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Abstract—Spatio-temporal modeling is widely recognized as a
promising means for predicting crime patterns. Despite their
enormous potential, the available methods are still in their
infancy. A lot of research focuses on crime hotspot detection and
geographic crime clusters, while a systematic approach to include
the temporal component of the underlying crime distributions
is still under-researched. In this paper, we gain further insight
in predictive crime modeling by including a spatio-temporal
interaction component in the prediction of residential burglaries.
Based on an extensive dataset, we show that including additive
space-time interactions leads to significantly better predictions.
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I. INTRODUCTION

How the police should respond to crime is a constant source
of discussion and debate among scholars and practitioners.
Over time, new strategies have been developed that use data to
influence decision making and direct crime control. This data
was first used to indicate the underlying problems within a
community by identifying clusters of repeating crime incidents.
This was followed by using data to map crime to allow
for rapid response to emerging crime problems and hotspots.
The most recent development is intelligence-led policing, an
objective method for formulating strategic policing priorities
by using data analysis and crime intelligence for strategic
planning and resource allocation in order to reduce, disrupt
and prevent crime. The better integration of the available
information systems allows the police to create a picture of
the criminal environment and to predict the emerging areas of
criminality [1].

Within an intelligence-led framework, proactive policing
corresponds with an initial response of the law enforcement
agencies to prevent crimes before being committed rather
than reacting to criminal acts. Proactive policing requires the
ability to predict crime hotspots and concentrations to identify
likely targets for police intervention. The identification of these
targets is one of the main goals of predictive policing [2].

Although the use of statistical analysis for predicting
crimes has been around for decades, the Geographical Infor-
mation System (GIS) revolution, in the recent years, has led
to a surge of analytical techniques to identify likely targets
in order to prevent criminal activities. Perry [2] organizes
these techniques around six analytic categories: hot spot anal-
ysis, regression methods, data mining techniques, near-repeat
methods, spatio-temporal analysis and risk terrain analysis.

As stated by [3], “the most under-researched area of spatial
criminology is that of spatio-temporal crime patterns”. The
same point has been made by Law et al. [4] who discusses
spatio-temporal approaches in past crime research proposing a
Bayesian spatio-temporal approach for modeling crime trends.
Bernasco and Elffers [5] also address this issue of integrating
the spatial and the temporal dimension of crime in order
to advance the analysis of crime data. They mentioned that
crime varies spatio-temporally illustrating this by an example
from [6] on residential burglaries. Especially for residential
burglaries, a body of research has shown the repeat and the
near-repeat victimization effects [7]–[10]. Therefore, modeling
the space-time interactions of residential burglaries are impor-
tant to capture these effects.

Displaying statistical information on a map allows for con-
veying information in a format which is ideal for operational
decision making. Spatio-temporal information can ideally be
understood when displayed on a map, however, there are a
number of issues related to the mapping of information in the
policing domain. Among these is the use of choropleth maps.
As noted by [3], “one particular problem among crime analysis
is the incorrect tendency to map real values with choropleth
(thematic) maps, resulting in the misleading impression that
is often given by larger or unequal areas (Harries, 1999)”.
Chainey et al. [11] also mention the need of a threshold
specification to identify hotspots. In their paper, they indicate
also the influence of the parameter setting on the ability to
predict future crimes using hotspot maps. The same problem
was discussed by [12] who addresses the problem of hotspot
identification and the variation of maps that can be obtained
using the same data. They state that the choice of a thematic
range represents a problem in itself.

An additional problem related to crime mapping is the
varying sizes and shapes of geographic administrative bound-
ary areas. Eck et al. [12] propose the use of small uniform grids
as a solution to this problem. This results in a high-resolution
model. This type of models provides a more realistic forecast
in terms of structure and spatial variability [13]. However,
it does not necessarily improve the forecast accuracy [14].
Roberts [15] highlights the necessity of evaluating the spatial
and temporal variation in the skill of the model in order
to define the scales at which the model forecast should be
believed.

