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The logical depth of a reversible Turing machine equals the shortest running time 
of a shortest program for it. This is applied to show that the result in [1] is valid 
notwithstanding the error noted in Corrigendum [7].
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1. Introduction

A book on number theory is difficult, or ‘deep.’ The book lists a number of difficult theorems of number theory. However, 
it has very low Kolmogorov complexity, since all theorems are derivable from the initial few definitions. Our estimate of 
the difficulty, or ‘depth,’ of the book is based on the fact that it takes a long time to reproduce the book from part of the 
information in it. The existence of a deep book is itself evidence of some long evolution preceding it.

The logical depth of a (finite) string is related to complexity with bounded resources and measures the tradeoff between 
program sizes and running times. Computing a string x from one of its shortest programs may take a very long time, but 
computing the same string from a simple “print(x)” program of length about |x| bits (the length of x) takes very little 
time.

Logical depth as defined in [4] for a string comes in two versions: one based on the compressibility of programs of 
prefix Turing machines and the other using the ratio between algorithmic probabilities with and without time limits. Since 
both are approximately the same ([5, Theorem 7.7.1] based on [4, Lemma 3]) it is no restriction to use the compressibility 
version.

The used notions of computability, resource-bounded computation time, self-delimiting strings, big-O notation, and Kol-
mogorov complexity are well-known and the properties, notations, are treated in [5].
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2. Preliminaries

All Turing machines in this paper are prefix Turing machines. A prefix Turing machine is a Turing machine with a one-way 
read-only program tape, an auxiliary tape, one or more work tapes and an output tape. All tapes are linear one-way infinite 
and divided into cells capable of containing one symbol out of a finite set. Initially the program tape is inscribed with an 
infinite sequence of 0’s and 1’s and the head is scanning the leftmost cell. When the computation terminates the sequence 
of bits scanned on the input tape is the program. For every fixed finite contents of the auxiliary tape the set of programs 
for such a machine is a prefix code (no program is a proper prefix of another program). Let T0, T1, . . . be the standard 
enumeration of prefix Turing machines. A universal prefix Turing machine simulates every prefix Turing machine given its 
index number. We also require it to be optimal which means that the simulation program is as short as possible. We choose 
a reference optimal universal prefix Turing machine and call it U .

The prefix Kolmogorov complexity is based on the prefix Turing machine similar to the (plain) Kolmogorov complexity 
based on the (plain) Turing machine. Let x, y be finite binary strings. The prefix Kolmogorov complexity K (x|y) of x with 
auxiliary y is defined by

K (x|y) = min
p

{|p| : U (p, y) = x}.

If x is a binary string of length n then K (x|y) ≤ n + O (log n). Restricting the computation time resource is indicated by a 
superscript giving the allowed number of steps, usually denoted by d. The notation U d(p, y) = x means that U (p, y) = x
within d steps. If the auxiliary string y is the empty string ε , then we usually drop it. Similarly, we write U (p) for U (p, ε). 
The string x∗ is a shortest program for x if U (x∗) = x and K (x) = |x∗|. A string x is b-incompressible if |x∗| ≥ |x| − b.

3. Reversible Turing machines

A Turing machine behaves according to a finite list of rules. These rules determine, from the current state of the finite 
control and the symbol contained in the cell under scan, the operation to be performed next and the state to enter at the 
end of the next operation execution.

The device is (forward) deterministic. Not every possible combination of the first two elements has to be in the set; in 
this way we permit the device to perform no operation. In this case we say that the device halts. Hence, we can define a 
Turing machine by a transition function.

Definition 1. A reversible Turing machine [3,2] is a Turing machine that is forward deterministic (any Turing machine as 
defined is) but also backward deterministic, that is, the transition function has a single-valued inverse. The details of the for-
mal definition are intricate [3,2] and need not concern us here. This definition extends in the obvious manner to multitape 
Turing machines.

In [3] for every 1-tape ordinary Turing machine T a 3-tape reversible Turing machine Trev is constructed that emulates 
T in linear time such that with input p the output is Trev(p) = (p, T (p)). The reversible Turing machine that emulates U is 
called U rev.

Definition 2. Let x be a string and b a nonnegative integer. The logical depth of x at significance level b is

depthb(x) = min
{

d : p ∈ {0,1}∗ ∧ U d(p) = x ∧ |p| ≤ K (p) + b
}

,

the least number of steps to compute x by a b-incompressible program.

Theorem 1. The logical depth of a string x at significance level b ∈N for reversible Turing machines is equal to

depthrev
b (x) = min

{
d : p ∈ {0,1}∗ ∧ U d

rev(p) = (p, x) ∧ |p| ≤ K (x) + b
}

,

the least number of steps to compute (p, x) by U rev from a program of length at most K (x) + b.

Proof. Since a reversible Turing machine is backwards deterministic, and an incompressible program cannot be computed 
from a shorter program, the length of an incompressible program with b = 0 for x can only be the length of a shortest 
program for x. The logical depth at significance b is then the least number of steps to compute x by U rev from a program p
of length at most K (x) + b. �
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4. The rate of decrease of logical depth

In Corrigendum [7] the following is observed: In [1, Section 4] it is assumed that, for all x ∈ {0, 1}∗ , the string x∗ is the 
only incompressible string such that U (x∗) = x. That is, logical depth resembling the one according to Theorem 1 is used. 
However, this assumption is wrong for general Turing machines in that for many x there may be an incompressible string 
p with |x| ≥ |p| > |x∗| such that U (p) = x. The computation of U (p) = x may be faster than that of U (x∗) = x. For example, 
the function from x ∈ {0, 1}∗ to the least number of steps in a computation U (p) = x for an incompressible string p may 
be computable. The argument in the paper is, however, correct for the set of reversible Turing machines. These Turing 
machines are a subset of the set of all Turing machines [3,2] and emulate them in linear time. This implies the correctness 
of [1, Theorem 2] as we shall show.

Lemma 1. Let ψ be defined by

ψ(n) = max|x|=n
min

d
{d : U d

rev(x∗) = (x∗, x)}.

Then ψ is not computable and grows faster than any computable function.

Proof. If a function ψ as in the lemma were computable, then for an x of length n we could run U rev emulating U [3]
forward for ψ(n) steps on all programs of length n + O (log n). Among those programs that halt within ψ(n) steps, we could 
select the programs p which output (p, x). Subsequently, we could select from that set a program p of minimum length, 
say x∗ . Such a program x∗ has length K (x) since U rev is emulating U . This would imply that K would be computable. But 
the function K is incomputable [6,5]: contradiction. Therefore ψ cannot be computable. Since this holds for every function 
majoring ψ , the function ψ must grow faster than any computable function. �
Corollary 1. The set of reversible Turing machines is a subset of the set of all Turing machines. The emulation of U (p) by U rev(p) is 
linear time for all binary inputs p by [3]. Therefore, replacing in the lemma U rev by U changes ψ(n) to φ(n) = �(ψ(n)). Hence the 
lemma holds with ψ replaced by φ and U rev by U . This gives us [1, Lemma 1] and therefore [1, Theorem 2] (the Busy Beaver upper 
bound is proved as it is in [1]):

Theorem 2. The function

f (n) = max
|x|=n, 0≤b≤n

{depthb(x) − depthb+1(x)}

grows faster than any computable function but not as fast as the Busy Beaver function.

(The statement of [1, Theorem 2] contains a typo “x :” which should be deleted and the superscript “(2)” is (can be) omitted here.)
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