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Chapter1Introduction

Road traffic congestion has become a major issue in our society over the
last decades. A large part of our daily travel movements is considered to
be necessary. Not only do we prefer to move fast from A to B, we also
want the trip to be reliable in terms of travel time. In several studies,
it has been observed that the uncertainty in travel time is considered
a larger discomfort than the travel time itself [109]. An understanding
of the mechanisms that cause traffic congestion is the key to alleviate
the impact of congestion. Current technological developments, such as
advances in automated driving and developments in sensor technology,
allow for better regulation of road traffic in transportation systems.
Accurate monitoring of the network state combined with the coordination
and cooperation of individuals, paves the way for more reliable and
efficient usage of infrastructure.

The research in this dissertation combines the area of road traffic models
with stochastic models in operations research. Specifically, we describe
modelling and control techniques of road traffic congestion in which the
main focus lies on incorporating the impact of uncertainty by means of
quantitative stochastic methods.

This chapter gives an overview of methods and challenges to alleviate
road traffic congestion. We describe the current state-of-the-art in
modelling and optimisation of transportation systems in relation to the
models developed in this dissertation. Subsequently, an introduction to
the underlying stochastic models and methods with their applicability
to the subject is presented.
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Chapter 1 Introduction

1.1 Research context

All over the world cities are expanding. Currently, more than half of
the world’s population is living in urban areas. In Europe, around
three quarters of the population lives in urban areas, and in Latin
America and the United States around 80% of the total population
lives in urban areas [42]. According to the United Nations, urbanisation
is expected to increase the average city population by 66% by 2050,
pushing the existing infrastructure systems beyond its limits [17]. As
a by-product of increasing prosperity, the number of individual travel
movements increases together with the expansion of cities. Both lead to a
tremendous rise in travel demand, causing road congestion to become an
even bigger problem. The search for solutions to reduce traffic congestion
is a necessity to retain liveable conditions.

Traffic congestion significantly contributes to economical damages and
problems related to energy efficiency and pollution. According to
Net!Works European Technology [94], road transportation accounts
for 83% of total energy consumption within the transportation sector
and 85% of total CO2-emissions.

Congestion in road traffic systems occurs when the travel demand exceeds
the available road capacity, e.g., the maximum number of vehicles
that can pass a certain stretch of road per time unit. This results
in lower driving speeds, longer trip times, and the formation of queues.
We distinguish three major approaches for dealing with congestion:
expansion, technological development, and traffic management.

For decades, expansion of the infrastructure was a ‘good’, maintain-
able solution to tackle the congestion problem. However, this is not a
sustainable solution as space and resources become limited. Ongoing
developments, such as stagnating population growth, e-business and
telecommunication, and technological developments regarding autonom-
ous driving and emerging technologies such as drones, make the future
travel demand uncertain. Therefore, it is important to examine tem-
porary solutions that alleviate current congestion problems which are
inexpensive and easy to implement within a short-term time horizon.

Technological developments potentially resolve current capacity problems.
This provides great opportunities to optimise and exploit the current
city assets such as roadside equipment, sensor data and individual GPS
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1.2 Traffic flow theory

traces. Integration of these data sources creates a wealth of opportunities
to tackle the complexity of the congestion problem. A drawback of both
developments is that they require time to be integrated into the current
transportation system.

Due to the limitations of expansion and the long-time horizon of tech-
nological advances we focus on traffic management solutions. The
effectiveness of traffic management depends on the ability to accurately
model travel behaviour. Travel behaviour can be studied from different
perspectives. We focus on three main areas:

1. Modelling of traffic flow dynamics, i.e., modelling of the interacting
behaviour on a stretch of road.

2. Modelling of user behaviour decisions regarding timing, modality
and location: The mechanisms that drive these decisions, and the
interaction due to the decisions of others.

3. Modelling of network performance with respect to high-level travel
movements across the infrastructure and the infrastructural topology.

An introduction to the research in each of these areas are presented in
Sections 1.2-1.4, respectively. The dynamics in each of these areas is
subject to uncertainty, which is for a large part due to the stochastic
nature of individual travel behaviour. We provide an introduction
to stochastic models and methods relevant to the purposes of this
dissertation in Section 1.5.

1.2 Traffic flow theory
Traffic flow theory is the study of interactions between individuals
and the infrastructure, where an understanding of these movements
and interactions is captured in a mathematical framework. Models
in transportation research are developed to capture the traffic flow
dynamics and to mimic the performance of the transportation network.
Traffic has an intrinsic irreproducibility, mainly due to uncertainty in
individual behaviour and their interactions, it behaves in a complex,
highly non-linear manner. Fortunately, this behaviour is not entirely
random: Individuals tend to behave in a somewhat repetitive and regular
fashion. Moreover, their driving behaviour is bounded by a reasonably
consistent range, allowing flow to be described mathematically.

3



Chapter 1 Introduction

The development of traffic flow theory and modelling started in the 1930s,
pioneered by Greenshields [57], illustrated in Figure 1.1b. To represent
the traffic flow mathematically, relationships have been established
between its three main characteristics: (1) flow, (2) density, and (3)
velocity:

q = v · ρ, (1.1)

where q is the traffic flow (vehicles/hour), ρ the traffic density (vehicles/km)
and v the velocity (km/hour). The values of these three characteristics
are bounded by the road capacity. Back in 1933, Greenshields described
the relationship among flow and density by a linear model:

v = v0 − q · c, (1.2)

where c represents the decay rate in velocity, and v0 the maximum
velocity determined by the road capacity. Both are constants that
were determined from field observations as shown in Figure 1.1a. An
interesting observation from these experiments is the connection between
traffic density and vehicle velocity: The more vehicles there are on a
road, the lower their velocity will be. This results in a split into two
regimes in the q-v-diagram: a stable and an unstable regime, meaning
that we can have two values for the density ρ for the same traffic flow
value q.

The relation between the three characteristics of Equation (1.1) is dis-
played by the so-called fundamental diagram. This fundamental diagram
can be presented from three perspectives: (1) flow-density, (2) speed-flow,
and (3) speed-density, and is an important subject of study within traffic
flow theory, as it can be used for example to predict the impact of inflow
regulation or speed limits to improve the network congestion problem.

A major inefficiency at highways occurs when the so-called critical density
is reached. The critical density denotes the point at which we reach
the maximum flow for the specified road characteristics. Beyond this
point, the average traffic speed can decrease tremendously leading to a
large decrease of flow, this phenomenon is denoted as the capacity drop.
Many studies have been devoted to this specific subject, ranging from
adjustments to the shape of the diagram to extensions that include more
regimes [72], or even to capture the entire network into the diagram [29,
30]. An extensive survey regarding this subject can be found in [16].
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1.2 Traffic flow theory

(a) Bruce Greenshields collecting
data in 1933 (b) Linear relation between flow and density

Figure 1.1. The first attempts to model traffic flow by Greenshields [57].

A distinction between traffic flow models can be made based on the
level of detail. In increasing order of magnitude, we have microscopic,
mesoscopic and macroscopic scale traffic flow models. A comprehensive
historical overview of these methods is [139].

1. Microscopic traffic flow captures the individual dynamics of drivers
and their interaction with other individuals or the infrastructure.
Well-known microscopic models are car-following models [107], and
cellular automata models [102, 27]. In general, these models are
represented by a set of ordinary differential equations that take into
account the acceleration and deceleration dynamics of the individual
vehicles.

2. Mesoscopic traffic flow models can be classified into three categories:
time-headway distribution models, cluster models and gas-kinetic
models. These models aim to capture the behaviour of drivers without
explicitly distinguishing their time-space behaviour [65].

3. Macroscopic traffic flow models are based on system variables in
which individual dynamics are captured in an aggregated manner. A
common approach is to use methods from fluid dynamics to model the
behaviour of particles in a ‘fluid’. Often, these models are represented
in terms of partial differential equations. The study of macroscopic
traffic flow modelling started with the seminal Lighthill-Whitham-
Richards (LWR) model, also referred to as the kinematic wave model.
This work was developed by Lighthill and Whitham [88, 89], and
Richardson [120], independently. They approximate traffic dynamics
by a continuous flow of vehicles in terms of vehicle density ρ(x, t)
as a function of space x and time t. Many extensions of this model
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Chapter 1 Introduction

have been proposed to better capture phenomena such as capacity
drop [59] and hysteresis [97]. Payne [115] developed the so-called
velocity equation, based on higher order models, to capture the
response time of individuals to the surroundings.

It has been shown that, more often than not, the current methods in
the area of traffic flow do not accurately capture the actual dynamics.
In various cases, these methods lead to highly inaccurate results [90].
This raises the need for the inclusion of stochasticity in traffic models.

1.3 User behaviour models
Another major field of study within transportation research is user
behaviour modelling. This area mainly concerns transportation issues
and challenges which involve social and spatial dimensions. In particular,
it is the study of the factors that influence activity and travel choices
of people and businesses. These studies are used to answer questions
related to the transportation infrastructure, mobility choices, social
sustainability, among others.

Within this area, the impact of travellers’ departure time and route de-
cisions and the effectiveness of information provision remains an import-
ant topic of research. This interest is mostly driven by the expectations
that the provision of travel information may help reduce congestion.
However, modelling decisions of travellers in a correct manner remains
a complex task. Often these models assume that travellers only decide
selfishly which route to take, which is not entirely true. Moreover, the
uncertainty in the network state and user behaviour complicates the ana-
lysis of the optimal modelling approach and optimisation strategy even
further. In this dissertation, we study the impact of these uncertainty
aspects by extending existing models in Chapters 5 and 6. In Chapter 7
we develop a framework to analyse the impact of a central traffic co-
ordinator with limited control in a stochastic environment. A short
introduction of the affiliated research areas is presented in Section 1.3.1.

1.3.1 Equilibrium models

In the application area of transportation, network equilibrium strategies
are commonly modelled to predict the outcome of traffic scenario’s
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1.3 User behaviour models

subject to congestion. These equilibrium concept include properties of
game theory. Therefore, we first give a brief overview of the main game
theoretical methodologies within the context of travel choice. From
there, we proceed to economic congestion models and traffic assignment
methods which make use of game theoretic equilibrium concepts.

Game theory

The field of game theory [101] is a branch within applied mathematics.
It is concerned with the analysis of strategies in competitive situations
where the outcome of an individual’s choice of action depends critically
on the actions of other individuals. The theories are based on formal
rules and consequences that individuals share. A common assumption in
these type of models is that individuals decide rationally and the main
goal is to obtain an equilibrium. Various types of game theoretic models
can be distinguished. We focus on the most common ones applicable to
behaviour in road traffic.

Game theoretical models can be split into cooperative and non-cooperative
games. Cooperative means that players negotiate with each other to
create a joint strategy. In non-cooperative games, competition among
players is modelled, and each individual tries to maximise its own profit
according to a specified utility function. A common strategy is to find
a Nash equilibrium, implying that no player wants to deviate from his
strategy, as it is the best strategy given the strategy of the other players.
This concept has been used to model road traffic phenomena, a famous
insight, known as the Braess paradox shows, the inefficiency of selfish
behaviour of individuals [19].

The idea of traffic equilibrium is related to the Nash equilibrium in game
theory. However, in transportation networks many players are involved.
In this case, obtaining the Nash equilibrium becomes a difficult task.
Wardrop [142] developed two different notions of equilibrium, of which
the first one is closely related to the Nash equilibrium. The difference lies
in the fact that in the Nash equilibrium individual players are considered,
while in the Wardrop equilibrium these individuals are modelled as a
fluid.

Wardrop’s first principle of equilibrium is often referred to as the User
Optimum or User Equilibrium (UE), meaning that each user individually
optimises his utility for his own benefit. Wardrop’s second principle of
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Chapter 1 Introduction

equilibrium is referred to as the System Optimum (SO), meaning that
each individual chooses his route in order to ensure that the overall
journey time of everyone is minimised. In general, non-cooperative UE
models often lead to inefficient strategies, which are also observed in
practice.

Economic congestion models

From an economic perspective, departure time decisions can be expressed
in terms of a disutility function. The disutility is usually modelled in
terms of a trade-off between travel time and schedule delay (early or
late arrival). At the peak, a traveller faces longer travel times, while
at the shoulders of the peak hour the traveller faces a schedule delay
due to early or late arrival. In such a model each traveller decides
when to depart depending on the choices of others. The aim is to find
the non-cooperative Wardrop UE strategy. In the literature, two types
of modelling approaches can be distinguished, the Vickrey bottleneck
model [138] and the Henderson model [63]. The main differences between
the two is that the Vickrey model uses a queueing approach, while
Henderson uses the form of flow congestion. More specifically, Henderson
assumes that the travel time depends on the number of travellers that
depart at a certain time instant, while Vickrey includes the downstream
traffic conditions due to earlier departures.

In this dissertation, we build on the concept of the Vickrey model. A
vast amount of literature has been developed for this model, in Chapter 5
we provide a more detailed overview. However, it is worth mentioning
that Vickrey’s model was independently formulated by Hendrickson and
Kocur [64], and Fargier [66] with slightly other configurations. Later on,
Arnott et al. adapted Vickrey’s model [5], which is nowadays the most
common version for which extensions of this model are developed. These
models lead to valuable insights and understanding of many features
of congestion such as the effects of peak-shifting, pricing strategies
and capacity expansion. A drawback is that this model is not directly
applicable in practice due to its simplifying assumptions.

Traffic assignment

The aim of traffic assignment methods is to determine the impact of
possible future scenario’s by reproducing the pattern of vehicular move-

8



1.4 Network analysis

ments based on inserted volumes of traffic flow [24]. This allows for
evaluation of the current status of the network and to forecast travellers’
behaviour under hypothetical scenarios. The effectiveness of specific
traffic management strategies or the impact of future traffic conditions
can be predicted. For these models the UE concepts are commonly
used to determine the decisions of travellers. In this dissertation we use
a simplified version of this approach where we analyse the impact of
partial control scenario’s for only a single stretch of road.

1.4 Network analysis

To assign the social and spatial dimension within transportation mod-
elling, a network-oriented modelling approach is needed. The research
concerned with network analysis cannot be described in a few sentences.
Therefore, we limit ourselves to outlining the main directions and focus
on the methodologies that underlie, or are applicable to, the research in
this dissertation.

Network analysis in transportation systems is mainly concerned with
the spatial and temporal nature of movements across the infrastructure
and the infrastructural topology. Describing the network in terms of
nodes and their linkage to each other, measures such as accessibility
and connectivity can be extracted. Including the flow of movements
across the infrastructure can be used to analyse the network performance.
However, this is not an easy task as such detailed information is often
not available.

A major area of research is concerned with the estimation of path flows,
route choice decisions, and mode choice. A model incorporating the
decisions and estimations into a framework is known as discrete choice
modelling [11]. Currently, discrete choice models include an elaborate
specification of dynamics and other elements. However, social influences
are in general not taken into account in such models, which was first
mentioned in [39]. In this case, models from social network analysis
come at hand. In recent studies, this aspect is considered to be very
important [146]. An overview of the current research is given in [98].

Below, we discuss two methods from social network modelling that are
of interest within this scope.

9



Chapter 1 Introduction

1.4.1 Centrality measures

The step towards analysis of a social network of individuals easily aggreg-
ates itself to transportation networks. The social network is represented
as a graph, where nodes represent people and edges represent the rela-
tionships between people. For a road network, a crossing is represented
by nodes and the stretches connecting the crossings as edges. A key
question in social network analysis is how to determine the most import-
ant or central nodes in a network. Although the question is simple, the
answer is not.

There are many definitions of what the ‘most important’ node in a
network is, depending on the definition of importance. As mentioned
by Freeman [51]: “There is certainly no unanimity on exactly what
centrality is or on its conceptual foundations, and there is little agree-
ment on the proper procedure for its measurement’ ’. Although this
statement is still valid, there are a variety of measures that capture
specific centrality aspects of a network. The most common measures are
degree, betweenness, closeness and eigenvector centrality [82]. A survey
on centrality measures can be found in [31].

Computing the centrality measures leads to the identification of import-
ant locations in the network. A more general direction of network analysis
is to separate a graph by identification of groups, or communities.

1.4.2 Community detection

Another popular approach in social network analysis is the discovery of
communities within graphs where social interactions are specified. The
aim of community detection is to divide the graph into components based
on the topological information of the graph only [43]. These communities
consist of groups of nodes that have a stronger connection to each other
than to members of another community. Community detection has been
used to discover geographical areas by means of telephone data [13, 118].
In this research, the geographical area is partitioned into small regions.
These regions are translated to a graph where the regions are represented
by nodes, and the intensity of phone calls by edges. Community detection
algorithms give insight into the geographical connection and separation
by grouping the regions into communities.

10



1.5 Stochastic models

1.5 Stochastic models

One of the main sources of congestion in road networks is variability
in demand. Congestion has a large impact on a network, causing
reduction in the road capacity. Moreover, it has been shown that
small perturbations in demand can have a major influence on network
performance. Empirical studies demonstrate that the distribution of
travel times is spread over a wide range and has a long tail to the
right [91]. In [90], case studies show that the impact of variability in
demand and capacity is most significant in cases where the demand is
close to capacity.

Although road traffic is highly volatile and for a large part uncertain,
traffic modelling and optimisation is typically based on first order per-
formance metrics such as average travel times. A large number of aspects
can be distinguished that influence the volatility in traffic flow. For ex-
ample, day-to-day variability in traffic demand and capacity, uncertainty
in route choice and departure time, variations in driving behaviour and
the occurrence of incidents, etcetera. In this dissertation, we mainly
focus on variability with respect to demand and capacity in traffic flow
and the impact of uncertainty in departure time choice. The variability
in the arrival and service process has turned out to be essential to the
performance of the system [95]. Stochastic modelling is a powerful means
to capture the various sources of variability.

In this section, we will give an overview of the main models and tech-
niques that have been used throughout this dissertation with respect
to stochastic modelling. Although our main focus is on road traffic
congestion modelling, the mathematical techniques used can often be
applied in a broader context.

1.5.1 Stochastic processes

A stochastic process is a sequence of random variables, typically rep-
resenting the state of a system that is changing over time. We can
distinguish two types of stochastic processes, continuous-time random
processes that may change at any point in time, and discrete-time pro-
cesses that change at discrete time steps. In mathematical modelling
Markov processes are commonly used stochastic processes. A discrete-
time stochastic process {X1, X2, . . . , }, on a discrete state space X , is a
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Markov process if it satisfies the Markov property:

P (Xi+1 = xi+1|Xi = xi, . . . , X1 = x1) = P(Xi+1 = xi+1|Xi = xi) ,

meaning that the probability distribution of the next state of the system,
i.e. at time i+ 1, is only dependent on the history through the current
state. The advantage of this assumption is that it makes the system
mathematically more tractable and in some cases closed-form solutions
can be obtained.

A Markov process that is often used to model random arrivals into
a system is a Poisson process. The Poisson process is particularly
appropriate when arrivals occur from a large population of individuals.
Throughout this dissertation we use the parameter λ to denote the
arrival rate, in other words (the average number of arrivals per time
unit). The number arrivals Y over a fixed interval of length t has a
Poisson distribution:

P(Y = n) = (λt)n

n! e−λt, (1.3)

with n ∈ N0.

For a general overview of stochastic processes, we refer the reader to [123].

1.5.2 Queueing models

In many applications the variability in the arrival and service process has
turned out to be essential to the behaviour of the system. Such systems
alternate between periods in which arriving customers are waiting to
receive service, and periods where all servers are idle as they are waiting
for new customers. To improve, for example, the revenue in such systems,
a trade-off between utilisation and queue length has to be made. Results
from queueing theory show that in heavily loaded systems, a small
increase in arrival rate may quickly saturate such a system, compared to
lightly loaded systems. This occurs due to the variability in arrival and
service process, and is nicely illustrated by the so-called waiting-time
paradox [60].

As the variability in driver decision and network capacity are hard to
capture completely, queueing models lend themselves to the subject
of traffic flow by modelling the arrival and service rate by probability
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functions. In this section, we provide an overview of the most common
queueing models and the relevant extensions for traffic models. Figure 1.2
shows a representation of a queueing system and a bottleneck in road
traffic. A notable difference is the reversed definition of arrival and
departure between the two. In the traffic literature, it is common to
focus on the origin and destination of a trip, denoting a departure as
the start of the trip during which a traveller passes a bottleneck and the
arrival when he arrives at the destination. Queueing theorists denote
by an arrival the time the traveller arrives at the bottleneck, and a
departure the moment a traveller leaves the bottleneck. This can lead
to confusion when not well specified. In this dissertation we restrict
ourselves to the queueing definition of arrival and departure.

Arrival

Server

Departures

Queue

(a) Queueing model

A B

Departure

Travel time

Arrival Bottleneck

(b) Bottleneck

Figure 1.2. Representation of a queueing model and a road traffic bottleneck.

Characteristics of queueing models

A queueing model is in general characterised by the following four
components:

1. Arrival process: Specification of the dynamics that determine the
occurrence of the arrivals of customers to the system. In many
situations, the arrival process is modelled by a Poisson process.

2. Service mechanism: A quantification of the required service and
the service discipline to handle a customer. The required service time
is represented by a realisation of a non-negative random variable.
Prominent examples of the service discipline are: First-Come-First-
Serve, Last-Come-First-Serve and Processor-Sharing. Typically, when
the service discipline is not specified, it is assumed to be First-Come-
First-Serve.

13
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3. Service capacity: Specification of the number of servers available
to process customers.

4. Buffer capacity: Capacity of the system to queue customers for
which no server is available upon arrival.

Kendall introduced a notation to define the most common queueing
models in terms of the characteristics as defined above [71]. He used the
codingA/B/c/d. The letterA specifies the inter-arrival time distribution,
B the service time distribution, and c and d represent the number of
servers available and the system capacity, respectively. In case that d is
not specified it usually means that there is infinite space for waiting.

The most basic model is the M/M/1 model, for which both the arrival
and service time distribution are assumed to be Markovian (Poisson
arrivals and exponential service duration), and there is one server to
process individual jobs and the capacity is omitted as it is assumed to
be infinite. Other examples are M/M/∞, M/G/1, M/D/1 and G/G/1,
where G represents a general distribution, and D stands for deterministic.
The number of variations on this simple queueing model is enormous.
For example, when we have more servers they could serve at different
speeds, the service discipline can be specified regarding the order of
service, i.e., First In First Out (FIFO), Last In First Out (LIFO), or
Processor Sharing (PS) where each customer receives the same fraction
of service. Another example is that arrivals can occur in batches instead
of individual customers, or that there are multiple types of customers
requiring different amounts of service.

For details on the queueing models presented above and more extensions
of this basic notation, refer to Kleinrock [74].

Phase-type distributions

The Markov property is a standard approach in the study of queueing
systems, as this property simplifies the modelling tremendously. In
transportation systems, the Poisson arrival process is, in general, a
valid assumption. However, approximations that rely on the assumption
of exponential service durations have been found to overestimate the
fluctuations of systems’ capacity for real-world applications [148]. For
example in road traffic systems, where the time to pass a stretch of road
is denoted as the service duration, tends to be less volatile. To adjust for
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this, the service time can be modelled by using a phase-type distribution.
A random variable having a phase-type distribution is composed of
multiple phases of exponentially distributed length. In this manner, any
service time distribution can be arbitrarily closely approximated by a
phase-type distribution.

Stationary performance measures

In general, queueing models are analysed by assuming that the system
is in steady state. To compute the stationary distribution of a queue,
the system is assumed to be stable, i.e., the offered load remains within
the system capacity. The two most popular stationary performance
measures are the mean waiting/sojourn time of a customer and the
mean number of customers in the system. These measures are typically
derived by using two common properties in queueing theory:

1. Little’s law: States that there is a relation between the mean
waiting time of a customer and the average number of customers
that enter the system per unit of time [93].

2. PASTA: Poisson Arrival See Time Averages states that the expec-
ted number of customers in the system seen at arrival moments,
equals the time-average number of customers in the systems. This
only holds for systems where the arrival process is Poisson [150].

Transient methods

Although the assumption of stationarity is a general modelling approach,
the system dynamics in road traffic are time-dependent and behave in
a highly non-stationary manner. Moreover, during the peak hours, it
often happens that the offered load temporarily exceeds the capacity of
the system, resulting in an overload situation. For such systems, it is
important to include time in the performance analysis. In the framework
of Markov chains, this is captured by the time-varying Poisson process
of Equation (1.3) by including time.

In Figure 1.3, an illustration of the queue length development for sta-
tionary, non-stationary, as well as a deterministic queueing model is
given. This figure is based on the lecture notes of [125] and shows the
resulting mean queue length Q(t) for a traffic intensity after a specific
time frame for each of the models. It shows that deterministic models
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underestimate the queue length at traffic junctions, and that stationary
stochastic models are not able to capture a temporal traffic load larger
than one. Transient method are able to capture queue length formation
during the entire range of traffic loads. Refer to [125] for an explanation
of the transient computation for the queue length distribution. Transient
queuing models have been used to model the queue length distribution
at intersections in [1, 21, 73].

1 Traffic intensity
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Q(t)
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Figure 1.3. Queueing behaviour for deterministic, stationary, and non-
stationary queueing models over a fixed time interval t.

Tandem queues

A natural extension of the basic queueing model to a larger system is a
tandem queue. As the name suggests, this model considers a system with
two or more queues in series or tandem. Departures from the first queue
serve as input for the second. For tandem queues in which the arrival
process is Poisson and service durations are exponentially distributed,
a special property holds. These tandem queues have a product-form
solution and are called Jackson networks [68]. The product form remains
valid for larger networks as long as the inter-arrival and service times are
exponentially distributed, customers are served in a first-come-first-serve
manner and after completing their service they move to either another
queue or leave the system according to a Markovian or deterministic
routing rule. As a final requirement, each queue should have a load
smaller than one. An overview of systems for which the product-form
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solution remains true is [36].

When the product-form solution does not hold, this increases the com-
putational effort tremendously. Computational insights can then be
obtained by simulation or approximations. In this dissertation, such
approximations are developed to obtain insights into the impact of
simplifications of the optimal strategy (Chapter 3), and to allow for
extensions of the system in size and realism (Chapter 4).

Application of queueing theory in transportation models

There is a stream of literature that uses models from queueing theory
to model traffic flow including its stochastic aspects. In these models,
the focus does not lie on the flow of traffic, but on the delay that traffic
encounters. A review on the usage of queueing models for highway traffic
has been given by van Woensel and Vandaele [147], who validate these
models based on empirical data and simulation [149].

Queueing theory has been applied to analyse the behaviour of vehicular
traffic flow on a road segment with finite capacity by Jain and Smith [69].
Later on, Osario and Bierlaire [112] presented an analytic queueing
network model which preserves the finite capacity of the queues and use
structural parameters to capture the between-queue correlation dynamics.
Phenomena such as the capacity drop observed at highways are modelled
by means of threshold queueing models by Baer and Boucherie [8].

Other well-known work that incorporates queueing theory to road traffic
models started by the pioneering work of Webster [144], who approx-
imates the fixed cycle mean queue length at a signalised traffic light
by an M/M/1 queue. As of today, this approximation is still widely
used. Extensions that include the overflow were developed by Newell,
Miller and McNeil and compared in [67]. A detailed description of the
fixed cycle traffic light queue length distribution is performed by van
Leeuwaarden [86]. However, these methods assume stationarity, which
is often not reached. Non-stationary queueing models were developed
by [1, 21, 73], as mentioned earlier.

1.5.3 Optimisation methods
Optimisation of transportation systems is a popular field of study. The
impact on our everyday life and the potential gains resulting from optim-
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isation with respect to congestion, air quality, safety, noise and liveability
motivates the development of optimisation methods. A definition of
optimisation is given in [117]: ‘Optimisation is the act of obtaining the
best result under given circumstances’. Many optimisation problems
result in a large and complex solution space. In such cases, finding
the optimal solution becomes infeasible. Therefore, other methods are
developed to find a satisfactory solution to the problem. Examples
of such methods are asymptotic analysis and heuristics, for which we
provide a brief introduction in this section.

Dynamic programming

Dynamic programming is an optimisation technique that finds an optimal
solution when the solution space consists of a series of subsequent de-
cisions. The equation to describe the relationship between the subsequent
decisions is called the Bellman equation [10]. The solution approach
is done in a recursive manner so that the computational complexity
is significantly reduced compared to a full evaluation of the complete
history. This method has been used in many application areas [12].
The simplest types of dynamic programming problems are deterministic.
Examples include Dijkstra’s algorithm to find the shortest path [37].

In the context of stochastic processes, a Markov Decision Process (MDP)
is an extension of a Markov chain in which actions and rewards are
added. In each state, a decision from the action space leads to a reward.
Transitions to the next state are determined by means of a probability
function. By using dynamic programming we want to obtain the strategy
that maximises the specified reward function over all states. This strategy
is determined by the best decision for each state in the system taking
into account the future impact of this decision. In Chapter 2 such a
decision problem is specified. Refer to Puterman [116] for a thorough
overview on MDPs.

Asymptotic fluid analysis

Asymptotic analysis is a method to describe the limiting behaviour of a
process. As analytical expressions are in most application scenarios not
possible, and numerical evaluation become computationally prohibitive,
asymptotic analysis is a powerful means to provide valuable insights into
the performance characteristics of the system.
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A common technique within asymptotic analysis is fluid scaling. This
means that the stochastic process is rescaled by speeding up the system
and decreasing the effect of transitions. The scaling vector is taken
to infinity, and it can often be shown that the stochastic process then
satisfies the law of large numbers, also referred to as the fluid limit [76].
This approach results in a system where minor fluctuations are eliminated
to reveal long-term evolution of the process. For some applications,
this fluid limit might not give sufficient information, and one may be
interested in the deviations from this limit. These deviations can be
studied by means of diffusion limits [128].