This research focuses on residential burglaries and attempts
to provide more clarity in predictive crime modeling and
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mapping by addressing the limitations discussed above. The
major aims of this study are to find an accurate probability
distribution of residential burglaries taking account of the
space-time interactions, and to identify a cut-off value to
classify areas as high-risk areas. Wang and Brown [16] model
criminal incidents in Charlottesville using a spatio-temporal
generalized additive model (ST-GAM) and extend it to a local
spatio-temporal generalized additive model (LST-GAM). They
applied the ST-GAM to predict the probability distribution of
criminal incidents. In the ST-GAM, the temporal information
of previous criminal incidents is modeled as a dummy variable
indicating the time of the last committed criminal incident.
They show that the ST-GAM and the LST-GAM outperform
their previous spatial generalized linear model (GLM) and the
hot spot model. This research extends the model proposed
by [16] by allowing for more complicated space-time inter-
actions.

Inspired by [17], we propose a generalized additive model
(GAM) for modeling the probability distribution of residential
burglaries in one district of Amsterdam based on regular lattice
data (grid boxes of 125 × 125 meters). The model extends the
base model similar to the one discussed in [16] by allowing
for additive space-time interactions. We show that the model
provides a useful forecast from a radius of 312.5 meters from
the centroid of the grid. However, a clear improvement in
the forecast accuracy is observed from the first neighborhood
(187.5 meters from the centroid of the grid).

The remainder of this paper is organized as follows.
Section II describes the used data set and the data analysis.
Section III provides the methodological framework underlying
this research. Section IV illustrates the results of the analysis.
Section V concludes this research.

II. DATA

A. Data description

The data used for this research was provided by the
Dutch Police. It contains all recorded incidents of residential
burglaries that happened in one district of Amsterdam, with the
highest burglary rate, between January 1, 2008 and April 30,
2014. The data was recorded at a monthly level and grouped
into grids of 125 × 125 meters. The data is thus regular
lattice data. Only the grids that correspond to urban areas were
selected resulting in 1,812 grid locations. In total, there were
115,968 records with a total number of 11,450 incidents.

In addition, each crime incident recorded contained the
latitude/longitude coordinates on the grid level, the time of oc-
currence (month, year) and different covariates that correspond
to the demographic factors and the socio-economic factors that
are associated with this grid. Next, to these covariates, the
Dutch police also use some spatio-temporal indicators that
specify when the last incident happened in a specific grid
or combination of grids (neighborhood) using different time
intervals. These spatio-temporal indicators are crime specific,
for example, the number of residential burglaries in a specific
grid one month before the reference date. The covariates that
correspond to the demographic and the socio-economic factors
are location-specific covariates and are constant over time.
These covariates count 44 attributes, including population,
average values of houses in the postal code area of the

corresponding grid, percentage low incomes in the postal code
area of the corresponding grid, and so on. Next, to these
covariates, we also used some covariates that correspond with
the geographic information of the city, such as the distance to
the nearest highway access. In total, there were 61 covariates.

B. Data exploration

A first analysis of the recorded incidents shows that only
1.2% of the total records had a higher number of residential
burglaries than 1, while 91.61% of the records was equal to
0. For this reason, the occurrence of residential burglaries
(binary) was considered as the response variable.

1) Missing values: The first problem encountered using the
above-described data was a large number of missing values.
The response variable contains no missing values. However,
113,408 of the 115,968 records contain at least one missing
value. It is clear that removing every row that contains a
missing value is not the best option as it will reduce the sample
size by 97.8%.

Further analysis of the missing values shows that all miss-
ing values were observed for the location-specific covariates.
Moreover, when a covariate contains missing values, at least
23% of the data was missing. Due to a large number of
covariates and the high percentage of missing values we
decided to remove the corresponding covariates. This concerns
18 of the 44 location-specific covariates.

A deeper analysis of the covariates shows that the covari-
ates that correspond to age categories were not complete (they
did not sum up to 100%) and at least 25% of the observed
values for each variable was equal to zero, which is not likely.
For these reasons, these variables were also removed from the
data set. Furthermore, the variable TSLI (the number of months
since the last incident in the grid) was not always consistent
with the corresponding spatio-temporal indicators and based on
common sense, this variable is expected to be highly correlated
with the other spatio-temporal indicators. For this reason, this
variable was also removed from the data set.

