
Model Checking of Component Connectors

Mohammad Izadi

Model Checking of Component Connectors

proef schrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden,

op gezag van de Rector Magni ficus prof. mr. P.F. van der Heijden,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 6 december 2011

klokke 13:45 uur

door

Mohammad Izadi

geboren te Najafabad (Iran)

in 1972

Promotiecommissie

Promotors:

Co-promotor:
Overige !eden:

>

"· ,,
.,.-".f>:, .. ,;,s t ' ,ie,~ ~'

Prof. Dr. Farhad Arbab
Prof. Dr. Ali Movaghar (Sharif University of Technology, Iran)
Dr. Marcello M. Bonsangue
Prof. Dr. Joost N. Kok
Prof. Dr. Frank de Boer
Dr. Natallia Kokash
Dr. Marjan Sirjani (Reykjavik University, Iceland)

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics).

Copyright © 2011 Mohammad Izadi
IPA Dissertation Series 2011-22

To my faithful lovely wife,
Faeze

and for our beloved children,
our daughter, Negar
and our little son, Nikan

Contents

1 Introduction
1.1 Research Context and Main Question
1.2 This Thesis
1.3 Related Work
1.4 Thesis Outline, Contributions, and Results
1.5 Research History and Publications

2 Context and Backgrounds
2.1 Component Based Systems and Coordination
2.2 Formal Verification and Its Methods

2.2.1 Deductive Verification
2.2.2 Model Checking
2.2.3 Combining Deduction and Model Checking .

2.3 Advanced Techniques of Model Checking . .
2.3. 1 Automata Theoretic Model Checking
2.3.2 On-the-Fly Model Checking
2.3.3 Symbolic Model Checking .
2.3.4 Compositional Minimization

2.4 The Rules of Temporal Logics . . .

3 Formal Modeling of Component Connectors
3.1 Reo: A Channel Based Coordination Language

3.1.1 Reo Primitives
3. 1.2 Compositional Connectors ..

3.2 Basic Theory of Constraint Automata
3.2.1 Timed Data Streams
3.2.2 Constraint Automata: the Operational Semantics of Reo
3.2.3 Composing of Constraint Automata

3.3 Other Semantic Models for Reo
3.3. I Co-algebraic Model of Connectors .
3.3.2 Connector Coloring Models
3.3.3 Intentional Automata
3.3.4 Guarded and Reo Automata
3.3.5 Process Algebraic and Structural Operational Semantics

1
2
3
4
6
9

13
14
16
17
17
18
19
19
20
21
22
22

25
26
26
27
29
29
31
33
37
37
38
38
40
41

3.4 Tool Support for Reo . 41

4 Fair Component Connectors
4. I Introduction
4.2 Streams and Languages of Records

4.2. I Bidirectional Translation of Record and TDS-Languages
4.3 Biichi Automata of Records

4.3. I Biichi Automata: A Review
4.3.2 Biichi Automata on Streams of Records
4.3.3 Recasting Constraint Automata into Biichi Automata

4.4 Modeling Fair Reo Connectors
4.5 Composition of Biichi Automata of Records

4.5.1 Product and Join .. .
4.5.2 Splitting the Join .. .
4.5.3 Hiding of Port Names

4.6 Fair Constraint Automata . .

5 Context Dependent Connectors
5. I Introduction .
5.2 Guarded Languages and Augmented Biichi Automata
5.3 Modeling Reo connectors by ABARs
5.4 Composing ABAR Models . .

5.4. I Product and Join ...
5.4.2 Hiding of Port Names
5.4.3 Splitting the join ...

5.5 Context Dependent Fair Constraint Automata

6 Model Checking
6.1 Record-based linear-time temporal logic

6.1.1 Some useful encodings
6.1.2 Specifying Reo connectors . ..

6.2 From formulas to automata: model checking .
6.3 On-the-fly translation

6.3.1 A description of the algorithm
6.3 .2 The algorithm in detail
6.3.3 The ABAR defined by the algorithm .
6.3 .4 Proof of the correctness

7 A Reo Model Checker
7 .1 Binary Decision Diagrams
7.2 Encoding ABARs as BDDs .

7.2.1 Symbolic Join
7.3 Property Specification by BOD
7.4 A symbolic model checking algorithm
7 .5 Experimental results

II

43
44
50
51
52
53
56
60
61
62
63
67
70
71

75
76
77
80
84
84
85
90
91

95
96
98
99

101
106
106
108
110
111

115
I 16
119
122
125
126
128

7.5.1
7.5 .2
7.5.3

Dining philosophers
Mutual Exclusion .
Discussion .

8 Compositional Reduction
8.1 Introduction
8.2 Failure based equivalence of constraint automata
8.3 Congruency Results for Joining of Constraint Automata .
8.4 Congruency Results for Hiding Names
8.5 Linear Temporal Logic of Constraint Automata
8.6 Reduction Algorithms
8.7 Compositional Model Checking
8.8 Case studies

9 Conclusions and Future Work
9.1 Results and Conclusions
9.2 Future Work

Appendices

A Abstract

B Samenvatting (dutch)

C Curriculum Vitae

iii

128
130
132

135
136
137
140
144
147
152
154
157

163
164
164

179

179

181

183

List of Figures

3.1 Some useful channel-types in Reo . 27
3.2 Exclusive router (a) ~nd shift-lossy (b) channels designed by primitive chan-

nels ofReo [19] . 29
3.3 Constraint automata for some basic channels in Reo [30] ...
3.4 Joining of constraint automata models of two FIFO I channels
3.5 Hiding of port Bin constraint automaton of Figure 3.4(c) ..
3.6 Intentional automaton model of a synchronous channel [52].

32
35
36
39

4.1 A Biichi automaton for Lin Example 4.10 53
4.2 A Bilchi automaton for Lin Example 4.10 54
4.3 A generalized Bilchi automaton with the set of accepting sets F = { { q1 } , { q2 } }. 55
4.4 BAR models of basic Reo channels: a) Sync channel b) SyncDrain channel,

c) Filter channel, (d) ND-LossySync channel, and (e) FIFO) channel. 57
4.5 A duplicator channel and its BAR model 58
4.6 An (unfair) merger channel and its BAR model 58
4.7
4.8

Two visibly equivalent Biichi automata of records. 59
Models of a non-deterministic lossy synchronous channel by a) a constraint
automaton and b) a Bilchi automaton of records. 60

4.9 Models of a fair non-deterministic lossy synchronous channel with a) a weak
fairness condition, b) a strong fairness condition. 62

4.10 Models of a merger connector: (a) unfair version, (b) fair version 63
4.11 Composing two FIFO I channels 65
4.12 Direct and indirect joining of two FIFO I buffers 68

71
71

4.13 The resulting BAR after hiding B in Figure 4.12(e).
4.14 The resulting BAR after eliminating T-transitions in Figure 4. 13.

5.1
5.2
5.3

5.4

A BAR model of a FIFO2 channel and its canonical ABAR. . . 80
Three ABAR models of the context dependent lossy synchronous channel 82
The ABAR model of a fair closed system of a context dependent lossy syn­
chronous channel and its environment . 83
Models for a Reo synchronous channel (Sync) from source node B to sink
C: (a) Its BAR model; (b) The canonical ABAR model for (a); and (c) The
more explicit ABAR model. ... 83

V

5.5 The composition of the ABAR models of a context dependent lossy syn­
chronous channel and a synchronous channel 86

5.6 The composition of two context dependent lossy synchronous channels. . . . 87
5.7 The composition of a context dependent lossy synchronous channel with a

FIFO I channel. 88
5.8 The composition of a FIFOI channel with a context dependent lossy syn-

chronous channel. 89
5.9 The composition of a synchronous channel with a FIFO l channel. . . 89
5.10 The composition of a FIFOl with a synchronous channel. 90
5. l I Direct and indirect joining of two FIFO I buffers modeled by ABARs . 91

6.1 ABAR models of some basic Reo connectors: (a) Sync channel, (b) Context-
Dependent LossySync channel , and (c) FIFO I channel. I 00

7. I Binary decision tree for switching function f = z1 I\ (-,Z2 V z3) [29). . I 17
7.2 Binary decision diagram for switching function J = z1 I\ (-,z2 V z3) [29). 118
7.3 A synchronous channel and its ABAR model 120
7.4 BDD representation of a synchronous channel: (a) ports, (b) states, initial

states, final states and (c) transition relation 121
7.5 (a) FIFO l channel, (b) its ABAR model, and BDD representation of (c) ports

and stales, (d) initial states and final slates and (e) Lransition relation I 23
7.6 (a) Join of a synchronous channel and a FIFO I channel, (b) its ABAR and

BOD representation of (c) ports, (d) states, initial states, final states and (e)
transition relation. 124

7.7 (a) A Biichi automaton and (b) an ABAR for (r)(A I\ B) 126
7.8 BDD representation for the ABAR equivalent of (r) (A I\ B) (a) states, (b)

initial states, (c) final states, and (d) transition relation. 127
7.9 ABAR models of some Reo channels where 1) = { d}. 129
7. IO Coordination pattern for two philosophers in the dining philosophers problem 130
7.11 Behavior of a philosopher in ABAR terms 130
7.12 Coordination pattern for two processes in mutual exclusion fork = l 131
7 .13 Behavior of a process in ABAR terms 132

8.1 (a) Dining philosophers scenario in Reo and (b) a chopstick, (c) minimized
constraint automaton for a chopstick and (d) a philosopher 155

8.2 (a) A resource allocation system, (b) constraint automaton model of a pro-
cess, (c) constraint automaton model of the coordinator 157

8.3 Inres protocol architecture (the connectors are Reo primitive channels) 158

VI

List of Tables

6.1 Definitions of N ew1 , N e'LV2 and N ext1 functions. 108

7.1 State space generation results for the dining philosophers problem 129
7.2 Model checking time (sec) for n dining philosophers 131
7.3 State space generation results for the mutual exclusion problem . 132
7.4 Model checking time (sec) for the mutual exclusion problem 132

8.1 Number of reachable states for the lnres protocol system . . . 159
8.2 Number of reachable states for the resource allocation system. 160

vii

Introduction

2 1. Introduction

The concept of component based systems, especially component-based software, is a new
philosophy or way of thinking to deal with the complexity in designing large scale comput­
ing systems[13, 135). One of the main goals of this approach is to compose reusable compo­
nents by some glue codes. The model according to which these components are composed is
called coordination model. Coordination languages are specification languages for coordina­
tion models. Reo is a coordination language which is based on a calculus of channels [13).
By using Reo specifications, complex component connectors can be organized as a network
of channels and built in a composi tional manner.

In this thesis, we investigate the forma l verification of properties of Reo coordination
models. The main question we address is: how can the desired properties of a coordination
model specified in Reo be formally verified. In particular, the problem is interesting if the
state space of the model is very large. To answer this question, we investigate an automata­
theoretic model checking method for Reo specifications in the presence of the state explosion
problem. In this way we first propose a formal semantics of Reo based on a generalization of
the standard notion of Bi.ichi automata and containing some ideas from constraint automaton
(the first operational model for Reo [30)) . In the following section, we introduce the context
of this research and the main questions more precisely. Also, in the forthcoming sections, we
introduce our main thesis and its motivations and a history of the research in this fie ld. In
the last section of this chapter, we introduce the outline of the thesis and for each chapter its
contributions.

1.1 Research Context and Main Question

The work of this thesis is categorized under the computer science fields of formal verifica­
tion and coordination systems. In fact, this thesis introduces a formal verification framework
for coordination systems in particular and for component-based systems in general. Let us
introduce these fields briefly.

A system that consists of a set of independent computing components and a coordinating
subsystem is called a component based system. Coordination is defined as the study of the
dynamic topologies of interactions among concurrent programs, processes and components
of a system, with the goal of finding solutions to the problem of managing these interac­
tions [12) . To be more precise about the coordination systems, we need to model or express
the coordination strategies using some kind of modeling formalism or language. There exist
many coordination models and languages in the literature [120). In this thesis we concentrate
on the coordination language Reo, that is, an exogenous coordination language which can
specify coordination of a set of components through networks of channels or compositional
connectors built out of primitive ones [13) .

The main goal of verification methods is trying to ascertain that an actual system or pro­
gram satisfies its requirements. In formal verification one tries to achieve the aim of veri­
fication by describing the system using a mathematical model, expressing the requirements
as properties of this model and by showing through rigorous mathematical reasoning that the
model of the system indeed has the required properties [50, 110) . There are two main methods
for formal verification: deductive verification (theorem proving) and model checking. In de-

1 .2. This Thesis 3

ductive verification, the system to be proved correct is described by a set of formulas called
axioms. The process of verification is to derive a proof of the desired correctness property
based on the set of axioms. In model checking, the system to be proved correct is modeled
hy a kind of finite transition system and the desired property is expressed hy a formula in a
formal language such as the language of a temporal logic. The process of verification is to
check all of the state space of the model for the satisfaction of the property's formula. In this
thesis we will consider verification methods that fall into the field of model checking, because
they can be fully automated and hence more suitable for an implementation.

Thus, our main question or goal is to find a model checking verificationframeworkfor co­
ordination systems specified by Reo. For this aim, the coordination systems specified by Rco
should be modeled by some sort of an operational (transition systems-based) model. There
are a number of operational semantic models for Reo, such as constraint automata [30] , inten­
tional automata [52] and Reo automata [36, 37]. However, these models have shortcomings
in fully expressing some aspects of coordinations such as synchronization of 1/0 operations,
context dependency, and fairness constraints or are not very suitable for model checking.
Therefore, we present a new operational semantics for Reo called Biichi automata of records
(BAR) and its augmented versions.

When the modeling formalism is a sort of automata on infinite objects (such as Biichi
automata on infinite strings which is our selected formalism) , the most suitable model check­
ing method is that of automata theoretic model checking. In this method, the negation of the
desired property is expressed by an automaton (directly or after translation from formulas of
a temporal logic such as LTL) and the emptiness of the language of the (intersection) product
of the two automata (system and property automata) is checked.

The model checking process can suffer from the problem of state explosion since the
model of the system tends to be extremely large. We select two independent methods to
tackle this problem. The first is to implement the state space symbolically using ordered
binary decision diagrams (OBDD) and running the model checking algorithm over them, a
method called symbolic model checking. The other is to minimize the models based on some
proper equivalence relations, called compositional minimization. Also, when we obtain the
property automaton from translation of linear temporal logic formulas, the translation can be
done not only inductively but also by using an on-the~fiy method.

1.2 This Thesis

In this thesis, we present a framework for automata theoretic model checking of coordination
systems specified in Reo. As an operational modeling formalism that covers several intended
behaviors of Reo connectors such as fairness, I/0 synchronization, and context dependency,
we introduce Biichi automata of records (BAR) and their augmented version (ABAR). We
show that every constraint automaton (the first introduced operational semantics of Reo) can
be translated into an essentially equivalent BAR. However, there are some Reo connectors'
behaviors expressible by BAR 's that constraint automata are not able to express.

To specify the properties to be verified, we introduce an action based linear temporal

4 1. Introduction

logic called p-LTL interpreted over the executions of augmented Biichi automata of records
and show how its formulas can be translated into their equivalent ABAR's. The translation
can be done inductively or by using an on-the-fly method. To deal with the large state spaces,
we show that ABAR's can be implemented using ordered binary decision diagrams (OBDD)
as their dense data structures. For this purpose, we also introduce the necessary modifications
over the basic model checking algorithm that can be applied directly over OBDD structures.
The implementation and case studies show the applicability of our method over large state
spaces.

We also show that the state explosion problem can be tackled by compositional mini­
mization methods using some suitable equivalence relations. To this aim, we show that two
failure based equivalence relations called CFFD and NDFD are congruence relations with
respect to product and hiding operators of constraint automata. Therefore, based on the con­
gruency results and because of the linear time temporal logic preservation properties ofCFFD
and NDFD equivalences and their minimality properties, they can be used for compositional
minimization of constraint automata models in the field of model checking. The method is
applied on some practical case studies.

1.3 Related Work

Reo [13] is a coordination language based on connectors for the orchestration of components
in a component based system. Primitive connectors such as synchronous channels or FIFO
queues are composed to build circuit-like component connectors which exhibit complex be­
havior and play the role of glue code in exogenously coordinating the components to produce
a system.

In contrast to many connector languages for components that focus on stateless connec­
tors in a control flow setting (e.g . BIP [33]), Reo generalizes dataflow networks and Kahn
networks because it allows to express behavior including state-based, context dependent,
multi-party synchronization and mutual exclusion. The original description ofReo was purely
informal [13] and no formal semantics for it existed. Subsequently, a number of models were
developed to capture the desired behavior of Reo connectors and of their composition. These
include models based on constraint automata [30], timed data streams (also known as abstract
behavioral types) [27], connector colouring [47], structural operational semantics [I 16], lin­
ear logic [46] and intentional automata [52] . None of these models, however, is entirely
satisfactory. Timed data streams model the possible data flow of a network, but because of
their declarative nature they have no support for model checking. All other models are more
operational and more suitable for analysis techniques, but either they do not give the desired
semantics for certain connectors, or they suffer from technical problems such as not being
able to give semantics to all connectors, or both .

Constraint automata [30] are acceptors of timed data streams, but are much more con­
crete and suitable for model checking analysis . A constraint automaton is a labeled transition
system in which each transition label contains two parts: a set N of port names that are syn­
chronized if the transition is taken and a proposition g on the data. The latter acts as constraint

1 .3. Related Work 5

on data that can be communicated through the ports in N. The data flowing through the ports
in N is mutually exclusive with respect to any communication by a port not in N.

Two specific shortcomings or modeling Reo by constraint automata, for example, are
that it cannot model desired fairness constraints and it cannot model operations that depend
upon pending I/0 operations on the communication ports of a connector. This latter feature
is called context dependency, which occurs when the behavior of a connector can change
depending upon not only the presence of requests on a connector boundary, but also on their
absence. In such cases, the behavior of a connector can change dramatically with changing
context. Both connector coloring and Reo automata [37) address the context dependency
issue, but connector coloring does not include a description of the temporal unfolding of a
Reo connector, and Reo automata do not address fair behaviors. Both models are incomplete
in that they cannot give semantics to many reasonable connectors.

Because Reo is one of the most recently proposed coordination languages, there are only
a few works on formal verification of the properties of coordination systems specified in
Reo. Selecting the formal verification techniques depends on the choice of the formal se­
mantics of Reo. Algorithms for verifying Reo specifications on the basis of their constraint
automata semantics have been presented in [30) for checking (bi)simulation and language
equivalence and in [17, 18, 45] for temporal logic specifications. In [17, 18) a timed version
of constraint automaton was presented and the problem of model checking of timed CTL
for it was considered. In [88 , 89), timed constraint automata also have been considered as
the modeling formalism in presenting a SAT-based approach for bounded model checking of
real-time component connectors. The main theme of the work presented in [44, 45) is reason­
ing about the reconfigurability of Reo networks using CTL like temporal logics and model
checking techniques. Also, there is a work on symbolic model checking of a CTL-like tempo­
ral logic (called BTSL temporal logic) for constraint automata using ordered binary decision
diagrams (OBDD) [99, 98). The implemented tool based on this work is called Vereofy [7] .
The common features of all of the above mentioned works on verification of Rco networks
and constraint automata are: I- They suppose that all components of the whole system that
we need to verify, can be modeled by constraint automata and 2- The temporal logics they
use for specification of the properties arc branching time. The reconfigurability of Rco net­
works through algebraic graph transformations and their model checking using the behavioral
specification language mCRL2 [61], based on their constraint automata semantics have been
considered in [95) and [91 , 94).

Compositional verification has been used in a variety of different ways in the analysis of
models of concurrency. Clarke et al. in [51] used interface processes to model the environment
for a component. They modeled systems as finite transition systems and used CTL to specify
their properties. There are some works on compositional verification of systems modeled by
I/0 automata [I 06, 117). Failure based equivalence checking is a technique for compositional
verification in which, the goal is to construct a reduced state space that is equivalent to the
full state space in the sense of some process-algebraic equivalences (for more theory and
references see [139, 140)). There are some experiments on compositional minimization of
state spaces using failure based equivalences, such as [105, 86, 141 , 142]. One of the main
common features of all of these works is that all components of the actual system should
be modeled by a general labeled transition system and there is no distinction between the
components and the connectors and their properties which we need to verify. For more details

6 1. Introduction

on this method of verification and also some of the experimental results see [140) .
There are some tools for describing and then minimizing labeled transition systems, such

as the ARA tool set and its most recent version TVT designed in Tampere University of
Technology in Finland [151]. One of the most useful tool sets for this purpose is CADP
designed in INRIA, France [I]. It contains many useful components for modeling, analysis
and minimization of labeled transition systems and it is free for academic use. For the purpose
of model checking, there are some tool sets that are specially successfully used in analysis of
real systems, like NuSMV [4] and Spin [6]. The NuSMV system is a tool for checking finite
state systems against their specifications in the temporal logics LTL and CTL. It uses the
symbolic model checking technique on the ordered binary decision diagrams (OBDDs). Spin
is a widely distributed software package that supports the formal verification of distributed
systems. It uses a high level language for specifying systems descriptions, called Promela,
and LTL is its specification language.

1.4 Thesis Outline, Contributions, and Results

This thesis proceeds as follows:

• In the last section of this chapter, we review our own research leading to this thesis. In
this way, we introduce the publications on which this thesis is based.

• In chapter 2, we introduce the context and the background of the thesis . We briefly
introduce the notions of component based systems and coordination. The problem of
formal verification of reactive systems and its solution methods, namely, deductive ver­
ification, model checking and their combinations are introduced. Also, the method or
automata theoretic model checking and a set of advanced techniques of model checking
to deal with the problem of state explosion, including on-the-fly and symbolic model
checking and equivalence based compositional reduction, are presented. In addition,
we introduce the framework of temporal logics in the context of the linear or branch­
ing time views and explain shortly the reason for selecting the linear time view as our
logical framework in this thesis.

• In chapter 3, we describe the Reo coordination language and the theory of constraint
automata as an operational semantics for Reo that is suitable for model checking. In
this chapter, we also briefly describe the other semantic formalisms that have been
introduced for Reo, including co-algebraic models, connector coloring, intentional au­
tomata, guarded and Reo automata, process algebraic and structural operational seman­
tics.

• In chapter 4, we introduce Biichi automata of records and unconditional fair constraint
automata as alternative models for the operational semantics of Reo. We compare their
expressiveness with respect to the original model of constraint automata discussed in
the previous chapter. In addition, we review some shortcomings of constraint automata
and of their timed data streams based semantics in modeling component connectors and

1 .4. Thesis Outline, Contributions, and Results 7

motivate the use of records and Btichi automata of records as operational semantics for
Reo:

We introduce records as data structures for modeling the simultaneous executions
of events: ports in the domain of the record are allowed to communicate simul­
taneously the data assigned to them, while ports not in the domain of the record
are blocked so that no communication can happen. The behavior of a network
of components is given in terms of (infinite) sequences of records, to specify the
order of occurrences of the events. In addition, streams and languages of streams
of records are introduced.

We give a bidirectional translation ofTDS-languages (that are used as the seman­
tics of constraint automata) and record-based languages.

The notion of Biichi automaton of records (BAR) is introduced and it is shown that
each constraint automaton can be translated into a Btichi automaton of records.

We show that BAR's can be used to model Reo connectors, in particular connec­
tors with some fairness conditions on their behaviors, using some examples. This
proves that BAR's are semantically more expressive than constraint automata.

We introduce a join composition operator for Biichi automata on streams of
records and show that it is correct with respect to the join operator for constraint
automata.

Also, we present a method to recast the join operation on BAR's using the stan­
dard product operator of Btichi automata.

We introduce a more expressive version of constraint automaton, called.fair con­
straint automaton, whose syntax is the same as constraint automaton but now with
final (accepting) states and its semantics is based on the languages of streams or
records.

• In chapter 5, in order to address context-dependent behaviors, we extend our BAR
models with the possibility of testing if some ports of the environment are ready to
communicate or not. That is, we consider a Biichi variant of Kozen 's finite automata
on guarded strings [JOO] which we call augmented Biichi automata of records (ABAR) .
Our model has an advantage over previous models in that it covers the basic concepts
of Reo as well as the context sensitive behavior within a standard automata theoretical
framework . The benefits are a clear and easy notation for the representation of a com­
ponent connector, as well as efficient existing tool support for automatic analysis . The
chapter introduces the following notions and results:

We introduce augmented Btichi automata of records (ABAR) as acceptors of in­
finite guarded strings of records.

We show that in addition to the fairness constraints, the context-dependent behav­
ior of Reo connectors can be modeled using ABAR.

We introduce a join composition operator for augmented Btichi automata on
streams of records .

8 1 . Introduction

- Also, we present a method to recast the join operation on ABAR's using the
standard product operator of Biichi automata.

We introduce a context dependent version of fair constraint automaton, called
augmented fair constraint automaton, with the same syntax as constraint automa­
ton but now it has final (accepting) states and labels on slates and with a semantics
based on languages of infinite guarded strings of records.

• In chapter 6, we present an automata theoretic method of model checking for coordi­
nation systems modeled by ABAR's. For this aim, we follow the following steps:

- First, we introduce an action (or transition) based linear temporal logic (called
pLTL) interpreted over computations of ABAR's.

- Then, we show that pLTL formulas can be translated into ABAR's using an in­
ductive translation method.

- Also, we present an on-the-fly method to translate pLTL formulas into ABAR's.

• In chapter 7, we introduce the main theoretical and practical concepts we used to imple­
ment a BOD based model checking tool for Reo specifications. This implementation is
based on the augmented Biichi automata of records semantic models introduced in the
previous chapters. Moreover, this tool accepts properties expressed in the pLTL linear
temporal logic as input and verifies the Reo specification against these properties. The
chapter also presents some case studies.

• In chapter 8, we investigate the method of equivalence based compositional minimiza­
tion of models of Reo to deal with the state explosion problem in model checking. In
this method components of a system are reduced with respect to an equivalence re­
lation before building the complete system [60, 50, 79, 82). An equivalence relation
should have two properties in order to be useful in the equivalence based composi­
tional reduction method: it should preserve the class of properties to be verified and it
should be a congruence with respect to the syntactic operators that are used to compose
the components of the model. By congruence relation we mean that the replacement
of a component of a model by an equivalent one should always yield a model that is
equivalent with the original one. Fortunately, in the context of compositional failure
based semantic models of process description languages such as CCS and LOTOS,
there are two equivalence relations, called CFFD and NDFD [86, 141 , 142), that have
a significant property: CFFD-equivalence preserves the fragment of linear time tem­
poral logic that has no next-time operator and has an extra operator for distinguish­
ing deadlocks [141 , 142) ; and ND FD-equivalence preserves linear time temporal logic
without next-time operator [86). It was also shown that CFFD and NDFD are the min­
imal equivalences preserving the above mentioned fragments of linear time temporal
logic with respect to all composition operators of CCS and LOTOS [86). Thus, if we
use CCS-like composition operators, CFFD and NDFD equivalences can be suitable
equivalences for using in the context of equivalence based compositional reduction
method.

In chapter 8, we investigate the above mentioned results for the case of constraint au­
tomata. In other words, we consider the failure based semantics for constraint automata

1.5. Research History and Publications 9

as labeled transition systems with compound labels, instead of their timed data streams­
based semantics. Thus, we follow the following steps:

- First we define CFFD and NDFD equivalences for the case of constraint au­
tomata.

- We show that the temporal logic preservation results hold in the case of constraint
automata.

- We consider the congruency results and prove that:

* The failure-based equivalence relation CFFD is a congruence with respect to
the join operator of constraint automata.

* The failure-based equivalence relation CFFD is a congruence with respect to
the hiding operator of constraint automata.

* The failure-based equivalence relation NDFD is a congruence with respect
to the join operator of constraint automata.

* The failure-based equivalence relation NDFD is a congruence with respect
to the hiding operator of constraint automata.

- We show that the minimality properties of CFFD and NDFD also hold in the case
of constraint automata, that is, CFFD and NDFD are the minimal equivalences
preserving the above mentioned fragments of linear time temporal logic with re­
spect to the composition operators of constraint automata.

- Then, we introduce the compositional model checking method for component
based systems whose coordination subsystem and the interfaces of all compo­
nents are modeled by constraint automata.

- We introduce an implementation of the above mentioned method of model mini­
mization and show its usefulness in practice by summarizing the results of some
case studies.

• In chapter 9, we summarize our ideas and results and also suggest some research di­
rections that can be considered as future work based on this thesis.

1.5 Research History and Publications

As mentioned before, the goal of this thesis is to find a formal verification framework for
component based systems in general and for their coordination subsystems in particular. We
have chosen model checking of temporal logic properties as the verification method. From a
historical point of view, our research can be divided into four periods or steps:

• In the first step, our focus was on working on constraint automata as the operational
semantics of coordination systems and as the models of the interfaces of components.
Thus, in this phase, our aim was to prepare a compositional and hierarchal environ­
ment for model checking of linear time properties of constraint automata models in

10 1. Introduction

the presence of the state explosion problem. Our main ideas to do this were presented
in [82, 77]. To tackle the state explosion problem, we investigated two different solution
methods:

- Compositional minimization of models using suitable equivalence relations. For
this aim, in [79, 78] we introduced two failure-based equivalence relations CFFD
and NDFD as new semantics for constraint automata and our proposal for us­
ing them to reduce the size of models for model checking. We also proved that
CFFD and NDFD are congruences with respect to join and hiding composition
operators of constraint automata [75, 74]. Moreover, we showed that the temporal
logics preservation and minimality properties of CFFD and NDFD hold for the
case of constraint automata [76]. Based on these results, we introduced a method
for compositional model checking of component based systems, reduction algo­
rithms, and their implementations and application to case studies [76, 69] .

- As another way to deal with the state explosion, we considered abstraction tech­
niques. In this method, using some suitable mapping from a large state space into
a smaller one that preserves desired sets of linear temporal properties, we try _to
do model checking over the smaller model. A suitable mapping can be obtained
by reducing the number of state variables from the model whose state variables
are more to another one with less variables. Suitable mappings preserve linear
time fairness and liveness properties [69, 119, 118].

• In the second step, based on the shortcomings of constraint automata in modeling all
aspects of the behavior of connectors and the complication of their timed data streams
based semantics, we focused on presenting a new operational semantics for Reo and on
their model checking. Our main motivation in this phase was to use the classical theory
of Biichi automata and their model checking using translation of linear temporal logics
into automata [71, 73, 38, 72]. This step consisted of three phases:

- In the first phase, we focus on the shortcomings of constraint automata in model­
ing some fairness constraint over the behavior of connectors and also their com­
plicated timed data streams based semantics [71, 72]. To solve these problems:

* We introduced records as data structures for modeling the simultaneous exe­
cutions of events: ports in the domain of the record are allowed to communi­
cate simultaneously the data assigned to them, while ports not in the domain
of the record are blocked so that no communication can happen. The behav­
ior of a network of components is specified in terms of (infinite) sequences
of records, which give the order of occurrences of the events.

* Also, we introduced Buchi automata of streams of records (BAR) as the
operational semantics of coordination systems that cover the synchronization
of the I/O operations and several fairness constraints over the behav iors of
channels.

* We obtained a main result that every constraint automaton can be translated
into an essentially equivalent Biichi automaton of records.

1 .5. Research History and Publications 11

- In the second phase, we focused on the shortcomings of constraint automata in
modeling the context dependent behaviors of some connectors. We introduced
augmented Biichi automata of records (ABAR) which extend our BAR model
with the possibility of testing if some ports of the environment are ready to com­
municate or not. ABAR 's are defined as acceptors of infinite guarded strings of
records. We also introduced a composition operator for ABAR's and showed its
correctness with respect to the intended semantics by means of several examples.
Finally, we showed that our composition operator can be decomposed into two
operators: record extension and ordinary automata product [73, 72].

- In the third phase, we intended to do model checking of linear time properties of
ABAR models [38]. To this aim:

* We defined an action based linear time temporal logic for expressing proper­
ties of Reo connectors, called pLTL.

* We showed that pLTL formulas can be synthesized into Biichi automata rep­
resenting Reo connectors, thus leading to an automata based model checking
algorithm.

* By generalizing standard automata based model checking algorithms for lin­
ear time temporal logic, we gave both global (inductive) and on-the-fly algo­
rithms for the model checking of formulas for Reo connectors.

• In the third step, we implemented a tool set for model checking of Reo specifications
using all of the above mentioned results. Now, we have two implemented tools designed
independently based on the results of the two above steps. The first one, called ArQuVer
(Architecture Quality Verification tool), is a tool that is intended to prepare an environ­
ment for specification of software architectures using constraint automata and verifica­
tion of their properties, especially nonfunctional and qualitative properties of software
architectures. It contains components for minimization of constraint automata using
bisimulation, trace, CFFD and NDFD equivalence relations. The other, is a tool for
model checking of pLTL formulas over ABAR models. It implements the models us­
ing BDD data structure and checks the formulas directly over the BDD's. As a future
work, we will incorporate these tools into an integrated one. Some results of the first
tool were reported in [76. 69, 74]. For the other one, the first paper reporting our results
is currently under review.

• The fourth step which is our intended future work, is to extend our theoretical and
practical results into real-time and probabilistic coordination systems, using timed and
probabilistic extensions of our BAR and ABAR models. Recently, we have presented a
set of results on timed Biichi automata of records and the model checking of the linear
time properties [8] .

Context and Backgrounds

14 2. Context and Backgrounds

In this chapter, we introduce the context and the background of the thesis. In Section 2. I,
we briefly review the notions of component based systems and coordination . The problem
of formal verification of reactive systems and its solution methods, namely, deductive veri­
fication, model checking and their combinations are discussed in Section 2.2. Section 2.3 is
an overview of a set of advanced techniques for model checking, used in this thesis to deal
with the problem of state explosion. In Section 2.4, we describe the framework of temporal
logics in the context of the linear or branching time views and explain briefly the reason for
selecting the linear time view as our logical framework in this thesis.

2.1 Component Based Systems and Coordination

The concept of component based systems, especially component-based software, is a new phi­
losophy or way of thinking to deal with the complexity in designing large scale computing
systems[13, 135]. One of the main goals of this approach is to compose reusable compo­
nents by some glue code. The model or the way in which these components are composed is
called a coordination model. Thus, a component-based system has two main parts: a set of
components and a coordinating subsystem.

What are Components? A component is defined as a unit of computation that can be
used independently and is subject to composition by a third party [135]. To be used indepen­
dently, a clear distinction of the component from its environment and the other components
is required. Thus, the component communicates with its environment through its inte,face.
The interface of a component can be defined as a specification of its access points [135] .
Therefore, a component is a black box computing system that communicates with the other
components and its environment through its interface by which it offers its provided services.

What is Coordination? A component based system needs connections and interactions
among its components. The main goal of coordination is to manage the interaction among
the components. Thus, coordination can be defined as the study of the dynamic topologies of
interactions among components, and the construction of protocols to realize such topologies
that ensure well-behavedness [15] .

The task of coordination can be realized using different ways of communication, manage­
ment and control strategies, methods of creation and termination of computational activities,
and ways of synchronization of components. A set of definite choices for all of these different
aspects is referred as a coordination model.

Furthermore, a coordination language is the linguistic formalism that is used to specify
a coordination model. Thus , a coordination language offers facilities for the specification or
the ways of controlling synchronization, communication, creation and termination of compu­
tational activities, and other aspects of the coordination model.

There are many languages and models for coordination which provide formal description
of the glue code for plugging components together. Coordination models and languages can
be classified in different categories using (at least) three different aspects [15]:

2.1. Component Based Systems and Coordination 15

• Datajlow-oriented versus Control-oriented and Data-oriented Coordination. The task
of coordination can be realized by focusing on data, control or the dataflow in the
component based system. In other words, the coordinator can enforce its management
strategies over the whole system by focusing on the shared body of data and its evo­
lution or on processing and flow of control. The flow of control can generally be con­
sidered not only over the flow of data but also over the con trol points of components.
However, the flow of control can in particular, be considered only over the flow of data.
Coordination models that realize their strategies by focusing on data or on the !low
of control are called data-oriented and control-oriented coordination, respectively. In
particular, those that coordinate the system only by focusing on the flow of data arc
called datajlow-oriented [15, 120, 12). For instance, Linda [9, 41, 42) uses a data­
oriented coordination model, whereas Manifold [24) is a control-oriented and Reo [13)
is a dataflow-oriented coordination language.

• Exogenous versus Endogenous Coordination. A coordination model can consider the
components that are under its coordination as open or black-boxes. A coordination
model is called exogenous if its view about the components is that they are black­
boxes that the coordinator has no access to their internal structure and they should
be coordinated from outside. In contrast, an endogenous coordination model provides
a set of primitives that must be incorporated within the components [15) . For in­
stance, Linda [9, 41, 42) is based on an endogenous model, whereas Manifold [24]
and Reo [13) are exogenous coordination languages.

• Coordination Mechanisms. Based on the mechanisms of coordination and the medi­
ums through which the coordinator enforces its strategies, coordination models and
languages can he classified in the four categories [133, I 5):

- Coordination through massage passing. In this type of coordination, components
send messages to each other. The connections between componenis can be de­
fined (1) as a point-to-point model where each massage has a specific origin and
target, or (2) as a publish-and-subscribe model where a component can send a
message meant for any component having some kind of a specific service.

- Event-based coordination. In this mechanism, a component, called the producer
or event source, can create and fire events, the events are then received by other
components, called consumers or event listeners, that listen to this particular kind
of events [133).

- Coordination through shared data spaces. In this mechanism of coordination,
there is a set of shared data spaces that all components can read from or write val­
ues to with specific formats , usually tuples like in Linda [9, 41, 42]. This shared
data values contain both data and condition (control) fields. The coordination task
is realized by the predefined protocol of reading and writing over the shared data
spaces by the components.

- Channel-based coordination. A channel is a one-to-one connection that offers
two ends, its source and its si nk, to components. A component can write by in­
serting values to the source-end , and read by removing values from the sink-end

16 2. Context and Backgrounds

of a channel; the data exchange is locally one way: from a component into a
channel or from a channel into a component. The communication is anonymous:
the components do not know each other, just the channel-ends they have access
to [133, 15]. Reo is an instance of a specification language for the channel based
coordination models [13].

There are some more formal and mathematical specification or modeling formalisms
for coordination, such as interface automata [IO], 1/0 automata [106], and all of the op­
erational models introduced for Reo (13], namely constraint automata [30], our BAR and
ABAR models [71, 73, 72], timed constraint automata [17, 18], probabilistic constraint au­
tomata (28], stochastic constraint automata (31], intentional constraint automata [52] , Reo
automata (36, 37], and port automata (90, 96]. In a more fundamental view, each of these
formal models by itself can be used as a formalism for modeling coordination systems. Also,
according to a high level and very abstract view, all of these formalisms are fundamentally
labeled transition systems with some constraints, guards or classifications on their transitions.
But their expressive powers for modeling of coordination systems and also, in practice, their
efficiency as the specification tools in the context of verification and model checking are
different.

Reo is one of the most recent proposed coordination models. (The first paper on Rco was
published in 2002 (25].) Reo is a channel-based exogenous coordination language in which
complex coordinators are built out of simpler ones [13] . Reo is a dataflow-oriented channel
based exogenous coordination model, in which, the glue code is provided by a network of
channels obtained through a series of operations that create channel instances from a set of
primitive channels and link them in the network of nodes [13]. By Reo specifications one can
specify the coordinating model in a compositional and hierarchal way. We describe Reo and
constraint automata in chapter 3.

2.2 Formal Verification and Its Methods

The main goal of verification methods is to ascertain that an actual system or program satisfies
its requirements. Informal verification methods one tries to achieve the aim of verification by
describing the system using a mathematical model, expressing the requirements as properties
of this model and by showing through rigorous mathematical reasoning that the model of
the system indeed has the required properties (50, 110]. Thus, the techniques for formal
verification can be considered as comprising of three parts (68]:

• a framework for modeling systems, which is typically a description language or some
sort of a transition system;

• a specification language for describing the properties to be verified;

• a verification method to establish whether the description of a system satisfies the spec­
ification.

2.2. Formal Verification and Its Methods 17

From the view point of mathematical logic, if the desired property to be verified is ex­
pressed by a formula in a formal language, say cp, the process of reasoning about the correct­
ness of cp can be done using proof theoretic or model theoretic methods or a combination of
them. In the literature of formal verification, using proof-based methods is called deductive
verification, whi le using the model theoretic approach is called model checking. In the fol­
lowing subsections, we briefly describe these methods of formal verification and the ways in
which they are combined.

2.2.1 Deductive Verification

In deductive verification, the system intended to be proved correct is described by a set of
formulas called axioms and the correctness property is expressed by a formula in the same
language of axioms. The process of verification is to derive a proof of the desired correctness
property based on the set of axioms. In other words, if the property to be verified, say c/> ,
is expressed in a forma l language with a well-established proof theory, and the system is
specified by a set of formulas r , the deductive verification method is to try to find a proof for
r f- c/J .

Obviously, if we arc interested to do the deductive verification automatically, we need Lo
have an implemented automatic theorem prover for the formal language in which the axioms
and the desired property are expressed. Typically, it is supposed that an expert (mathematician
or logician) uses the theorem prover and helps it to find the best ways of doing the proof. The
facts that on ly experts can use a theorem prover and fully automated theorem provers are not
found are of the main disadvantages of the method of deductive verification. Another problem
with theorem proving is that it is not particulary suitable in providing debugging information,
that is, information on the nature and location of errors [139].

An advantage of deductive verification is that it can be used for reasoning about infinite
state systems such as systems that work on unbounded data types (for instance the ordinary
integers). As another example, theorem proving techniques work well when process struc­
tures evolve, that is, new processes can be added and old processes can be aborted during
the executions of the system [I 39] . In these cases, the task of deductive verification can be
automated to a limited extent. However, even if the property to be verified is true, no limit can
be placed on the amount of time or memory that may be needed in order to find a proof [50).

2.2.2 Model Checking

If the correctness requirements of a formally modeled computing system are given in a math­
ematical notion, such as linear temporal logic [11 OJ , branching time temporal logic [148]
or automata on infinite objects [I 38], an algorithmic model theoretic process called model
checking [50] can be used to check if the system respects its correctness requirements. In
other words, if the property to be verified, say c/J , is expressed in a formal language Land
the system is modeled by a formal model M (based on the formal semantics of L) the model
checking method is to check whether M F c/J . In brief, the process of model checking a
desired property of a system consists of the following three steps:

• Modeling all of the possible states and behaviors of the system using a suitable formal ­
ism. Typically some sort of finite transition systems such as finite automata over finite

18 2. Context and Backgrounds

strings or trees, finite automata over infinite words or trees (such as Biichi automata),
finite Petri nets, finite Markov chains and so on are used as the modeling formalism.
Some model checkers accept the description of the system in some more high-level
description languages such as programming languages, say C or Java, or hardware de­
scription languages such as Verilog or VHDL, and automatically convert them into the
intended transition systems. Obviously, based on the limitations of time and memory
or the interesting aspects of the system, each kind of modeling abstracts away several
aspects of a real system.

• Specification of the property Lo be verified in a suitable language. Typically some sort or
temporal logics or automata-based expressions are used for the specification of desired
properties. There are several kinds of temporal logic in computer science. We discuss
the rules of temporal logic proposed in model checking in Section 2.4.

• Running the verification algorithm to check whether the model of a system satisfies its
specification explores all possible system states in a brute-force manner. Ideally this
algorithm is executed completely automatically. In case of a negative result, the user
is often provided with an error trace. This can be used as a counterexample for the
checked property and can help the designer in tracking down where the error occurred.
In this case, analyzing the error trace may require a modification to the system and
reapplication of the model checking algorithm.

In comparison with the other approaches to verification, the model checking method en­
joys some remarkable advantages: 1- It is fully automatic, and its application requires no user
supervision or expertise in mathematical disciplines such as logic and theorem proving. 2-
When a design fails to satisfy a desired property, the process of model checking always pro­
duces a counterexample that demonstrates a behavior which falsifies the property. This faulty
trace provides an insight to understanding the real reason for the failure. 3- In comparison
with theorem proving, model checking techniques are highly flexible : a large set of analysis
and verification questions of many different types can be answered using a single state space
based model.

Model checking has shown to be an efficient and easy to use technique in computer sys­
tems verification. However, there is a major drawback in using model checking: the model of
real system can be extremely large. In the literature this problem is often referred as the state
explosion problem. In Section 2.3, we describe some techniques that have been suggested to
deal with this problem. Another disadvantages of model checking is that it does not work for
infinite-state systems.

2.2.3 Combining Deduction and Model Checking

The main advantage of theorem proving is its ability to reason about infinite state spaces and
the main benefit of model checking is its ability to be implemented fully as an automatic tool.
They can be composed to yield advanced techniques for verification such as abstraction and
compositional reasoning.

As a way to deal with the problem of state explosion, abstraction techniques have been
proposed in order to integrate theorem proving and model checking [49, I 04, I 02). The idea

2.3. Advanced Techniques of Model Checking 19

is to reduce the original system to a smaller model via interactive proof techniques. In a sec­
ond step, the smaller system is analyzed using automatic model checking tools. Usually, the
smaller system is obtained by partitioning the original state space via a structure-preserving
function between the two state spaces called abstracting function. The theorem prover is em­
ployed in order to guarantee the abstraction to be sound, that is if the abstract system satisfies
a property, so does the original system [117).

Another way to overcome the state explosion problem is compositional reasoning tech­
niques: decomposing the process of reasoning about the behavior of a composed system into
partial reasonings about the behaviors of its constituents. For this purpose, the system and the
desired property both are decomposed into components and local properties. The correctness
of each local property of a component is verified by model checking, while showing that the
correctness of local properties entails the correctness of the whole desired property is done
by theorem proving [86, 123).

2.3 Advanced Techniques of Model Checking

As mentioned before, state explosion is the main problem in model checking. The state space
of the model of a program or hardware system can be very large, even for very simple cases
such as a program that performs a simple computation over integers.

During the last two decades, many methods have been suggested to reduce the num­
ber of states that must be constructed for answering certain verification or analysis ques­
tions. Such enhanced state space methods increase substantially the size of the systems that
can be verified, while preserving most of the advantages of the model checking method of
verification. Equivalence based compositional model checking (86, 123), partial order re­
duction by representatives [I 2 I], the pre-order reduction techniques [60), abstraction meth­
ods [49, 104), using the symmetric structure of the models [56], automata theoretic model
checking [145, 146, 102) and its on-the-fly enhancements [59), and symbolic model check­
ing [111, 50] are the most important methods for dealing with the state explosion problem.
In the following subsections, we describe four model checking techniques which we will in
this thesis.

2.3.1 Automata Theoretic Model Checking

Finite automata can be used to model concurrent and interactive systems. Either the set of
states or the alphabet set can then represent the states of the modeled system. One of the
main advantages of using automata for model checking is that both the modeled system and
the specification are represented in the same way. If A is an automaton modeling the actual
system, let .C(A) he the set of all possihle hehaviors of the system. The specification of the
desired property can also be given as an automaton S, over the same alphabet. Then, .C(S) is
the set of all allowed behaviors.

Now, the system modeled by A satisfies the specification S when .C(A) s;:; .C(S) which is
equivalent to .C(A) n .C(S) = (/J. This means that there is no behavior of A that is disallowed

20 2. Context and Backgrounds

by S. If the intersection is not empty, any behavior in it corresponds to a counterexample.
Thus, the process of automata theoretic model checking can be summarized by the following
steps:

• I- Modeling all of the possible states and behaviors of the system using a finite automa­
ton, say A, over finite or infinite words or trees (such as Biichi automata).

• 2- Specification of the property to be verified using an automaton, say S. Then, com­
plementing the automaton S, that is, constructing an automaton S that recognizes the
language .C(S).

• 3- Constructing the product automaton that accepts the intersection of the languages of
A andS.

• 4- Checking the emptiness of the language of the product automaton. If this language
is empty, we announce that the system satisfies the property. Otherwise, every member
of the language of the product automaton is a counterexample that can be considered
in the debugging of the system.

Moreover, the automaton S may be obtained 'using a translation from some specification
language such as linear time temporal logic (LTL). In this case, instead of translating a prop­
erty ¢ into S and then complementing S, we can simply translate ,¢ which immediately
provides an automaton for the complement language. In this case, the second step (specifica­
tion step) of the above method is replaced by the following ones:

• 2-1 Specification of the property to be verified using a temporal logic formula ¢ .

• 2-2 Translation of the formula,¢ into an equivalent automaton called S.

Thus, the process of automata theoretic model checking in the context of temporal logic
specifications is crucially dependent on the following factors :

I - The existence of a translation method from the selected temporal logic into the selected
automata formalism.

2- The decidability and complexity of the algorithm to produce the product automaton that
accepts the intersection of the languages of two automata of the selected automata formalism.