Heuristic optimisation

Heuristic methods can be employed when traditional methods fail to
provide a solution within reasonable time. These methods are designed
to be fast, but in general fail to find the optimal solution. The word
heuristic originates from Greek and can be translated by the verb ‘to
find’. As finding a better solution is sufficient in most applications,
heuristics are often applied. We can separate heuristic methods into two
classes: local search methods and greedy algorithms.

Local search methods start with a candidate solution. By applying
local changes, improvements in the current solution can be found in
its the neighbourhood. In general, when no local improvements can be
obtained, the search algorithm is stuck in a local optimum. In case that
the solution space of the problem is convex, local search can provide
the optimal solution. In Chapter 7, a local search approach is applied
to find a good solution. In many cases, the solution converges to the
optimum, however, no guarantee is given.

The approach of a greedy algorithm is to pick the best solution given the
current circumstances. The criteria for the best solution of the current
circumstances has to be defined. Iteratively, this solution is expanded
until the steps leading to a solution have been obtained. In Chapter 4,
one of the approximation methods uses a greedy approach to speed
up computation to approximate the optimal strategy. In Chapter 8, a
greedy algorithm has been used to obtain a ‘good’ partition.
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1.6 Research objectives
The overall goal of the research in this dissertation is to gain under-
standing in the impact of uncertainty on the effectiveness of control
mechanisms for road traffic congestion. The effectiveness of traffic man-
agement solutions depends on the interaction between travellers and the
settings of roadside systems, amongst others. However, the inclusion
of uncertainty in modelling large-scale networks often leads to com-
putational intractability. Therefore, it is crucial to partition the road
network into a hierarchical structure of manageable subnetworks to keep
a scalable solution. In this context, the overall research question that
we aim to answer is:

How to design effective control mechanisms to reduce or prevent conges-
tion on road networks in the omnipresence of uncertainty?

More specifically, we address the following subquestions:

1. How to take into account the uncertainty of traffic demand and
road capacity in the deployment of roadside systems?

2. How to take into account the uncertainty in the behaviour and
interaction of travellers?

3. How to partition the network to determine the optimal control
points to manage traffic?

Accordingly, the thesis is subdivided in the following three parts:

I: Controlling traffic flow by means of roadside systems.

II: Modelling the interaction between users.

III: Partitioning road networks into control areas.

1.7 Overview of the dissertation
This dissertation presents research on the stochastic effects in the area
of road traffic. More specifically, the main research focus is on the uncer-
tainty in demand and capacity. In the subsequent chapters, we approach
this uncertainty from different perspectives, leading to a division of
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this thesis into three parts. These parts consist of (local infrastructure)
actuator control, user behaviour, and lastly, network analysis.

In part I, the main focus is on modelling and control from the infra-
structural perspective by means of local actuators of roadside systems.
In the corresponding chapters, we study control strategies that avoid
accumulation of traffic at strategic points in a network. In Chapter 2, we
introduce two versions of a two-node tandem queue for which we show
the interplay between queues when stochasticity of the arrival process
and capacity is incorporated. Optimisation of this model can become
complex when more realistic aspects are taken into account. Therefore,
we introduce two approximation approaches in the subsequent chapters.
In Chapter 3, an approximation technique to obtain a fixed threshold
level is developed. In Chapter 4, a fluid approximation is proposed to
approximate the optimal strategy dynamically. The performance of both
approaches is discussed in Chapter 4.

In part II, we turn our attention to rational behaviour of individual
users. In practice, travellers can strategically choose their departure
times and the routes they take. Congestion occurs when more users
simultaneously access the infrastructure than can be sustained by that
infrastructure. Understanding the interaction between individual travel-
lers is an important aspect in accurate modelling and effective control
of congestion phenomena. The starting point for Chapters 5 and 6 is
the seminal bottleneck model of Vickrey [138]. The main goal in that
setting is to find compatible departure times of travellers, such that all
travellers suffer the same discomfort. This discomfort is expressed in a
cost function that accounts for three cost components: the cost of being
too early at the destination, the cost of arriving too late and the cost of
the actual total travelling time; the latter component is determined by
the delay due to traffic congestion.

In Chapter 5, we extend the standard Vickrey model by stochastic
(uncertain) arrival times and travelling speeds, where we assume a
Poisson arrival process with time-fluctuating rate and exponential travel
times, aiming at an (approximated) equilibrium in which - again -
travellers all experience (approximately) the same cost. In this model,
the strategic behaviour of users is captured in the aggregated intensity
function of the Poisson arrival process.

In Chapter 6, we use a more detailed model for the rational behaviour

21



Chapter 1 Introduction

of travellers: each can strategically choose a preferred time to join the
bottleneck, but the actual time at which the bottleneck is reached is
subject to a random shift in time, which captures uncertainty with
respect to departure and travelling times prior to joining the bottleneck.
We show that the existence of a strategic equilibrium in this setting is
questionable, and that, if it exists, it can not be a pure Nash equilibrium,
nor can it be a mixed equilibrium with a continuous density.

In Chapter 7 we develop a strategic scheduling model. As in the previous
two chapters, the goal is to dynamically spread arrivals, but now travel
times are optimised in a joint effort between travellers and a central
coordinator. The central coordination allows for effective synchronisation
of travellers’ preferences.

In part III, we analyse the travel behaviour from a network viewpoint.
In Chapter 8, a network partitioning algorithm is applied to aggregate
travel patterns into high-level partitions of the network. These partitions
are composed of historical travel movements in the city of Amsterdam.
This study is performed for different time periods, revealing changes over
time with respect to high-level network compositions. The results give
insights with respect to connectivity and spatial travel patterns, thereby
supporting policy makers in their decisions for future infrastructural
adjustments.
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Chapter2Modelling Two-stage Systems with
Sequential Processing

In this chapter, we introduce a generic model for traffic flow control
applications. The stochastic nature of traffic flow in both capacity and
demand leads to complex system dynamics. This makes it hard to
determine effective control mechanisms to reduce or prevent the impact
of congestion. Understanding and quantifying the interplay between
queues incorporating the stochasticity of the arrival process and capacity
is a starting point for stochastic traffic flow control strategies. In this
study, we focus on a control strategy that avoids accumulation of traffic
at strategic points in the network.

We introduce two versions of a Markovian tandem model for which the
service rate of the first queue can be controlled. In the first model, the
control of the service rate at the first queue is limited to being turned
on or off. In the second model, the system contains a batch-processing
server where the number of jobs to be transferred can be specified at all
times. For both models, the objective is to keep the mean number of jobs
in the second queue as low as possible, without compromising the total
system delay. The balance between these objectives is governed by a
linear cost function of the queue lengths. This model can be formulated
as a Markov Decision Process1.

1This chapter is partly based on [S1] and [S2].
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2.1 Introduction

In this chapter, we investigate a dynamic flow control problem arising
in various applications. As a motivating example, consider road traffic
control, where trucks enter a crowded metropolitan area to supply goods
in the city centre. More often than not, such a scenario leads to the
clustering of traffic near distribution facilities in the city. Our specific
aim here would be to develop a control method that reduces long waiting
lines of trucks at distribution centres located in or near cities. As a
solution we investigate the effectiveness of a buffer location (e.g., a
parking facility for trucks) near a distribution centre to reduce the
number of waiting trucks in busy areas, thereby giving more space to
other traffic and reducing emissions.

Specifically, we are interested in the effectiveness of such a buffer location
when fluctuations in arrival and servicing the trucks play an important
role. Indeed, the buffer location will temporarily ‘store’ trucks and
prevent overly crowded areas near the distribution centre. On the
downside, the introduction of the buffer location introduces an additional
hop in the route for the trucks, creating potential inefficiency. When
poorly operated, trucks may be waiting at the buffer location, while the
service location at the distribution centre may have cleared all the local
backlog.

The problem setting described here illustrates a generic challenge in
transportation logistics, manufacturing and production management.
For example, one may think of an asphalting machine that must be sup-
plied with liquid asphalt at the correct pace, avoiding too long storage of
the perishable material, but also maintaining sufficient supply to avoid
an expensive shutdown of the machine due to lack of material. In a
production assembly line, one can also imagine the necessity to balance
the local inventory of assembly parts with the available space. Simil-
arly, in road congestion management the traffic density near bottleneck
junctions must be kept low enough to avoid traffic deadlock, but on the
other hand in the upstream direction, the traffic flow should be sufficient
to prevent unnecessary delay. We discuss and describe such control
problems and design a generic strategy with practical applicability.

To gain an understanding of the impact of uncertainty on the performance
of these systems, and to determine the characteristics of an optimal
strategy, we simplify the sketched above situations as a controllable

26



2.1 Introduction

two-stage tandem queue. Referring to our initial motivation of the
distribution centre, the first stage represents the buffer location where
trucks reside and has infinite capacity. The second stage represents the
distribution centre at which we want to reduce the number of trucks. We
seek an optimal trade-off between reduction in the number of vehicles
at the second stage on the one hand and additional delay at the first
stage on the other hand. We first concentrate on the setting in which
the server at the first stage can be controlled by an on-off switch. The
‘optimal’ operation point is determined by the minimisation of a cost
function. This function accounts for waiting time costs in the buffering
stage as well as costs for waiting at the distribution centre. Arrivals to
this system are modelled by a Poisson process and ‘service times’ in both
queues are exponentially distributed, which facilitates a formulation as
a Markov Decision Problem (MDP).

The controllable tandem queue model has been studied extensively in
the literature, and it has been shown that it is optimal to serve either
at full speed or not to serve at all [122]. This type of strategy is
referred to as ‘bang-bang strategies’. Under certain cost assumptions, it
has been shown that the structure of the optimal service rate gives a
switching strategy dividing the state space into two regions: one where
the service rate is at its maximum and one where service is paused.
Such structural properties of optimality can be proven by showing the
convexity of the value function in the Bellman optimality equation, see
for example [122] and [75]. Similar convexity properties also hold for
networks of queues [143]. Adopting optimal control, several strategic
questions can be answered as well, such as the desired distance of the
buffer location from the distribution centre in order to regulate trucks
optimally. In our model, this distance is captured by the service rate at
the first stage.

Full characterisation of the theoretically optimal strategy becomes com-
plex when the tandem model is extended to include more realistic factors
observed in practice. Examples of these factors include, relaxation of
the exponential service distribution, the order of service, and extensions
to a network of bottlenecks. Numerical computation of the optimal
strategy then becomes numerically overly time-consuming, or even in-
feasible. Several papers have looked at approximation techniques for this
model. The fluid approximation developed in [7] works well when the
second station works at a higher rate than the first station. However, for
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the applications of our interest, the bottleneck station is at the second
station, and the question is how to optimally control the outflow of the
first station.

In practice, service at the first station may not be limited to one job
at a time. Indeed, in our primary example, several trucks may jointly
leave the parking facility if the waiting line at the distribution centre is
very short. Similarly, in manufacturing and production planning, several
items may be produced or delivered at the same time. We, therefore,
proceed to study an extension of the tandem queue with controllable
service rate, allowing for batch service in the first station. A service
batch corresponds, for example, to platoons of trucks jointly driving
from the buffer location to the distribution centre. In this setting, it is
reasonable to maintain the service rate independent of the number of
jobs that are jointly processed. We study the impact of batch service
on the first server and determine the structure of the optimal policy.
It turns out that the optimal queue level at the second queue is fully
determined by the aggregate number of jobs in the two queues (i.e.,
the sum of the two individual queues). If the optimal levels can be
determined, the optimal batch size is then easily computed for all states
in the state space.

Several papers have investigated control of similar tandem models, of
which we discuss the most relevant. In [137] an inventory control
system has been analysed for various control policies in which both
the first and the second station can be controlled. However, they
assume that the first station represents an inventory level that can be
negative, which fundamentally changes the analysis. It is worth noting
that with an appropriate translation, their special order-to-stock policy
is mathematically equivalent to our single-service model with a fixed
threshold at the second queue. In [152], a fuzzy control mechanism is
used that computes the decision at each state based on expected reward
versus holding costs. This approach is in similar spirit as our fluid-based
approximations for which we also use expected costs to approximate the
threshold value.

Batch service models with control for single queues have been studied for
example in [35, 34]. The optimal batch size is determined by a trade-off
between costs of a service initiation, and the waiting time costs of jobs
in the system. In the present chapter, we do not consider costs for
service initiation, but costs are related to lost capacity. Capacity is lost
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when the second server becomes idle, while the first queue is not empty.
Alternatively, the model in [83] charges costs for abandonment due to
impatient customers in a batch service queue. In our model, the adverse
effect of being delayed in the first queue is indirectly penalised by the
fact that the second queue may idle unnecessarily.

In this chapter, we outline the two versions of the controllable tandem
model and their structural properties. Such a model can be seen as a
first step towards optimisation of driving times under uncertainty. A
next step would be to investigate steps such as sequential optimisation,
where the outflow of a single instant of the tandem system is determined
by the policy of the upstream tandem system, thereby connecting the
impact of each policy in a network setting.

In the remainder of this chapter, we introduce the notation for the
on/off server in Section 2.2, denoted as the single service model, and
introduce the structural properties leading from this model formulation.
In Section 2.3 we introduce the extension to the batch service model,
followed by its structural properties. This chapter is a prelude to
Chapters 3 and 4 in which a fixed threshold approximation and a
dynamic threshold approximation are developed. These approximations
are developed to, (1) gain insights into the necessity of an optimal
strategy compared to a near-optimal strategy for specific parameter
choices, and (2) allow for extensions to larger or more complex systems
that otherwise are computationally demanding or even become infeasible.

2.2 Single service model

2.2.1 Model description

Our model consists of two queues in tandem. As alluded to before, the
second queue represents the actual service facility (e.g., distribution
centre, production plant or assembly line), whereas the first queue serves
as a temporary buffer to alleviate congestion in the second queue. For
analysis purposes, we assume that jobs arrive at the first queue according
to a Poisson process with rate λ and jobs can be processed at rate µ1.
After service in the first queue, jobs proceed to the second queue, for
which the service rate is denoted by µ2. For stability, we assume that
λ < µ1 and λ < µ2.
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Figure 2.1. Graphical representation of the tandem queue with an on-off
controlling mechanism.

To control the number of jobs at the second station we introduce a
binary decision at the first station, depicted in Figure 2.1. The control
mechanism may be interpreted as an on/off switch at the first station
with two states: 0 or 1. State 0 represents a service rate of 0, i.e., all
jobs waiting at the first station will be blocked for service. State 1
represents the situation where each job at station 1 is served at rate µ1
and continues to stage 2.

To formulate this as an optimisation problem we introduce constant
waiting costs cwait, which are incurred per job and per unit of time. Jobs
queueing at the second station encounter additional costs indicated by
cloc which, in our introductory example, represents the costs of residing
in the distribution area per unit of time. Thus, the total cost at the
first station is c1 = cwait per job per unit of time, and at the second
station it is c2 = cwait + cloc per unit of time. Naturally, it follows that
0 < c1 < c2. Due to larger costs at station 2, it is more advantageous to
hold customers in queue 1 rather than in queue 2. However, one should
avoid an empty station 2 when station 1 still has a backlog. We seek an
efficient trade-off between these two effects.

We formulate the problem as an MDP. The system will be observed at
epochs of arrivals and service completions, i.e., in discrete time. We
use uniformisation to discretise the Markov chain as described by Lipp-
man [92]. Our discrete-time MDP consists of the quadruple {S,A,P, C}.
S represents the state space of the system, and is defined as i = (x1, x2) ∈
N

2, where xk is the number of jobs at stations k = 1 and k = 2, re-
spectively. A represents the action space, i.e., the set of actions that a
decision maker can take. In this problem, A = {0, 1} represents either a
blocked or an unblocked first server, respectively. Action 0 blocks service
at station 1, i.e., no jobs can move from station 1 to station 2. For action
1 jobs are served at the first station at rate µ1 and then move from
station 1 to station 2. P contains the transition probabilities from state
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2.2 Single service model

i to state j for action a ∈ A; these can be written as pa(i, j). Finally,
C denotes the cost function and will be written as ca(i) which is the
expected cost per unit of time for each state i = (x1, x2) ∈ S and action
a ∈ {0, 1}.

An optimal strategy satisfies Bellman’s equation [9, 116]:

V ∗(i) + g∗ = min
a∈A

{
ca(i) +

∑
j∈S

pa(i, j)V ∗(j)
}
for i ∈ S, (2.1)

where g∗ and V ∗(i) give the optimal average reward and relative value
function. The decision rule can be determined by:

f(i) = argmin
a∈A

{
ca(i) +

∑
j∈S

pa(i, j)V ∗(j)
}
for i ∈ S, (2.2)

where V ∗(j) satisfies V ∗(i) + g∗ = cf (i) +
∑
j∈S p

f (i, j)V ∗(j). Note the
slight abuse in notation in writing cf (i) and pf (i, j) instead of cf(i)(i)
and pf(i)(i, j) as we should have according to our earlier notation. Our
goal is to minimise the long-term average cost and determine an optimal
decision for each state.

To determine the optimal strategy in our tandem queue we use Equa-
tion (2.2), where ca(i) for i = (x1, x2) is given by c1x1 + c2x2. Recall
that the cost c1 consists only of the waiting cost per job at station 1 and
c2 is a combination of the waiting costs and additional costs for station
2, and that we take 0 < c1 < c2.

The transition probabilities pa(i, j) are determined by the transition
rates in each state, applying uniformization as described by Lippman [92].
For action a = 1 (service in queue 1), we have for x1 ≥ 0 and x2 ≥ 0:
p1((x1, x2), (x1 +1, x2)) = λ/(λ+µ1 +µ2), p1((x1 +1, x2), (x1, x2 +1)) =
µ1/(λ+µ1 +µ2), and p1((x1, x2 +1), (x1, x2)) = µ2/(λ+µ1 +µ2). On the
boundary we have ‘dummy transitions’ leading to p1((0, x2 + 1), (0, x2 +
1)) = µ1/(λ+ µ1 + µ2), p1((x1 + 1, 0), (x1 + 1, 0)) = µ2/(λ+ µ1 + µ2),
and p1((0, 0), (0, 0)) = (µ1 + µ2)/(λ+ µ1 + µ2).

Similarly, when a = 0 (no service in queue 1), we have for x1 ≥ 0 and
x2 ≥ 0: p0((x1, x2), (x1 + 1, x2)) = λ/(λ + µ1 + µ2), and p0((x1, x2 +
1), (x1, x2)) = µ2/(λ+ µ1 + µ2). Now there can be no service in queue
1, giving p0((x1, x2 + 1), (x1, x2 + 1)) = µ1/(λ + µ1 + µ2). Finally,
the remaining transitions on the boundary are p0((x1, 0), (x1, 0)) =
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Chapter 2 Modelling Two-stage Systems with Sequential Processing

Figure 2.2. Illustration of the optimal actions for all states. Red indicates
blocking (jobs are not served in queue 1) and green indicates that jobs at server
1 are served at rate µ1.

(µ1 + µ2)/(λ+ µ1 + µ2).

We use Successive Approximation (SA) to calculate the optimal decision
for each state so as to minimize average costs:

Vn(i) = min
a∈A

{
ca(i) +

∑
j∈S

pa(i, j)V ∗n−1(j)
}
for i ∈ S, (2.3)

and

fn(i) = argmin
a∈A

{
ca(i) +

∑
j∈S

pa(i, j)V ∗n−1(j)
}
for i ∈ S. (2.4)

We initialise by V ∗0 (i) = 0 and continue until the following stopping
criteria is satisfied

max
i∈S

∣∣Vn(i)− Vn−1(i)
∣∣ < ε, (2.5)

for ε close to zero.

2.2.2 Structural properties

We start our discussion of the optimal strategy with a numerical illus-
tration for a particular example. Throughout, we will use c1 = 1 and
c2 = 3, meaning that jobs incur waiting costs of 1 per unit of time and,
only in queue 2, an additional location cost of 2 units. However, our
structural results hold for all values that satisfy 0 < c1 < c2.
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2.2 Single service model

First, we illustrate a dichotomy that occurs between the cases µ1 < µ2,
i.e., the first server serves jobs at a lower speed than the second server,
and the opposite µ1 > µ2. The two graphs in Figure 2.2 show the
optimal strategy for the MDP under these two settings. A red colour
indicates that it is optimal to block service at the first stage. The green
colour implies a system working at maximum service speed at both
stages. We observe that in both cases, the optimal action is prescribed
by a so-called switching curve separating the green area from the red
area. The shapes of the switching curves in the two graphs are a bit
different. On the left, the curve eventually grows with a constant slope
(this will be explained below), whereas the graph on the right flattens
for larger values of x1. This difference appears to be fundamental to the
two chosen parameter sets: one where the first server is slower than the
second, and the opposite case. We will discuss this in more detail below.

To have a better understanding of the dynamics of the system operating
under such a switching curve, we include the drift and trajectory diagrams
displayed in Figures 2.3 and 2.4 as explained in [53]. Irrespective of the
shape of the switching curve, the drift above the curve is positive in
the horizontal direction (due to arrivals at rate λ) and negative in the
vertical direction (by departures from the second queue at rate µ2). Note
that because of the stability condition λ < µ2, the horizontal component
of the drift is smaller than that in the vertical direction, but that is
irrelevant for our discussion here. Below the curve, the horizontal drift
changes sign and has magnitude µ1 − λ, which is positive due to the
stability condition λ < µ1. In the vertical direction, the drift is µ1 − µ2.
Here we observe a distinction between the case µ1 < µ2 in Figure 2.3
and the case µ1 > µ2 in Figure 2.4. In the first case (µ1 < µ2), we
obtain a negative vertical drift and a corresponding direction toward
the horizontal axis. If µ1 > µ2, the vertical drift is positive and the
trajectory is directed toward the switching curve from both sides.

We now return to Figure 2.2. The graph on the left suggests a close
approximation of the switching curve by a linear function with a positive
intercept at the vertical axis. The graph on the right rather suggests
an approximation by a horizontal line. The difference in behaviour
can be explained by the parameter choice. The linear increasing curve
is the effect of a larger service capacity at the second stage, µ1 < µ2.
Intuitively, an optimal strategy must aim at avoiding an empty queue
2, when there are jobs in queue 1. The undesirable states are therefore
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Figure 2.3. An illustration of the drift above and below the switching curve
(left graph) and a typical trajectory (right graph); µ1 < µ2.
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Figure 2.4. An illustration of the drift above and below the switching curve
(left graph) and a typical trajectory (right graph); µ1 > µ2.

located on the horizontal axis. If µ1 < µ2, the first queue cannot ‘catch
up’ with the second queue, and therefore, it should always provide
sufficient inflow for queue 2 even at large system states. To further
explain this, we refer to Figure 2.3. The typical trajectory leads to
the horizontal axis, which is the set of undesirable states. The linearly
increasing switching curve avoids that the horizontal axis is hit at a
very large level. When µ1 > µ2, the first server can catch up with the
second server, because it serves at higher speed, thereby decreasing the
probability of starvation of the second stage. All trajectories lead to
the switching curve and then continue along the switching curve toward
the origin. Hence, the size of the second queue can be maintained at
a low level, and consequently, the switching curve flattens for larger
levels of the first queue. This fundamental difference leads to a likewise
fundamentally different analysis of these two cases.
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2.2 Single service model

The first case, µ1 < µ2, has been investigated in [7] using a fluid
approximation. In this approximation, the random trajectories are
replaced by deterministic ones, characterised by their (expected) drifts.
The fluid approximation can be shown to be the exact limit of the
stochastic process under an appropriate scaling. The limiting fluid
process can be shown to have an optimal linear switching curve, which
translates into the optimal action for large system states, but lacks
information about the optimal strategy near the origin. As we have
observed, at the origin, the optimal switching curve for the stochastic
model has a vertical offset. That offset can be approximated using
perturbation methods [7], and turns out to give a good representation
of the optimal strategy.

Unfortunately, this method does not work when µ1 > µ2, which is
the more relevant setting for many of our motivating applications. For
example, the ‘buffer’ location for the distribution centre will likely not be
located far from the distribution centre, which corresponds to relatively
large values of µ1. The above fluid approximation applied to µ1 > µ2
gives a switching curve that lies on the horizontal axis which suggests
that the first server should never be operated. This is well explained
by the sub-linear shape of the switching curve in the right graph of
Figure 2.2. On a linear scale, this graph vanishes for large system states.

Therefore, we set out to obtain an approximate analysis for the case
µ1 > µ2. Theoretically, it can be seen that the switching curve still
increases indefinitely, albeit at a sub-linear pace. The flat shape, however,
implies that over large ranges of buffer levels in queue 1, the optimal
action switches at a common buffer level of queue 2. This suggests that
the optimal switching curve may well be approximated by a horizontal
line, i.e., that a fixed threshold-based strategy should be close to optimal.
Obtaining the optimal threshold value from the Bellman equations is
computationally hard. Therefore, in Chapter 3 we use a matrix-geometric
analysis [105] to compute the best threshold value and compare it to the
optimal strategy. An alternative method to approximate near-optimal
threshold values for the discounted reward MDP was developed in [100,
p.439-441]. Unfortunately, when applied to the average reward problem
(under the usual limiting argument for discounted reward models [116,
Chapter 8.2.2]) the threshold value becomes equal to infinity. For the
purpose of this dissertation, our focus lies on an approximation for the
average reward case. Alternatively, the authors of [52] approximate the
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Figure 2.5. Graphical representation of the tandem queue with batch service
in the first queue.

curve using a large-deviations analysis. In that scaling, they obtain an
asymptotically optimal switching level.

2.3 Batch transition model

2.3.1 Model description

We now extend the model allowing for batch services in the first queue.
To recall that processing multiple jobs at the first server to prevent
starvation at the second server is a logical choice for various applications
of this model. To clarify in what ways this model extends the previous
one, we will describe it while referring to the details of the first model.
To gain an understanding of the new model a graphical representation
is shown in Figure 2.5. Compared to Figure 2.1 we can see that the first
queue is serving N jobs in one single service instead of handling jobs
individually.

To allow the first queue to serve in batches we extend the action space
from {0, 1} to {0, . . . , x1} when the number of jobs in the first queue is
x1 (the set of possible actions is thus dependent on the current state).
The value of a corresponds to the chosen batch size, which is naturally
limited by the number of jobs in the first queue, and the processing
rate µ1 is independent of the batch size. Next, we adapt the transition
probabilities described in Section 2.2. For i = (0, 0) we have

pa(i, j) =
{

λ
λ+µ1+µ2

if j = (1, 0)
µ1+µ2

λ+µ1+µ2
if j = (0, 0)

, (2.6)
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and for i = (x1, x2) 6= (0, 0)

pa(i, j) =


λ

λ+µ1+µ2
if j = (x1 + 1, x2)

µ1
λ+µ1+µ2

if j = (x1 − a, x2 + a) for a ∈ {0, . . . , x1}
µ2

λ+µ1+µ2
if j = (x1, x2 − 1) or i = j = (x1, 0)

. (2.7)

For this system, there is always a strategy that is stable as long as
λ < µ2, irrespective of the value of µ1 > 0. This is obvious, since we can
always choose to serve all jobs in queue 1 in a single batch, no matter
how many there are. Different from the single service model, there will
be no clear distinction between the cases µ1 > µ2 and µ1 < µ2, because
the first station is always able to ‘catch up’ with the second station,
even for µ1 < µ2. In the batch transition model, we will see that the
switching curve typically flattens for larger x1 values as is illustrated in
Figure 2.6. More details on this figure will be given when we investigate
the structural properties of the batch service model.

Figure 2.6. Output of the MDP for the batch service model for parameter set
λ = 4, µ1 = 2 and µ2 = 6. The colours in the Figure specify the optimal batch
size for each state. In the legend this value is specified, where red is zero and
the batch size increases for brighter shades of blue.
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2.3.2 Structural properties of the batch service model

We apply similar numerical calculations to show the main structural
properties of the batch service model, and compare these with the single
service model. For the single service model, recall that the state space
is divided into two regions depending on the optimal decision. For the
batch transition model, similar shapes are encountered when grouping
states with the same optimal decision. In Figure 2.6 states coloured
in red correspond as before to blocking of service at the first queue.
The next layer corresponds to states in which the optimal batch size
is one, then we have states with an optimal batch size of two, etcetera.
The figure suggests that the optimal trajectories of the process are near
the curve dividing red from green coloured states. In this numerically
obtained graph, the shape of this curve is again sub-linear. Note once
more that this shape is not restricted to particular parameter settings, as
was the case in the single model where the sub-linear shape corresponded
to the choice µ1 > µ2. The larger jumps now allow the system to move
to the switching curve in one step from any state.

Although this is rather difficult to see from Figure 2.6, we observe that
the optimal strategy can again be characterised by the single switching
curve separating the red states from all others. Given the total number
of jobs in the system, say x1 + x2 = N , the optimal action is to serve a
jobs in the first queue such that (x1 − a, x2 + a), which also has N jobs
in total, is on the switching curve. Should this value of a be negative
(this happens when (x1, x2) is in the red area), then no jobs should be
served in the first queue.

A graphical representation of the optimal transitions can be seen in
Figure 2.7 for two different values of the total number of jobs in the
system: N = N ′ and N = N ′′. All states on a diagonal x1 + x2 = N
‘point’ to the same destination state at the intersection of this line and
the switching curve.

Determining the optimal policy of both the single server and the batch
server can become computationally demanding, when these are extended
to more complex settings. Examples of such settings are: Adjustments
in the cost function, the service distribution is fitted by a phase type
distribution, or when the system is extended to a network of tandem
queues. The numerical results suggest that the optimal policy shows the
potential for approximation methods that either approximate the policy
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x2 Switching curve

(x1= N′′−4, x2=4)

(x1= N′−2, x2=2)

Figure 2.7. A graphical representation of the optimal batch size for two
examples.

by a threshold level or approximate the structure of the optimal policy.
Both options are investigated in Chapters 3 and 4, respectively.
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Chapter3Tandem Queue with Fixed
Threshold Strategies

In this chapter we provide an approximation method for the control mod-
els introduced in Chapter 2 in order to obtain a near-optimal threshold
policy. We propose an effective mathematical analysis based on a matrix-
geometric solution for calculating stationary probabilities. This method
enables us to compute the relevant stationary measures efficiently and
determine an optimal choice for the threshold value. In some of our
target applications, it is more realistic to see the first queue as a (con-
trollable) batch-server system. We follow a similar approach as with the
first model and specify the computation for the near-optimal threshold
policy with batch services.