2) Near zero-variance covariates: Further analysis of the
data shows that many covariates have only some unique values
with low frequencies. These variables, also called near zero-
variance variables, can cause numerical problems. Kuhn [18]
considered a variable as a near zero-variance variable if two
conditions were approved. The first one is that the percentage
of unique values should be less than 20%. The second one is
that the ratio of the most frequent to the second most frequent
value should be greater than 20. The analysis of the near zero-
variance covariates in our data set was performed using the
nearZeroVar function from the caret package [19]. This
analysis reveals that 16 covariates have a near zero-variance,
which were removed from the data set.

The final data exploration was, mainly, performed follow-
ing the protocol described in [20].

3) Outliers: First, a Cleveland dotplot was drawn for
each covariate to identify potential outliers. The plots show
that some covariates have potential outliers indicated by the
isolated points. These outliers were replaced by the maximum
values observed after removing the outliers from the data set.
Moreover, the covariates CB (number of cafes and bars in the
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Figure 1. PCA biplot of the covariates. The left panel indicates higher correlation between the number of residential burglaries observed in the grid and its
direct neighborhood within the same time unit. The right panel shows the PCA biplot after aggregating the spatio-temporal indicators that correspond to the

same time-unit. As can be seen from this panel, TL1M, TL2M and TL3M are highly correlated.

grid), REST (number of restaurants in the grid), and SHOP
(number of shops in the grid) are highly unbalanced. To avoid
problems due to a large number of zeros and to reduce the
dimensionality of the data, these covariates were grouped into
one covariate called public places (PP). This covariate has
19 unique values but is highly unbalanced. PP was divided
into three categories. The first category is when no public
places were observed in the grid. The second category is
when there are at most five public places in the grid, and the
last category is when there are more than five public places.
This to distinguish between the grids in terms of crowdedness.
Furthermore, EI (the number of educational institutions in the
grid) is also highly unbalanced and has only three unique
values, this covariate was used as a binary covariate (fPP).

4) Collinearity: Ignoring collinearity increases type II er-
rors and leads to serious problems with forward and backward
selection procedures [21]. As we are, among others, interested
in the covariates that drive residential burglaries, we should be
very careful about collinear covariates. To assess collinearity
between the covariates, the variance inflation factor (VIF) was
used. The VIF measures the amount by which the variance
of a parameter estimator is increased due to collinearity with
other covariates rather than being orthogonal [22]. First, the
VIF was calculated using all covariates. The covariate with the
highest VIF was removed and the VIFs have calculated again.
This process was repeated until all VIF values were smaller
than two. Note that the use of this threshold is subjective as
there is no true VIF threshold. In the literature, different VIF
values were suggested. Kennedy [23], among other authors,
recommends a threshold of ten. A threshold of five was
recommended by [24]. However, as mentioned in [21], the
use of a VIF threshold of ten or even five is too high [25]. By

using a threshold of two, we aim to be more conservative about
collinearity. The VIF analysis shows that L6MN (number of
incidents in the direct neighborhood in the sixth month and
earlier before the reference time), L6MG (number of incidents
in the grid in the sixth month and earlier before the reference
time), and ADFS (average distance from the centroids of the
grid to the nearest known 10 burglars) are collinear with other
covariates and were removed from the data set.

Residential burglaries are known to have the repeat and
near-repeat victimization effect where residential burglaries
cluster over time and space [7] [26] [9]. Due to this effect,
collinearity is expected between the spatio-temporal indicators.
To provide more insight into the relationships between these
covariates, the principal component analysis (PCA) biplot was
used. The left panel of Figure 1 shows higher correlations
between the number of incidents observed in the grid and in
its direct neighborhood within the same time unit. The spatio-
temporal indicators that correspond to the same time unit
were aggregated resulting in three covariates TL1M, TL2M,
and TL3M where TLxM is the total number of incidents
observed in the grid and its direct neighborhood x months
before the reference time. A PCA biplot was drawn using these
covariates. As can be seen from the right panel of Figure 1,
higher collinearity is observed between TL1M, TL2M, and
TL3M. Again, to avoid loss of information, these covariates
were grouped together into a new covariate, TL3, which is the
total observed incidents in the grid and its direct neighborhood
in the last three months. To check for outliers in TL3, a
Cleveland dotplot was drawn and this plot shows no extreme
observations. A PCA biplot was drawn again using TL3,
MDFS (distance from the center of the grid to the nearest
known burglar) and DTNHA (distance from the center of the
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Figure 2. Design plot showing the average incidents per class for each factor
variable.

