly, many of the quality issues that were
found upon manual inspection overlap with the ones
that we considered problematic in Section 4. This leads
us to believe that typo’s and multi-linguality may not
be fringe cases after all, and that current standards may
actually be too coarse to deal with the real-world qual-
ity issues of language-tagged string as they are used in
the LOD Cloud today. Future work into these issues is
needed.

7. Improvement

In this section we show that the quality of literals
can be significantly improved by using the process-
ing and analysis framework presented in Section 5 and

28See http://linkedvocabs.org/lingvoj/.

Section 6. The possible quality improvements are de-
fined in the literal quality taxonomy in Section 4, as
indicated by the horizontal arrows with filled arrows in
Fig. 1. Based on the analysis in the previous section we
are informed about some of areas where literal quality
can be improved.

We note that not all aspects of literal quality can
be improved by automated means. For instance, the
quality improvement from ‘Underspecified’ to ‘Well-
specified’ in Fig. 1 cannot be effectuated based on
the available data alone but needs an interpretative de-
cision from the original data publisher. Even though
these quality issues cannot be fixed automatically, the
current framework can still be used to automatically
detect such problems. In general, suggestions for qual-
ity improvement can now be based on empirical obser-
vation rather than intuition.

In order to show that our toolchain indeed pro-
vides the required scale to fix quality issues in the
LOD Cloud, we choose two quality aspects that can
be automated. These two quality aspects also support
two use cases in Section 3. The first one is the auto-
matic conversion of non-canonical datatyped literals to
canonical ones, supporting the efficient calculation of
equivalence tests. The second one is the automatic as-
signment of language tags to textual literals that did
not have a language tags before, supporting improved
multi-lingual search indexing.

7.1. Improving datatyped literals

Undefined. The analysis in Section 6 gives an
overview of the size of the quality issue of undefined
datatypes. Based on this overview we can see that
defining the DBpedia datatype IRIs would solve the
vast majority undefined datatype IRIs, thereby signif-
icantly increasing the overall quality of literals in the
LOD Cloud.

Underspecified → well-specified. An underspeci-
fied literal cannot be changed into a well-specified
one based on the observed lexical form alone. For in-
stance, the fact that the values "0001", "0203",
"9009" appear in the data does not tell us whether the
datatype IRI should be xsd:positiveInteger
or xsd:nonNegativeInteger. Deciding on the
most general primitive datatype, xsd:decimal in
this case, also does not suffice since, for this partic-
ular example, xsd:gYear would apply just as well.
The problem becomes even more complex when non-
standard datatypes are considered, which can map lex-
ical form "11" to Metaphysics and "657" to accoun-

http://linkedvocabs.org/lingvoj/
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tancy (e.g., this particular mapping is part of the Uni-
versal Decimal Classification (UDC)).

Invalid → valid. Invalid literals can only be im-
proved upon by the original data publisher. We cannot
automate this task since it requires us to choose be-
tween (1) changing the datatype IRI to match the lex-
ical form, (2) changing the lexical form to match the
datatype IRI, or (3) changing both. However, we can
give an overview of mistakes that occur most often in
the data. Based on our empirical observations these are
the top 4 mistakes, along with suggestions of how to
avoid them in the future:

1. xsd:int is not the same as xsd:integer.
The former is a short integer and cannot be used
to express integers smaller than −2,147,483,648
or larger than 2,147,483,647. This results in
range errors that would not have occurred if
xsd:integer would have been used instead.

2. RDF IRIs are case sensitive [9]. Specifically
xsd:datetime is not the same as xsd:date
Time. The former is not defined by the XSD
standard and occurrences of it are probably ty-
pos.

3. xsd:date must not include a temporal speci-
fier. xsd:dateTime is used for this instead.

4. Many datatype IRIs are not proper HTTP(S)
IRIs. Since RDF serializations are very admis-
sive when it comes to IRI syntax, many things
that are parsed as literals contain datatype IRIs
that do not parse according to the more strict IRI
RFC specification [14]. Most of these improper
datatype IRIs are due to undeclared prefixes (e.g.,
xsd) in the source document. Many of these can
probably be expanded according to a list of com-
mon RDF aliases and their corresponding IRI
prefixes, but the original data publisher should
check whether this is indeed the case.