We find that this method is most appropriate for applications where the
system has a low to moderate load and where the policy consists of a
fixed threshold strategy1.

1This chapter is based on [S1].
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3.1 Introduction
In this chapter, we propose an approximation technique for calculating
the best threshold value in order to reduce the computational effort of
the models described in Chapter 2. This method uses matrix-geometric
analysis as described in [105]. Various papers, such as [40], have previ-
ously applied this method to speed up computation. The exposition in
[84] for a tandem queue similar to ours is particularly relevant to develop
our approximation, as it gives an explanation of the blocks which are
necessary to capture the details of our model.

In Chapter 2 we introduced two types of tandem queue models. The first
is referred to as the single service model, which is a well-known model
and its structural properties have been studied in [122]. The second
type is referred to as the batch model. In this chapter, we approximate
the batch model in the same manner as the single service model. The
extension of the matrix-geometric method for use in the batch model
follows along the same lines as [104]. This reference focuses on a system
which requires a minimum batch size to initiate service, and additionally,
service can be granted up to a predefined maximum batch size. In
various other papers optimal batch sizes are determined via a trade-off
between startup costs for service and costs per unit time for jobs in the
system (see, e.g., [28],[145]). Our model, however, does not have startup
costs for batch service. We determine the optimal batch size leading to
an optimal threshold level based on properties arising from the MDP
formulation.

The remainder of this chapter is structured as follows. In Section 3.2 we
set out with a short review of the models explained in Chapter 2. We
then turn our attention to determine the best choice for the threshold
value using matrix-geometric analysis techniques for both the single
service and the batch service mode in Section 3.3. In Section 3.4 we
numerically study the appropriateness of the proposed strategies for
both models. We conclude this chapter in Section 3.5.

3.2 Model description
In this section, we give a short recap of the two models introduced
in Chapter 2, for which we introduce a fixed threshold approach to
approximate the optimal policy.
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3.2 Model description

Both models consist of two queues in tandem. Jobs arrive at the first
queue according to a Poisson process with rate λ, jobs can be processed
at the first server at rate µ1. After this service, jobs proceed to the
second queue, for which the job is processed at rate µ2. In the first
model, referred to as the single service model, only one job at a time
is served at station 1. For the second model, called the batch model,
multiple jobs are served simultaneously without affecting the service
duration. For both models, jobs are processed individually at the second
station.

Jobs are penalised by inducing costs per unit of time in the system.
There are waiting costs at the first station, denoted by c1 = cwait per job
per unit of time, and at the second station we have waiting costs and
additional location costs, c2 = cwait + cloc per unit of time. Naturally,
we have 0 < c1 < c2. Due to larger costs at station 2, it is more
advantageous to hold customers in queue 1 rather than in queue 2.
However, one should avoid an empty station 2 when station 1 still has a
backlog. We seek an efficient trade-off between these two effects.

The costs of jobs in the system are minimised, by means of a control
mechanism at the first station. This control mechanism encompasses
two states: 0 and 1. State 0 represents a service rate of 0, i.e., all jobs
waiting at the first station will be blocked for service. State 1 represents
the situation where job(s) at station 1 are served at rate µ1 and continue
to station 2. To determine the optimal strategy as to minimise these
costs, a formulation in terms of an MDP is introduced. The system
will be observed at epochs of arrivals and service completions, i.e., in
discrete time.

The discrete-time MDP is formulated by the quadruple (S,A,P, C). The
first element, S, represents the state space of the system, defined by
i = (x1, x2) ∈ N2, xk represents the number of jobs at stations k = 1
and k = 2, respectively. The second element, A, represents the action
space, i.e., the set of actions that a decision maker can take. In this
problem, A = {0, 1} denotes the action space for the control mechanism.
Subsequently, the third element P contains the transition probabilities
from state i to state j for action a ∈ A; these are written as pa(i, j).
Finally, C denotes the cost function and will be written as ca(i) which is
the expected cost per unit of time for each state i = (x1, x2) ∈ S and
action a ∈ A. The action space of the single server model is denoted by
{0, 1}, whereas the action space of the batch model is {0, . . . , x1}. We
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refer to Chapter 2 for more details on the computation of the optimal
strategy and the structural properties of the policy.

3.3 Approximation method

This section describes the approximation methods for the controllable
tandem queues for single and batch services, subsequently.

3.3.1 Matrix-geometric method with single service

We have argued that for the case µ1 > µ2 the optimal switching curve
can perhaps be well approximated by a horizontal line. In order to
compare the effectiveness of such fixed-threshold strategies, we set out
to determine the relevant performance measures as functions of the
threshold parameter K and then determine the best value of K. In
this section we show that the resulting model falls into the class of
Quasi-Birth-Death (QBD) processes that allow for a matrix-geometric
solution. To cast our model into the framework of [105], we partition
the state space into levels and phases, resulting in the generic structure
of the generator matrix displayed in Equation (3.1). In our model, each
level will correspond to a fixed number of jobs in the first queue, and
the phase within a level represents the number of jobs in the second
queue. Thus, the generator matrix can be written in the block form
of Equation (3.1) below. Transitions between blocks correspond to a
change in level (queue 1) and transitions within a block represent a
change in phase (queue 2). The number of levels is therefore unbounded
and the size of the block matrices (corresponding to the number of
phases) is K + 1, where K is the fixed threshold level.

Formally, the state space can be described by S = {(x1, x2) : x1 ∈
Z+, 0 ≤ x2 ≤ K}. The level index x1 denotes the number of jobs at
station 1 and x2, the phase index, represents the number of jobs at
station 2. The maximum number of jobs at station 2 is now bounded by
the threshold K.
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The generator matrix Qsingle for this system is given by:

Qsingle =



B0 Λ 0 0 0 0 · · ·
M D Λ 0 0 0 · · ·
0 M D Λ 0 0 · · ·
0 0 M D Λ 0 · · ·
0 0 0 M D Λ · · ·
0 0 0 0 M D · · ·
0 0 0 0 0 M · · ·
...

...
...

...
...

... . . .


. (3.1)

In this representation, all blocks are square matrices of order K + 1,
and M +D + Λ is a generator of a K + 1 dimensional Markov process
that follows the transitions of the second queue, conditioned on a non-
empty first queue. The stability condition is given by Neuts’ mean drift
criterion [105]. We define π to be the equilibrium distribution of a
Markov process with generator M +D + Λ:

π(M +D + Λ) = 0, where πe = 1, (3.2)

where e is a K + 1 dimensional vector with all entries equal to 1. The
process with generator Qsingle is stable if and only if πMe > πΛe, i.e.,
the drift to higher levels should be strictly less than the drift to lower
levels to guarantee the stability of the system. For a fixed threshold
level K the blocks are defined as follows:

B0 =



−λ · · · · · · · · · 0

µ2 −a1 · · · · · ·
...

... . . . . . . . . . ...

...
... µ2 −a1

...
0 · · · · · · µ2 −a1


, Λ =



λ · · · · · · · · · 0
... λ · · · · · · · · ·
... . . . . . . . . . ...
... · · · · · · λ

...
0 · · · · · · · · · λ


,
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with a1 = λ+ µ2, and

D =



−a2 · · · · · · · · · 0
µ2 −a2 · · · · · · 0
... . . . . . . . . . ...
...

... µ2 −a2 · · ·
0 · · · · · · µ2 −a1


, M =



0 µ1 · · · · · · 0
... · · · µ1 · · ·

...
... . . . . . . . . . ...
... · · · · · · · · · µ1
0 · · · · · · · · · 0


,

with a2 = λ+ µ1 + µ2.

The repetitive block structure implies a matrix-geometric form for the
stationary probabilities corresponding to Qsingle. Defining the K + 1
dimensional vectors πi = (πi0, . . . , πiK), where πx1 x2 is the stationary
probability of having x1 jobs in the first and x2 jobs in the second queue.
The balance equations are defined as

πi−1Λ + πiD + πi+1M = 0 for i ≥ 1, (3.3)

and we can write

πi = πi−1R→ πi = π0R
i, (3.4)

where the matrix R is the minimal non-negative solution to the following
quadratic matrix equation:

R2M +RD + Λ = R. (3.5)

Via iteration, we may determine R (there are alternative and more
efficient routines, see [85]). Once we have determined a solution for R,
we can include the boundary conditions. It then remains to compute π0
via the remaining boundary equation:

π0B0 + π1Λ = 0. (3.6)

For a unique solution we impose the normalization condition that the
probabilities sum to 1. This gives

π0e +
∞∑
i=1

π0R
ie = 1, or equivalently, π0(I −R)−1e = 1. (3.7)

In order to compute the cost function, we determine the average queue
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length for both queues by

E[X1] = π0R(I −R)−2e
E[X2] = π0(I −R)−1J

,

where X1, X2 ∈ N are random variables representing the queue length
distribution of station 1 and 2, respectively, and J is the column vector
(0, 1, . . . ,K − 1)T .

To determine the optimal threshold, we minimise costs over all possible
values of K by

min
K∈N
{π0(I −R)−1(c1R(I −R)−1e + c2J)}. (3.8)

Now we are able compute the best threshold level with respect to the
costs and compare it to the MDP policy. From now on, we will refer
to this policy as the ‘optimal threshold’ policy, not implying that this
policy is the overall optimal, but rather that it is optimal among the
threshold policies. Determining the optimal threshold is computationally
far less demanding than finding the optimal strategy using the MDP
approach.

3.3.2 Matrix-geometric method with batch service

Similar to the case µ1 > µ2 in the single service model, we wish to
approximate the (sub-linear) switching strategy with a horizontal line,
thereby implementing a threshold-based strategy with, say, threshold
value K. This model falls into the class of GI/M/1 type Markov chains
that admit a matrix-geometric solution for the stationary distribution.
Note that for a fixed threshold value the condition λ < µ2 is not sufficient
for stability. For sure, the system cannot be stable if λ ≥ Kµ1, because
Kµ1 is the maximum rate at which jobs can be pushed from the first
station. The additional condition λ < Kµ1 is necessary, but certainly
not sufficient either. The precise stability condition can be shown to be

λ < µ1

(
K

(
µ2

µ1 + µ2

)K
+
K−1∑
k=1

k
µ1

µ1 + µ2

(
µ2

µ1 + µ2

)k)
. (3.9)
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This can be obtained by interpreting the right-hand side of this inequality
as the exact departure rate from the first station if that station were
saturated (i.e., starting with infinitely many jobs in station 1). We do
not make this precise here, as this equation can be obtained from Neuts’
mean drift condition.

To define the batch transition model in matrix-geometric form extra
blocks must be added into the generator matrix, that allow for the larger
transition jumps. Recall from the structural properties of the batch
model discussed in Chapter 2 that the batch size can be derived from
the switching curve, effectively redistributing the total number of jobs
over the two queues (with the obvious limitation that no jobs can be
moved from the second to the first queue).

The generator matrix Qbatch now has the following structure:

Qbatch =



B0 Λ 0 0 0 · · · · · ·
B1 D Λ 0 0 · · · · · ·
B2 M1 D Λ 0 · · · · · ·
...

... . . . . . . . . . . . . · · ·

BK−1 MK−2 MK−3 · · · · · · . . . · · ·

BK MK−1 MK−2 · · · · · · . . . · · ·

0 MK MK−1
. . . . . . · · · · · ·

... . . . . . . . . . . . . . . .



. (3.10)

The 0th level of the process represents the boundary states, comparable
to the single service model. The matrices B0, Λ and D remain equal
to the ones in Equations (3.3) and (3.6). The block matrices below
the diagonal must be adapted to account for the batch services. The
matrices Bk, for k = 1, 2, . . . ,K, correspond to transitions for which the
first queue is emptied. This is only possible when there are 1 up to K
jobs in the first queue, and the second queue has sufficient space left to
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accommodate the batch size

B1 = M =



0 µ1 0 · · · 0

0 0 µ1 0
...

... . . . . . . . . . 0
0 · · · · · · 0 µ1
0 · · · · · · · · · 0


,

B2 =



0 0 µ1 · · · 0

0 0 0 µ1
...

... . . . . . . 0 µ1

... · · · · · · · · · 0
0 · · · · · · · · · 0


, . . . ,



0 · · · · · · 0 µ1
0 · · · · · · 0 0
... . . . . . . . . . ...
... · · · · · · · · ·

...
0 · · · · · · · · · 0


= BK .

The transitions corresponding to batch services that do not lead to an
empty first station are grouped in the matrices Mk, for k = 1, 2, . . . ,K

MK = BK ,

MK−1 =



0 · · · · · · 0
0 · · · 0 µ1
0 · · · · · · 0
... . . . . . . ...
0 · · · · · · 0


, . . . ,



0 · · · · · · 0
... . . . . . . ...
... . . . . . . 0
0 · · · 0 µ1
0 · · · · · · 0


= M1.

From Neuts’ mean drift criterion [105] we obtain the stability criterion
in (3.9). Similar to the single service model we now define π to be the
equilibrium distribution of a Markov process with generator Λ + D +∑K
k=1Mk:

π(Λ +D +
K∑
k=1

Mk) = 0, where πe = 1. (3.11)

The process with generator Qbatch is stable if and only if the drift
condition π

∑K
k=1Mke > πΛe is satisfied.

Again, following [105], the stationary distribution has a matrix-geometric
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structure πi = π0R
i, for i = 1, 2, . . . , where the matrix R is the minimal

non-negative solution of

Λ +RD +
K∑
k=1

Rk+1 ·Mk = 0.

The boundary equations now read

π0

K∑
k=0

Rk ·Bk = 0,

and the normalization condition is

π0

∞∑
k=0

Rk · e = π0 · (I −R)−1 · e = 1.

Again, by computing the stationary distributions for varying values of
the threshold K, we may determine the best value of the threshold in
terms of the average cost as we did for the single service model using
(3.8). Finally, we compare this result with the optimal MDP policy.

3.4 Simulation experiments
In this section, we illustrate the effectiveness of the threshold policies,
obtained using the matrix-geometric representation, with the optimal
strategies from the MDP formulation. For our comparison, we will
compute both classes of strategies, although for the threshold strategies
the reported results can also be directly obtained after computing the
stationary distribution.

In Figure 3.1 the costs and the average queue lengths are plotted for
varying service rate µ1 at station 1. We observe that the performance
of the best threshold policy is almost identical to that of the optimal
MDP policy. The right-hand graph also shows that the two policies
are very close to each other in terms of the average queue lengths. The
discontinuities in the curves corresponding to the threshold policies
correspond to parameter choices where the optimal threshold value shifts
by one. As can be expected, the discontinuities for the MDP policies are
much less pronounced, as the optimal switching curve may shift only for
a small number of states.
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Figure 3.1. Comparison of the optimal MDP policy model and the threshold-
based MG approximation for the single service model for varying service rate
µ1. The parameters are λ = 3, µ1 ∈ [4, 8] and µ2 = 6.

For the batch service model, the simulation results of the MDP and the
threshold strategies are reported in Figure 3.2. We may now take µ1
to be smaller than λ without compromising the stability of the optimal
policy as long as condition (3.9) is satisfied.

We again observe a remarkable fit in terms of costs, for almost all values
of the service rate at the first station. As could be expected, the costs
are lower compared to the single service model. As for the queue lengths,
we observe that the batch service mode allows to keep the first station
at lower levels, but the queue lengths at the second station remain at
roughly the same level. For now, we defer further comparisons between
the models with and without batch services and focus on comparisons
between the MDP and the threshold strategies. Due to the jumps in
service mode, the costs of the threshold policies are much less smooth
than in Figure 3.1 and the optimal mean queue lengths oscillate more for
larger values of µ1. Indeed, changing the threshold value by one has a
much larger impact on the resulting policy (that aims to bring the queue
length back to the horizontal switching curve in a single service run).
The strong fluctuations in queue length make it all the more surprising
that the costs of the best threshold policy remain close to those of the
optimal MDP strategy.

We have now compared the rightfulness of the approximating threshold
strategies. Next, we compare the gain of having batch service in the first
station. In Figure 3.3 the best threshold values are determined, again for
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Figure 3.2. Comparison of the optimal MDP strategy and the threshold-based
approximation for the batch service model for varying service rate µ1. The
parameters are λ = 3, µ1 ∈ [1, 8] and µ2 = 6.
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Figure 3.3. Comparison of optimal threshold strategies for the single service
and batch service model for varying service rate µ1. The parameters are λ =
3, µ1 ∈ [1, 8] and µ2 = 6.

increasing service rate µ1 at station 1. The single service model is not
stable for λ ≥ µ1. We observe that the threshold strategies only perform
badly in the single service model when the system approaches instability.
For a large range of values with µ1 < µ2, the single-service threshold
strategy performs almost as well as the batch-service threshold strategy,
although in that case the optimal switching curve for the single-service
model has a rather steep (linear) ascent. It is quite surprising that the
costs are comparable for the two models, as long as µ1 does not approach
the stability limit (i.e., remains > λ). The optimal threshold levels do,
naturally, differ: that of the single service model is considerably larger
than in the batch service model (as could be expected).
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K Single service Batch transition Single service Batch transition
λ = 4, µ1 = 5, µ2 = 6 λ = 4, µ1 = 7, µ2 = 6

3 - 18.39 13.04 7.34
4 50.17 7.16 7.20 6.00
5 14.01 6.87 6.75 6.19
6 11.23 7.06 6.78 6.47
7 10.42 7.29 6.90 6.70
8 10.12 7.47 7.00 6.87
9 10.00 7.61 7.10 6.99
10 9.96 7.71 7.17 7.07
11 9.95 7.78 7.22 7.12
12 9.96 7.83 7.25 7.16

Table 3.1. Comparison of the costs of single and batch services for various
threshold levels K.

Table 3.1 shows the costs for the two models for various threshold levels.
The results show that the batch transition model performs better for all
threshold levels, also non-optimal levels, but the difference is not very
pronounced. The main advantage of the batch-service model is that the
costs are not that sensitive to the exact value of the threshold. For the
single-service model, the costs are much more sensitive and small errors
in the threshold value may lead to considerable loss of efficiency.

3.5 Conclusion

We have investigated the optimal control of the number of jobs in an
expensive service station by regulating the flow from a preceding buffer
station. We started by determining the optimal control policy using an
MDP formulation. The optimal strategy can, in general, be characterised
by a switching curve. The shape of this curve is determined by whether
or not the first station has a larger service rate than the second. If
so, the optimal switching curve is rather flat, otherwise, it increases
approximately linearly. When the optimal switching curve is rather flat,
it can well be approximated by a horizontal one, which corresponds
to a fixed threshold strategy. Besides their practical relevance due to
the simplicity of implementation, threshold-based strategies have the
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advantage that they allow a much more detailed analysis. By casting
a threshold based control into the framework of Markov models with
a matrix-geometric stationary distribution, we can efficiently compute
the best threshold level. For this ‘optimal’ threshold level, we indeed
verified that it performs very closely to the optimal MDP strategy under
medium loaded systems. However, when the load of the system increases,
the performance gap between the MDP strategy and the approximation
increases. Under heavily loaded systems the structure of the optimal
policy becomes more important. We address this issue in the next
chapter.

For some of our motivating examples, the ‘feeding’ process from the
buffer station need not necessarily be done by individual jobs only. It is
quite natural to allow multiple jobs to be served in a single service run
from the first station. For this model, we again formulated and studied
the corresponding MDP and established that the optimal switching
curve always has a flat shape, irrespective of the speed of the servers.
Again, threshold-based strategies were shown to be much more efficiently
solvable, and have close to optimal performance.

Surprisingly, the best single-service threshold and the best batch-service
threshold policies were found to give comparable performance, unless
the single-service threshold policies were near their stability limit (the
arrival rate being near the service rate of the first station). In the latter
case, batch-service threshold strategies profit from their larger stability
region. Due to the ability to serve an arbitrary large number of jobs at
once, the length of average service time at the first station can become
larger without affecting the performance. This advantage could be used
for instance to place the hub for trucks at a cheap location far from
the costly distribution centre with a minor risk of starvation of the
distribution centre. Moreover, the insensitivity assumption of the service
time for the size of a batch is of negligible influence when these trucks
consists of only a small percentage of total road capacity.

Our results also translate into practical design rules. First of all, the
simplicity of threshold-based rules makes them much easier to implement
in practical scenarios. Note that the optimal switching curve policy
requires to operate a different threshold level depending on the load in
the first station.

A further insight is that for single service mode at the first station, it is
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important that the service rate in that station is large enough (preferably
larger than, or at least comparable to that at the second station). When
applied to the distribution centre setting of Chapter 2, this implies that
the parking facility should not be too far from the distribution centre. In
fact, travel time between the two should be smaller than, or comparable
to, the unloading time at the distribution centre. If multiple jobs can
be simultaneously transferred between the two stations, the distance is
not a major issue. In that case, performance is rather insensitive to the
service speed in the first station (unless that speed is very low).
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In this chapter, we continue our investigation of the controllable tandem
queue systems of Chapter 2. To overcome the computational burden
of the matrix-geometric approximation of Chapter 3 for large loads,
we develop new approximations that are especially suitable when the
system is under heavy load. We use a fluid analysis approach for
which the first queue may contain a large number of jobs, while the
‘critical’ second queue remains of moderate size. The randomness in the
second queue determines the fluid dynamics at the first queue. This
fluid-based approach results in two heuristic strategies that provide
excellent approximations for a broad range of parameter values, while
the computation time is quite insensitive to the system load. Numerical
results demonstrate the accuracy of the approximation over a broad
range of parameter values1.

1This chapter is based on [S2].
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4.1 Introduction

We present the controllable two-stage tandem queue as explained in
Chapter 2, where the first stage represents a storage buffer in which jobs
can be kept before being transferred to the second stage. The second
stage represents the service bottleneck for which we want to maintain a
small number of waiting jobs. It is assumed that the buffer at the first
stage is large enough so that it is reasonable to model it with infinite
storage capacity. Our main motivation for this model comes from road
traffic control, where one can avoid accumulation of traffic by reducing
the upstream traffic flow.

We seek an optimal trade-off between a reduction in the number of
jobs at the second stage on the one hand, and the additional delay
caused by keeping jobs in the first stage on the other hand. The
optimal point of operation is determined by minimisation of a cost
function that accounts for waiting time in the buffering stage as well as
waiting at the critical stage. Arrivals to this system are modelled by
a Poisson process, and service times at both queues are exponentially
distributed, which facilitates a formulation as an MDP. Solving the MDP
to optimality is often computationally prohibitively demanding. Our
main objective in this chapter is to develop two heuristic approaches
that closely approximate the optimal threshold strategy. In Chapter 3,
the approximation is based on the optimal threshold level, irrespective
of the current state of the system. In this chapter, we capture the full
structure of the threshold policy. Our heuristics will be based on the
analysis of a related controlled fluid model and provides intuition for
the optimal decision structure.

The proposed model is rather well understood for the single-service case,
in which the first server either serves a single job or idles. This setting
has been considered in [7, 75, 122, 143] and is the basis for our analysis
of the batch service model; these references are discussed in more detail
in Chapter 2.

In this chapter, most of our attention is dedicated to the batch service
model. The approximations we propose have natural counterparts for
the single-service tandem model as well. To avoid repeating discussions,
we will not derive these in detail, but on several occasions, we will briefly
refer to the similarities and differences between the two models, and we
will also use the single-service model to illustrate the applicability of our
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heuristics for non-exponential service times.

The remainder of this chapter is organised as follows: In Section 4.2 we
give a short recapitulation of the model, introduce the fluid formulation,
and give the formulation of the approximation methods. We illustrate
the accuracy of these approximations in Section 4.3, first for exponential
service durations, followed by a generalisation to phase type service
distributions. Finally, Section 4.4 contains conclusions and ideas for
further investigation.

4.2 Model description
In Chapter 2 we introduced two versions of a tandem queueing model
for which we found the optimal strategy by solving the MDP (using
successive approximation). We will reformulate these queueing models
as a fluid control problem so as to approximate the optimal strategy.

4.2.1 Model

For a description of the two models that we consider in this chapter, we
refer the reader to Chapter 2 (complete description), or to Chapter 3
(short description). In short, we consider a tandem queue model as
introduced by [122], where the rate of the server at the first station can
be controlled. The first model considers the version described in [122],
whereas the second model is an extension that allows for controllable
batch processing. We apply fluid scaling to the first queue, while pre-
serving the queueing behaviour at the second queue. This approach is
motivated by the earlier observation that the optimal switching curve is
rather flat, see Figure 2.4 in Chapter 2 above.

The scaling that we use is different from the standard fluid scaling as
first proposed in [76]. Since the second queue is not scaled, it maintains
its stochastic nature. This randomness is of a different nature than that
described in [49] for a model with two queues, where the trajectories of
the fluid-scaled components are random. Our scaling is also different
from those in the batch-service model of [18]. Their first scaling is the
standard one of [76] and in the second the batch sizes are scaled, so that
the limiting fluid model has jumps.

Our scaling is closest to that described by Robert [121, Chapter 9.6].
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In that work, however, the unscaled components have stationary distri-
butions that do not depend on the position of the scaled components.
In our case, the conditional distribution of queue 2 (the unscaled com-
ponent) depends on the position of the fluid-scaled size of queue 1. In
this chapter, we do not formally prove the convergence of the scaled
stochastic process to the proposed fluid model, as was done in [121].
Instead, we propose the approximation by investigating local dynamics
and illustrate the appropriateness through numerical experiments.

4.2.2 Fluid approximation

In this section, we explain the framework to obtain the fluid approxima-
tions.

Let us briefly recall the fluid limits in Avram [7] for the single-service
controlled tandem model. It turns out that for the case µ1 < µ2
the optimal strategy in the fluid model is determined by a linearly
increasing switching line, but that for µ1 > µ2, the switching line lies
on the horizontal axis. This can be understood from the flat, unscaled,
switching curve: in the fluid scaling, it is indistinguishable from the
x-axis. We, therefore, need a different scaling if µ1 > µ2, and the same
is true for the batch service model: For the first queue we can apply the
usual fluid scaling, but the second queue should remain unscaled.

Formally, the fluid limit for the batch service model is obtained as the
limit of a sequence of processes{(

X
(n)
1 (t), X(n)

2 (t)
)
, t ≥ 0

}
n≥1

,

indexed by n, which we take to be an integer, as n→∞. The sequence
is determined by the queue length processes of the first and second queue,
X1(t) and X2(t), respectively. Motivated by the observation from [7]
discussed above and justified by numerical experiments that show that
the optimal control policy indeed employs an asymptotically flat switch-
ing curve, we assume that there is a fixed constant K that uniformly
bounds the switching curve from above. Our later approximations of
the optimal policy are consistent with this assumption. Note that as a
consequence, X2(t) < K for all t. In the next construction of the fluid
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limit, we follow [121, Chapter 9.6] and define

X
(n)
1 (t) = 1

n
X1(nt),

X
(n)
2 (t) = X2(nt),

with initial condition X1(0) = n. Thus, the initial condition for the first
component is different for each process in the sequence. We will see
shortly that the initial condition for X2 is irrelevant. Note that for the
first queue we scale both space and time, while for the second queue,
which is uniformly bounded by the fixed constant K, we only scale time.
Assuming that it exists, the fluid limit for the first queue is now defined,
for t ≥ 0, as

x1(t) = lim
n→∞

X
(n)
1 (t).

Note that for any fixed t, the random sequence X(n)
2 (t) will converge

weakly as n→∞, with the limiting distribution depending on (the value
of the switching curve at) x1(t). Indeed, in the limit n → ∞, X(n)

2 (t)
instantly reaches the stationary distribution [121, Chapter 9.6] for each
fixed t. In turn, the direction of x1(t) will depend on the distribution

lim
n→∞

P
(
X

(n)
2 (t) ≤ x|X(n)

1 (t)
)
,

and in particular on its expectation which we denote by

x2(t) = lim
n→∞

E
[
X

(n)
2 (t)|X(n)

1 (t)
]
.

Note that for all n, E[X(n)
2 (t)|X(n)

1 (t)] is random due to the randomness
of X(n)

1 (t), but for very large values of n, it will be close to deterministic.

Recall that in the stochastic model, the optimal strategy is dictated by a
switching curve K(x) that gives the threshold value on the second queue
for given X1(t). If a batch moves from the first to the second queue at
time t, the process moves to the state (y,K(y)) on the switching curve,
with y such that y +K(y) = X1(t−) +X2(t−). The size of the batch is
X1(t−)− y.

Let us now specify the local dynamics of the fluid limit. Since K(·) is
assumed to be bounded, the size of the jump does not scale with n.
Therefore, the fluid limit for the first component will not show these
jumps. (See also the discussion in [18], where two different scalings
are distinguished, one of which has a fluid limit with jumps and the
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Figure 4.1. Graphical representation of X(n)
2 (t).

other does not.) In the limit n → ∞, the second component reaches
stationarity instantly for any value of the first component. In addition,
note that in the n-th system

(
X

(n)
1 (t), X(n)

2 (t)
)
the rate with which

batches move from the first to the second queue is nµ1. In the limit the
process x1(t) will decrease continuously, the speed of movement being
determined by the conditional distribution of the second component.

Let us now focus on X(n)
2 (t), the size of the second queue in the n-th

system, for a given level of X(n)
1 (t) with constant threshold value k. For

large n, X(n)
2 (t) becomes a rapidly moving random variable with the

stationary distribution of a batch-arrival queue in which the batches
always lift the queue to the level k, as depicted in Figure 4.1. The
stationary distribution (given threshold value k) is, therefore,

π
(k)
i = π

(k)
0
µ1
µ2

(µ1 + µ2
µ2

)i−1
, for i = 1, 2, . . . , k, (4.1)

and

π
(k)
0 = 1

1 +
∑k
i=1

µ1
µ2

(µ1+µ2
µ2

)i−1
.