grid to the nearest highway access), which shows that MDFS is
negatively correlated with TL3 (this plot is not shown here but
the same result can be concluded from Figure 1). We decided
to use TL3 and leave MDFS out of the analysis.

Furthermore, conditional boxplots were used to assess
collinearity between continuous and categorical covariates.
This reveals that collinearity between SD and DTNHA exists.
The covariate sub-district (SD) also shows some collinearity
with TL3. To avoid problems due to collinearity, SD was
omitted from the analysis.

The final set of covariates includes eight covariates, namely
the space covariates X and Y; the temporal covariates YEAR
and MONTH; the categorical covariates public places (fPP)
and educational institutions (fEI); the total observed incidents
in the grid and its direct neighborhood in the last three months
(TL3) and finally, the distance to the nearest highway access
(DTNHA).

5) Relationships between the response and the covari-
ates: The relationship between the response variable and the
nominal variables was assessed graphically by a design plot
(Figure 2). As illustrated in Figure 2, higher mean values of
the residential burglaries were observed between October and
February, with the highest mean in December. This period
is characterized by a short daylight period, while occupancy
times of the residents remain the same. Due to the cover of
darkness and the absence of the residents, burglars have a
lower risk of being spotted. The highest value observed in
December can be explained by the Christmas days and New
Years Eve that are attractive days for burglars. Furthermore,
a higher mean was observed in grids containing educational
institutions (fEI) or public places (fPP). Moreover, crowded
areas have a higher mean compared to quiet areas.

Finally, histograms of the TL3 and DTNHA for areas with
residential burglary were plotted. A deeper analysis on TL3

shows that 93.14% of the incidents has occurred within grids
with TL3 higher than zero. For this reason, the histogram
of TL3 was drawn considering only TL3 values that are
higher than zero. This shows a highly skewed distribution
with peaks for TL3 values between two and four. Moreover,
the distribution of DTNHA reveals a high peak of residential
burglaries for distances between 875 and 1,000 meters.

In the next section, we introduce our generalized additive
model (GAM) for modeling the probability distribution of
residential burglaries. The model extends a base model by
allowing for additive space-time interactions.

III. METHODOLOGY

Given the covariates discussed in Section II, the occurrence
of residential burglaries in a certain grid i, and in a certain
month t, was modeled using a GAM using the binomial
distribution and the logistic link function (see, e.g., [27], [28]).
To be more precise, the model is not a GAM with the binomial
distribution but rather one with a Bernoulli distribution. The
use of the logit link is to ensure that the fitted values are
bounded in (0, 1).

The choice of GAM is based on the expected non-linear
relationships between the covariates and the response. A non-
linear relationship is expected between the response and the
distance to the nearest highway access (DTNHA). This can be
explained by the two types of burglars identified by [29], the
first being the opportunity burglar that prefers to operate within
its own neighborhood and the second being the professional
burglar who selects its targets based on the highest expected
loot and operates mostly in suburban areas and areas that are
near highways, because they are unaware of the local situation
and escape routes. A non-linear relationship is also expected
for TL3 due to the repeat and near-repeat victimization effects.
The covariate MONTH is also expected to have a non-linear
effect on the residential burglaries. This is due to the repeat
victimization effect and the daylight-darkness effect [30]. For
these reasons, smoothers will be used to model these covari-
ates.