3- The decidability and complexity of the algorithm to check the emptiness of the lan­
guage of an automaton of the selected automata formalism.

Fortunately, for the cases of linear time temporal logic (LTL) and Biichi automata, which
we will use in this thesis, all of the above three constructions can be done effectively.

2.3.2 On-the-Fly Model Checking

In on-the-fly model checking the algorithm that checks the correctness of a property is inte­
grated into the algorithm that constructs the state space of the system's model. The construc­
tion of the state space is immediately stopped when an error against the property is found .
Thus, in general, an on-the-fly method speeds up the model checking process in the cases
of incorrect systems while it does not for correct systems. Also, this method may reduce the

2.3. Advanced Techniques of Model Checking 21

number of states in another way, by avoiding the construction of those parts of the state space
that are not relevant for the property [139].

On-the-fly verification methods can often be combined with other advanced techniques
for model checking. For instance, its combination with automata theoretic technique can be
explained as follows. Let A be the Biichi automaton model of a system and S be another
automaton describes the negation of the desired property. In the automata theoretic model
checking the emptiness of the intersection of A and S is checked. If the intersection is not
empty, a counterexample is reported . Using an on-the-fly method, instead of constructing the
automata for both A and S first, we construct only the property automaton S. We then use
it to guide the construction of the system automaton A while computing the intersection.
In this way, we may frequently construct on ly a small portion of the state space before we

find a counterexample to the property being checked [50] . On the other hand, sometimes it
is also possible that the property automaton S , which is obtained in a translation process
from a temporal logic formula, itself can be constructed step-by-step using an on-the-fly
translation method [59, 107] . Considering both cases at the same time, we obtain a model
checking procedure where the product (intersection) automaton is constructed on-the-fly (by
constructing both the system and the property automata on-the-fly), during a depth-first search
which checks for emptiness.

2.3.3 Symbolic Model Checking

The model-checking procedure described so far relies on the assumption that the transition
system has an explicit representation by the predecessor and successor lists per state. Such
an enumerative representation is not adequate for very large transition systems. To counter
the state explosion problem, the model-checking procedure can be reformulated in a sym­
bolic way where sets of states and sets of transitions are represented rather than sing le states
and transitions [I 11, 29]. More generally, we can call this approach to deal with the state
explosion problem the method of using packed state spaces [139].

There are several possibilities to realize model checking algorithms in a packed state
space stetting. The most prominent ones rely on a binary encoding of the states, which per­
mits identifying subsets of the state space and the transition relation with switching functions.
To obtain compact representations of switching functions, special data structures have been
developed, such as ordered binary decision diagrams (OBDD) [111, 50, 29]. In this method,
the state set, the transition relation over the set of states and the labeling function which
assigns proposition sets onto states, all are encoded by OBDD models . Then the verifica­
tion algorithms and tools have to be modified to work on the packed state spaces instead of
ordinary ones.

The efficiency and usefulness of the symbolic representation of the state space using
OBDD models and their suitable verification algorithms are cruci ally dependent on the se­
lected ordering over the set of boolean variables, which is fixed before constructing the
OBDD models. It can be shown that for some switching function, using two different variable
orderings produces OBDD structures whose sizes differ exponentially [29] . Since for many
switching functions the OBDD sizes for different variable ordering can vary enormously, the
efficiency of OBDD-based computations crucially relies on the use of techniques that im­
prove a given variable ordering . However, the problem to find an optimal variable ordering is

22 2. Context and Backgrounds

known to be computationally NP-hard [34]. Thus, the main problem with the symbolic model
checking method is to find the best variable ordering.

2.3.4 Compositional Minimization

Compositional model checking is one of the proposed methods for dealing with the problem
of state explosion [50, 51 , 123]. In the compositional verification of a system, one seeks to
verify properties of the system using the properties of its constituent modules. In general,
compositional verification may be exploited more effectively when the model is naturally
decomposable [128]. In particular, a model consisting of inherently independent modules
is suitable for compositional verification. A special case of compositional verification is the
method of equivalence based compositional reduction. In this method components of a sys­
tem are reduced with respect to an equivalence relation before building the complete sys­
tem [60, 50, 79, 82].

In order to be useful in model checlcing, the selected equivalence relation should satisfy
two properties: preservation of all properties to be verified and being a congruence relation
with respect to all operators that are used for composing the models. By a congruence relation
we mean that the replacement of a component of a model by an equivalent one should always
yield a model which is equivalent to the original one. Thus, two main criteria for selecting an
equivalence relation to be used for reducing the models are the set of properties to be veri­
fied and the composition operators that are used over the models. If using of an equivalence
relation to reduce the size of models produces the smallest ones, we refer to the reduction
procedure as minimization.

For example, in the context of failure based semantic models of the process description
language LOTOS, there are two equivalence relations, called chaos-free failures divergences
(CFFD) and non-divergent failure divergences (NDFD), which satisfy the preservation prop­
erty for two fragments of linear temporal logic. NDFD preserves all properties that are ex­
pressible in linear time temporal logic without next-time operator (called LTL_ x) [86]. Also,
CFFD preserves all properties that are expressible in linear temporal logic without the next­
time operator but with an extra operator that distinguishes deadlocks from divergences (called
LTLw) [141, 142]. Also, it has been shown that CFFD and NDFD are the weakest equiva­
lence relations that preserve the above mentioned fragments of linear temporal logic. In other
words, they both produce the minimized transition systems with respect to the preserved
temporal logics. Moreover, it has been shown that in the case of standard labeled transition
systems CFFD and NDFD are congruences with respect to all composition operators defined
in LOTOS [142].

2.4 The Rules of Temporal Logics

To specify and then verify the desired properties of computer and computing systems, we
need a logic for specifying properties of the state-transition models. Classical propositional
and predicate logics allow to build up complicated expressions describing properties of states.

2.4. The Rules of Temporal Logics 23

For reactive systems, correctness depends on the executions of the system, not only on (the
state of) the input and output of a computation and on fairness issues. Temporal logic is a
formalism for treating execution path and fairness aspects. Temporal logic extends proposi­
tional or predicate logic by modalities that permit to refer to the infinite behavior of a reac­
tive system. They provide a very intuitive but mathematically precise notation for expressing
properties of the relation between the state labels in executions.

The underlying nature of time in temporal logics can be either linear or branching. In
the linear view, at each moment in time there is a single successor moment, whereas in the
branching view it has a branching, tree-like structure, where time may split into alternative
courses. Based on which view is chosen, a system of temporal logic is classified as either a
linear time temporal logic in which the semantics of time structure is linear, or a branching
time logic corresponding to branching time structures as the semantics of the forrnulas.

The most popular linear time temporal logic that is used in the field of model checking
is the propositional version of a temporal logic called LTL (Linear Temporal logic). In the
linear temporal logic LTL, formulas are composed from the set of atomic propositions using
the usual Boolean connectives as well as the temporal connective D (always), O (eventually),
0 (next), and U (until).

On the other hand , the most popular branching time temporal logic in the field is a propo­
sitional branching time temporal logic called CTL (Computational Tree Logic). Also, there
is a more expressive branching time temporal logic that is called CTL* [55). The branch­
ing temporal logic CTL * extends LTL by the path quantifiers E (there exists a computation)
and A (for all computations). The branching temporal logic CTL is a fragment of CTL * in
which every temporal connective is preceded by a path quantifier. CTL * is more expressive
than both temporal logics CTL and LTL. The expressiveness of CTL is not comparable to
that of LTL. For example, the LTL formula ◊Op is not expressible in CTL, while the CTL
formula AOA□p is not expressible in LTL. There are several other temporal logics such as
the branching temporal logic VCTL that is a fragment of CTL in which only universal path
quantification is allowed and linear time or branching time µ-calculus.

The discussion of the relative merits of linear versus branching temporal logics in the
context of specification and verification goes back to l 980 [148, 147). There are several
papers arguing against or in favor of linear and branching views (for more see [147)). Our
choice in this thesis is the linear time approach, not because of such kinds of arguments. The
main reason for our choice is because we will study automata theoretic and compositional
minimization methods for which linear time temporal logics are more applicable [147, 148,
146, 143, 139).

Formal Modeling of Component

Connectors

26 3. Formal Modeling of Component Connectors

Reo is an exogenous coordination language for compositional construction of coordina­
tion systems. Constraint automaton has been defined as the operational semantics of Rco. In
the first two sections of this chapter, we describe Reo and constraint automata. In the third
section, we briefly present the other semantic formalisms that have been introduced for Reo.

3.1 Reo: A Channel Based Coordination Language

Reo is a coordination language which can model and specify coordination of a set of compo­
nents trough networks of channels or compositional connector built out of primitive channels.
In this section, we introduce Reo primitives and compositional coordination constructions
which can be obtained by using it as introduced in [13, 14, 19, 25].

3.1.1 Reo Primitives

Reo is a coordination language which is based on a calculus of channels [13, 14, 19, 30] . By
using Rco specifications, complex component connectors can be organized in a network of
channels and build in a compositional manner. The simplest connectors in Reo are a set of
channels with well-defined hehavior supplied by users. Reo can be used as a coordination
language for concurrent processes or as a "glue language" for compositional construction of
connectors that orchestrate component instances in a component based system. The empha­
sis in Reo is on connectors and their composition only, not on the entities that connect to,
communicate and cooperate through these connectors.

Reo uses a simple notion of channels and can model any kind of peer-to-peer communica­
tion. The only requirements for a channel used in a Reo network are that the channel should
have two channel ends, called as sink or source ends, and a well-defined semantics which
constraints or relates the flow of data through these ends. At a source end data items enter
the channel by performing corresponding write operations. Data items are received from a
channel at its sink end by performing corresponding read operations. Reo allows for an open
ended set of channel types with user defined semantics. Some primitive channels relevant for
this thesis are shown in Figure 3.1 by their graphical representations.

Every synchronous or FIFO channel has a source and a sink end. A synchronous channel
(abbreviated by Sync) has no buffer and accepts a data item through its source end if and
only if it can simultaneously dispense it through its sink. A FIFO] channel is represented
graphically by a small box in the middle of an arrow. Writing a data item at the source end
of a FIFO I is enabled as long as the buffer is empty. The effect of writing d is that d will be
stored in the buffer. Reading at the sink end is enabled if the buffer is full, in which case the
data item is taken off from the buffer. FIFO channels with two or more buffer cells can be
produced by composing several FIFO I channels [30].

A lossy synchronous channel (abbreviated as LossySync) is similar to synchronous chan­
nel, except that it always accepts all data items through its source end. If it is possible for
it to simultaneously dispense the data item through its sink (e.g. there is a take operation
pending on its sink) the channel transfers the data item, otherwise the data item is lost. For a

3.1. Reo: A Channel Based Coordination Language

A---+ B

Sync

A ······ > B

LossySync

A~B

Filter

A-□-t B

FIFO I

Figure 3.1: Some useful channel-types in Reo

A-txJ-B

SyncDrain

27

synchronous filter channel, its pattern P (for our purpose here, formalized as a subset P of
data set V) specifies the type or data items that can be transmitted through the channel. Any
value d E P is accepted through its source end iff its sink end can simultaneously dispense
d. All data items d ~ Pare always accepted through the source end but are immediately lost.
The P-producer is a variant of a synchronous channel whose source end accepts any data
item d E V, but the value dispensed through its sink end is always a data element d E P .

Two very useful channels for the design of complex coordination principles in Reo are
the synchronous and asynchronous drains. Because a drain has no sink end, no data value can
ever be obtained from these channels. Thus, a synchronous drain accepts a data item through
one of its ends iff a data item is also available for it to simultaneously accept through the
other end as well. All data accepted by this channel are lost. An asynchronous drain accepts
and loses data items through its two source ends, but never simultaneously. synchronous and
asynchronous spout are duals of their corresponding drain channel types, as they have two
sink ends.

3.1.2 Compositional Connectors

Every channel represents a simple connector with two ends. More complex connectors are
constructed in Reo out of the simpler ones using its join operation. Joining of two connectors
is plugging their ends together into nodes such that the data exchanged through the ports that
coincide on the same node are synchronized, but the l/0 behaviors of the other ports remain
as they were before.

Reo defines a connector as a set of channel ends and their connecting channels organized
in a graph of nodes and edges such that:

- Zero or more channel ends coincide on every node.
- Every channel end coincides on exactly one node.
- There is an edge between two (not necessarily distinct) nodes if and only if there is a

channel end which coincides on each of those nodes.
Let x be a channel end and N be a node. We use x H N to denote that x coincides on

N, and i: to denote the unique node on which the channel end x coincides. For a node N,
the set [N] = {x ix H N} is the set of all channel ends coincide on N and is partitioned
into the disjoint sets Src(N) and Snk(N), denoting the sets of source and sink channel ends
that coincide on N, respectively. The nodes of a Reo network represent sets of channel ends.
They arise through Reo's join operator and can be classified into source, sink and mixed
nodes, depending on whether all channel ends that coincide on a node N are source ends
(then N is a source node), sink ends (then N is a sink node) or whether N combines sink and
source ends (then N is a mixed node). Source and sink nodes represent input and output ports
where components might connect to the network. The mixed nodes serve as routers where

28 3. Formal Modeling of Component Connectors

data items can be transmitted through the network. More formally, a node N is a source node
if Scr(N) =/- 0A Snk(N) = 0. Analogously, N is a sink node if Snk(N) =/- 0A Scr(N) = 0.
A node N is a mixed node if Scr(N) =/- 0 A Snk(N) =/- 0.

Components are connected only to sink or source nodes, they cannot connect to mixed
nodes. At most one component can be connected to a source or a sink node. A source node
acts as a replicator, while a sink node acts as a nondeterministic merger. Consider the fol­
lowing source node:

a

/
•

~
b

A write operation succeeds on the node if the source ends a and b are both ready to accept
the data item, in which case it is written to both source ends. Thus, the data item is replicated.
On the other hand, take the following sink node:

a

~
•

/
b

A read or take operation succeeds on the node only if at least one of the sink ends a or b is
ready to offer a suitable data item into the node. If both of them are ready to offer data, one
is selected non-deterministically. Thus, the sink node acts as a nondeterministic merger.

A complex connector has a graphical representation, called Reo circuit or network. The
graph representing a connector is not directed. However, for each channel end Xe of a channel
c, we use the directionality of Xe to assign a local direction on the neighborhood of ie to the
edge that represents c. Complex connectors are constructed out of simpler ones using the join
operation. The join operation is defined only on nodes. Joining two nodes N1 and N2 destroys
both nodes and produces a new node N, in which, [N] = [N1] U [N2]. This operation allows
construction of arbitrary complex connector graphs involving any combination of channels
picked from an open-ended set of channel types. The semantics of a connector is defined as a
composition of the semantics of its constituent channels and nodes. Reo does not provide any
channels , thus, it dose not define their semantics either. What Reo defines is the composition
of channels into connectors and the semantics of this composition through the semantics of
its three types of nodes.

3.2. Basic Theory of Constraint Automata 29

Figure 3.2: Exclusive router (a) and shift-lossy (b) channels designed by primitive channels
of Reo [19]

As examples of Reo networks, Figure 3.2 shows the implementations of an exclusive
router and a shift-lossy FIFO I connectors in Reo. The intuitive behavior of the exclusive
router is such that through its source node A, it obtains a data item d from its environment
and delivers d to one of its sink nods B or C. If both B and C are ready to accept d, the
exclusive router nondeterministically chooses one of them for delivery. A shift-lossy FIFO]
channel behaves the same as a FIFO I channel, except that writing to its source end never
blocks. If at the time of a write operation its buffer is full, the stored data item in the buffer
is lost and the new data item replaces it in the buffer. For more examples and details of Reo
circuits see [13, 14, 19, 30].

3.2 Basic Theory of Constraint Automata

Constraint automata were introduced as the semantics of Reo first in [30]. The semantics
of constraint automata is based on timed data streams and their languages. In other words,
constraint automata are defined as acceptors of the tuples of timed data streams and two
constraint automata are (language - theoretically) equivalent if they accept exactly the same
set of tuples of timed data streams.

In this section, we describe the basic theory of constraint automata, their semantics and
their composition operators as introduced in [30].

3.2.1 Timed Data Streams

Before introducing the notion of constraint automata, we need to introduce some preliminary
notations and the notions of timed data streams, their tuples and languages.

Definition 3.1 Let V be any set. We define the sets V* and V"-' as the sets of all finite and
infinite sequences (words or strings) over V , respectively. Obviously, we can define the set
vw of all streams (infinite sequences) over V as the set of functions w:N --+ V. For a stream
w E vw we call w(0) the initial value of w. The (stream) derivative w' of a stream w is
defined as w'(k) = w(k + 1). We write w<i) for the i-th derivative of w which is defined by
w<0) =w and w(i+J) = w<iJ 1

• Note that w(i)(k) = w(i + k), for all k, i 2'. 0.

30 3. Formal Modeling of Component Connectors

Definition 3.2 Let 'D be a fixed and nonempty set of data that can be sent or received via
channels. A timed data stream is an ordered pair (a, a), in which, a is an infinite sequence of
data and a is a time stream consisting of increasing positive real numbers that go to infinity.
We denote the set of all timed data streams by TDS . Thus, more formally we have:

TDS = { (a, a) E vw x JR~I \:In~ 0 (a(n)(a(n + 1) and Jim a(n) = oo)} ,
n➔oo

where lR+ = [O, oo) is the set of all positive real numbers including zero.

A timed data stream A = (a, a) represents occurrences of events at a port A and consists
of a data stream a E vw and a time stream a E lR'.j'. of increasing positive real numbers. The
time stream a indicates the moments a(n) at which their respective data items a(n) occur at
port A.

Let N = {A 1 , ... , An} be a countable set of port names. With each port A; EN, we
associate a timed data stream recording both the data communicated and the time when the
communication happens . That is, we define TDSN as the set of all TDS-tuples consisting of
one timed data stream for each port in N.

Definition 3.3 LetN = {A 1 , ... , An} be a countable set of port names. Then,

TDSN = {((a1, a1) , ... , (an, an)) I (a;, a;) E TDS, i = l, . . . , n}

contains all TDS-tuples consisting of one timed data stream for each port.
A TDS-language Lis a subset of TDSN, namely L <;;; TDSN.

We use a family-notation 0 = (0l;)A ,EN for the elements of TDSN, where 01; stands for
the projection of 0 along the port A;. Simultaneous exchange of data between a set of ports
can be detected by inspecting the time when communications happen. For this purpose, for
0 E TDSN we define 0.time to be a stream in lR'.j'. obtained by merging the streams (Bln)r
in increasing order. More formally,

Definition 3.4 Let 0 = ((a 1 , a1) , ... , (an, an)) E TDSN be a TDS-tuple. 0.time is the
time stream which, can be derived by merging the time streams a1 , ... , an in an increasing
order. Thus, for 0. time we have:

0.time(O) = min{ a;(O) Ii= 1, ... , n} ,

and for all j ~ 1:

0.time(j) = min{a;(k) I a;(k) > 0.time(j - 1) , i = 1, ... , n, k = 0, l , ... }.

Also, 0.N is a name-sets stream over 2N, in which, 0.N = 0.N(O), 0.N(l) and

0.N(k) = {A ; EN I a;(l) = 0.time(k) for some l E {O, 1, 2, . . . } }.

Let o:N ➔ V be a data assignment function, where, N -/- 0 and N <;;; N. The notation of
o = [A H Ii A : A E NJ designates the data assignment function that assigns to any TDS name
A E N the value OA E 'D. Now, 0.o = 0.o(O) , 0.o(l) , .. . , is a data-assignments stream, in
which, 0.o(k) represents the observed data flow al time point 0.time(k), namely,

0.6(k) = [A; H a;(l;): A; E 0.N(k)]

where l; E {O, 1, 2, . . . } is the unique index with a;(l;) = 0.time(k).

3.2. Basic Theory of Constraint Automata 31

In the rest of this section, we assume that the data set V is fixed and predefined. Thus, we
do not mention it in the definitions .

3.2.2 Constraint Automata: the Operational Semantics of Reo

Constraint automata can be viewed as acceptors for tuples of timed data streams that are
observed at certain ports A1 , ... , An . The rough idea is that such an automaton observes the
data occurring at A1 , ... , An and either changes its state according to the observed data or
rejects the data if there is no corresponding transition in the automaton. Further, constraint
automata are augmented with the names of their ports A1 , ... , An, where A ; stands for the ith
TDS. Each transition in a constraint automaton is labeled with a pair N, 9 such that N is a
non-empty subset of N = { A 1 , ... , A n }, and g is a guard which, constrains data in the TDS
of ports referenced in N .

Definition 3.5 Let V be a set of data and N be a set of port names. A data constraint 9 over
sets V and N is a proposition that can be constructed using the following abstract grammar:

9 :: = true I d A = d I 91 V 92 I ·9 d EV, A E N.

In the above grammar, for every port name A E N, dA is a variable whose value at each
time instance is the value of the data item exchanged through the port A at that time. Thus,
dA = d means that the value of data on port A is d.

Let DC be the set of all data constraints over the names set N and the data set V, defined
by the above grammar. Obviously, DC contains some logically equivalent propositions. We
use DC(N, V) as the set of all logically different data constraints over the names set N
and the data set V. In other words, DC(N, V) is the partitioned version of DC using the
logical equivalence relation . Thus, for all data constraints equivalent tog, we use the notion
of 9 E DC(N, V). Obviously, if N and V are finite then DC(N, V) is finite .

Now, we introduce the notion of constraint automaton as originally has been defined in
[30]:

Definition 3.6 A constraint automaton is a quadruple C = (Q, N , --+ , Q0) where,
Q is a set of states,
N is a set of names,
--ts;; Q x 2N x DC x Q is a set of transitions,
Qo s;; Q is the set of initial states.

We write p !!..4 q instead of (p , N , 9 , q) E--+ and call N the name set and g the guard of

the transition . For every transition p ~ q it is supposed that N -=J 0 and 9 E DC(N, V) .

A constraint automaton C = (Q, N , --+, Q0) is finite, if the sets Q, N and V are finite .
Also, C is said to be deterministic if its set of initial states Q0 is a singleton and for each
state q, a set of port names Nanda data assignment J:N -+ V there is at most one transition

q ~ q' with 6 F g.
The intuitive operational behavior of a constraint automaton is as follows. It starts in its

initial state q0 . If the current state is q, then C waits until data items occur at some of its po1ts

32 3. Formal Modeling of Component Connectors

SJU S;,=D:oi.n
A .B ..t B

._~9:! {.~Ct/
l<m y5yuc .Fih.:

.A B A p ·5 ~------ ' • vV'v-11>

'-~
{.ob
d .-1.= ? i.-1.}
{ B=? dj\ ;,' ?

(a) (b)

Figure 3.3: Constraint automata for some basic channels in Reo [30]

Ai , .. . , A n . Suppose data item di occurs at Ai and data item di at A2 while (at this moment)
no data is observed at the other ports A3 , ... , A n , This triggers the automaton to check the
data constraints of the outgoing transitions of state q with a name set {Ai , A2 } to choose a
transition t , such that its guard is satisfied by Ai H di and A2 H d2 resulting in state p.
If there is no {Ai, A2 }-transition from q whose data constraint is fulfilled then C remains
waiting (perhaps indefinitely) .

Example 3.1 Figure 3.3 shows the constraint automata models of the set of Reo channels
which we introduced in the previous section [30]. Figure 3.3(a) is the constraint automa­
ton model of a FIFO I channel from a source node A to sink B over the data set { 0, 1} .
Figure 3.3(b) shows the constraint automata models of the remaining channels with the con­
sideration that dA = dn is an abbreviation for V d ED(dA = d A dn = d) where Vis the set
of data {0, 1}. In the case of the tilter channel it must be that P ~ V.

Like ordinary automata arc acceptors of finite strings, constraint automata arc acceptors
of tuples of timed data streams. Informally, each element of the tuple is associated with a port
of the system and corresponds to the streams of observed data communicated through this
port together with the time when the data has been observed.

Definition 3. 7 Let C = (Q, N , ~, Q0) be a constraint automaton and cp be a TDS-tuple,
cp E TDSN.
- An infinite run for cp in C is an infinite sequence of states r = q0 , q1 , ... , in which, Vi , q; E

Q and there exists transition q0 ~ qi with N = cp .N(0), cp .c5(0) F g and r' is an infinite
run for c.p'. The infinite run r = qo , q1 , ... is an initial infinite run, if qo E Qo.
- TDS-tuple cp is accepted by a constraint automaton C if and only if there is an initial infinite
run for cp in C. The language of constraint automaton C is

Lr os (C) = { :p E TDSN I C accepts c.p}.

3.2. Basic Theory of Constraint Automata 33

The above definition of L Tvs (C) can also be formally defined by means of the greatest
fixed point of a suitably chosen monotone operator [30] . For the purpose of this thesis we
found it easier to reason with the accepted language characterized by means of the (standard)
notion of accepted runs.

As for the case of finite automata, using Rabin-Scott powerset construction for each non­
deterministic constraint automaton there is a deterministic one which accepts the same lan­
guage [30).

Further, in a finite constraint automaton C all transitions with unsatisfiable guards can
be removed without any effect on the TDS language accepted by C, where a guard g of a

transition p !:!4 q is said to be semantically unsatisfiable for N if there is no data assignment
for elements of N which satisfies g (take, for example, g to be ,true). In the rest of this
thesis we assume without any loss of generality that all guards in a constraint automaton are
satisfiahle with respect to the set of names of the transition they belong to.

Remark 3.1 As we mentioned in Definition 3.6, in [30) it is presupposed that for every tran­

sition p !:!4 q the set of ports N is non-empty. This condition makes constraint automata
the operational models of the observable behavior of systems' components. In other words,
with this condi tion constraint automata are the operational models of the interfaces of com­
ponents. If we ignore this condition, a constraint automaton may also have transitions of the

form p "'~e q. We abbreviate this form of transitions by p ~ q and call them by T­

transitions. We refer to constraint automata that are allowed to haver-transitions by the term
constraint automata with T-transitions. r-transitions can be considered as models of internal
behaviors of the components that are not exactly observable in the interfaces.

Remark 3.2 Constraint automata are, in general , not closed under complement. Informally
this is due to the fact that constraint automata do not have final states. If we augment the
definition of constraint automaton by a set of final states and use Biichi acceptance condition
(a timed data stream is accepted if at least one of the correspondent runs for it contains
one of the final states infinitely many times), we refer to the resulting automaton as a Biichi
constraint automaton. Obviously, a constraint automaton is a Biichi constraint automaton in
which all states are accepting. Its complement, however does not need to satisfy this property.

3.2.3 Composing of Constraint Automata

In the literature on constraint automata, there are two operators for composing them: join of
two constraint automata and hiding a name in all transitions of a constraint automaton [30).

Join

Constraint automata can be composed by means of a join operator, the semantic counterpart
of the join operator in Reo [30). Different than the ordinary product for finite automata, the
composition of two constraint automata is allowed even if they have different alphabets. In
fact, the resulting constraint automaton has transitions when data occur at the ports belonging
to only one of the automata, without involving the transitions or states that it inherits from the
other automaton (because at that point in time, there is no data on any of its corresponding
ports) . More formally, the join operation for constraint automata is defined as follows:

34 3. Formal Modeling of Component Connectors

Definition 3.8 Let Ci = (Qi ,Ni , -----t i , Q01) and C2 = (Q2, N 2, ------t 2, Qo2) be two con­
straint automata (with or without T-transitions). The join of Ci and C2 is the constraint au­
tomaton:

where, transition relation ------t is defined by the following rules :
Rule I:

Rule 2:
N, ,g, , N , r rA

q -----fi q , in Jv2= VJ

(q, p) ~ J (q' , p)

Rule 3 (dual of rule 2):

N2,g2 , N N rA p ------t2 p , 2 n i = VJ

(q, p) ~2 (q, p')

Basically, the two automata have to agree on the data exchanged on the common ports
(that is, the names used in the transition of the first automaton known to the second automaton
are exactly the same as the names used by the transition of the second automaton known to
the first one), and each maintains its own behavior on the other ports (as described by the last
two rules).

The join of two constraint automata using the operation defined in Definition 3.8 is cor­
rect with respect to the join of their accepted TDS-languages, where the join of two TDS­
languages is basically the same as defined in the theory of relational databases [30): the
projection on the common indexes (port names) of the resulting language must agree with
that of the two original languages, while the projection on each indexes in one language but
not in the other must agree with the projection on the same index of the language where the
index belongs to. Thus, it can be shown that (30):

Lemma 3.1 Let Ci = (Qi ,Ni , -----ti, Qoi) and C2 = (Q2, N 2, ------t2, Q02) be two constraint
automata. Then:

1) Lros (Ci tx1c C2) = LTDs (Ci) tx1 LTDs (C2),
2) If Ni = N 2 then LTDs (Ci tx1c C2) = LTDs (Ci) n LTDs (C2),

where for TDS-Ianguages Li and L2 , Li txJ L2 means the standard join of the languages of
tuples in the theory of databases.

Example 3.2 Let us join the constraint automata representing two FIFO I channels, one from
source A to sink B and the other from source B to sink C. The automata models of the two
channels and the resulting automaton are illustrated in Figure 3.4. For simplicity we assume
that the data set is V = { d}. Thus, every transition label contains only the set of port names
that participate in firing the transition.

3.2. Basic Theory of Constraint Automata 35

A-□-+B fl-□-+ C

{B}

---➔@~®
{ C}

(a) (b)

A -□--+ B -□--+ C

(c)

Figure 3.4: Joining of constraint automata models of two FIF01 channels

Hiding of port Names

Now, we define hiding of a port name in all transitions of a constraint automaton. First
consider constraint automata without r-transitions. The hiding operation is defined as fol­
lows [30]:

Definition 3.9 Let C = (Q, N, T, Q0) be a constraint automaton and B E N. The con­
straint automaton resulted by hiding of B in C is constraint automaton

:3B[C] = (Q,N\{B}, -'t s , Qo .a)

where transition relation -'t n is defined as follows :
Let -'t * be the transition relation such that q -'t * p if and only if there exists a finite path

{B},91 {D} ,92 {D},gn • h' h d · fi bf T q -'t q1 -'t q2. .. -'t qn, m w 1c , qn = pan 91 , 92 , ... , 9n are sat1s a e. hen ,

Qon = Qo U {p E Qlqo ---+* p, for some qo E Qo} .

36 3. Formal Modeling of Component Connectors

{A}

{C}

{A.C}

{A}

(a)

A-□~ -□---+ C
A ,C

(b)

Figure 3.5: Hiding of port Bin constraint automaton of Figure 3.4(c)

The transition relation --+ 8 is defined by the rule:

q --+* p, p ~ r, N' = N\{B} =/= 0, g' = 3B[g]
N' g'

q~B r

where :3fl[g] = VdED9[da/d].

Example 3.3 Let us hide the intermediate port B in the constraint automaton illustrated in
Figure 3.4(c) using Definition 3.9. The result is illustrated in Figure 3.S(a). As we expect the
resulting automaton is the operational model of the observable behaviors of a FIFO channel
with capacity of two. Also, observe that in this case the state (p0 , q1) is unreachable from the
initial state, and can thus be removed.

Now, let us consider the more general case of constraint automata with r-transitions. In
this case, the definition of hiding is simpler, because it is allowed for the hiding operation to
generate r-transitions.

Definition 3.10 Let C = (Q ,N, T, Q0) be a constraint automaton (with or without r­
transitions) and fl E N. The constraint automaton (possibly with r-transitions) resulting
from hiding of fl in C is the constraint automaton

3B[C] = (Q,N\{fl} , ---ta , Qo,a)

where the transition relation ---t B is defined as follows:

q ~ p,N' = N\{B} , g' = :lfl[g]
N' g'

q ~JJ p

and 3fl[g] = vdED9[dn/d].

3.3. Other Semantic Models for Reo 37

Example 3.4 Let us hide the intermediate port B in the constraint automaton illustrated in
Figure 3.4.c using Definition 3.10. The result is illustrated in Figure 3.5.b. As we expect,
the resulting automaton is the operational model of a FIFO channel with capacity of two,
considering its internal actions.

Remark 3.3 Obviously, if we hide a port name of a constraint automaton using Defini­
tion 3.9, the resulting automaton is language theoretically equivalent with the automaton that
is the result of hiding the same port using Definition 3.10 and then eliminating all T-transitions
using the standard algorithm of eliminating all T-transitions (t:-transitions) of ordinary finite
automata (for this algorithm see [66]). For example, the constraint automaton illustrated in
Figure 3.5.a is the result of eliminating the T-transition in the constraint automaton illustrated
in Figure 3.5.b.

3.3 Other Semantic Models for Reo

In recent years, several models have been proposed in the literature to formally capture the
semantics of Reo connectors. The first forma l operational model for Rco was constraint au­
tomaton that we introduced in the previous section. In the next chapters, we will introduce
our proposed operational semantics for Reo using standard notion ofBiichi automata. Before
introducing our proposed model , in this section, we briefly review the other important seman­
tic models of Reo and discusse some of their shortcomings in the context of the questions and
aims of this thesis.

3.3.1 Co-algebraic Model of Connectors

The co-inductive calculus of timed data streams first proposed in [27] and then extended
to the notion of Abstract Behavior Types (ABT in short) [14], is a simple and transparent
relational model of Reo. In this calculus the behavior of a connector port is modeled as a
timed data stream. As we showed in Definition 3.2, an element or the time-stream is the time
at which its respective data value in the data-stream is observed at its corresponding port. The
interactions of connectors are modeled as relations on timed data streams. More formally, let
TDS be the set all timed data streams, then each basic connector, namely channel, is defined
as a binary relation

R <;;;; TDS x TDS

over timed data streams. For example, the synchronous channel of Reo (Sync) is modeled by
the following relation:

Sync= {((a,a),(,B, b))la =,B I\ a = b}

where (a , a) and (,B, b) respectively are the timed data streams over input and output ports
of the channel.

Because the connectors are relations, their composition is modeled by relational compo­
sition. For example, the composition of two copies of the synchronous channel yields the

38 3. Formal Modeling of Component Connectors

following binary relation over the set TDS:

Synco Sync = {((o:, a),(iB, b))l:3 (1',c) :(o: =, A a = c) A(,= iB Ac= b)}

This co-inductive model abstracts away from the connector topology, and the direction
of the dataflow within the connector. Connectors arc reduced to a collection of ports, and the
behavior of the component-based system is expressed as a relation. Based on the relational
nature of this semantics of Reo, if someone be interested to verify some properties of the com­
munication protocol modeled by composed connectors, it should be done using a deductive
verification method, as for a simple example it has been done in [27] .

These models ofReo were shown to be equivalent to constraint automata, and thus unable
to express several fairness constraints and context dependencies [36, 37]. Also, because the
model is not an operational model it is not suitable for model checking based verification.

3.3.2 Connector Coloring Models

Connector coloring is an intuitive semantics for_ Reo Lo model datallow behavior or connec­
tors [47] . Colors are used to denote the presence of data flow and its absence in connected
ports. Colorings with two colors suffice to express the same class of behavior as constraint
automata can express [52]. Each coloring of a connector is a solution to the synchronization
constraints imposed by its channels and nodes.

By refining the set of colors to three colors and propagating the negative information
about the absence of dataflow in some ports, a set of context dependencies can be expressed.

Coloring a connector in a specific state with given boundary conditions (1/0 requests)
provides a means to determine the routing alternatives for dataflow. The circuit representa­
tion or connectors are used to describe the datallow behavior: each coloring corresponding
to a dataflow behavior of the connector can be overlaid on top of the circuit representation to
provide insight into the dataflow behavior of the individual primitives of the circuit [52]. The
product composition operator for colorings has been defined such that it is associative, com­
mutative, and idempotent. These properties make the coloring scheme with its composition
operator suitable for distributed implementations [52]. In a recent work, Jongmans investi­
gates the relationships between 2/3-color coloring models and constraint automata through
a set of operators that transform one model to the other [84]. In another paper, he estab­
lishes an encoding of context sensitivity expressed in 3-coloring semantics within constraint
automata [83) .

Coloring based semantics is not suitable for the purpose or verification, especially by
model checking which is the main purpose of this thesis . This type of semantics for Reo and
its extension called tile logic [21] suffer from a number of other problems. For a survey of
these problems see [36].

3.3.3 Intentional Automata

The main reason for introducing intentional automata [52] as an operational semantic model
of Reo was to overcome the shortcoming of constraint automata in expressing context de­
pendent behaviors of connectors. An intentional automaton explicitly models the arrival of

3.3. Other Semantic Models for Reo

A C
o---~o

A, CIA, C AIA, c
✓----~

_ .,. 90 ;:;---~
/ Cl©

CIA,c(IAl0

&
Figure 3.6: Intentional automaton model of a synchronous channel [52].

39

communication (or 1/0) requests, and distinguishes between communication requests and the
actual communications. This gives the model an extra degree of expressiveness that becomes
useful in modeling systems that need to behave differently depending on the presence or ab­
sence of pending requests in their context/environment. Intentional automata are transition
systems over the set of port names where the context dependencies are expressed by labeling
transitions with a request set and a firing set. The request set models the context and the firing
set models the subsequent behavior. More formally, in an intentional automaton over a set of

ports N, each transition from state q into state q' is of the form q ~ q', where R ~ N is
the set of ports requesting data communication and F ~ N is the set of ports that actually
participate in data communication during this transition. Also, the pending (arrived but not
fired) communication requests are modeled hy expanding the set of states.

For example, the intentional automaton model of a synchronous channel from input port
A to output port C with the ability to suspend data communication when one of the ports is
not ready to communicate, as modeled in [52], is illustrated in Figure 3.6. In this model, q1 is
the state in which port A is requesting communication while C is not ready, and similarly, q2

is the state in which port C is requesting communication while A is not ready. The transition
A ,c I A. C h h b h A d C . . q0 ----+ q0 means t at w enever ot ports an are requesting communicat10n, the

communication is fired on them simultaneously.
Intentional automata can be composed using a product and a hiding operators very simi lar

to their counterparts for constraint automata (see Definitions 3.8 and 3.10). The only defined
semantics (equivalence relations) for intentional automata are weak and strong bisimulation
relations.

Because of the strategy of modeling pending request by expanding the set of states, in­
tentional automata have quiet a large number of states to manage the buffering and firing of
such requests, which rapidly become difficult to manipulate, making intentional automata not
suitable for model checking purposes [36] . While intentional automaton tries to overcome the
shortcomings of constraint automaton for context dependent behaviors of components, based
on the absence of the notion of final (accepting) states or sets of fairness constraints in its

40 3. Formal Modeling of Component Connectors

syntax, it fails to express several fairness requirements.

3.3.4 Guarded and Reo Automata

Following the basic idea of intentional automaton (namely expressing request and firing sets
explicitly in each transition) and similar to our guarded strings semantics for augmented
Bilchi automata of records (will be introduced in Chapter 5), Bonsangue et al. introduced
a new model for Reo connectors. In general, this model is called guarded automaton and
when it is used with some constraint to model context dependent connectors, it is called Reo
automaton [36, 37).

Guarded automata are transition systems over a set of port names (an alphabet set in
a more general view) where the context dependencies are expressed by labeling transitions
with a boolean guard expression over the alphabet as their atoms and a firing set. The guard
expresses the context and the firing set models the subsequent behavior. More formally, in
a guarded automaton over a set of ports N, each transition from a state q into a state q' is

of the form q ~ q', where g is a boolean expression over the set of ports (as the atoms)
and f ~ N is the set of ports that actually participate in data communication during this
transition. Guarded automata are defined as acceptors of finite guarded strings, where each
guarded string is a string of alternating sets of atoms of the boolean algebra of the guard
expressions and sets of port names. Two guarded automata are equivalent if their languages
of guarded strings are the same. In addition to this equivalence, a notion of bi-simulation
relation between guarded automata has been defined such that it also implies the language
equivalence. Furthermore, a product operation as the counterpart of the intersection of the
languages of guarded automata has been defined.

Reo automata are guarded automata such that each transition label g If satisfies two cri­
teria: reactivity which guaranties that data flow only on ports where UO requests are made;
and uniformity which captures two properties: first, that the condition of the request set cor­
responding precisely to the firing set is sufficient to cause firing, and second, that removing
additional unfired requests from a transition will not affect the behavior of the connector [37).
It has been shown that the set of Reo automata is closed under the product of guarded au­
tomata [37).

In comparison with an intentional automaton, a Reo automaton is more dense, namely,
to model context dependencies and suspended communications, it does not expand the set of
state as much as an intentional automaton does. Also the product of Reo automata is more
difficult to compute than the product of intentional automata and the information represented
in the states of intentional automata is represented in Reo automata using compound transi tion
labels. It can be shown that the expressive power of Reo automata is at least as much as
that intentional automata. Both intentional and Reo automata have been proposed to express
more semantics of Reo connectors without significant auempts lo use them in verification
and model checking. Because of their complicated syntax and non-standard semantics (from
standard automata theory point of view) defining temporal logics over them and designing
model checking algorithms will not be so simple. Also, similar to intentional automaton and
based on the absence of the notion of final (accepting) states or sets of fairness constraints in
the syntax of Reo automaton, it fails to express several fairness requirements.

3.4. Tool Support for Reo 41

3.3.5 Process Algebraic and Structural Operational Semantics

In addition to the above mentioned models, there are some other attempts to present formal
semantics for component connectors. In the work of Barbosa et al. [32] the semantics of
components are defined by the expressions of a process algebra. These expressions carry out
both positive (presence) and negative (absence) information about data in ports. Complex
connectors are built from basic ones using some composition operators such as join, parallel
composition, and interleaving. This work needs more investigation to before it can be used
for the purpose of deductive verification and is not suitable for model checking. The model
needs more enhancements to express some important fairness constraints.

In the joint works of Kokash , Krause et al., reported in [91, 92, 93, 94], and [95] , they
map some semantic models for Reo, namely, constraint automata, timed constraint automata,
and coloring semantics to the process algebraic specification language of mCRL2 [61] and
show the correctness of their mappings. Also, they have build a tool for these mappings that
is now a part of the tool-set Extensible (Eclipse) Coordination Tools (ECT) [2].

In another work, Mousavi et al. [116] express the formal semantics of Reo connectors
by a set of structural operational semantic rules. In general, this semantics is not a context
dependent semantics, it carries only positive information. However, to express some con­
text dependencies, specially for the lossy synchronous channel, the authors used extra more
rules to remove undesired behavior. To be able to express more fairness or context dependent
behavior the set of rules needs to be expanded.

3.4 Tool Support for Reo

In addition to a mostly updated homepage for Reo [5] that helps its user to have access to the
research and tools supporting Reo, there is a tool-set, called Extensible (Eclipse) Coordina­
tion Tools (ECT), for Reo [2] . It is a set of integrated plug-ins for the Eclipse platform, which
offer a graphical development environment for the specification, analysis and execution of
component-based software systems using the coordination language Reo [95]. It contains a
set of tools implemented by a variety of researchers and programmers. Based on the last
report of the tool-set ECT, presented in [95], it now contains the following tools:

• Graphical Reo editor by which the user can graphically construct Reo networks out of
the basic channel types.

• Animator tool that generates animations for the flow of data in Reo nets.

• mCRL2 conversion tool which encodes Reo specifications generated by the graphical
Rco editor to the mCRL2 specification language. This conversion is based on the works
reported in detail in [91, 92, 93, 94], and [95].

• Extensible automata editor. Because there are several automata based models for Reo,
ECT contains a tool for deriving automata based models from Reo in general. The
framework contains a graphical automata edi tor and can also be used outside of the
context of Reo [95] .

42 3. Formal Modeling of Component Connectors

• Tools for stochastic modeling and analysis. There are two tools for stochastic modeling
and analysis in ECT: one that generates a sort of intentional automata augmented by
stochastic information, called quantitative intensional automata, from the graphical
Reo models [I I 3, 114, 22, 23, 26), and the other which simulates the behavior of Reo
nets [150, 87) using their coloring semantics as described in [47).

• Execution engines that execute Reo connectors. Currently there exist two implemented
execution engines: one that generates the codes based on constraint automata models
and the other that executes Reo connectors in a distributed platform (for more see [125,
95)).

• Conversion tools that convert some other modeling languages such as UML2 and
BPMN toReo.

• Vereofy. As we mentioned before, Vereofy is a model checker implemented based on
the work of Baier et al. reported in [99, 98). Briefly, it does symbolic model checking of
a CTL-like temporal logic (called BTSL temporal logic) by using ordered binary deci­
sion diagrams (OBDD) as the data structures representing constraint automata models.
The Vereofy tool is available through its own web-page [7] and now is also accessible
through the ECT tool-set [2].

Fair Component Connectors

44 4. Fair Component Connectors

In this chapter, we introduce Biichi automata of records and unconditional fair constraint
automata as alternative models for the operational semantics of Reo. We compare the ex­
pressiveness of these models with that of the original model of constraint automata discussed
in the previous chapter. In the first section , we review some shortcomings of constraint au­
tomata and of their TDS based semantics in modeling component connectors and motivate
the use of records and Biichi automata of records as operational semantics for Rea. In the sec­
ond section, we introduce the notions of records, streams and languages of records. We also
give a bidirectional translation of TDS-languages and record-based languages. The notion of
Biichi automaton of records (BAR) is introduced in the third section and we show that every
constraint automaton can be translated into a Biichi automaton of records. In the fourth sec­
tion, we show that BAR's can be used to model Rea connectors especially connectors with
some fairness conditions on their behavior using some examples. Therefore, BARs are se­
mantically more powerful than constraint automata. In the fifth section, a set of composition
operators for BARs is introduced. We compare the join operator of BARs with its counterpart
for constraint automata and show that the join operation can be obtained using two more basic
operations, namely, product and alphabet extension. In the subsequent section, we introduce
the notion of unconditional fair constraint automata and compare their expressiveness with
that of constraint automata and Biichi automata of records. In the last section, we introduce a
version of constraint automaton, called fair constraint automaton, whose syntax is the same
as constraint automaton except that now it has final (accepting) states, but its semantics is
based on the languages of streams of records.

4.1 Introduction

In the previous chapter, we have seen that constraint automata are operational models of Reo
connectors. However, we can recognize some shortcomings in using constraint automata as
the semantics for Reo. These shortcomings can be categorized in two main groups, those
related to the TDS-based semantics of constraint automata and those about the modeling
capabilities for Reo connectors. Briefly, the first group shows that the TDS-based semantics
of constraint automata is more concrete than what is needed in modeling Rea connectors,
whereas the other group shows that constraint automata fail to model all expected behaviors
of the connectors. The main shortcomings concerning the TDS-language based semantics of
constraint automata can be summarized as follows.

I- Constraint automata are defined as the acceptors of timed data streams. However, timed
data streams are much more concrete than constraint automata, because they record the actual
times when communications happen, whereas constraint automata record just the temporal
order of data communications (and not their times) .

2- Different than finite and Biichi automata, the simplicity of a constraint automaton is
not nect:ssarily rt:lkcted by the TDS language it recognizes:

Example 4.1 Consider for example the following constraint automaton on two ports A and
B over a singleton data set:

4.1. Introduction

{B}

{A} R
---t~(!)

45

While the automaton describes only a single event happening at port A, a TDS-luple 0 ac­
cepted by the automaton consists of a pair of two infinite sequence of events 0 A and 0 B, one
describing the data-flow al port A and the other the flow at port B, such that all events in 0 B

happen between the first and the second event in 0 A· All events but the first in 0 A are really
irrelevant, yet one needs to describe them all.

In addition, constraint automata fail lo model some expected behaviors ofReo connectors.
For instance, they cannot model fairness constraints over the behaviors of a connector, as
well as operations that depend on pending 1/0 operations on the communication ports of a
connector. This latter feature is called context dependency, which occurs when the behavior
of a connector can change depending upon not only the presence of requests on a connector
boundary, bul also on their absence. In such cases, lhe behavior of a connector can change
dramatically with changing context. In this chapter, we concentrate on the issue of fairness
constraints. In the next chapter we will discuss context dependencies.

Fairness Constraints Many specification forma lisms for reactive and concurrent sys­
tems incorporate some notions of fairness constraints such as unconditional, weak, and strong
fairness. Informally, the requirement of unconditional fairness disallows executions of the
system in which certain sets of actions or situations are taken only finitely many times. In
other words, in a model with an unconditional fairness constraint we are interested only in
the executions wherein a certain sel of actions (or a certain set of the slates of the system)
arc seen infin itely many limes. The requirements of weak and strong fa irness arc conditional.
The weak fairness requirement disallows executions in which certain sets of actions or situa­
tions are continually enabled but not taken. Namely, the weak fairness requirement states lhal
continua lly enabled actions or states must occur infinitely often. The requirement of strong
fairness disallows executions in which certain sets of actions or stales are enabled infinitely
often but they are taken only fi nitely many times. That is, if certain actions or situations are
enabled infinitely often then they must occur infinitely often . More formally:

Definition 4.1 A basic transition system is a tuple A= (Q, E, L\, q0) where, Q is a fin ite
set of states, E is a finite nonempty set of symbols called alphabet, L\ ~ (Q x E x Q) is a
transition relation, and q0 E Q is the initial state. An infinite run of A is an infinite sequence
p = q0 , a.o , qi , ai , ... , of alternating states and symbols where, for all i, (q;, a;, q;+ i) E L\ .
We say that the symbol (action) a E E is enabled in state q E Q whenever there exists
a transition (q , a, q') E 6. Also, we say that the symbol a is taken (or occurs) in position
i E f::I or the infinite run p = q0 , a.o , qi, ai , ... if a; = a. Let p be an infinite run in the basic
transition system A and F ~ E be a set of symbols. Then,

• pis unconditionally F-fair if an element in F occurs infinitely often in p.