We will use the shorthand notation E [X2|k] for the expectation of this
distribution. The mean batch size is therefore b(k) = k − E [X2|k].

This determines the dynamics of the first component in the fluid limit
for a given limiting switching curve k(x1):

x′1(t) = λ− b(k(x(t)))µ1,

as long as x1(t) > 0, for a given arbitrary initial value x1(0). In our
discussion above we took X(n)

1 (0) = n, to ensure that it is integer, which

62



4.2 Model description

corresponds to x1(0) = 1. The arguments remain valid for other positive
values of x1(0) (for example by rounding the initial value of nx1(0) to an
integer). In the next section, we will exploit this description to determine
a switching curve k(·) that approximates the optimal switching curve.

4.2.3 Fluid-based approximations of the optimal policy

We approximate the optimal strategy using two different approaches,
both based on the fluid description in the previous section. The fluid
model is used to approximate the trajectory of the stochastic process
{X1(t), t ≥ 0} by a smooth path. We emphasize that we do not formally
work with the fluid limit, but instead directly use it to replace the
stochastic process. The first method employs a fixed threshold strategy
and the second approximation determines a dynamic threshold based
on a greedy heuristic.

Method 1
In our first approach, we ignore the fact that we can adjust the threshold
level over time. For any initial value X1(0) = x, we approximate the
threshold level k = k(x) for k ∈ N that minimises the (approximated)
cost until the first component is empty. We will denote the time at which
this happens by T = T (x). Replacing the stochastic path of X1(t) by
the trajectory of the fluid model and replacing X2(t) by its conditional
expectation, we obtain:

min
k∈N

{
c1
(
xT (x) + 1

2(λ− b(k)µ1)T (x)2)+ c2T (x)E [X2|k]
}
. (4.2)

To compute the threshold value k that minimises overall costs, we
determine the time to empty the system:

x+ (λ− b(k)µ1)T (x) = 0, and hence, T (x) = x

b(k)µ1 − λ
. (4.3)

Equation (4.2) can thus be rewritten as:

min
k∈N

{
c1x

1
2T (x) + c2E [X2|k]T (x)

}
. (4.4)

From the stationary distribution in (4.1) we can numerically determine
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the value of k that minimizes the approximated costs, say k∗. Our
first approximation thus replaces the optimal switching curve by a fixed
threshold strategy based on the value of k∗.

Method 2
The second method is based on a comparison of costs due to idleness in
the second queue (implying loss of capacity if jobs from the first queue
could have been moved earlier) and additional storage costs at the second
queue (when jobs could have been transferred later from the first queue).
These storage costs are therefore proportional to the number of jobs at
the second queue.

Loss of capacity
Capacity loss is computed in the following manner. We again assume
that the number of jobs in the first queue is large and that, at all times,
queue 2 is in the equilibrium corresponding to the current threshold (say
k, which is determined by queue 1). The maximum customer drain rate
from the system per unit of time equals µ2 − λ. However, the effective
outflow rate is lower than µ2, since it is interrupted when the second
queue is empty. The fraction of time that the second queue is empty,
that is π(k)

0 = P (X2 = 0|k) in (4.1) is determined by the value of the
threshold, i.e., k. The actual outflow from the system is µ2

(
1− π(k)

0

)
.

Dividing the actual drain rate by the maximum drain rate gives the
effective capacity per unit of time. The lost capacity can then be obtained
as

1−
µ2
(
1− π(k)

0

)
− λ

µ2 − λ
= π

(k)
0

1− λ/µ2
. (4.5)

Since all jobs in the first queue will be delayed by this inefficiency, we
obtain the total costs for capacity loss by multiplying (4.5) with holding
cost c1X1(t).

Storage at queue 2
The second component is intuitively easy. The average number of jobs
waiting in the second queue is determined by the buffer level k. Each job
faces an additional cost of c2−c1 per time unit while being at queue 2, so
total storage costs at the second queue are computed as (c2−c1)E [X2|k].
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We combine the above into the following optimization problem:

min
k=k(x)∈N

{
c1x1

(
π

(k)
0

1− λ/µ2

)
+ (c2 − c1)E [X2|k]

}
. (4.6)

4.3 Experimental results
In this section, we assess the accuracy of the fluid approximation methods
proposed in Section 4.2. We compute the optimal switching strategies for
several parameter choices by using the MDP solution and compare them
to the proposed fluid approximation heuristics in terms of average costs
and computation time. We applied experiments for both exponential
service times, as well as more general service time distributions by using
of phase type approximations. The results of these experiments are
discussed below subsequently.

4.3.1 Results for exponential service times
In Figure 4.2 we compare the asymptotics of the MDP solution and
the two fluid approximations for two distinct parameter sets and for
very large system states (X1(0) = 104). From both figures, we observe
that the greedy heuristic approximates the MDP threshold level very
accurately, especially for a large number of jobs in the system. The
fixed strategy consistently underestimates the switching curve, but does
capture its shape quite well.

In Figure 4.3 we zoom in to lower levels n = 100, giving a more detailed
picture. We observe that close to the origin the ‘fixed’ strategy over-
estimates the MDP curve for both parameter sets, while the ‘greedy’
approach gives an underestimation. For smaller service rate at the first
queue, the ‘greedy’ heuristic is a worse approximation.

To gain more understanding of the accuracy of the approximations, we
compare the average costs of the two fluid approximations with the
optimal MDP solution. As a reference, we also compute the average cost
for a fixed value threshold policy by using the matrix-geometric method
which we have analysed in Chapter 3. The chosen parameter values
are those reported above in Table 4.1. Figure 4.4 shows the relative
difference in average costs of the two fluid approximations and the fixed
threshold method of Chapter 3 with respect to the MDP solution. From
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(a) λ = 0.5, µ1 = 0.5, µ2 = 1.0
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(b) λ = 0.9, µ1 = 1.5, µ2 = 1.0

Figure 4.2. Comparison of the MDP results and the fluid heuristics for very
large n.

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

Number of jobs in queue 1

Le
ve

l o
f q

ue
ue

 2

 

 

MDP
Fluid Fixed
Fluid Greedy

(a) λ = 0.7, µ1 = 0.5, µ2 = 1.0
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(b) λ = 0.7, µ1 = 1.5, µ2 = 1.0

Figure 4.3. Comparison of the MDP results and the fluid heuristics for
n = 100.

these experiments, we see that the increase in average cost is relatively
small. The ‘greedy’ heuristic shows the largest relative deviation of 8%
on parameter set 1. In all others, the differences relative to the optimum
are not more than a few percent.

Figure 4.4a shows that on parameter set 1 the ‘greedy’ approximation
is much less accurate than the other two approximations. We already
observed in the detailed graphs of Figure 4.3 that a low service rate at the
first queue causes a larger gap with the MDP threshold curve, particularly
for small system states. This is reflected in the cost performance. For a
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(c) Parameter set 3

Figure 4.4. Comparison of the MDP result with both fluid approximations
and the fixed threshold approach of Chapter 3 for various parameter choices.

large system load, the typical number of jobs in the system is larger, which
reduces the impact of this underestimation of the ‘greedy’ approach.

For all three parameter sets in Figure 4.4 we observe that the greedy
fluid approximation gives better results for heavy loads ( λµ2

→ 1) than
the other two approximations. The fixed fluid approximation appears to
be the best all-round approximation.

To show the efficiency of the methods in terms of computation time, we
average the computation times of the three parameter sets in Table 4.1 for
increasing load. We separately investigate the time needed to compute
the policy and the time it takes to compute the average costs of a given
policy. The results are illustrated in Figure 4.5.

The more relevant issue is the time needed to determine a good policy.
Especially for heavily loaded systems, finding the optimal policy is
computationally extremely demanding for the MDP method. Figure 4.5a

67



Chapter 4 Tandem Queue with Dynamic Threshold Strategies

Set λ µ1 µ2 c1 c2
1 [0.1, 0.2, . . . , 0.9, 0.95] 0.5 1.0 1 3
2 [0.1, 0.2, . . . , 0.9, 0.95] 1.0 1.0 1 3
3 [0.1, 0.2, . . . , 0.9, 0.95] 1.5 1.0 1 3

Table 4.1. Parameter sets used for the numerical experiments with the batch
server.
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(a) Time to compute policy
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(b) Time to compute average costs

Figure 4.5. Time in seconds to compute the policy for increasing load of the
system averaged over the service rate µ1 ∈ {0.5, 1.0, 1.5} at the first queue.

shows that the computation time of the two fluid approximations is only
mildly sensitive to the parameter choice, while the other methods quickly
become slower for a higher load. Note that the computation time for
both fluid models is comparable, which explains the absence of the ‘fluid
fixed’ line in the figure. Even for a small load, the fluid approximation
is significantly faster than the MDP solution. We observe that the
computation time depends on the load of the system and increases for a
higher load.

Although of less relevance, we also compared the time needed to compute
the average cost of a given strategy using an iterative approximation.
(Note that for the MDP and the matrix-geometric approximation, the
average cost is jointly determined with the policy itself. For the fluid
approximations, these two phases are carried out separately.) It should
be no surprise that for that metric all methods are essentially equivalent.
It is quite likely that this computation time can be improved for all
policies by using a more sophisticated computation scheme than direct
iteration. Our goal here was to show that the differences are small.
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4.3.2 Results for general service times

We continue our investigation of the fluid approximations and study
their applicability under less restrictive assumptions on the service time
distribution in the second queue, which we now take to be of phase-type.
We concentrate on the single-service controlled tandem queue. The fluid
approximations for the batch service model can also be used with phase-
type services in the second queue, but solving the MDP for comparison
becomes too demanding.

To apply the fluid approximations of Section 4.2 for the controllable
tandem queue with two single server queues, we only need minor modific-
ations: The second queue is now approximated with the usualM/M/1/k
queue instead of a batch-arrival queue, and we use its truncated geomet-
ric distribution as the conditional distribution for X2|k. Since transfers
are now all for single jobs, in the fluid formulation for the first queue we
have a more limited control rule b(·) ∈ {0, 1}.

Specifically, we will use the Erlang (with low variability) and the hyper-
exponential (high variability) distributions for service durations in the
second queue, and take the stationary distribution of the corresponding
M/PH/1/k queue as the conditional distribution for X2|k. We keep
the processing rates at the first and second queue (µ1 and µ2) fixed for
all experiments, while adjusting the squared coefficient of variation. For
an Erlang service distribution with m phases the squared coefficient of
variation is given by

v2 = 1
m
.

We parameterise the hyper-exponential distribution with two phases as
follows:

F (x) = 1− p1e−ν1x − p2e−ν2x,

with 0 ≤ p1 = 1 − p2 ≤ 1 and ν1 > 0, ν2 > 0. We use the method of
‘balanced means’ of Tijms [136] to determine these parameters for given
mean 1/µ2 and squared coefficient of variation v2:

ν1 = 2p1µ2 and ν2 = 2p2µ2,
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where

p1 = 1
2

1 +

√
v2 − 1
v2 + 1

 and p2 = 1− p1.

As we will see, using the heuristic rules from the model with exponential
services is straightforward, but the MDP solution suffers enormously in
terms of computability, which demonstrates the need for approximations.

We extend our earlier experiments with the parameter sets presented in
Table 4.2. We specify the service distribution at the second queue in the
column ‘Type’. To allow comparison between the different systems, we
keep the average service duration at the second queue (1/µ2) fixed for
all experiments and vary the coefficient of variation. In all our numerical
experiments the computations were performed by adequately truncating
the state space, depending on the specific parameter values.

Set Type v2

4 Exponential 1
5 Erlang-2 1/2
6 Erlang-4 1/4
7 Erlang-6 1/6
8 Hyper-2 2
9 Hyper-2 4
10 Hyper-2 6

Table 4.2. Parameter sets for the single-service model with phase-type services
in queue 2; λ takes values in {0.7, 0.8, 0.9, 0.95} and throughout we use µ1 =
1.5, µ2 = 1.0, c1 = 1 and c2 = 3.

The results of this set of experiments are illustrated in Figure 4.6a for
Erlang service times of server 2, and in Figure 4.6b for hyper-exponential
services. We also show the corresponding graphs for exponential ser-
vice durations (parameter set 4) as a reference. Clearly, the optimal
switching curve obtained with MDP and the switching curve of the fluid
approximation are again very close to each other. As might be expected,
the switching curve is lower for less variable distributions (Erlang with
many phases), because the departures from queue 2 can be predicted
more accurately and thus there is less need to maintain a large buffer
in queue 2. Similarly, for the hyper-exponential service durations with
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(b) Hyper-exponential service in queue 2

Figure 4.6. Comparison of the MDP results and fluid approximations for
various v2 in service variability at the second queue with load ρ = 0.7.
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(b) Fluid greedy

Figure 4.7. Performance results of the fluid approximations for parameter
sets 4 to 7.

increasing variance a more conservative strategy (larger threshold) is
needed.

As before, we also investigate the accuracy in terms of achieving close
to minimum cost. In Figures 4.7 and 4.8 we observe that, as before, we
obtain a better approximation in terms of cost for more highly loaded
systems. This is natural, since the fluid approximation is tailor-made
for states far from the origin. For two-phase hyper-exponential services
at the second queue, we observe a better performance with the ‘greedy
fluid’ approach for larger coefficients of variation, while the ‘fixed fluid’
approach does the opposite. This can be explained by the fact that
larger states are more easily reached with more variability in the service
times, which was better approximated by the greedy approach. For the
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Figure 4.8. Performance results of the fluid approximations for parameter
sets 8-10.

lower variation of the Erlang service distributions, we see that both the
‘fluid fixed’ and ‘greedy’ approach give better performance when the
coefficient of variation decreases. This suggests, unsurprisingly, that the
fluid approximations are well suited for systems that have little variation
in the service times.

4.4 Conclusion
We investigated the structure of the optimal strategy to control the first
service stage of a tandem queueing system with batch services. In the
Markovian setting, we formulated an MDP to determine the optimal
strategy in terms of when to serve at the first stage and how large the
batch size should be. To gain more understanding of the shape of the
optimal MDP policy, we developed approximations and computationally
efficient heuristics that are very close to the MDP strategy, especially
for high loads.

For the design of our heuristics, we noted that the optimal MDP strategy
is characterised by a switching curve that is rather flat. In order to
formulate a meaningful approximating fluid model, we applied different
scalings to the two queues, see the approach in [121, Chapter 9.6]. To
the best of our knowledge, this has not been applied to stochastic control
problems before.

We developed two different heuristics based on the fluid model approx-
imation. The ‘fixed fluid’ heuristic underestimates the optimal MDP
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strategy in states with a large number of jobs in the system, while the
‘greedy fluid’ approach follows the optimal MDP switching curve quite
closely. The average costs of the ‘fixed fluid’ approach remain within a
few percent of the average costs of the MDP solution for a wide range of
parameters. The ‘greedy’ approach becomes more accurate for a higher
load.

Encouraged by the simplicity and the accuracy of the two approximations
for the batch tandem system, we investigated the applicability for non-
exponential service durations in the second queue. For the batch service
model, the MDP formulation quickly becomes numerically intractable,
leaving us with no bench mark to test our approximations. For this
reason, we illustrated the potential of the approach for more general
service times by only allowing single services at the first station. We again
obtained an approximation function that closely follows the optimal
MDP policy. As before, the accuracy of the ‘greedy fluid’ approximation
improves for increasing load and the ‘fixed fluid’ approach performs well
for a wide range of parameters.

The proposed fluid approach is computationally very fast. Solutions
are available within a second (evaluated on a Macbook Pro dated from
2013, with processor 2.4 GHz Intel Core i5 and 8GB internal memory).
This suggests that the approach is worth exploring for larger queueing
networks with non-exponential service times.

Appendix
We present an extended overview of the numerical results shown in
the figures of Section 4.3. Table 4.3 shows an overview for a range of
parameters of the costs for each method using the batch model. Table 4.4
shows this for the generalised service rate examples.
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Service Type Parameters E[Cost]
λ µ1 µ2 c1 c2 MDP Fluid Fixed Fluid Greedy MG

Batch 0.10 0.50 1.00 1 3 0.57 0.57 0.57 0.57
0.10 1.00 1.00 1 3 0.44 0.44 0.44 0.44
0.10 1.50 1.00 1 3 0.39 0.40 0.40 0.40
0.20 0.50 1.00 1 3 1.29 1.30 1.29 1.29
0.20 1.00 1.00 1 3 0.97 0.98 0.98 0.98
0.20 1.50 1.00 1 3 0.86 0.89 0.89 0.89
0.30 0.50 1.00 1 3 2.20 2.22 2.25 2.21
0.30 1.00 1.00 1 3 1.63 1.63 1.63 1.63
0.30 1.50 1.00 1 3 1.42 1.46 1.46 1.46
0.40 0.50 1.00 1 3 3.36 3.39 3.55 3.39
0.40 1.00 1.00 1 3 2.45 2.52 2.45 2.46
0.40 1.50 1.00 1 3 2.14 2.17 2.17 2.17
0.50 0.50 1.00 1 3 4.88 4.93 5.25 4.91
0.50 1.00 1.00 1 3 3.51 3.58 3.57 3.58
0.50 1.50 1.00 1 3 3.07 3.07 3.07 3.08
0.60 0.50 1.00 1 3 6.93 6.99 7.43 6.98
0.60 1.00 1.00 1 3 4.97 5.01 5.10 5.02
0.60 1.50 1.00 1 3 4.31 4.47 4.34 4.41
0.70 0.50 1.00 1 3 9.91 9.99 10.46 9.99
0.70 1.00 1.00 1 3 7.12 7.25 7.38 7.25
0.70 1.50 1.00 1 3 6.18 6.27 6.24 6.27
0.80 0.50 1.00 1 3 14.80 14.94 15.55 14.96
0.80 1.00 1.00 1 3 10.77 11.00 11.01 11.00
0.80 1.50 1.00 1 3 9.40 9.65 9.48 9.65
0.90 0.50 1.00 1 3 25.74 26.03 26.39 26.09
0.90 1.00 1.00 1 3 19.41 19.63 19.64 19.73
0.90 1.50 1.00 1 3 17.24 17.53 17.31 17.57
0.95 0.50 1.00 1 3 42.11 42.45 42.65 42.78
0.95 1.00 1.00 1 3 33.32 33.52 33.46 33.90
0.95 1.50 1.00 1 3 30.26 30.49 30.32 30.73
0.99 0.50 1.00 1 3 137.98 138.69 138.19 139.59
0.99 1.00 1.00 1 3 122.86 123.46 122.90 123.98
0.99 1.50 1.00 1 3 117.56 118.11 117.58 118.55

Table 4.3. Average costs for the experiments of the batch tandem queue.
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Service type v2 Parameters E[Cost]
λ µ1 µ2 c1 c2 MDP Fluid Fixed Fluid Greedy

Exponential 1 0.70 1.50 1.00 1 3 6.58 6.61 6.75
0.80 1.50 1.00 1 3 10.32 10.39 10.68
0.90 1.50 1.00 1 3 19.67 19.84 20.03
0.95 1.50 1.00 1 3 34.97 35.29 35.25

Erlang-2 1
2 0.70 1.50 1.00 1 3 5.70 5.75 5.84

0.80 1.50 1.00 1 3 8.66 8.71 8.86
0.90 1.50 1.00 1 3 15.85 15.97 16.11
0.95 1.50 1.00 1 3 27.40 27.60 27.61

Erlang-4 1
4 0.70 1.50 1.00 1 3 5.26 5.28 5.33

0.80 1.50 1.00 1 3 7.82 7.87 8.00
0.90 1.50 1.00 1 3 13.93 14.02 14.15
0.95 1.50 1.00 1 3 23.59 23.75 23.80

Erlang-6 1
6 0.70 1.50 1.00 1 3 5.11 5.13 5.18

0.80 1.50 1.00 1 3 7.54 7.58 7.67
0.90 1.50 1.00 1 3 13.29 13.36 13.48
0.95 1.50 1.00 1 3 22.32 22.46 22.51

Hyper-2 2 0.70 1.50 1.00 1 3 8.05 8.13 8.36
0.80 1.50 1.00 1 3 13.15 13.29 13.62
0.90 1.50 1.00 1 3 26.37 26.72 26.83
0.95 1.50 1.00 1 3 48.56 49.12 48.85

Hyper-2 4 0.70 1.50 1.00 1 3 10.77 10.88 11.09
0.80 1.50 1.00 1 3 18.46 18.69 18.98
0.90 1.50 1.00 1 3 39.14 39.68 39.68
0.95 1.50 1.00 1 3 74.78 75.73 75.12

Hyper-2 6 0.70 1.50 1.00 1 3 13.36 13.47 13.65
0.80 1.50 1.00 1 3 23.55 23.82 24.07
0.90 1.50 1.00 1 3 51.51 52.26 52.03
0.95 1.50 1.00 1 3 100.03 101.37 100.40

Table 4.4. Average costs for the experiments of the generalised tandem queue
for specified service type at the second queue.
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Chapter5Modelling User Interaction at a
Stochastic Traffic Bottleneck

In this chapter, we focus on the user response during peak hour periods
at bottleneck locations subject to uncertainty. Our analysis is based
on a popular approach to model congesting and user response. This
model, known as the Vickrey bottleneck model [138], captures travellers’
responses to congestion in a highly simplified manner, thereby enabling
equilibrium results to be computed and evaluated. Extensions are easily
applied, allowing comparisons across different situations. This model
ignores the fact that the demand and capacity at a bottleneck are
subject to uncertainty. While this fluid approach may be correct when
the number of travellers is large, it fails to yield accurate predictions for
a small number of travellers.

Motivated by this, we propose a stochastic version of the bottleneck
model, that can also handle a smaller number of travellers. We discuss
the error made by the fluid approximation, and show that the Nash
equilibrium of the original model results in highly varying costs when
applied in the more realistic setting with stochasticity. We then discuss
an algorithm to numerically approximate the equilibrium arrival rate for
the stochastic bottleneck model, and propose a closed-form estimation
for this equilibrium. This contribution lays the groundwork for future
studies into the effect of stochasticity in these bottleneck models1.

1This chapter is based on [S3].
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5.1 Introduction

Bottlenecks are a common phenomenon in road traffic, and arise when
the rate of traffic arriving into a stretch of road temporarily exceeds
its capacity. The resulting congestion causes economic damages and
discomfort to the travellers. Bottlenecks have been extensively studied in
the research literature, starting with the seminal work of Vickrey [138],
inspired by a morning commute. Traffic is modelled as a fluid, and
travellers experience a penalty for waiting at the bottleneck, as well as
for arriving at their office earlier or later than intended. Because the
morning commute is a recurring and predictable phenomenon, travellers
can learn the behaviour of others, and eventually adjust their departure
time from home to minimise costs. This strategic behaviour is modelled
in [138, 5] by assuming that traffic arrives according to a Nash equilibrium
(NE), meaning that no traveller can shift its arrival into the bottleneck
without increasing its costs [103].

This bottleneck model and its variants have been studied extensively
in econometrics and transportation literature, and it remains a popu-
lar starting point for many recent studies, see [5, 129] for overviews.
Extensions include demand elasticity [4], which studies the impact of
capacity expansion at the bottleneck. The impacts of heterogeneity
among travellers is studied in [6], where there are multiple classes of
travellers with different cost parameters and target times for departing
the bottleneck. In [106] the conditions for equilibrium existence assuming
a heterogeneous distribution are explored. More recent studies consider
spatial effects [78], endogenous trip timing effects with respect to group
arrival times [48], and the relationship between parking facilities and
congestion [133]. The NE can be computed in closed form for a range of
these model variants.

In practice, road traffic is not a fluid, but instead consists of individual
travellers, each of which may have some uncertainty surrounding their
arrival time at the bottleneck and its driving speed. The fluid assumption
used in the bottleneck literature is accurate when both (1) the number of
travellers at the bottleneck, and (2) the bottleneck capacity are large, but
is inadequate for ‘smaller’ bottlenecks. To study the effects of variability
and the fact that a bottleneck consists of discrete travellers, we modify
the traditional deterministic bottleneck model [5] by considering the
traffic waiting at the bottleneck as a stochastic process.
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While the resulting stochastic model is less tractable than the determin-
istic bottleneck model, it allows for more detail and accuracy. We first
show that the NE computed for the deterministic model does not provide
equal costs in the stochastic setting, unless the number of travellers is
large. We then compute a similar equilibrium concept for the stochastic
model, and discuss how it differs from the NE. Using these results we
propose a closed-form approximation for the stochastic equilibrium, and
show that it performs well.

The work presented here fits in a larger trend towards modelling uncer-
tainty in the bottleneck literature. Most variants of the bottleneck model
that include stochasticity do so exogenously, for instance, by including
some random additional travel time due to an incident [110, 33]. In
our study, we investigate the impact of endogenous effects, where the
uncertainty of the arrival behaviour is included in the model.

The impact of uncertainty over time due to endogeneity is studied in [44,
45, 47]. In particular, in [45] the daily demand and capacity are assumed
to be random variables with a known distribution. The authors show that
under quite general assumptions the variance of the delay is increasing in
its expectation. This phenomenon has been observed empirically in [23],
where the authors demonstrate that travel time variance is strongly
correlated with the queue length. A paper by [153] adds these effects
by increasing the variance of the error term depending on the queue
length. However, in our model, these effects are implicitly included,
which confirms the accuracy of our modelling approach.

Beyond the transportation science literature, this chapter is closely
related to those on the boundary between queueing and game theory.
In [55] the authors consider a queueing system with a finite number of
customers that must arrive before some time T , where each customer tries
to minimise its waiting time by strategically determining its arrival time.
This model was extended in [61], where the arrival rate is modelled
as a non-homogeneous Poisson process and early arrivals are served
at random when the facility opens. This is also related to the so-
called concert queueing model [70], where customers aim to arrive at
some time T , but incur costs for both waiting and tardiness. Various
extensions and generalisations have been studied in [70, 62]. Other
related models from game theory are the airport boarding game [134]
and the meeting game [58]. This chapter is most closely related to [127],
where the authors study a similar model to ours, but consider a different
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equilibrium concept.

The remainder of this chapter is structured as follows: First, we discuss
the traditional deterministic bottleneck model and the Nash equilibrium
in Section 5.2. In Section 5.3, we introduce the stochastic bottleneck
model, and show how to numerically approximate the equilibrium ar-
rival rate. We use this to propose a closed-form approximation of the
stochastic equilibrium. We conclude in Section 5.4, and outline future
research directions.

5.2 Deterministic bottleneck model

In this section, we provide some background on the deterministic bottle-
neck model introduced in [5], and describe the Nash equilibrium that
ensures that all traffic experiences the same costs.

5.2.1 Model outline

We consider a single bottleneck, with fluid arriving at time t with rate
λ(t). The fluid represents identical travellers, and the bottleneck can
serve a fixed capacity s of traffic per time unit. Each traveller wants to
exit the bottleneck at time t∗, and incurs a penalty for the waiting time
in the queue and for departing from the queue earlier or later than the
desired time t∗. This penalty is captured by a linear cost function, with
cost coefficients α (waiting), β (early arrival), and γ (late arrival).

Let tq denote the time of the first arrival. Then the cumulative inflow of
traffic at the bottleneck up to time t can be written as a(t) =

∫ t
tq
λ(u)du,

and the cumulative outflow as d(t) = smax{0, t− tq} (assuming that the
bottleneck only empties once). The sojourn time of a traveller arriving
at time t can be computed as w(t) = a(t)− d(t). The cost incurred by
an arrival at time t can then be written as

c(t, λ) = αw(t) + β(t∗ − t− w(t))+ + γ(t+ w(t)− t∗)+, (5.1)

with (a)+ = max{a, 0}. Here, the t + w(t) − t∗ denotes the difference
between the departure time of a traveller t+w(t) and its desired departure
time t∗. Observe that c depends on λ through the sojourn time w.
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5.2.2 Nash equilibrium
In this section, we summarise the equilibrium conditions of the standard
bottleneck model as defined by Arnott [5]. Given a total amount of
fluid N , we want to find an inflow curve λf (t) such that no traveller
can decrease its costs by altering its arrival time at the bottleneck. It
has been shown (see, e.g., [132]) that such a Nash equilibrium exists, is
unique for α > β, and is given by

λf (t) =
{
r1(t− tq) t ∈ [tq, tn)
r1(tn − tq) + r2(t− tn) t ∈ [tn, tq′ ]

, (5.2)

where

r1 = s+ βs

α− β
, r2 = s− γs

α+ γ
, (5.3)

and

tq = t∗ − ηN/s

1 + η
, tq′ = t∗ + N/s

1 + η
, tn = t∗ − δN/s

α
, (5.4)

with η = γ
β and δ = βγ

β+γ . This arrival curve gives all travellers equal
costs

cf = δ
N

s
. (5.5)

For α > β the inflow rate presented in Equation (5.2) generates a single
busy period, i.e., w(t) > 0 for all t ∈ (tq, tq′) [132]. In this equilibrium,
the first and last fluid will only incur costs for early/late arrivals, and
experience no delay. The fluid leaving exactly at the preferred time t∗
encounters costs consisting only of delay.

An example of the NE is illustrated in Figure 5.1. It shows the cumulative
inflow a(t) (blue), the cumulative outflow d(t) (black), and the waiting
time w(t) (red).

5.3 Stochastic bottleneck model
In practice, road traffic is not a perfect fluid, but consists of individual
travellers, which each having some uncertainty surrounding their arrival
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Figure 5.1. Equilibrium inflow, outflow and waiting time for the deterministic
bottleneck model with T = N/s = 60, α = 1, β = 0.5, γ = 2 and t∗ = 0.

time at the bottleneck and their speed. We capture this uncertainty by
assuming discrete travellers that arrive at the queue according to a time-
dependent Poisson process with rate λ(t). The arrival rate function is
such that the expected total number of travellers in N , i.e.,

∫
λ(t)dt = N .