Non-canonical → canonical. Canonical literals pro-
vide a significant computational benefit over non-
canonical valid literals for several use cases. For in-
stance, checking whether two terms or statements are
identical or not no longer requires parsing and gen-
erating of lexical forms, i.e., string similarity suf-
fices where one would have to calculate c(L2V(l1)) ≡
c(L2V(l2)) otherwise. ClioPatria now fully automates
the canonicalization of RDF literals for which such a
mapping is defined: all literals are stored in canonical
form upon statement assertion.

7.2. Improving language-tagged strings

Unregistered → registered. Standardizing the set of
language tags in LOD Laundromat with respect to the
central IANA registry would improve the quality of
the literals. However, it is not trivial to adjust these
language tags automatically. For instance, the unregis-
tered tag il may be corrected to he-il, which de-
notes the Hebrew language spoken in Israel; or it might
be a typo, where the author intended to point to the
Italian language (denoted by it). Deciding on the cor-
rect registered language depends on the intention of the
original data publisher.

No language tag → language tag. We attempt to
assign a language tag to textual literals that do not
have one yet. For this purpose, we test the accuracy
of automated language detection algorithms when ap-
plied to the textual lexical forms from the LOD Laun-
dromat data collection. We define a textual lexical
form as a lexical form of a literal with datatype IRI
xsd:string or xsd:langString that contains
at least two consecutive Unicode letters. This excludes
many obvious non-textual lexical forms such as tele-
phone numbers and years. As reported in Table 5,
about half of these textual lexical forms already have
a language tag associated with them inside the LOD
Laundromat data collection. We can use these lan-
guage tags that are specified by original data publisher
in order to quantify the accuracy of automated lan-
guage detection approaches.

We apply three language detection libraries (see
Section 5.2) to the textual lexical forms in the LOD
Laundromat data collection. We are interested in the
following aspects: How often does the automatically
detected language tag coincide with the user-assigned
tag? How accurate are the language detection libraries?
Does the accuracy of detection differ per primary lan-
guage or for various string sizes? Are certain lan-
guages or string sizes easier for language detection?
How often do the libraries refrain from assigning a lan-
guage tag at all? Can we combine the libraries and
thereby improve the overall accuracy of language de-
tection?

We use the language-tagged strings that appear in
LOD Laundromat and check whether the ALD li-
braries assign the same language tag to the lexical form
as the one assigned by the original data publisher. We
report the precision, recall and F1-value for each lan-
guage detection library. We assume that the accuracy
that we measure over language-tagged string extends
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Table 7

Running time for each of the three ALD libraries. The difference
between the total duration and the library-specific runtime shows
that the overhead of streaming through the LOD Laundromat data
collection accounts for 20.5 hours

Library Library runtime Total runtime

CLD 52 hours 72.5 hours

LD 103 hours 123.5 hours

Tika 109 hours 129.5 hours

to XSD string literals with a textual lexical form (i.e.,
ones that do not have a user-defined language tag).

The language tag assigned by the original data pub-
lishers can consist of multiple, concatenated subtags.
Since our language detection tools only provide an ISO
639-2 two-character language code in most cases, we
focus our comparison on the primary language sub-
tag, i.e., the first two characters of each language-
tagged string. Another motivation for enforcing this
abstraction is that it is more difficult to distinguish fine-
grained language differences from a semantic point
of view. For instance, if the original data publisher
supplied language tag de-DE, it is difficult to deter-
mine whether de-AU or de would also have been cor-
rect annotations. The granularity level that we choose,
two-character primary language tags, is satisfactory for
identifying most languages, although there are excep-
tional cases in which the secondary language subtag is
also required for denoting the language. Most notably,
this is the case for Chinese languages where zh-CN
denotes a language that is different from zh-TW.

Table 7 gives an overview of the time that each ALD
library needs for annotating the textual lexical forms.
The (single-threaded) process of tagging takes 5 days.
Most of this elapsed time (around 80%) is used by the
ALD libraries themselves. The remaining time is used
by the Frank tool to extract the required information
from the LOD Laundromat web service. Considering
that such an improvement procedure only needs to be
executed once, and not necessarily in real time, we be-
lieve that the time needed to improve the coverage of
language tags in the LOD Cloud is reasonable.

We also measure the accuracy of each ALD library
and observe that the highest precision (75.42%) is
achieved by the CLD library, which also covers the
highest number of languages (160). It is notable that
this library often gives no language suggestion, espe-
cially when it comes to short strings.