• pis strongly F-fair if the condition that infinitely often an e lement in F (nol necessari ly
the same) is enabled implies that an e lement in F (not necessari ly the same) occurs
infinitely often in p.

46 4. Fair Component Connectors

• p is weakly F-fair if the condition that some element in F (not necessarily the same)
is eventually always enabled implies that an element in F (not necessarily the same)
occurs infinitely often in p.

Next we present some simple examples of unconditional fairness constraint in the context
of component connectors.

Example 4.2 Consider a channel from port A to port B with a buffer with capacity of one.
Suppose that if the buffer is empty, the input data from port A can be saved in the buffer or
can get lost. If the buffer is full all other inputs are lost. When the buffer is full , port B is able
to get the saved data and then the buffer becomes empty. We call this channel a Restive-Buffer
channel and model it with the following basic transition system:

A A

~@¢0
B

Now, an example of an unconditional fairness constraint is given by considering the (infinite)
runs in which the buffer becomes full infinitely many times. Namely, the fair runs are the
executions in which state q' (or transition with label B) is taken infinitely many times. In
these runs, it is impossible that all input data get lost.

Obviously, if we consider the above transition system as a finite automaton over infinite
words (a Biichi automaton) with state q' as final state, the semantics of the model is exactly
what we want.

In general, it can be shown that unconditional fairness conditions correspond to the Biichi
acceptance condi tion in the theory of automata on infinite words [IOI]. Based on this fact,
sometimes unconditional fairness conditions are called as Biichi fairness conditions [131].

Example 4.3 Now consider the following basic transition system:

n n

~ A

Suppose that we want the model to be weakly fair with respect to the action set {B}. A
transition with action B is continuously enabled in all infinite runs or the above model. A
run is weakly fair if it takes transitions wi th action B infinitely many times. Thus, the run
q, A,q' , A , q, A , q' , A , ... and every run in which there arc on ly finitely many transitions
with action Bare (weakly) unfair with respect to action set {B}.

Example 4.4 Take the following basic transition system:

4.1. Introduction 47

Suppose that we want the model to be strongly fair with respect to action set {B}. In all
infinite runs of the above model the transition with action B is enabled infinitely often. An
run is strongly fair if it takes the transition with action B infinitely many times . Thus, run
q, A, q', A, q, A, q', A, ... and every runs in which there are only finitely many transitions
with action B are (strongly) unfair with respect to action set { B}.

In general, strong fairness conditions correspond to the Streett acceptance condition in the
theory of automata on infinite words [IOI]. Interestingly, Streett automata can be efficiently
simulated by BUchi automata [130] . Thus, a semantics for component connectors based on
BUchi automata is able to specify both unconditional and strong fairness constraints . In this
chapter, our main goal is to present this kind of semantics for Reo connectors.

Fair connectors. According to the view point of exogenous coordination, a connector
(coordinator) is an open system. By the term of open system, we mean that the set of actions
(in the case of automata models, the set of transition labels or symbols) are not under the con­
trol of the connector. They are fired by the environment. Thus, it makes sense to talk ahout
fairness for the behavior of the system only when there is non-determinism. For deterministic
systems/automata, one cannot really talk about their fairness. Whenever a system/automaton
has non-deterministic choices it becomes meaningful to expect it to behave fairly. There are
different definitions for non-determinism for specification formalisms. To fix our terminol­
ogy, we call a Reo connector a non-deterministic connector if there are possible alternative
firings of the ports that the connector can decide to choose (and if the connector can de­
cide to make a transition, then staying in the current state is not a choice). If a connector is
non-deterministic, we can augment its specification or model by fairness constraints.

On the other hand, a transition system or automaton can be considered as the model of a
closed system. For instance, a connector and its environment together can be considered as a
closed system and modeled by an automaton. In this case, we can distinguish fair and unfair
runs of the system by augmenting its model by fairness constraints.

Thus, in our terminology, speaking about the fair connectors is permitted only for connec­
tors that have non-deterministic choices in their behavior. Also, if an automaton is considered
as the model of a connector or an open system and there is non-determinism in its behavior,
it can be asked to be fair. However, if we speak generally about fairness for automata models,
they should be considered as models of closed systems.

Next, we show that constraint automata are not always able to model the desired fairness
conditions, even in the simplest case, namely the unconditional fairness.

Constraint Automata and Fairness. The timed data streams semantics of constraint
automata implicitly expresses some unconditional fairness constraints. Let us have an exam­
ple:

Example 4.5 We model the Restive-Buffer channel that we presented in Example 4.2 with
the following constraint automaton:

48 4. Fair Component Connectors

According to the TDS-languages semantics of constraint automata, in the above automaton
port A cannot be fired eventually always because TDS-languagc semantics forces to assign
an infinite sequence of time-data pairs to both ports A and B. Thus, using the TDS based
semantics of constraint automata implicitly satisfy the unconditional fairness constraint of
Example 4.2.

However, there are several cases that the TDS-languages based semantics of constraint
automata fai ls to satisfy some simple fairness conditions:

Example 4.6 Consider the following constraint automaton:

{A.B}

~0 -{j)Oi)
{B}

The automaton accepts TDS-languages in which B alone never occurs (even though it is al­
ways enabled in state q'). Note that if we consider the above automaton as a Bilchi automaton
with two simple action names { A, B} and { B} and two accepting state then action { B} can
occur alone.

Now, consider the following constraint automaton :

{ R}

o{A}

~~0
The automaton does not accept any timed data streams tuple, because A cannot appear only
once (even if B is initially enabled in state q).

The above example in addition to Example 4.1 show that the TDS-language based seman­
tics of constraint automata sometimes is not able to express fairness constraints but sometimes
implicitly it does! Furthermore, timed data streams contain exact time value expressions while
in data passage through ports only the temporal orderings of data exchanges are of interest.
Thus, TDS-language semantics of constraint automata is more concrete than it is necessary 1•

In this chapter, we introduce the notion of Bilchi automaton of records as the alternative
operational semantics for Reo with a more standard and simpler semantics which is able
to express the desired unconditional and strong fairness conditions. We use records as data

1 In a lacer work and in order to define the operational semantics of timed Reo connectors, some of the authors
of constraint automata, introduced the not ion of scheduled data streams [18, 17]. This forma li sm is simi lar to our
proposed streams of records from the view point that both abstract away the exact time stamps and focus only on the
ordering.

4.1. Introduction 49

structures for modeling the simultaneous executions of events: ports in the domain of the
record are allowed to communicate simultaneously the data assigned to them, while ports not
in the domain of the record are blocked so that they can not participate in communication.
The behavior of a network of components is given in terms of (infinite) sequences of records,
so to specify the order of occurrence of the events. Standard operational models can be used
to recognize such languages. For example, we use ordinary Biichi automata as operational
devices for recognizing languages of streams of records. Because our model is based on Biichi
automata, we can easily express fairness conditions admitting only executions for which
some actions occur infinitely many times [145) . In the next chapter, we enrich the model to
overcome the context dependency problems.

For example, for the lossy synchronous channel which has been introduced in the previous
chapter, we will define at least two types of fair lossy synchronous channels:

Example 4.7 A lossy synchronous channel from port A to port B behaves as a synchronous
channel except that the input data can be non-deterministically lost or delivered to the sink.
We call this channel as a ND-LossySync channel. If we add the fairness condition that not
all data can get lost, we call the channel as a weak fair LossySync channel. If we consider
stronger fairness condition that only finitely many data can get lost, the channel is called as a
strong fair LossySync channel.

In [30) a lossy synchronous channel is modeled using the following (deterministic) con­
straint automaton:

{A ,B }

0
-+(j)

0
{A}

For the moment, suppose that the above model is a basic transition system with infinite traces
semantics (or it is a Biichi automaton whose only state is accepting). From the environments
viewpoint, firing each one of the two actions can be selected non-deterministically. Thus, it
is possible that the transition with action {A} is selected forever or the other transition to be
selected only finitely many time. In the first case, the model violates both weak and strong
fairness conditions. In the other, the model violates the strong fairness constraint. But, what
about the above model if it is regarded as a constraint automaton with the TDS-language
semantics? As we explained before, the TDS-languagc semantics forces to assign an infinite
sequence of time-data pairs to both ports A and B. Thus, it implicitly satisfies the fairness
constraint that not all data at port A get lost.

We also show that every constraint automaton with a slight correction of their TDS se­
mantics can be translated into an essentially equivalent Biichi automaton of records. The
construction of the Biichi automaton is straightforward and the result may appear as not
surprising at all. But beware! The languages recognized by the two type of automata have
different structures. In fact it is easy to embed a language on streams of records into a lan­
guage of timed data streams, but not vice-versa. Despite these structural differences, we show
that the converse also holds without losing any information as far as constraint automata is

50 4. Fair Component Connectors

concerned. An immediate consequence of this result is that, since BUchi automata enjoy clo­
sure properties that constraint automata do not have, our model is more expressive. In fact
we give a few concrete examples of realistic connectors (not considered in the Reo language
until now) that can he specified in our model but not with constraint automata .

The main reason for having time information in the timed data streams is compositionality
with respect to the Reo join operator. We introduce a join composition operator for BUchi
automata on streams of records and show that it is correct with respect to the join operator
for constraint automata. Also, we present a method to recast this join operation using the
standard product operator of BUchi automata.

4.2 Streams and Languages of Records

Now we introduce records as data structures for modeling the simultaneous executions of
events: ports in the domain of the record are allowed to communicate simultaneously the data
assigned to them, while ports not in the domain of the record are blocked from participating
c.:ommunication. The behavior or a network of components is given in terms of (infinite)
sequences of records, so to specify the order of occurrence of the events.

Definition 4.2 Let N be a finite nonempty set of (port) names and Va finite nonempty set
of data.
(]) We write R ecN(V) = N __,. V for the set of records with entries from the set of data V
and labels from the set of names N, consisting of all partial functions from N to V.
(2) For a record r E RecN (V) we write dom(r) for the domain of r .
(3) Sometimes we use the more explicit notation r ~ [n1 = d1 , . .. , nk = dk] for a record
r E R ecN(V), with dom(r) = {n1 , .. . , nk} and r(ni) = di for 1 ~ i ~ k. Different than
a tuple, the order of the components of a record is irrelevant and its size is not fixed a priori .
(4) We denote by T the special record with the empty domain, that is dom(r) = 0.
(5) A stream of records over a data set V and a name set N is an infinite string of records
w E R ecN (V)w .
(6) A language of (streams of) records over a data set V and a name set N is a set of infinite
strings of records L ~ R ecN (V) w.

We use records as data structures for modeling constrained synchronization of ports in
N. Following [127), we see a record r E RecN(V) as carrying both positive and negative
information: only the ports in the domain of r have the possibility to exchange the data
assigned to them by r, while the other ports in N \ dom(r) are definitely constrained to
not perform any communication. This intuition is formalized by the fact that only for ports
n E dom(r) data can be retrieved, using record selection r. n. Formally, r. n is just a (partial)
function application r(n).

Further, positive information may increase by means of the update (and extension) oper­
ation r[n: = d], defined as the record with the domain dom(r) U {n} mapping the port n
to d and remaining invariant with respect to all other ports. The hiding operator' \' is used
to increase the negative information. For n E N, the record r \ n hides the port n to the
environment by setting dom(r \ n) = dom(r) \ {n}, and (r \ n).m = r.m.

4.2. Streams and Languages of Records 51

Definition 4.3 Let r1 E RecN1 (V) and r2 E RecNJV).
(1) We say that records r1 and r2 are compatible, if dom(ri) nN2 = dom(r2) nN1 and for
all n E dom(r1) n dom(r2), r1.n = r2.n.
(2) The union of compatible records r1 and r 2 , denoted by r1 U r 2 , is a record over port
names N1 UN2, such that, for all n E dom(r1), (r1 U r2)- n = r1. n and for all n E dom(r2),
(r1 U r2).n = r2.n.

4.2.1 Bidirectional Translation of Record and TDS-Languages

Let us compare the expressiveness of TDS-languages with that of languages of streams of
records. First, we introduce a slight modification in the definition of timed data stream:

Definition 4.4 Let N be a fixed finite set of port names and Va non-empty set of data that
can be communicated through those ports. The set TDS of all (infinite) timed data streams
over V consists of all pairs (a, a) E vw x lR+ such that

I. for all k 2-: 0 either a(k) = oo or a(k) < a(k + 1) , and

2. limk-+= a(k) = oo.

where lR+ = [0, oo] is the set of all positive real numbers including zero and infinity.

The only difference of the above definition of timed data stream and the original one (see
Definition 3.2) is that in the present definition the Lime value oo (infinity) is also allowed.
This simplifies our next discussions and will solve some of the problems 2.

For instance in the case of Example 4.1 it is enough to consider the values of all events
time but the first in 0 A to be infinity. The definitions of TDS-tuples and TDS-languages
remain the same as previously defined.

Given a TDS-language L for N we can abstract from its timing information to obtain a
set of streams over RecN(V). For a TDS-tuple 0 E TDSN, the idea is to construct a stream
of records T (0) E RecN(V)w, where, for each k, the record T (0)(k) contains all ports and
data exchanged at time 0.time(k). In fact, we define for each n E 0.N(k) and k E :N,

T(0)(k).n = 0.b(k)n

Note that dom(T(0)(k)) = 0.N(k). As usual, we extend this construction to sets, namely,
for every L rDS s;:; TDSN,

T(LTDs) = LJ{Y(0) 10 E LTDs}.

Example 4.8 Let

Al d

I
d' d"

0.5 0.7 1.9

Bl 0~5 I
d'
1.2

2In [16], Arbab uses the j_ symbol in a footnote as a spec ial value for the time values in time streams to model
finire behavior. This is s imilar to using oo as we have here.

52 4. Fair Component Connectors

be a IDS-tuple over port set { A, B}. Then,

p =[A = d, B = dl[A = d'l[B = d'l[A = d"] · · ·

is its correspondent stream of records. The time stamps are used only to determine the order­
ing of data communications.

Conversely, any stream of records p E Rec.N(V)w generates a TDS-language 8(p) by
guessing the Limes when data are exchanged so to respect the relative order of communication
imposed by p. Formally,

8(p) = {0 I \/k 2 O:(0 .N(k) = dom(p(k)) I\ \/n E dom(p(k)) :0.J(k) n = p(k). n)} .

Example 4.9 For example, for p being the stream of records as in Example 4.8 above, the
following TDS-tuple

Al~ I d' I d"
10.4 23.6

Bl d I d'
10.5

is in the language 8 (p). Clearly, also the IDS-tuple in Example 4.8 is an element of the same
language.

We extend 8 to languages L <:;; Rec.N (V) w by selling

e(L) = LJ{e(p) I P E L} .

The function 8:2RecN ('D)w -+ 2 TDSN is an embedding of languages over records into TDS­
languages for N .

Lemma 4.1 For each L <:;; Rec.N(V)w, L = Y(8(L)).

Proof.
Let p E L be a stream of records. Since p = Y(8(p)) we have L <:;; Y(8(L)) .
Now Let p E Y(8(L)). There are a stream of records p' E Land a TDS-tuple 0 E TDS.N
such that p = Y (0) and 0 = 8(p'). Thus, 0 is a proper time assignment into p' and pis the
time abstraction of 0. Obviously it should be p = p'. Thus, Y (8(L)) <:;; L. □

The counterpart of the above lemma for TDS-languages does not hold, because a tuple
of Lime data stream 0 E TDS.N may contain specific time information that gets lost when
mapped into a stream of record Y (0) . In the next section we see that for constraint automata
the information lost in the above translation is never used.

4.3 Buchi Automata of Records

Sets of streams of records are just languages of infinite strings, and as such some of them can
be recognized by ordinary Biichi automata. Next, we recall some basic definitions and facts
on Biichi automata [138].

4.3. BOchi Automata of Records 53

A B

0 13 0
---t @~®

A

Figure 4.1: A BOchi automaton for L in Example 4.1 O

4.3.1 Buchi Automata: A Review

A Biichi automaton is a non-deterministic finite state automaton which takes infinite words as
input. A word is accepted if the automaton goes through some designated final or accepting
state infinitely often while reading the word. More formally:

Definition 4.5
(1) A Biichi automaton is a tuple B = (Q, E, ~ , Q0 , F) where, Q is a finite set of states, Eis
a finite nonempty set of symbols called alphabet, ~ ~ (Q x E x Q) is a transition relation,
Q0 ~ Q is a nonempty set of initial states and F ~ Q is a set of accepting (final) states.
(2) An infinite computation for a stream w = O{), a1 , • • • E Ew in B is an infinite se­
quence q0 , O{), q1 , a1 , ... , of alternating states and alphabet symbols in which q0 E Q0 and
(qi , ai, Qi+ 1) E ~ for all i.
(3) The language accepted by a Bi.ichi automaton B consists of all streams w E Ew such
that there is an infinite computation for w in B with at least one of the final states occurring
infinitely often. The language of a Bi.ichi automaton B, denoted by L(B), is the set of al l
streams accepted by it.
(4) We say that two Bi.ichi automata B1 and B2 are (language-based) equivalent if L(B1) =
L(B2).
(5) Let B = (Q, E, ~ , Q0 , F) be a Bi.ichi automaton.Bis called as a deterministic Bi.ichi
automaton if / Q0 / :::; 1 and the transition relation ~ can be considered as a function of the
form ~:(Q x E) ~ Q.

If we regard the state space of a Bi.ichi automaton as a graph, an accepting computation
(or run) traces an infinite path which start at some state q0 E Q0 , reaches an accepting state
QF E F and, thereafter, keeps looping back to QF infinitely often. In graphical representation
of Bi.ichi automata accepting states are distinguished from other states by drawing them with
a double circle.

Example 4.10 Consider the alphabet E = { A, B}. Let L ~ Ew consist of all infinite
words n such that there are infinitely many occurrences of A in n. Figure 4.1 shows a Bi.ichi
automaton recognizing L. The initial state is marked by an arrow without a source. There
is only one accepting state q0 which is indicated by a double circle. In this automaton, all
transitions labeled A lead into the accepting state and, conversely, all transitions coming into
the accepting state are labeled A. From this, it follows that the automaton accepts an infinite
word if and only if it has infinitely many occurrences of A.

The complement of L, which we denote L, is the set of all infinite words a such that a
has only finitely many occurrences of A. An automaton recognizing Lis shown in Figure 4.2.

54 4. Fair Component Connectors

A ,B B

gBQ
---t ~---t®

Figure 4.2: A BOchi automaton for L in Example 4.10

The automaton guesses a point in the input beyond which it will see no more A's - such a
point must exist in any input with only a finite number of A's. Once it has made this guess,
it can process only B's - there is no transition labeled A from the second state, so if it reads
any more A's it gets stuck.

In the above example, notice that the automaton recognizing L is deterministic while the
automaton for L is non-deterministic . It can be shown that the non-determinism in the second
case is unavoidable - that is, there is no deterministic automaton recognizing L. This means
that Bi.ichi automata are fundamentally different than their counterparts on finite inputs: we
know that over finite words, deterministic automata are as powerful as non-deterministic
automata. In other words, non-deterministic Bi.ichi automata are strictly more powerful than
deterministic Bi.ichi automata: there are languages recognized by non-deterministic Bi.ichi
automata that cannot be recognized by any deterministic Bi.ichi automaton [138].

Generalized BOchi Automata In several applications, other types of automata on infi­
nite objects are useful. In fact, there are several variants of automata on infinite words that
are equally expressive as nondeterministic Bi.ichi automata, although they use more general
acceptance conditions. For some of these automata, the deterministic version has the full
power of nondeterministic Bi.ichi automata. Muller, Rabin and Streett automata are exam­
ples of these types of automata on infinite words [l 38]. Also, Bi.ichi automaton itself has
some slight variants, called generalized and alternating Biichi automata, both of which are
equally expressive as nondeterministic Bi.ichi automata. For the purpose of this thesis, it suf­
fices to consider generalized (nondeterministic) Biichi automata. The difference between a
Bi.ichi automaton and a generalized Bi.ichi automaton is that the acceptance condition of the
generalized one requires to visit several sets (of final stales) F1 , . .. , Fk infinitely often. More
formally:

Definition 4.6
(I) A generalized Biichi automaton is a Bi.ichi automaton B = (Q, I: , ~ , Q0 , F) but for the
set of final slates, that now is a set of sets, that is, F ~ 2Q .
(2) A stream w E 1:w is accepted by generalized Bi.ichi automaton B if and only if there is
an infinite computation Jr for w in B such that for every F E Fat least one of the states in F
occurs in 1r infinitely often.

The definitions of languages recognized by generalized Bi.ichi automata and their equiv­
alence are the same as for the case of Biichi automata.

Example 4.11 Figure 4.3 shows a generalized Bi.ichi automaton over the alphabet set I: =
{A, B , C} with the acceptance sets F1 = {qi} and F2 = {q2 }. The accepted language

4.3. BOchi Automata of Records

C

CO fl

®~®~®
A I C

55

Figure 4.3: A generalized BOchi automaton with the set of accepting sets F = { { qi} , { q2 }} .

consists of all infinite words over the alphabet set I: = {A , B, C} such that both A and B
hold infinitely often (possibly at different positions).

Remark 4.1 The set F of accepting sets of a generali zed Bikhi automaton may be empty.
If F = 0 the stream w is accepted if and only if there exists an infinite computation for win
the automaton. Note the difference with the case of an ordinary Biiehi automaton whose set
of final states is empty. For a Biichi automaton whose set of final states is empty, there are no
accepting computations and the language of the automaton is empty. Contrary to that, every
infinite computation of a generalized Biichi automaton with F = 0 is accepting.

Clearly, every Biichi automaton is a generalized Biichi automaton with a singleton set of
final states, containing the original set of of final states. Conversely, every generalized Bi.ichi
automaton can be transformed into an equivalent Bi.ichi automaton:

Lemma 4.2 3 Let B = (Q, E, .6., Q0 , F) be a generalized Bi.ichi automaton. Then, there
exists a Bi.ichi automaton B' such that L(B) = L(B').

Proof Based on Remark 4. 1, if F = 0 then B accepts all infinite strings over the alphabet
E. In this case, B is equivalent with the Bi.ichi automaton that has only one state, say q, that
is both initial and final , and for every a E a, there is a self-transition (q, a, q) in B.

Now, we assume that F =I- 0. Let F = {Fa , ... , Fk- d, where k 2'. 0. The basic idea of
the construction of B' is to create k copies of B such that the accepting set Fi of the i th copy
is connected to the corresponding states of the i + 1th copy. The acceptance condition for B'
consists of the requirement that an accepting state of the first copy is visited infinitely often.
This ensures that all other accepting sets Fi of the k copies are visited infinitely often too.

Now we can define ordinary Bi.ichi automaton B' = (Q', E , .6..' , Qb , F') such that:

• Q' = Q x {O, ... , k - 1},

• Qb = Qo x { 0},

• F' = F X {O}.

The transition relation .6.' ~ (Q' x Ex Q') is defi ned as follows. For all q E Q, A E E, and
i E [O .. k - 1] :

3This lemma is a known result in the literatu re of Buchi automata. In the rest of thi s chapter we will use the
construction procedure that is introduced in its proof.

56 4. Fair Component Connectors

• if q (/. F;, then for all q' E Q that (q, A , q') E ~, ((q, i), A, (q' , i)) E ~',

• else, for all q' E Q that (q , A , q') E ~, ((q, i), A , (q' , (i + 1) mod k)) E ~' -

Now, we can simply show that L(B)
pie [29)).

L(B') (for more detail of the proof see for exam­

□

4.3.2 Buchi Automata on Streams of Records

In the rest of thi s chapter, we work with Biichi automata whose alphabet sets arc defined as
sets of records over some sets of port names and data:

Definition 4.7 Let N be a finite set of port names and V a finite set of data . Also, let
B = (Q, I: , ~ , Q0 , F) be a Biichi automaton over the alphabet I: = RecN(D). We call Bas
a Biichi automaton (on streams) of records, abbreviated by BAR.

In the following example we show that the basic channels of Reo can be modeled by
BARs. Thus, not only it will be an example for BARs, but also this example shows the ex­
pressive power of BARs as the semantic model of component connectors.

Example 4.12 In Figure 4.4 we show BAR models of the basic Reo channels. We assume
that all channels are from port A to port Band the data set is V = { d, d'}. Sometimes instead
of drawing separate loops on the same vertex, we draw one loop with several labels separated
by commas. For the case of filter we assume that the.filter value is d. The non-deterministic
lossy synchronous channel (ND-LossySync) that we model in Figure 4.4.d is the same as we
introduced in Example 4.7. As we mentioned in that example, using fairness assumptions, at
least two other versions of the lossy synchronous channel can be defined. Later in this chapter,
we will show that using BARs, we are also able to model these two fair lossy synchronous
channels (see Section 4.4).

Also, it can be shown that the source and sink nodes in the Reo terminology should be
modeled as special kinds of connectors. A source node acts as a duplicator channel while a
sink node acts as a merger (for more detail see Chapter 3). For simplicity of our discussions,
in the following example we use duplicator and merger connectors to explicitly show their
behavior as Reo primitive and show that they can be modeled by BARs.

Example 4.13 A duplicator is a connector with a source and two sink ends. Whenever an
entity at the source is ready to put data and the entities at both sinks are ready to get it,
data will be delivered from the source to the sinks of this connector synchronously. Thus, a
duplicator can be modeled as we have shown in Figure 4.5. Again we assume that the data
set is V = {d , d'} .

Now, consider the merger connector with two source ports A and B and one sink port
B. Intuitively, it transmits synchronously data item from either A or B to the port C. If both
the source ports A and B offer data at the same time then only one of them is chosen non­
deterministically. The Biichi automaton of records model of this connector, when the data set
is V = { d, d'}, is shown in Figure 4.6.

4.3. BOchi Automata of Records

IA=d ,B=d}

----§
IA=d',B=d'}

(a)

IA=d ,B=d),IA=d1 ,B=d1
}

----§
IA=d},IA=d'}

(d)

IA=d ,B=d},IA=d,B=d'}

--§
IA=d' , B=d},IA=d' ,B=d'}

(b)

1B=d}

(e)

IA=d}

IB=d]

IA=d}

57

IA=d ,B=d}

_g

(c)

Figure 4.4: BAR models of basic Reo channels : a) Sync channel b) SyncDrain channel, c)
Filter channel , (d) ND-LossySync channel , and (e) FIF01 channel.

In general, a Biichi automaton of records may contain transitions labeled by r. These can
be considered as internal actions, as no port of the system can be involved in a communica­
tion. Since they are externally invisible we may ignore them. However, if we remove all r
symbols from a stream of records w, the resulting sequence need not to be infinite anymore.
For example, removing all r's from the stream consisting of only r symbols will result in the
empty (and hence finite) string.

Definition 4.8 Let B be a Biichi automaton of records. The visible language of B is defined
as:

Lvis(B) = {p E RecN(v)w, I 3w E L(B):p = vis(w) },

where vis(w) denotes the sequence obtained by removing all r symbols from w. We say that
automata Bi and B2 are visibly equivalent if Lvis (B1) = Lvis (B2).

Note that Lvis (B) contains only infinite sequences and therefore is a subset of the set
of sequences obtained from removing the r 's from the streams in L(B). For example, if
L(B) = { [A = d] · [A' = d'] · rw}, then Lvis (B) = 0, because removing all r's from a stream

58 4. Fair Component Connectors

B
IA = d,B=d,C=d)

A ~
IA=d' ,B=d' .C=d')

C

(a) (b)

Figure 4.5: A duplicator channel and its BAR model

A
IA= d . C= d), IA = d' ' C= d']

C ~
0

IB = d, C=d), IB= d' ' C= d')

B

(a) (b)

Figure 4.6: An (unfair) merger channel and its BAR model

consisting of infinitely many ,'s will result in a finite string, and thus not in R ecN(D)w.
Clearly, Lv;s(B) = L(B) if B does not have ,-transitions.

Example 4.14 In Figure 4.7 two visibly equivalent BAR models are illustrated. To simplify
the figure, we use a singleton data set D = { d} and denote a record labeling a transition only
by the domain where it is defined.

By a simple generalization of the standard algorithm for eliminating the t:-transitions of
an ordinary finite automaton over finite words f 661, we can construct a Biichi automaton
recognizing Lvis (B) .

Lemma 4.3 For every Biichi automaton of records B there is a Biichi automaton of records
B' (without ,-transition) such that, Lvis (B) = L(B').

Proof Let B = (Q, ~, ~ , Q0 , F) be the Biichi automaton of records over the alphabet~ =
R ecN (D). Using B, we construct the following BAR without , -transitions:

B' = (Q' ~I ~I Q' F') , , ' o,

4.3. BOchi Automata of Records 59

AB

---§
A

Figure 4.7: Two visibly equivalent BOchi automata of records.

such that,

• Q = Q',

• ~I = ~ - {T},

• Qo = Q6,

--• aT•
• (q , a, q') E fl' ¢:=:> (q ·~ q') E fl

+
where, by (q ~ qF) E fl we mean that using the transition relation fl there is a finite

path 1r from q to qF such that 1r = q ➔ qF or fork 2". 1, 1r = q ➔ q1 ➔ ... qk ➔ qF;

and by (q -r_: ~ .. f q') E fl we mean that there is a finite path 1r from q to q' such that
there are states q1 and q2 (not necessarily distinct from each other or from q and q') where,

-r · a T• '. B
1r = q --, q1 --, q2 --, q m .

Now, we can show that Lvis (B) = L(B'). Obviously, Lvis (fl) ~ (~')w. First, let p E
Lvis (B), there is w E ~win L(B) such that p = vis(w). Thus, there is an accepting infinite
computation 1r = q0, ao, q1 , a1 , ... such that at least one of the accepting states, say qF E F,
occurs infinitely often (looping style) in 1r and w = ao a1 Consider 1r' as the computation
obtained by replacing all finite subcomputations of the form q; qj in 1r with q;. Because
both p and w are infinite words, by the definition of B', 1r' is an accepting computation for
pin B'. Thus, p E L(B'). Conversely, suppose that p E L(B'). Thus, there is an accepting
infinite computation 7f

1 = qo , ao, qL a1, ... in B'. Using the definition of J', for every triple

(q;, a, qj) in computation 1r' there is a computation fragment q; T~· qj in B . Replace all
triples of the form (q;, a, qj) in computation 1r' with one of the corresponding computation

fragments q; -r~· qi and call the resulting computation 1r. Obvi ously, using the definitions
of fl' and F', it is necessary that 1r be an accepting infinite computation for an infinite word
w E ~w such that p = vis(w). Thus , w E L(B) and p E Lvis(B). □

60 4. Fair Component Connectors

{A ,B} ,d,1 = ds A[J

---§ -§
{A} A

(a) (b)

Figure 4.8: Models of a non-deterministic lossy synchronous channel by a) a constraint
automaton and b) a Buchi automaton of records.

4.3.3 Recasting Constraint Automata into Buchi Automata

Now we show that for every constraint automaton A over a name set Nanda data set V we
can construct a Btichi automaton of records. The key observation is that for each transition
labeled (N , g) in A, there is a set of (total) data assignments {c5: N ➔ V I 6 F g}. Every data
assignment in this set can be seen as a partial function from N to V, with domain N ~ N,
that is, it is a record in RecN(V). We can thus construct a Btichi automaton of records B(A)
with the same (initial) states as A, with all states as final , and with transitions labeled by each
of the above data assignment for every transition in A.

Definition 4.9 For every constraint automaton A = (Q,N, ~, Q0) over a finite data
set V and a finite name set N, we define B(A) to be the Btichi automaton of records
(Q, RecN(V) , ~, Q0 , F), where F = Q and~ is the following set of transitions:

{(q , r, q') I :3q (~) q' , :36:N ➔ V :6 F g, dom(r) = N and\fn E N:r.n = 6(n)}.

Example 4.15 Consider the constraint automaton depicted in Figure 4.8(a). It models a non­
deterministic lossy synchronous channel from the source A to the sink B: data in V either
flow from A to B or they get lost after they are read by A [30]. Figure 4.8(b) shows the
corresponding Btichi automaton on streams of records. Again , to simplify the figure, we use
a singleton data set V = { d} and denote records only by the domains where they are defined.

All Btichi automata of records in Figure 4.4 are obtained as the translations of the con­
straint automata models of the same channels in Figure 3.3. Note that in Figure 4.4 the data
set is V = { d, d'} .

The following theorem shows that timed data streams are not different than streams of
records, at least as far as finite constraint automata are concerned.

Theorem 4.4 Let A= (Q ,N , ~, Q0) be a finite constraint automaton. Then,

Y(LrDs(A)) = L(B(A)) and G(L(B(A))) = LrDs(A) .

Proof We start by proving the leftmost equality. Let r = r0 . r1 , • • • be a stream of records
in L(B(A)) ~ RecN(V)w. Because B(A) is a Btichi automaton all whose states are final,

4.4. Modeling Fair Reo Connectors 61

there is an infinite computation 7f = q0 , r0 , q1 , r1 , • • • in B(A), starting from an initial state
q0 and where each tuple (qi, ri , qi+ 1) is a transition in B(A). By construction, for each tran­
sition (qi, ri , qi+i) in the Biichi automaton B(A), there is a transition (qi , Ni , 9i, qi+ 1) in
the constraint automaton A, with a data assignment 8i :Ni ➔ D such that 8 F g.; and "In E

Ni , r.n = 8(n). This implies that the stream 1r' = qo, (No, go), q1 , (N1 , g1) , · · · is an infi­
nite computation in the constraint automaton A and that for all TDS-tuples 0 E TD8N with
r = T(0) it holds that 0.N(i) = Ni and 0.8(i) F 9i, for all i 2': 0. Thus, r E T(Lros (A))
and L(B(A)) ~ T(L ros (A)).

Conversely, let r = r0 , r1 , • • • be a stream of records in T(Lros(A)). Then there is a
TDS-tuple 0 E Lros(A) such that r = T(0) and for each n E 0.N(k) and k EN, r(k).n =
0.8(k)n- Because 0 E Lros (A), there is a computation 1r = qo , (No , go) , q1 , (N1 , g1), · · ·

in the constraint automaton A, starting from an initial state q0 where 0.N(i) = N(i) and
0.fi(i) F 9i, for all i 2': 0. By construction, there is a computation 1r = q0 , r0 , q1 , r1 , • · · in
B(A) and data assignments fii:N ➔ D such that, for all i 2': 0, 8i F 9i and ri.n = 8i(n).
Since in B(A) all infinite runs starting from an initial state are accepting, r E L(B(A)), and
hence T(Lros (A)) ~ L(B(A)).

Next we prove the rightmost equality. Let 0 E TDSN be a timed data stream accepted by
the constraint automaton A, that is 0 E Lros (A) . By definition of acceptance, there exists
an infinite computation 7f = q0 , (N0 , g0) , q1 , (N1 , g1), · · · in A such that, q0 E Qo and, for
all i 2': 0, (qi, (N;, g;), qi+ 1) is a transition in A, N; = 0.N(i), and 0.8(i) F g;. But then, by
construction , there is an infinite computation 1r' = qo , ro , q1 , r1 , · · · in the Biichi automaton
B(A) such that for all i 2': 0, there is a data assignment 6i:N ➔ D such that bi F g
and "In E N, ri. n = fi(n). Thus, r = r0 , r1 , • • • E L(B(A)) and 0 = 8(r). Therefore,
Lros(A) ~ 8(L(B(A))) .

Conversely, let 0 E TDSN be such that 0 E 8(L(B(A))). Then there is a stream of
records r = r0 r1 • • • E L(B(A)) , with 0 = 8(r), that is, for all k 2". 0, 0.N(k) =
dom(rk) and "In E dom(rk), 0.8(k) n = rk.n. Because r E L(B(A)), there is an in­
finite computation 1r = qo , ro , q1 , r1 , · · · in B(A) with qo E Qo and such that for all
i 2': 0, the triple (q;, ri , q;+ 1) is a transition in B(A). By the construction of the Biichi
automaton B(A) from the constraint automaton A, there is an infinite computation 1r' =
q0 , (N0 , g0) , q1 , (N1 , g1) , · · · in A such that for all i 2': 0, there is a data assignment 8i :N ➔
D which 8i F 9i and "In E Ni , r;.n = 8(n). Thus, 0 = 8(r) and 0 E Lros(A). Therefore,
8(L(B(A))) ~ Lros(A). □

It follows that Biichi automata of records are at least as expressive as constraint automata.
They are actually more expressive, because BUchi automata of records are closed under (lan­
guage) complement while constraint automata are not.

4.4 Modeling Fair Reo Connectors

As we mentioned in the introduction, for several connectors we can consider some fairness
conditions. In this section , we present some useful fair connectors that can be modeled by

62

AIJ A

----&=&
AB

(a)

4. Fair Component Connectors

AIJ A

~AB

l AIJ

@
0
AIJ

(b)

Figure 4.9: Models of a fair non-deterministic lossy synchronous channel with a) a weak
fairness condition, b) a strong fairness condition.

Biichi automata of records.

Example 4.16 Consider the connector (over a singleton data domain) between two ports A
and B with the behavior described by the Biichi automaton of records in Figure 4.9.a. It is a
connector similar to the non-deterministic lossy synchronous channel depicted in Figure 4.8.b
but with this extra property that not all data can get lost. Still infinitely many data can get
lost, while the non-deterministic lossy synchronous channel modeled by Biichi automaton of
records in Figure 4.9.b allows for loosing only finitely many data at the port A.

Because Biichi automata of records are Biichi automata, we can express unconditional
fairness conditions [I 01] : in each infinite execution of the system, some actions should occur
infinitely many times.

Example 4.17 Consider the merger connector with two source ports A and B and one sink
port B (see Figure 4.6(a)). Intuitively, it transmits synchronously a data item from either A
or B to the port C. If both the source ports A and B offer data at the same time then only
one of them is chosen non-deterministically. The Biichi automaton of records over the data
set 7J = { d} corresponding to the constraint automaton model of merger introduced in [30]
is shown in Figure 4. IO(a). Both models allow unfair executions where data from the same
source is always preferred if both A and B always offer data simultaneously. Figure 4.1 0(b)
shows a Biichi automaton that disallows those unfair executions. Because constraint automata
do not distinguish between accepting and non-accepting states, they cannot express this kind
of fairness conditions [30].

4.5 Composition of Buchi Automata of Records

Complex component connectors can be obtained by composing simpler ones, and by hiding
some ports from the environment. Below we describe these operators on BARs. We will give
few examples in the following section.

4.5. Composition of Buchi Automata of Records 63

AC

,'.':)_

~ u
DC

DC

(a) (b)

Figure 4.10: Models of a merger connector: (a) unfair version, (b) fair version

4.5.1 Product and Join

Since BARs are ordinary Biichi automata, we can compose them by means of the standard
(synchronous) product for Biichi autom~ta, provided they act on the same alphabet. The in­
tuitive meaning of the product is the synchronization of the two component connectors they ·
represent.

Recall the definition of the product of Biichi automata which, for simplicity, we give in
terms of generalized Biichi automata as defined in Definition 4.6:

Definition 4.10 Let B1 = (Q: , I: , --+1, Qo1, F1) and B2 = (Q2, I:, --+2, Qo2 , F2) be two
Biichi automata on the same alphabet. The product of B1 and B2 is the generalized Biichi
automaton:

where the transition relation --+ is defined as:

q ~l q' P ~2 p'

(q, p) -.':.+ (q' ,p')

The language of the product of two Biichi automata is the intersection of their respective
languages [138] .

Note that the product of two such automata is a generalized Biichi automaton. To obtain
an ordinary Biichi automaton for the product, one can use the fact that for each generalized
Biichi automaton B there is an ordinary Biichi automaton B' such that L(B) = L(B') (see
Lemma4.2).

Join Using the richer structure of the alphabet of Biichi automata of records, we can give
a more general definition of product that works even if the alphabets of the two automata are
different.

Definition 4.11
Let B1 = (Q1, RecN1 (D) , --+1, Qo1, F1) and B2 = (Q2, R ecN2 (D) , --+2, Qo2, F2) be two

64 4. Fair Component Connectors

BARs. We define the join of B1 and B2 as the generalized Biichi automaton B 1 l><l B2 given
by:

where the transition relation
Rule I :

Rule 2:

and dually,

is defined by the following rules:

q ~1 q' dom(r1) nN2 = 0
(q, p) ~ (q' , p)

p ~2 p' dom(r2) n N1 = 0
(q, p) ~ (q, p')

where by the proposition comp(r1, r2) we mean that records r1 and r2 are compatible (see
Definition 4.3) .

Intuitively, in the join operation, two transitions are synchronized if they are labeled
by compatible records (i.e. on the common ports they communicate the same data values),
whereas they are interleaved if they are labeled with records not referring to ports of the other
automaton.

Example 4.18 For example, consider Figure 4.11 . Figure 4.11 (a) shows the Biichi automa­
ton of records modeling a FIFO I channel between ports A and B (using as data set D = { d})
and (b) a FIFO I between ports B and C over the same data set. The join of these two au­
tomata is shown in Figure4.l l(c).

For Biichi automata without T-transi tions, the join operator coincides with the product in
case both automata have the same alphabet. In this case, the language of the product is just
the intersection of the languages of the two automata.

Lemma 4.5 Let B1 and B2 be two Biichi automata of records with the same alphabet ~ =
Rec.N(V) (over the same data sets and the same port sets). Then,

Proof Let B{ and B2 be BARs without T-transitions, respectively, the visibly equivalents of
B1 and B2 after applying the T-transitions elimination procedure that we introduced in the
proof of Lemma 4.3. We know that for i E {1 , 2}, Lvis (Bi) = L(B:) . Thus, it is enough to
show that Lvis (B1 l><l B2) = L(B{ x B2).

Letw E L(B{ x Bf). Thus,w has no Tsymboland w E L(B{)nL(B2).Becausethereisan
accepting computation for w in B{ , there is an infinite word p1 E ~w such that p1 E L(B1)

and w = vis (p1). Similarly, there is an infinite word p2 E ~w such that p2 E L(B1) and
w = vis(p2). Because p1 and p2 are visibly equivalent (namely, ignoring all T symbols, both

4.5. Composition of BOchi Automata of Records 65

A-□-+ B B-□---+ C

A

------t~
D

(a) (b)

A -□-+ B -□---+ C

_ __,,~,__A_-->

C C

A

(c)

Figure 4.11: Composing two FIF01 channels

become the same infinite •word) and both arc over the same alphabet, the first rule of the
join operation (see Rule I in Definition 4.11) is applicable only on two r- transitions or two
transitions with the exact same labels (a r-transition can not be synchronized with a transition
with a label other than r). Similarly, Rule 2 is applicable only on r-transitions. Thus, there is
an accepting infinite word p3 E L(B1 t><l B2) such that vis(p3) = vis(p2) = vis(p1) = w.
Therefore, w E Lvis (Bi t><l B2).

Conversely, suppose that w E Lv;8 (B1 t><l B2) . Thus, there is p E L(B1 t><l B2) such
that w = vis(p) . Because B1 and B2 are over the same alphabets (same set of data and same
set of names), again in the join operation, Rule I can be applied only on two r-transitions
or on two transitions with the exact same labels (a r-transition cannot be synchronized with
a transition with a label other than r) and Rule 2 is applicable only on r-transitions. Thus,
there is an infinite word, say p1 E L(B1), that vis(p1) = vis(p). Similarly, there is an
infinite word , say p2 E L(B2), that vis(p2) = vis(p). Thus, w E L(B{) n L(B~). Therefor,
w E L(B{ x B~). □

This implies that our definition of join is correct with respect to the product of ordinary
Bi.ichi automata (up tor-transitions). On the other hand, our definition of join is correct (even

66 4. Fair Component Connectors

structurally, and not only language theoretically) also with respect to the join of constraint
automata.

Theorem 4.6 Let A1 and A2 be two constraint automata. Then,

Proof Let A1 = (Q1,N1, Ti, Qo1) and A2 = (Q2,N2, T2, Qo2). Using Definition 3.8

Ai C><Jc A2 = (Q1 x Q2,N1 UN2, T , Qo1 x Qo2),

where T is the set of all transitions obtained using rules presented in Definition 3.8. Using
Definition 4.9, B(A 1 C><Jc A2) is

(Q1 x Q2,RecN,uN2 (D),6.c, Qo1 x Qo2 , Q1 x Q2),

where 6. c is the set of transitions ((s, t), r, (s', t')) such that, there exists the transition
((s, t), N, 9, (s', t')) E T and 6:N ➔ D such that 6 I= g and for all n in N, r.n = 6(n).

Further, let

with 6.1 and 6.2 obtained as described in Definition 4.9. Using Definition 4.11, B(A 1) C><J
B(A2) is the automaton

with D.3 the set of all transitions obtained using the rules in Definition 4.11. We need to prove
that 6. c = 6.3

First, we prove fi e ~ 6.3. Let ((s , t), r, (s' , t')) E 6.c. There is ((s, t) , N, 9 , (s', t'))
in T and data assignment 6:N ➔ D, such that 6 I= 9 and \:/n E N, r.n = 6(n). We have
three cases:
I) If ((s, t), N, 9, (s ' , t')) E Tis obtained using the first rule in Definition 3.8, then, there are
(s, Ni, 91, s') E T1 and (t, N2 , 92, t') E T2 such that, N = N1 U N2, N1 nN2 = N2 nN1,
0 -/=- N1 ~ N 1 and 0 -/=- N2 ~ N 2. Let 6[N, and r[N, be respectively the restricted versions
of 6 and r for the domain N1 ~ N. Obviously, <l[N, I= 91 and \:/n E N1, r[N, .n = 6[N, (n).
Similarly, JJN2 I= 92 and \:/n E N2, r[N2 .n = J[N2 (n). Thus, based on the definitions of 6.1
and 6.2, we conclude that (s, r[N,, s') E 6.1 and (t, r[N2 , t') E 6.2. Because r[N, and r[N2

both are restricted versions of r, r[N1 and r[N2 are compatible and r[N, U r[N2 = r. Thus,
using the first rule in Definition 4.11, ((s, t), r, (s', t')) E 6. 8 .
2) If ((s, t), N, 9, (s', t')) E T is obtained using the second rule in Definition 3.8, then , there
is (s, N, 9, s') E T1 such that, t = t' and N n N 2 = 0. Thus, based on the definition of 6. 1,
we have (s, r, s') E 6.1. Because dom(r) ~ N, therefore, dom(r) n N 2 = 0. Using Rule 2
in Definition 4.11, we conclude that ((s, t), r, (s', t')) E 6. 8 .
3) If ((s , t), N, 9, (s ' , t')) E T is obtained using the third rule in Definition 3.8. The proof is
similar to the previous case because the third rule is the dual of the second one.

It remains to prove 6.a ~ 6.c. Let ((s , t), r, (s', t')) E 6. 8 . We have three cases:
1) If ((s, t), r, (s', t')) E 6. a is obtained using the first rule in Definition 4.11, then, there are

4.5. Composition of BOchi Automata of Records 67

(s, r1, s') E ~ 1 and (t, r2, t') E ~2 such that, r = r1 U r2, records r1 and r2 are compatible,
dom(r1) nN2 = dom(r2) nN1, r1 =IT and r2 =IT. Thus, based on the definitions of ~ 1
and ~ 2, we conclude that there are (s, N1, 91, s') E T1 and (t, N2, 92, t') E T2 and data
assignments 61:N1 ➔ D and 62:N2 ➔ D such that 61 F 91, 62 F 92, Vn E N1, r .n =
81(n) and \In E N2, r.n = 62(n). Let N = N1 U N2, 9 = 91 I\ 92 and 8 = 61 U 62.
Because dom(r1) n N 2 = dom(r2) n N 1, therefore, N1 n N2 = N2 n N 1 and using the
first rule in Definition 3.8, we have ((s,t),N,9 ,(s' , t')) E ~B- Obviously, J F 9 and
Vn E N, r. n = 8(n). Thus, by construction ((s, t), r, (s', t')) E ~c-
2) If ((s, t), r, (s', t')) E ~B is obtained using the second rule in Definition 4.11, then, there
is a (s, r, s') E ~ 1 such that t = t' and dom(r) nN2 = 0. Based on the definition of ~ 1,
there is a (s, N, 9, s') E T1 and there are data assignments J:N ➔ D such that J F g and
Vn EN, r.n = 8(n). Because dom(r) nN2 = 0, N nN2 = 0 and using the second rule in
Definition 3.8, we have ((s, t), N, 9 , (s', t')) E ~B - Thus,((s, t), r, (s', t')) E ~c-
3) Again, the remaining case can be treated similarly. D

4.5.2 Splitting the Join

Next, we give an alternative way to calculate the join of two Biichi automata of records. The
idea is to use the standard product after we have extended the alphabets of the two automata to
a minimal common alphabet. First of all we concentrate on how to extend a Biichi automaton
of records B with an extra port name, not necessarily present in the alphabet of B. If the port
is new, the resulting automaton will have to guess the right behavior non-deterministically,
by allowing or not the simultaneous exchange of data with the other ports known to the
automaton.