The bottleneck can serve only a single traveller at a time, which takes
an independent and identically distributed exponential time with rate
µ = s. Such assumptions are not uncommon in this setting (see, [21, 62],
for example). Note that our model is equivalent to an Mt/M/1 queue.

Similar to the deterministic model, each traveller prefers to exit the
bottleneck at time t∗, and incurs a linear penalty α for waiting, β for
arriving early, and γ for tardiness. Let us denote by W (t) the random
variable that represents the sojourn time of a traveller arriving at time t,
for t ≥ 0, which depends on the past arrival rate through the travellers
in the queue upon arrival. The cost function for the stochastic model is
identical to that of the deterministic model (5.1), with the sojourn time
replaced by its stochastic counterpart:

C(t, λ) = αW (t) + β(t∗ − t−W (t))+ + γ(t+W (t)− t∗)+. (5.6)

Note that C(t, λ) is also a random variable, since it depends on W (t).

To compare our model to that of the deterministic case for the equilibrium
we need to find the so-called symmetric Nash equilibrium, where we
choose the time-dependent arrival rate function of the Poisson process
in such a way that no traveller can improve its costs unilaterally [127].
Therefore, we consider the problem of finding an arrival rate such that
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the expected costs E[C(t, λ)] over time is constant when λ > 0, and
larger otherwise. This gives

E[C(t, λ)] = αE[W (t)] + βE[(t∗ − t−W (t))+]
+ γE[(t+W (t)− t∗)+]. (5.7)

In contrast to the deterministic model, we cannot obtain this equilibrium
in closed form. Instead, we describe how to compute it numerically in
the next sections.

5.3.1 Expected costs computation

To determine whether we can find an equilibrium, we first compute
the expected costs over time for a given arrival rate function λ(t).
The expected cost of a traveller depends on its sojourn time, which is
determined by the queue length upon arrival. Below we describe how
to compute the transient queue-length distribution for a given arrival
rate λ(t), and use this to compute the sojourn time distribution and
the expected costs. We assume that there exist some t0 < t1 such that
λ(t) = 0 outside of [t0, t1].

We consider a continuous-time Markov chain representing the number
of travellers waiting at the bottleneck. At each state, an arrival or
departure can take place, except for state 0 in which there is no one
waiting. The time-dependent transition matrix Q(t) is given by

Q(t) =


−λ(t) λ(t) 0 · · ·
µ −(λ(t) + µ) λ(t) · · ·
0 µ −(λ(t) + µ) λ(t)
... . . . . . . . . .

 .

We denote by π̄(t) =
(
π0(t), π1(t), . . .

)
the distribution of the number

of travellers waiting at time t. To compute this we use uniformisation,
where we embed on time instances according to a Poisson process with
rate equal to

ν = sup
t≥0

λ(t) + µ, (5.8)

assuming that this supremum exists. Let ∆ > 0 and observe that
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(ν∆)n
n! e−ν∆ denotes the probability that n transitions occur in an interval

of length ∆. By conditioning on this, we may write

π̄(t+ ∆) = π̄(t)
∞∑
n=0

(ν∆)n

n! e−ν∆P (t)n, (5.9)

where P (t) denotes the transition probability matrix of the embedded
Markov chain given by

P (t) = I + 1
ν
Q(t). (5.10)

We can then approximate π̄(t) by discretising time into small intervals
of length ∆ and iterating according to Equation (5.9), starting from
π̄(t0) = (1, 0, . . . ).

Having outlined a numerical procedure to obtain the queue-length dis-
tribution, we can use this to determine the expected costs over time, by
first computing the sojourn time distribution at each time instant t for
an arriving traveller.

Let f(τ, t) denote the density function of the sojourn time of a traveller
arriving at time t. By conditioning on the number of travellers seen
upon arrivals this can be written as

f(τ ; t) =
∞∑
n=0

πn(t)gn+1(τ), (5.11)

where gn(τ) denotes the sojourn time density function given n travellers
seen upon arrival, which follows an Erlang-(n+ 1, µ) distribution:

gn(τ) = µ(µτ)ne−τµ

n! . (5.12)

To obtain the unconditional sojourn time distribution we substitute (5.9)
and (5.12) into (5.11).

We are now in position to compute the expected cost incurred by a
traveller arriving at time t. To this end, we evaluate the expected
costs (5.7) by conditioning on the sojourn time of the traveller arriving
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at time t:

E[C(t, λ)] = α

∫ ∞
τ=0

τf(τ ; t)dτ

+ β

∫ (t∗−t)

τ=0
(t∗ − t− τ)f(τ ; t)dτ (5.13)

+ γ

∫ ∞
τ=t∗−t

(t+ τ − t∗)f(τ ; t)dτ.

To compute the integrals we partition the sojourn time into small intervals
with length ∆ to obtain the following approximation:

EC[(t, λ)] ≈ α∆
∞∑
k=0

k∆f(k∆; t)

+ β∆
b(t∗−t)/∆c∑

k=0
(t∗ − t− k∆)f(k∆; t) (5.14)

+ γ∆
∞∑

k=d(t∗−t)/∆e
(t+ k∆− t∗)f(k∆; t).

To illustrate this procedure, we compute the expected costs in the
stochastic model for the arrival rate λf given by the equilibrium function
of Equation (5.2), which is the NE for the standard Vickrey model. In
Figure 5.2 we plot these costs E[C(t, λf )] over time, for each parameter
set defined in Table 5.1. For each parameter set, we vary the value
of N and s such that N/s remains constant. We see from Figure 5.2
that E[C(t, λf )] varies significantly between travellers, in particular
putting travellers arriving towards the end of the busy period at a
disadvantage. This demonstrates that the NE, found by the standard
bottleneck model is not an accurate equilibrium concept in a realistic
setting with stochasticity. As expected, the error is the largest when
N is small and disappears as N grows large. For the remainder of the
chapter, we will refer to the NE of the standard bottleneck model as the
Vickrey equilibrium.

In Figure 5.3 we plot the decomposition of the costs E[C(t, λf )] into
its three components: waiting, early arrival and tardiness. This figure
suggests that the large increase in expected costs just before the peak
moment is due to the combination of costs for late and early arrival,
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T = N
s t∗ α β γ

Set 1 60 0 1 0.5 2
Set 2 60 0 1 0.5 0.5
Set 3 60 0 1 0.75 0.5

Table 5.1. Parameter sets for numerical experiments.

whereas only early or late costs are encountered in the deterministic
model. Moreover, at the end of the bottleneck period in the stochastic
model, the queue may not disappear at time tq′ , giving travellers addi-
tional costs α+ γ for every unit of time spent waiting.

5.3.2 Stochastic equilibrium

In the previous section, we demonstrated that the NE of the deterministic
bottleneck model, further referred to as the Vickrey equilibrium, fails to
provide equal costs for all travellers in a stochastic setting. Therefore, we
present a numerical scheme to numerically approximate the equilibrium
arrival rate for the stochastic model. That is, we aim to find equilibrium
costs cs and a time-dependent arrival function λ such that E[C(t, λ)] = cs
for all t with λ(t) > 0.

Our numerical scheme consists of two phases. First, we describe a
procedure to obtain an arrival rate λ that satisfies

E[C(t, λ)] = c (5.15)

for any c > 0. We then scale the arrival rate and the costs to ensure
that in expectation N travellers arrive during the bottleneck period. We
use the Vickrey equilibrium costs cf from Equation (5.5) as a starting
point.

Given target costs c, we can extract the start of the stochastic bottleneck
period t0 using the observation that the first traveller to arrive likely
incurs no costs for being late, or waiting in the queue. Instead, the
traveller is penalised for being early. We solve

β(t∗ − t0 − E[W (t0)]) + αE[W (t0)] = c, (5.16)

where E[W (t0)] = 1/s denotes the service time duration of the traveller.
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(b) Cost function with parameter set 2
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(c) Cost function with parameter set 3

Figure 5.2. Expected costs E[C(t, λf )] for the stochastic model with the
arrival rate of the Vickrey equilibrium for different cost parameters function
and total number of travellers N .

Solving this we obtain

t0 = t∗ − β − α+ sc

sβ
. (5.17)
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Figure 5.3. Decomposition of EC(t, λf ), with parameter set 1 and N = 60.

We discretise time into small intervals of length ∆ in order to find the
time-dependent arrival rate that satisfies Equation (5.15). We do so
iteratively, exploiting the observation that E[C(t, λ)] only depends on
λ(u) for t0 ≤ u ≤ t, due to fact that travellers are served in order of
arrival. We let t ≥ t0 and assume that λ is such that E[C(u, λ)] = c for
all t0 ≤ u ≤ t. We use this to determine the correct arrival rate for time
t+ ∆.

In particular, we initialise λ(t+ ∆) = λ(t), and then adjust the arrival
rate by small increments x until we obtain E[C(u + ∆, λ)] = c within
some small error bound ε. The direction of the increments can be
obtained from the observation that the cost function is increasing for
larger arrival rate λ(t). In case of an early arrival, the costs change by
x∆
s (α− β), where α > β. In case of a late arrival, the costs change by
x∆
s (α+ γ) which is positive as well. We continue this procedure until

we first hit a time t1 such that λ(t1) = 0.

The procedure described above yields an arrival rate λ such that E[C(t, λ)] =
c for all t ∈ [t0, t1], but may not in expectation result in the arrival of
N travellers:

∆
t1∑
t=t0

λ(t) = N. (5.18)

To leverage this procedure to obtain the equilibrium arrival rate for N
travellers we modify the target costs c, or equivalently, the bottleneck
starting time t0.
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Based on the starting point t′0 and number of travellers N ′ obtained
from an iteration of the algorithm described above, we determine the
new starting point by adding the expected service time of the difference
in arrivals (N −N ′)/s:

t0 = t′0 − (N −N ′)/s. (5.19)

The corresponding equilibrium costs can be computed by Equation (5.17).
We adjust the starting point until |N −N ′| < ε, for ε small. The entire
numerical procedure is summarized in pseudo code in Algorithm 1 below.

Algorithm 1 : Procedure to obtain stochastic equilibrium
1: Inputs:

N, s, t∗, α, β, γ, ε, x
2: Initialize:

r1, r2, tq , tq′ , tn, cf from (5.3) and (5.4)
t0 ← tq
cs ← cf
λ(t0)← r1
N ′ = 0

3: while |N ′ −N | > ε do
4: t← t0
5: while λ(t) > 0 do
6: t← t+ ∆
7: λ(t)← λ(t−∆)
8: while |E[C(t, λ(t)− cs)]| > ε) do
9: if E[C(t, λ(t)− cs)] > 0 then
10: λ(t)← λ(t)− x
11: else E[C(t, λ(t)− cs)] < 0
12: λ(t)← λ(t) + x
13: end if
14: obtain EC[(t, λ)] from (5.3.1)
15: end while
16: end while
17: N ′ ← ∆

∑t1
t=t0

λ(t)
18: t0 ← t0 − (N −N ′)/s
19: cs ← β(t∗ − t0 + 1

s
) + α

s
20: end while
21: t1 ← t

Using Algorithm 1, we can approximate the stochastic equilibrium arrival
rate. We plot this in Figure 5.4 for parameter set 1 from Table 5.1 and
for various values of N and s, keeping N/s constant. The corresponding
Vickrey equilibrium is shown for comparison. From Figure 5.4a we
observe that instead of a sudden transition between the high and low
arrival rate, the stochastic equilibrium shows a gradual decrease. The
smaller the total number of travellers N , the smoother this gradual
decrease becomes. For each of the parameter sets in Figure 5.4 we
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(b) Parameter set 2
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Figure 5.4. Comparison of the equilibrium arrival rate for the deterministic
model and the stochastic model for increasing N , for the parameter sets of
Table 5.1.

observe an arrival rate peak at the start of the bottleneck period for
small values of N . Although we are not certain, this peak could be
due to the reduced waiting time uncertainty as there are no arrivals
beforehand, making this point in time slightly more attractive compared
to time instant later. This effect fades when the number of travellers
during the bottleneck period becomes large.

In Table 5.2 the start and end time relative to the corresponding Vickrey
equilibrium is shown, as well as the duration of the stochastic equilibrium.
Depending on the cost parameters, the stochastic bottleneck period can
be larger or smaller than the standard bottleneck period, which is 60 for
all three parameter sets. The last column shows the relative increase in
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Figure 5.5. Expected cost for increasing the scaled number of travellers N
for parameter set 1.

costs for the stochastic equilibrium cs(N) in comparison to the Vickrey
equilibrium cf . We visualised this in Figure 5.5 for parameter set 1
to show the impact for small values of N , we see that cs(N) → cf for
N →∞, as expected. We see empirically that the computation time for
the stochastic equilibrium grows linearly in N , so there is a trade-off
between the computational effort and the benefits from the stochastic
equilibrium when N becomes large.

We can use the stochastic equilibrium to investigate the uncertainty over
time by plotting the mean waiting time against its standard deviation,
see Figure 5.6. We observe that both the mean and standard deviation
of the waiting time increase until peak congestion is reached, after which
the waiting time decreases but the standard deviation keeps growing.
Eventually, the standard deviation also decreases as the bottleneck disap-
pears. This suggests that uncertainty at the end of the bottleneck period
has a larger impact than at the beginning. Similar results were shown
by Fosgerau [45] known as the counter-clockwise looping phenomenon
also observed in empirical data [23].

Another interesting observation is that the duration of the bottleneck
period deviates when we alter costs for waiting, while keeping the costs
for early and late arrival fixed. This effect is visualised in Figure 5.7. As
mentioned in Arnott [5], the costs for the Vickrey equilibrium do not
depend on the costs for waiting α. Since the last and first traveller only
experience schedule delay and no waiting time delay, the start and end of
the rush hour is independent of α. This can also be seen in Equation (5.5)

93



Chapter 5 Modelling User Interaction at a Stochastic Traffic Bottleneck

N [t0, t1]− tq t1 − t0 E[C]
cf

Set 1 60 [ -5.76 , 51.6 ] 57.4 12%
300 [ -2.16 , 56.2 ] 58.3 5%
600 [ -1.44 , 57.4 ] 58.8 3%
3000 [ -0.48 , 58.8 ] 59.3 1%
6000 [ -0.24 , 59.3 ] 59.5 1%

Set 2 60 [ -6.72 , 60.7 ] 67.4 22%
300 [ -2.88 , 60.2 ] 63.1 10%
600 [ -1.92 , 60.0 ] 61.9 6%
3000 [ -0.72 , 60.0 ] 60.7 2%
6000 [ -0.48 , 60.0 ] 60.5 2%

Set 3 60 [ -5.76 , 62.4 ] 68.2 24%
300 [ -2.40, 61.0 ] 63.4 10%
600 [ -1.68 , 60.7 ] 62.4 7%
3000 [ -0.72 , 60.5 ] 61.2 3%
6000 [ -0.48 , 60.2 ] 60.7 2%

Table 5.2. Comparing the stochastic and Vickrey equilibrium.

0 20 40 60 80 100 120 140 160 180 200 220 2400

5

10

15

20

25

30

35

t = 100

t = 240t = 500

t = 0

Mean Queue Length

St
an

da
rd

D
ev

ia
tio

n

Figure 5.6. Mean waiting time against its standard deviation over time.

which shows that tq,tq′ and the total costs of travel time are independent
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Figure 5.7. Waiting time for parameter set 1 and various scaled values of N .

of α. In the deterministic bottleneck model, the equilibrium costs at the
start and the end of the bottleneck period are only comprised of costs
for early and late arrival. However, in the stochastic bottleneck model,
the queue does not necessarily disappear at the end of the bottleneck
period. Moreover, a high costs relative to the early/late costs causes a
smaller queue size. The uncertainty in waiting time causes travellers
to arrive earlier when the queue is small, causing an earlier start of the
bottleneck period, thereby showing the impact of variations in waiting
time costs.

5.3.3 Closed-form expression for the equilibrium

The results of Section 5.3.2 show the impact of uncertainty over the
bottleneck period. Our numerical procedure for computing the stochastic
equilibrium provide useful insights into its behaviour, but it lacks the
qualitative insights of analytic expressions. In this section, we derive a
closed-form expression for the stochastic equilibrium.

In Figure 5.4 we observed that the arrival rate of the stochastic equilib-
rium shows a gradual decrease between the rate at the beginning and at
the end of the bottleneck period compared to the instantaneous drop
observed in the deterministic model. We propose to approximate this
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gradual decrease by a Sigmoid function. These functions are used in
a wide range of fields, for instance in machine learning, biology, and
economics [77].

We use a special case of the Sigmoid function known as the generalised
logistic function, which was originally developed as a function to model
animal growth [119]. In particular, we choose the following functional
form:

f(t) = A+ K −A
(1 + νe−B(t−M))1/ν , t ∈ [t0, t1]. (5.20)

where A and K are the lower and upper asymptotes respectively, B
is the growth rate, ν > 0 represents the symmetry parameter and M
defines the point of inflection. We are interested in the period [t0, t1],
which indicates the start and end of the bottleneck period.

To choose the correct parameter values, we draw inspiration from the
numerical approximation of the stochastic equilibrium. Figure 5.4 shows
that the values of the lower and upper asymptotes of the stochastic
equilibrium correspond to the lower and upper rate of the Vickrey
equilibrium, respectively, and we choose

K = r1 and A = r2. (5.21)

Furthermore, we observe that the inflection point roughly coincides with
time tn of the Vickrey equilibrium, shifted by the difference in starting
points of the Vickrey equilibrium and the stochastic equilibrium tq − t0.
This is because the waiting time also starts to decrease at this point.
Therefore, we set

M = tn − (tq − t0). (5.22)

The symmetry parameter ν can be related to the fraction of time the
Vickrey equilibrium prescribes the rate (tn − tq)/(tq′ − tq) multiplied by
the difference in processing rate of the Vickrey equilibrium. This gives
us

ν = (r1 − r2)
s

tq′ − tq
tn − tq

. (5.23)

In contrast to the other parameters, the growth parameter B cannot be
readily estimated by relating it to the Vickrey equilibrium, and instead
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we use nonlinear regression. To this end, first observe from Figure 5.4
that the steepest descent of the stochastic equilibrium is at the inflection
point M , and its derivative, denoted by k, is equal to

k := d
dtf(t)

∣∣∣
t=M

= B(K −A)(1 + νe−B(t−M))
−1−ν
ν e−B(t−M)

∣∣∣
t=M

= B(K −A)(1 + ν)
−1−ν
ν .

The values of K, A and ν can be obtained from Equations (5.21)
and (5.23), so once we determine k we can compute B as

B = −k(1 + ν)
−1−ν
ν

K −A
. (5.24)

From numerical results, we can see that k depends on a combination of
the cost parameters α, β and γ, the number of travellers N , and the
rate of service s. However, this becomes a very complicated function.
Therefore, in our regression model, we estimate the growth rate B for
only a few parameters for the most general form, which is the standard
cost value of set 1 from Table 5.1. We keep the ratio N/s fixed. Then
we adjust the values of N and s by taking multiples of 60 for N , ranging
from N ∈ [60, 3000] and s ∈ [1, 50]. For simplicity, we divide N by 60
in our regression function. Additionally, we vary α ∈ [β, γ] and use the
waiting costs expressed as

αperc = α− β
γ − β

. (5.25)

The resulting values show a linear dependency when a log scaling is
applied. To fit our linear regression model, we thus have to solve

log k = a0 + a1log(N/60) + a2log(α). (5.26)

We use a least squares non-linear regression and obtain the following
values for the coefficients a0 = −0.0093 ≈ 0, a1 = −1.1896 and a2 =
1.4242 ≈

√
2 and with relative residual 0.053. Thus, we estimate k by

k̂ = −α−1.1896
perc (N/60)

√
2. (5.27)

In Figure 5.8 we compare the estimated slope k̂ with the actual slope
k. This slope is computed based on our numerical approximation of the
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Figure 5.8. Comparison of the estimator k̂ (dashed) against the real values k
(solid).

stochastic equilibrium. Figure 5.8 shows that k̂ is a remarkably accurate
estimate for k, in particular for small values of N , which is the most
relevant regime. Note that the slope estimator k̂ is decreasing in N
as expected, since as N grows large, the stochastic model approaches
the deterministic model, where the equilibrium has an instantaneous
transition from r1 to r2.

By substituting k̂ from (5.27) into (5.24), along with our estimates for
K and A from (5.21) and ν from (5.23), we obtain an approximation
for B.

Having determined all parameters for our approximation of (5.20), it
remains to find the correct time interval [t0, t1] during which arrivals
occur in the stochastic equilibrium. To this end, we exploit the fact that
the expected number of arrivals during the bottleneck duration must
add up to N , and that the expected cost throughout must be equal.
For simplicity, we do this assuming that ν = 1, and use this result for
general ν. Numerically, we find that this approximation works well.

Define

F (t) :=
∫
f(t)dt

∣∣∣
ν=1

= tA+ (K −A)
B

log
(
1 + eB(t−M)

)
. (5.28)

Then the fact that the expected number of arriving travellers must equal

98



5.3 Stochastic bottleneck model

N can be written as

F (t1)− F (t0) = N. (5.29)

Since the expected cost in equilibrium E[C(t, λ)] must be the same
throughout the bottleneck duration t ∈ [t0, t1] we have that

E[C(t0, λ)] = E[C(tn − tq + t0, λ)]. (5.30)

We can approximate the costs at these two time instances t0 and tn−tq+t0
as follows: Travellers arriving at time t0 would be the first to enter the
system, so its expected sojourn time would be 1

s (its own service time),
while it would arrive early by an amount of time E[t∗ − t0 −X1], where
X1 ∼ exp(s) represents the service time of the traveller. The cost for
being late are negligible to the first arrival, so by replacing X1 by its
expectation we can approximate the costs for an arrival at time t0 as

E[C(t0, λ)] ≈ α

s
+ β

(
t∗ − t0 + 1

s

)
. (5.31)

In the deterministic bottleneck model, the travellers arriving at time
tn depart from the bottleneck at exactly time t∗, so they only incur
waiting costs. The starting point of the stochastic equilibrium is shifted
by t0 − tq compared to that of the Vickrey equilibrium, so the costs for
travellers arriving at time tn + t0 − tq is dominated by the waiting time,
and we approximate

E[C(tn − tq + t0, λ)] ≈ αW (tn − tq + t0). (5.32)

In order to approximate the sojourn time at time tn− tq + t0 we use that
the expected number of arrivals is equal to F (tn− tq + t0)−F (t0), while
the expected service up to that time is (tn − tq)s. If we also include the
service of the traveller itself, we obtain

E[C(tn−tq+t0, λ)] ≈ α

s
(F (tn−tq+t0)−F (t0)+1−(tn−tq)s). (5.33)

The start and end times of the bottleneck period of the stochastic
equilibrium can be obtained by numerically solving t0 and t1 from
Equations (5.29) and (5.33).

We plot our approximation in Figure 5.9. One can see that the closed
form approximation closely follows the stochastic model, and that it
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does a better job at equalizing the costs among the travellers compared
to the Vickrey equilibrium.
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Figure 5.9. Comparing the Vickrey equilibrium with the analytic and numer-
ical approximation of the stochastic equilibrium by using the parameter values
of set 1 from Table 5.1 for N = 60.

5.4 Conclusion
In this chapter, we presented a general model for predicting the strategic
user response to a bottleneck in road traffic. We first reviewed the
existing models and results, which rely mostly on deterministic fluid
models and equilibria. To allow for more realism we proposed to extend
these models by considering travellers as discrete entities, which may
be subject to randomness. More specifically, the strategic behaviour of
travellers was captured in the Poisson arrival process with time-varying
rate. This setting can be motivated when the population of potential
travellers is large, each having a small probability of actually travelling
at any particular time.
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5.4 Conclusion

We presented a numerical procedure to compute the equilibrium in
this stochastic model, and used these results to find a closed-form
approximation for this stochastic equilibrium. Numerically, we showed
that this approximation closely follows the equilibrium.

The stochastic bottleneck model gives new insights into the effects
of strategic arrival behaviour in response to travel times uncertainty.
Our approach can be applied to the many extensions that exist of the
standard deterministic bottleneck model providing insights on the impact
of uncertainty in a broad range of transportation models. Examples
include heterogeneity among travellers’ departure time, interpretation
of early and late arrival, and demand elasticity.

In the next chapter, we will consider an alternative extension of this
model which captures uncertainty in the choice of travel times of indi-
vidual travellers.
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Chapter6Modelling of Arrival Time
Uncertainty at a Bottleneck

We investigate the impact of random deviations in planned arrival
times on the user equilibrium in an extension of Vickrey’s celebrated
bottleneck model [138]. In comparison to Chapter 5, where we studied
the uncertainty in demand and capacity at the bottleneck, the focus
of this chapter is on the departure time uncertainty of each individual
traveller. The model is motivated by the fact that in real life, users can
not exactly plan the time at which they depart from home, or the delay
they may experience before they join the congestion bottleneck under
investigation.

We show that the arrival density advocated by the Nash equilibrium
in Vickrey’s model is not a user equilibrium in the model with random
uncertainty. We then investigate the existence of a user equilibrium for
the latter and show that in general such an equilibrium can neither be
a pure Nash equilibrium, nor a mixed equilibrium with a continuous
density. With numerical examples we illustrate the mechanics that
prevent the existence of such user equilibrium. Our results demonstrate
that when random distortions influence user decisions, the dynamics
of standard bottleneck models are inadequate to describe such more
complex situations1.

1This chapter is based on [S4].
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6.1 Introduction

In the standard bottleneck traffic models, the inclusion of uncertainty in
the exact departure moment is not taken into account. More specifically,
people that depart from home have an intended time at which they
want to leave, but their actual departure time will deviate from day to
day. In this chapter we investigate the effects of these deviations on
the formation of a single bottleneck. The formation of this bottleneck
results from the decision that travellers make based on their valuation
of travel time including the uncertainty. Our model is an extension of
the Vickrey bottleneck model for which a literature review is given in
Section 5.1 of Chapter 5.

Beyond the transportation literature, the response of travellers based on
common preferences has been studied for a wide variety of applications
that are closely related to the Vickrey model. These models use queuing
theory in combination with game theory. The first model which uses a
queueing approach was developed by Glazer and Hassin [55]. They con-
sider a game where a population with a Poisson distributed size chooses
an arrival time, and where service times at the queue are exponentially
distributed. Many extensions have been studied with a broad range
of applications, such as a concert arrival game of Juneja et al. [70], at
which tardiness was added to the model, causing the order of arrivals to
become relevant. Another application is presented in the meeting game
of Fosgerau et al. [46], who studies the response of users with uncertainty
in their arrival time for a meeting. Lastly, there is synchronisation under
uncertainty by Ostrovsky [113], which studies the optimal strategy of
individuals that incur a cost for waiting until the last arrival occurred.
In these models the stochastic nature of responses is implicitly included.

In this chapter, we extend the bottleneck model by assuming that arrivals
are not perfectly arriving at the planned time instants. Alternatively, we
consider a system where people choose a time of arrival, but the actual
time of arrival deviates by some predefined probability distribution.
This uncertainty results in having a non-convex cost function. In [151],
uncertainty on the road to the bottleneck is considered, which is similar
to our case. However, they include the travel time to the bottleneck in
the cost function, whereas we are interested in the stochasticity effects in
the departure time from home primarily, and therefore, do not include
this in the delay costs.
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6.2 Model description

The goal of our analysis is to gain insight into the effects of uncertainty
in the responses of travellers in equilibrium and the resulting queuing
behaviour at the bottleneck. In Section 6.2 we outline the details of
the extension of the bottleneck model. We analyse the impact for
various scenarios with respect to the cost function and the arrival time
uncertainty in Section 6.3. We then continue to investigate whether an
equilibrium exists in our model in Section 6.4. We thereby study both
a pure and a mixed equilibrium strategy. We conclude this chapter in
Section 6.5.

6.2 Model description
In this section, we describe the classical bottleneck bottleneck model
including the extension with uncertainty in the individual arrival times
of travellers at the bottleneck.

6.2.1 Standard bottleneck model
The standard bottleneck model was presented in Section 5.2. To reduce
repetitions, we refer the reader to this section for a detailed explanation
and summarise the main formula’s in this section.

The classical bottleneck model is a fluid model where a population of
N identical travellers passes through a single bottleneck of capacity µ
defined as∫ tb

ta
a(t)dt = N, (6.1)

where [ta, tb] denotes the timeframe in which these arrivals occur.

It is assumed that each traveller wants to exit the bottleneck at time
t∗, and incurs a penalty for deviations from this preference time and
schedule delay. This penalty is captured by a linear cost function with
coefficients α, β, γ, for waiting, early and late arrival respectively. The
time dependent cost function is represented as follows:

c(t) = αw(t) + β(t∗ − t+ w(t))+ + γ(t+ w(t)− t∗)+, (6.2)

where w(t) is the waiting time within the bottleneck for an arrival at
time t.
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Each traveller strategically decides when to arrive at the bottleneck in
order to minimise his cost. This results in the following equilibrium
arrival rate

a(t) =
{
r1(t− tq) t ∈ [tq, tn)
r1(tn − tq) + r2(t− tn) t ∈ [tn, tq′ ]

, (6.3)

where

r1 = µ+ βµ

α− β
, r2 = µ− γµ

α+ γ
. (6.4)

The costs at the start, peak, and end time of the bottleneck period is
computed by

ta = t∗ − ηN/µ

1 + η
, tb = t∗ + N/µ

1 + η
, tn = t∗ − δN/µ

α
,

with η = γ
β and δ = βγ

β+γ . This arrival curve gives all travellers equal
cost of

c = δ
N

µ
. (6.5)

6.2.2 Bottleneck model with arrival time uncertainty

In reality, travellers do not necessarily arrive at their intended time.
We, therefore, extend the above bottleneck model with an uncertainty
function that acts as a smoothing kernel over the arrival function a(t).
Here, a(t) is assumed to be continuous. The deviation from the intended
arrival time of each traveller is modelled by a continuous random variable
X, assuming the deviations of different users to be independent. The
smoothing kernel f(u) corresponds to the probability density function
of X for the arrival deviation u of an arbitrary traveller. The resulting
arrival rate function is given by

ã(t) =
∫ t

u=−∞
f(u)a(t− u)du. (6.6)

Ultimately, we are interested in the time-dependent queue length at the
bottleneck which can be computed by the difference between the actual
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arrival rate of (6.6) and the departure rate µ:

q(t) =
{
ã(t)− µ, Q(t) > 0
(ã(t)− µ)+ Q(t) = 0

. (6.7)

The waiting time can then be computed by

W (t) =
∫ t

u=−∞

q(u)
µ

du, (6.8)

where we use that q(0) = 0.