We further investigate to which extent the accuracy
of the libraries is dependent on specific language tags
or string sizes. The outcome of this analysis for the

most frequently occurring 10 languages is shown in
Table 8. Each of the cells represents an intersection of
a primary language tag and a string size bucket. We
measure the string size n in terms of number of words
that constitute the string. A string size bucket b con-
tains strings whose length fall within the same loga-
rithmic value: b = | log2(n)|. Each cell contains three
values that represent the F1-accuracies of the three re-
spective libraries: Tika, CLD and LangDetect. While
CLD has the highest accuracy for most buckets, there
are notable exceptions. For instance, the LangDetect
library is better than the CLD library in detecting Por-
tuguese and long Dutch literals.

Figure 2 shows the aggregated accuracy per bucket
for each of the three libraries. Note that there is hardly
any intersection of the plotted lines: for any text size
bucket (except for 0), CLD gives the highest F1-value,
while Tika gives the lowest. However, the text size
does correlate with the general success of language
detection (by any library). Concretely, short strings
which contain only one word (bucket 0) or two words
(bucket 1) are much harder to detect correctly than
longer strings. On the other hand, expressions from
bucket 8 (between 129 and 256 words) can be detected
with almost perfect accuracy.

This tendency is confirmed for the most frequent 10
languages (Fig. 3). Every data point represents the av-
erage F1-value, calculated over the three libraries for
a given language and bucket. This shows that libraries
are successful in detecting the language of sufficiently
long literals (literals in bucket 3 already have an F-
measure of around 75%, increasing to around 85–90%
for bucket 4). Almost all common languages, except
for Portuguese, follow this distribution. From Figs 2
and 3 it is clear that the accuracy of the ALD libraries
for strings of moderate and long size is very high. In
contrast, the language detection for short strings and
less common languages has a much lower accuracy.

We also observe a significant decline in accuracy for
the extremely large strings (belonging to bucket 10 and
above), which is somewhat unexpected. We hypoth-
esize that this decline could be due to the following
factors: (1) The buckets 10 and above contain much
fewer strings, between a few hundred and a few thou-
sand strings per language, which leads to less stable
and less reliable results; (2) the strings that belong to
these categories are generally non-standard in terms
of size, format and content. Specifically, some strings
are so long that they result in errors for entering an
unanticipated form of input. One example is the full
text of the book “THE ENTIRE PROJECT GUTEN-
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Table 8

F1-value accuracy of the libraries per bucket size and language. Library results are given in the following order: Tika, CLD, LangDetect. The
language tags are ordered by frequency, with the most frequent languages on the top of the Table