Definition 4.12 Let B = (Q, RecN(D), ~, Q0 , F) be a Biichi automaton of records and
n be a (port) name. We define the extension of B with respect to n as the following Biichi
automaton of records:

Bfn = (Q, RecNu{n}(D), 3., Qo, F)

where 3. = ~ if n E N and otherwise

3. = ~ U {(q , [n = d], q)lq E Q, d ED} U {(q , r[n: = d], q')l(q , r, q') E ~ , d ED}.

Note that in forthcoming discussions and proofs sometimes we refer to the second and third
component-sets of 3. by~' and~"- Namely, we define 3. = ~ U ~' U ~" where,

~' = {(q, [n = d], q)lq E Q, d ED}

and
~" = {(q, r[n: = d], q')l(q, r, q') E ~, d ED}.

Intuitively, to extend Biichi automaton of records B with one extra port name n, we use
the same structure of B and add only some new transitions to it representing the guesses
of the new behavior of the automaton with respect to the new port n. There are three kinds
of guess: the environment does not use the name n in a communication (explaining why
~ <;;:; '3.); or the environment uses the name n for a communication but no other port of B is

68 4. Fair Component Connectors

A-□---+ B B -□---+ C A -□-+ B -□-+ C

(a) (b) --+~1--A--ta
C C

O~,Q
--+~

B / B C

(c)

A A

O~,,Q
~

C / A C

(d)

C

Figure 4.12: Direct and indirect joining of two FIF01 buffers

A

(e)

used (explaining the addition of a new loop transition on each state labeled by a record with
n as its only name in the domain); or the environment uses the name n in combination with
the name constrained by B (corresponding to the new transitions of the form (q,r[n:=d],q') in
D.'. Recall here that r[n: = d] is the extension of record r by adding the new field n = d to
it).

Example 4.19 For example, in Figure 4. I 2(c) we show the extension of the automaton has

been shown in Figure 4.12(a) with respect to the new port name C. In this figure , p A.!.!.+C p'

means that there are two transitions p ~ p' and p ~ p' . Also, Figure 4. I 2(d) is the
extension of Figure 4. I 2(b) with A.

The operation of name extension is not sensitive to the order of different applications, in
the sense that (Btn)tm = (Btm)t n, for two names n and m. Therefore, we can define the
extension of a Biichi automaton with respect to a finite set of names N, denoted by Bt N by
inductively extending the automaton B by one name in N at a time.

Given two Biichi automata of records B1 and B2 we can extend each of them with re­
spect to the port names of the other, so that they become two Biichi automata over the same
alphabet. We can thus take their ordinary product, obtaining as the result of the join of the
two Biichi automata B1 and B2.

Theorem 4.7 Let B1 and B2 be two Biichi automata of records over alphabet sets RecN, (V)
and RecN, (V) , respectively. Then,

C

4.5. Composition of BOchi Automata of Records

Proof
Let B1 = (Q1,RecN,(V),f}.1, Qo1 ,F1) and B2
Definition 4.11, B1 IXl B2 is

69

where F = { F 1 x Q2 , Q1 x F 2 } and ~ IXl is the transition relation . Based on Definition 4.12,
we have

and
B2tN1 = (Q2,RecN1uN2 (V),~2, Qo2,F2)

where ~ 1 and ~ 2 are the transition relations. Their product is the Biichi automaton B1 t N2 x
B2tN1 given by

(Q1 x Q2,RecN,uN2 (V),~x, Qo1 x Qo2,F)

where ~x is defined according to Definition 4. 10. We need to prove ~ x = ~IXl- We start by
showing that ~ x <;;; ~ IXl:

Let ((s, t) , r, (s', t')) E ~ x- Using Definitions 4.10 and 4.12 we have,

((s , t), r , (s' , t')) E ~ x {==} (s , r, s') E ~ 1 A (t, r, t') E ~2

{==} (s , r, s') E ~1 U ~~ U ~I I\ (t , r, t') E ~2 U ~; U ~~

We need to consider nine different cases:
I) (s , r , s') E ~ 1 and (t, r, t') E ~2- Obviously, using the first rule in Definition 4.11, we
have ((s, t), r , (s', t')) E ~ IXl.

2) (s, r, s') E ~1 and (t , r, t') E ~~- By the definition of~~' t = t' and r E RecN1 \N2 (V).
Thus, dom(r)nN2 = 0. Therefore, using the second rule in Definition 4.11, ((s, t), r, (s' , t))
is in ~ IXl - ·

3) (s, r, s') E ~1 and (t, r, t') E ~r According to the definition of~~, there is a (t, r', t') E
~ 2 such that dom(r) = dom(r') UN' for some N' <;;; N 1 \N2 and \in E dom(r'):r(n) =
r' (n). Therefore, dom(r) n N 2 = dom(r') n N 1 = dom(r') , r and r' are compatible and
r Ur' = r. Thus, using Definition 4.11 Rule I, ((s, t), r, (s', t')) E ~ IXl-

4) (s, r, s') E ~; and (t, r, t') E ~ 2 • The proof of this case is symmetric to the proofofcase
2.
5) (s, r , s') E ~~ and (t, r , t') E ~~ - This case is impossible, because, by the definition
of~;, dom(r) <;;; N 2\N1 and by definition of~~, dom(r) <;;; N 1 \N2 and dom(r) =I r/J.
Obviously, these conditions are contradictory.
6) (s, r , s') E ~; and (t, r, t') E ~r This case is impossible. Its proof is similar to case 5.
7) (s , r , s') E ~~ and (t, r, t') E ~ 2 .The proof of this case is symmetric to the proof of case
3.
8) (s , r , s') E ~~ and (t , r, t') E ~~- This case is impossible. Its proof is similar to case 5.
9) (s , r , s') E ~~ and (t, r, t') E ~~ - According to the definition of~", there are records
r' and r" such that dom(r) = dom(r') UN' = dom(r") UN" for N' <;;; N2\N1 and
N" <;;; N 1 \N2. By a simple set theoretic justification, it can be shown that, dom(r') n N 2 =
dom(r")nN1 and because \in E dom(r'):r(n) = r' (n) and \in E dom(r"):r(n) = r" (n),

70 4. Fair Component Connectors

we have r = r' Ur" . Thus, using Definition 4.11 , Rule 1, ((s, t), r, (s ' , t')) E t.lXl .

Next we prove that t.D<l ~ t. x. Let ((s, t) , r , (s' , t')) E t.lXl. We have two cases:
I) If ((s, t) , r , (s' , t')) E t. lXl is obtained using the first rule of Definition 4.11 , there are
(s, r1 , s') E t. 1 and (t, r2, t') E t.2 such that r 1 and r2 are compatible, r = r1 U r2 and
dom(r1) n N2 = dom(r2) n N1, Obviously, (s , r , s') E t.I and (t , r , s') E t.r Thus,
((s,t) , r , (s ' ,t')) E t- x,
2) If ((s , t) , r, (s ' , t')) E t.lXl is obtained using the sewnd rule or Definition 4.11, there is
a (s , r, s') E t.1 such that dom(r) n N2 = 0 and t = t'. Because r E RecJJ1 (V) and
dam(r) nN2 = 0, we have r E RecJ.11 \ J.12 (V) . Based on the definition oft.', (t, r, t) E t.~.

Thus (s, r , s') E £ and (t , r , t') E .&';. Therefore, using the definition of Bi.ichi product,
((s , t),r,(s',t'))Et. x . D

Therefore, to join two Bi.ichi automata of records, one can first extend them to a common
set of ports and then compose the resulting Bi.ichi automaton using the standard Bi.ichi prod­
uct operation. Based on the previous theorem, the automata produced by both methods are
structurally, and thus also language theoretically, the same.

Example 4.20 The join of the Bi.ichi automata of records shown in Figures 4. I 2(a) and (b)
is the automaton shown in 4. I 2(e). This automaton, in tum, is the product of the automata
depicted in Figures 4. I 2(c) and 4. I 2(d). The resulting automaton models a two-cell queue.
Note that one of the diagonal transitions corresponds to the move of data from one cell to the
other, while the other diagonal models the simultaneous consumption of data from port C
and the insertion of a new data item through the port A.

4.5.3 Hiding of Port Names

The effect of hiding a port of a component connector is that data flow through that node is
no longer observable. In BARs, the hiding operator removes all information about the hidden
port.

Definition 4.13 Let B = (Q , RecJJ(V), ➔, Q0 , F) be a BAR or generalized BAR. The
hiding of a port name A E N from B is the following BAR or generalized BAR:

B.j,A = (Q, RecN\ {A} (V), --+' , Qo , F)

r\ A
where q --+' p if and only if q ~ p.

Note that if the domain of a record labeling a transition contains only the name to be
hidden, then the transition becomes an internal one. It is easy to verify that (visibly) language
equivalence is a congruence with respect to join and hiding.

The hiding operation is interesting when it is used after joining the Bi.ichi automata of
records that model some Reo connectors. In such cases, we are generally interested to hide the
common or intermediate port names. In other words, by joining of connectors, we normally
construct more complicated connectors in which the common ports of the elementary connec­
tors become internal nodes and the other ports become the interfaces of the new connector.

4.6. Fair Constraint Automata

Figure 4.13: The resulting BAR after hiding Bin Figure 4.12(e).

A -D--+ -□-4 C

A A

---+@~@~@
C CJ C

AC

Figure 4.14: The resulting BAR after eliminating T-transitions in Figure 4.13.

71

Thus, after joining of connectors, we can hide the effects of the common (intermediate) ports.
Let us have an example:

Example 4.21 Figure 4.12(e) shows a BAR which is the resulting automaton after joining
the two automata models of two FIFO I channels (one from port A to port B and the other
from port B to port C) that were illustrated in Figures 4. I 2(a) and (b). Now, B is an inter­
mediate port. We hide port name B in the BAR illustrated in Figure 4. I 2(e). The resulting
automaton is illustrated in Figure 4.13.

Now, we convert the generalized BAR model in Figure 4.13 to an equivalent BAR with­
out T-transition using the constructions that we introduced in the proofs of Lemma 4.2 (to
convert generalized BAR to ordinary BAR) and Lemma 4.3 (to eliminate T-transitions). The
reachable part of the resulted automaton after conversion is illustrated in Figure 4.14.

As we expect, Figure 4. 14 is a model of the visible behavior of a FIFO channel whose
buffer capacity is two (say, FIFO2). States q0 , q1 and q2 , respectively, represent the configu­
rations of the connector where the buffer is empty, the buffer contains one data item, and the
buffer is full.

4.6 Fair Constraint Automata

As we explained earlier, the timed data streams based semantics of constraint automata is
more concrete than necessary. On the other hand, languages of streams of records that we
have used as the semantics of BARs are more understandable and a more suitable semantics
for connectors. In this section, we introduce a version of constraint automaton, called fair

72 4. Fair Component Connectors

constraint automaton, whose syntax is the same as constraint automaton except that now it
has final (accepting) states, but its semantics is based on the languages of streams of records.
As for the case of Buch automata, by adding sets of final states Lo constrai nt automata, un­
conditional fairness constraints over sets of states/transitions become expressible.

Definition 4.14 Let 1J be a fixed finite set of data . A fair constraint automaton (abbreviated
as FCA) over a data set 1J is of the form C = (Q, N , --+, Q0 , F) where:

• Q is a finite set or states,

• N is a finite set of names,

• --+S:::: Q x 2N x DC x Q is a set of transitions, where, DC is the set of all data
constraints over names set N and data set Das defined in Definition 3.5,

• Q0 s;:; Q is the set of initial states,

• F s;:; Q is the set of accepting (final) stales.

We write p !!..4 q instead of (p, N , g, q) E--+ and call N the name set and g the guard
of the transition.

A fair constraint automaton C = (Q, N , --+, Q0 , F) is deterministic if I Q0 I ~ 1 and
for every state q, set of port names N, and data assignment {) :N ➔ 1J, there is at most one

transition q !!..4 q' with{) p g.
Now, we define the semantics or FCAs using the languages or streams or records.

Definition 4.15 Let C = (Q,N , --+, Q0 , F) be an FCA over a data set D. Also, suppose
that E = RecN(D) and w E Ew.
1- An in.finite computation in C is an infinite sequence of alternating states and data con­
straints of the form 1r = q0 , (N0 , g0) , q1, (N1, g1), . .. where q0 E Q0 and for all subsequence
qi, (Ni, 9i) , q;+1 in 1r, (q;, Ni, g;, q;+1) E--+ .
2- An infinite computation 1r = q0 , (N0 , g0) , q1, (N1, g1), ... is a computation for the stream
w = r0 r1 ... E Ew if and only if for all i ~ 0, there is a data assignment {):Ni ➔ D such
that {J F 9i , dom(r;) = Ni and \/n E Ni: r .n = b(n).
3- Let 1r = qo , (No , go) , q1, (N1, g1), . .. be a computation for the stream w E Ew. We say
that 1r is an accepting computation for w if at least one of the accepting states, say qp E F,
occurs infinitely many times in 1r .

4- We define the language of FCA C as follows:

L(C) = { w E RecN(1J)w I there is an accepting computation 1r for w in C.}

5- Two FCAs C1 and C2 are equivalent if L(Ci) = L(C2).

6- The notions of generalized fair constraint automata (GFCA) and their accepted languages
arc defined sim ilarly such as generali zed Biichi automata and their accepted languages.

Obviously, because the semantics of both Biichi automaton of records and unconditional
fair constraint automaton are based on languages of streams of records, each BAR B over

4.6. Fair Constraint Automata 73

a name set N and a data set V can be considered as an FCA if we replace every transi­
tion label r E R ecN (V) with (N, g) where, N = dom(r) and g is the data constraint
/\ nE dom(n/dn = r .n). Using this simple conversion of BAR into FCA, we can show that
all BARs that we introduced as models of Reo connectors can be considered as FCA models
for them.

Conversely, if C is an FCA over a finite name set N and a finite data set V then C is
equivalent with a BAR B all whose components are the same as C except that each transition

q ~ q' of C is replaced with a set of transitions of the form q ~ q' where r satisfies the
following conditions: dom(r) = N and there exists a data assignment b:N ➔ V such that
b F g and 'vn E N , b(n) = r .n.

Every constraint automaton A can be converted to an FCA C(A) all of whose states are
accepting and with the same components as A. By this conversion, we have the following
direct consequence:

Theorem 4.8 Let A = (Q,.N, --t, Q0) be a finite constraint automaton over a data set V.
For its corresponding FCA C(A) = (Q,N, --t , Q0 , F) over the same data set Vin which
all shared components are the same and F = Q, we have:

T(L ros (A)) = L(C(A)) and 0(L(C(A))) = Lros(A) .

Proof Let B be the BAR all whose components are the same as C(A) except that each

transition q ~ q' of C (A) is replaced with a set of transitions of the form q ~ q' where r
satisfies the fo llowing conditions: dom(r) = N and there exists a data assignment b:N ➔ V
such that b F g and 'vn E N , b(n) = r .n . Obviously, we have L(B) = L(C(A)), and using
Definition 4.9, Bis the corresponding BAR for A. Based on Theorem 4.4, T(Lros(A)) =
L(B) and 8(L(B)) = L ros (A) . Thus, the result holds. 0

Same as the case of constraint automata, fair constraint automata can be composed by a
join operator:

Definition 4.16 Let C1 = (Q1 ,N1 , --t i , Qo1 , F1) and C2 = (Q2 ,N 2, --t2, Qo2, F2) be
two FCAs both over the set of data V. The join of C1 and C2 is the GFCA:

C1 t:xJ C2 = (Q1 x Q2, N1 UN 2, --t, Qo1 x Qo2, F)

where, the transition relation --t is exactly as defined for the join of constraint automata (see
Definition 3.8) and the set of sets of accepting states is

F = {Q1 X F2, F1 X Q2}.

Based on the above definition , we have the following theorem :

Theorem 4.9 Let C1 = (Q1, N ,--t1, Qo1 , F1) and C2 = (Q2, N , --t2, Qo2, F2) be two
FCAs both over the same set of names N and the same set of data V. Then,

L vis (C1 t:xJ C2) = L vis (C1) n L vis (C2).

Proof The theorem is a direct consequence of Lemma 3. 1 (2), Lemma 4.5, and Theorem 4.8.
D

Also, the hiding operator over FCAs is the same as the hiding operator over constraint
automata (see Definition 3.10).

Context Dependent Connectors

76 5. Context Dependent Connectors

In the previous chapter we addressed one specific shortcoming of the constraint automata
as a model ofReo networks, namely the impossibility to model desirable fairness constraints.
In this chapter we address another deficiency of constraint automata, that is, their inability
to model behavior that depends on pending l/O operations on the ports of a connector. This
latter property is called context dependency, which manifests itself when the behavior of
a connector can change depending upon not only the presence of requests on a connector
boundary, but also on their absence.

5.1 Introduction

The prototypical Reo connector featuring a context depended behavior is the context depen­
dent lossy synchronous channel (not to be confused with the previous non-deterministic and
fair lossy synchronous channels): if the port connected at the source is ready to send data
but the port at the sink is not ready to receive, then the data at the source is lost. Until now,
we have ignored such requirements and lossy synchronous channels have been modeled by
constraint automata or BARs using a (fair) non-deterministic choice. While this is sufficient
for modeling Reo networks like the exclusive router presented in Figure 3.2, in general, the
presence of context dependent lossy synchronous channels increase the expressiveness of
Reo models [13) .

First, we describe precisely our definition of the notion of context dependency (or context
sensitivity) . Context dependency means that the choice of the transition/behavior of a chan­
nel/system depends on the (un)availability of l/O requests on its ports . In a trivial sense, all
automata/systems can be considered context dependent, because their choice of a transition,
of course, depends on the availability of l/O requests on their ports. But, this overly general
sense of context dependency" is useless. So, we restrict the term context dependency to refer
to only those cases where the behavior of a channel/system depends on the unavailability of
l/O requests over its ports.

In order to address context dependent behavior, we extend the BAR models with the
possibility of testing if some ports of the environment are ready to communicate or not. That
is, we consider a Biichi variant of Kozen 's finite automata on guarded strings [100). In our
case, an infinite guarded string is an alternating sequence of sets of ready ports and records
of fired ports (together with their respective data-flow) . The difficulty in correctly addressing
a context dependent behavior is not in its modeling per se, but in its effect when composing
different connectors. In fact, as for the combination of synchronous and mutual exclusion
constraints, also context dependencies should propagate across a connector. This means that
the models of two connectors when composed should agree on both the synchronized and
mutually excluded common ports, as well as on the tests of the common ports . With this aim,
we present a novel definition of a composition operator that generalizes the automata product
construction by allowing the alphabets of the two automata to be different.

Our model, called augmented Biichi automaton of records (ABAR), has the advantage
over previous models for Reo in that it covers the basic concepts of Reo as well as the context
sensitive behavior within a standard automata theoretical framework . In fact, we show that

5.2. Guarded Languages and Augmented BOchi Automata 77

not only every BAR model of a connector can be transformed into an ABAR model but also
the context dependent requirements can be modeled by ABARs. The benefits arc a clear and
easy notation for the representation of component connectors, as we11 as the efficient existing
tool support for automatic analysis.

5.2 Guarded Languages and Augmented Buchi Au­
tomata

In this section we augment our model for component connectors so to take into account
context dependencies like the ones of the lossy synchronous channel: if the port connected at
the source is ready for accepting data but the port at the sink it is not ready for receiving it,
then the data at the source is lost. In the previous chapter, we have ignored such a requirement
and modeled the loss of data by means of a (fair) non-deterministic choice with a BAR. In this
section, we extend Biichi automata of records with the capabi lity of modeling coordination
strategies based on pending and ignored ports . The idea is to enrich the states of a BAR
automaton with expressions for testing if the ports shared with the environment are ready to
communicate or not. Intuitively, a transition

r q ---', p

can be taken only if the ports of the system successfully pass the test associated with a state
q. This implies that we must be able to safely eliminate states associated with tests that
always fail, and that passing a test has to guarantee that at least as many ports are ready to
communicate as needed by every outgoing transitions.

More formally, we consider the set N of port names as our primitive test symbols. Next,
we define the set ExpN of expression for Boolean tests for N as follows :

Definition 5.1 Let N be a set of port names. The set ExpN of expression for Boolean tests
for N is defined by the grammar

e :: = l IO I A I A. I e · e

where A E N .

Each test expression e E ExpN is evaluated over a set N ~ N of ports (ready to com­
municate):

Definition 5.2 Given a set N ~ N of ports , we define when N passes the test expression e,
denoted by N I= e, as follows:

N I= 1
N li= 0
N I= A
N I= A
N I= e1 · e2

iff A E N
iff A (/. N
i ff N I= e1 and N I= e2

78 5. Context Dependent Connectors

Informally, every collection of ports ready to communicate passes the test expression I
while every collection of ports ready to communicate containing A passes the primitive test
A. The conjunction of two tests e1 and e2 is the test e1 . e2 , while the negation of a primitive
test A is denoted by A. Note that while we use all test expressions in positive normal form, in
general the negation can be used over every test expression, say e, using e. Then the positive
form can be obtained. In this case, the other boolean connectives can be defined as derived
operators, for instance we define the disjunction of two expressions e1 and e2 to be given by
e1 . e2 • We use = to denotes the propositional logic equivalence on ExpN.

Now, we define when a record can be executed:

Definition 5.3 Given a record r E R ecN(V), let wp(r) be the weakest precondition for r to
be executed. It is defined inductively on the size of dom(r) as the following expression (up
to =):

wp(r) = I
wp(r) = A• wp(r \ A) if A E dom(r)

Intuitively, the expression wp(r) is a test checking if all the ports synchronized by r are
ready to communicate. Thus, in this case, a transition labeled by r can be fired .

We are now ready to introduce our extension of BARs for modeling both synchronization
and context dependencies.

Definition 5.4 An augmented Biichi automaton of records (abbreviated by ABAR) is a pair
(B, l) consisting of a BARB = (Q, R ecN(V) , ➔ , Q0 , F) and labeling function l:Q ➔

E xpN such that for all q E Q, if q -..'.:..+ p then l(q) implies wp(r).

As a consequence of the above definition , if l(q) = A, then all transitions outgoing from
q must be internal, i.e., they must be labeled by r. Similarly, all transitions outgoing from a
state labeled by 1 must be internal.

We will define ABARs as acceptors of infinite guarded strings f85] . We define our notion
of infinite guarded strings:

Definition 5.5 An inlinite guarded string over the alphabet R ecN(V) is an alternating in­
finite sequence N0 r0 N 1 r1 • • • where r; E R ecN(V) and each N ; is a subset of ports in N .
We define a guarded language over the alphabet R ecN(V) as a set of infinite guarded strings
over the same alphabet.

Intuitively, a guarded string represents an execution of the system, where for each step it
records the ports ready for communication and the actual data flow among a subset of them.
More formally,

Definition 5.6
(I) Let --y = NoroN1 r 1 · · · be an infinite guarded string over alphabet R ecN(V) . We define
an in.finite computation for --y in an ABAR (B, l) (over the same alphabet) to be an infinite se­
quence 7r = Qo , ro , q1 , r1 , .. . , of alternating states and records in which q0 E Q0 , N ; ~ l(q;)

and q; ~ qi+ 1 for all i E N.
(2) An infinite guarded strings --y is accepted by ABAR (B, l) if there is an infinite computa­
tion for --y in (B , l) with at least one of the final states occurring infinitely often .
(3) The guarded language of an ABAR (B, l), denoted by GL(B), is the set of all infinite
guarded strings accepted by it.

5.2. Guarded Languages and Augmented BOchi Automata 79

Note that the condition of an ABAR (B , I) that for every state q, if q ~ p then l(q)
implies wp(r) means that for every guarded string N0 r0 N1 r 1 • • - accepted, dom(ri) c:;; Ni
for all i 2'. 0.

Definition 5. 7
(I) We say that two ABARs B1 and B2 are guarded-language equivalent if GL(B1) =
GL(B2)-
(2) We say that ABAR B and BAR B' are (language) equivalent if after ignoring the la­
beling function of B and considering its language of infinite strings of record we have
L(B) = L(B') .

Given an ABAR (B , l) we can construct a guarded-language equivalent ABAR (B', l')
such that I' (q) ¢. 0 for all states q of B'. In fact, we can safely delete these inconsistent
states from the set of states of B and their incoming and outgoing transitions because no set
of names N will ever pass the test O (not even the empty set of names).

An augmented Biichi automaton of records can be considered as a Biichi automaton of
records, if we ignore the labeling function.

Conversely, every Biichi automaton of records B can be transformed into a canonical
ABAR (B , l) by assigning to each state q of B the conjunction of all wp(r) for each record
r labeling outgoing transitions from q. Namely :

Definition 5.8 Let B = (Q, R ecN(V) , Q0 , ➔, F) be a BAR. The canonical ABAR for Bis
the ABAR (B , I) where the labeling function is define as follows :

Vq E Q, l(q) = f\ wp(r)
rE W

in which r's are the members of the following set of records:

W = {r I :lq ~ q' E B} .

If B be a BAR and B' be its canonical ABAR then considering their languages of streams
of records they are equivalent. Let us to have an example:

Example 5.1 Consider the BAR model illustrated in Figure 5. l(a). In fact it is a model of
a FIF02 channel from port A to C obtained after joining two FIFO! channels and hiding
the intermediate port (see Example 4.21). The canonical ABAR for it is illustrated in Fig­
ure 5. l(b).

Transforming a BAR into its canonical ABAR and back produces the same BAR, whi le
the converse holds only for an ABAR without states with negative tests.

Although ABARs are as expressive as BARs, in terms of the languages of records that
they recognize, they are more concrete. We wil l use this extra information when composing
them. For the moment, we observe that for an ABAR (B , I) we can give a formal definition
of its pending and ignored ports. Given a set N of ports, we say that A E N is ignored by
a transition q ~ p if N I= l(q) but A (/. dom(r) , that is, the port A may be ready to
communicate but it is excluded by r. Similarly, we say that a port A is pending in a state q if

80 5. Context Dependent Connectors

A ~0---A _ _..,
A C

C C C

A

(a) (b)

Figure 5.1: A BAR model of a FIF02 channel and its canonical ABAR.

it is ignored by all transitions outgoing from q. For example, consider the ABAR illustrated
in Figure 5.1 (b). In the following transition, the port C E { A, C} has been ignored:

@-A-@
Also, suppose that B is an ABAR all whose components are the same as the ABAR illustrated
in Figure 5.1 (b) except that its initial state is A • C. In this case, the port C is suspended in
the initial state.

Definition 5.9 We say that two ABARs (B1 , l1) and (B2 , ½) are visibly equivalent if they
have no state labeled by an expression logically equivalent with O and Lvis (B1) = Lvis (B2).

Remark 5.1 Sometimes, it is more readable in the definition of an ABAR to assign a set of
sets of port names as the label of a state, instead of using a boolean test expression as its label.
In other words, based on Definition 5.2 each boolean test expression e can be interpreted as
the set of all subsets of the set of port names that satisfy e. Thus, these sets can be directly
assigned to the states as their labels. More formally, let N be the set of port names, B =
(Q, RecN(V) , ---+, F) be a BAR and (B , l) be an ABAR using BARB with a proper labeling
function l: Q ---+ ExpN. We define a labeling function V: Q ---+ (2N ---+ { true, fals e}) such
that:

\/N s;; N: V(q)(N) = true if and only if NI= l(q) .

We can semantically consider (B , V) as equivalent with the ABAR (B , l). In the next
chapter, we will translate temporal formulas of our proposed temporal logic, called pLTL,
into ABARs of the form (B , V).

5.3 Modeling Reo connectors by ABARs

Now we present the ABAR models of basic Reo connectors and some other useful examples.

5.3. Modeling Reo connectors by ABARs 81

Example 5.2 Figure 5.2 shows three visibly equivalent ABAR models of the context de­
pendent lossy synchronous channel from source port A to sink port B over a singleton data
domain.

The ABAR illustrated in Figure 5.2(a), which is the most compact one, expresses that
if both sink and source ports are ready to communicate simultaneously they exchange data.
But if the source is ready while the sink is not the data will be lost. The ABAR model in
Figure 5.2(b) expresses the same while it also models the state in which no port is ready.
Finally, the ABAR model in Figure 5.2(c) not only models the above mentioned properties
but it also allows the sink port to be suspended while the source port has no data to deliver or is
not ready to communicate. Note that the behavior of a context dependent lossy synchronous
channel (as an open system) is deterministic, in the sense that, there is no scenario for the
behavior of its environment that allows the channel to be able to make a choice between
some transitions. Thus, all possible runs of the context dependent lossy synchronous channel
are fair. Therefore, all states in Figures 5.2(a), (b) and (c) are accepting.

Now, to show that the ABAR model is able to express fairness conditions, we consider
a closed system containing a context dependent lossy synchronous channel plus its environ­
ment, and require that in each trace of this system only finitely many times the input data
into the channel can be lost. The enhanced ABAR model supporting this stronger fairness
condition is shown in Figure 5.3 . Similarly, the ABAR models of Figure 5.2(b) and (c) can
be enhanced to support such fairness conditions.

Example 5.3 In Figure 5.4 we show the BAR and two ABAR models of a synchronous
channel with source end B and sink C over a singleton data set. The model illustrated in
Figure 5.4(b) is the canonical extension of the BAR model in Figure 5.4(a). Compare the
expressiveness of the two ABAR models for synchronous channel. While the ABAR in Fig­
ure 5.4(b) accepts only the infinite guarded string

{B , C}[B = d, C = d]{B , C}[B = d, C = d] · · · ,

the automaton illustrated in Figure 5.4(c) accepts infinitely many strings, including

{}T{B , C} [B = d, C = d]{}T{B , C} [B = d, C = d] · · · .

According to the definition of a synchronous channel in Reo, the channel coordinates the data
exchange between the ports to be simultaneous. The ABAR model illustrated in Figure 5.4(c)
more explicitly shows the semantics for Reo 's Sync channel than the ABAR model illustrated
in Figure 5.4(b). It is easy to see that the two automata are visibly equivalent. In a similar way,
the synchronous channel can more explicitly be modeled by considering two other passible
states, one with the label B. C and the other with the label !3 . C.

Other basic Reo connectors can also be modeled by ABARs:
A synchronous drain (and similarly for the synchronous spout) between two ports B and

C can be modeled as a synchronous channel , but for the data values passing through the two
ports that in this case needs not to be the same:

r

82

A AB

A

(a)

(c)

5. Context Dependent Connectors

A
~
~

AB

(b)

AB

Figure 5.2: Three ABAR models of the context dependent lossy synchronous channel

5.3. Modeling Reo connectors by ABARs 83

Figure 5.3: The ABAR model of a fair closed system of a context dependent lossy syn­
chronous channel and its environment

BC BC _g --. 0:;'.;9 f-

(a) (b) (C)

Figure 5.4: Models for a Reo synchronous channel (Sync) from source node B to sink C: (a)
Its BAR model; (b) The canonical ABAR model for (a) ; and (c) The more explicit ABAR model.

where dam(r) = {fl, C}. Note that based on our definition of context dependency (pre­
sented in Section 5.1) synchronous drain and synchronous spout channels are not context
dependent.

The asynchronous version of a drain channel between B and C can be modeled by the
following ABAR:

where dom(r1) = {fl} and dom(r2) = { C}. Note that this channel is (non-trivially) non­
deterministic: when write requests exists on both of its ports, the channel can choose to con­
sume either one of them. Thus, in the case of this channel, we can consider some fairness
conditions, such as, the requirement that the input data on each port should be consumed in­
finitely often. Obviously, we can model this fair asynchronous drain by an ABAR with more
states not all of which are accepting.

84 5. Context Dependent Connectors

A filter channel from B to C is a synchronous channel that allows for the communication
of data items that have a special value. We can model this pattern using the record [B =
p , C = p] where p is the special value of the filter. Thus, the ABAR model of filter channel
is:

where r 1 = [B = p, C = p], dom(r2) = {B}, and r2.B -f. p.
Finally, a FIFO I channel from B to C is an asynchronous channel that has a buffer with

capacity one. Thus, the ABAR model of a FIFO I channel over a singleton data set is:

B

-+@:=:©
C

5.4 Composing ABAR Models

Now, we introduce the counterpart composition operators that we introduced for BAR's in
the case of ABAR's. Again we show that the join operation can be split into two more basic
operations: name extension and product.

5.4.1 Product and Join

In this section we give a defin ition or product and join or lwo ABAR's .

Definition 5.10 Let (B1 , l1) and (B2 , l2) be two ABAR overthe same alphabet, say RecN(V).
Their product is defined as the ABAR (B, l), where B = B1 x B2 and l((q , p)) = ii (q).½(p).

Similarly, we define the join of two ABARs in terms of the join of their underlying BAR's.

Definition 5.11 Let (B1 , Li) and (B2, l2) be two ABAR over the same alphabet, say RecN(V) .
Their join (B1 , l1) tx:1 (B2 , l2) is defined as the ABAR (B , l) , where B = B1 tx:1 B2 and
l ((q, p)) = l1 (q) . l2 (p).

It is easy to check that the join of ABARs is again an ABAR. In fact, if q1 ...2::4 p1 is a
transition in (B1 , l1) and dom(r 1) has no name in common with those used by another ABAR

(B2 , ½), then l1 (q1).½(q2) implies wp(r1) for all state q2 of B2. Simi larly, if q2 ~ P2 is
another transition in (B2 , l2) such that comp(r1 , r2) , then 11 (q1). l2 (q2) implies wp(r1 U r2).

As for BAR's, the join of two ABAR's with the same alphabet coincides with their prod­
uct. In general, the join operator is not a congruence with respect to the visible equivalence.

5.4. Composing ABAR Models 85

To see this, it is enough to take two visibly equivalent ABARs with one state labeled in one
automaton with A.B and in the other automaton by A.B. The join of one of them with an
automata with a state labeled by B is different than the join of the other.

We now give an example of connector composition.

Example 5.4 Consider the context dependent lossy synchronous channel from port A to
port B given in Figures 5.2(a), (b) and (c) and the synchronous channel from B to C as
modeled in Figure 5.4(c). Their joint automata are respectively the ABAR models shown in
Figures 5.5(a), (b) and (c). Note that they are very similar to their corresponding models of
the context dependent lossy synchronous channel between port A and C, except that we can
still observe the data-flow through the port B . After hiding port B, each automaton will be
the same as its corresponding context dependent lossy synchronous channel.

5.4.2 Hiding of Port Names

Now, we define the hiding operator for the case of ABAR's as the counterpart of the hiding
operator we previously defined for BAR's.

Definition 5.12 Let (B, l) be an ABAR. The hiding of a port A results in the ABAR
(B ..1-A, l') where l' (q) is the expression l(q) [1 / .A.l[l / A] which means that we first substitute
1 for every occurrence of A and then substitute 1 for every occurrence of A in l(q).

For example, using the above definition, if we hide port B in all three ABAR models
illustrated in Figure 5.5 we obtain exactly the ABAR models of a lossy synchronous channel
from A to C as illustrated in Figure 5.2 (after a renaming of the sink port which now is C
not B).

Now consider some more complex examples of joining of context dependent connectors
and then hiding the common ports:

Example 5.5 In Figure 5.6 we consider the composition of a context dependent lossy syn­
chronous channel from port A to B with another one from port B to C. The resulting ABARs
before and after hiding the common port B are illustrated in Figures 5.6(c) and (d). As we
expect, in the product automaton (before hiding) , the first channel (from port A to B) indeed
always acts as a normal synchronous channel; i.e., it never loses. The resulting connector is
exactly an ABAR model of a context dependent lossy synchronous channel from A to C.

Example 5.6 In Figure 5.7 we consider the composition of a context dependent lossy syn­
chronous channel from port A to B with a FIFO I channel from port B to C, after hiding the
common port B. Note that in the initial state of the resulting connector the buffer is empty
and in the two other states the buffer is full. As we expect, whenever the buffer is empty no
data value from port A is lost, whereas this happen when the buffer is full.

Example 5. 7 Consider the composition of context dependent lossy synchronous and FIFO I
channels in a reverse direction as we did in Example 5.6. In Figure 5.8 we consider the com­
position of a FIFO I channel from port A to B with a context dependent lossy synchronous
channel from port B to C, after hiding the common port B . In the two initial states the buffer
is empty and in the others it is full. As we expect, when the buffer is empty firing port A

86 5. Context Dependent Connectors

> B----➔ C

0 .--..... ___ A_:_C ___ 0
A ABC

(a)

A T

T ABC

A

ABC

A ABC

(b)

f----

(C)

Figure 5.5: The composition of the ABAR models of a context dependent lossy synchronous
channel and a synchronous channel

5.4. Composing ABAR Models

~g¢g
A AB

(a)

0
AB

A

A

.,..___A_B Q
ABC g

ABC

(c)

AC

(d)

87

g~g~
B BC

(b)

Figure 5.6: The composition of two context dependent lossy synchronous channels.

causes the buffer to become full. In the next stage, if C is ready to get data, it receives it, but
if C is not ready data will be lost and either way the buffer becomes empty.

Example 5.8 In Figure 5.9 we consider the composition of a synchronous channel from
port A to B with a FIFO I channel from port B to C, after hiding the common port B. As we
expect, the obtained ABAR is visibly equivalent to a FIFO I channel from source port A to
sink port C.

Example 5.9 Consider the composition of a synchronous and a FIFO I channel in a reverse
direction as we did in Example 5.8. In Figure 5.10 we consider the composition of a FIFO I
channel from port A to B with a synchronous channel from port B to C, after hiding the
common port B. As we expect the obtained model is a FIFO! channel from A to C.

88 5. Context Dependent Connectors

A ······· > B-□-+ C

B

--@~©
C

A AB

A

Figure 5.7: The composition of a context dependent lossy synchronous channel with a FIF01
channel.

5.4. Composing ABAR Models 89

A-□~B ······ · · ·· > C

[3 lJC

A

~©
C

T C

A @ ____ __, +-----
T

Figure 5.8: The composition of a FIF01 channel with a context dependent lossy synchronous
channel.

A--➔ B-□~c

B

--@~©
C

AB

Figure 5.9: The composition of a synchronous channel with a FIF01 channel.

90 5. Context Dependent Connectors

A -□-+ B __ _. C

BC

Figure 5.10: The composition of a FIF01 with a synchronous channel.

5.4.3 Splitting the join

We now show that the procedure of splitting the join into name extension and production that
we introduced for BARs is applicable to ABARs as well.

Theorem 5.1 Let (B1 , l1) and (B2 , ½) be two ABARs over the alphabet sets RecN
1
(V) and

RecN2 (V), respectively. Then,

where l' ((q1, q2)) = l1 (qi) .l2 (Q2), and q1 is a state of B1 and Q2 is a state of B2.

Proof The proof is a simple extension of the proof of Theorem 4.7. □

Example 5.10 Consider Figure 5.11. Figures 5.11 (a) and 5.11 (b) show the simplest ABAR
models of two FIFO I channels (over a singleton data set V = { d}). They are the same
BAR models we presented in the previous chapter, now augmented with proper labels. The
extension of the first ABAR with port name C appears in Figure 5.11 (d), while the extension
of the second automaton with port name A appears in Figure 5. 11 (e). Their product is the
automaton in 5.11 (c) which is obtainable using either the direct or the splitting definitions of
the join operation. ·

5.5. Context Dependent Fair Constraint Automata 91

A-□-+B B-□-+ C A -□-----+ B -□-----+ C

A B

----4@:=:@ ----4®:=:@
D C

(a) (b) C

A

A A

On/ABO
----4@:=:@ (c)

C/ A C

(d) (e)

Figure 5.11: Direct and indirect joining of two FIF01 buffers modeled by ABARs

5.5 Context Dependent Fair Constraint Automata

In Section 4.6 we introduced a new notion and semantics for constraint automaton called fair
constraint automaton (FCA). The syntax of FCA is the same as that of ordinary constraint
automaton except that it also has some final states. From the semantics point of view, each
FCA is defined as an acceptor of infinite strings of records. An infinite string of records is
accepted by an FCA if at least one of the accepting states occurs in the execution for the string
infinitely many times. Now, we investigate the augmentation of FCAs by test expression
labels as we did in this chapter for BARs. Let C = (Q,N , -----+ , Q0 , F) be a FCA over a
port set Nanda data set V, as in Definition 4.14. Also, the set of all test expressions over
the port set N and the data set V be the same as in Definition 5.1, with their semantics as in
Definition 5.2. Now we define the augmentation of FCAs:

Definition 5.13 An augmented fair constrain automaton (abbreviated by AFCA) is a pair
(C, l) consisting of an FCA C = (Q, N , -----+, Q0 , F) and a labeling function l: Q ➔ ExpN

such that for all q E Q, if q ~ q' then l(q) implies wp(N) , where for every N ~ N,
wp(N) is defined inductively as follows:

wp(r/J) = 1
wp(N) = A · wp(N \ A) if A E N.

As a consequence of the above definition, if l(q) = A, then all transitions outgoing from

92 5. Context Dependent Connectors

q must be internal, i.e., they must be labelled by T. Similarly, all transitions outgoing from a
state labeled by 1 must be internal.

Same as the case of ABARs, we regard AFCAs as acceptors of infinite guarded strings of
records:

Definition 5.14
(1) Let 1 = M0 r0 M1 r1 • • • be an infinite guarded string over the alphabet R ecN(V). We
define an infinite computation for I in an AFCA (C , l) (over the same sets N and V) to be an
infinite sequence 1r = q0 , (N0 , g0) , q1 , (N1 , g1), .. . , of alternating states and (port set, guard)
pairs in which q0 E Q0 , Mi F l(qi), and there is data assignment 8:Ni -+ V such that
8 F 9i , dom(ri) = Ni and \/n E Ni : r .n = 8(n) .
(2) An infinite guarded strings I is accepted by AFCA (C , l) if there is an infinite computa­
tion for I in (C, l) with at least one of the final states occurring infinitely often.
(3) The guarded language of an AFCA (C , l), denoted by CL(C), is the set of all infinite
guarded strings accepted by it.

Definition 5.15
(1) Two AFCAs C1 and C2 are guarded-language equivalent if CL(C1) = CL(C2) -
(2) AFCA C and BAR C' are (language) equivalent if after ignoring the labeling function of
C and considering its language of infinite strings of record we have L(C) = L(C').

Given an AFCA (C, l) we can construct a guarded-language equivalent AFCA (C' , l')
such that l' (q) ¢ 0 for all states q of B'. In fact, we can safely delete these inconsistent states
from the set of states of B and their adjunct transitions because no set of names N will ever
pass the test O (not even the empty set of names) .

An augmented fair constraint automaton (AFCA) can be considered as a fair constraint
automaton (FCA), if we ignore its labeling function.

Conversely, every fair constraint automaton C can be transformed into a canonical AFCA
(C , l) by assigning to each state q of C the conjunction of all wp(N) for each N EN that
is the first component of a pair (N , g) labeling the outgoing transitions from q. Namely:

Definition 5.16 Let C = (Q, N , --+, Q0 , F) be an FCA over a port set N and a data set
V. The canonical AFCA for C is the AFCA (C , l) where the labeling function is define as
follows:

\/q E Q, l(q) = f\ wp(N)
N E W

and

W = {NI 3q ~ q' E C}.

Obviously, if C is an FCA and C' is its canonical AFCA then considering their languages
of streams of records, they are equivalent. Transforming a BAR into its canonical ABAR and
back wi ll produce the same BAR, while the converse holds only for an ABAR without states
with negative tests.

Let us compare the expressiveness of ABARs and AFCAs. Obviously, because the seman­
tics of both augmented Bi.ichi automata of records and augmented fair constraint automata are
based on guarded languages of streams of records, each ABAR B over a name set N and a
data set V can be considered as an AFCA if we replace every transition label r E R ecN(V)

5.5. Context Dependent Fair Constraint Automata 93

with (N , g) where, N = dom(r) and g is the data constraint A nEdom(n/dn = r .n). Using
this simple conversion of ABAR into AFCA, we can show that all ABARs that we introduced
as models of Reo connectors can be considered as AFCA models of them.

Conversely, if C is an AFCA over a finite name set N and a finite data set V then C is
equivalent with ABAR B all whose components are the same as C except that each transition

q ~ q' of C is replaced with a set of transitions of the form q ~ q' where r satisfies
the following conditions: (I) dorn(r) = N, and (2) there exists a data assignment 8:N -+ V
such that b I= g and \In E N , b (n) = r . n. Obviously, if at least one of the sets N or V is
infinite then in replacing an AFCA's transitions with a set of transitions with record labels,
we will need to have records with infinite domains or to replace the transition of the AFCA
with an infinite set of transitions with record labels. This density in the syntax of AFCAs
in comparison with the syntax of ABAR's is the main advantage of using AFCA instead of
ABAR.

Model Checking

96 6. Model Checking

In the previous chapters, we introduced Bi.ichi automata of records and their augmented
versions as the operational models of Reo connectors considering unconditional fairness and
context dependency requirements. Now we have an operational semantics for Reo based on
Bi.ichi automata. Thus, it is very natural to use these models for automata theoretic model
checking of Reo nets. Generally speaking, automata theoretic methods of model checking
verify if a system satisfies a desired property using three steps. First, we model the system
by an automaton and specify the property by a formula in a temporal logic. The next steps
are applicable if there is a well established translation of the formulas of the selected tem­
poral logic into the selected type of automata. In this case, the second step is to translate the
negation of the formula that expresses the desired property into an automaton of the same
type as the one used to model the system. Now, we have two automata of the same type. The
last step is to check the intersection of their languages. If the intersection is empty, it will
be a proof that the system satisfies the property. Otherwise, each member of the intersection
set is a counterexample trace of the system that violates the property. The model checking
process can be improved (both from time and space complexity points of view) if we can
do the generation of the state space of the automaton model of the system or the translation
of the property formula into its equivalent automaton and the checking of the emptiness of
their intersection in parallel. If some form of this parallelism is possible, we call the model
checking process on-the-fly.

In this chapter, we try to use the automata theoretic method of model checking for systems
modeled by ABARs. First, we introduce an action (or transition) based linear temporal logic
(called pLTL) interpreted over computations of ABARs. Then, we show that pLTL formulas
can be translated into ABARs both using inductive and on-the-fly methods. In each case, we
obtain a technique to verify Reo nets.

6.1 Record-based linear-time temporal logic

In this section we introduce a record based linear time temporal logic (pLTL) which is an
extension of linear time temporal logic (LTL) [145) for reasoning about data-flow, synchro­
nization and context dependencies of Reo connectors. We use as atomic propositions sets of
port names, indicating the ports ready to communicate, and index the usual next state opera­
tor of LTL with a record, for the specification of communicating ports and of their respective
data-flow.

Definition 6.1 Syntax of pLTL. The set of pLTLformulas over a finite set of port names N
and a finite set of data Vis defined inductively by the following syntax:

¢ : : = true I N I , ¢ I ¢ V ¢ I (r) ¢ I <t> U ¢.

where N ~ N and r E Rec.N (V).

Formulas of pLTL are interpreted over infinite guarded strings. A necessary condition to
interpret a formula for a guarded string is that both use the same set of port names N and
data set V, which we assume to hold in the sequel. Intuitively, N holds for a guarded string

6.1. Record-based linear-time temporal logic 97

if N is the first guard of the string, whereas (r)cp holds if r is the first action of the string and
cp holds for its rcmajning suffix.

Formally, given an infinite guarded string M = N0 r0 N1 r1 • • •, we define M i as the
guarded string Ni ri Ni+l ri+l •• •. Here we consider only guarded strings for which Ni ~ N
and ri E RecN(V), for all i 2 0.