By plugging (6.8) into (6.2) we compute the expected costs of an arrival
at time t,

C̃(t) = αW (t) + β
(
t∗ − (t+W (t))

)+ + γ
(
t+W (t)− t∗

)+
. (6.9)

Given a time-dependent arrival rate a(t) we can compute the expected
cost for a traveller that has an intended arrival time t by

E[C(t)] =
∫ ∞
u=−∞

C̃(t+ u)f(u)du. (6.10)

6.3 Preliminary analysis

To gain insight in the impact of uncertainty in the exact arrival time of a
traveller, we analyse the costs over time given that travellers are unaware
of this uncertainty aspect. We compute the impact of uncertainty for
a number of delay functions. For each, we show the impact for an
increasing level of uncertainty.

To obtain the arrival rate over time at which travellers are unaware of
each others and their own uncertainty function, we compute the NE
arrival rate as computed in the standard bottleneck model [138]. Thus,
the actual arrival rate ã(t) is computed by the convolution of the NE
arrival rate of Equation (6.4), and the arrival uncertainty distribution of
X. The actual arrival rate can be obtained by taking the convolution as
defined in Equation (6.6). We then plug this rate into (6.9) to obtain the
expected costs over time. Finally, the expected costs for a traveller that
chooses time t is calculated by (6.10). Numerical evaluation of these
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formulas requires a discretisation scheme, as these convolutions do not
necessarily provide an explicit solution.

We discretise the interval of the bottleneck period into n small segments
of length ∆ where:

n =
⌊
tend − tstart

∆

⌋
. (6.11)

The probability mass of the kth segment is obtained by

pk = P[X ≤ (k + 1)∆ + t]− P[X ≤ k∆ + t]. (6.12)

First, we take a uniformly distributed arrival uncertainty X. The cost
function is taken equal to the standard values where β/α = 0.5 and
γ/α = 2 [130](α = 1, β = 0.5, γ = 2, N = 60, s = 1). In Figure 6.1
the results for X ∼ unif(σ, τ) when τ ∈ {0, 1, 5, 10, 30} and σ = −τ
are visualised. In these examples, the bottleneck period is extended to
tstart = ta + σ and tend = tb + τ , since deviations from the intended
arrival times will cause users to arrive prior to ta and later than tb as
well. The results of Figure 6.1c show that the expected cost is below
that of the cost without any delay, as long as a queue exists. In the
last parameter choice, for which the delay is equal to the period of
the bottleneck, there will be no queue at all: travellers will only incur
earliness or lateness cost, depending on their arrival time.

In Figure 6.2, the results for X ∼ exp(µ) are shown. This probability
density function focuses on the largest arrival volume at the beginning,
and the volume quickly shrinks, contrary to the uniform distribution,
in which case the volume is equally spread. For both functions the
same observations are shown, decreasing in the average cost function for
travellers while increasing delay parameter.

In conclusion, travellers will deviate from the standard Vickrey equi-
librium arrivals because they can reduce their cost. With the same
approach, other delay distributions can be applied as well.

We continue the analysis in the next section, by exploring approaches to
obtain an equilibrium accounting for the random delays under the general
assumption that everything is known, including the arrival uncertainty
distribution.
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(a) Time-varying arrival rate (b) Cost per time unit

(c) Expected cost for a traveller

Figure 6.1. Impact of the arrival pattern and costs over time for a uniformly
distributed delay.

6.4 Optimal responses

We continue our analysis by investigating whether an equilibrium arrival
function exists, and if so, under which conditions. To this end, we explore
both the options of a pure equilibrium and a mixed strategy equilibrium.
Both cases are investigated assuming a uniform delay function.

6.4.1 Uniform delay function

To explicitly study whether a pure or mixed equilibrium exists, we
represent the departure delay by a uniformly distributed random variable
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(a) Time-varying arrival rate (b) Cost per time unit

(c) Expected cost for a traveller

Figure 6.2. Impact of the arrival pattern and costs over time for an exponen-
tially distributed delay.

X ∼ unif(0, 1):

f(t) =
{

1 t ∈ [0, 1]
0 otherwise

. (6.13)

Note that the results for general X ∼ unif(0, τ) can simply be obtained
by re-scaling time. In this section, we outline the simplifications in the
model description that are due to the uniform delay assumption.
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Plugging this into Equation (6.10) we obtain

EC(t) =
∫ 1

u=0
C̃(t+ u)du.

To investigate whether a mixed strategy or a pure strategy exists for
this delay function, we have to show that

dEC(t)
dt

= C̃(t+ 1)− C̃(t) = 0, (6.14)

which implies that

C̃(t+ 1) = C̃(t), (6.15)

holds for every t ∈ [tstart, tend].

6.4.2 Pure equilibrium

Next, we analyse whether there are conditions for which a pure equi-
librium exists, meaning that the minimum costs is obtained when all
travellers intend to arrive at the same time instant. First, we derive
the conditions that should hold explicitly. We thereby assume that the
delay f(·) is uniformly distributed. Finally, we numerically supplement
the explicit derivation to gain more insight in the model and allow for
computation with other delay distributions.

Explicit derivation of the pure equilibrium

To determine whether a pure equilibrium exists, we calculate the cost for
a tagged traveller arriving at time s ∈ R, given that the other travellers
N all have the same intended arrival time t ∈ R. We separate between
two cases. When µ ≥ N , the tagged traveller encounters no waiting time
and the moment of arrival of traveller s does not depend on the volume
N at time t. The case where µ < N , s does lead to waiting times when
the actual arrival time overlaps with the interval of arrival of the volume
N . For simplicity we assume N = 1.

The case µ ≥ N
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We determine the cost for a traveller arriving at s by

C(s) =
∫ t∗

s
β(t∗ − u)du+

∫ s+1

t∗
γ(u− t∗)du

= β
[
t∗u− 0.5u2

] ∣∣∣t∗
s

+ γ

[
u2

2 − t
∗u

] ∣∣∣s+1

t∗

= β

[
t∗(t∗ − s)− 1

2
(
(t∗)2 − s2

)]
+ γ

[
(s+ 1)2

2 − (t∗)2

2 − t∗(s+ 1)
]
.

To find the time instant that gives the best response, we compute the
solution of dCds = 0, which gives

dC

ds
= −βt∗ + sβ + γ(s+ 1− t∗) = 0, (6.16)

resulting in

s = t∗ − γ

β + γ
(6.17)

In this case, the best response does not depend on the arrival of the fluid
N due to the absence of a queue formation. This is the same solution
as the model with no waiting costs by Glazer et al [56].

The case µ < N
For the case µ < N , a queue builds during the arrival interval of the
arrival of the volume N . Therefore, we need to consider the time of
arrival of this volume, which is given by ãt(u) = 1 ∈ [t, t+ 1]. Including
this in Equation (6.7), we obtain the waiting time by

Wt(u) =


( 1
µ − 1)(u− t), u ∈ [t, t+ 1]

1
µ − (u− t), u ∈ (t+ 1, t+ 1

µ ]
0, otherwise

,

where u represents the intended arrival time.

We insert the Wt(u) in Equation (6.9), and compute the cost for a
traveller that intends to arrive at time u given that the volume N
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intends to arrive at time t by

C̃t(u) = αWt(u) + β
(
t∗ − (t+Wt(u))

)+ + γ
(
t+Wt(u)− t∗

)+
.

Finally, we compute the expected cost for a traveller that intends to
arrive at time s by

ECt(s) =
∫ s+1

s
C̃t(u)du. (6.18)

Proposition 6.1. A pure Nash equilibrium, satisfying Equation (6.15)
does not exist for N > µ.

To show that the above proposition is true, we start with the computation
of the expected costs for a particle arriving at time s, given that the
volume N intends to arrive at time t. Therefore, we split the integral
of Equation (6.18) into several cases. We make a division between the
case where s ≤ t and s ≥ t, and separate between the point where the
earliness costs changes to lateness costs denoted by x∗ = t+ µ(t∗ − t).
This gives

ECt(s) =



(1.1)︷ ︸︸ ︷∫ t

s
β(t∗ − u)du

+

(1.2)︷ ︸︸ ︷∫ s+1

t
αWt(u) + β(t∗ − u−Wt(u))du for s ≤ t < s+ 1 ≤ x∗

(2.1)︷ ︸︸ ︷∫ t

s
β(t∗ − u)du+

(2.2)︷ ︸︸ ︷∫ s+1

t
αWt(u)du

+

(2.3)︷ ︸︸ ︷∫ x∗

t
β(t∗ − u−Wt(u))du

+

(2.4)︷ ︸︸ ︷∫ s+1

x∗
γ(u+Wt(u)− t∗)du for s ≤ t < x∗ < s+ 1 ≤ t+ 1

(3.1)︷ ︸︸ ︷∫ t+1

s
αWt(u)du+

(3.2)︷ ︸︸ ︷∫ x∗

s
β(t∗ − u−Wt(u))du+

+

(3.3)︷ ︸︸ ︷∫ t+1

x∗
γ(u+Wt(u)− t∗)du

+

(3.4)︷ ︸︸ ︷∫ s+1

t+1
αWt(u) + γ(u+Wt(u)− t∗)du for t ≤ s < x∗ < t+ 1 ≤ s+ 1

. (6.19)
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Here, we excluded the cases where s, t > x∗, and also s+ 1, t+ 1 < t∗.
In these intervals we will not find an optimal choice of s nor of t.

To find the time s for a given arrival of N at time t, we take the derivative
of (6.19), which gives

dEC
ds =



−α(µ−1)(1+s−t)+β(µ−1−s+2µs+t+µt)
µ for s ≤ t < s+ 1 ≤ x∗

−α(µ−1)(1+s−t)+βµ(s−t∗)+γ(1−t∗µ+s−t+µt)
µ for s ≤ t < x∗ < s+ 1 ≤ t+ 1

−α(µ−1+s−t)+β(s−µt∗+(µ−1)t)+γ(1−t∗µ+µt)
µ for t ≤ s < x∗ < t+ 1 ≤ s+ 1

.

Next, solving dEC
ds = 0, we obtain

s =



α(µ−1+t−µt)+β(1−µ−t+µt)
α(1−µ)−β(2µ−1) for s ≤ t < s+ 1 ≤ x∗

α(µ+t−µt−1)+βµt∗+γ(µt∗+t−µt−1)
α+γ+µ(β−α) for s ≤ t < x∗ < s+ 1 ≤ t+ 1

α(1−µ+t)+β(µt−t−µt∗)+γ(1−µt∗+µt)
α−β for t ≤ s < x∗ < t+ 1 ≤ s+ 1

. (6.20)

We distinguish between the cases of (6.20) separately.

Case 1: s ≤ t < s+ 1 ≤ x∗
Which gives

s = α(µ− 1 + t− µt) + β(1− µ− t+ µt)
α(1− µ)− β(2µ− 1) ,

then for s = t = te we obtain

te = α

β

(
1− 1

µ

)
+ 1
µ
− 1, (6.21)

which will give a negative value for any µ < 1 and α > β.

Case 2: s ≤ t < x∗ < s+ 1 ≤ t+ 1
Which gives

s = α(µ+ t− µt− 1) + βµt∗ + γ(µt∗ + t− µt− 1)
α+ γ + µ(β − α) ,
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then, for s = t = te we obtain

te = t∗ − γ

β + γ

( 1
µ

)
− α

β + γ

( 1
µ
− 1

)
. (6.22)

As te has to meet the criteria of te ≥ t∗ − 1
µ , we can only find a pure

equilibrium when µ > α−β
α .

Case 3: t ≤ s < x∗ < t+ 1 ≤ s+ 1
Which gives

s = α(1− µ+ t) + β(µt− t− µt∗) + γ(1− µt∗ + µt)
α− β

,

then, for s = t = te we obtain

te = t∗ − γ

β + γ

( 1
µ

)
− α

β + γ

( 1
µ
− 1

)
, (6.23)

which matches case 2.

The above suggests that a pure equilibrium solution can only exist at
the interval of cases 2 and 3. However, we can show that the cost of
the tagged traveller arriving at time s for s = t = te of Equations (6.22)
and (6.23) is not the global minimum, but only a local minimum. The
global minimum can be found when t ≤ s ≤ x∗ ≤ t+ 1 ≤ t+ 1

µ ≤ s+ 1.
The cost of s for this case is given by

EC(s) =
∫ t+1

s
αW (u)du+

∫ x∗

s
β(t∗ − u−W (u))du

+
∫ t+1

x∗
γ(u+W (u)− t∗)du

+
∫ t+ 1

µ

t+1
αW (u) + γ(u+W (u)− t∗)du

+
∫ s+1

t+ 1
µ

γ(u− t∗)du.

To calculate the best response of s, we take the derivation of the above
equation and make it equal to zero, which gives

dEC
ds

= −t
∗(β + γ)µ+ s(β − α)− αµs+ γµ(1 + s) + t(αt− β)µt(β − α)

µ
= 0,
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Figure 6.3. Best response time s of Equation (6.25) for a volume N intending
to arrive at time t, where t = te of Equation (6.23).

(6.24)

then

s = t∗µ(β + γ)− γµ+ t(α− β)(µ− 1)
α(µ− 1) + β + γµ

. (6.25)

When we replace t by te in (6.22) or (6.23), we obtain a cost that is
smaller than cases 2 and 3, as is shown in Figure 6.3. This shows that a
pure equilibrium does not exists under these conditions.

Numerical analysis

To gain more insight into the location of the best response time s of
a tagged traveller for a given intended arrival time t of volume N , we
numerically compute the costs for s over the relevant range.

To numerically approximate Equation (6.18), we discretise both the inten-
ded t and the intended s into small steps as explained in Equation (6.11)
and (6.12):

M = tend − tstart
∆ , (6.26)
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where ∆ is the step size, M gives the number of subintervals and
[tstart, tend] denotes the interval including the support of the delay func-
tion. For a delay function with support length of [ṽ, w̃], v = b v∆c and
w = dw∆e, we present the discretised version of the cost by

C̃i,j

t=i∆+tstart,
s=j∆+tstart= ∆C̃t(s), (6.27)

where i and j are the discretised values of s and t, respectively. In
Algorithm 2, the computational scheme is described, where pk denotes
the arrival density of the kth interval from the discretised delay function
f(t) as given by Equation (6.12).

Algorithm 2 : Procedure to obtain best response s given t with
delay function f(t)
1: Inputs:

M, v,w, C̃i,j , pk
2: for i = 0, . . . ,M do
3: for j = 0, . . . ,M do
4: Ci,j =

∑j+w−v
k=0 pkC̃i,max{0,k+v}

5: end for
6: si = argminj{Ci,j}
7: end for

With the computational scheme of Algorithm 2 we can numerically
approximate the result for the best response of s for each t. We use the
standard cost function α = 1, β = 0.5, and γ = 2 to show an example of
the time-dependent cost function. The results in Figure 6.4a show the
best response s for departure rate µ = 0.8 when t arrives at the time te
resulting from Equation (6.22) and some small value before and after
te. In this figure, we see that a jump in the best response s occurs at
t ≈ 8.9. The cost function s for the intended arrival of volume N at
time t with minimal costs is shown in Figure 6.4b, where we can see
the occurrence of the jump between 8.93 and 8.94. Thus, we observe
that for an intended arrival time t > te of volume N the best response
is within the range of the cases specified in Equation (6.19). As soon as
t = te, s deviates to a point s > t computed by Equation (6.25).

6.4.3 Continuous mixed equilibrium

We continue our analysis by using a mixed arrival strategy and determine
whether this leads to an equilibrium. We formulate the conditions that
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(a) Best response of s for range t ∈ T

(b) Costs s for specific t

Figure 6.4. Response for a large range of t (left) and in detail at the discon-
tinuity point (right), for µ = 0.8 and N = 1.

should hold for a mixed equilibrium for a uniform delay function. We ex-
plain the difficulty to obtain a mixed equilibrium for a continuous arrival
rate for this example and motivate these by numerical approximation.
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Explicit derivation of the continuous mixed equilibrium

To search for a mixed equilibrium strategy, we define an arrival density
profile g(t) and cumulative density function G(t) for which everyone
choses a preferred time t and the probability of arrival happens according
to this density function. The delay function f(t) corresponds to the
probability density function of someone choosing preferred time t, as
defined in Equation (6.6).

We continue the analysis to find out whether a mixed equilibrium exists
explicitly, by assuming that the intended arrival time leads to an arrival
intensity defined as X ∼ unif(0, 1), as described in Equation (6.13). The
arrival rate function of Equation (6.6) simplifies to

ã(t) =
∫ t

ta
g(t− u)du = G(t− ta),

where ta denotes the start of the bottleneck period. The time dependent
queue length of Equation (6.7) becomes

q(t) =
{
G(t− ta)− µ, Q(t) > 0
(G(t− ta)− µ)+ Q(t) = 0

,

where G(·) is the cumulative density function of g(·). This allows us to
determine the waiting time by

W (t) = 1
µ

∫ t

ta

(
G(u− ta)− µ

)
du,

where we assume that q(s) > 0 for ta ≤ s ≤ t.

The expected cost for a traveller with intended arrival time t is defined
as

EC(t) =
∫ t+1

u=t
αW (t) + β

(
t∗ − (u+W (t))

)+ + γ
(
u+W (t)− t∗

)+
.

Proposition 6.2. A continuous mixed equilibrium does not exist.

To determine whether a mixed equilibrium exists, we have to find ã(t),
for which the equilibrium condition of Equation (6.15) holds. Suppose,
we want to show that this condition is true at t = tb, i.e., the last
intended arrival moment. We need to show that C̃(tb) = C̃(tb + 1). We
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assume that the delay function is uniformly distributed. This gives

C̃(tb) = αW (tb) + β
(
t∗ − (tb +W (tb))

)
,

and hence,

C̃(tb + 1) = αW (tb + 1) + β
(
t∗ − (tb +W (tb + 1))

)
. (6.28)

In equilibrium these two equations must be equal. As we assume that
tb ≥ t∗ we can see that C̃(tb + 1) > C̃(tb), because γ > α. This shows
that Proposition 6.2 is true, and that a continuous mixed equilibrium
does not exists.

Numerical analysis

We search for a numerical procedure to obtain an arrival rate function
for which the expected costs per traveller remain constant on most of the
support. This approximation visualises the locations in time for which
we can not maintain constant costs, as we have proven for one of these
in the previous section. We will not only consider the uniform delay
function, but show that the same holds for other delay distributions.

Algorithm 3 : Procedure to approximate a mixed equilibrium.
1: Inputs:

M, t∗, β, Ctarget, v, w, pj
2: Initialize:

iLoc = t∗−βCtarget−tstart

∆ ;
ri = 0 for i = 0, . . . ,M

3: while iLoc 6= ∅ do
4: riLoc = riLoc + ε
5: for i = 0, . . .M do
6: Ci =

∑i+w−v
j=0 pjC̃j+v

7: end for
8: iLoc = argmini{i : Ci < Ctarget}
9: end while

We want to obtain an arrival rate ã(t), for which the EC(t) ≈ c. To
obtain a numerical solution, we discretise the functions of Section 6.4.3
shown in Equation (6.11) and compute the probability distribution of
arrival as computed in Equation (6.12). We use the same variables
as in Algorithm 2, where the costs at time t is now computed by
Ci

t=i∆+tstart= C̃(t), Ctarget is equal to Equation (6.5), the arrival rate
ã(t) is captured in the vector r̄ = (r1, . . . , rM ), and ε is a small value
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Figure 6.5. Result of Algorithm 3 giving the arrival rate intensities over time.

(a) Time-varying arrival rate (b) Cost function

Figure 6.6. Approximated equilibrium function for X ∼ unif(0, 1).

with which we increase the rate at the indicated location.

Algorithm 3 shows the numerical procedure that results in an arrival
rate function for which the costs over time remain relatively constant.

In summary, the procedure consists of the following steps. We first set a
target costs denoted by Ctarget, which we want to keep constant. We
search for the earliest moment of arrival such that this cost constraint is
met. At this specific time instant we add a small arrival volume of rate
ε. Given the updated arrival vector, we compute the new cost function
over time. Again, we compute the earliest moment of arrival t such that
EC(t) ≤ Ctarget. We continue this procedure until this condition can
not be met anymore.

In Figure 6.5, a representation of the outcome of the approximation
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(a) Time-varying arrival rate (b) Cost function

Figure 6.7. Approximated equilibrium function for X ∼ unif(0, 10).

(a) Time-varying arrival rate (b) Cost function

Figure 6.8. Approximated equilibrium function for X ∼ exp(1).

procedure of Algorithm 3 is visualised. The line density indicates the
arrival rate intensity over time. We observe a large density in the
beginning, followed by a reduced density at the peak moment x∗ (t = 24),
which increases again shortly after. The arrival rate over a specified
period of time is given by the sum of the lines. We apply a moving
average filter to obtain the arrival rate function over time.

In Figures 6.6 and 6.7 the results of these rates and the costs over time
are visualised for uniform delay function. These figures show that for
a larger uncertainty, obtaining a constant cost function becomes more
difficult. The results for an exponential density function for the delay is
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shown in Figure 6.8. We observe that it becomes harder to equalise costs
across the bottleneck period with only a small average delay, compared
to the uniform delay. In Table 6.1, we observe that the total amount of
travellers passing the bottleneck decreases with respect to delay, while
fixing the expected cost to the value of Equation (6.5). Conclusions on
the impact of arrival time uncertainty with respect to dis-utility can
not be made, as the current results are not in equilibrium. However,
this does suggest that uncertainty increases the dis-utility of individual
travellers.

Uniform Exponential
τ = 0 60 60
τ = 1 59.6 59.2
τ = 5 58.7 56.5
τ = 10 57.5 54.1

Table 6.1. Total arrival rate N for fixed costs with varying delay function f(t)
and mean delay τ .

6.5 Conclusion
In this chapter, we investigated the impact of uncertainty in arrival
time in an extension of Vickrey’s bottleneck model. Our model allows a
random distortion of the intended arrival times of users at a congestion
bottleneck of interest. Such a random distortion models the fact that
the actual arrival time of users at a specific congestion point can not
be completely controlled by the users. In reality, it is common that the
departure times from the points of origin, and the delays incurred before
reaching a specific bottleneck can only be estimated up to a certain
confidence range.

We have shown that the equilibrium rate of the Vickrey model without
distorted arrivals is, in general, not a good approximation for a possible
equilibrium in the model with distortions. The equilibrium arrival rate
of the standard bottleneck model does give important initial insight
into the expected costs over time, in case travellers are unaware of their
own and for each other’s random delays. The results showed reduced
costs for almost the entire bottleneck period, while for highly variable
uncertainty distributions, the costs increase at the end of the bottleneck
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period. This is due to the probability of arrival after the end of the
standard bottleneck period.

In fact, we have questioned the existence, in general, of a user equilibrium
in the random setting, We showed that, if it exists, it can not be a pure
Nash equilibrium, nor can it be a mixed equilibrium with a continuous
density for the distortions. To shed light on the nontrivial dynamics in
our model and gain intuition regarding the existence of an equilibrium
we have numerically investigated the optimal responses of individual
users in a range of model settings, including a variety of various delay
distributions. Numerically, we showed that an iterative approach for
the best responses to previously determined best responses results in
a cyclic pattern. In the mixed equilibrium setting with a continuous
arrival volume, we observe instabilities at the beginning, the end, and
the peak of the bottleneck period.

The question of whether or not such an equilibrium exists in general
remains unanswered in this chapter and is the subject of ongoing re-
search. There may exist a more elaborate equilibrium with several arrival
volumes, but analysing such patterns proves to be far from trivial.
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Chapter7Coordinated Scheduling to Enforce
Demand Spreading

In this chapter, we study the effectiveness of personal departure advice
to enforce peak spreading and alleviate congestion in a setting in which
both demand and capacity are stochastic and time-dependent. This
advice encompasses a scenario where participants indicate their daily
travel schedules by means of restricted time windows of preferred arrival.
Based on this, travellers receive a departure advice to meet their personal
schedule with an adaptable reliability level. For this study, we split
travellers into two groups: (1) participating travellers whose departure
time interval can be adjusted, and (2) non-participating ‘background’
travellers whose departure times cannot be adjusted. This allows us to
assess the impact of the fraction ‘adjustable traffic’ on the total delay.

Our results give fundamental insight into the optimal scheduling of
travellers according to their travel preferences, and show that a significant
decrease in average delay can be established when only a small fraction
of the total traffic uses a personal departure advice. It can be used to
facilitate organisations to improve their accessibility1.

7.1 Introduction
Active peak spreading can be used as an effective means to reduce
congestion. Technological developments create new opportunities to
reduce congestion, such as the availability of real-time traffic information

1This chapter is based on [S7].
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and vehicle-infrastructure communication. Combining knowledge of
demand and infrastructural capacity creates opportunities to synchronise
the departure process to enforce peak-spreading. Motivated by this,
we explore the effectiveness of a personal departure time advice for a
large group of commuters, explicitly including the personal departure-
time preferences of the individual travellers. The goal is to develop a
departure advice method that meets the following three requirements:

1. Participating travellers receive a departure advice with a statistical
guarantee to arrive at their destination on time.

2. The method spreads traffic to reduce the average congestion level,
both for scheduled travellers and non-scheduled travellers.

3. The model should be tractable and practically implementable.

To this end, we propose an algorithm to redistribute travellers in time
to smooth out traffic and reduce congestion, which is particular of
interest in overcrowded neighbourhoods. This model forms the basis for
development of an application that gives departure advice for travellers
that need to arrive at their destination within a specified time frame.

The concept of peak spreading has been studied extensively. A well-
studied model is the bottleneck model by Vickrey [138], of which we
extended the basic version in Chapters 5 and 6. This basic model
captures the self-organising behaviour of road traffic in a simple manner,
which leads to numerous extensions giving insights into traffic behaviour
and response.

The effects of information provisioning to enforce peak spreading, com-
bined with the response of travellers is an active field of research. Mah-
massani [96] suggests that the effect of information depends on the
situation, and that in some cases information provision results in neg-
ative effects on the overall system performance. Possible explanations
for this negative impact include unsynchronised departure time choices
and selfish behaviour of the travellers. The first aspect, unsynchronised
departure, occurs when travellers respond in the same manner as real-
time travel information when everyone chooses the same alternative. By
introducing a central organiser that assigns travellers to a departure time
and route choice, this situation could be prevented. The second aspect,
selfish behaviour, has recently received a lot of attention. ‘Individuals
have a certain social value orientation that determines the extent to
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which an individual acts selfishly or selflessly’ [41]. Moreover, the in-
formation acquisition and response of travellers is hard to define. Many
modelling approaches have been considered to capture these aspects in a
realistic manner (see [25] for a review). These aspects lead us to analyse
the effectiveness of a central organiser that synchronises departure time
preferences of travellers and provide them with a departure time that
meets a predefined statistical guarantee of a timely arrival.

Another topic that has received a lot of attention is the impact of
stochasticity on congestion levels, which is neglected in deterministic
models. Most often, deterministic models lead to overly optimistic and
biased results. By including stochasticity, ‘more robust and efficient
decisions can be made than those made based on deterministic evalu-
ation’ [140]. In [141], Waller and Ziliaskopoulos use a chance-constrained
programming method, to include uncertainty in demand. A uniform dis-
tribution of demand is taken, whereby a pre-specified level α defines the
reliability constraints. Simulation results show that for some instances,
a decrease in long-run average total travel time is experienced because
of the more robust solutions. The best reliability level α with respect to
the average delay appears to be scenario specific. Furthermore, Waller
and Ziliaskopoulos mention that variance in travel time will increase for
a larger prediction horizon, which is not included in their paper.

A rich body of literature studies the variability in delay at signalized
intersections, starting with the pioneering work of Webster for the fixed-
cycle traffic light [144]. Despite its enormous applicability, a main
limitation of this model is the assumption that the queue is empty at the
beginning of each red period. Hence, this method is overly optimistic,
especially in the case of overcrowded intersections. In [1], the author
proposes a model that can handle inflow rates that are higher than the
number of cars leaving in the green time period. The arrival stream is
modelled as a time-inhomogeneous Poisson process, supplemented with
the so-called coordination transformation method, introduced by Kimber
and Hollis [73] to incorporate overload. The downside of this model is
that it only works for an empty initial queue, which is often not the case
in overloaded systems. Brilon [21] describes a delay formula based on the
time-dependent M/M/1 queue by numerical methods. He computes the
time-dependent queue length distribution, incorporating initial delay.

To test the applicability and effectiveness of our departure advice model.
We consider a single bottleneck link with two types of traffic streams:
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(1) adjustable traffic, consisting of customers that can be scheduled
according to their indicated preferences, and (2) background traffic,
consisting of customers that cannot be scheduled (see Figure 7.1). We
consider a finite time period with known time-dependent arrival rate
and a fixed capacity (service rate), in which vehicles queue up at time
intervals where the arrival rate exceeds the capacity of the bottleneck.
We use the time-dependent queue length computation method to control
the congestion level and give a statistical guarantee on arrival time.
This control encompasses rescheduling of travellers restricted to their
preference interval in order to smooth demand.