0 1 2 3 4 5 6 7 8 9 10 11 12

en 1.99 5.78 13.74 38.12 76.34 94.77 98.77 98.7 97.94 92.75 69.36 81.89 74.93

11.88 26.18 41.95 70.09 92.48 98.45 99.58 99.32 98.89 97.14 86.58 94.3 89.38

8.87 44.13 77.41 91.3 96.57 99.19 99.7 99.42 99.0 97.73 90.06 92.97 91.27

de 5.57 16.63 51.62 87.1 93.03 94.99 97.25 98.18 97.75 94.77 64.75 43.7 66.67

55.27 48.87 87.39 98.66 98.94 98.79 99.35 99.36 99.4 98.55 85.61 90.76 94.87

54.24 37.04 76.04 97.34 97.49 97.73 98.65 98.81 98.66 97.59 83.46 85.59 94.87

fr 8.85 16.46 44.88 82.56 90.85 95.24 98.54 98.98 98.79 94.36 76.71 70.72 54.32

20.74 34.45 75.25 94.98 98.1 98.42 99.09 99.23 99.15 95.88 82.98 77.67 74.07

8.12 22.29 67.39 88.58 96.07 96.81 98.6 99.02 98.97 95.67 81.55 72.77 63.58

it 14.11 19.06 61.02 71.54 90.19 89.42 93.63 91.81 98.25 96.79 94.73 96.65 89.61

28.75 29.91 66.01 75.926 91.18 89.4 94.99 92.45 98.44 96.68 94.03 93.92 87.44

5.45 8.43 34.14 58.26 79.84 85.86 92.06 92.76 96.86 94.99 75.26 78.57 85.36

es 2.56 6.92 21.92 37.32 53.01 75.89 86.31 94.72 97.11 96.66 85.57 86.69 94.37

33.36 31.07 50.27 70.14 91.93 98.37 99.41 99.46 99.74 99.25 89.98 88.54 95.77

13.75 22.02 21.92 53.86 68.23 90.91 95.97 98.27 99.09 98.97 91.87 92.06 95.77

ru 25.85 39.73 42.05 64.02 88.56 97.4 97.81 98.43 96.9 85.91 15.69 73.76 86.54

28.21 347.65 42.05 70.64 93.07 98.92 99.2 99.2 98.42 94.63 79.63 91.96 96.15

9.23 29.82 26.49 53.42 77.52 90.81 94.87 97.56 97.38 90.1 38.24 85.36 72.94

nl 3.29 4.44 22.47 63.24 96.11 96.9 98.61 98.58 97.78 90.79 59.21 43.86 35.29

11.43 11.65 40.36 71.4 96.29 97.34 98.72 98.75 98.23 93.263 72.79 65.79 41.18

6.47 9.15 38.52 62.8 93.33 94.57 97.43 98.66 98.73 95.33 80.96 79.68 74.42

pl 17.98 30.82 49.79 66.18 95.16 99.1 99.19 98.74 98.61 97.588 92.19 71.0 47.37

30.43 35.41 56.63 73.62 96.55 99.19 99.13 98.65 98.58 97.48 91.67 73.0 47.37

19.4 38.19 46.3 75.26 96.3 99.25 99.31 98.97 98.93 97.78 94.5 72.13 50.0

pt 3.45 5.3 9.73 39.47 20.29 33.99 39.4 53.72 61.22 67.34 69.42 70.51 82.86

10.24 14.03 53.21 72.82 84.33 94.67 98.292 98.79 99.09 98.59 97.19 90.38 100.0

13.33 15.75 59.86 75.81 83.16 95.13 98.22 99.19 99.45 99.14 98.47 96.0 100.0

sv 1.62 3.06 15.68 46.63 76.92 87.56 93.69 96.41 93.21 90.2 64.84 45.24 8.33

10.82 12.39 28.91 68.63 92.85 96.35 98.3 98.24 94.61 94.24 81.1 57.14 58.33

5.4 11.55 25.67 62.22 90.32 94.25 96.68 98.37 98.36 96.75 84.97 67.65 60.87

Fig. 2. Accuracy per language detection library.

BERG WORKS OF CHARLES D. WARNER”, which
are stored in a single literal term.

In some instances a lexical form can be correctly an-
notated with multiple primary language tags. This is

Fig. 3. Accuracy per language tag for the 10 most frequent lan-
guages.

especially true for proper names – these often share
the same surface form in a plurality of languages. For
instance, what is the right language tag for “Amster-
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Table 9

Languages among the untagged strings according to CLD

Language tag Occurrences

en 348,262,051

nl 27,700,617

de 25,166,990

da 12,574,645

ja 9,158,424

es 8,593,138

fr 7,248,383

nn 7,114,156

el 4,323,837

la 2,873,684

dam”: English, Dutch, or a set of languages? Ideally,
the world languages would be grouped into a hierar-
chy of language tags, thus allowing the data publisher
to specify a group or category of similar language tags
(e.g. all Germanic languages). This representation is
not standardized at the moment (see also Section 4).

It could also be argued that proper names and other
short strings should be kept as non-language tagged
strings, because their lack of context often allows mul-
tiple language tags to be considered correct. This is
demonstrated in Fig. 2: strings that consist of only a
few words are seldom tagged with a consistent lan-
guage.

Finally, we enumerate the most frequently assigned
languages by our libraries on the strings without a lan-
guage tag in the published data (Tables 9, 10, 11). As
on the language-tagged strings in Table 5, the major
European languages, especially the English language,
seem to prevail on the strings without a language tag.
At the same time, we observe a set of small languages
that are unexpectedly frequent, such as Tagalog (tl),
(new) Norwegian (no/nn), Greek (el), and Estonian
(et). The high frequency of such long-tail languages
might be an indicator of errors in these libraries.29

8. Conclusions

We have focused on the quality of literals, an area
of Linked Data quality conformance that has not been
thoroughly investigated before. We have systemati-
cally specified a taxonomy of quality criteria that are
specific to RDF literals. We have shown that qual-
ity metrics can be defined in terms of this taxonomy.

29Most notably, the Tika library shows a bias towards Eastern Eu-
ropean and Nordic languages.