Definition 6.2 Semantics of pLTL. Let M = N0 r0 N1 r1 • • • be an infinite guarded string
over a name set Nanda data domain V such that Vi 2 0, dom(r ;) ~ Ni . The semantics of
a pLTL formula is defined inductively over such M's as follows:

MF true
M F N iff N0 = N
M F ¢ 1 V ¢2 iff M F ¢ 1 or M F ¢2
M F , cp iff M ~ <p
M F (r)cp iff ro =r and M1 F ¢
M F ¢ 1 U ¢2 iff :3j 2 0 such that MJ F ¢ 2 and VO :S i < j , M i F ¢ 1

Based on the above semantic definitions and the intuitions behind them, the temporal opera­
tors (r) and U are called (action-based) next and until operators respectively. As usual, we
denote by II ¢ II the set of all models of the pLTL formula ¢, and define logical equivalence
= of pLTL formulas as ¢ 1 = ¢2 if and only if II ¢ 1 11 = 11 ¢2 11- If Bis an ABAR and ¢ a
pLTL formula, we write B F ¢ if L(B) ~ II ¢ II -

Several other operators can be derived from the basic operators of pLTL. false is defined
as , true. The Boolean operators /\ and --+ are derived in the obvious way:

¢1 /\ ¢2 = ,(• ¢ 1 V • ¢2),

¢1 --+ ¢2 = ·(¢1 V • ¢2).

The temporal modalities eventually and always can be derived as usual :

◊¢ = true U ¢ ,

□cp = ·◊•¢.

The dual operator of until is the release operator defined as:

¢ R 1j; = ,(,¢ U,1/J).

The weak variant' W' of the until operator is obtained as:

cp W 1/J = (cp U 1/J) V 0¢.

Using the fact that if M = N0 r0 N1 r1 • • • is a guarded string that is used as the semantic
domain of pLTL formulas then Vi 2 0, dam(ri) ~ Ni and that N is finite, we can conclude
hat:

(r)cp = (V N) I\ (r)¢.
N2N2dom(r)

98 6. Model Checking

Based on the above fact, we can also derive other nice equivalences such as this:

{A}/\ ([A = 1. fl = l]) true = false .

The dual operator of (r)¢ is
[r]¢ = ,(r) , ¢

which intuitively holds for a guarded string if either its first action is other than r or its
continuation satisfies ¢ . In fact, [r] ¢ = ,(r) true V (r)¢. For example, the formula [r]false
is satisfied by all guarded strings having a record other than r as their first action. We prove
this equivalence in the following lemma:

Lemma 6.1
[r]¢ = -.(r) true V (r)</>.

Proof Let M = NoroN1 r1 · · · be a guarded string. Now,

M p [r]¢ iff M p , (r),</>
iff M ~ (r) , ¢
iff it is not the case that (r0 = r and M 1 F , ¢)
iff r0 =/=- r or M 1 F ¢
iff MF ,(r) true or M p= (r)¢
iff M p= , (r) true V (r)¢.

6.1.1 Some useful encodings

D

Because there are only finitely many records in RecN(V), the standard next operator of linear
time temporal logic can be defined as:

0¢= V (r)<t> .
rERecAf('D)

It is not hard to see that the next operator is self-dual, in the sense that

-, 0 ¢ = 0,¢.

Further, because our models arc infinite strings, 0 true = true , meaning that connectors are
reactive and cannot stop the data flow (progress is always possible) .

Two important equivalences are the definitions of until (U) and release (R) temporal
operators using a recursive style [29] :

</> 1 U </>2 = </>2 V (¢1 /\ 0(¢1 U ¢2)),

¢ 1 R ¢2 = ¢2 /\ (¢1 V 0 (¢1 R ¢2)) .

Definition 6.3 A data constraint J for a set of names N ~ N is a satisfiable propositional
formula built from the atoms d.4 E P, d.4 = d, and d.4 = d13 , where A , fl E N , d E V and
P ~ V .

6.1. Record-based linear-time temporal logic 99

Data constraints, together with a set of names on which they are defined can be viewed
as a symbolic representation of a set of records. We can therefore define a derived operator
(N , c5)¢, where c5 is a data constraint for N, by setting

(N , c5)¢ = V { (r)¢ I dom(r) = N , r p= c5} ,

where r p= (dA E P) if r .A E P , r p= (dA = d) if r.A = d and r p= (dA = dB) if
r .A = r .B (disjunction and negation are as expected).

In [17, 18], timed scheduled-data expressions are introduced to specify data stream logic .
Leaving out time, scheduled-data expressions are ordinary regular expressions built from ei­
ther data constraints or records. Scheduled-data expressions a are incorporated in data stream
logic by formulas of the type ((a))¢. More formally, a scheduled-data expression a can be
defined using the following abstract grammar:

a: : = 0 I 11 (N , c5) I r I a + a I a x a I a;a I a * .

While in general standard linear temporal logic cannot express regular expressions for
prefixes of infinite strings, we can encode scheduled-data expressions in our action based
linear temporal logic pLTL by using a function (-)t that maps scheduled-data expressions
of the form ((a))¢ into pLTL formulas . The function (-) t is defined recursively as follows :

(true) t
(N)t
(((0))¢) t
(((1))¢) t
(((N , c5))¢)t
(((r))¢) t
(((a1 + a2))¢)t
(((a1 x a2))¢)t
(((a1 ;a2))¢)t
(((a*))¢)t
(¢ A 'I/J) t

true
N
false
(¢)t
(N , c5) (¢)t
(r) (¢) t
(((a1))¢)t V (((a2))¢)t
(((a1))¢)t A (((a2))¢)t
(((a1)) (((a2))¢)) t
(((a)) true) t U (¢) t
(¢)t A ('I/J) t

Note that 0 is the unit with respect to the union operator + , and 1 is the unit with respect to
the composition operator ;. In fact we have

((0 +a))¢= ((0))¢ V ((a))¢= false V ((a))¢= ((a))¢
((l ;a))</> = ((l)) (((a))</>) =((a))¢ .

Scheduled-data expressions allow us to express formulas that hold only for externally
observable steps , thus not sensible for a finite number of internal steps. Given a pLTL formu la
¢ , we define ◊7 ¢ = ((T*)) ([T]fals e A¢). Informally, ◊7¢ holds if ¢ holds after finitely many
internal T steps.

6.1.2 Specifying Reo connectors

We now present some examples of specification of basic Reo connectors using pLTL formu­
las. First, for simplicity, the ABARs depicted in Figure 6.1 are considered as models of some

100 6. Model Checking

IA = d;B=d]

~@
(a)

IA=d)

(b) (c)

Figure 6.1: ABAR models of some basic Reo connectors: (a) Sync channel, (b) Context­
Dependent LossySync channel, and (c) FIF01 channel.

of the basic Reo connectors between two ports A and B over a singleton data set { d}. The
labels of the states are sets of port names that are ready before firing the outgoing transitions.

Now, consider a synchronous channel from a port A to a port B. If both ports are enabled,
then the channel must let the data flow. This can be expressed by the following pLTL formula :

¢ = D({A,B} -+ (({A, B} , dA = dn)) true) . (6.1)

The above formula is clearly satisfied by our ABAR model of synchronous channel in Fig­
ure 6.1. However, it is also satisfied by the ABAR modeling a lossy synchronous channel.
This is because (6 .1) docs not guarantee that data cannot flow through a single port. We
remedy this by adding to the specification of a synchronous channel the following

cp 1 = D(,(({A}, true))true V , (({B} , true)) true).

The above formula does not hold for the lossy synchronous channel. In fact, for such a con­
nector it holds that if port A is enabled but B is not, then the data at A is lost. This is expressed
by

cp2 = D(({A} A ,{A, B})-+ (({A} , true)) true)

Further, in a lossy synchronous channel, data cannot flow through port B alone, that is

cp3 = 0,((B , true)) true.

Thus, a possible specification of the synchronous channel is

Sync = cp /\ c/J1

while a specification of a lossy synchronous channel of Reo is

Lossy Sync = ¢ /\ c/>2 /\ cf>3.

Differen than the two previous channels, a FIFO] channel is asynchronous, meaning that
data docs not flow simultaneously through its ports A and B, that is

7/;1 = D,(({A, B}, true))true.

6.2. From formulas to automata: model checking 101

Further, a data item received through port A is never lost, as it is output to port B as soon as
B is enabled. Of course, this does not need to be immediate and it can even be the case that
B is never enabled. This is specified by means of a weak until operator allowing possibly
infinitely many internal steps between the two observable actions:

1/)2 = □ f\ ([A = d])((T)true I\ ,({B} V {A, B})) W ([B = d])).
d E 'D

To complete the specification of a FIFO I channel , we need the converse of the above property,
stating that after a data item flows through port B the store of the channel is empty and hence
a new data item can flow through port A as soon as A is enabled:

1/)3 = □ (({ B} , true))((T) true I\ , ({A} V {A , B})) W (({A}, true))) .

Thus, in a FIFO I channel , data flow through its two ports alternately, and never simultane­
ously. Summarizing, a specification for the FIFO I channel is

FIFOl = 1Pl I\ 1P2 I\ 1/)3.

6.2 From formulas to automata: model checking

In this section we introduce a global translation of pLTL formu las into ABARs. Our construc­
tion is based on the translation from ordinary LTL formulas to Biichi automata [149], adapted
to take into account the next state operator indexed by records. For simplicity, the resulting
ABAR will have multiple sets of accepting states in which, a run is accepted if and only if
for each accepting states set there exists at least one state that appears infinitely often in that
run. Namely, we translate formulaes to generalized ABARs. To obtain an ordinary ABAR,
one can use the fact that for each generalized Biichi automaton there is a language-equivalent
ordinary Biichi automaton [I 38].

For technical convenience we will work with a positive form of pLTL called pLTL+.

Definition 6.4 Let N and V be respectively a finite nonempty set of port names and a finite
nonempty set of data. The set of pLTL+ formulas over sets N and V is the set of all formulas
defined using the following abstract grammar:

¢ :: = true I false IN I¢/\¢ I¢ V ¢ I O ¢ I (r)¢ I [r] ¢ I¢ U ¢ I ¢R¢

where N ~ N and r E RecN(V).

It is obvious that every pLTL formula is equivalent to a positive one by pushing the
negation inside every operator and replacing every instance of ,N with V N'r:;N,N'fN N'.
Note that the size of the resulting positive formula is linear in the size of the pLTL formula.
The inclusion of the ordinary next state operator 0¢ is to simplify the presentation.

We begin the translation of pLTL+ formulas to automata by defining the closure CL(¢)
of a pLTL+ formula ¢ . Note that the closure mat include formulas that are not in the language
of pLTL+ (such as 1/J = , (r) true).

102 6. Model Checking

Definition 6.5 The closure CL(¢) of a pLTL+ formula ¢ is the smallest set of pLTL formu­
las such that:

• ¢ E CL(¢),

• true, fals e E CL(¢),

• if there is N <;;; N that N E CL(¢) then for all N' <;;; N, N' E CL(¢),

• if </>1 V ¢2 E CL(¢) then </>1, ¢2 E CL(¢),

• if ¢ 1 /\ ¢2 E CL(¢) then ¢1, ¢2 E CL(¢),

• if Q1j; E CL(¢) then 1/J E CL(¢) and for all N' <;;; N , N' E CL(¢),

• if (r)1j; E CL(¢) then 1/J E CL(¢) and dom(r) E CL(¢),

• if [r]'l/J E CL(¢) then ,(r)true, (r) 1j; E CL(¢),

• if ¢1 U¢2 E CL(¢) then ¢1,¢2,Q(¢ 1 U ¢2) E CL(¢),

• if ¢ 1 R ¢2 E CL(¢) then ¢ 1, ¢2, Q (¢ 1 R ¢2) E CL(¢).

The set CL(¢) is finite, and its size is linear in the size of the formula ¢.
The states of the ABAR associated with a formula ¢ are the propositionally and tem­

porally consistent subsets of CL(¢), the so called atoms. Unlike the original Vardi-Wolper
construction in [I 49] which allows only maximal consistent subsets, we allow any downward
consistent subset of the closure lo be an atom. Formally, we dclinc atoms as follows:

Definition 6.6 An atom A i;; CL(¢) is a set such that

I . true E A and fals e </. A,

2. for all N E CL(¢), N E A if and only if for all N' =/= N, N ' </. A,

3. if ¢ 1 V ¢2 E A then ¢ 1 E A or ¢2 E A,

4. if ¢1 /\ ¢2 E A then ¢ 1 E A and ¢2 E A,

5. if ¢1 U ¢2 E A then ¢2 E A or ¢1, 0 (¢1 U ¢2) E A,

6. if ¢1 R ¢2 E A then ¢1,¢2 E A or ¢ 2,Q(¢ 1 R ¢2) EA,

7. if [r]'l/J EA then ,(r)true E A or (r)1j; EA,

8. if (r)1j; E A then there is N ":] dom(r) such that NE A,

9. if, (r) true EA then there is N =/= dom(r) such that NE A,

10. if Q'l/J E A then there is N <;;; N that NE A .

Now, we define the generalized ABAR counterpart of every pLTL+ formula:

6.2. From formulas to automata: model checking 103

Definition 6.7 Let ¢ be a pLTL+ formula over a finite name set N and a finite data set
V. We define ABAR(¢) = (Q, R ecN(V) , --+, Q0 , F , V) to be the generalized augmented
Biichi automaton of records such that

• Q is the set of all atoms of </J,

• Q0 is the set of atoms containing r/J itself,

• the labeling function V : Q ➔ (2N ➔ { true, false}) is defined such that for all Q E Q
and N <;;; N, V(Q)(N) = true if and only if N E Q-

• the transition relation --+<;;; Q x R ecN(V) x Q is defined such that \/p , Q E Q and
for all r E R ecN (V) such that dom(r) <;;; N where N is the only set for which

V (Q) (N) = true, there is transition Q --2:..+ p if and only if

- for all (r')'lj; E Q, r' =r and 'lj; E p,

- for all 01/J E Q, 1/J E p,

- for all , (r ') true E Q, r =I= r',

(if for all N <;;; N , V(Q) (N) = false then only r = T should be considered),

• F consists of the accepting sets

Fau/3 = {Q E Qla U (3 (/. QOr /3 E Q}

foreachaU (3 E CL(¢).

Before showing that the above construction is sound and complete, note that the resulting
automaton is exactly an augmented BAR, namely the labeling function is so defined that for
every transition Q --2:..+ p the label of Q implies the weakest precondition of r. Also, note that
each atom and thus each state Q of the constructed automaton contains at most one of the sets
of the form N . Thus, in each state Q of the automaton there is at most one set N whose label
is true, namely V(Q)(N) = true.

The following theorem shows the correctness of the above construction:

Theorem 6.2 Let ¢ be a pLTL+ formula over a names setN and a data set V. The language
accepted by ABAR(¢) is the set of all models of ¢:

L(ABAR(¢)) =II¢ II .

Proof

Soundness (L(ABAR(¢)) <;;;I I ¢ 11)- Let M = NoroN1 r1 · · · E L(ABAR(¢)) be
a guarded string accepted by the accepting computation 1r = QoToQi r1 • • • in automaton
ABAR(¢). We show that for all i ;:::: 0 and every pLTL formula 'lj;, if 'lj; E Qi then M i =
Nir;Ni+ I Ti+ I · • · F 'lj;. Using this fact and because r/J E Qo we obtain that M p= ¢ and thus
M Ell ¢ 11 .

The fact that for all i 2'. 0 and every pLTL+ formula 'lj; , if 1/J E Qi then M i F 1/; is shown
by induction on the structure of the formula 'lj;.
Base cases:

104 6. Model Checking

• 1/; = N. Because NE Qi, V(Qi)(N) = true. Using the facts that there is al most one
set N for which V(Qi)(N) = true and Mis accepted by ABAR(</)), we know that
Ni = N. Thus, Mi F 1/;.

• 1/; = -i(r)true. Because -i(r)true E Qi we have ri-=/- r. Therefore, Mi F 'lj;.

Inductive steps:

• 1/; = 1/;1 V 1/;2. Because 1/;1 V 1/;2 E Qi using the definition of atoms we know that
1/;1 E Qi or 1/;2 E Qi- By the induction hypothesis, Mi F 1/;1 or Mi F 1/;2. Thus,
M i F 1/;.

• 1/; = 1/;1 A 1/;2. The proof of this case is very similar to the previous case.

• 1/; = Q'l/;1. Because Q'l/;1 E Qi using the definition of the transition relation we know
that 1/;1 E Qi+l. By the induction hypothesis, M i+ 1 F 'lj;1 . Thus, Mi F 'lj; .

• 'lj; = (r) 'l/;1. Because (r)'l/;1 E Qi using the definition of the transition relation we know
that ri = r, dom(ri) ~ Ni and 1/;1 E Qi+l· By the induction hypothesis, Mi+ 1 F 'lj;1. ·
Thus, M i F (r)'I/J1.

• 1/; = [r]'l/;1. Because [r]'I/J1 E Qi using the definition of atoms we know that (r)'l/;1 E Qi
or -i(r)true E Qi:

- If (r)'lj;1 E Qi then by the proof of the previous case we know that Mi F (r)'l/;1.
Thus, Mi F [r] 'I/J1-

- If-,(r)true E Qi then using the base case, Mi F -i (r) true. Thus, Mi F [r]'l/;1.

• 'ljJ = 1/;1 U 1/;2. Because Qi Qi+ 1 • • • is an accepting run in the automaton, there is k 2". i
such that Qk E F ,i, 1 u ,i,2 • Let j be the least such k:

- If j = i, then since 'ljJ1 U 1/;2 E Qi and Qi E F,i,, u ,i,2 using the definition of the
final states we must have 1/;2 E Pi - By the induction hypothesis, Mi F 1/;2. Thus,
M i F 1/;1 U'l/J2,

- If j > i then for all i :S l < j, 1/;1 U1/;2 E Qi and 'ljJ2 (/. Qi - Since Qi is an
atom, 1/;1 E Qi- By the induction hypothesis, for all i :S l < j, M 1 F 1/;1. Now,
1/11 U 1/;2 E Qj-1 and 'I/J2 (/. Qj-1, thus by the definition of atoms 0(1/;1 U 1/;2) E
Qj - l · Therefore, 1/;1 U 1/;2 E Qj . Since Qj E F 'I/Ji u ,i,2 we should have 'I/J2 E Qj. By
the induction hypothesis, MJ p= 1/;2. Thus we have for all i :S l < j, M I p= 'ljJ 1

and MJ p= 1/;2 - Therefore, Mi F 1/;1 U 1/;2.

• 'ljJ = 1/11 R 1/12- We have 1/;1 R 1/12 E Qi- By the definition of atoms, one of the following
cases happens:

- For all j 2". i, 1/;2 E Qj and 'ljJ1 R 1/;2 E Qj. In this case by the induction hypothesis,
for all j 2". i, MJ p= 'I/J2 . Thus, Mi F '1/J.

- There is j 2°'. i such that for a ll i :S l < j, 1/;2 E QI, 1/;1 R 'I/J2 E Ql and 'lj;1 , '1/12 E Qj.
Then, for all i :S l < j, M 1 F 1/12 and Mi p= 'ljJ 1 and MJ p= 1/12- Thus, Mi F 1/;.

6.2. From formulas to automata: model checking 105

Completeness (II¢ II<:;; L(ABAR(¢>))). Let the guarded string M = N0 r0 N1 r1 • • • be a
model of¢. We show that M E L(ABAR(cp)). For this purpose for every i :::, 0 we dclinc
the set of formulas Qi as follows:

Qi = {1p E CL(¢) I Mi F "P }-

Now we show that Q;'S are atoms for¢ and 1r = QoroQl r1 • • • is an accepting initial compu­
tation for Min ABAR(¢).

First note that each Qi satisfies the conditions to be an atom for¢ (see Definition 6.6):

• (1) Obviously for all i, true E Qi-

• (2) Let NE Qi- Since Mi F N, Ni = N. Thus, for all N' =/=- N, N' =/=-Ni.Therefore,
for all N' =/=- N, Mi ~N'.So, for all N' =/=- N, N (/. Qi -

• (3) Let "Pl V 1P2 E Qi. Thus, Mi F "Pl V '1{'2. Using the semantics of formulas, we have
Mi F 1/J1 or Mi F '1{'2- Also, 1P1, 1P2 E CL(¢). Thus, 1P1, 1P2 E Qi•

The other conditions can be checked similarly.
Now, we show that for all i :::, 0, Qi ~ Qi+l is a transition in the automaton. For this

purpose, we show that it satisfies the conditions of the transition relation in Definition 6.7.
First note that since MF¢, we have the fact that Vi:::, 0, dom(ri) <:;;Ni. Now we examine
the conditions:

• Let (r')"P E Qi- Then, Mi F (r')"P-Thus, r' = ri and Mi+1 F "P· Therefore, r' = ri,
'Ip E Qi+l, and Ni E Qi with Ni ";2 dom(ri)-

• Let Qi/; E Qi• Then, Mi F Qif;. Thus, Mi+1 F "P · Therefore, 'Ip E Qi+l and Ni E Qi•

• Let ,(r')true E Qi• Then, Mi F ,(r')true. So ri =I=- r' or Mi+l ~true.The second
choice is impossible. Thus, ri =I=- r'.

So far, we have shown that 1r is a computation in the automaton ABAR(¢). Also, we know
that 1r is an initial computation, because we have M F ¢, thus ¢ E Qo- Therefore, Qo E Q0 .

Now, we show that 1r is a computation for the guarded string M. This fact is true because
for each i :::, 0 the only N <:;; N such that Mi F N and N E Q; is Ni. Thus, Vi :::,
0, V(Q;)(N;) = true.Thus, 1r is an initial computation for M.

Our proof is complete if we show that 1r is an accepting computation, namely that it
meets at least one of the final stales of every set of final stales infinitely often. Suppose that
it is not the case. Then, there is j :::, 0 such that for a formula of the form a U {3, we have
Vk:::, j , Qk (j. FcrU /3• Thus, Vk:::, j, CY.U/3 E Qk and f3 (j. Qk- So, Vk:::, j, Mk F r1.Uf3 and
Mk ~ {3. This contradicts the fact that M 1 p= a U f3 since f3 never gets satisfied.

Therefore, 1r is an accepting initial computation for Min the automaton ABAR(¢). Thus,
ME L(ABAR(¢)). □

The result reported in Theorem 6.2 can be used for an automata based procedure for model
checking Reo connectors. Given an ABAR model B of a Reo connector, and a pLTL formula
¢ over the same set of port names N and data set V, saying that B F ¢ is equivalent to check
whether L(B) does not contain any models of,¢. From the above theorem, this is equivalent

106 6. Model Checking

to check if L(B) n L(ABAR(-,cp)) = 0. Therefore, if this intersection is empty, it proves
that the connector B satisfies the property ¢ . Otherwise, every element of this intersection is
a counterexample. Recall that intersecting two Bi.ichi automata is just a simple extension of
the product construction, and checking for emptiness is decidable [138]. The complexity of
the model checking procedure is linear in the number of states of B and exponential in the
length of the formula ¢ [145].

6.3 On-the-fly translation

In this section, we sketch an algorithm to construct the ABAR for a pLTL on-the-fly by
generating the state space of the automaton incrementally, as required by the model checking
procedure. The algorithm is a generalization of the on-the-fly approach proposed in r59] for
standard LTL and extended with modalities for actions in a similar way as in [I 07].

6.3.1 A description of the algorithm

The algorithm works by building a graph underlying the ABAR to be defined for a formula¢.
The nodes are labeled by sets of formulas that are obtained by decomposing them into their
sub-formulas according to their boolean structures. Temporal formulas are handled by just
deciding what should be true at the node and what must be true at every next node. For an
on-the-fly construction of the graph, we need lo store some information al every node of the
graph. More specifically, a node is a structure containing the following fields:

I. Name. A string which is the name of the node.

2. Incoming. A set of elements of the form (q, X) where q is a node and X ~ RecN('D).
Intuitively, a pair (q, X) E Incoming represents a transition from q to the current node
labeled by the record r, for r E X. A special element init is used to mark initial nodes.

3. Old. A set of formulas that have already been processed and hold in the current node
(provided the properties in New arc satisfied).

4. New. A set of formulas that have not yet been processed and that have to be satisfied in
the current node

5. Next+. A set of next-stale formulas that this node satisfies. They assert formulas that
must be satisfied in any successor node.

6. N exC. A set of records that are not allowed to label outgoing transitions from the
current node.

The algorithm for building the graph of the automaton satisfying a pLTL+ formula ¢
stores the nodes of the graph already computed in the list Nodes_Set. For all nodes in this list,
it holds that the New field is empty. In this case, Old contains the set of formulas that the node

6.3. On-the-fly translation 107

satisfies. The full graph can then be constructed using the information in the Incoming field
of each node.

The algorithm starts with a node q0 with its New field set to {¢ },Incoming = { init} and
with all other fields initially set to empty. When processing a node q the algorithm removes
a formula 1/; from its New field and tries all possible ways to satisfy it , by looking at the
syntactic structure of 1/;:

- If 1/; = N, where N ~ N then if there is N' (N' =/= N) in Old the node q is discarded
because it contains a contradiction. Otherwise 1/; is added to Old.

- If 1/; = 1/;1 /\ 1/;2 then both 1/;1 and 1/;2 are added to New because they both need to be
satisfied in the node q.

- If 1/; = 1/;1 V 1/;2 then a new node is created with the same fields as the current node
q. Then 1/;1 is added to the New field of one node and 1/;2 to the other. The two nodes
correspond to the two ways 1/; can be satisfied.

- If 1/; = O'P or 1/; = (r)'P then 1/; is added to the N ext+ field of the current node.

- The case where 'I/; = [r]<p is novel with respect to the algorithm in [59]. Because
1/J = -.(r)true V (r)'P, a new node is created with the same fields as the current node.
The record r is added to the field N ext~ of one node, whereas the formula (r)¢ is
added to the N ext+ field of the other node.

- If 1/; = 1/;1 U 'i/;2 then a new node is created with the same fields as the current node
q. Because 1/; = '1/;2 V (w1 I\ 01/;), the formula 1/;2 is added to the New field of one
node, while 1/;1 and O'l/J are added to the fields New and N ext+ of the other node,
respectively.

- If 1/; = 1/;1 R 'l/;2 then a new node is created with the same fields as the current node q.
Because 1/; = 1/;2 /\ (1/;1 V 01/;), the formula 1/;2 is added to the New field of both nodes,
'1/;i is added to the New field of one node and O'l/J to the N ext+ of the other node.

When the N ew field is empty, the current node is ready to be added to the set Nodes_Set. If
there is already another node in the list with the same Old, N ext+, and N ext~ fields , then the
only Incoming field of the copy that already exists needs to be updated by adding the edges
in the Incoming field of the current node.

If there is no such node, then the current node is added to the list Nodes_Set, but different
than the case of the original algorithm [59], there are several ways how a current node is
formed for its successors: if the information about the labels of the outgoing transitions is
inconsistent (i .e. N ext + is empty or there is a record r in N ext - that is also used in a next
state formula (r)<p in N ext + or there are two formulas (r)<p and (r')<p' in N ext + with r =/= r')
then there is no successor node.

Otherwise, if the formulas in the N ext+ field of the current node arc only of type 0'-P,
then a successor node is created with a transition from the current node to the new node
labeled by r for each record r not in the N ext~ field of the current node. The formulas to be
satisfied by this new node are all formulas in the N ext+ field of the current node stripped off
of their next state modality.

108 6. Model Checking

1/ New1 NeWz Next1
'fPI V VJ2 {·1/;i } { 1/12 } 0
'f/;1 U 'f/;2 { 'f/; i} { 'f/;2} {O('f/J1 U'f/;2)}
'f/;1 R 'f/;2 { 'f/;2} {'f/;1 , 'f/;2 } {O('f/;1 R'f/;2)}

Table 6.1: Definitions of New1, Newi and Next1 functions.

Finally, in the remaining case that there is a formula (r)</J in Next+ with no r in the
Next - field, then a successor node is created with a transition labeled by r from the current
node to the new node. As in the previous case, the formulas to be satisfied by this new node
are all formulas in the Next+ field of the current node stripped off of their next state modality.

6.3.2 The algorithm in detail

In this section we present the pseudo code of the algorithm sketched in the previous sub­
section. The algorithm constructs a graph of nodes and is called Create_Graph. It uses the
function Expand which processes every node and updates the list of nodes Nodes_Set. For
conciseness, we use functions New1, NeWz and Next1 which are defined in Table 6.1.

Great_ Graph (¢)
1. return(Expand([Name: = New_Name(), Incoming:= {!nit},
2. New: = {¢} , Old: = 0, Next+:= 0, NexC: = 0], 0));

Expand(Node, Nodes_Set)
1. if New(Node) = 0
2. then if 3ND E Nodes_Set with Old(ND) = Old(Node) and
3. Next+(ND) = Next+(Node) and Next-(ND) = Next-(Node)
4. then { Incoming(ND) : = Incoming(ND) U Incoming(Node);
5. return(Nodes_Set);}
6. else if (3 (r)</J, (r')'f/; E Next+(Node) with r =I= r ') or
7. (3r E Next-(Node), (r)</J E Next+(Node))
8. thenreturn(Nodes_SetU{Node})
9. else if /J(r)</J E Next+(Node)
10. then return (Expand([Name: = New_Name() ,
11. Incoming:= {(Name(Node) ,
12. RecN(V)\NexC(Node))}
13. New: ~ StriptNexts(Next+(Node))
14. old: = 0
15. Next+: = 0, Next -:= 0],
16. Nodes_SetU{Node}))
17. else return(Expand([Name: = New_Name(),

6.3. On-the-fly translation

18. Incoming:= {(Name(Node), {r})},
19. New:= StriptNexts(Next+(Node)), Old:= 0
20. Next+:= 0, Next-:= 0], Nodes_Set U {Node}))
21. else let TJ E New(Node)
22. then New(Node): = New(Node)\ {17};
23. switch
24. case 17 = N or TJ = irue or 17 = false :
25. if TJ = false or 3N' E Old(Node) that N'-=/= N
26. then return (Nodes_Set)
27. else { Old(Node): = Old(Node) u {11};
28. return (Expand(Node, Nodes_Set))}
29.
30. case T/ = cp U 1/J or 17 = cp R 1/; or T/ = </> V 1/; :
31. Node1 : =[Name:= New_Name(), Incoming:= Incoming(Node),
32. New:= New(Node) U (New1 (17)\Old(Node)),
33. Old:= Old(Node) U {17},
34. Next+:= Next+(Node) U Next1 (17), Next-:= Next-(Node)]
35. Node2 : =[Name:= New_Name(). Incoming:= Incoming(Node),
36. New:= New(Node) U (Ne~(TJ)\Old(Node)),
37. Old: = Old(Node) U {TJ},
38. Next+:= Next+(Node), Next-:= Next-(Node)]
39. return(Expand(Node2 , Expand(Node1 , Nodes_Set)))
40.
41. case T/ = cp I\ 1/; :
42. Old(Node): = Old(Node) U {TJ},
43. New(Node) : = New(Node) U ({ cp, 1/;} \ Old(Node))
44. return(Expand(Node, Nodes_Set))
45.
46. case 17 = X cp or TJ = (r)cp:
47. Old(Node): = Old(Node) U {TJ} ,
48. Next+(Node): = Next+(Node) U (TJ}
49. return (Expand(Node, Nodes_Set))
50.
51. case 11 = [r]cp :
52. Node1 : =[Name:= New_Name(), Incoming:= Incoming(Node),
53. New:= New(Node), Old:= Old(Node) U {TJ},
54. Next+:= Next+(Node),
55. Next - := Nexr(Node) U {r}]
56. Node2 : =[Name:= New_Name() , Incoming:= Incoming(Node),
57. New: = Nev;(Node), Old:= Old(Node) u {17},
58. Next+:= Next+(Node) U {(r)</>} ,
59. Nexr: = Nexr(Node)]
60. return (Expand(Node2 , Expand(Node1 , Nodes_Set))).

109

110 6. Model Checking

In the above algorithm, for each set of pLTL+ formulas S we define:

StripNexts(S) ={¢I O ¢ES or (r)¢ ES for some r E Rec.,v(V)}.

6.3.3 The ABAR defined by the algorithm

The above sketched algorithm defines for each pLTL+ formula¢ a generalized ABAR B(¢)
over port names N and data set V as follows. The states are the set of nodes in Nodes-5et,
as returned by the algorithm. Every node with the !nit in its Incoming field is an initial state.
In each node (state) n, if there is (only one) NE Old(n) then the valuation function VB(n)
assigns true only to N, otherwise for all N <:;; N, VB(n)(N) is true. Note that for each
node n at most one set N <:;; N is in Old(n) and for this N we have V(n)(N) =true. The
transitions of the form n ~ n' are exactly those where r E X for (n, X) in the Incoming
field of n' and dom(r) <:;; N and N is the only N for which V(n)(N) =true.Finally, for
each sub-formula a. U (3 of¢ we define a set of accepting states F0 U (3 containing all nodes n
for which a U fJ (/. t(q) or (3 E t(n), where t(n) is the union of the fields Old, New, Next+
and the set containing ,(r)true for each record r in the Next- field of the node n:

t(n) = New(n) U Old(n) U Next+(n) U {,(r)true Ir E NexC(n)} .

(Note that here we require function t to be defined only on finished nodes that belong to
Node_Set and whose New field is empty. Our definition is more general because we want to
use it in the next proofs.)

More formally, we define ABAR B(¢) as follows :

Definition 6.8 Let ¢ be a pLTL+ formula over a finite name set N and a finite data set
V. We define B(¢) = (QB, Rec.,v(V),-+ B, QoB, F B, VB) to be the generalized augmented
Buehi automaton of records such that

• QB = Node_Set is the set of all nodes generated by the algorithm,

• QoB = {n/n E Node_Set and !nit E Incoming(n)},

• the labeling function VB : Node_Set -+ (2N -+ { true , false}) is defined such that for
all n E Node_Set, if there exists an N <:;; N such that NE Old(n) then VB(n)(N) =
true otherwise 't:/N <:;; N, Vn(n)(N) = true,

• the transition relation -+ B<:;; Node_Set x Rec.,v(V) x Node_Set is defined such that

't:/n, n' E Node_Set and 't:/r E Rec.,v(V), we have n ---2+ B n' if and only if :3(n , X) E
Incoming(n') such that r EX and Vi, (n)(dom(r)) = true,

• F~ consists of the accepting sets

F~u a = {n E Node_Set la. U (3 (/. t(n)or (3 E t(n)}

for each a.U /3 E CL(¢).

6.3. On-the-fly translation 111

Theorem 6.3 Let ¢ be a pLTL+ formu la over a finite names set N and a finite data set V
and B(¢) be the ABAR produced by the above algorithm. Then, the accepted language of
B (¢) is the set of all models of ¢ , that is

L(B(cp)) =II¢ II

Proof Obviously this theorem is correct if we show that both automata ABAR(¢) (which we
construct it globally) and B(¢) accept precisely the same language, namely L(ABAR(¢)) =
L(B(¢)) . We will prove this fact in Section 6.3.4 after presenting some lemmas. □

As explained before, a formula about a Reo connector can be verified by (1) constructing
the ABAR translation of negation of the form ula, (2) constructing the product automaton
using the ABAR model of the Reo connector, and (3) checking the resulting automaton for
emptiness.

6.3.4 Proof of the correctness

In this section we prove Theorem 6.3 in detail. As we mentioned in the theorem's proof
scheme, we will show that for a pLTL+ formula ¢ both automata ABAR(¢) (which we con­
struct globally as in Definition 6.7) and B(¢) (which we construct by the on-the-fly algorithm
as in Definition 6.8) accept precisely the same language, namely L(ABAR(cp)) = L(B(¢)).

Soundness (L(B(¢)) ~ L(ABAR(¢))).
First we present a simple lemma:

Lemma 6.4 Let n E Node_Set be a node generated by the algorithm and t(n) be the set of
formulas for n as we defined in section 6.3.3. Also, define the set of formulas A n as:

A n= t(n) U {true}.

Then for each node n, A n is an atom of ¢ .

Proof First, clearly An is a subset of CL(rp). Now, refer to conditions (I) to (7) in Defini­
tion 6.6 which must be satisfied for a set or formulas to be an atom. Simply, we can show
that all of them are satisfied by A n. Based on the definition of A n we know that true E A n
and since fals e is never part of any node (see lines 25-26 of the Expand algorithm in Sec­
tion 6.3 .2), fals e (/. A n. Thus A n satisfies condition (I). Lines 24-28 of the Expand algorithm
show that for all N ~ N, N E An if and on ly if for all N' =/= N , N' (/. An . Thus condition
(2) is also satisfied by A n. For conditions (3) to (7), note that whenever a formula on the left
hand side of these conditions are inserted into Old, the required formulas get inserted into
N ew and these formulas will eventually get into Old and hence into A n. For example, for
condition (3), if ¢ 1 V ¢ 2 E A n then it should be in t(n) . Thus, when processed, either ¢ 1 or
¢ 2 gets inserted into New. But each formula inserted into N ew will eventually get into all fin­
ished nodes under this node. Thus, A n will have either ¢ 1 or ¢ 2 . Similarly, other conditions
can be verified. □

Now, we can prove the soundness lemma:

112 6. Model Checking

Lemma 6.5 Let ¢ be a pLTL+ formula . Then,

L(B(¢)) S: L(ABAR(¢)).

Proof Let M = N0 r0 N 1 r1 • • • E L(B(¢)) be accepted by an accepting computation a =
nor0 n1 r1 • • • in B(¢). Thus, we know that 'v'i, V3(ni) (N;) = true.Consider A ;= t(ni) U
{true}. First, by Lemma 6.4, for all i, A ; is an atom. Also, it is clear that in ABAR(¢),
'v'i, V(n;)(N;) = true.
We will show that 1r = Ao r0 A 1 r1 • • • is an accepting computation for M in ABAR(¢):
1- We know that t(no) s;;; A 0 and ¢ E t(no). Hence, ¢ E Ao. Thus, Ao E Qo.

2- Now consider the transition n; ~B ni+I in B(¢). First note that 'v'i, dom(r;) s;;; Ni.
Since in the Expand algorithm n;+1 was spawned from n;, it is clear that (r)'I/J (/. Ai (where
r -::J. r;) and r; (/. NexC(n;). Now, for all Q'I/J E t(n;), 'ljJ E t(n;+1) (by construction) and
for all (r;)'I/J E t(n;), 1/J E t(ni+ 1). Hence we have:

• for all (r)'I/J E A ;, r = r;,

• for all 01/J E A;, 'ljJ E A;+1,

• for all (ri) 'I/J E A i, 1/J E A;+1 and

• , (r;) true (/. A ;.

Therefore, 'v'i, A;~ A ;+i is a transition in ABAR(¢).
3- Also, if n; E F~U /3 ' then either aU(3 (/. t(n;) or (3 E t(ni)- If a U(3 (/. t(ni), then
aU(3 (/. A ;. If (3 E t(n;), then (3 E A ;. Thus, A; E Fa,U/3 · Since a meets each set F~ U/3

infinitely often, 1r meets each set F a, u /3 infinitely often.

By the above 1-3 facts, we conclude that 1r is an initial accepting computation for M in
ABAR(¢). Therefore, M E L(ABAR(¢)). □

Completeness (L(ABAR (¢)) s;;; L(B(¢))).
Now, we show that for every pLTL+ formula ¢, each model accepted by ABAR(¢) is also
accepted by B (¢). We do this by mapping accepting computations of ABAR(¢) to accepting
computations over the algorithm automaton B(¢) . First we present a definition.

Let n E Node_Set be a node constructed by the Expand algorithm starting with formula
¢ . We define J(n) to be the set of all atoms for ¢ that can extend node n. More formally :

J(n) = {AI A is an atom for ¢ and t(n) s;;; A}.

Now, we give some lemmas that will lead us to the proof of completeness.

Lemma 6.6 When a node n is split in the algorithm into two nodes n1 and n2 (lines 30-39
and 51-58) the following holds:

Similarly, when a node n is updated to become a new node n' (lines 24-28 and 41-49) the
following holds:

f(n) = J(n') .

6.3. On-the-fly translation 113

Proof The proof is obvious by tracing of the algorithm and calculating t(n') for every new
node n' using t(n). D

When a node n is spawned with its Old, Next+ and NexC fields empty, the algorithm
starts processing the formulas in New. From this point onwards, one can view the algorithm
as creating a tree rooted at n. The tree gets modified as formulas in New are processed. When
a node (which must be a leaf) splits, we can view this as a creation of two children, since the
algorithm will start expanding each child eventually. When a node is processed and its fields
get modified, we view this as the creation of a single child. When a node is abandoned, we
mark the node bad, no new edge comes out of this node. Finally a tree is produced which
is rooted at n. We will call a leaf node good if it is not bad. Note that the good leaves at
the end of the construction have their New fields empty and are exactly the nodes added to
Nodes_Set. The proof of the following lemma is by induction on the number of steps that
have been performed so far by the algorithm, which have modified the tree.

Lemma 6.7 Let n be a node and A an atom such that A E f(n). At any point in the con­
struction of the tree rooted at node n, there is a good leaf n' such that A E J (n') and for all
formulas of the form aU/3 in CL(¢), if A E F0 u 13 then aU/3 </. Old(n') or /3 E t(n') .

Proof The proof can be simply done by induction on the number of steps in the algorithm
that have changed the tree so far. D

Lemma 6.8 Let n be a rooted node and A an atom such that A E f (n). Then, there is a good
leaf n' in the tree rooted by n such that A E f (n') and for all formulas of the form a U /3 in
CL(¢), if A E F0 u13 then n' E F~ ut3 ·

Proof By Lemma 6.7, at the end of the construction of the tree, there exists a leaf n' such that
A E f(n') and forall formula of the form o: U/3 in CL(¢), if A E F0 u13 then a U/3 (/. Old(n')
or /3 E t(n') . Since N ew(n') = 0 and n' is a good leaf, thus for all formula of the form a U f3
in CL(¢), a UfJ </. t(n') or /J E t(n'). Therefore, using Definition 6.8, n' E F~ Uf3 · □

Lemma 6.9 Let n be a node, A an atom that A E f(n), and let A ~ A' be a transition

in ABAR(¢). Then, there is an n' E Node_Set such that there is transition n ~ n' in
B(¢) where, A' E J(n') and for all formulas of the form a U fJ in CL(¢), if A' E F0 u 13 then

' E F' n oUf3 •

Proof First, it is clear that there is no , (r)true or (r') 'I/J (r' =I r) in t(n), for otherwise it
would belong to A as well and A ~ A' will not be possible in ABAR(¢). Hence, after n
was processed by the algorithm, a node m must have been spawned with its New field set
contains the formulas in Next+(n) stripped of their O 's and (r)'s. Now, if'I/J E t(m) then
0'1/J E t(n) or (r)'I/J E t(n). Then, 0'1/J E A or (r)'I/J E A. Thus, '1/J E A'. Hence, t(m) ~ A'
and A' E t(m). By Lemma 6.8, there exists a good leaf, and hence a node in Node_Set, say
n', in the tree rooted at m, such that A' E f (n') and for all formulas of the form a U f3 in
CL(d>), if A' E F0 u13 then n' E F~ua · Also, there exists (n , X) E Incoming(n') such that

r E X . Hence n ~ n' in B(cp). This completes the proof. D

Lemma 6.10 Let A0 be an initial atom (state) in ABAR(¢), namely A0 E Q0 . Then, there is
a node no in B(¢), namely no E Q0 13, such that Ao E !(no).

114 6. Model Checking

Proof The algorithm starts with a node m with New(m) ={¢}.Since A0 E Qo, 1/J E Ao.
Thus, t(m) <;;; Ao and Ao E J(m). Lemma 6.8 guarantees the existence of some good leaf
no which hence gets into Node _Set, in the tree rooted at m such that Ao E J(no). Also, any
leaf of the tree rooted at m has !nit E Incoming and hence no E QoB. □

Lemma 6.11 Let ¢ be a pLTL+ formula. Then,

L(ABAR(¢)) <;;; L(B(¢)).

Proof Let M = N0 r0 N1 , 1 • • • E L(ABAR(¢)) and let 1r = Aor0 A1 , 1 · · · be an accepting
initial computation for it in ABAR(¢). We exhibit an accepting initial computation of B(¢)
that accepts M. First, by Lemma 6.10, there exists no E QoB such that Ao E J(n0). We con­
struct an accepting initial computation noron1 , 1 · · · for M by using Lemma 6.9 repeatedly,
Assume that we have constructed a partial computation no r0 • • • ni so far such that Ai E J (Qi)
(this is true in the beginning for the partial computation no). Now since Ai ~ Ai+ 1 and

Ai E J(qi) using Lemma 6.9, there exists ni+l such that ni ~ ni+1 and Ai+I E f(nH1)
and for all formulas of the form a U fJ in CL(¢), if Ai+1 E Fo.uf) then ni+I E F~ UfJ ·

Thus we have extended the partial computation to noro • • • n;+1 with A;+1 E J(ni+ 1).

Continuing in this fashion , we can build an infinite initial computation p = noron1 r1 · · ·
such that Vj, Aj E J (nj) and for all formulas of the form a U fJ in CL(¢), if Aj E F0 UfJ then
nj E F~uf)· Since 1r meets every final set infinitely often, the computation p also meets all
final sets infinitely often. Hence pis an accepting computation in B(¢).

The proof is complete if we show that Vj, VB(nj)(Nj) = true. Since 1r is an accepting
computation for Min ABAR(¢), we have Vj, V(Aj)(Nj) = true. Thus, by the definition
of the V function in ABAR(¢), we know that for all j, Nj E Aj and \IN -/- Nj, N r/. Aj.
Thus, if there exists N E Old (nj) then N E t(nj). Thus, N = Nj and VB (nj) (Nj) = true.
Otherwise, if there is no NE Old(nj), by the definition of VB, \IN, Vn(nj)(N) = true .
Therefore, in both cases we have that V13 (nj)(Nj) =true. Hence the lemma is proved. D

By Lemmas 6.5 and 6.11, we have a complete proof for Theorem 6.3. This shows that our
on-the-fly construction of the automaton is correct.

A Rea Model Checker

116 7. A Reo Model Checker

In this chapter, we introduce the main theoretical and practical concepts we used to im­
plement a binary decision diagrams (BOD) based model checking tool for Rco specifications.
This implementation is based on the augmented Btichi automata of records semantic model
introduced in the previous chapters. Moreover, this tool accepts properties expressed in the
pLTL linear temporal logic as input and verifies a Reo specification against these properties.
The Reo language has a wide range of applicability in coordination modeling and many real
world case studies need a large number of channels to model the sophisticated orchestration
patterns among constituent components. To address complex coordination patterns in large
Reo circuits our proposed solution is based on BDDs.

Applying BDDs and using a symbolic representation for the underlying state space, helps
us to improve the performance in small and middle size cases and also expands the appli­
cability of our tool to larger Reo circuits. In the remainder of this chapter we first introduce
a method for encoding of an ABAR as BDDs and reformulating of ABAR join operation
in BOD terms. Next, we propose a method for converting a pLTL formula to its equivalent
Btichi automata and also apply the previously described procedure to represent the automata
with BDDs. Having the BOD representation of an underlying ABAR of a Reo circuit and the
BOD representation of a pLTL property, we explain our model checking procedure in the
fol)owing section. FinaHy, we present some experimental results of our tool.

7.1 Binary Decision Diagrams

Binary decision diagrams are data structures used for compressed representation of swi tching
functions or Boolean formulas [II 1, 50, 29]. They are often more compact than other ways of
representing of Boolean formulas, such as conjunctive and disjunctive normal forms, and they
can be manipulated more efficiently [50]. In this section, we brielly describe binary decision
diagrams and review their preliminaries. Our presentation and notations in this section is
based on the textbooks [29, 50] .

Definition 7 .1 Let Var = { x1 , ... , Xn} be a set of Boolean variables and Eval (Var) be the
set of al) evaluations for x1 , ... , Xn, that is, the set of all total functions of the type Var ➔
{0 , 1}.Aswitchingfunctionfor Var= {x1 , ... ,xn } isafunctionf : Eval(Var) ➔ {0,1} .
The swi tching functions for the empty variable set (Var = 0) are just constants O or I.

Obviously, each Boolean formula over the Boolean propositions x1 , . .. , Xn represents a
switching function and vise versa.

Definition 7.2 Let f : Eval(z, y1, ... , Ym) ~ {O, 1} be a switching function . The pos­
itive cofactor off with respect to variable z is the switching function f lz=I of the type
Eval(y1, ... , Ym) ~ {O, 1} in which for al) m-tuple of bits (b1, ... , bm),

f I z = I (b1 , . . . , bm) = f (1, b1 , ... , bm).

Similarly, the negative cofactor off with respect to variable z is the switching function
J lz =O of the type Eval(y1 , .. . , Ym) ~ {O, 1} in which for al) m-tuple of bits (b1 , .. . , bm),

flz =o(b1 , ... , bm) = f(O , bi ,••·, bm),

7.1. Binary Decision Diagrams 117

,,)-\

,,,)c)· --,

/
'

liJ
!
' QJ

'

[Q
'

IT]
' w

Figure 7.1: Binary decision tree for switching function f = z1 I\ (-,z2 v z3) [29) .

The following result shows how a switch,ing function f can be decomposed into its cofac­
tors, called Shannon expansion [29t .