To this end, we propose a departure advice algorithm that dynamic-
ally schedules travellers on the basis of predicted congestion levels and
which anticipates the departure time of each traveller based on the
departure times given to other travellers. Another important feature of
the algorithm is that it includes tail probabilities of the sojourn time
distribution, which is fundamentally different from the commonly used
models that consider mean waiting times only. In other words, we give a
statistical guarantee that a traveller arrives at his destination timely as
opposed to an advice based only on average travel time. This way, the
time-dependent distribution of the deadlines can be determined from a
more conservative, risk-adverse approach. Our methodology balances
travel demand while incorporating personal preferences. As opposed to
the Vickrey model, travellers do not have a single preferred arrival time
with a disutility function for delay and late/early arrivals, but instead
we use a flexibility interval. This method restricts re-scheduling to a
time interval in which a user is scheduled. The advantage of such an
approach is its simplicity.

Figure 7.1. Illustration of the model with two traffic classes: (1) adjustable
traffic, and (2) background traffic.

The remainder of this paper is organised as follows: In Section 7.2 the
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modelling approach of the departure advice is described. In Section 7.3
the analysis procedure and the algorithm for the optimal scheduling of
customers are described. Section 7.4 discusses the experimental setup
to analyse the impact of the departure advice for various scenarios.
Section 7.5 gives an outline of the results of these scenarios. Section 7.6
specifies the embedding of the model into a practical application. Finally,
Section 7.7 contains conclusions and topics for further research.

7.2 Model description

We study the effectiveness of a personal departure advice system. To
this end, we analyse a system where commuters traverse a single road
during a finite time span defined by [0, T ]. This road will further be
referred to as the bottleneck.

For convenience, we discretise the time span of interest, [0, T ], into n+ 1
time instants Tk, where

Tk = kT

n
for k ∈ 0, 1, . . . , n. (7.1)

Note that T0 = 0 and Tn = T . The time intervals are denoted by

Ik = [Tk−1, Tk] for k = 1, . . . , n, (7.2)

and the length of interval Ik is the same for all k and is given by

∆t := Tk − Tk−1 = T

n
. (7.3)

We assume that the arrivals occur according to a time-dependent Poisson
process with piecewise constant rates λk for k = 1, . . . , n, and that the
service durations are exponentially distributed with mean 1/µ (see
Figure 7.2 for an illustration for the case n = 8). This Mt/M/1 model is
referred to as the original model. During the timespan of interest [0, T ]
travellers are served on a first-come-first-served basis. The waiting time
of a traveller is defined as the time between his (scheduled) arrival at
the bottleneck and his departure. In the original model, travellers do
not consider delay at the bottleneck, and we assume that the preferred
departure time form the bottleneck is the arrival time in the original
system. To be specific, for a traveller who arrives at the bottleneck
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Figure 7.2. Discretisation of the bottleneck time period [0, T ] with time-
dependent arrival rate λ and k = 8.

during interval Ik the latest desired departure time is Tk.

The problem is that congestion at the bottleneck causes the travellers
to depart later than their preferred departure time. Motivated by this,
our goal is to properly (re)schedule travellers based on their desired
departure time, providing (statistical) guarantees about their departure
time from the bottleneck system. To this end, we assume that a fraction
σ (0 ≤ σ ≤ 1) of the customers can be scheduled, and a fraction 1− σ
cannot be scheduled. This way, the arrival process in the original system
is a superposition of two independent processes:

1. a background (BG) process of travellers who can not be scheduled,
which is a Poisson process with rate ξk = λk(1− σ), and

2. a foreground (FG) process of travellers who can be scheduled according
to their departure-time preferences, which is a Poisson process with
rate Rk = λkσ (k = 1, . . . , n).

We schedule FG travellers according to their preferences such that they
get statistical guarantees about their departure from the bottleneck,
and at the same time reduce the overall mean waiting time of travel-
lers passing the bottleneck. To be more precise, each FG traveller is
characterised by two parameters:

1. The preferred departure deadline from the bottleneck Td (with d =
1, . . . , n), i.e., the latest moment at which the traveller needs to depart
from the bottleneck.

2. The flexibility f ∈ N with respect to the departure moment: the
traveller is willing to be scheduled such that he departs from the
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system no later than Td, or earlier than Td−1, . . . , Td−f . Note that
this way the traveller is scheduled to depart during one of the intervals
Id−f , . . . , Id.

Throughout, we assume that f is the same for all customers.

The final goal is to assign the FG travellers to a time interval Ik (k =
1, . . . , n) such that congestion is reduced. More specifically, we define
the following, we consider optimisation with respect to the following two
objectives:

1. Participants Optimum (PO), where we minimise the average sojourn
time of the participating travellers (i.e., the FG travellers) only.

2. System Optimum (SO), where we minimise the average sojourn time
over all travellers (i.e., FG and BG travellers) passing the bottleneck.

These objectives are subject to the (statistical) preference constraints,
stating that a participating traveller departs from the bottleneck system
before his deadline Td with probability at least α. The goal of the PO
is to create an incentive for travellers to participate, and be subject to
scheduling.

7.3 Model analysis
The computation of the optimal arrival schedule proceeds along a num-
ber of steps in an iterative manner, as illustrated in Figure 7.3. The

Part 1: Sojourn time distribution
 &

Part 2: Departure deadlines 

Step 1: Computation

Part 3:
Scheduling
Algorithm

Schedule of
departure times  

Adjustable traffic

Background traffic

Step 2: Optimisation

Figure 7.3. Schematic picture of the optimisation process.

complexity of the scheduling algorithm lies in the fact that the relation
between the arrival times and departure times depends on the level of
congestion, which in turn, depends on the arrival process itself. There-
fore, both the sojourn time distribution (see Section 7.3.1 below) and
the arrival deadlines (Section 7.3.2) have to be recomputed after each
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schedule adjustment (Section 7.3.3). Therefore, we iterate along the
following two successive steps:

Step 1 (Computation of latest arrival deadlines): For each pre-
ferred departure deadline Tk, determine the latest arrival time Ti (i ≤ k)
of a traveller such that his departure time is prior to Tk with probability
at least α.

Step 2 (Optimisation with respect to scheduled departure):
For each latest departure time Td (d = 1, . . . , n), determine the fractions(
p

(d)
1 , . . . , p

(d)
f

)
of travellers to be scheduled for departure in Id−f , . . . , Id

which minimise the expected sojourn time.

After convergence, the final result is the optimal schedule. In Sec-
tions 7.3.1 to 7.3.3 below, we elaborate on the details of the methods
involved in the calculation of the optimal schedule visualised in Fig-
ure 7.3.

7.3.1 Part 1: Sojourn time distribution

To analyse the delay of the model as defined in Section 7.2, we use the
transient results from the time-inhomogeneous Mt/M/1 queue. For this
queueing model, arrivals are assumed to follow an inhomogeneous Poisson
process with parameter λk for k = (1, 2, . . . , n), and departure times
are exponentially distributed with rate µ. The behaviour is determined
by a continuous-time Markov chain. Hence, the future state (e.g., the
number of vehicles in the queue) is only dependent on the present state.

To derive the probability distribution of the queue length over time, we
observe the queueing system at time instants Tk, where k = 0, 1, . . . , n.
This allows us to consider a discrete-time Markov chain with generator
matrix Qk, where qj,j+1 = λk, qj,j−1 = µ, qj,j = −(λk +µ) for j ∈ N and
q01 = λk, q00 = µ − λk. The states represent the number of travellers
waiting at the bottleneck. At each state an arrival or departure can take
place, except for state 0 in which there is no one waiting.

To determine the probability to move to an other state, we use uni-
formisation, where we normalise with respect to the fastest outgoing
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rate:

γ ≥ max
j
|qj,j |.

Moreover, we keep this rate for each time instant k constant. Therefore,
we set

λk + µ+ δk = γ, (7.4)

where δk is a dummy transition such that the rate of interval k equals γ
for each k. The transition probability matrix is given by:

P = I + 1
γ
Q.

We denote π̄(k) =
(
π0(k), π1(k), . . .

)
, where πj(k) gives the probability

of each state j at time k. We set π̄(0) = (1, 0, . . . ). Now, we can compute
the distribution at time k by:

π̄(k) = π̄(0)eQk = π̄(0)
∞∑
n=0

γkn

n! e
−γkPn, (7.5)

where γkn

n! e
−γk gives the probability that n transitions occur in time

interval [0, Tk], and where

Qk =


µ− λk − δk λk 0 · · ·

µ −(λk + µ+ δk) λk · · ·
0 µ −(λk + µ+ δk) λk
... . . . . . . . . .

 .

In the above case, the queue length distribution is only computed for
the first interval, because we initialise the system assuming a queue
length of 0: π̄(0) = (1, 0, . . . ). To recursively compute the queue length
distribution from the previous time interval we use:

π̄(k + 1) = π̄(0)e(k+1)Qk = π̄(0)ekQkeQk = π̄(k)eQk , (7.6)

where the interval length between consecutive time intervals k and k + 1
is of length Tk+1 − Tk = T

n .

The expected queue length at each time instant Tk can be expressed in
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terms of πi(k) by

E[Lk] =
∞∑
i=1

iπi(k), (7.7)

where Lk gives the queue length at time Tk.

We want to determine the average sojourn time, denoted by Sk of an
arbitrary traveller arriving during interval Ik. By averaging between two
consecutive time intervals of Equation (7.7), we compute approximate
the average sojourn time of a traveller that departs within his assigned
interval Ik:

E[Sk] = E[Lk−1] + 1 + E[Lk] + 1
2µ . (7.8)

This allows us to compute the arrival interval corresponding to the
deadlines of travellers for each interval, which is explained in Section 7.3.2
below.

7.3.2 Part 2: Departure deadline

In this section we use the results of Section 7.3.1 to determine the
arrival interval that matches the departure deadline from the bottleneck
with a statistical guarantee. To this end, we use the time-dependent
queue length distribution, to compute the sojourn time distribution of
a traveller. This, in turn, can be used to determine at what time a
traveller should arrive at the system, such that he departs before his
deadline with probability at least α. Given this latest arrival time, we
translate this into a time interval in which the traveller is advised to
arrive.

We first need to calculate the probability distribution of Lk, the queue
length at time Tk. As follows, this distribution is the same as the
distribution of the state of the time-dependent Markov chain:

P(Lk = C) = πC(k) for C = 0, 1, . . . , (7.9)

where C represents the number of travellers at the bottleneck queue.

To guarantee that a traveller departs from the bottleneck with a pre-
defined probability, we first compute the probability that we need at
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least τ time to serve a customer waiting in the queue

P
(
C+1∑
c=1

Bc > τ

)
=

C∑
c=0

((µτ)c

c! e−µτ
)
, (7.10)

where Bc is the service time of the c-th vehicle in the queue. We then
substitute Equations (7.6) and (7.10) into

P(Sk > τ) =
∞∑
C=0

P
(
C+1∑
c=1

Bc > τ

)
P(Lk = C)

=
∞∑
C=0

C∑
c=0

((µτ)c

c! e−µτ
)
πk(C),

where Sk is the sojourn time at time instant Tk.

To obtain the time τ that meets the reliability constraint with level α
based on the time-dependent fluctuations in sojourn time, we compute
the following equation

τα(k) = min{τ : P(Sk > τ) < 1− α}, (7.11)

where τα(k) gives the total amount of time based on the α tail probability
of the sojourn time at time Tk. We use this to compute the latest arrival
time at the bottleneck such that the traveller departs the bottleneck
with probability α. This is given by

td = max(t : t+ τα(k) ≤ Td), (7.12)

where td ∈ [0, T ].

In Equation (7.12) we computed a specific time td at which the travellers
with deadline Td should arrive at the bottleneck. However, in the
scheduling algorithm, travellers are assigned to an arrival interval. We
assume that these travellers arrive at the bottleneck uniformly within
their assigned interval. Therefore, we need to translate the arrival
deadline td corresponding to departure deadline Td to an arrival interval
Id−ld , where ld = 0, 1, . . . , d. We compute this time interval of arrival by

ld =
⌈
td − Td
T/n

⌉
. (7.13)
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Note that we round the value of ld to the next integer value. This
gives as a result that FG travellers with deadline d depart on average
before Td with probability at least α, i.e., they are ensured to depart
with probability α if they arrive in the first half of the interval. This
approach ensures that travellers arrive on average before their deadline
with probability at least α. If we would restrict this to the whole interval,
this implies that even for an empty queue, travellers are scheduled an
interval before their deadline. This approach would lead to a very
conservative arrival advice, and increases the early departure probability
substantially.

Travellers which are scheduled to arrive in interval Ik are assumed to
arrive homogeneously during that interval. Hence, the resulting arrival
process remains Poisson with rates a1, . . . , an, with

∑n
i=1 ai =

∑n
i=1Ri.

The resulting arrival schedule is given by

λ′k = ak + ξk (k = 1, . . . , n), (7.14)

where ak and ξk are the arrival rates of FG and BG travellers in interval
Ik, respectively.

7.3.3 Part 3: Scheduling algorithm

To reduce congestion at the bottleneck, we implement a scheduling
algorithm that redistributes the FG travellers according to their time
preferences and reliability constraints. The objective of the scheduling
algorithm is defined from two perspectives: (1) we minimise the average
sojourn time of FG travellers throughout referred to as Participants
Optimum (PO), and (2) we minimise the average sojourn time of all
travellers, also referred to by System Optimum (SO).

The SO minimises the average sojourn time over all travellers, which is
computed by

ES(λ̄) =
n∑
k=1

λk
E[Lk−1] + 1 + E[Lk] + 1

2µ , (7.15)

where Lk is the queue length at time instant Tk, λ̄ = (λ1, . . . , λn), and
λk is the average rate of travellers that arrive in interval Ik. Recall that
we use the average sojourn time formulation of Equation (7.8).
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The PO, which minimises the average sojourn time over FG travellers
only is computed by replacing λk of Equation (7.15) by the FG rate ak:

E[S(ā)] =
n∑
k=1

ak
E[Lk−1] + 1 + E[Lk] + 1

2µ , (7.16)

where ā = (a1, . . . , an).

To compute (7.15) and (7.16), we use the arrival rate per interval of the
FG travellers ā. A FG traveller with departure deadline Td is scheduled
to arrive at the queue during interval Id−ld , where ld = 0, 1, . . . , d denotes
the number of intervals that is necessary to depart from the bottleneck
before time Td with probability at least α. By using the computational
scheme specified in Section 7.3.2 we can determine the arrival rate of
FG travellers denoted by ak for each interval. For the initial schedule,
we translate the deadline rates Rk of FG travellers to ak−lk , where
lk ∈ {0, . . . , k} for each k. This gives us the arrival rates to compute the
average sojourn time.

Figure 7.4. Illustration of the intervals in which users with latest arrival
interval k and k + 1 can be scheduled.

FG travellers indicate their flexibility level f ∈ N, which means that
they can be scheduled to depart from the bottleneck at the f time
instants before the final deadline {Td−f , . . . , Td}. To capture these
new arrival rates, we introduce the vector η̄ = (η1, . . . , ηn), for which∑n
k=1 ηk =

∑n
k=1Rk and ηk−f + · · · + ηk ≥ Rk (see Figure 7.4 for an

illustration). We assume that the flexibility time frame f is the same
for all FG travellers. This allows us to define the rescheduling problem
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by the objective defined in (7.15) and the two constraints:

minimize
η̄

E[S(λ̄)] (7.17)

subject to
k∑
j=1

ηj ≥
k∑
j=1

Rk for j ∈ {f, f + 1, . . . , n}

k−f∑
j=1

ηj ≤
k∑
j=1

Rk for j ∈ {f, f + 1, . . . , n}

ηk ≥ 0 for k = 1, 2, . . . , n,

where ηj represents the rate of FG travellers assigned to depart in interval
j. The first constraint ensures that enough travellers are scheduled in
the intervals before (or at) the latest arrival intervals, i.e., that all
users are on time. The second constraint ensures that FG travellers
have a flexibility of being scheduled a maximum of f time instants
before their latest departure deadline. It is easy to see that these two
constraints ensure ηk−f + · · ·+ ηk ≥ Rk, such that the travellers with
indicated preference time Tk are scheduled to depart before time instants
Tk−f , . . . , Tk. Our aim is to find the schedule η̄∗ that minimises ES(·).

For small and medium-sized problem instances, the optimum can be
easily found by standard numerical methods. However, for large model
instances, the computation time can become prohibitively large, and
local search can be applied to approximate the optimal solution within
a reasonable time interval. In general, the solution space is not convex,
so that convergence of the local search is not guaranteed, and we stop
the computation when a maximum number of iterations is reached.
Therefore, as an initial solution, we spread the inflow as much as possible
to reduce the chance of a local optimum. More specifically, for given
ξ̄ = (ξ1, . . . , ξn), our initial solution is the vector η̄ = (η1, . . . , ηn) that
minimizes

n∑
i=1

(ηi + ξi)2, (7.18)

subject to the constraint in Equation (7.3.3).
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7.4 Experimental setup

To assess the effectiveness of the personal departure advice algorithm
proposed in Section 7.3, we have performed an extensive numerical
experimentation. In this section, we describe the experimental setup and
the scenarios considered. In this numerical study, choices have to made
with respect to the parameters settings, including the arrival patterns,
the capacity of the bottleneck, the size of the discretisation step for
the scheduling of travellers, the flexibility level of the travellers, the
reliability level for the departure advice and the choice of the objective
function.

The effectiveness of the scheduling algorithm will vary depending on
the situation of interest. An important factor to be taken into account
is the duration and severity of the peak period. The departure advice
algorithm applied at a bottleneck with a long peak period with small
over-saturation has a different impact than a highly oversaturated road
for a short peak period. To analyse the impact of the arrival pattern, we
consider four rush hour scenarios, with a total duration of T = 3 hours
partitioned into 5-minute time intervals denoted by n = 36. The service
capacity of the bottleneck system is µ = 12 vehicles per minute. The four
rush hour scenarios are constructed such that they are representative for
different situations, and are referred to as the ‘low’, ‘high’, ‘peak’ and ‘2
peaks’ scenarios:

1. The low scenario represents situations where during rush hour there
is only a mild overload for a long period,

2. The high scenario represents a long and highly oversaturated peak
period,

3. The peak scenario represents a short but highly oversaturated peak
period, and

4. The 2-peaks scenario represents a peak period with two oversaturated
phases.

In line with the observations made in the Highway Capacity Manual [99],
we assume that arrival rates are constant over 15-minute time intervals,
and given by Table 7.1. Recall that the time granularity for the departure
advice is 5 minutes, whereas the arrival rates change at 15-minute
intervals. Therefore, for each rush hour type the 12 arrival rates listed
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time 7:00 7:15 7:30 7:45 8:00 8:15 8:30 8:45 9:00 9:15 9:30 9:45
Type in min 0-15 15-30 30-45 45-60 60-75 75-90 90-105 105-120 120-135 135-150 150-165 165-180
Low 10.4 11.5 12.3 12.8 13.0 12.8 12.3 11.5 10.4 9.2 7.9 9.2
High 9.3 11.6 13.6 14.9 15.4 14.9 13.6 11.6 9.3 7.0 5.0 7.0
Peak 8.0 8.0 10.0 11.0 36.0 12.3 9.0 8.0 8.0 8.0 7.0 8.0
2-Peaks 8.7 13.6 17.0 8.0 7.0 17.0 18.0 9.0 9.0 9.0 9.0 8.0

Table 7.1. Four scenarios of arrival flows (vehicles/minute) per quarter during
rush hour.

in Table 7.1 should be read as λ3k = λ3k+1 = λ3k+2 for k = 1, . . . , 12.
The load of the system is equal for all scenarios; total expected travellers
during the time span is N = 2000 and the capacity of the bottleneck is
given by µ ∗ T ∗ 4 ∗ 15 = 2160 which gives a load of 92.6%.
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Figure 7.5. Average sojourn time for the arrival scenarios during the bottleneck
period.

To illustrate the impact of the arrivals on the queue-length distribution,
Figure 7.5 shows how the mean queue length changes over time for
each of the four rush-hour scenarios in Table 7.1. The results illustrate
the fact that even seemingly mild arrival patterns may have a strong
impact on the queueing behaviour of the system. In the next section,
we elaborate on the influence of the different parameter settings on the
efficiency of the scheduling algorithm.
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7.5 Results
In this section, we analyse the impact of the system parameters on the
efficiency of the scheduling algorithm. In each of the following subsec-
tions we adjust some of the parameters to answer the following questions:

1. What is the impact of the choice of the reliability level, and which
one should we use for our experiments?

2. What is the impact of the participation rate, and till what extent is
the departure advice a valuable tool?

3. What is the impact of the flexibility time frame, can we determine
the minimum level of flexibility required to participate?

4. Which optimisation strategy should be chosen, system optimum, or
participants optimum?

We analyse the above four questions in the following three subsections
by numerical experiments using the arrival scenarios of Table 7.1.

7.5.1 Reliability parameter

We would like to give a high guarantee to depart the bottleneck before
the deadline, while keeping the probability of early arrival as low as
possible. In this section, we determine an appropriate level α based on
the results of the probability of an early arrival (before Td−1) and late
arrival (after Td) for varying levels of α.

We measure the reliability of the departure advice by two performance
indicators: (1) P(Early), the probability that a traveller departs the
bottleneck before time Td−1, and (2) P(Late), the probability that a
traveller departs later than time Td. In Section 7.3.2 we explained
the computation to find the arrival interval Id−ld based on the α tail
probabilities of the sojourn time. This guarantees that travellers arriving
in Id−ld depart, on average, before Td with probability at least α for each
interval. In the same manner, we can compute P(Early) and P(Late)
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for the chosen reliability level α.

In our experiments, we vary α and compute for each of the four scenarios
specified in Table 7.1, the corresponding expected earliness, P(Early),
and expected lateness, P(Late). In Table 7.2 the results of these experi-
ments for α ranging from 10% to 95% are shown. We observe that the
earliness probability increases rapidly for high levels of α, whereas the
probability of late arrival increases slowly for larger values of α. The
results indicate that the lateness probability gives similar results for
each scenario, while the earliness probability shows a larger variation.

The reliability level spans the largest interval for α = 50%. Although
this gives the largest probability to depart within the specified interval,
the probability of late arrival is rather high. Past research indicates
that a traveller’s experience of late arrival is a lot more unfavourable
compared to an early arrival [131]. Taking these aspects into account we
set α to 70% for our experiments. This ensures that for each scenario,
on average, 9 out of 10 travellers arrive before their deadline, while the
discomfort due to earliness remains within acceptable bounds.

Scenario Low Scenario High Scenario Peak Scenario 2 Peaks
α P(Early) 1− P(Late) P(Early) 1− P(Late) P(Early) 1− P(Late) P(Early) 1− P(Late)

10% 0.00 0.69 0.02 0.57 0.01 0.67 0.04 0.63
20% 0.00 0.69 0.04 0.64 0.02 0.74 0.06 0.67
30% 0.03 0.75 0.11 0.76 0.05 0.79 0.09 0.72
40% 0.08 0.82 0.15 0.81 0.05 0.79 0.12 0.76
50% 0.11 0.85 0.20 0.85 0.08 0.83 0.14 0.79
60% 0.14 0.88 0.22 0.85 0.13 0.87 0.30 0.87
70% 0.20 0.90 0.30 0.90 0.26 0.91 0.32 0.89
80% 0.27 0.92 0.42 0.94 0.36 0.94 0.49 0.94
90% 0.47 0.95 0.51 0.96 0.53 0.96 0.56 0.97
95% 0.61 0.97 0.62 0.97 0.61 0.97 0.64 0.98

Table 7.2. Reliability level of departure advice based on the α tail probabilities
of the sojourn time.

To summarise, we observe that the P(Late) of the departure advice for
specific level α is similar for each scenario. A larger difference P(Early)
can be observed for the different scenarios. For our examples, we choose
a reliability level of α = 70%, to reduce the inconvenience of arriving
late, while keeping the P(Early) reasonable.
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7.5.2 Participation rate and flexibility

To give an answer to the second and the third question, we investigate
the effectiveness of the rescheduling method with respect to the parti-
cipation rate σ and the flexibility time frame f of the travellers. For
our experiments, we assume that all the participating travellers take the
advice that was computed by the scheduling algorithm and that for a
bottleneck scenario all participants have the same flexibility f . We focus
on the results of the PO. An overview of the experiments can be found
in the Appendix in Tables 7.3 to 7.6.

From the results listed in Tables 7.3 to 7.6 we observe a decrease in
average sojourn time for most parameter combinations, compared to
the original value. Although we would expect a positive result for all
parameter sets, we see that the scenarios with flexibility f = 0 have a
negative impact on the sojourn time for higher participation rate. In
particular, for more severe rush hours like Scenario ‘High’ and ‘Peak’, the
average sojourn time rapidly increases for larger participation rates. This
is caused by the reliability aspect, which schedules travellers to an earlier
interval to meet their deadline, causing an earlier build up of the queue
at the bottleneck. To compare the impact of the rescheduling without
the influence of the reliability constraint, the results for each fraction σ
and flexibility f can be compared with the same σ and flexibility f = 0.

The impact of the flexibility level on the effectiveness should be considered
in combination with the participation rate. In Figure 7.6, the average
sojourn time of scenario ‘High’ is visualised over time for increasing level
of flexibility. We observe an increase in average sojourn time for high
participation rate and small flexibility time frame. When the flexibility
level is 20 minutes, a positive result is obtained for each participation
rate. In Figure 7.7 the results for f = 3 for scenario ‘Peak’ and ‘2
Peak’ are visualised. We observe that the 20-minute flexibility does not
provide a good solution for scenario ‘Peak’ when the participation rate
is large. The results of the scheduling algorithm clearly depend on the
arrival scenario. Therefore, the level of flexibility required for travellers
to participate should be determined depending on the expected arrival
scenario.

For a 20-minute flexibility time frame, i.e., f = 3, we observe a large
reduction in average sojourn time. To show the average improvement, we
visualise the average of the four arrival scenarios in Figure 7.9. Each bar
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(a) Flexibility range of 5 minutes (f = 0)
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(b) Flexibility range of 15 minutes (f = 2)
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(c) Flexibility range of 20 minutes (f = 3)
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(d) Flexibility range of 30 minutes (f = 5)

Figure 7.6. Arrival scenario High: average sojourn time for various participa-
tion rates with flexibility of 5, 15, 20 and 30 minutes.

represents the percentage of average sojourn time of BG and FG travellers
compared to the base case and f = 0 scenario, respectively. Note that
the average sojourn time for participating travellers is smaller compared
to the average sojourn time for BG travellers in each experiment. This
is caused by the fact that in most cases the travellers are assigned to
less congested intervals within their flexibility frame.

The scheduling algorithm may cause a complete shift of the peak period
for large participation rates combined with a large flexibility f . This is
undesirable when travellers who only encountered mild delays have to
queue. An example of such a peak shift is shown in Figure 7.8. These
peak shifts can be explained by the fact that each deadline corresponds to
exactly one arrival interval. Therefore, one interval possibly corresponds
to multiple deadlines, and vice versa one interval may correspond to no
deadline at all. In some cases, this could lead to a sub-optimal solution,
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(a) Scenario 2 Peak (f = 3)
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(b) Scenario Peak (f = 3)

Figure 7.7. Arrival scenario ‘Peak’ and ‘2 Peak’: average sojourn time for
various participation rates with flexibility of 20 minutes.

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

Time in minutes

A
v
e
ra

g
e
 s

o
jo

u
rn

 t
im

e
 (

m
in

)

 

 

Base case

5% particpation

10% participation

25% participation

50% participation

(a) Flexibility range of 15 minutes (f = 2)
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Figure 7.8. Arrival scenario Low: average sojourn time for various participa-
tion rates with flexibility of 15 and 20 minutes.

see Table 7.5 for σ = 50% and f ≥ 4. We elaborate that this issue only
appears for large participation rate in combination with small flexibility.
Including a spread over multiple intervals for each deadline can solve
this problem, however, this also decreases the reliability of the departure
advice. We did not analyse an extended arrival interval scenario as our
study is focused on the impact of a small fraction of participants, and
the effect of a larger participation fraction within the same model.
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Figure 7.9. Percentage of average sojourn time compared with the base case
and f = 0 case for BG and FG travellers.

7.5.3 Scheduling objective

So far, we only studied the results for the PO objective, for which we
minimise the average sojourn time of the participating travellers. In this
section, we compare the impact of both SO and PO, and analyse whether
the PO approach is beneficial. Additionally, we discuss the results of the
fast search method that provides an initial guess for both objectives. The
initial solution is computationally cheap as it only spreads the deadline
rates. The results of the initial solution and the two objectives are shown
in Tables 7.3 to 7.6 of the appendix.

For both the SO and PO objective we see in Tables 7.3 to 7.6 that the
average sojourn time of scheduled travellers is smaller than the sojourn
time of all travellers (scheduled and non-scheduled). In general, we reduce
delay by rescheduling travellers to less congested intervals. Therefore,
participating travellers experience a lower average sojourn time than
non-scheduled travellers. We do observe a significant difference between
the two objectives with regard to the assigned time interval throughout
the bottleneck period. In Figures 7.10 and 7.11 the cumulative arrival
times of the FG travellers are visualised for each of the four arrival
scenarios. The flexibility time span of the commuters is specified with
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the dotted lines, representing the minimal and maximal arrival rate for
each time step that satisfies the constraints. The black line shows the
optimal departure schedule that minimises congestion. What we observe
in Figures 7.10 and 7.11 is that commuters are assigned to their earliest
departure moment before the peak, and later on they are assigned to
their latest departure time.

The difference between the objectives PO and SO is shown in Figure 7.10.
For the SO objective travellers are scheduled at their earliest departure
time until a queue starts to form, while for the PO objective travellers are
still scheduled at their earliest deadline. As the sojourn time before the
peak rises, the choice of scheduling travellers early reduces the sojourn
time of the traveller departing at that moment. However, when the
sojourn time increases, scheduling travellers early causes more people
to suffer from the traveller arriving early. Therefore, the SO objective
starts scheduling travellers to their latest moment when a queue starts
to form, while the PO objective waits until the queue is formed.