Table 10

Languages among the untagged strings according to LD

Language tag Occurrences

en 331,196,693

de 163,920,782

tl 99,213,393

ca 86,113,223

ro 72,512,668

it 52,062,226

nl 49,516,711

fr 48,139,153

hr 39,207,813

zh 33,611,172

Table 11

Languages among the untagged strings according to Tika

Language tag Occurrences

lt 273,304,150

ro 141,609,523

en 116,931,204

sk 91,248,715

et 91,082,766

it 69,331,167

fr 57,668,214

hu 54,721,330

no 54,121,551

is 51,962,628

We have shown that existing platforms and libraries
can be reused in order to automatically check for lit-
eral quality conformance. Two concrete analyses were
conducted on a very large scale and a third analysis
has shown that our toolchain can also be used by ex-
isting quality assessment frameworks in order to as-
sess the quality of RDF documents. Finally, we have
presented initial attempts at automatically effectuating
large-scale improvements to the quality of literals.

Implementation reuse. The implementations have
not only be used for the here presented experiments,
but have been consolidated into the ClioPatria Seman-
tic Web library and triple store, which now supports a
large number of datatypes as well as canonical forms.
The literal quality categories for which conformance
can be automatically checked have been integrated into
the LOD Laundromat data cleaning process, which
now records literal quality issues that are found in the
data. Finally, the automatic detection of language tags
is used by the Semantic Search engine LOTUS to im-
prove its language-specific filters.
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Literal quality & RDF processor conformance.
Since every empirical measurement of literal quality
must use a concrete RDF processor that interprets the
input data documents, every empirical measurement
of literal quality is inherently relative to the processor
that was used. Differences between RDF processors
include the set of datatypes that is implemented as well
as bugs and/or purposeful deviations from Linked Data
standards. While implementing the XSD datatypes in
ClioPatria, we discovered that it helps to cross-validate
against another library (in our case RDF4J). In a sim-
ilar way, we hope that the availability of ClioPatria
will make it easier for others to add support for more
datatypes in their RDF processors as well.

Since this paper has focuses on the quality of liter-
als, conducting a broad investigation into literal sup-
port by triple stores and RDF libraries was out of
scope. Specifically, we have not conducted a broad
investigation into which datatypes are implemented
by which triple store or RDF library. Future research
should focus on the tool support of literals, because the
fact that very few non-XSD datatypes are currently in
use may be because of the chicken-and-egg problem
that RDF tools do not implement them because they do
not occur that often, etc.

Datatype definitions. Even though we have shown
that many quality issues can be automatically detected,
and some can even be (semi-)automatically fixed, the
issue of undefined (or badly defined) datatypes re-
mains unresolved. By definition, a literal’s quality can
only be determined once its datatype is properly speci-
fied. The existing of so many undefined datatypes, i.e.,
almost all datatypes that do not belong to the standard
collection of XSD datatypes, may point to a lacuna
in today’s RDF standards. In these standards, the is-
sue of datatype definition is ‘outsourced’ to the XML
Schema specifications. However, the current genera-
tion of Semantic Web practitioners may have less ex-
perience with XML Schema and related technologies.
In order to improve the current situation, standardiza-
tion organizations may consider introducing new ways
of defining RDF datatypes and/or providing more as-
sistance for using the existing ways.

Our approach. This paper presents a novel approach
towards quality assessment; one that is large-scale, au-
tomated, and easily reusable in the context of other
tools and libraries. Current standards and best practices
are based on what experts consider to be the most im-
portant data quality issues. We show that, in addition
to these existing approaches, future initiatives towards
data quality improvement may also be based on em-

pirical evidence of the state of the LOD Cloud. Our
approach has many benefits, e.g., it allows the impact
of quality improvement initiatives to be quantified be-
forehand. This makes it possible to identify the quality
issues for which quality improvement would result in
the biggest overall impact.

Our approach extends to the topic of automatically
improving data quality. We show that millions of lit-
erals (and thereby statements) can be improved very
quickly, by algorithmic means. While this does not ap-
ply to every quality criterion, e.g., ones that rely on the
intention of the original data publisher, there are many
quality criteria for which this can be done. Indeed, we
have shown that by using state-of-the-art libraries – for
instance libraries for natural language identification –
we are able to improve the overall quality of the LOD
Cloud. This means that many of the quality criteria that
could previously only be improved on an ad-hoc ba-
sis can now be improved at a very large scale, thereby
resulting in a Semantic Web that is more valuable for
everyone.
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