Lemma 7.1 If f is a switching function for the set of variables Var , then for each variable
z E Var ,

f = (-, z Afl z=O) V (z Afl z= I)-

Using the Shannon expansion, one can represent switching functions by binary decision
trees: Let f be a switching function for some variable set Var and fix an arbitrary enumeration
x1 , . . . , Xn for the variables in Var. Now, we can represent f using a binary tree of height n
such that the two outgoing edges of the inner nodes at level i stand for the cases Xi = 0
(depicted by a dashed line) and xi = 1 (depicted by a solid line) . Thus, the paths from the
root to a leaf in that tree represent the evaluations and their corresponding values. The leaves
(terminal nodes represented by boxes) stand for the function values O or 1 off.

As an example, the binary decision tree for switching function f (z1 , z2 , z3) = z1 A (-,z2 V
z3) appears in Figure 7 .1.

Binary decision trees are quite close to the representation of Boolean functions as truth
tables as far as their sizes are concerned. However, they often contain some redundancy which
we can exploit. Since O and 1 are the only terminal nodes of binary decision trees, we can
optimize the representation by having pointers to just one copy of O and one copy of I .
Also, for more optimization we can remove unnecessary decision points in the tree, collapse
constant subtrees (i.e., subtrees all whose terminal nodes have the same value) into a single
node and merge isomorphic subtrees. This results in a directed acyclic graph (DAG) called a
binary decision diagram (BDD).

As an example, the binary decision diagram obtained from the binary decision tree illus­
trated in Figure 7.1 is given in Figure 7.2.

A representation of switching functions is called a canonical representation if it satisfies
the property that two switching functions are logically equivalent if and only if they have
isomorphic representations [50]. This property simplifies tasks like checking equivalence of
two formulas and deciding if a given formula is satisfiable or not. Bryant [40) showed how to
obtain a canonical representation for switching functions by placing two restrictions on binary

118 7. A Reo Model Checker

Figure 7.2: Binary decision diagram for switching function f = z1 /\ (,z2 v z3) [29] .

decision diagrams. First, the variables should appear in the same order along each path from
the root lo a terminal. Second, there should be no isomorphic subtrees or redundant vertices
in the diagram. The first requirement is achieved by imposing a total ordering on the variables
and the second is achieved by repeatedly applying three transformation rules that do not alter
the function represented by the diagram [40, 50] :

• Remove duplicate terminals. Eliminate all but one terminal vertex with a given label
and redirect all arcs to the eliminated vertices to the remaining one.

• Remove duplicate nonterminals. If two nonterminal nodes u and v have the same label
and their both subtrees are equal with each other, then eliminate u or v and redirect all
incoming arcs to the other vertex.

• Remove redundant tests. If the left and right subtrees of a nonterminal node v are the
same, then eliminate v and redirect all of its incoming arcs to the root of the subtree of
V.

Starting with a binary decision diagram satisfying the ordering property, its canonical
form is obtained by applying the above transformation rules until the size of the diagram
can no longer be reduced. Bryant shows how this can be done in a bottom-up manner which
is linear in the size of the original binary decision diagram [40]. The term ordered binary
decision diagram (OBDD) will be used to refer lo the graph obtained in this manner [50].

The size of an OBDD can depend critically on the selected variable ordering. In general,
finding an optimal ordering for a set of variables is infeasible; in fact, it can be shown that even
checking that a particular ordering is optimal is NP-complete . Moreover, there are Boolean
functions that have exponential size OBDDs for any variable ordering. Several heuristics have
been developed for finding a good variable ordering when such an ordering exists [50].

7.2. Encoding ABARs as BDDs 119

7 .2 Encoding A BA Rs as BDDs

In this section we introduce a symbolic representation method for the ABAR model intro­
duced in previous chapters. As our final aim is to implement a BOD based model checker,
the state space generation should be transformed to BOD terms. Therefore, in our next step
we propose an operation to mimic the join operation of ABAR models in BOD domain .

In the first step or our model checking procedure we represent the ABAR corresponding
to each Reo channel in a symbolic way. Let B = (Q, ~, --+, Q0 , F , l) be an ABAR, where
~ is a set of records over a finite set of port names N and a finite data set V. The ABAR
B can be represented by a tuple EB = (N B, QB,--+ B, QB0 , F8) of Boolean expressions
which encodes port names, states and their lahels, transition relation , initial states, and final
states, respectively. In the following paragraphs, we present the encodings step by step.

• Let V = { n1 , . .. , nj } be considered as a set of Boolean propositions corresponding
to each port in N . We represent N by the following Boolean expression:

N B= V n .
nE V

• To symbolically represent the set of states Q, we use a set of Boolean state propo­
sitional variables Vq = { q1 , ... , qk}, where k = flog2 (IQ I) l, and assign a unique
evaluation of (q1 , •.• , qk) = (b1 , . .. , bk) to each state where bi E {O, 1} . Each state
q E Q can be uniquely identified by the Boolean expression,

(/J q = l(q) I\ (/\ qi)
1ik

where, l(q) is the propositional label of the state q . Also, the set of states Q is repre­
sented by the following Boolean expression:

QB= V <Pq·
qEQ

Where we know that for all q, q' E Q it is the case that l(q) ~ l(q'), we simply
represent each state by its label (¢ q = l (q)) and the set of all states Q by

QB= V l(q).
qEQ

Initial and final states arc encoded in a similar way.

• Let r = [n1

expression,
d1 , . .. , ni = di] be a record . It can be represented as the Boolean

T[3 = (/\ I\
nEdom(r) nEN\dom(r) (n.d)Er

120

A--➔ B

IA=d1;B=d1]

~@
0

IA=d2;B= d2]

7. A Reo Model Checker

Figure 7.3: A synchronous channel and its ABAR model

where, for each n E N, comn is a Boolean variable that intuitively says that port n
is communicating and for each (n , d) E (N x D), 1/Jn,d is a Boolean variable that
intuitively says that the data item in port n is d.

• Symbolic representation of a single transition involves the encoding of its source state,
symbolic representation of its corresponding record label, and the label of its target
state. To distinguish the source and the target states of a single transition, we use
the above mentioned set of variables Vq = { q1 , ... , qk} and the set of ports N =
{ n1 , ... , nj } for the source state and a primed version of them, V~ = { q{ , . .. , q~}
and N' = { n{, ... , n;}, for the target state. Therefore, the transition T = q ~ p is
encoded by

Tn = <P q /\ rn /\ ¢~,

where by ¢~ we mean the representation of the state p by </)p (as we defined above)
using the primed version of the state and port variables.

The transition relation is encoded by the disjunction of the symbolic encodings of all
individual transitions.

Based on the above representation of each ABAR model using Boolean formulas (or
switching functions), we can transform the Boolean formulas corresponding to each ABAR
into BDDs.

Example 7.1 Figure 7 .3 depicts a synchronous channel and its corresponding ABAR model.
In this example, we assume that the data set is D = { d1 , d2 }). Because there is only one
state, we can ignore considering any state variable. Thus, we can represent the model by the
following set of Boolean expressions:

Nsync =AV B
Qsync =A /\ B
Qos,nc = A /\ B
Fsync = A /\ B

Tsync =(A /\ B /\ comA /\ comn /\(A = d1) /\ (B = d1) /\ A' /\ B')
V

(A /\ B /\ comA /\ comn /\ (A = d2) /\ (B = d2) /\ A' /\ B ')

7.2. Encoding ABARs as BDDs

0

®

0 1

(a)

0

•. ~® • B

0 ·· ~

(b)

0

121

(C)

Figure 7.4: BOD representation of a synchronous channel: (a) ports, (b) states, initial states,
final states and (c) transition relation.

If we assume that the data set is a singleton D = { d}, we can abstract away from the
data set and the complexities introduced by its multiplicity. As a result the transition relation
of the aforementioned synchronous channel can be expressed as follows:

Tsync = A I\ BI\ comA I\ coms I\ A' I\ B'

where comx evaluates to true if and only if port x participates in the corresponding data
communication. As the data set is assumed to be a singleton, the set of comx variables is
enough to represent the data communications. In other words, if a variable comx evaluates to
true it means that in its corresponding record we have x = d.

Based on the above representation of the ABAR model by Boolean formulas, now we can
transform the Boolean formulas corresponding to each ABAR into BDDs. Figure 7.4 depicts
a symbolic representation of the Boolean formulas representing the synchronous channel
with BDDs. According to Figure 7.3 the single state of the ABAR representing a synchronous

122 7. A Reo Model Checker

channel is a final state and also an initial state. Therefore, the BDD in Figure 7.4.(a) is enough
to store these three pieces of information.

Example 7.2 In a similar way we can symbolically represent a FIFO! channel. Figure 7.5
depicts a FIFO I channel, its ABAR interpretation, and a symbolic representation of this
ABAR. Because none of the labels of the states implies the other, we use the labels of states
as their Boolean representations. We assume that the data set is a singleton D = { d}. The
BDDs in Figure 7.5 are equivalent to the following Boolean expressions:

NFIFO = BV C
QFIFO = BV C

TFJFO = (B /\ comB /\ ,come /\ C') V (C /\ come /\ ,comB /\ B')
QoFIFo = B
FFIFO = B

7.2.1 Symbolic Join

So we introduced a symbolic representation for the ABAR models of individual channels.
Next, we represent a symbolic equivalent for the join operation of ABAR models. Informally
speaking, the join of two ABAR models is computed following two different scenarios. Inde­
pendent transi tions of each ABAR can be interleaved. On the other hand, transitions of two
ABARs whose record labels are compatible are synchronized.

Let B1 and B2 be two ABARs encoded by EB1 = (N1 , QB1 , TB 1 , QBoi , FB1) and EB2 =
(N2 , QB2, T13i, Qa02 , FB2), respectively. The join of B1 and B2 is a generalized augmented
BUchi automaton of records B which can be encoded by Ea = (N, Qa, Ta, Qa0, Fa)
according to following expressions where ,com(N;) stands for A n EN; (,comn)-

N=N1 vN2
QB = Qa1 /\ Qa2

QBo = QB01 /\ QB02
Fa = (FB1 /\ QB2) /\ (Qa, /\ FB2)

TB = Interleave1 V Interleave2 V Sync1,2
Interleave1 = V q E Q

2
(c/> q /\ TB1 /\ ,com(N2) /\ ¢~)

Interleave2 = V qEQ, (cp q /\ Ta2 /\ ,com(N1) /\ ¢~)
Sync1 ,2 = TB, /\ TB2

Example 7.3 Consider the synchronous channel in Figure 7.3 and the FIFOI channel in
Figure 7.5(a). The join of these two channels is the connector in Figure 7.6(a) with its ABAR
model depicted in Figure 7.6(b). The symbolic representation of this connector involves the
BDDs in Figures 7.6(c)-(e).

7.2. Encoding ABARs as BDDs 123

IB= d}

B -□--+ C --->@~@
IC=d]

(a) (b)

®

@
·--- .. ______ __ ... ·······

· .. __ __.··

(C)

·-. ~ --·
. .

B'

ii @

. C'

1

(d) (e)

Figure 7.5: (a) FIFO1 channel , (b) its ABAR model , and BOD representation of (c) ports and
states, (d) initial states and final states and (e) transition relation .

124 7. A Reo Model Checker

A ------+ B -□--4 C

(a) (b)

(c)

(d) (e)

Figure 7.6: (a) Join of a synchronous channel and a FIFO1 channel , (b) its ABAR and BOD
representation of (c) ports, (d) states, initial states, final states and (e) transition relation.

7.3. Property Specification by BOD 125

7.3 Property Specification by BDD

In the previous section we introduced a symbolic representation for the ABARs correspond­
ing to Reo channels and an operation to mimic the join operation on ABARs in the BDD
domain. In this section we continue our symbolic approach by introducing a BDD represen­
tation for pLTL formulas . As mentioned earlier, pLTL formulas are inductively generated by
the following grammar:

¢::= N1•¢ 1¢V¢1(r)¢ 1¢ U¢.

where N is a subset of port names N . Assuming a data set D, r is a record from Rec1v(D) .
Our ultimate goal is to implement our methods of global and on-the-fly translations of

pLTL formulas into augmented Biichi automata ofrecords. However, as the first attempt , and
in order to use the previously implemented tools (such as LTL2BA [58]) which translate LTL
into Biichi automata, we transform pLTL to LTL. For this purpose, we consider the set of
port names N as a set of atomic propositions. Each N i::;;; N considered as a pLTL formula
represented by the following LTL formula:

O'.N = (/\ ni) I\ (/\ ,ni).
n;EN n ;EN\N

Assuming r = [n1 = d, n2 = d, . . . , nm = d], the pLTL formula (r)¢ is transformed
into an LTL formula:

(r)cp = TIJ I\ Qcp

where r8 was defined Section 7.2. As a result, for each pLTL formula we have a semantically
equivalent LTL formula.

Applying the procedure introduced in [58) and implemented as a tool (LTL2BA), an LTL
formula is converted to a Biichi automaton whose transition labels are propositional expres­
sions constructed from atomic propositions of the form n and comn, where n E N . To unify
our approach we transform the result to its equivalent ABAR. Formally, given a Biichi au­
tomaton B = (Q, I: , ----+, Q0 , F) where I: is the set of propositional expressions over the set
of atoms NU { comn I n E N }, its equivalent ABAR is (B' , l) such that the transition labels
expressing a data communication constraint are resolved as their equivalent record represen­
tation, and the transition labels representing the port enabledness are resolved as the state
label of their source state.

Example 7.4 Consider the pLTL formula (r)(A A B) where r = [A = d, B = d]. Assum­
ing V = { d}, the LTL equivalent of this formula is comA I\ cams I\ O (A I\ B). A Biichi
automaton for this LTL formula is depicted in Figure 7.7(a). This automaton is equivalent to
the ABAR depicted in Figure 7.7(b) whit r = [A = d, B = d]. In this figure, by using I: as
a transition label , we mean that this transition is enabled for all records in I: = RecN(D) .
Finally, the ABAR in Figure 7.7(b) can be symbolically represented as Figure 7.8. Variables
ql and q2 are used to encode states. For the case of a transition, ql and q2 are used to encode
the starting states and q3 and q4 to encode the target states (respectively, as primed version
of ql).

126 7. A Reo Model Checker

true

8 COfiA I\ COfflB 0 A/\B 0
(a)

E

0 8
0-

r 0
(b)

Figure 7.7: (a) A Buchi automaton and (b) an ABAR for (r)(A /\ B)

One of our planned future work to enhance our tool is to implement our own on-the-fly
translation of pLTL formulas directly into ABARs.

7.4 A symbolic model checking algorithm

We have introduced a symbolic representation for the ABARs representing Reo connectors
in Section 7.2 and a BDD representation for pLTL formulas in Section 7.3. Next we intro­
duce the algorithm we implemented for model checking of Reo connectors. We follow an
automata-based model checking approach. First we assume that the behavioral aspects of a
system are modeled by an ABAR model. Second, a system properly must be specified by
a linear temporal logic. The negation of the property specified by a pLTL formula is trans­
lated into an equivalent automaton. The join of the two automata representing the system and
the pLTL formula is computed. The final stage involves a procedure for language emptiness
checking. Emptiness of the language of the resulting automaton implies that the system sat­
isfies the property. Otherwise, the property is violated by the system and any word in the
language of the resulting automaton is a counter-example.

Let B = (Q, R ecN(V) , ----+, Q0 , F, l) be an ABAR model representing the behaviors ex­
hibited by a Reo connector and B ~ct, = (Q' , R ecN(V) , ----+ ' , Qb , F' , l') be an ABAR trans­
lation of the negation of a pLTL formula ¢>. The join of these two ABARs is a generalized
ABAR. According to [29] the model checking problem for the formula ¢ is reduced to the
classical problem of fair cycle detection. Stating the problem in our Buchi context, given the
join ABAR B l><l B ~ct, = (Qtx1, R ecN(V), ----+ tx1, Q0..,, Ftx1) the system violates the property
cp if and only if there exists a reachable cycle from one of the initial states q0 E Q0 such that
this cycle is fair with respect to the final states sets of the ABAR B l><l B~ct, -

Not only the problem of LTL model checking, but also some other problems such as

7.4. A symbolic model checking algorithm 127

c=J
(b)

\
c=J

(C) (d)

Figure 7.8: BOD representation for the ABAR equivalent of (r)(A AB) (a) states, (b) initial
states, (c) final states, and (d) transition relation.

128 7. A Reo Model Checker

language containment based on several types of automata, and CTL model checking with
fairness constraints, all reduce to checking the emptiness of the language of a Bi.ichi automa­
ton. The language of the Bi.ichi automaton is nonempty if and only if the automaton contains
a fair cycle: a (reachable) cycle that contains at least one state from every accepting set, or,
equivalently, a fair strongly connected component (SCC): a (reachable) nontrivial strongly
connected component that intersects each accepting set.

The traditional approach to determine the existence of a fair SCC is to use Tarjans al­
gorithm [137). This algorithm is based on depth-first search and runs in linear time in the
size of the graph. In order to do the depth-first search, the algorithm manipulates the states
of the graph explicitly. Unfortunately, as the number of state variables grows, an algorithm
that considers every state individually quickly becomes infeasible. Symbolic algorithms [111]
manipulate sets of states via their characteristic functions . They derive their efficiency from
the fact that in many cases of interest large sets can be described compactly by their char­
acteristic functions. In contrast to explicit algorithms, an advantage of symbolic algorithms,
which typically rely on breadth-first search, is that the difficulty of a search is not tightly
related to the size of the state space, but is more closely related to the diameter of the graph
and the size of the symbolic representation.

Several symbolic algorithms have been proposed that use breadth-first search and com­
pute a set of states that contains all the fair SCCs, without enumerating them [126). In this
case, the typical and standard approach to fair cycle detection is the one of Emerson and
Lei [57). In the last decade, variants of this algorithm and an alternative method based on
strongly connected component decomposition have been proposed. In [126), Ravi et al have
presented a taxonomy of these techniques using some fix-point logic representations and
compare representatives of each major class on a collection of real-life examples. Their main
result indicates that the Emerson-Lei procedure is the fastest, but other algorithms tend to
generate shorter counter-examples [126). Based on this result, the algorithm implemented in
our model checking tool is the one of Emerson and Lei [57).

7.5 Experimental results

In this section we present some experimental results applying our implementation based on
the concepts introduced in the previous sections. Our model checking tool is implemented
in C++ and compiled with GCC. The reported results are achieved on a Pentium 4, 2.53
GHz, 4GB RAM with an Ubuntu operating system. We use JINC [3] binary decision diagram
library in our tool. In the following case studies, for the Reo channels we suppose that the
data set is { d} and we apply the ABAR models depicted in Figures 7.9.

7.5.1 Dining philosophers

The classical dining philosophers problem can be described as a coordination system by
Reo specifications [14) . This system can be designed as a set of pairs of instances of two
components: philosopher and chopstick instances. The externally observable behavior of a

7.5. Experimental results

A----+B

IA = d ,B =d]

~@
A-□-B

[A = d]

~0:=:@
IB=d]

129

A-B

[A = d ,B = d]

~@
Figure 7.9: ABAR models of some Reo channels where D = { d}.

Table 7.1: State space generation results for the dining philosophers problem

Number of Number of BDD nodes for
n Time(sec) generated states transition relation

2 0.236 36 245
3 0.533 216 473
4 3.810 1296 1043
5 92.515 7776 1956

philosopher component is as follows. After some period of thinking, it decides to eat, attempts
to obtain its two chopsticks by issuing requests on its TLi and TRi ports. We assume that it
always issues a request through its left chopstick before requesting the one on its right. Once
both chopsticks take requests are granted it proceeds to eat for some time, at the end of which
the philosopher then issues requests to free its left and right chopsticks by writing tokens on
its RLi and RRi ports.

A chopstick is modeled by a FIFOI channel and a synchronous drain [14). The coordi­
nation pattern for this problem is represented in Figure 7. IO for the special case where the
number of philosophers is 2. The coordination scenario and its graphical representation can
simply be expanded for more than two philosophers [14). Considering the philosophers as
the active components in our system that communicate through this network, the behavioral
aspects of such components can be modeled as Figure 7 .11. In fact, q1 , q2 and q3 are respec­
tively the thinking, waiting and eating states of each philosopher.

In Table 7.1, we see the number of states and the BDD nodes for different numbers of
philosophers. For each case the state space generation time, number of generate states in
the corresponding ABAR, and the number of BDD nodes in the symbolic representation
of the transition relation (as it dominates other parts of our encoding considering the space
complexity) are illustrated.

Let ¢ 1 and ¢2 be two pLTL formulas in the context of dining philosophers problem such
that:

¢ 1 = 0 , (eating1 A eating2)

¢2 = D (T Ri ➔ (T Ri) (RLi A RRi)) .

The property ¢ 1 asserts that in all instance of time, it is not the case that both philosophers
are eating simultaneously. For the case of more than two philosophers, the inner conjunction
in the formula ¢1 is expanded by all eatingi 's. The property ¢2 that is completely specified
in terms of the port names, says that always if the philosopher i is waiting to take the right

130 7. A Reo Model Checker

,-)~~~0-in-in_g_Ph-il-os-o.-.. - · ·· ·········· -·

Figure 7.10: Coordination pattern for two philosophers in the dining philosophers problem

l(qi) = TLi

TR,
RR,I\ RL;

l(q3) = RRi I\ RL;

Figure 7.11: Behavior of a philosopher in ABAR terms

chopstick, it immediately takes iL and goes Lo the eating stale. obviously, the first property,
¢> 1 , is satisfied by the presented coordination scenario but the second one, </>2, is not satisfied
since the readiness of a philosopher for taking its right chopstick does not lead to the eating
state for it exactly in the next state of the whole system.

Table 7 .2 reports the model checking time for various number of philosophers for proper­
ties c/> 1 and cf;2 . For model checking the formula ¢>1 , the algorithm terminates after checking
the whole state space, while for the case of ¢>2 , it terminates after finding a counterexample.

7.5.2 Mutual Exclusion

As another case study we consider a special variant of the mutual exclusion problem. Let
n be the number of active processes in a system. Assuming k ::::; n, in this variant of the
mutual exclusion problem, at each time instance at most k processes can perform actions in

7.5. Experimental results 131

Table 7.2: Model checking time (sec) for n dining philosophers

n ¢1 ¢2

2 0.260 0.258
3 0.611 0.603
4 4.246 4.272
5 96.098 96.009

· · ,@ Mutual Exclusion

i requestl '-'---~ ~-1 ___ __,

Figure 7.12: Coordination pattern for two processes in mutual exclusion fork = l

the critical section. Figure 7 .12 presents the communication pattern for this problem for a
special case where n = 2 and k = l.

The active processes in the system are considered as components that communicate through
this connector. Figure 7 .13 models the behavior of a process with an ABAR. Table 7 .3 reports
some results on state space generation in mutual exclusion problem for different numbers k
of processes in the critical section, and active processes n, (k ::; n). For model checking pur­
poses the labeling function of the ABAR depicted in Figure 7.13 must be extended to show
the state of a process (executing critical/non-critical actions). Obviously, the state labeled by
releasei represents a configuration where a process executes actions in the critical sections.
Let ¢ 3 and ¢4 be two pLTL formulas such that:

¢3 = 0,(critical1 I\ critical2 I\ critical3)
¢4 = □ (request1 --+ (request1)(,request1))

Property ¢3 specifies that three processes cannot execute their critical actions simultane­
ously, a property which is true as long ask< 3. Property ¢4 expresses that for a process ready
to enter its critical section, always the next action is a request to execute its critical actions
and this request is always accepted. This property is not always true.

Table 7.4 represents the model checking time for properties ¢3 and ¢4 for various values
of n and k.

132 7. A Reo Model Checker

l (qi) = requesti

T
release,

Figure 7.13: Behavior of a process in ABAR terms

Table 7.3: State space generation results for the mutual exclusion problem

Number of Number of BDD nodes for
n k Time(sec) generated states transition relation

5 2 0.378 972 4421
6 2 0.868 2916 9830
7 2 1.134 8748 21767
8 2 3.105 26244 47912
9 2 30.318 236196 227690
10 3 60.090 472392 532209

7.5.3 Discussion

For model checking of the desired properties of coordination models specified by Reo, in
addition to our above mentioned tool, there is another implemented tool called Vereofy [7].
The two above introduced case studies have also been considered by the authors of Vereofy
and their results have been reported in [98, 99). Similar to our implementation, they use
OBDD as their main data structure to store and process their models. However, there are
some essential differences between our approach to model checking of Reo nets and the
work of Baier et al reported in [98, 99):

• The modeling formalism that they use is constraint automaton while our models are

Table 7.4: Model checking time (sec) for the mutual exclusion problem

n k q>3 q>4
5 2 0.539 0.532
6 2 1.270 1.252
7 2 3.283 3.425
8 2 10.460 10.887
10 2 105.115 107.285

7.5. Experimental results 133

Biichi automata of records and their augmented versions.

• The property specification language that they use is an extension of the branching time
temporal logic CTL called BTSL while our proposed logic is an action based linear
time temporal logic called pLTL.

• The algorithm of model checking used in the work of Baier et al is an extension of the
symbolic CTL model checking algorithm [48] which by an iterative approach that com­
putes the set of states satisfying each subformula of the desired property. Our model
checking algorithm is based on the checking of the emptiness of the accepted language
of an automaton that is reduced to the problem of detecting fair cycles in the graphs of
automata.

Compositional Reduction

136 8. Compositional Reduction

In the previous chapters, we introduced constraint automata, Bi.ichi automata of records
and their augmented versions as operational models for Reo connectors. We have shown
that they have increasing expressiveness. We also introduced methods for model checking of
Reo nets using both global and on-the-fly translations of linear temporal logic formulas into
automata. Now, we deal with the problem of state explosion, namely that the model of the
systems tend to be extremely large. In this chapter we investigate the method of compositional
reduction to deal with the problem of state explosion for the case of large scale Reo nets.
We concentrate on the most basic semantic model of Reo, namely constraint automata, and
we leave for future work the investigation of simjlar compositional reduction techniques for
ABAR models . In Section 8.1, we introduce the method and overview the way in which
we are able to minimize the models of Reo nets. In the subsequent sections, we present the
technical details with some examples.

8.1 Introduction

Equivalence based compositional reduction is a way to deal with the problem of state explo­
sion [50, 139]. In this method, the models of the components of a system are reduced with
respect to an equivalence relation before building the model of the whole system [60, 50, 79,
82). In order to be useful, the equivalence relation should satisfy two properties: preservation
of all properties to be verified and being a congruence relation with respect to all operators
that are used for composing the models. By a congruence relation we mean that the replace­
ment of a component of a model by an equivalent one should always yield a model that is
equivalent with the original one.

When transition systems are used as the semantics of specification formalisms , one of
the key questions is whether two models are equivalent. In the case of labeled transition sys­
tems with simple alphabets, numerous equivalence relations have been presented in the lit­
erature. Trace equivalence, visible-trace equivalence (automata-theoretic equivalence), weak
and strong bisimilarity presented by Milner [112],failure-based equivalences, and CSP-like
equivalences presented by Hoare [62] are examples of these equivalences. (For a survey on
several equivalence relations see [143, 144].) From a theoretical point of view, the investiga­
tion of these equivalences in the case of labeled transition systems with compound alphabets
such as constraint automata and record-based labeled transition systems are interesting.

Fortunately, in the context of failure based semantic models of the process description
language LOTOS, there are two equivalence relations , called chaosjree failures divergences
(CFFD) and non-divergent failure divergences (NDFD), which satisfy the preservation prop­
erty for two fragments of linear temporal logic . NDFD preserves linear time temporal logic
without next-time operator (called LTL_x) [86) . CFFD preserves linear temporal logic with­
out the next-time operator but with an extra operator that distinguishes deadlocks from diver­
gences (called LTLw) [141, 142]. Also, it has been shown that CFFD and NDFD are the
weakest equivalence relations that preserve the above mentioned fragments of linear tempo­
ral logic [86, 141]. In addition, it has been shown that in the case of labeled transition systems
with simple alphabets, CFFD and NDFD are congruences with respect to all composition op-

8.2. Failure based equivalence of constraint automata 137

erators defined in LOTOS [142].
Now, we investigate the above mentioned results for the case of constraint automata. In

other words, instead of their TDS-based semantics, we consider the failure based semantics
for constraint automata as labeled transition systems with compound labels. Thus, first we de­
fine CFFD and NDFD equivalences for constraint automata. Then, we show that the temporal
logic preservation results also will hold in these cases. Next, we consider the congruency re­
sults. Obviously, if we consider constraint automata as labeled transition systems with the
composition operators defined in LOTOS, then the previously established congruency results
for CFFD and NDFD also hold for constraint automata. In this chapter, we consider two other
composition operators that refer to the internal structures of the transition labels. These two
composition operators are the operators of join and hiding a port name, as we introduced them
in Chapter 3. We prove that failure-based equivalence relations CFFD and NDFD are congru­
ences with respect to both join and hiding operators of constraint automata. Therefore, based
on the congruency results, and because of the linear time temporal logic preservation prop­
erties of CFFD and NDFD equivalences and their minimality properties, CFFD and NDFD
can be used for compositional reduction or constraint automata models in the field of model
checking.

8.2 Failure based equivalence of constraint automata

Now, we define the notions ofCFFD and NDFD-cquivalencc relations. We define these equiv­
alences for labeled transition systems in general and for constraint automata in particular.
First, recall the notion of labeled transition systems:

Definition 8.1
- A transition alphabet is a countable set of symbols E not containing the empty transition
label T.

- We write ET for EU { T }, and E* (Ew) for the set or all finite (infinite) words consisting of
elements of E. The symbol T is used to denote the empty word.
- If er E (E; U E~), vis(er) is used to denote the word obtained by removing all T-symbols
from er and E(er) denote the set of elements of er .
- A labeled transition system (LTS) is a triple L = (S, s , t::..), where S is the set of states,
s E S is the initial state and t::.. ~ S x ET x S is the transition relation.
-The alphabet of L, E(L) is the set: E(L) = {l E El 3s, s' :(s , l , s') E t::..} . The alphabet of
any LTS is required to be finite. In addition , an LTS is finite if its set of states is finite .

Now we introduce some operators that can be used to compose labeled transition systems.
These operators are parallel composition with the possibility of synchronization on some
transition labels, nondeterministic choice, simple hiding, and renaming.

Definition 8.2 Let L1 = (S1, s1, t::.. 1) and L2 = (S2, s2, t::..2) be two LTSs.
(i) The parallel composition of L1 and L2 with respect to G = {g1 , ... , 9n} ~ E, denoted
by Li l[g1 , . . . , 9n] IL2, is the LTS (S1 x S2, (s1, s2), t::..), where
- ((t , u), 9i, (t' , u')) E t::.., for gi E G, iff (t , gi, t') E 6.1 and (u, gi, u') E 6.2, and

138 8. Compositional Reduction

-((t,u),l,(t' , u')) E ~ forl rf. G, iffeither(t,l,t') E ~ 1 and u = u' or(u,l ,u') E ~2
and t = t'.
(ii) The nondeterministic choice composition of L1 and L2, denoted by L1 []L2, is the LTS
(S1 x {l}US2 x {2}U{(s, 0)} , (s,0),~),where
- ((t, i), l, (t' , i)) E ~, where i E {1, 2}, iff (t, l , t') E ~ i, and
- ((s, 0) , l , (t, i)) E ~, where i E {1 , 2}, iff (si, l, t) E ~ i-

Definition 8.3 Let L1 = (S1 ,s1 , ~ 1) be an LTS and G = {91 , - --, 9n} CE and H =
{h1 ,---, hn} c E.
(i) The simple hiding of G in L1 , denoted by Hide 91 , ... , 9n in L1 , is the LTS (S1 , s1 , ~)

where
- (t , l, t') E ~ , iff either l rf. G and (t, l , t') E ~ 1 or l = T and there is a 9i E G such that
(t,9i , t') E ~1 -

(ii) The renaming of L1 with respect to G and H , denoted by L1 [hi/ 91 , ... , hn/ 9n], is the
LTS (S1 , s1 , ~) where
-(t, l , t') E ~ iffeither l r/. G and (t, l, t') E ~1 or l = hi and (t,9i, t') E ~1-

Now, we recall some basic concepts of process algebra and give the definitions of CFFD
and NDFD-equivalences [141, 142, 86].

Definition 8.4 Let L = (S, s, ~) be a labeled transition system.

- If p E E;, we write s0 ~ Sn for n = IPI iff there are s1 , ... , Sn-I such that for all
0 < i :Sn, (s;-1 , p; , si) E ~ -

- If there is an Sn such that so ~ Sn we write so ~.
- If p EE';:', we write so~ iff :3s1 , s2, ... such that for all i > 0, (si - l, Pi , si) E ~-
- If a E (E* U Ew), we write s0 ~ Sn (so ~) iff there is a p E (E; U E';:') such that

so~ Sn, (so~) and a= vis(p).

Now, we can define the notions of traces, divergence, stability and failures for labeled
transition systems in general, based on [86]:

Definition 8.5 Let L = (S, s, ~)) be a labeled transition system.
- a E E* is a trace of Liff s ~ .
- tr(L) is the set of all traces of L.
- a E Ew is an infinite trace of L iff s ~ .
- inftr(L) is the set of all infinite traces of L.

- a E E* is a divergence trace of L iff there is a p E E';:' such that s ~ and a = vis(p).
- divtr(L) is the set of all divergence traces of L.
- s' E Sis stable, if not s' ~ .
- An LTS L is stable if its initial state s is stable. We write stable(L) if L is stable, and
,stable(L) if it is not.
- (a, A) E E* x 2E, where 2E denotes the power set of I:, is a failure of L iff there is an
s' ES such that s~ s' and \/a E A.,(s' ~).
- fa il(L) is the set of all failures of L.
- (a , A) E E* x 2~ is a stable failure of Liff there is a stable s' E S such that s ~ s' I\\/ a E
A.,(s' ~)-

8.2. Failure based equivalence of constraint automata 139

- sf ail (L) is the set of all stable failures of L.
- (a , A) E E* x 2E is a divergence-masked failure of Liff (a , A) is a failure or a is a
divergence trace.
- dfail (L) is the set of divergence-masked failures of L.

The following lemma lists some direct consequences of the above definition for later use.

Lemma 8.1 Let L be a labeled transition system,
a) tr(L) = divtr(L) U {al(a, 0) E sfail(L)}.
b) tr(L) = {al(a, 0) E fail(L)} = {al(a, 0) E dfail(L)} .
c) dfail(L) = sfail(L) U (divtr(L) x 2E).
d) If Lis a finite labeled transition system,

inftr(L) = {w E EwlVa E E*:(a is a proper prefix of w -t a E tr(L))}.

Now, we introduce two failure based equivalences for labeled transition systems that were
originally introduced in [141, 142]:

Definition 8.6 Let Land L' be two labeled transition systems.

(i) We say that Land L' are CFFD equivalent and write L cg/ L' if and only if stable(L) {:}
stable(L'), divtr(L) = divtr(L'), inftr(L) = inftr(L') and sfail(L) = sfail(L').

(ii) We say that Land L' are NDFD equivalent and write L ngt/ L' if and only if stable(L) {:}
stable(L'), divtr (L) = divtr(L') , inftr(L) = inftr(L') and dfail (L) = dfail(L') .

The NDFD-equivalence is strictly weaker than CFFD-equivalence in the sense of the
following lemma:

cffd
I

ndf d
1 Lemma 8.2 If L ~ L , then L ~ L .

If the labeled transition systems examined are finite , the component inftr in the above
definitions is superfluous. Now, we define the notion of being congruence for equivalence
relations with respect to a composition operator:

Definition 8.7 Let ~ be an equivalence relation and f be a composition operator over a
set of labeled transition systems. We say that ~ is a congruence with respect lo f iff for
every L1 , ... , Ln and L~ , ... , L~ such that Li ~ L: the following holds: J(L1 , ... , Ln) ~
f (L~ , .. . , L~)-

Obviously, each constraint automaton C = (Q, N, -t, q0) over data set D can be consid­
ered as a labeled transition system with alphabet

E = {(N ,g)I N ~ N I\ g E DC(N, D) /\ N c/ 0} :

Lemma 8.3 For a constraint automaton C = (Q ,N , -t, q0) over a data set D, let L(C) =
(S, s, -6.) be the labeled transition system over the alphabet E = { (N , g) IN ~ N I\ g E
D C (N, D) I\ N cJ 0}, where, S = Q, s = q0 and (qi, (N , g) , qj) E -6. if and only if
(q;, N , g, qj) E-t . Then, the constraint automata C and C' are (TDS-based) equivalent if
and only if they are infinite-trace-based equivalent. In other words LrDs (C) = L r Ds (C')
if and only if inftr(L(C)) = inftr (L(C')).

140 8. Compositional Reduction

Proof This lemma is a direct consequence of Definitions 3.7 and 8.5 D

Based on the above lemma, if we consider the elements of the alphabet of every constraint
automaton as simple elements and do not refer to their internal structures then , constraint
automata can be composed using every well defined operator for composing labeled transition
systems, such as parallel composition with synchronization, nondeterministic choice, and
renaming. In addition, in the Chapter 3 we introduced two composition operators, join and
hiding with respect to a port name, whose definitions depend on the internal structures of the
elements of the alphabet sets of constraint automata.

In [142] it has been proved that CFFD and NDFD (without the need to check for the sta­
bility predicates) are congruences with respect to all basic composition operators of LOTOS,
except for the operator of nondeterministic choice. For the case of nondeterministic choice
operator, it is also necessary to check the stability predicate. For composing constraint au­
tomata, not only we can use these operators, but we also have the two extra operators (join
and hiding a port name) which refer to the internal structure of the elements of alphabet
sets. In the following sections, we show that equivalence relations CFFD and NDFD are also
congruences with respect to both join and hiding operators of constraint automata.

8.3 Congruency Results for Joining of Constraint Au­
tomata

In this section , we prove that the equivalence relation CFFD is a congruence with respect
to the join of constraint automata and it is also the case for the equivalence relation NDFD.
Our method of proof is a modification and extension of the proof of that CFFD and NDFD
relations are congruences for the case of parallel composition of LTSs presented in [142] .

First, we define a predicate Join(a;rr, p), which intuitively means that words 7r and p can
be considered as traces of two constraint automata while a is a trace in the join constraint
automaton resulting from the join of p and rr.

Definition 8.8 Let Data be a set of data, Nam1 and Nam2 be sets of names. Let I:1

{(N , g)JN s::;; Nam1 I\ N f- 0 A g E DC(N, Data)}, I:2 = {(N , g)JN s::;; Nam2 I\ N f-
01\ g E DC(N , Data)}, I; = {(N , g)IN s::;; Nam1 UNa~ /', N t- 0A g E DC(N , Data)}
and a = (N1 , g1)(N2 , 92) .. . be a finite or infinite word over the alphabet I:. We define
the predicate Join(a;rr , p) to hold (to be true) if and only if there is a function moved from
{ 1, 2, . .. } to {first , second , both} such that:

I -

moved(i) - {

first
second

both

2- 7r is obtained from a by:

if Ni n Nam2 = 0 and 9i E DC(Nam1 , Data),
if Nin Nam1 = 0 and 9i E DC(Nam2, Data),
otherwise.

2-1- for all i 2: 1 where, moved(i) = both, change (Ni, 9i) to

8.3. Congruency Results for Joining of Constraint Automata

(N; n Nam1, g; [Nam1]),
2-2- remove all (N; . g;) where, moved(i) = second.

3- p is obtained from a by:
3-1- for all i 2: 1 where, moved (i) = both, change (N;, g;) to

(N; n Na'ffvJ. , g;[Na'ffvJ.]),
3-2- remove all (N;, g;) where, moved(i) = first.

141

By g[Nam;] we mean the restriction of data constraint g to the name set Nam;: in the con­
junctive normal form of g, the restricted g[Nam;] can be obtained by replacing all terms
containing dA = d where A (/. Nam; with true. Obviously, the obtained word 1r is a word
over alphabet I:1 and p is a word over alphabet I:2 .

Now, we show that the sets of finite or infinite traces, stable failures , divergent traces and
divergence-masked failures of the join automaton can be characterized by their counterparts
in the two constraint automata. Based on these characterizations, we prove our congruency
results.

Proposition 8.4 Let C1 = (Qi, Nam1 , T1 , q01) and C2 = (Q2, Na'ffvJ., T2 , q02) be two
constraint automata. Then,
(i) tr(C1 t><Jc C2) = {a I :l1r E tr(C1), :lp E tr(C2), Join(a ;1r , p)}.
(ii) sfail(C1 t><Jc C2) = {(a, A) I :l(1r, B) E sfail(C1) , :l(p, D) E sfail(C2) ,

Join(a;1r, p) and An G ~ B n D /\ An G' ~ Bu D},
where,

G = {(N, g)I N ~ Nam1 U Nam2 /\ N-/= 0 /\ (N n Nam1 = 0 V N n Nam2 = 0)},
G' = {(N, g)I N ~ Nam1 U Nam2 /\ N-/= 0 /\ (N n Nam1 -/= 0 /\ N n Nam2-/= 0)}.

(iii) stable(C1 t><Jc C2) = stable(C1) /\ stable(C2).
(iv) divtr(C1 t><Jc C2) = {a I :l1r E tr(C1), :lp E tr(C2) , Join(a ;1r, p) and

(1r E divtr(C1) V p E divtr(C2))}.
(v) dfail(C1 t><Jc C2) = {(a , A) I :l(1r , B) E dfail(Ci) , :l(p, D) E dfail(C2) ,
Join(a;1r,p) and An G ~ BnD /\ An G' ~ BUD} U (divtr(C1 t><Jc C2) x 2E) ,
where, I; is the same as defined in Definition 8.8 and G and G' are the same as defined in
(ii).

(vi) inftr(C1 t><Jc C2) = {w I :l1r E tr(C1) U inftr(C1) , :lp E tr(C2) U inftr(C2) ,
Join(w; 1r , p) /\ (1r E inftr(Ci) V p E inftr(C2))}.

Proof
First note that in general constraint automata can be nondeterministic, i.e. there are transitions
with the same source states and the same labels but with different target states. Thus, the last
state after a finite trace can be more than one and for a trace a in the join of two constraint
automata the predicate Join(a;1r , p) can be satisfied by more than one pair of traces (1r , p).
Now we prove the proposition :

(i) This proposition is a direct consequence of Definitions 8.5, 3.8 and 8.8 .

(ii) Let (1r , B) E sfail(C1), (p , D) E sfail(C2) and Join(a;1r, p). We prove that for all
A ~ I:, if A n G ~ B n D I\ A n G' ~ B u D, then (a , A) E sf ail(C1 t><Jc C2).

142 8. Compositional Reduction

First note that, 1r E tr(C1), p E tr(C2) and Join(a ;1r , p), thus based on Proposition 8.4(i),
a E tr(C1 txJc C2) and because (1r, B) and (p , D) are stable failures, there is no outgoing
transition with label T from the last state in C1 txJ c C2 after tracing a. We denote this state
by qF, the last state in C1 after tracing 1r by q3 and the last state in C2 after tracing p by
qv . Let A be the greatest member of 2E such that An G ~ B n D I\ An G' ~ BUD.
(Since ~ is finite, such a set exists). Now using proof by contradiction, suppose that there is
an outgoing transition from state qF in C1 txJc C2 with label (N , g) E A. Based on Defi­
nition 3.8, we have three cases, based on N: (1) N ~ Nam1 and N n Na~ = 0. In this
case, (N, g) E An G. Thus, (N, g) E B n D. But, both (p, D) and (1r, B) are fail runs
in their corresponding automata. Thus, it is impossible for (N, g) to be the label of an out­
going transition from qF in the product automaton. (2) N ~ Na~ and N n Nam1 = 0.
The proof is symmetric with case (1). (3) N = N1 U N2 where N1 ~ Nam1 , N2 ~ Na~
and Nin Na~ = N2 n Nami. In this case, (N , g) E An G'. Thus, either (N , g) E B or
(N , g) E D. In either case it is impossible for (N , g) to be the label of an outgoing transition
from qF in the product automaton, because at least one of the states q3 and qv does not
have an outgoing transition with label (N, g) in its corresponding automaton. Because we
supposed that A is the greatest subset of~ where An G ~ B n D I\ An G' ~ BUD, our
claim holds for the smaller subsets of~-
On the other hand, let (a, A) E sf ail(C1 txJc C2). Thus a E tr(C1 txJc C2) and based on
Proposition 8.4(i), there are 1r E tr(Ci) and p E tr(C2) such that Join(a ;1r,p) . Let B be
the greatest subset of~ where (1r , B) E fail(C1) and D be the greatest subset of~ where
(p, D) E fail(C2). Again, we denote the last state in C1 after tracing 1r by qe, the last state
in C2 after tracing p by qv and the last state in C1 txJc C2 after tracing a by qF. Because qF
is stable, based on Definition 3.8, qe and qv are stable. Thus, (1r , B) and (p , D) are stable
failures. If (N , g) E An G then N n Nami = 0 or N n Nam2 = 0 and there is no out­
going transition with label (N, g) from qF. If N n Nam1 = 0 then obviously, (N , g) E B
and based on Definition 3.8 it cannot be the label of an outgoing transition from qv in C2

. Thus, because of the maximality of D, (N, g) E D. Thus, (N, g) E B n D . Similarly, if
N n N am2 = 0 then (N , g) E B n D. Thus, A n G ~ B n D. If (N , g) E A n G' then
N n Nami-/- 0 and N n Nam2 -/- 0. Using proof by contradiction, let (N,g) (/.BUD.
Thus, there is an outgoing transition with label (N , g) from q8 in Ci and an outgoing tran­
sition with label (N , g) from qv in C2 , and based on Definition 3.8, there is an outgoing
transition with label (N , g) from qF in C1 txJc C2 . But this contradicts that (a, A) is a fail­
ure.

(iii),(iv) These propositions are direct consequences of Definitions 8.5 and 3.8.

(v) By Lemma 8.1 (c), dfail(C1 txJc C2) = sf ail(Ci !Xl c C2) U (divtr(C1 txJc C2) x 21::) .
Using 8.4(ii),

dfail(Ci we C2) = {(a, A) I :3(1r, B) E sfail(Ci) , 3(p, D) E sfail(C2),
Join(a;1r , p) I\ An G ~ B n D i\ An G' ~ BUD}

U (divtr(Ci txJc C2) x 2E) . (**)

Equation (**) contains two instances of sfail and we need to show that the replacement

8.3. Congruency Results for Joining of Constraint Automata 143

of both by dfail do not add any new pair (a, A) to the righthand side of the equation. In
fact, we can show that the replacement of instances of sfail by dfail adds some pairs to
the set {(a, A) j ... } in the righthand side of the equation, but all of these new pairs are in
(divtr(Ci tx1e C2) x 2E). Thus, the union set (the righthand side of the equation) does
not change. For this purpose, first suppose that we replace sf ail(Ci) by dfail(Ci). Because,
dfail (C1) = sf ail (Ci) U (divtr(Ci) x 2E) (see Lemma 8.1 (c)), the only effect of this re­
placement is that new pairs (a, A) may be introduced related to some (1r, B) and (p , D) such
that 1r E divtr(Ci), (p, D) E sfail(C2) and Join(a ;rr, p) holds. But then p E tr(C2), and
by the replacement of sfail by dfail, (a,A) belongs to (divtr(Ci) x 2E). By a symmetric
argument, we can show that the replacement of the other sfail by dfail does not change the
righthand side of Equation (**).

(vi) This item is a direct consequence of Definitions 8.5, 3.8 and 8.8. □

Now, we can prove that CFFD is a congruence with respect to join of constraint automata:

Proposition 8.5 Let C and C' be constraint automata over the same set of names and D
. cffd cffd

and D' be constraint automata over the same set of names, such that C ~ C' and D ~ D'.
cffd

1 1 Then, C tx1e D ~ C tx1e D .

Proof According to Definition 8.6 we need to prove four items:

(i) stable(C txle D) = stable(C) I\ stable(D), based on Proposition 8.4(iii),
cffd cffd

= stable(C') I\ stable(D'), because C ~ C' and D ~ D',
= stable(C' tx1e D').

(ii) Based on Proposition 8.4(ii),
sfail(C tx1e D) = {(a, A) j 3(1r, B) E sfail(C), 3(p, E) E sfail(D), Join(a ;rr, p)
I\ A n G ~ B n E I\ A n G' ~ B U E} where,
G = {(N,g)IN n Name= 0v N n NamD = 0} and
G' = {(N , g)IN ~ Name U NamD I\ N -=J- 0 /\ N n Name -=J- 0 /\ N n NamD -=J- 0}.
Because of the CFFD-equivalence sfail(C) = sf ail(C') and sfail(D) = sfail(D'). Because
of the equality of the names sets, G and G' in the case of C tx1e Dare, respectively, equal to
G and G' in the case of C' tx1e D', respectively. Thus, sf ail(C tx1e D) = sf ail(C' tx1e D') .