We use a GAM model that allows for space-time interac-
tions as follows:

logit(µi,t) = fEIi + fPPi +YEARt + f1(TL3i,t)+

f2(DTNHAi,t) + f3(MONTHt) + f4(Xi,Yi),
(1)

where µi,t = E(yi,t), yi,t follows a Bernouilli distribution,
i ∈ {1, . . . , 1812}, t ∈ {1, . . . , 60}. The functions f1 and
f2 are one-dimensional smoother functions of the covariates
represented by a cubic regression spline (CRS). f3 is a one-
dimensional smoother represented by a cyclic cubic regression
spline (CCRS). This is to avoid big jumps between the January
and the December value of the smoother [31]. The function f4
is a two-dimensional isotropic smoother for space represented
by thin plate regression splines (TPRS). The TPRS was
used for smoothing the spatial co-ordinates because they are
measured on the same unit [28].

The model was fitted using the penalized iteratively re-
weighted least squares (P− IRLS), while the optimal amount
of smoothing was estimated using the UnBiased Risk Esti-
mator (UBRE) [28]. All analyses were conducted using the
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mgcv package [28] from the R statistical and programming
environment [32].

IV. RESULTS

Now that we can generate the probability function of
residential burglaries through the GAM model, which cut-off
value θ should be used to classify high-risk areas and which
spatial scale provides a useful forecast? In practice, the choice
of the cut-off value is mostly left to law enforcement agencies
who choose a cut-off value based on the available resources
and their risk preferences. Some of them choose a cut-off value
of 0.8, others select areas based on the top 3% or the top 5%
percentiles to classify areas as high-risk areas. However, the
use of a hard cut-off value as 0.8 strongly depends on the
estimated probabilities. In our case, this will result in a clear
under-estimation of risk areas. If one decided to use a fraction
of top percentiles, then this should be at least equal to the
expected percentage of incidents. Elsewhere, the risk areas will
be undoubtedly under-estimated.

Considering our training set, the average incidents (binary)
over the five years, ranging between 2008 and 2012, was about
8.3%. This means that on average 151 grids, from the total
grids of 1,812, should be considered as risky grids. Using the
97% percentile results in considering only 55 grids as high-risk
areas. Doing this, we know apriori that we are under-estimating
the risk areas. Some people will argue that the given resources
do not allow to cover this high number of grids. In our point
of view, from a safety perspective, the grids that should be
flagged as high-risk areas should at least match the expected
grids with incidents and should be independent of the available
resources. After classifying the areas as high-risk areas, smart
allocation methods can be used to cover the risk areas using
the available resources.

Given the estimated probability distribution, the optimal
cut-off (the average) considering the different neighborhoods
(θ1 = 0.171) and the optimal cut-off at the grid level (θ2 =
0.126) were further used to classify areas as high-risk areas.
The reason of using both cut-off values is because the optimal
cut-off on grid level was quite different from the optimal cut-
offs that correspond to the other neighborhoods.

The generated heat maps of January and April are given
in Figure 3. From this figure, a clear difference is observed
in the number of grids that are flagged as high-risk grids.
In fact, more incidents are expected in January compared to
April. Therefore, the predicted high-risk area in January is
larger compared to the one in April. The heat maps also show
that most realizations were located within the high-risk area
or within their lower bounds.

In January, more incidents are expected compared to April,
this is in agreement with historical data (see Figure 2). The
heat maps also show that most realizations are located within
the high-risk area or within its lower bound.

V. CONCLUSION

In this research, we developed a GAM model to predict
the probability distribution of residential burglaries. The results
show that the covariate TL3, the total incidents in the grid and
its neighborhood in the last three months, has a dominant effect

in the model. Apparently, this covariate captures a large part of
the spatio-temporal effect in residential burglaries. Moreover,
a small part of the variation in the data was captured by the
model. The low power of the model may be due to the high
resolution of the data used.

Finally, θ1 and θ2 were used to assess the performance
of the model and these cut-offs were compared with the cut-
off obtained for the maximum performance. Results show
that both values provide similar results to the maximum
performance observed, while the cut-offs that correspond to
the maximum performance considering the different metrics
cover a wide range, which can be difficult to interpret from a
decision-making point of view.
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(a) January predictions using θ1. (b) January prediction using θ2.

(c) April predictions using θ1. (d) April predictions using θ2.
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