(iii) Based on Proposition 8.4(iv),
divtr(C tx1e D) = {a I 31r E tr(C), 3p E tr(D), Join(a;1r,p) and (1r E divtr(C) V p E

divtr(D))} . Based on Lemma 8.1 (a), tr(C) = divtr(C) U { a I (a, 0) E sf ail (C)} and this
fact holds also for C', D and D'. For CFFD equivalence, it holds that divtr(C) = divtr(C'),
divtr(D) = divtr(D'), sfa il(C) = sfail(C'), and sfail(D) = sfail(D'). Thus, tr(C) =
tr(C') and tr(D) = tr(D'). Therefore, divtr(C tx1e D) = divtr(C' tx1e D').

(vi) In part (iii) above we proved that tr(C) = tr(C') and tr(D) == tr(D'). Also, us­
ing the definition of CFFD-equivalence relation , we know that inftr(C) = inftr(C') and

144 8. Compositional Reduction

inftr(D) = inftr(D'). Thus, using Proposition 8.4(vi), it is the case that
inftr(C l><lc D) = injtr(C' l><lc D') . D

Thus, CFFD-equivalence is a congruence with respect to the join of constraint automata.
A similar result holds also for NDFD-equivalence:

Proposition 8.6 Let C and C' be constraint automata over the same set of names, D and
ndfd ndfd

D' be constraint automata over the same set of names, C ~ C' and D ~ D'. Then,
ndfd

1 1 C l><lc D ~ C l><lc D .

Proof
The proofs for the claims stable(C l><lc D) = stable(C' l><lc D'), divtr(C l><lc D) =
divtr(C' l><lc D') and inftr(C l><lc D) = injtr(C' l><lc D') are similar to the proofs
of their counterparts in Proposition 8.5. (We use dfail sets instead of sfail sets and part
(b) of Lemma 8.1 instead of part (a) to show the trace equivalences.) Now we prove that,
dfail(C l><lc D) = dfail(C' l><lc D'). By Proposition 8.4(v),
dfail(Cl><l c D) = {(a,A) I :l(1r , B) E dfail(C), :l(p,E) E dfail(D), Join(a ;1r, p)
and An G ~ B n E I\ An G' ~ B UE} U (divtr(C1 l><lc C2) x 2E).

ndfd ndfd
Because C ~ C' and D ~ D' , dfail(C) = dfail(C'), dfail(D) = dfail(D') and
divtr(C l><lc D) = divtr(C' l><lc D'). Because of the equality of the names sets, G and G'
in the case of C l><lc Dare, respectively, equal to G and G' in the case of C' l><lc D'. Thus,
dfail(C l><lc D) = dfail(C' l><lc D'). □

Therefore, NDFD-equivalence is a congruence with respect to the join of constraint au­
tomata.

8.4 Congruency Results for Hiding Names

In this section we prove that the equivalence relation CFFD is a congruence with respect to
hiding of port names in constraint automata (with T-transitions) and that is also the case for
the equivalence relation NDFD. Our method of proof is a modification and extension of the
proof of that CFFD and NDFD relations are congruences for the case of hiding of an alphabet
member in all transitions of an LTS presented in [142).

First, we show that the sets of finite or infinite traces, stable failures , divergent traces and
divergence-masked failures of the automaton after hiding of a port name can be characterized
by their counterparts in the original constraint automaton. Based on these characterizations,
we prove our congruency results.

Definition 8.9
Let Nam be a set of names, Data be a set of data, E = {(N, g)IN ~ Nam I\ g E
DC(N, Data)} and B E Nam. We define the set hide Bin E 1 , for every set E 1 ~ E such
that:

hideBinE1 = {(N\ {B} ,:lB[g])j(N,g)EEi}\{T},

8.4. Congruency Results for Hiding Names 145

where for data constraint g, we define :3B[gJ = V dEvg[dB / dJ (see Definition 3.9).
Also, for every finite or infinite string a- = (N1, g1)(N2, 92) ... we define the string

hide B in a- as the string that is obtained by removing all pairs of the form (0, g) from
the word (N1 \ { B} , :3B[g1])(N2 \ { B} , :3B[g2])

The following proposition lists some basic results which we need in the proof of other
theorems:

Proposition 8. 7
Let C = (Q, Nam , T, q0) be a constraint automaton, BE Nam be a port name, and :3B[C]
be the constraint automaton resulting from hiding of Bin C (see Definition 3.10). Then,
(i) tr(:3B[C]) = {hide Bin a-I a- E tr(C)}.
(ii) sfail(:3B[C]) = {(hide Bin a-, A)I (a- , AU A' U B) E sfail(C)} }, where

A'= {(NU {B}, g)j ::lg' E DC(N , data):(N , g') EA},

B = {({B}, g)I g E DC({B}, data)}.
(iii) stable(:3B[Cl) = stable(C) A \/g E DC({ B}, Data):({ B}, g) ./. tr(C).
(iv) divtr(:3B [Cl) = {hide B in a-I a- E divtr(C)} U

{hide Bin a-la- E inftr(C) A jhide Bin a-1 < oo }.

(v) dfail(:3B[Cl)= { (hide Bin a-, A)I (a-, AU A' U B) E dfail(C)} U
(divtr(:3B[Cl) x 2E), where, I: is so defined in Definition 8.9.

(vi) inftr(:3B[Cl) = {hide Bin wl w E inftr(C) A jhide Bin wl = oo }.

Proof
(i) This is a direct consequence or Definitions 8.5 and 8.9.

(ii) If (p, A) E sfail(:3B[Cl), then for the automaton (:3B[Cl), we know that there is a

state q E Q where qo,B b q and stable(q) and \/a EA(, q ~)- Because pis a trace
in :3B [C], there is a trace a- E tr(C) such that p = hide B in a-, I:(p) = hide B in I:(a-)
and in the automaton C, q0 ~ q. Because, q is stable in :3B[CJ, there is no transition

of the form q ~ B q', and using the definition of hiding, there is no transition of the form
q ~ q' in C. Thus , q is also stable in C. Now we prove that (a, A U A' U B) is a failure
of C. First, note that because (p, A) is a failure of:3B[C], for all (N , g) E A, B el. A. Thus
A and A' are two disjoint sets. Because (p, A) is a failure in :3B [CJ and p = hide B in a-,
(a, A) is a failure of C. For the set A', we know that A = hide B in A'. Thus, (a-, A')
is also a failure of C. Because q is stable in :3B[CJ, by the definition of hiding, there is

no transition of the form q {~g q' in C. Thus, (a- , B) is a failure of C. It follows that,

sfail(:3B[C]) <:;:: {(hide Bin a. A)I (a-, AU A' U B)}.
On the other hand, let (a- , AU A' U B) E sfail(C)} and p = hide B in a-. Thus, for the
automaton C, we know that there is a state q E Q where q0 ~ q and stable (q) and

\/ a E A U A' U B, (-, q ~). Because q0 ~ q is a run of C and p = hide B in a-,
qo.B b q is a run of :3B[CJ. Because in the automaton C there is no transition of the

form q ~ q' in which a E A U A', by using the definition of hiding, there is no tran­
sition of the form q ~ q' in which, a E A in the automaton :3B[CJ. Thus, (p, A) is a
failure of :3B [CJ. Because q is stable in C and there is no transition of the form q ~ q',

146 8. Compositional Reduction

a E {({fl}, g)lg E DC({fl}, data)}, and q is stable in 3B[C] . Thus, (p, A) is a stable

failure of3fl[C]. Therefore, { (hide Bin a, A) I (a, Au A' u B)} ~ sfail(3B[Cl).

(iii),(iv) These are direct consequences of Definitions 8.5 and 3.10.

(v) By Lemma 8.l(c), dfail(3B[C]) = sfail(3B[C]) U (divtr(3B[C]) x 21} Thus, us­
ing 8.7(ii),

dfail(3B[Cl) =
{(hideBina,A)I (a,AUA'UB) E sfail(C)}U(divtr(3fl[C]) x 2E) (*)

The effect oflhe replacement of sf ail by dfail in Equation(*) is that new pair (hide Bin a, A)
may be introduced where a E divtr(C). But by Definition 8.9, if a E divtr(C) then
hide Bin a E divtr(3B[Cl)). Thus, the replacement of sf ail by dfail in Equation(*) does
not change its righthand side.
(vi) This is a direct consequence of Definitions 8.5 and 8.9. □

Now, we can prove that CFFD is a congruence with respect lo hiding of port names of
constraint automata:

Proposition 8.8 Let C and C' be constraint automata over the same set of names, C cg/ C'
cffd

and B be a name in the set of names. Then, 3B[C] ;::::: 3B[C'].

Proof (i) By Proposition 8.7(iii),
stable(3B[Cl) = stable(C) I\ Vg E DC({ fl} , Data):({ B} , g) (/. tr(C).

Because C cg/ C', stable(C) = stable(C'), divtr(C) = divtr(C') and sfail(C)
sfail(C'). By Lemma 8.l(a), tr(C) = divtr(C) U {(a , 0)1a E sfail(C)}. Thus, tr(C) =
tr(C'). Therefore, stable(3B[Cl) = stable(3B[C']). ·

(ii) By Proposition 8.7(ii),

• sfa il(3B[Cl) = { (hide fl in a, A)I (a, Au A' U B) E sf ail(C)} },

• A' = {(Nu{B} , g)l 3g' E DC(N , data):(N ,g') EA},

• B = {({fl},g)I g E DC({fl}, data)}.

cffd
Because C ;::::: C', sf ail (C) = sf ail (C'). Because the name sets of C and C' are equal,

the definitions of sets A' and Bin the cases of C and C' are the same. Thus, sfail(3fl[Cl) =
sfail(3B[C']).

(iii) By Proposition 8.7(iv), divtr(3B[Cl) is equal to {hide fl in al a E divtr(C)} U

{hide B in a la E inftr(C) I\ I hide B in a I (oo} . Because C cg/ C', inftr(C) = inftr(C')
and divtr(C) = divtr(C'). Therefore, divtr(3B[Cl) = divtr(3B[C']).

8.5. Linear Temporal Logic of Constraint Automata 147

cffd
(iv) Because C ~ C', inftr(C) = inftr(C') . Thus, using Proposition 8.7(vi), we know
that inftr(3B[Cl) = inftr(3B[C']) . □

Therefore, CFFD-equivalence is a congruence with respect to the hiding of port names
in constraint automata. Similarly, we prove that NDFD is a congruence with respect to the
hiding operator for constraint automata:

ndfd
Proposition 8.9 Let C and C' be constraint automata over the same set of names, C ~

ndfd
C' and B be a name in the set of names. Then, 3B [C] ~ 3B [C'] .

Proof The proofs for claims:
stable(3B[Cl) = stable(3B[C']) , divtr(3B[Cl) = divtr(3B[C']) and
inftr(3B[Cl) = inftr(3B[C']) are similar to the proofs of their counterparts in Proposi­
tion 8.8. Further, by Proposition 8.7(v),
dfail(3B[C]) = {(hide Bina, A)I (a , AUA'UB) E dfail(C)} U (divtr(3B[C]) x 2E).

Because C ngf/ C', dfail(C) = dfail(C') . As we showed, divtr(3B[Cl) = divtr(3B[C']).
Thus, dfail(3B[Cl) = dfail(3B[C']) . □

Thus, NDFD-equivalence is a congruence with respect to the hiding of port names in
constraint automata.

8.5 Linear Temporal Logic of Constraint Automata

Traditionally temporal logics are logical systems for specification and verification of the prop­
erties that are based on the truth values of propositions in the states of a transition system.
Such transition systems are called Kripke structures. Linear models (see Definition 8.10) are
simplifications or runs of Kripke structures. On the other hand, labeled transition systems
and constraint automata are transition systems with labels on their transitions . Also, process
algebraic equivalences and composition operators usually work purely on information that is
based on transition labels . In this section, we augment the definitions of labeled transition sys­
tems and constrain automata by introducing functions that assign to each of their states a set
of propositions. Then, we introduce linear temporal logic and two of its fragments interpreted
over linear models as executions of augmented labeled transition systems or augmented con­
straint automata.

Definition 8.10
(i) Let AP be a set of atomic propositions. A Linear Model is a finite or infinite sequence
a = a1 , a2 , . . . of subsets of AP. We call any ai ~ AP a state of (in) the linear model a.
(ii) An augmented labeled transition system (aLTS) is a 5-tuple A = (S, s , ~, AP, L), where,
(S, s, ~) is an LTS, AP is a set of propositions, and L:S ---+ 2 AP is a labeling function . Let
a E ~w be an infinite trace of the LTS (S, s , ~). Because a is an infinite trace, there is an infi­
nite (or deadlocking) sequence of LTS (S , s , ~),of the form r = (s, a1 , s1), (s1 , a2, s2),
The linear model defined by r in A is Mr = L(s) , L(s1) , L(s2) ,

148 8. Compositional Reduction

(iii) A tuple C = (Q, Nam, T , q0 , AP, L) is called as an augmented constraint automaton
(aCA) where (Q, Nam , T , q0) is a constraint automaton, AP is a set of propositions, and
L: Q ➔ 2AP is a labeling function. Let C be an aCA and r = (qo, ¢1, q1), (q1 , <b2 , q2) , ...
he an infinite or deadlocking run of C. The linear model defined by r in C is Mr =
L(qo), L(q1), L(q2) ,

Now, we present the syntax and semantics of linear temporal logic and two of its frag­
ments:

Syntax of LTL and its fragments
(i) The set of all well-formed formulas of linear temporal logic (LTL) is defined by the fol­
lowing abstract syntax:

¢ : : = p I · ¢ I ¢ V ¢ I ¢ u ¢ I X ¢ P E AP

(ii) The set of all well-formed formulas of Next-time-less linear temporal logic (LTL_x) is
defined by the following abstract syntax:

¢ : : = p I · ¢ I ¢ V ¢ I ¢ u ¢ P E AP

(iii) The set of all well-formed formulas of restricted linear temporal logic (LTLw) is
defined by the following ahstract syntax:

w
¢ : : = p I ·¢ I ¢ V ¢ I ¢ u ¢ I F ¢ P E AP

We also use the following abbreviations:

T =df (p V (,p))

where p is a fixed proposition,

and

¢1 /\ ¢2 = df •(• ¢1 V ,c/J2),

F ¢ = df TU¢,

G¢ = df ,F(,¢) .

Semantics of LTL and its fragments
A temporal formula ¢ of the above defined syntactic structures holds in a linear model a­
(denoted by a- I=¢) accord ing to the following rules:

I- If ¢ E AP, then a- I=¢ iff ¢ E a-1 .

2- a- I= , ¢ iff not a- I= ¢ .
3- a- I= (¢1 V ¢2) iff a- I= ¢ 1 or a- I= (P2
4-a- I= (¢ 1 U¢2) iff3i :O :Si< Ja-J , a- i I= ¢2 and\/j:O :S j < i,a-1 1= ¢ 1 .

5- a- I= X ¢ iff a- 1 -/- 0 and a- 1 I= ¢.
w .

6- a- I= F ¢ iff there are infinitely many i ~ 0 such that a-' I= ¢.

8.5. Linear Temporal Logic of Constraint Automata 149

In terms of expressiveness power, it can be shown that LTL_x C LTLw C LTL. In gen-
w

eral, in LTL we have, F ¢> = GXF¢>, but if we restrict to infinite linear models only then
w w
F ¢> = GF¢>. Therefore, the temporal operator F is an operator for distinguishing a finite
linear model from an infinite one, i.e., distinguishing a deadlock from a divergence .

Definition 8.11 Let a = a 1 , a 2 , . .. be a linear model.
(i) The.finitely reduced form of a (denoted by fred(a)) is constructed by collapsing all finite
continuous sequences a i , a i +l , . .. , a i+m of identical elements a i = a i+ l = . . . = a i+m to
one element a i .

(ii) The reduced form of a (denoted by red(a)) is constructed by collapsing all finite and
infinite continuous sequences a i , a i+ 1 , ... of identical elements a i = a i+ 1 = .. . to one
element ai.
(iii) If a 1 and a 2 are two linear models, we say that a 1 and a 2 are equivalent under stuttering
iff red(ai) = red(a2).

By induction on the syntactic structure of formulas, we obtain the following proposition.

Proposition 8.10 Let a = a 1 , a 2 , .. . be a linear model.
(i) If ¢> is an LTLw-formula, then a t= ¢> iff fred(a) F ¢.
(ii) If ¢> is an LTLx-formula, then a ·t= ¢> iff red(a) F ¢ .

In the context of model checking, we use aLTSs and aCAs as the models of our systems
and also as the semantic domain of our temporal logic. On the other hand, we want to use
of the equivalence relations to reduce the models' sizes. This equivalence based reduction
will be useful in model checking if the reduction process preserves the truth values of each
temporal logic formu la. Now we intend to formally define the concept of preservation of the
truth values of temporal formulas according to each equivalence relation. For this, we can use
a way of interpreting the transition labels as functional state transformers [86]. In this section,
we use this transformation only for defining the concept of truth preservation, but in the next
section we will use a modified version of it in our reduction algorithm.

Definition 8.12
(i) A state modifier sm is a mapping sm:2AP -t 2AP. The set or all state modifiers is denoted
by TS . The identity state modifier I is the identity function. A state modifier sequence is a
finite or infinite sequence of state modifiers.
(ii) A temporal semantics for an LTS or constraint automaton Lis a mappingf :I:(L) U{ T} -t

TS such that f(T) = I. If p = a1a2 . .. is a path of L, we write f(p) for the sequence
(J(a1) , J(a2), . ..). A temporal semantics for a path pis a mapping f :I:(p) U { T} -t TS such
that J (T) = I.
(iii) The linear model induced by a state v s;; AP and a state modifier sequence sms, denoted
as Model(v, sm s), is a sequence of states such that:

I- Model(v. sms)o = v
2- M odel(v, sm s)i+ 1 = sm si (Model(v. sm s)i) -
Jf sms is finite then IModel (v, sms) I = lsms l + l.

(ix) Let a E (I: ; U I: '.;:') be a path of an LTS L, J a temporal semantics for a, v0 a state, and ¢>
an LTL formu la. We say ¢> is true of a with respect to temporal semantics J and initial state
v0 and write a,J , v0 F ¢ iff Model(v0 ,J(a)) I= ¢>.

150 8. Compositional Reduction

Usually, linear temporal logic formulas are interpreted over the complete paths generated
by a transition system. These correspond to the infinite and deadlocking paths of an LTS.

Definition 8.13 (i) Let L be an LTS, f a temporal semantics for L, v0 a state, and ¢ an LTL
formula . We say ¢ is true of L with respect to temporal semantics f and initial state v0 , and
write L, f, v0 I=¢ iff u ,J , v0 I=¢ for all u E dpath(L) U infpath(L).
(ii) Let L1 and L2 be LTSs and ¢ an LTL-formula. We say that L1 and L2 agree on ¢ iff for
every temporal semantics f and for every initial state vo it is the case that L1 , f, v0 I= ¢ iff
L2,J , vo I= ¢.
(iii) An equivalence ~ between LTSs is LTL-preserving iff for any pair L1 , L2 such that
L 1 ~ L2, L 1 and L2 agree on every LTL formula. Similarly, An equivalence~ between LTSs
is LTL_x (LTLw)-preserving iff for any L1 , L2 such that L1 ~ L2 , L1 and L2 agree on
every LTL_x (LTLw) formula.

Let L be a labeled transition system. Intuitively, a temporal semantics for L expresses
the changes caused by the transitions in the information contained in each state of L. But, L
can be composed with other labeled transition systems using composition operators defined
in Definitions 8.2 and 8.3, and in addition, in the case of c~n~traint automata, using join and
hiding operators defined in Chapter 3. Thus, we need to defrne how a composition opera­
tor affects the temporal semantics of the original labeled transition systems, which will be
composed using these operators.

For the composition operators defined in in Definitions 8.2 and 8.3, all temporal semantics
for compositional labeled transition systems have been defined in [86). Also, it was shown
in [86) that:

Proposition 8.11 For each labeled transition system and with respect to all composition
operators that have well defined temporal semantics:
(i) CFFD-equivalence is LTLw-preserving and NDFD-equivalence is LTL_x-preserving.
(ii) If ~ is an equivalence between LTSs and it is congruence with respect to I[· • •] I and []

(defined in Definition 8.2) and is LTLw-preserving, then L ~ L' implies L cg/ L'. Thus,
CFFD is the weakest compositional equivalence preserving LTLw.
(iii) If ~ is an equivalence between LTSs and it is congruence with respect to I[· • •] I and

[] and is LTL_ x-preserving, then L ~ L' implies L n'/!/ L'. Thus, NDFD is the weakest
compositional equivalence preserving LTL_x.

The proof of Proposition 8.11 (i) depends only on the definitions of the equivalences,
temporal semantics, and the notion of temporal logic preservation (see [86)). According to
Proposition 8.11 (ii),(iii), the minimality property holds whenever an arbitrary equivalence~
is a congruence with respect to the parallel composition I[· • •] I and non-deterministic choice
[]operators.We have shown that every constraint automaton C = (Q, Nam, T, q0) can be
considered as a labeled transition system with alphabet I: = {(N , g)IN ~ Nam I\ g E
DC(N , Data) I\ N =I- 0} (Proposition 8.3) and proved that CFFD and NDFD-equivalences
are congruences with respect to our defined join and hiding operators for constraint automata.
Thus, if we can define the temporal semantics of the composed constraint automaton by
means of the temporal semantics of the original automata, then all parts of Proposition 8.11

8.5. Linear Temporal Logic of Constraint Automata 151

will hold not only for constraint automata composed by operators defined in Definitions 8.2
and 8.3, but also when they arc composed by join and hiding defined in Chapter 3.

Now we investigate the effects of join and hiding composition operators for constraint
automata on their temporal semantics. First, we need to make precise the meaning of effects
of a composition operator on a temporal semantics:

Definition 8.14
(i) A state modifier sm affects an atomic proposition a iff there is a v ~ AP such that either
a E v and a ff. sm(v), or a ff. v and a E sm(v). We denote by af (sm) and af (sm), the set
of all atomic propositions affected by sm and the set AP\af (sm).
(ii) State modifiers sm and sm' are compatible iff for all atomic proposition a E af(sm) n
af(sm') and all v ~ AP, a E sm(v) iff a E sm'(v). If this is the case, the combination of
sm and sm', denoted by sm E9 sm', is the function c:2AP -t 2AP where c(v) = (sm(v) n
af (sm)) U (sm'(v) n af (sm')) U (v n af(sm) n af (sm')).

Definition 8.15Let C1 = (Q1,Nam1, T1,qO1) and C2 = (Q2 ,Na~, T2,Qo2) be two
constraint automata, and Ji and h be temporal semantics for C1 and C2 , respectively. Ji and
h are compatible with respect to synchronization set G = { (N, g) I (N = N1 U N2) I\ (g =
g1/\92)/\(N1-/= r./J)A(N2-/= 0)/\.(Ni ~ Nam1)A(N2 ~ Nam2)A(g1 E DC(Nam1, Data)) /\
(92 E DC(Na~, Data)) I\ (N1 n Nam2 = N2 n Nam1)}, iff for all g E G, Ji (g) and h(g)
are compatible and for all IE (I:(Ci) n I:(C2))\ G, Ji (l) = h(l).

Let C = C1 l><lc C2 and Ji and h be temporal semantics for C1 and C2, respectively. The
state information of C consists of the state information of both C1 and C2 . The temporal se­
mantics f1 expresses changes in the state information of C1 and h that of C2 . These changes
are made by transitions. Thus, if a transition in C corresponds to a transition of C1 alone, the
change in the state information of C is the same as in C1 . Also, if a transition in C corre­
sponds to a transition of C2 alone, the change in the state information in C is the same as in
C2. But, if a transition in C corresponds to synchronized transitions of C1 and C2, the change
in the state information of C should consist of both changes in C1 and C2 . The set G defined
in Definition 8.15 identifies the set of all synchronization alphabets. If the temporal seman­
tics Ji and h are mutually conflicting, it is impossible to define a joint temporal semantics
in the case of synchronization. In Definition 8.15, the compatibility requirement guarantees
the possibility of joining two temporal semantics. Thus , based on the above definition , the
temporal semantics for C1 l><lc C2 can be characterized as:

Proposition 8.12 Let C1 = (Q1 , Nam1, T1, Qo1) and C2 = (Q2 , Na~ , T2 , Qo2) be two
constraint automata, Ji and h be temporal semantics for C1 and C2 , respectively, and let
Ji and h are compatible with respect to set G (defined in Definition 8.15). The temporal
semantics for C = C1 1><Jc C2 is the function f such that:
Vl E G:f(g) = fi(l) EB h(l), Vl E 2,(C1)\G:f(l) = fi(l) and Vl E I',(C2)\G:f(l) = h(l).

Let :3B[C] be the constraint automaton resulting from hiding of B E Nam in constraint
automaton C = (Q, Nam, T , q0), and Ji be a temporal semantics for C. To characterize the
temporal semantics of :3B[C], first note that every transition label of the form ({ B} , g) in
C is a transition with the label T in :3B[CJ. Because T-transitions do not affect information
of states (see Definition 8.12(ii)), it must be that fi(l) = I, for all l E {({B} ,g)lg E

152 8. Compositional Reduction

DC(Nam, Data)}, where I is the identity function. If this condition holds, the temporal
semantics of :lB[CJ must do the same changes to the information of states as the temporal
semantics of C does. This can be expressed by: 'v(N,g) E :E(C):fi((N\{B},:lB[g])) =
J((N , g)) andfi(r) = I . Thus:

Proposition 8.13 Let C = (Q, Nam, T, q0) be a constraint automaton, B E Nam, and
Ji be a temporal semantics for C. The temporal semantics for :lB [CJ can be defined i ff
'vl E {({B} , g)lg E DC(Nam, Data)}:Ji(l) = I. If this is the case, then, 'v(N , g) E

I:(C):j1 ((N\ { B} , :lB[g])) = J((N, g)) and Ji (r) = I .

Based on Propositions 8.12 and 8.13, we have a well-defined temporal semantics for the
join and hiding operators of constraint automata. Because of our translation of constraint
automata to labeled transition systems, we have the followings:

Proposition 8.14 For each constraint automaton and with respect to all composition oper­
ators defined in Definitions 8.2 and 8.3 extended with the join and hiding operators defined
in Chapter 3:
(i) CFFD-equivalence is LTLw-preserving and NDFD-equivalence is LTL_x-preserving.
(ii) If~ is an equivalence between constraint automata and it is congruence with respect to

I[··· JI and[], and it is LTLw-preserving, then C ~ C' implies C cg/ C'. Thus, CFFD is the
weakest compositional equivalence over the set of constraint automata preserving LTLw.
(iii) If ~ is an equivalence between constraint automata and it is congruence with respect

to I[··· JI and [], and it is LTL_x -preserving, then C ~ C' implies C n,g/ C'. Thus,
NDFD is the weakest compositional equivalence over the set of constraint automata pre­
serving LTL_ x .

8.6 Reduction Algorithms

The process of model checking contains three main steps: 1- Modeling of the actual system
using a formal system such as aLTS or aCA. 2- Expressing the requirement or property that
we want to verify by using a formula of a temporal logic. 3- Using a model checking algo­
rithm for deciding if the formula is true in the model or not. In our method for model checking
of an aLTS or aCA, before doing the third step, we need to reduce the size of the model by
using an equivalence relation . This reduction process can be done before or after defining the
property or formula that we need to verify. Thus, the reduction can be done before the second
or the third step of the model checking process. In this section we present some algorithms
for reducing the sizes of aLTSs and aCAs, while preserving NDFD and CFFD-equivalences.
The method that we present here is a modification of the algorithm introduced in I I 41 , 86].
Then, we consider the case where we reduce the model after defining a property or a set of
properties that we need to verify.

The algorithms for minimizing an aLTS A = (S, s , .6. , AP, L) (or an aCA) with respect
to CFFD and NDFD-equivalences have three main steps:

8.6. Reduction Algorithms 153

I- Converting the aLTS or aCA A into an acceptance graph AG, which relies on the
process of converting a finite automaton to its deterministic counterpart. Each node of the
graph AG contains a set of states D ~ S. For each node of the graph AG all states in D are
reachahle from an initial state by using the same finite divergence trace.

2- Labeling of the nodes of the acceptance graph (deterministic automaton) with the in­
formation about stability, divergences, stable failures and non-divergent failures (see [141]
for the detail of this part of the labeling process). We also label each node of the acceptance
graph with a set of propositions that can be true in it. To determine this set of propositions,
let n be a node of the acceptance graph AG that contains the set of states D ~ S. Let P be
the union set of all L(d) where d E D. Obviously, for every p E P, there is a finite trace in
aLTS A in the last state of which the proposition p is true. Thus, we label the node n with the
set P.

3- Minimizing the acceptance graph (labeled deterministic automaton) by using tradi­
tional algorithms for minimizing finite automata. In this step, we must partition the set of all
states (nodes). This first level partitioning is done by considering both the propositions that
hold in states and the requirements of the intended equivalence. Two states are in the same
class, if the sets of propositions that hold in them are compatible. Also, in the case of the
CFFD-equivalence, two states with the same stability, divergent traces, and stable failures
belong to the same class. In the case of the NDFD-equivalence, two states with the same
stability, divergent traces, and divergence-masked failures belong to the same class.

In practice, the main advantage of reducing models with respect to an equivalence, with­
out considering any property to be verified, is that we can run the reduction algorithm once
and use the minimized models whenever we need to model check a property. The property
must be expressible in a temporal logic that the equivalence preserves it. But suppose that
we need to model check a formula or a set of formulas whose set of atomic propositional
constituents is A C AP and IAI « IAPI (the size of A is very much smaller than the size
of AP). In cases like this, the above method is not efficient in practice, because in the first
phase of partitioning (in step 3), several states that agree on the truth values of the members
of A may be allocated in different classes based on their different truth values of the other
members of AP. This implies that the size of the model is not reduced much. Thus, in such
cases, we first define the property or the set of properties that we need to verify, and then filter
all sets of propositions assigned to the states of the model such that they contain only subsets
of A. We call the resulting model a filtered model. Then, we run the above reduction method
on the filtered model.

From the worst case complexity analysis point of view, it can be shown that all of the
above reduction algorithms are exponential in the size of the input model. This is true not
only for reductions based on CFFD and NDFD-equivalences, but also for a wide range of
equivalences and simulation relations defined in automata theory, graph theory, Petri Nets,
and process algebras [35]. Experience in all of these fields indicates that, in practice, the
worst case rarely happens (for more references to these experiences and a detailed discussion
about the complexity of failure based equivalences see [140]).

154 8. Compositional Reduction

8.7 Compositional Model Checking

In this section we present a method for compositional model checking of a component-based
system and its coordinating subsystem using the above mentioned equivalences to minimize
their formal models. A component-based system has two main parts: a set of components and
a coordinating subsystem (glue code). Using Reo specifications, one can specify or model the
coordinating subsystems in a compositional and hierarchal way. Using constraint automata,
not only the coordinating subsystem, but also all components can be modeled as constraint
automata in a compositional way. Thus, the methods of compositional reasoning not only can
be applied on the coordinating subsystem , but also on the whole component-based system.
Fortunately, our above process algebraic discussions enable us to use the equivalence based
compositional reduction method in both cases.

Verification of coordinating subsystem. In this case we need to verify the desired prop­
erties of the coordinating subsystem of a component-based system. If we consider the coordi­
nating subsystem (for example a Reo circuit or a constraint automaton) as a complete system,
the set of the components of the component-based system is its environment. Externally vis­
ible actions of this coordinating subsystem are the read (input or get) and write (output or
put) operations it uses to communicate with the environment. (In Reo these operations in­
volve only the boundary nodes of the circuite.) The rest of the actions within the coordinating
subsystem, and its internal states are not interesting, if only the correct functionality of the
coordinating subsystem is of concern. Thus, the main steps of model checking of the desired
properties of the coordinating subsystem consist of:

I- Modeling the behavior of connectors and the observable behavior of components by
augmented constraint automata. Because in this case all actions are considered as visible,
none of the constraint automata models have T-transitions.

2- Expressing the desired property by an LTL_x or LTL:.v formula.
3- According to the type of the property to verify, using an equivalence relation for re­

ducing the constraint automata models.
4- Composing the reduced constraint automata models using join and hiding operators.

Because we proved that CFFD and NDFD are congruences for all composition operators
defined in this paper, the composed model will be reduced by itself.

5- Use one of the ordinary LTL model checking algorithms on the minimized model (for
the algorithms of LTL model checking see (50]).

Note that because of the minimization, the efficiency of our method is better than ap­
plying LTL model checking algorithms directly. Moreover, according to step 4 above, any
improvement in the ordinary LTL model checking algorithms, improves the efficiency of our
method.

Example 8 .1 (Dining Philosophers) The classical dining philosophers problem can be de­
scribed as a coordination system in Reo [14] . This system can be designed as a set of pairs
of instances of two components: philosopher and chopstick. As illustrated in Figures 8.1 (a)
and (b), the interface of philosopher i has four output ports: lt;, rt;, lf; and rk which serve
to take and return the chopsticks on the left- and right-hand sides of the philosopher.

8.7. Compositional Model Checking 155

• T -~ rt• J~ •

{t,f},d1 =lAdJ =0 t t

(") "ti ~ I ::r ::r
0

0 ! 1 "CJ
rn (/1 - 0 o· "C .c I
"' ::r ul (I) lt,J),d, =0AdJ =I
f f I C

• I • If rf.
-!~
IV~ • (ll ,rt ,lf ,rf}, {lt , rt ,lf ,rf} ,

a

llt,rt ,lf ,r/1.

t 1 ~ ••• ~ J t dlf =drf = I AdJt =dr1 =0

b d

Figure 8.1: (a) Dining philosophers scenario in Reo and (b) a chopstick, (c) minimized con­
straint automaton for a chopstick and (d) a philosopher

The externally observable behavior of a philosopher component is as follows. After some
period of thinking, it decides to eat, attempts to obtain its two chopsticks by issuing requests
on its lti and rti ports. We assume that it always issues a request through its left chopstick
before requesting the one on its right. Once both of its take requests are granted, it proceeds
to eat for some time, at the end of which it then issues requests to free its left and right
chopsticks by writing tokens on its lfi and rfi ports. A chopstick component has two input
ports: ti for take and Ji for free requests. Every chopstick is modeled by a FIFO I channel
and a synchronous drain [14]. The constraint automata for the interfaces of the philosophers
and the chopsticks are shown in Figures 8.1 (c) and (d). Note that the constraint automaton
of a chopstick is obtained as a minimized product automaton of the constraint automata for
FIFO I and SyncDrain connectors.

Verification of the whole component-based system. The dining philosophers is an ex­
ample of a system in which all components can be modeled by constraint automata without
any internal action. It is a very restrictive assumption that all components can be modeled so.
We need to consider a more general case: components are transition systems that have both
internal and external actions and connectors are constraint automata all of whose actions are
visible. In such cases, we can simply model any component by a labeled transition system
and the coordinating system by a compositional constraint automaton. Labeled transition sys­
tems can be embedded in constraint automata as was shown in Lemma 8.3. The equivalence
relations CFFD and NDFD are used to reduce the sizes of all constraint automata models and

156 8. Compositional Reduction

then they are composed. Thus, the main steps of model checking of a complete component­
based system, except the first , will be the same as we described for the coordination system.
The first step is replaced with the following step and the other steps remain the same as the
model checking algorithm for coordination subsystems:

I' - Model each component by an augmented labeled transition system and translate it
to an augmented constraint automaton; and model the set of connectors directly by some
augmented constraint automata.

Example 8.2 (A Resource Allocation System) As an example of a component based sys­
tem, consider a resource allocation system with the requirement of mutual exclusion in using
a resource as illustrated in Figure 8.2(a). The system consists of n processes which sometimes
need to have access to a limited resource. The resource can be used by only one process at
a time and it must be guaranteed that all requests for the resource are eventually granted.
Also, if a process P has requested to use the resource, no other process is granted access to
the resource more than once before the request of P has been granted. We suppose that each
process has two ports: an output port rq through which · it announces its request for using
the resource and an input port gr through which the coordinator allows the process to access
the resource and enter its critical section. The constraint automaton model of each process is
shown in Figure 8.2(b). In this figure , state q0 is the initial state of the process. In state q1

the process announces its request for using the resource and waits for permission to access
it. After receiving a signal gr, the process enters its critical section modeled by the state q2 .

Once the process has finished using the resource, it turns the signal rq off and waits until the
coordinator notices this and turns the signal qr off.

The coordination scenario performed by the coordinator to manage the resource is a pool­
ing based allocation. For processes Pl to Pn sequentially, if rqi is turned on, the coordinator
turns the signal gri on and waits to observe the turning off of the signal rqi. Then, it turns
signal gri off. Figure 8.2(c) shows the constraint automaton model of the coordinator when
there are two processes in the system. In this case, the last state P4 is the same as the initial
state P0 . This model can easily be generalized for the case of n processes.

This resource allocation system is an example of a component based system in which
components (processes) are modeled by labeled transition systems, which can be embed­
ded in constraint automata. In this case we model all internal actions by T- transitions. The
coordinating subsystem is modeled directly by constraint automata without the need for
T- transitions. In the next section, we report our results in compositional minimization of
the resource allocation system using CFFD and NDFD equivalences.

Note that there are other compositional reasoning methods, such as the assumption­
guarantee method [123), in which the reasoning is done separately on the components of
the model by decomposing the desired property formula. Such techniques of compositional
reasoning can be used in conjunction with our proposed minimization. We have not consid­
ered these methods here.

8.8. Case studies

gr n rq n

Process n

157

b

Figure 8.2: (a) A resource allocation system, (b) constraint automaton model of a process,
(c) constraint automaton model of the coordinator

8.8 Case studies

We designed and implemented a tool for modeling and verification of systems modeled as
constraint automata. One of the main goals of this tool is preparing an environment for spec­
ification of software architectures using constraint automata and verification of their proper­
ties, especially non-functional and qualitative properties of software architectures. Because
of this aim the tool is called ArQuVer (Architecture Quality Verification tool). ArQuVer was
implemented using Java. It receives the descriptions of a constraint automaton in XML for­
mat and can perform all composition operators defined in this thesis on them. It contains
also components for minimizing constraint automata using (bi)simulation and CFFD equiv­
alences. We can use its component for CFFD-minimization for NDFD-minimizing as well ,
through an intermediate software component.

Example 8.3 (lores Protocol) As a case study, we considered the Inres protocol based
system [63), as a component-based system whose coordinating subsystem can be modeled
directly by a constraint automaton and its components can be modeled by labeled transition
systems that can be transformed into constraint automata. The Inres protocol implements a
reliable, connection oriented data transfer service, the Inres service, between two users. The
main architecture of the protocol is shown in Figure 8.3. The Inres service is not symmetrical :
it offers only a one way transition from an initiating process to a responding process. The

158 8. Compositional Reduction

lnres System

In I-station Res-station

Figure 8.3: lnres protocol architecture (the connectors are Reo primitive channels)

protocol itself operates on top of a medium that offers a data transfer service. A description
of the Inres protocol using the SDL language is presented in [54]. This description consists
of four main processes: Initiator and Responder which implement the service by exchanging
the protocol data units between themselves and Coder-ini and Coder-res which are used to
hide the interface to the medium.

We modeled each of these four main processes by a labeled transition system, trans­
formed into a constraint automaton, and considered the connectors between Initiator and
Coder-ini and the connectors between Responder and Coder-res as two pairs of parallel Reo
Sync channels. Also, we assumed that the low level medium of communication is a pair of
parallel Reo FIFOn channels, in which, n is a natural number constant. In the simplest case,
n = l. In an Inres system, components and connectors work and communicate in a sequen­
tial manner. First, Initiator activates the communication process, then its request is sent to
Coder-ini through the Sync channel between them, and so on. We compose the models of all
components and connectors with the join operator in the same order as the components and
connectors are activated in the protocol. We hide the names of ports that can be considered as
internal and invisible (in a more abstract view of the system). In the case study, we applied the
compositional minimization method, namely, we minimized all constraint automata models
before composing them. The minimizations were done using bisimulation, CFFD, and NDFD
equivalences.

The results of our attempt to minimize the components of the Inres system are summa­
rized in the columns A to E of Table 8.1 (more details in [115]). In Table 8.1, column A
consists of the names of the components, column B contains the number of reachable states
of the constraint automata models of the components without any minimization, column C
reports the results after minimizing column B's models by bi-simulation relation, column D
contains minimization of column B's models by CFFD, and column E contains minimization
of column B's models by by NDFD. As we expect, the order of the sizes of the models in the
columns B, C, D, and Eis decreasing (except than for the size of the model of the commu-

8.8. Case studies 159

A B C D E F G
Component CA, Not- Bisimulation CFFD NDFD LTS, Not- Bisimulation
name reduced reduced
Initiator 145 34 30 24 131 30
Coder-ini 97 22 15 13 92 10
Responder 44 27 24 19 35 14
Coder-res 112 13 10 8 IOI 10
Ini-station 3451 1506 1145 1023 3217 1424
Res-station I 129 403 332 305 947 391
Comm. 9 9 9 9 - -
Medium
Inres Sys- 164 54 36 30 135 28
tern

Table 8.1: Number of reachable states for the lnres protocol system.

nication medium that is the same in all columns). It means that NDFD reduces models more
than CFFD, and CFFD reduces more than bi-simulation relation. This fact is exactly because
the bi-simulation equivalence relation preserves a bigger set of properties than CFFD. Also,
CFFD preserves more properties than NDFD. See Proposition 8.11. For the case of the com­
munication medium we have used the minimized model in all columns.

The main importance of our work is that it is Lhe first attempt to model the Inres system
by constraint automata and minimizing them using bi-simulation, CFFD, and NDFD equiv­
alences and that (as a case study) it shows the applicability of failure based equivalences for
model checking of constraint automata models. However, to be a more realistic and compara­
ble case study, in columns F and G of Table 8.1, we summarize the results of another attempt
to minimize the Inres system as reported in [105] .

In the work reported in [105] , all components have been modeled by labeled transition
systems, the communication medium is considered as a set of peer-to-peer channels without
any buffer (not modeled) and the minimization was done using only the bi-simulation equiv­
alence relation. In Table 8.1, column F contains of the number of reachable states of the LTS
models of the components without any minimization and column G reports the results after
minimizing column F's models by bi-simulation relation, as reported in [105].

To compare the two works, first note that, we have modeled all components by con­
straint automata and minimized them using bi-simulation, CFFD, and NDFD equivalences.
However, in the work reported in [105] , the models are LTSs and only bi-simulation based
minimization is considered. In our work, the order of minimizing and composing models
of components is the same as reported in [105]. The sizes of our basic models of compo­
nents (before minimization) are slightly bigger than the sizes reported in [105] because our
models are constraint automata while in [105] simple labeled transition systems are used.
Also, our models contain more details (less abstracted) and we modeled all connectors and
channels while in [105] these are ignored. Because we don't have access to the exact models
of the components used in [I 05], we can not give an indication of how many extra states,

160 8. Compositional Reduction

No. of No Minimization CFFD Minimization NDFD Minimization
Processes
2 36 24 16
5 2430 60 40
10 1180980 120 80
20 5165606520 240 160
100 > 104V 1200 800

Table 8.2: Number of reachable states for the resource allocation system.

for instance, they would have if they modeled the system at the same level of detail as we
do. Conversely, considering connectors (channels) as stateless models (as it is considered
in [105]), is more abstract than we need to show the applicability and usefulness of our above
mentioned method of model checking of the whole component-based systems including their
coordination subsystems and components.

There is no well-established numerical relation between the sizes of models before and af­
ter minimization using one of the equivalence relations . For example, while the bi-simulation
reduction from 135 to 28 in [105) produces a model 21 % of its original size (see last row,
columns F and G in Table 8.1), our bi-simulation reduction produces a model 33% of its
original size. It is, of course, because that bi-simulation reduction is not linear. In fact, for
another example, the situation can be in a reverse order. More importantly, in our results, the
sizes of the reduced models using bi-simulation, CFFD and NDFD relations are about 33%
(column C), 22% (column D), and 18% (column E) of the sizes of the original models, re­
spectively. This shows the effectiveness of the reductions. As reported in [I 05), if one tries to
generate the stale space of the LTS model of the Inres protocol by the SOT Validator the final
LTS model will have 388408 states and over 1880000 transitions. Because our constraint au­
tomata models contain more detail than their LTS models, the constraint automaton model of
the Inres protocol will be bigger than its LTS model. Thus, our obtained minimizations using
all three equivalence relations are highly significant.

Example 8.4 (Reduction of the resource allocation system models)
As a simple case study, we considered the compositional minimization method for the

resource allocation system introduced in Example 8.2 using CFFD and NDFD equivalences.
The resu lts based on the number of processes in the system have been summarized in Ta­
ble 8.2. Note that the structure of the model of the coordinating subsystem shown in Fig­
ure 8.2(c) is completely symmetric. Adding a new process to the system adds a block of two
states with symmetric structures as the previous blocks to the automaton model of the coordi­
nating subsystem. Further, the models of all processes are isomorphic. These symmetry and
isomorphic facts give us the opportunity to construct the complete system using minimized
basic models by a symmetric and repeating algorithm. These facts also resu lt in a numerical
relation between the number of processes and the number of reachable states in the min­
imized model of the system. In Table 8.2, we see that the numbers of reachable states of
each minimized model using CFFD and NDFD equivalences are respectively 12 and 8 times
the number of processes. This is a very interesting example that motivates using other kinds

8.8. Case studies 161

of compositional verification methods, such as the symmetric techniques for model check­
ing [56], in conjunction with the reduction techniques we proposed in this chapter, or with
the automata theoretic techniques we proposed in the previous chapters.

Conclusions and Future Work

164 9. Conclusions and Future Work

In this chapter, we conclude the presentation of our work in this thesis, summarize its
results, and list topics for our future work.

9.1 Results and Conclusions

In this thesis, we presented a framework for automata theoretic model checking of coordi­
nation systems specified in Reo. As an operational modeling formalism that covers several
intended behaviors of Reo connectors, such as fairness, I/0 synchronization, and context
dependency, we introduced Biichi automata of records (BAR) and their augmented version
(ABAR). We showed that every constraint automaton (the first introduced operational seman­
tics for Reo) can be translated into an essentially equivalent BAR. However, there are some
Reo connectors whose behavior can be expressed in BAR or ABAR, but not in constraint
automata.

To specify the properties to be verified, we introduced an action based linear temporal
logic called p-LTL, interpreted over the executions of augmented Biichi automata of records.
We showed how p-LTL formulas can be translated into their equivalent ABARs. The transla­
tion can be done inductively or using an on-the-fly method.

To deal with large state spaces, we showed that ABARs can be implemented using ordered
binary decision diagrams (OBDD) as dense data structures. We described the implementation
and case studies to show the applicability of our method to large state spaces.

We also showed that the state explosion problem can be tackled by a form of composi­
tional minimization using some suitable equivalence relations. To this end, we proved that two
failure based equivalence relations, called CFFD and NDFD, are congruence relations with
respect to the join and hiding operators of constraint automata. These congruency results, to­
gether with the fact that CFFD and NDFD equivalences are minimal and preserve linear time
temporal logic properties can be used for compositional minimization of constraint automata
models in model checking. We showed the application of this method to some practical case
studies.

9.2 Future Work

To continue the research presented in this thesis, in this section we list a number of topics
that can be considered as future work. On the theoretical side, the following problems can be
considered:

• Introducing timed versions of BARs and ABARs to be able to model real-time con­
straints with Reo connectors.

• Based on the above suggestion, introducing a timed version of the temporal logic pLTL
and its model checking, both globally and on-the-fly.

9.2. Future Work 165

• Introducing probabilistic versions of BARs and ABARs to be able to model connectors
with inherently probabilistic behaviors.

• Based on the above suggestion, introducing a probabilistic version of the temporal logic
pLTL and its model checking, both globally and on-the-fly.

• Introducing action based branching time temporal logics for BAR and ABAR models.

• Based on the above suggestion, investigating the model checking of branching time
properties of connectors modeled by BAR and ABAR.

• The branching time case can also be considered for timed BAR and ABAR and their
model checking.

• The branching time case can also be considered for probabilistic BAR and ABAR and
their model checking.

• The results of this thesis can be focused in particular for some more practical fields of
software engineering such as software quality measurement, service-oriented models
of software, and several other non-functional properties.

• Some other methods to deal with the state explosion problem seem to be very suit­
able for the case of Reo nets modeled by BAR and ABAR or by constraint automata.
We suggest considering the methods of abstraction, symmetry, and assume-guarantee
based compositional reasoning.

• The method of compositional minimization introduced in thesis was based on con­
straint automata. Using this method for BAR and ABAR models seems to be more
realistic and achievable. This can be investigated in the future. To this end we need the
following theoretical results:

- Proving that the failure based equivalences CFFD and NDFD are congruences
with respect to all composition operators of BARs and ABARs.

- Proving that CFFD and NDFD preserve sets of linear temporal properties inter­
preted over BAR and ABAR models, and that they are the weakest congruences
that satisfy the preservation of these properties.

- Introducing minimization algorithms for BAR and ABAR models using CFFD
and NDFD equivalences.

We intend to enhance our tool , especially by incorporating the global and on-the-fly trans­
lations of pLTL formulas into augmented Biichi automata of records that we introduced in
this thesis. Moreover, we plan to integrate our BDD-based model checker and our tool for
compositional minimization of constraint automata in our tool set. Finally, we will integrate
our tool set within the Extensible Coordination Tools [2] programming environment for Reo.

Bibliography

[I] CADP Too/set User Manual, Available through http://www. inrialpes. fr/
vasy / cadp/man.

[2] Extensible Coordination Tools Homepage, Available through http://www.
eclipse. org.

[3] JINC, A EDD library, Available through http://www. jossowski. de

[4] NuSMV Model Checker User Manual, Available through http:/ /nusmv. irst.
itc.it/NuSMV.

[5] Reo Homepage, Available through http:/ /reo. project. cwi. nl/

[6] Spin Model Checker Manual, Available through http:/ /net lib .bell-labs.
com/ net lib/ Spin.

[7) Vereofy Model Checker User Manual, Available through http://www. vereofy.
de/.

[8] Ahmadi D. Z., Izadi M., Modeling Real-Time Coordination Systems Using Timed Buchi
Automata, Proc. of CSI Int. Symp. on Computer Science and Software Engineering
(CSSE201 I), IEEE Xplore Digital Library, pp. 17-24, (2011).

[9] Ahuja S., Carriero N., Gelemter D., Linda and Friends, IEEE Computer, 19 (8), pp.
26-34, (1986).

[10] de Alfaro L., Henzinger T.A., lnte,face Automata, Proc. of the 9th Annual ACM Symp.
on Foundations of Software Engineering (FSE 2001), pp. 109-120, (2001).

[11] Alpern B., Schneider F. B., Defining liveness, Information Processing Letters 21,
(1985), pp. 181 185.

[12) Arbab F., What Do You Mean, Coordination ?, Bulletin of the Dutch Association for
Theoretical Computer Science, (1998).

[13] Arbab F., Reo: A Channel-based Coordination Model for Component Composition,
Math. Struc. in Computer Science, 14(3), (2004), 329-366.

[14] Arbab F., Abstract Behaiviour Types: A foundation model for components and their
composition, science of Computer Programming, 55, (2005), 3-52.

167

168 BIBLIOGRAPHY

[15) Arbab F., Composition of Interacting Computations, in Interactive Computation: The
New Paradigm, D. Goldin, S. Smolka, and P. Wegner (Eds.), Springer-Verlag, (2006).

[16) Arbab F., A Behavioral Model for Composition of Software Components, L'Objet,
Lavoisier, Vol. 12, No. I, pp. 33-76, (2006).

[17) Arbab F., Baier C., de Boer F., Rutten J ., Models and Temporal Logics of Timed Com­
ponent Connectors, Proceedings of SEFM 2004, pp. 198-207, IEEE CS Press, (2004).

[18) Arbab F., Baier C., de Boer F., Rutten J., Models and Temporal Logical Spec(fications
for Timed Component Connectors, Software and System Modeling, 6(1), pp. 59-82,
Springer, (2007).

[19) Arbab F., Baier C., de Boer F., Rutten J ., Sirjani M ., Synthesis of Reo circuites for im­
plementation of component-connector automata specifications, Proceedings of CORDI­
NATION 2005, LNCS, 3454, Springer-Verlag, (2005), 236-251.

[20) Arbab F., de Boer F., Bonsangue M., Guillen Scholten J., A Channel-Based Coordina­
tion Model for Components, CWI Report SEN-RO 127, (2001),

[21] Arbab F., Bruni R., Clarke D. , Lanese I, Montanari U., Tiles for Reo, In Recent Trends
in Algebraic Development Techniques, volume 5486 of LNCS, pages 3755. Springer,
2009.

[22) Arbab F., Chothia T., van der Mei R., Meng S., Moon Y. J., Verhoef C., From Coor­
dination to Stochastic Models of QoS, In John Field and Vasco Vasconcelos, editors,
Coordination Models and Languages, LNCS 5521, pp. 268-287. Springer, (2009).

[23) Arbab F., Chothia T., Meng S., and Moon Y. J., Component Connectors with QoS
Guarantees. In Coordination Languages and Models: Proc. Coordination 2007, Lec­
ture Notes in Computer Science, Springer-Verlag, 2007.

[24) Arbab F., Herman I., Spilling P., An overview of Manifold and its implementation, in
Concurrency - Practice and Experience 5(1), pp. 23-70, (1993).

[25) Arbab F., Mavadat F., Coordination Through Channel Composition, Proceedings of Co­
ordination Languages and Models 2002, LNCS, 2315, Springer-Verlag, (2002).

[26) Arbab F., Meng S., Moon Y. J., Kwiatkowska M., Qu H., Reo2MC: a Tool Chain for
Performance Analysis of Coordination Models, In Proceedings of ESEC/FSE 2009,
pp. 287-288, (2009).

[27) Arbab F., Rutten J.J.M.M., A Coinductive Calculus of Componnent Connectors, Proc.
of the 16th International Workshop on Algebraic Development Techniques (WADT
2002), M. Wirsing, D. Pattinson and R. Hennicker (eds.), LNCS, 2755, Springer-Verlag,
(2003), 34-55.

[28) Baier C., Probabilistic Models for Reo Connector Circuits, Journal of Universal Com­
puter Science, 11(10), pp. I 7 I 8-1748, (2005).

BIBLIOGRAPHY 169

[29] Baier C., Katon J.P., Principles of Model Checking, The MIT Press, (2008).

[30] Baier C., Sirjani M., Arbab F., Rutten J., Modelling Component connectors in Reo by
Constraint Automata, Science of Computer Programming, 61, pp. 75-113, (2006).

[31] Baier, C., and Wolf, V. Stochastic reasoning about channel-based component connec­
tors. In Coordination Languages and Models: Proc. Coordination 2006, Lecture Notes
in Computer Science, Springer-Verlag, 2006.

[32] Barbosa M., Barbosa L., A perspective on service orchestration, Science of Computer
Programming, 74(9), pp. 671687, Elsevier, 2009.

[33] Bliudze, S. and Sifakis, J. The Algebra of Connectors - Structuring Interaction in BIP.
IEEE Transactions on Computers, 57: 10, IEEE Computer Society (2008), 13 l 5- I 330.

[34] Bollig B., Wegener I., Improving the variable ordering of OBDDs is NPcomplete, IEEE
Transactions on Computers, 45(9):9931002, (1996).

[35] Bolognesi T., Caneve M., Equivalence Verification: Theory, Algorithms and a Tool, in
The Formal Description Technique LOTOS, North-Holand, (1989), 303-326.

[36] Bonsangue M., Clarke D., Silva A., A model of context-dependent component connec­
tors, To appear in Science of Computer Programming, special issue dedicated to Coor­
dination2009, Elsevier, (2011).

[37] Bonsangue, M ., Clarke D., Silva A., Automata for context-dependent connectors. In
Field J., Vasconcelos V.T. (eds.) LNCS, vol. 5521, pp. 184-203. Springer (2009).

[38] Bonsangue M.M., Izadi M., Automata Based Model Checking for Reo Connectors, In
proceedings ofFSEN 2009, Lecture Notes in Computer science (LNCS) 59.61 Springer
2010. · - .

[39] Bruni R., Fiadeiro J., Lanese I., Lopez A. and Montanari . U., New Insights on Architec­
tural Connectors , in: Levy J.-J., Mayr E.W., and Mitchell J.C., Eds., "Proceedings of
IFIP TCS 2004", 3rd IFIP International Conference on Theoretical Computer Science,
Kluwer Academics, (2004), 367-379.

[40] Bryant R., Graph-based algorithms for boolean function manipulation, in IEEE Trans­
actions on Computers, 35(8), pp. 677691, (1986).

[41] Carriero N., Gelernter D., Linda in Context, Communications of the ACM, 32 (4), pp.
444-458, (1989).

[42] Carriero N., Gelemter D., Coordination Languages and their Significance, Communi­
cations of the ACM, 35 (2), pp. 97-107, (1992).

(43] Cimatti A., Clarke E.M., Giunchiglia E., Giunchiglia F., Pistore M., Roveri M., Sebas­
tiani R., Tacchella A., NuSMV 2: An OpenSource Tool for Symbolic Model Checking,
Proceedings of the 14th CAY, Springer's LNCS 2404, (2002), 359-364.

170 BIBLIOGRAPHY

[44) Clarke D., Reasoning about Connectors Reconfoguration I: Equivalence of Construc­
tions, CWI Technical Report SEN-R0506, (2004).

[45) Clarke D., Reasoning about Connectors Reconfoguration II: Basic Reconfiguration
Logic, Proceedings of FSEN05, Tehran, Electronic Notes in Theoretical Computer Sci­
ence (ENTCS), Elsevier (2005).

[46) Clarke D., Coordination: Reo, nets, and logic. In F.S. de Boer, M.M. Bonsangue, S.
Graf, and W.-P. de Roever (eds) Sixth International Symposium on Formal Methods
on Components and Objects (FMCO 2008) - State-of-the-Art Survey, volume 5382 of
Lecture Notes in Computer Science, pages 226-256, Springer, 2008.

[47) Clarke D., Costa D., and Arbab F., Connector colouring I: synchronisation and context
dependency, Science of Computer Programming, 66(3), (2007), 205-225.

[48) Clarke E., Emerson A., Sistla A., Automatic verification of finite-state concurrent sys­
tems using temporal logic specifications, ACM Transactions on Programming Lan­
guages and Systems 8(2), pp. 244-263, (1986).

[49) Clarke E., Grumberg 0., Long D., Model Checking and Abstraction, ACM Transactions
on Programming Languages and Systems, 16(5), (1994), 1512-1542.

[50) Clarke E., Grumberg 0., Peled D., "Model Checking", The MIT Press, 1999.

[5 I] Clarke E., Long D., McMillan K., Compositional Model Checking, Proceeding of the
4th IEEE Symposium on Logic in Computer Science, (1989), 353-362.

[52) Costa D., Formal Models For Component Connectors, Ph.D. thesis, VUA (2010).

[53) Cronkovic I. , Hnich B., Jonsson T., Kiziltan Z., Specification, Implementation, and De­
ployment of Components, Communications of the ACM, Vol.45, No.IO, (2002), 35-40.

[54] Ellesberger J., Hogerfe D., Sarma A., SDL Formal Object Oriented Language for Com­
municating systems, Prentice Hall, (1997).

[55) Emerson E. A., Temporal and modal logic, In J. van Leeuwen, editor, Handbook of The­
oretical Computer Science, vol B: Formal Models and Semantics, Elsevier Publishers
B.V., (1990).

[56) Emerson A., Sistla A., Symmetry and Model Checking, Proceedings of CAV'93, (1993),
463-478.

[57) Emerson EA. and Lei CL, Efficient model checking in fragments of the propositional
mu-calculus, IEEE Computer Society Press, 1986.

[58) Gaslin, P., and Oddoux D., Fast LTL to Biichi Automata Translation, Proceedings of
the 13th International Conference on Computer Aided Verification CAYO! , LNCS, vol.
2102, pp. 53-65, Springer-Verlag (200 I).

BIBLIOGRAPHY 171

[59) Gerth R., Peled D., Vardi M., Wolper P., Simple On-the-fly Automatic Verification of
Linear Temporal Logic, Proc. IFIP-WG6.1 Symp. Protocol Specification, Testing, and
Verification (PSTV95), pp. 3-18, Warsaw, Poland, Chapman & Hall , June 1995.

[60] Graf S., Steffen B., Compositional Minimization of Finite-State Systems, Proceedings
ofCAV'90, Springer-Verlag, (1991), 186-196.

[61) Groote J. F., Mathijssen A H. J., Reniers M. A., Usenko Y. S., and van Weerdenburg
M. J., The formal specification language mCRL2, In Methods for Modelling Software
Systems, IBFI, Schloss Dagstuhl, (2007).

[62] Hoare C.A.R., "Communicating Sequential Processes", Prentice-hall , (1985).

[63) Hogrefe D., OSI Jonna! specification case study: the lnres protocol and service, Tech­
nical Report IAM-91-012, Inst. fur Inforrnatik, Universitut Bern, (1991).

[64) Hojati R. , Touati H., Kurshan R., and Brayton R., Efficient w-regular language contain­
ment, Computer Aided Verification, pp. 396-409, 1993, Springer.

[65] Holzmann G.J., The Model Checker SPIN, IEfE Transactions on software engineering,
23(5), (1997), 279-295 .

[66) Hopcroft J.E., Motwani R .. Ullman J.D., Introduction to Automata Theory, languages,
and Computation , 3rd edition, Addison-Wesley (2006).

[67) Hromkovic J., "Algorithmics for hard problems", Springer, (2001).

[68) Huth M., Ryan M., Logic in Computer Science: Modelling and Reasoning about Sys­
tems, second edition, Cambridge University Press, (2004).

[69) Izadi M., An Integrated Formal Method for Specification and Verification of
Component-Based Syatems, PhD Thesis of Computer Software Engineering, Dept. of
Computer Engineering, Sharif University of Technology, Tehran, Iran, (2008).

[70) Izadi M., Typed Temporal logic: A General Framework for Verification of Non­
functional and Security Requirements of Component Based Systems, Proceedings of
seventh school in MOdeling and VErification of Parallel Programs (MOVEP06), Bor­
deaux, France, (2006), 305-311.

[71) Izadi M., Bonsangue M.M., Recasting constraint automata into Biichi automata, in
Proc. ICTAC 2008, Lecture Notes in Computer Science 5160, Springer-Verlag, pp. 156-
170, (2008).

[72) Izadi M., Bonsangue M.M., Clarke D. , Biichi automata for modeling component con­
nectors, in Journal of Software and System Modelling, 10(2), pp.183-200, Springer­
Verlag, (20 I I).

[73) Izadi M., Bonsangue M.M., Clarke D., Modeling Component Connectors: Synchronisa­
tion and Context-Dependency, in Proc. 6th IEEE International Conference on Software
Engineering and Formal Methods (SEFM 2008), pp. 303-312, (2008).

172 BIBLIOGRAPHY

[74] Izadi M., Movaghar A., Failure-based equivalence of constraint automata, Interna­
tional Journal of Compututer Mathematics, 87(11), pp. 2426-2443, (2010).

[75] Izadi M., Movaghar A., Compositional Failure-based Equivalence of Constraint Au­
tomata, Electr. Notes in Theor. Comput. Sci., 250(1), pp. 105-122, Elsevier (2009).

[76] Izadi M., Movaghar A., Compositional Model checking of Component Based Software
Using Compositional Reductions, International Journal of Software Engineering and
Knowledge Engineering (IJSEKE) 18(5), WorldScientific Pub. Co., (August 2008).

[77] Izadi M., Movaghar A., Arbab F., Model Checking of Component Connectors, proc. of
COMPSAC2007, pp.673-675, IEEE Computer Society Press, (2007).

[78] Izadi M., Movaghar A., Compositional failure-based semantic equivalences for Reo
specifications, proc. SAVCBS2007, pp.99-100, (2007).

[79] Izadi M., Movaghar A., An Equivalence Based Method for Compositional Verification
of the Linear Temporal Logic of Constraint Automata, Proceedings of FSEN05, Elec­
tronic Notes in Theoretical Computer Science (ENTCS), 159, pp.171-186, Elsevier
(2006).

[80] Izadi M., Movaghar A., An Efficient Model Checking Algorithm for a Fragment ofµ­
Calculus, CSI Journal of Computer Science and Engineering (JCSE), Vol. 3, No. 3(a),
pp.43-53, Fall (2005).

[81] Izadi M., Movaghar A., An Efficient Model Checking Algorithm for a Fragment ofµ­
Calculus, Proceedings of the Seventeenth International Conference on Software Engi­
neering and Knowledge Engineering (SEKE2005), Taiwan, July 14 to 16, (2005).

[82] Izadi M., Movaghar A., A Formal System for Compositional and Hierarchal Modeling
and Verification of Component Based Computing Systems, Proceedings of the Inter­
national Symposium in Telecommunication 2005 (IST2005), Iran Telecommunication
Research Center (ITRC), Shiraz, Iran, (2005).

[83] Jongmans S. S. T. Q., Krause c., Arbab A., Encoding Context-Sensitivity in Reo into
Non-Context-Sensitive Semantic Models, In Proceedings of COORDINATION2011,
pp. 31-48, (2011).

[84] Jongmans S. S. T. Q., Arbab A., Semantic Models of Connectors: A Study on Equiva­
lence, In Proceedings of the 4th International Workshop on Interaction and Concurrency
Experience (ICE 2011), satellilte event of DisCoTec (2011).

[85] Kaplan D.M., Regular expressions and the equivalence of programs, Journal of Com­
piling System Science, 3, (1969) 361 -386.

[86] Kaivola R., Valmari, A., The Weakest Semantic Equivalence Preserving Nexttime-less
linear Temporal logic, Proceedings of CONCUR'92, LNCS, 630, Springer-Verlag,
(1992), 207-221.

BIBLIOGRAPHY 173

[87] Kanters 0., Verhoef C. , Schut M ., QoS analysis by simulation in Reo, Vrije Universiteit
Amsterdam, The Netherlands (20 I 0).

[88] Kemper S., SAT-based Verification for Timed Component Connectors, Electr. Notes
Theor. Comput. Sci. , 255, pp. 103-118, (2009).

[89] Kemper S., Compositional construction of real-time dataflow networks, In Dave Clarke
and Gui A. Agha editors, Proceedings of COORDINATION 2010, LNCS, 6116, pp. 92-
106. Springer-Verlag, (2010).

[90] Koehler C., Clarke D. , Decomposing port automata, In SAC'09 Proc., 2009 ACM Sym­
posium on Applied Computing, pp. 13691373, New York, USA, (2009).

[91] Kokash N., Krause C., de Vink E.P., Reo + mCRL2: A Frameworkfor Model-checking
Dataflow in Service Compositions, Formal Aspects of Computing 2011, Springer­
Verlag, will appear.

[92] Kokash, N., Krause, C., de Vink, E.P., Time and Data Aware Analysis of Graphical
Service Models in Reo, IEEE International Conference on Software Engineering and
Formal Methods (SEFM' 10), IEEE Computer Society, pp. 125-134, (20 I 0).

[93] Kokash N. , Krause C., de Vink E.P., Data-Aware Design and Verification of Service
Compositions with Reo and mCRL2, Proceedings of the ACM Symposium on Ap­
plied Computing, Technical track on Service Oriented Architectures and Programming,
March 2010, Sierre, Switzerland, pp. 2406-2413, (2010).

[94] Kokash N. , Krause C. , de Vink E.P. , Verification of Context-Dependent Channel-Based
Service Models, International Symposium on Formal Methods for Components and Ob­
jects (FMCO'09), LNCS 6286, Springer, pp. 21-40, (2009).

[95] Krause C. , Reconfigurable Component Connectors, PhD Thesis, Leiden University,
(201 I).

[96] Krause C., Distributed port automata, In 10th International Workshop on Graph Trans­
formation and Visual Modeling Techniques (GT-VMT' 11), Electronic Communications
of the EASST (to appear), (2011).

[97] Kwiatkowska, M. Z., Survey of fairness notions, Information and Software Technology,
31, (1989), pp. 371-386.

[98] Kluppelholz S., Baier C. , Symbolic Model Checking for Channel-based Component
Connectors, Science of Computer Programming, 74(9), pp. 688-70 I, Elsevier (2009).

[99] Kluppelholz S. , Baier C. , Symbolic Model Checking for Channel-based Component
Connectors , Proceedings of FOCLASA2006, Elsevier's ENTCS, 175(2), pp. 19-37, El­
sevier, (2007).

[JOO] Kozen D., Automata on guarded strings and applications, Matematica Contem­
poranea, 24 (2003), 117-139.

174 BIBLIOGRAPHY

[101) Kupferman 0., Vardi M., Verification of Fair Transition Systems, Proceedings of the
Eighth International Conference on Computer Aided Verification CAV, (1996).

[I 02) Kurshan R. P. , "Computer-aided Verifcation of Coordinating Processes: The
Automata-Theoretic Approach", Princeton University Press, (1994).

[103) Lamport L., What Good is Temporal Logic?, Information Processing, 83, Elsevier,
(1983), 657-668.

[104] Loiseaux C., Graf S., Sifakis J., Bouajjani A., and Bensalem S., Property preserving
abstractions for the verifcation of concurrent systems, Formal Methods in System De­
sign, 6(1), pp.11-44, (1995).

[105) Luukkainen M., Ahtiainen A., Compositional Verification of SDL Descriptions , Pro­
ceedings of the I st Workshop of the SDL Forum Society on SDL and MSC (SAM'98),
(1998).

[106) Lynch N., "Distributed Algorithms", Morgan Kaufman Publishers, (1996).

[I 07) Madhusudan, P. On the fly model checking for linear time temporal logic, M.Sc. Thesis
(1996), Anna University, Madras, India.

[l 08) Makarem M.A., "Formal Specification and Verification of Software Architecture Prop­
erties", M.Sc. degree Dissertation, Department of Computer Engineering, Sharif Uni­
versity of Technology, Tehran, Iran, 2006.

[109) Makarem M.A., Mirian S.H., "Formal Modeling and Verification of Software Ar­
chitecture Quality Attributes", Proceedings of CSICC 2006, Institute for Theoretical
Phisycs and Matematics (1PM), Tehran, pp. 455-466, (2006).

[110) Manna Z., Pnueli A., "The Temporal Logic of Reactive and Concurrent Systems: Spec­
ification", Springer-Verlag, (1991).

[111] McMillan K. L., "Symbolic Model Checking An Approach to the State Explosion
Problem", Kluwer Academic, (1993).

[112) Milner R., Communication and Concurrency, Prentice-Hall, (1989).

[113) Moon Y. j., Stochastic Models for Quality of Service of Component Connectors, PhD
thesis, Leiden University, (2011).

[114] Moon Y.J ., Silva A., Krause C., Arbab F., A Compositional Semantics for Stochas­
tic Rea Connectors, In Proc. International Workshop on the Foundations of Coordina­
tion Languages and Software Architectures (FOCLASA 2010), EPTCS 30, pp. 93107,
(2010).

[115] Movaghar A., Izadi M., Compositional Verification of Temporal Logic Specifications,
Proceedings of Research Reports of Sharif University of Technology, (2006), 203-224.

[116] Mousavi M.R., Sirjani M., and Arbab F., Formal sematics and analysis of component
connectors in Reo, in Proc. of FOCLASA 2005, Elsevier's ENTCS 154, (2005), 83-99.

BIBLIOGRAPHY 175

[117) Muller 0., "A Verification Environment for I/0 Automata Based on Formalized
MetaTheory ," PhD thesis, Institut fur Informatik, Technische Universitut Munchen,
(1998).

[118] NavidPour S., Izadi M., Linear Temporal Logic of Constraint Automata, Communi­
cations in Computer and Information Science, 6(2), pp. 972-975, Springer (2009).

[I 19) NavidPour S., Izadi M., Movaghar A., Live and Fair Constraint Automata and Their
Linear Temporal Logic of Steps, proc. of COMPSAC2008, pp.211-218, (2008) .

[120) Papadopoulos G. A., Arbab F., Coordination Models and Languages, Advances in
Computers 46, Academic Press, 1998.

[121] Peled D., Verification for Robust Specification, Conference on Theorm Proving in
Higher Order Logic, Springer-Verlag, (1997), 231-241 .

[122) PeykAsa Company, Overall Architecture of High Troughput Short Massage Service
Center, Technical Report PA-HTSMSC 830510-r3, PeykAsa Massageware, Tehran,
Iran (2005).

[123) Pnueli A., In Transition from Global to Modular Temporal Reasoning about Programs,
"Logics and Models of Concurrent Systems", NATO ASI series, F13, Springer-Verlag,
(1985), 123-146.

[124) Pradella M., San Pietro P, Spoletini P, and Morzenti A., Practical model checking of
LTL with past,ATVA03: I st Workshop on Automated Technology for Verification and
Analysis, (2003).

[125) Proena J., Deployment of Distributed Component Based Systems, PhD thesis, Leiden
University, The Netherlands, (2011).

[126) Ravi K., Bloem R., and Somenzi F., A Comparative Study of Symbolic Algorithms
for the Computation of Fair Cycles, Formal Methods in Computer-Aided Design, pp.
162-179, Springer, (2000).

[127) Remy D., Efficient representation of extensible records, Proc. ACM SIGPLAN Work­
shop on ML and its applications, (1994), 12-16.

[128) de Roever W. P., Langmaack h., Pnueli A., Compositionality: The Significant Dif­
ference, International Symposium, COMPOS'97, Bad Malente, Germany, September
1997, Revised Lectures, Lecture Notes in Computer Science, 1536, Springer-Verlag,
(1998).

[129) Romijn J., Vaandrager F. , A note on fairness in IO automata, Information Processing
Letters, 59(5), (1996), pp. 245-250.

[130) Safra S., On the complexity of w-automata, Lectures, Proceedings of 29th IEEE FOCS,
(1988), 319-327.

[131] Schneider k. , Verification of Recative Systems, Springer, (2004).

176 BIBLIOGRAPHY

[132] Schnoebelen P., The Complexity of Temporal Logic Model Checking, Advances in
Modal Logic 4, World Scientific Publishing Co. , (2002), 1-44.

[133] Scholten J.G., Arbab F. , de Boer F., Bonsangue, A Channel-based Coordination Model
for Components, Electr. Notes Theor. Comput. Sci., 68(3), (2003).

[134] Sistla A.P., Clarke E.M., The Complexity of Propositional Linear Temporal Logic,
Journal of the ACM 32, (1985), 733-749.

[135] Szyperski C., "Component Software: Beyond Object-Oriented Programming", first
edition, Addison-Wesley, (1998).

[136] Szyperski C., Gruntz D., and Murer S. Component software: beyond object-oriented
programming (second edition), Addison-Wesley, 2002.

[137] Tarjan R., Depth first search and linear graph algorithms, SIAM Journal of Computing
I, pp. 146160, (1972).

[138] Thomas W., Automata on Infinite Objects, J. van Leeuwen (editor), "Handbook of
Theoretical Computer Science", vol. B, Elsevier, (1990), 133-19 I.

[139] Valmari A., The State Explosion Problem, Lectures on Petri Nets I: Basic Models,
LNCS 1491, Sprnger-Verlag, (1998), 429-529.

[140] Valmari A., Failur-based Equivalences are Faster than Many Believe, Proc. Structures
in Concurrency Theory, May I 995, Springer-Verlag (1995), 326-340.

[141] Valmari A., Tienari M., An Improved Failure Equivalence for Finite State Systems with
a Reduction Algorithm, "Protocol Specification, Testing and Verification", XI, (1991),
3-18.

[142] Valmari A., Tienari M., Compositional Failure Based Semantic Models for Basic LO­
TOS, Formal Aspects of Computing 7, (1995), 440-468.

[143] van Glabbeek R.J., The Linear Time - Branching Time Spectrum I: The Semantics
of Concrete, Sequential Processes, In J. Bergstra, A. Ponse and S. Smolka (editors),
Handbook of Process Algebra, chapter 1, Elsevier Science, (200 I), 3-99.

[144] van Glabbeek R.J. , The Linear Time - Branching Time Spectrum II: The semantics of
sequential systems with silent moves, LNCS 715, Springer-Verlag, (1993), 66-81.

[145] Vardi M., An Automata-Theoretic Approach to Linear Temporal Logic, Lecture Notes
in Computer Science, 1043, Springer-Verlag (1996), 238-266.

[146] Vardi M., Automata-Theoretic Model Checking Revisited, Proceedings of 8th Con­
ferem:e on Verification, Model Checking, and Abstract Interpretation, Lecture Notes in
Computer Science, 4349, Springer-Verlag (2007), 137-150.

[147] Vardi M., Branching vs. Linear Time: Final Showdown, in proc. ofTACAS2001, pp. 1-
22, (2001).

BIBLIOGRAPHY 177

[148] Vardi M., Linear vs. Branching Time: A Complexity Theoretic Perspective, Electr.
Notes Theor. Comput. Sci. 68(4), (2002).

[149] Vardi M., Wolper, P. An Automata-Theoretic Approach to Automatic Program Ver(fi ­
cation, in Proc. I st. symposium on Logic in Computer Science, (1986), 322-331.

[150] Verhoef C., Krause C., Kanters 0., van der Mei R., Simulation-Based Performance
Analysis of Channel-Based Coordination Models, In Wolfgang de Meuler and Gruia­
Catalin Roman, editors, Coordination Models and Languages, LNCS 6721, pp. 187-
201, Springer, (2011).

[151] Virtanen H., Hansen H., ValmariA., Nieminen J., Erkkil T., Tampere Verification Tool,
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 2988,
Spmger-Verlag, (2004), 153-157.

[I 52] Wolper P., Temporal Logic Can be More Expressive, Information and Control , 56,
(1983), 72-99.

Abstract

In this thesis, we present a framework for automata theoretic model checking of coordina­
tion systems specified in Reo. Reo is a coordination language that is based on a calculus of
channel composition. Using Reo specifications, complex connectors can be built composi­
tionally, organized as a network of channels to interconnect and orchestrate or choreograph
the interactions among a set of concurrent components and/or distributed services.

We introduce Bi.ichi automata of records (BAR) and their augmented version (ABAR)
as an operational modeling formalism that covers several intended forms of behavior of Reo
connectors, such as fairness, I/0 synchronization, and context dependency. To specify the
properties to be verified, we introduce an action based linear temporal logic, called p-LTL,
interpreted over the executions of augmented Bi.ichi automata of records, and show how the
formulas can be translated into ABARs. This translation can be done either inductively, or
by using an on-the-fly method. To deal with the large stale spaces, we show that ABARs can
be implemented using ordered binary decision diagrams (OBDD). For this purpose, we also
introduce the necessary modifications over the basic model checking algorithm that can be
applied directly over OBDD structures. Our implementation and a number of case studies
that we carried out show the applicability of our method over large state spaces.

We also show that the state explosion problem can be tackled by compositional minimiza­
tion methods using some suitable equivalence relations. In fact, we show two equivalences
that are congruences with respect to the connector composition operators and such that they
both preserves linear time temporal logic properties. Again, we demonstrate our method by
means of few practical case studies.

179

Samenvatting (dutch)

In dit proefschrift presenteren we een framewerk voor het automaat-theoretisch model checken
van cordinatiesystemen gespecificeerd in Reo. Reo is een cordinatietaal gebaseerd op een
calculus van kanaalcompositie. Met behulp van Reo specificaties kunnen complexe connec­
toren compositioneel gebouwd worden, georganiseerd als een netwerk van kanalen, om een
verzameling van concurrente componenten en/of gedistribueerde diensten te verbinden en
orkestreren, of hun interactie te choreo-graferen.

We introduceren Biichi automaten van records (BAR) en hun uitgebreide versie (ABAR)
als een operationeel modelleringsformalisme dat verschillende gedragsvormen van Reo con­
nectoren beslaat, zoals fairness, I/O-synchronisatie, en context-afhankelijkheid. Om de te
verifiren eigenschappen te specificeren introduceren we een op actie gebaseerde lineaire tem­
porele logica, genaamd p-LTL, genterpreteerd over de executies van uitgebreide Bchi auto­
maten van records, en laten zien hoe de formules vertaald kunnen worden naar ABARs. Deze
vertaling kan inductief worden uitgevoerd, of met een on-the-fly methode. Om te kunnen
omgaan met een grote toestandsruimte, laten we zien dat ABARs gemplementeerd kunnen
worden met geordende binaire beslissingsdiagrammen (OBBDs). Hiervoor introduceren we
ook de nodige aanpassingen op het basis model checking algoritme dat direct op OBDD
structuren toegepast kan worden . Onze implementatie, en een bepaald aantal case-studies die
we hebben uitgevoerd, laten zien dat onze methode toepasbaar is op systemen met een grote
aantal toestanden.

We laten ook zien dat het toestand explosie probleem aangepakt kan worden met com­
positionele minimalisatiemethoden, met behulp van geschikte equivalentierelaties. Hiervoor
laten we zien dat twee equivalentierelaties die congruenties zijn met betrekking tot connec­
tor compositie operatoren en zodanig dat ze beiden behouden lineaire tijd temporele logica
eigenschappen. Nogmaals, we hebben deze methode gedemonstreerd aan de hand van enkele
praktische case studies.

181

Curriculum Vitae

Mohammad Izadi was born in Najafabad, Iran, on December 23, 1972. He finished his high
school education in his hometown with two distinguished diplomas, one in mathematics and
the other in humanities. This is the beginning of his simuitaneous educations and academic
jobs in both humanities (in particulars, philosophy) and natural sciences (in particular, com­
puter science).

He moved to Tehran in 1990, where he started his four years undergraduate studies in
computer hardware engineering at Sharif University of Technology. In 1995, he was accepted
at Sharif University of Technology for Master's study in philosophy of science. He finished
his Master's in 1997 with a distinguished dissertation that was nominated as the best disserta­
tion of the university in basic sciences for a competition in the Iranian Ministry of science. In
1998, he was employed as a research assistant in Iranian Academy of Philosophy and later as
a faculty member in 2000. From September 2000 to December 2008 he received his second
Master's degree and a PhD degree in computer software engineering from Sharif University
of Technology. From December 2008 to September 2011, Mohammad was an assistant pro­
fessor at the Research Institute for Humanities and Cultural Studies (IHCS, a new name for
the above mentioned academy) in Tehran and also an adjunct assistant professor of computer
engineering at Sharif University of Technology. Since September 2011, he is a tenure faculty
member of the department of computer engineering at Sharif University of Technology and
adjunct assistant professor of philosophy at IHCS.

From January 2008 to December 2011, he has been a PhD candidate at the Leiden Institute
of Advanced Computer Science (LIACS) of Leiden University, in the Netherlands.

183

Titles in the IPA Dissertation Series since 2005

E. Abraham. An Assertional Proof System
for Multithreaded Java -Theory and Tool
Support- . Faculty of Mathematics and Nat­
ural Sciences, UL. 2005-01

R. Ruimerman. Modeling and Remodeling
in Bone Tissue. Faculty of Biomedical En­
gineering, TU/e. 2005-02

C.N. Chong. Experiments in Rights Con­
trol - Expression and Enforcement. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty of
Mathematics and Computing Sciences,
RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2005-05

M.T. Ionita. Scenario-Based System Archi­
tecting - A Systematic Approach to Develop­
ing Future-Proof System Architectures. Fac­
ulty of Mathematics and Computing Sci­
ences, TU/e. 2005-06

G. Lenzini. Integration of Analysis Tech­
niques in Security and Fault-Tolerance.
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 2005-07

I. Kurtev. Adaptability of Model Trans­
formations. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science,
UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Network Re­
liability. Faculty of Science, UU. 2005-09

0. Tveretina. Decision Procedures for
Equality Logic with Uninterpreted Func­
tions. Faculty of Mathematics and Com­
puter Science, TU/e. 2005-10

A.M.L. Liekens. Evolution of Finite Pop­
ulations in Dynamic Environments. Faculty
of Biomedical Engineering, TU/e. 2005-11

J. Eggermont. Data Mining using Genetic
Programming: Classification and Symbolic
Regression. Faculty of Mathematics and
Natural Sciences, UL. 2005-12

B.J. Heeren. Top Quality Type Error Mes­
sages. Faculty of Science, UU. 2005-13

G.F. Frehse. Compositional Verification of
Hybrid Systems using Simulation Relations.
Faculty of Science, Mathematics and Com­
puter Science, RU. 2005-14

M.R. Mousavi. Structuring Structural Op­
erational Semantics. Faculty of Mathemat­
ics and Computer Science, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis of Prob­
abilistic Systems. Faculty of Mathematics
and Computer Science, TU/e. 2005-16

T. Gelsema. Effective Models for the Struc­
ture of pi-Calculus Processes with Replica­
tion. Faculty of Mathematics and Natural
Sciences, UL. 2005-17

P. Zoeteweij . Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transformation of
Source Code by Parsing and Rewriting. Fac­
ulty of Natural Sciences, Mathematics, and
Computer Science, UvA. 2005-19

M.Valero Espada. Modal Abstraction and
Replication of Processes with Data . Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2005-20

A. Dijkstra. Stepping through Haskell . Fac­
ulty of Science, UU. 2005-21

Y. W. Law. Key management and link­
layer security of wireless sensor networks:

energy-efficient attack and defense. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2005-22

E. Dolstra. The Purely Functional Soft­
ware Deployment Model. Faculty of Sci­
ence, UU. 2006-0 I

R.J. Corin. Analysis Models for Secu­
rity Protocols. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2006-02

P.R.A. Verbaan. The Computational Com­
plexity of Evolving Systems. Faculty of Sci­
ence, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal
Specification and Analysis of Hybrid Sys­
tems. Faculty of Mathematics and Computer
Science and Faculty of Mechanical Engi~
neering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of
UML Models: Tool Support and Composi­
tionality. Faculty of Mathematics and Natu­
ral Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Au­
tomata - Techniques and Applications. Fac­
ulty of Science, Mathematics and Computer
Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for Rewriting.
Faculty of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in too/­
assisted verification of JML programs. Fac­
ulty of Science, Mathematics and Computer
Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular
Simulations. Faculty of Biomedical Engi­
neering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data.
Faculty of Mathematics and Natural Sci­
ences, UL. 2006-10

G. Russello. Separation and Adaptation of
Concerns in a Shared Data Space. Fac­
ulty of Mathematics and Computer Science,
TU/e. 2006-1 I

L. Cheung. Reconciling Nondeterministic
and Probabilistic Choices. Faculty of Sci­
ence, Mathematics and Computer Science,
RU. 2006-12

B. Badban. Ver(fication techniques for Ex­
tensions of Equality Logic. Faculty of Sci­
ences, Division of Mathematics and Com­
puter Science, VUA. 2006-13

A.J. Mooij. Constructive formal meth­
ods and protocol standardization. Faculty
of Mathematics and Computer Science,
TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hy­
brid Systems. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2006-15

M.E. Warnier. Language Based Secu­
rity for Java and JML. Faculty of Sci­
ence, Mathematics and Computer Science,
RU. 2006-16

V. Sundramoorthy. At Home In Service
Discovery. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science,
UT. 2006-17

B. Gebremichael. Expressivity of Timed
Automata Models. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-18

L.C.M. van Goo!. Formalising Interface
Specifications. Faculty of Mathematics and
Computer Science, TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics and
Verification of Security Protocols. Faculty
of Mathematics and Computer Science,
TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for
Exogenous Coordination of Distributed Sys­
tems: Semantics, Implementation and Com­
position. Faculty of Mathematics and Natu­
ral Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous Soft­
ware Systems. Faculty of Natural Sci­
ences, Mathematics, and Computer Science,
UvA. 2007-01

N.K. Kavaldjiev. A run-time reconfig­
urable Network-on-Chip for streaming DSP
applications. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2007-02

M. van Veelen. Considerations on Mod­
eling for Early Detection of Abnormalities
in Locally Autonomous Distributed Systems.
Faculty of Mathematics and Computing Sci­
ences, RUG. 2007-03

T.D. Vu. Semantics and Applications of
Process and Program Algebra. Faculty of
Natural Sciences, Mathematics, and Com­
puter Science, UvA. 2007-04

L. Brandau Briones. Theories for Mode/­
based Testing: Real-time and Coverage.
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing by
Presentation. Faculty of Science, Mathe­
matics and Computer Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geomet­
ric Data Structures. Faculty of Mathematics
and Computer Science, TU/e. 2007-07

N. Trcka. Silent Steps in Transition Systems
and Markov Chains. Faculty of Mathemat­
ics and Computer Science, TU/e. 2007-08

R. Brinkman. Searching in encrypted data.
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 2007-09

A. van Weelden. Putting types to good use.
Faculty of Science, Mathematics and Com­
puter Science, RU. 2007-10

J.A.R. Noppen. Imperfect Information in
Software Development Processes. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-1 I

R. Boumen. Integration and Test plans for
Complex Manufacturing Systems. Faculty
of Mechanical Engineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and
Optimising System Behaviour in Time. Fac­
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improving
the Quality of Modeling: A Series of Em­
pirical Studies about the UML. Faculty
of Mathematics and Computer Science,
TU/e. 2007-14

T. van der Storm. Component-based Con­
figuration, Integration and Delivery. Fac­
ulty of Natural Sciences, Mathematics, and
Computer Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution of
Software Architectures. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2007-18

M. A. Abam. New Data Structures and
Algorithms for Mobile Data. Faculty
of Mathematics and Computer Science,
TU/e. 2007-19

W. Pieters. la Volonte Machinale: Under­
standing the Electronic Voting Controversy.

Faculty of Science, Mathematics and Com­
puter Science, RU. 2008-01

A.L. de Groot. Practical Automaton Proofs
in PVS. Faculty of Science, Mathematics
and Computer Science, RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Science,
TUD. 2008-04

N.C.W.M. Braspenning. Model-based In­
tegration and Testing of High-tech Multi­
disciplina,y Systems. Faculty of Mechanical
Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimilation
of Language Conglomerates. Faculty of Sci­
ence, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive:
Design and Formal Verification of Opti­
mistic Fair Exchange Protocols. Faculty
of Sciences, Division of Mathematics and
Computer Science, VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing Ma­
chines. Faculty of Mechanical Engineering,
TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coalge­
bras. Faculty of Science, Mathematics and
Computer Science, RU. 2008-09

L.G. W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit . Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty

of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen­
tal Study of Geometric Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifi­
cations Using Context-Sensitive Wildcards .
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 2008-13

F.D. Garcia. Formal and Computational
Cryptography: Protocols, Hashes and Com­
mitments. Faculty of Science, Mathematics
and Computer Science, RU. 2008-14

P. E. A. Diirr. Resource-based Verification
for Robust Composition of Aspects. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2008-15

E.M. Bortnik. Formal Methods in Support
of SMC Design. Faculty of Mechanical En­
gineering, TU/e. 2008-16

R.H. Mak. Design and Performance Analy­
sis of Data-Independent Stream Processing
Systems. Faculty of Mathematics and Com­
puter Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process­
ing Algorithms. Faculty of Mathematics and
Computer Science, TU/e. 2008- I 8

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calame. Testing Reactive Systems with
Data - Enumerative Methods and Con­
straint Solving. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2008-20

E. Mumford. Drawing Graphs for Carto­
graphic Applications. Faculty of Mathemat­
ics and Computer Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As­
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Computa­
tion: Gene Assembly and Membrane Sys­
tems. Faculty of Mathematics and Natural
Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting
and Its Certification. Faculty of Mathemat­
ics and Computer Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer Sci­
ence, TU/e. 2008-25

J. Markovski. Real and Stochastic Time in
Process Algebras for Performance Evalua­
tion. Faculty of Mathematics and Computer
Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buban. Cryptographic Keys from
Noisy Data Theory and Applications. Fac­
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Net­
works in Motion: Clustering Algorithms for
Service Discovery and Provisioning. Fac­
ulty of Electrical Engineering, Mathematics
& Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validating
Distributed Embedded Real-Time Control
Systems. Faculty of Science, Mathematics
and Computer Science, RU. 2009-01

M. de Mot. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics and
Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Mode/­
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft­
ware Systems. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2009-05

M.J. van Weerdenburg. Efficient Rewrit­
ing Techniques. Faculty of Mathematics and
Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi ­
sion of Mathematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax­
based Single-page Web Applications. Fac­
ulty of Electrical Engineering, Mathemat­
ics, and Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get­
ting Generic Programming Ready for Prime
Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joffre. Strategies for Context
Sensitive Program Transformation . Faculty
of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer Sci­
ence, RU. 2009- 1 I

M.G. Khatib. MEMS-Based Storage De­
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic
Analysis Techniques for Program Compre­
hension. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net­
work Intrusion Detection Systems. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy in
Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer Sci­
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fac­
ulty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabil­
ity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis­
tants available over the Web. Faculty of Sci­
ence, Mathematics and Computer Science,
RU. 2009-18

R.S.S. O'Connor. Incompleteness & Com­
pleteness: Formalizing Logic and Analysis
in Type Theory. Faculty of Science, Mathe­
matics and Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Meth­
ods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models . Faculty of Electri­
cal Engineering, Mathematics & Computer
Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap­
plications to Medical Image Analysis. Fae-

ulty of Mathematics and Natural Sciences,
UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac­
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data­
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control
for Dynamic Collaborative Environments.
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fac­
ulty of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Science,
TUD. 2010-01

M.R. NeuhiiuBer. Model Checking Nonde­
terministic and Randomly Timed Systems.
Faculty of Electrical Engineering, Mathe­
matics & Computer Science, UT. 20 I 0-02

J. Endrullis. Termination and Productivity.
Faculty of Sciences, Division of Mathemat­
ics and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan­
guages. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro­
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au­
tomata . Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Modeling
on the Quality of Software. Faculty of Math­
ematics and Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Sci­
ence, Mathematics and Computer Science,
RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery
of Knowledge - Foundations, Implementa­
tions and Applications. Faculty of Mathe­
matics and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathemat­
ics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Science,
VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem­
plate Enigma: Software Code Generation
with Templates . Faculty of Mathematics and
Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabil­
ity Planning: Methods and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 20 I I -03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fac­
ulty of Mathematics and Natural Sciences,
UL. 2011-04

J. Proen~a. Synchronous coordination of
distributed components. Faculty of Mathe­
matics and Natural Sciences, UL. 2011-05

A. Morah. IT Architecture-Based Confi­
dentiality Risk Assessment in Networks of
Organizations. Faculty of Electrical Engi­
neering, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electrical
Engineering, Mathematics & Computer Sci­
ence, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL.2011 -08

M.E. Andres. Quantitative Analysis of In­
formation Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci­
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica ­
tion of Distributed Failure Detectors. Fac­
ulty of Mathematics and Computer Science,
TU/e. 2011-10

P.J.A. van Tilburg. From Computability to
Executability - A process-theoretic view on
automata theory. Faculty of Mathematics
and Computer Science, TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com­
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid­
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti . Event Composition Model:
Achieving Naturalness in Runtime En­
forcement. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifi­
cation. Faculty of Mathematics and Com­
puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac­
ulty of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac­
ulty of Mathematics and Natural Sciences,
UL. 2011-17

R. Middelkoop. Capturing and Exploiting
Abstract Views of States in 00 Verification .
Faculty of Mathematics and Computer Sci­
ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving

the Quality of Model Transformations. Fac­
ulty of Mathematics and Computer Science,
TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs
in Practice. Faculty of Science, Mathemat­
ics and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac­
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

.,.

Propositions belonging to the PhD dissertation
Model Checking of Component Connectors

by Mohammad lzadi, defense scheduled on 6 December 2011

l. The behavior of a component based system can be verified using a two phases
model checking process consisting of the model checking of its components and
of its coordination subsystem. (Chapter 6, this Thesis)

2. In order to define the semantics of coordination systems, the classical modeling
formalisms such as automata on infinite objects are enough. It is not necessary
to use new or more complicated formal systems. (Chapters 4 and 6, this Thesis)

3. The classical theory of Bi.ichi automata can be enhanced so the coordination
systems with unconditional fairness and context dependency constraints over
their behaviors can be modeled and then verified by model checking. (Chapters
4 and 5, this Thesis)

4. It is convenient and even feasible to minimize coordination models with respect
to an appropriate behavioral equivalence to improve model checking. (Chapter
8, this Thesis)

5. To specify the desired properties of component connectors an action based lin­
ear temporal logic can be defined such that its formulas are translatable into
automata on infinite strings both with of an inductive or an on-the-fly manner.
(Chapter 6, this Thesis)

6. Extending a linear time temporal logic with types does not change its decidabil­
ity but allows for specifying systems with some extra nonfunctional properties.
([701)

7. First recurrence automata allows for an efficient model checking of an interesting
fragment of the µ-calculus. ([811)

8. The state space of the models of coordination systems can be reduced (even
with some logarithmic factors) using functional and data abstraction techniques.
([118 ,1191)

9. Hoare's failure-based semantic model proposed for CSP and the ones proposed
by Valmari for LOTOS can be applied over some kinds of transition systems
with compound transition-labels that are used to model the interactions among
the interfaces of the components of a component based system. ([79;74])

10. Philosophy, Mathematics and Computer Science have essentially the same goals:
the study of general and fundamental problems and trying to find the truth.

11. It is not important that a lot of our theories on the nature of the world are false.
It is important that in a historical process of progress our theories become more
and more truth-like (with higher degrees of verisimilitude).