For the initial solution, we minimise the sum of squares of the departure
deadlines. This already shows a substantial reduction in average sojourn
time. We use this solution as a starting point for both objectives, SO
and PO. This method is computationally very cheap, and significantly
reduces the algorithms’ convergence time. Moreover, this approach
supports real-time adjustments in the schedule.

To summarise, by using our algorithm we see that for both objectives, the
FG travellers are in an advantageous position. They are shifted towards
less congested time periods, for the PO objectives slightly more than
for the SO objective. A risk of the PO objective is the disadvantageous
position of BG travellers. This is the case for scenarios with a high
fraction of participants combined with a low flexibility level. Within
these bounds, our algorithm provides a significant reduction for both
BG and FG travellers.

7.6 Implementation
In this section, we shortly describe the software tool in which the
scheduling algorithm is embedded. We hereby focus on the embedding
and the preconditions that need to be met to effectively use such a tool
in practice. The application is meant to support event managers during
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(a) Scenario High SO
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(b) Scenario High PO
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(c) Scenario Low SO
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Figure 7.10. Cumulative arrival rate of the departure advice users over time.

an event to reduce the peak flow arrival rate and inform and guide the
visitors along their journey to the event. As a result, the application
requires more than just the scheduling algorithm.

The software tool that spreads the traffic stream over time at an event
location consists of more than just the scheduling algorithm. The
application encompasses two components: (1) a web interface application
for the traffic manager, and (2) a smartphone application for the end
user. A visualisation is shown in Figure 7.12. We describe the two
components and its functionalities in more detail.

In the web interface, the traffic manager has to specify the area of in-
terest. This requires the coordinates of the destination(s), the maximum
capacity, inflow and outflow constraints. After the initialisation of the
destination, the traffic manager has to enter the details for a specific
event that he wishes to optimise. This requires information on the date
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Figure 7.11. Cumulative arrival rate of the departure advice users over time.

and time of the event, the expected number of travellers visiting the
event, the granularity of the interval in which travellers are scheduled,
and the expected arrival pattern. In order to obtain a feasible schedule,
the traffic manager has to specify the maximum number of time slots a
traveller can be scheduled from his preferred time, and a target delay
to which the congestion should be reduced. The traffic manager can
simulate the expected results based on the scenario he initialised and the
expected number of participating users. He can adjust the parameters,
if needed. For example, when the congestion still exceeds the target
delay after optimisation, he can increase the inflow or outflow capacity,
or increase the preference bounds. When the details are entered and
adjusted to the traffic managers’ preference, visitors can sign up for a
time slot at the specified event location.

The visitors sign up for a time slot via a smartphone application. They
enter their preferred time of arrival and indicate till what extent they
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Figure 7.12. Visual of the application tool using the scheduling algorithm.

are flexible with regard to this specific time. Prior to the event, the
scheduling algorithm computes the optimal assignment according to
the constraints specified by the users and the traffic manager. For
practical purposes, each user can specify his own preference bounds
instead of a fixed flexibility interval for each participating user as we
used in the numerical examples of Section 7.5. Moreover, the traffic
manager specifies to what extent these personal bounds are allowed
to be exceeded. In case the personal preference bounds of a user are
exceeded, this user will receive an acceptance request. This iterative
process generates the possibility to interact with the user in order to
spread the traffic even more.

Details regarding the departure advice procedure, is visualised in Fig-
ure 7.14. A more detailed explanation of these steps is given below:

Step 1: Compute the time-dependent queue length based on the time-
dependent arrival rate, and the departure rate. Thereby de-
riving the moment of departure of the participating travellers,
such that they arrive at the destination at their preferred time.

Step 2: Check whether the resulting schedule exceeds the predefined
maximum delay time. In case the answer is ‘no’, we have a
feasible solution and continue to the final step (8). In case the
answer is ‘yes’ we continue to (3).

150



7.6 Implementation

(a) Screen to specify location details

(b) Screen to specify optimization details

Figure 7.13. Screenshots of the web application for traffic manager.

Step 3: Minimise the queue length given the constraints of the indi-
vidual time preference bounds specified per user.

Step 4: Check whether the current schedule exceeds the maximum delay
time. In case the answer is ‘no’, we have a feasible solution and
continue to (6). In case the answer is ‘yes’ we continue to (5).

Step 5: Increase the range of the preference bounds by one, whereby
we switch between left and right increase. In case we exceed
the maximum deviation from the preferred time, we stop the
process and continue to (6), otherwise we return to (4).

Step 6: Match the optimised arrival schedule to the participating trav-
ellers. A list is returned containing the users scheduled outside
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Figure 7.14. Procedure of the rescheduling process.
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their preference bounds that have not received an adjustment
request in a previous iteration. These users receive a request
whether they accept the adjustment. In case the maximum
number of feedback loops have not been exceeded we proceed
to (7), if this sheet is empty we continue with (8).

Step 7: If we did not reach the maximum number of feedback loops. We
incorporate the traveller’s response and continue to optimise
the schedule with this input from (3), otherwise, we go to (8).

Step 8: Given the response, we determine the final schedule, compute
the time-dependent queue length and the resulting statistics.
We assign each participating traveller to the newly obtained
schedule and the resulting schedule is returned as output.

An additional feature in the software application is the reward system.
In order to stimulate the participation of visitors, the traffic manager
can assign rewards to the visitors. He can specify a reward to travellers
based on the adjustments visitors make in their schedule. When a user
is asked to arrive outside his preference bounds, the traffic manager
can, for example, give this visitor a coupon for a drink or a snack as a
compensation. Research on the reward assignment is out of the scope of
the current research. However, this component should be explored in
further research.

7.7 Conclusion

We studied the effectiveness of a personal travel advice as a measure
to reduce congestion. We measured the effectiveness based on three
requirements: (1) the departure advice should give a reliable advice that
is met with a statistical guarantee, (2) the rescheduling algorithm should
give a significant reduction in average delay at the bottleneck, and (3)
the method should be easily applicable in practice.

To gain insights into the reliability of a departure advice method, we
set up a test environment for which we constructed four types of high
load arrival scenarios and modelled the time-dependent arrival and
departure process by an Mt/M/1 queue. The results of these scenarios
show that for each reliability level α, the lateness probability between
the scenarios gives similar results. A larger fluctuation is seen for the
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earliness probability, especially for peaked scenarios, the probability of
an early arrival increases rapidly. For the experiments we set α = 70%,
this ensures that on average 9 out of 10 travellers arrive before their
deadline, while the earliness remains relatively low.

For the second requirement, we studied the impact of this departure
advice method on the average reduction in delay. We analysed the four
arrival scenarios for various parameter combinations for both the fraction
of participating travellers as their flexibility time frame. The fraction of
participating travellers was extracted based on percentile arrival rates
over time. Most experiments show a significant reduction in delay as a
result of rescheduling. Especially, for relatively low participation rate,
a steep decrease in average delay is established. However, for larger
participation rate, we observe experiments with a negative impact on
the delay. To ensure timely arrival, delay can increase substantially,
especially when the fraction of participants becomes large and their
flexibility time frame is small. It is therefore important to analyse the
impact of the scheduling method for the arrival scenario, combined with
the fraction of participants and their flexibility level.

To ensure practical applicability of the model, we created a model
that uses current technologies that allow for a direct implementation
of our method. We did not consider methods such as road pricing,
which gives ethical complications. Instead, we focused on reliability
and advantageous departure time windows for participants, to incentify
travellers. Furthermore, the classical penalty form, where each user
encounters extra costs for arriving earlier or later than preferred is
relaxed by using a flexibility interval. This interval gives the boundaries
of a users’ preferred departure time. To create an additional advantage
to participate, we computed the schedule that minimises the delay only
for the travellers using the departure advice, denoted by the PO. The PO
gives an extra incentive to participate, however, it also causes an increase
in the sojourn time for BG travellers for some scenarios. Therefore, this
idea should be used with caution. In general, for both objectives, the
delay of the participants becomes smaller than the delay of the BG
travellers.

The results from the above three requirements on the effectiveness of the
rescheduling method are promising. The availability of resources such
as historical arrival data, real-time sojourn time information, and fast
exchange of information creates opportunities to implement this method
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effectively. A personal travel advice gathers departure information and
returns a departure interval for each traveller. Exchange of real-time
information from the traffic sensors as well as from the user increases
reliability and the ability to react to sudden changes in arrival demand.
The algorithms’ computational efficiency is optimised by means of a
local search algorithm that ensures a fast convergence of the scheduling
solution to quickly adjust to real-time information. The model has been
tested for hypothetical arrival curves where the Mt/M/1 model is used
to simulate the effects of variability in arrival and gain insights into the
impact of a personal travel advice. In order to implement this algorithm
for a specific bottleneck, historical arrival patterns should be used to
calibrate the model.

Eventually, the effectiveness of the departure advice application depends
on the participation of the travellers. The departure curve is partly
dependent on the rescheduled travellers, and whenever these travellers
do not follow the travel advice, this could influence the expected delay
at the bottleneck. Our results reveal that travellers are likely to be
rescheduled at the outer intervals of their preference. Whenever a larger
group ignores the advice and departs at other time instants, this could
result in a negative influence on the delay at the bottleneck. This
study only shows the possible impact of a departure advice. Another
factor influencing the effectiveness is background traffic. The response of
background traffic on the change in delay over time is not included in this
study. A field study should be performed to determine the acceptance
of travellers for this type of measure.

This model showed that peak-spreading by means of a personal travel
advice can be used to alleviate congestion at daily bottlenecks. In
particular, for bottlenecks close to the origin of travellers’ trip, real-time
adjustments and last-minute updates show a substantial reduction in
delay. This method could be extended to include multiple route options.
Travellers that already departed cannot adjust their departure time,
but they can adjust their route. Especially for incidental delays, this
extension can inform travellers of the best route alternative according
to expected delays.
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Appendix
The results of the average sojourn time for each parameter set are
displayed in the Tables 7.3 to 7.6. The values represent the average
sojourn time encountered upon arrival for: all travellers, participating
travellers, and non-participating travellers. This is given for each scenario
in three column groups. The first group represents the results after the
first search optimisation step. The second and third group give the
results of the PO and SO, respectively.

Part. rate flexibility f First Search PO SO
Total Scheduled Non-scheduled Total Scheduled Non-scheduled Total Scheduled Non-scheduled

0% 0 170 - 170 170 - 170 170 - 170
5% 0 172 171 172 172 171 172 172 171 172

1 167 165 168 151 146 151 151 146 151
2 163 158 163 146 138 146 146 139 146
3 158 153 158 139 126 139 140 131 140
4 140 121 142 138 110 140 133 118 134
5 136 113 137 133 101 135 128 110 130

10% 0 177 176 177 177 176 177 177 176 177
1 158 152 158 152 145 153 151 146 151
2 147 137 148 140 129 141 137 130 138
3 139 125 140 130 115 132 127 115 128
4 127 110 129 119 101 121 116 104 118
5 124 104 126 109 91 111 108 93 110

25% 0 214 214 213 214 214 213 214 214 213
1 158 154 160 153 151 154 154 152 155
2 139 131 141 123 117 125 122 116 124
3 116 108 119 102 96 104 101 95 103
4 99 91 102 86 80 88 85 79 86
5 88 86 89 71 67 72 70 66 71

50% 0 269 271 268 269 271 268 269 271 268
1 146 144 148 145 143 148 145 142 146
2 107 109 106 130 132 127 104 106 102
3 91 94 87 86 89 85 79 80 78
4 91 94 87 86 89 85 79 80 78
5 91 94 87 86 89 85 79 80 78

Table 7.3. Results of the sojourn time in seconds for scenario ‘Low’ for
parameters σ and f .
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Part. rate flexibility f First Search PO SO
Total Scheduled Non-scheduled Total Scheduled Non-scheduled Total Scheduled Non-scheduled

0% 0 489 - 489 489 - 489 489 - 489
5% 0 507 478 509 507 478 509 507 478 509

1 494 453 496 481 425 484 475 439 477
2 482 427 485 476 390 481 465 422 467
3 472 404 475 473 358 479 454 406 457
4 460 379 464 466 323 473 440 379 443
5 452 359 457 454 293 463 428 358 431

10% 0 530 503 533 530 503 533 530 503 533
1 514 476 518 496 452 500 492 455 496
2 492 449 496 488 418 496 466 431 470
3 470 433 475 453 403 458 444 406 448
4 453 413 458 429 386 433 428 386 433
5 422 337 431 440 288 457 404 326 413

25% 0 633 605 643 633 605 643 633 605 643
1 578 538 591 551 514 563 550 518 560
2 523 475 538 493 451 507 500 457 514
3 452 403 469 420 379 434 445 397 461
4 386 334 404 370 325 385 393 340 410
5 341 294 356 314 269 330 331 281 347

50% 0 877 847 907 877 847 907 877 847 907
1 773 734 812 682 655 709 675 646 704
2 570 535 605 510 490 530 563 530 596
3 455 424 485 387 361 413 380 356 403
4 410 380 439 361 335 386 363 337 389
5 410 380 439 361 335 386 363 337 389

Table 7.4. Results of the sojourn time in seconds for scenario ‘High’ for
parameters σ and f .

Part. rate flexibility f First Search PO SO
Total Scheduled Non-scheduled Total Scheduled Non-scheduled Total Scheduled Non-scheduled

0% 0 329 - 329 329 - 329 329 - 329
5% 0 331 304 332 336 313 337 336 313 337

1 315 262 318 315 262 318 315 262 318
2 310 250 313 311 242 314 299 248 302
3 297 232 300 298 223 301 296 236 299
4 280 184 285 278 179 283 273 183 278
5 271 175 276 271 107 280 260 151 265

10% 0 341 307 346 341 307 346 341 307 346
1 313 260 319 306 241 313 312 263 317
2 288 221 295 287 191 297 286 221 293
3 274 197 283 260 156 272 262 179 271
4 250 175 258 250 175 258 250 175 258
5 238 169 245 221 116 233 211 135 220

25% 0 388 359 398 388 359 398 388 359 398
1 331 289 345 320 272 336 324 288 336
2 268 221 283 255 192 276 259 212 274
3 224 184 238 206 147 227 191 163 200
4 170 137 181 159 125 170 162 127 173
5 149 126 156 134 86 151 131 106 139

50% 0 498 473 523 498 473 523 498 473 523
1 359 331 388 346 319 374 331 304 357
2 202 185 218 185 169 202 190 173 206
3 206 197 215 158 149 167 160 153 166
4 254 259 251 203 211 194 182 194 169
5 254 259 251 203 211 194 182 194 169

Table 7.5. Results of the sojourn time in seconds for scenario ‘2-Peak’ for
parameters σ and f .
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Part. rate flexibility f First Search PO SO
Total Scheduled Non-scheduled Total Scheduled Non-scheduled Total Scheduled Non-scheduled

0% 0 881 - 881 881 - 881 881 - 881
5% 0 898 659 911 898 659 911 898 659 911

1 887 630 901 877 563 893 872 582 887
2 868 590 882 857 505 876 852 536 868
3 844 547 859 834 448 854 825 498 842
4 823 503 840 810 383 832 801 444 820
5 803 464 821 794 370 817 784 422 803

10% 0 926 659 956 926 659 956 926 659 956
1 896 616 928 881 575 916 878 604 908
2 873 622 901 850 556 882 839 555 871
3 827 563 856 816 466 855 807 512 839
4 793 521 823 780 406 821 764 436 800
5 758 465 791 730 378 769 735 440 767

25% 0 1049 826 1123 1049 826 1123 1049 826 1123
1 985 745 1066 980 721 1067 968 735 1046
2 897 661 976 936 661 1028 896 641 982
3 832 626 900 898 625 988 831 618 902
4 746 535 816 835 529 937 728 518 799
5 656 458 722 744 447 843 655 458 721

50% 0 1337 1185 1489 1334 1181 1486 1334 1181 1486
1 1165 1006 1324 1187 1004 1370 1135 980 1290
2 971 806 1137 1017 872 1163 1221 1064 1377
3 896 769 1022 910 760 1060 845 694 996
4 772 667 877 813 705 921 780 675 885
5 749 662 835 775 663 888 739 647 831

Table 7.6. Results of the sojourn time in seconds for scenario ‘Peak’ for
parameters σ and f .
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Chapter8Network Partitioning on
Origin-Destination Traces

In this chapter we use an unsupervised learning algorithm to identify
clusters of travel patterns in a network based on historical travel data.
This is in contrast to the previous chapters, where we mainly used
modelling and optimisation techniques to gain insight into or to improve
specific infrastructural strategies. This chapter’s starting point is the
historical data, due to the volume and the level of detail that is captured
within this set, direct interpretation becomes difficult. The techniques
applied in this chapter are to transform the data in a comprehensible
manner to reveal the structure and patterns, in order to gain insight
that can be used in practice.

By means of clustering, we examine the structure of an empirical data
set consisting of time-dependent origin-destination pairs in terms of
connectedness. We show that we can distinguish spatially connected
regions when we use a performance metric called modularity and the
trip directionality is incorporated. From this we proceed to analyse
variations in the partitions that arise due to the non-optimal greedy
optimisation method. We use a method known as ensemble learning to
combine these variations by means of the overlap in community partitions.
Ultimately, the combined partition leads to a more consistent result
when evaluated again, compared to the individual partitions. Analysis of
the partitions can give insights with respect to connectivity and spatial
travel patterns, thereby supporting policy makers in their decisions for
future infrastructural adjustments1.

1This chapter is based on [S5] and [S6].
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8.1 Introduction

In a densely populated, compact city such as Amsterdam, it is of great
importance to understand the travel patterns of individuals, as congestion
in the city centre is a main concern. With the rise of ubiquitous sensor
data, detailed information with respect to mobility is available. Not only
can we analyse infrastructure performance more accurately, it also opens
up new avenues for estimation, integration and validation of existing
models.

For this study, we had access to origin-destination (OD) intensities for the
metropolitan area of Amsterdam. These ODs represent neighbourhoods
within Amsterdam, and municipalities for the metropolitan area of
Amsterdam. The OD intensities are based on electronic trace data
collected from smartphone data by Google. These traces are aggregated
at neighbourhood and municipal level by their volume of trips on an
hourly basis over a six month time period.

The aim of this research is to analyse whether travel patterns in Ams-
terdam can be aggregated into high-level patterns to detect flow trends
in both space and time. In the literature, this is called community
detection, where the high-level patterns are identified as communities.
The results of such an approach can be exploited to analyse major flow
patterns between areas based on the obtained communities. Moreover,
the obtained communities can be used to support practitioners with
strategic decisions. For example to identify or justify the expansion of
public transport between specific areas.

We apply clustering to identify communities based on historical travel
data. Clustering or graph partitioning is based on nodes that share
common properties or behave in a similar manner. In this context,
community detection is used to group nodes based on the edge properties
only. We thereby want to identify the typical traffic behaviour in
Amsterdam from both a temporal and spatial point of view.

In the literature, a wide range of community detections algorithms
exist, as well as the number of metrics to evaluate the partition quality
of the detection algorithms. A fairly complete review of this topic
is given in [43]. By far, the most popular metric to determine the
performance of the resulting clusters is called modularity, introduced
by [108]. Modularity is a metric to measure the strength of a network
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partitioned into communities based on the intra-inter community edge
weight, i.e., the more weight captured within each community compared
to the weight between communities, the stronger the connection and the
larger the modularity value. The problem of finding the partitioning
of a graph with the maximum modularity value is known to be NP-
complete [20]. Various heuristics exist to optimise the modularity value.
An overview of these methods can be found in [43, Chapter 6].

In a recent study, spatial clusters based on telephone calls have been
examined by Blondel et al. [14], who developed an efficient heuristic pro-
cedure to find a partition of the network that maximises the modularity
known as the Louvain algorithm. In a similar study, this algorithm has
been applied to telephone data in Great Britain by Ratti et al. [118].
In both of these papers, the resulting communities of the algorithm are
spatially connected, while no spatial characteristics are considered in the
algorithm. Both these datasets consist of a large number of connections
between the nodes of the network. This algorithm is of interest to us, as
the geographical component and densely connectedness both apply to
our dataset. The analysis of movement patterns by means of clustering
results in aggregated information on the structure of the city, potentially
creating a new type of regional analysis for infrastructure developments
and planning [118].

Another feature that is included in our dataset is directionality of
the trips. In the original Louvain algorithm [15], analysis including
directionality is not applied. However, the method is easily extendable
to allow for directionality, as is explained in [38]. We will show that the
Louvain method produces very good results to determine clusters based
on origin-destination pairs in the city of Amsterdam when directionality
is included. Moreover, we will show that different time slices of the
data (i.e., weekday, months, etcetera), give variations in the obtained
communities. However, the comparison is not straightforward as the
Louvain method generates variations between each run for the same
time slice as well.

The efficiency of the Louvain heuristic with minimal computational effort
allows for a more elaborative analysis on the variations between partitions
of a network. To this end, we use a technique known as ensemble
learning to obtain a more consistent partition, i.e., less variation between
partitions resulting from the same algorithmic procedure. In [50], they
explain this procedure applied to graph partitioning. A more consistent
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partition of the community structure for a specific time slice allows for
a better comparison of partitions of other time slices.

The remainder of this chapter is organised as follows: In Section 8.2,
we give a detailed description of the data and specify the filter and
preprocessing steps used for the model, which we introduce in Section 8.3.
The preliminary results are then given in Section 8.4. From there, we
proceed to characterise the obtained communities in terms of connectivity
strength in Section 8.5 and consistency in Section 8.6. We conclude in
Section 8.7.

8.2 Data analysis

Before we move to the step of clustering, we first give a more detailed
description of the data. By applying some preliminary aggregation
steps, we obtain initial insights into the value of the data. Some of
these confirm assumptions, such as daily fluctuations in travel density,
while they also reveal some deficiencies of the data. Moreover, these
preliminary results illustrate the motivation to direct the research of
this chapter to the use of clustering methods.

8.2.1 Data specification

The travel data used for our analysis is based on travel movements
registered by Google on Android phones for the Amsterdam Metro
region. This data spans a period of six months that starts 1 April 2016
until 30 September 2016. These trips are aggregated at neighbourhood
level for Amsterdam and the surrounding is aggregated at municipal
level, both are grouped hourly. These neighbourhoods of Amsterdam and
surrounding municipalities are based on the division made by Statistics
Netherlands found in [22], who split the area into 512 small pieces as
visualised in Figure 8.1a, and in more detail in Figure 8.1b. This division
results in more than 300 million data points, consisting of weights from
each origin to each destination on an hourly basis. Due to privacy issues,
the real intensity has not been disclosed, the intensity is given by a
weight which represents a relative value. More specifically, all intensities
have been divided by the largest hourly intensity over these 6 months,
resulting in weight values between 0 and 1.
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(a) The greater metropolitan area (b) The municipality

Figure 8.1. Neighbourhood and district level division of the greater metropol-
itan area of Amsterdam.

In Table 8.1 a summary of the weights observed in the data set is given
based on the frequency. We observe that the total number of hours that
contains weights larger than 0 is close to 30%. As the data consists of all
destinations for each origin for every hour, we observe fully connected
graphs during most peak hour periods. A large number of the weights
consist of small values, an overview is presented in Table 8.1.

Weight % occurrence % Total weight
0 71.62% 0%

0.000365764 17.67% 36.42%
0.000731529 6.66% 27.44%
0.001097293 2.49% 15.38%
0.001463058 0.93% 7.68%
> 0.001463058 0.63% 13.08%

Table 8.1. Frequency values for each weight in percentage of occurrence and
total density.

8.2.2 Filtering and preprocessing

For the clustering procedure, we restrict ourselves to the travel charac-
teristics within Amsterdam. In this section, we analyse the behaviour of
people travelling within the city, and the travelling behaviour from and
to the city from the Metro region (defined in Figure 8.1a), to grasp the
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main traffic characteristics and identify deviating patterns.

Figure 8.2. Weekly pattern of weights per hour with a 95% confidence interval.

In Figure 8.2 the weekly pattern of trips within Amsterdam is visualised.
As can be seen, the rush hour is not so clearly present, and the number of
trips in the weekend is nearly as large as during the weekdays. Of course,
this data contains not only car travel movements, but also walking
and cycling which could explain the intensity of trips throughout the
day. The rush hour of trips between Amsterdam and the Metro region
area visible in Figure 8.3. In the morning a clear migration from the
greater region of Amsterdam is observed to the city of Amsterdam, and
in the evening vice versa. In Figure 8.4, the spatial spread of these
trips is visualised. The dark red areas in Figure 8.4b all contain large
business districts, which could be expected. However, we observe that
Figure 8.4a and 8.4b do not show a similar pattern. In Figure 8.4a
trips are homogeneously spread over Amsterdam, whereas in Figure 8.4b
larger variations in weight between neighbourhoods is observed. A more
detailed analysis on this aspect will be discussed below.

In Figure 8.5 of the total trip weight for each neighbourhood as an
origin and as a destination for trips within Amsterdam is visualised. We
again observe a similar pattern as in Figure 8.3. The destination figure
shows a homogeneously spread pattern, while the origin figure shows
more variation between the areas. This suggests that certain parts of
Amsterdam have more inflow than outflow over a large period of time,
which does not make sense considering that these trip intensity are the
sum of a half year period. In Figure 8.5c the total inflow and outflow per
neighbourhood are visualised. It shows that certain parts of Amsterdam
have larger inflow than outflow, except for the first 30 values which
belong to the metro region areas. These observations suggests that a
transformation has been applied to censor the data.
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(a) Weekly pattern for Amsterdam as a destination

(b) Weekly pattern for Amsterdam as an origin

Figure 8.3. Time intensity pattern to and from Amsterdam.

In order to restore the disbalance of the in- and outflow, we rescale the
rows of the OD matrix such that the row and column sums become
equal. This is done by solving a system of equations where the OD
weights are used as Markov chain weights [111]. The resulting stationary
probability vector provides the scaling of rows such that the OD matrix
disbalance is restored. We use the origin weights as a reference and
‘repair’ the destination weights. In recent work by Tesselkin [135], this
scaling method has been used to reconstruct the OD matrix from traffic
flow observations on road segments.

In short, the computation consists of the following steps. We denote
the OD matrix by an n by n matrix W , where n denotes the total
number of neighbourhoods, and Wi,j denotes the intensity of trips from
neighbourhood i to neighbourhood j, for i, j = 1, . . . , n. To restore the
balance we simply have to solve the linear set of equations

Wx̄ = W T ē, (8.1)

where x̄ is the scaling vector and ē is a vector of ones. The solution
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(a) Inflow intensity pattern (b) Outflow intensity pattern

Figure 8.4. Spatial intensity pattern of Amsterdam of trips from and to the
surrounding Metro region of Amsterdam spanning the six month period.

of x̄ is then obtained by x̄ = W−1W T ē, where W−1 is the pseudo-
inverse of W . The resulting scaling values are visualised in Figure 8.6a.
It can be seen that a few areas have a scaling vector close to zero,
which is due to the small total outflow compared to the inflow of the
specific neighbourhoods. These neighbourhoods are visualised in yellow
in Figure 8.6b. We consider these areas as outliers. For analysis purposes,
these can be removed from the data, or the scaling factor can be used.
In this chapter, we do not adjust or remove neighbourhoods to keep
the analysis as clean as possible. Instead, we use the outlier analysis to
explain behaviour caused by these deviations.

To give an indication of the travel characteristics per neighbourhood,
we visualise the inflow intensity of two neighbourhoods in Figure 8.7.
We choose the inflow pattern, as the outflow shows a homogeneous
pattern as observed in Figure 8.5a. From both Figures 8.7a and 8.7b, it
is observed that travel intensities are larger around the area specified.
This suggests that spatially connected communities might arise when
neighbourhoods are clustered based on trip intensities.

In this section, we analysed the travel patterns captured in the historical
OD data from a spatial and temporal perspective. In general, we can
conclude that these patterns match our expectations of travel intensity
behaviour, except for the observed disbalance between in- and outflow.
We investigated the extensiveness of this disbalance by equalising the in-
and outflow. This led to the conclusion that, although we suspect an
unexplained transformation on the data, we expect this transformation
to have minor impact on our results. Therefore, in the remainder of this
chapter, we perform our analysis on the original data set.
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(a) Inflow intensity per neighbour-
hood.

(b) Outflow intensity per neighbour-
hood.

(c) Total inflow and outflow intensity per neighbourhood of trips within Amsterdam.

Figure 8.5. Visualisations of the travel intensities within Amsterdam at each
neighbourhood spanning the six month period.

(a) Scaling values of numbered neighbour-
hoods

(b) Geographical visualisation of scaling
values

Figure 8.6. Rescaling values of each neighbourhood, visualising the imbalance
of the data between inflow and outflow, where a value of 1 represents no
imbalance.

8.3 Model description

Recall that the goal of our analysis is to discover whether spatially
connected communities can be found based on travel intensities only.
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(a) Neighbourhood in ‘Zuid’ pinpointed in
blue

(b) Neighbourhood in ‘Nieuw-West’ pin-
pointed in blue

Figure 8.7. Visualisation of travel flow from a single destination.

Moreover, we want to analyse whether the obtained communities repres-
ent the districts as defined by the municipality of Amsterdam, which
allows for policy evaluation.

First, we explain the transformation of the OD trip matrix to a connected
graph. We then introduce the metric, denoted as modularity, to evaluate
the quality of a network partitioned into communities. We give an
explanation of several models that heuristically optimise this modularity
metric. Finally, we show the results of one of these heuristic methods of
which we obtain interesting results for various subsets of the data.

8.3.1 Network description

We represent the OD trip matrixW in terms of a directed weighted graph
G(V, E), where each node i ∈ V = {1, . . . , n} represents a neighbourhood
and each edge (i, j) ∈ E ⊂ V2 represents an OD pair. Each edge has
a weight that corresponds to the travel intensity across the respective
OD pair, denoted by wi,j ≥ 0, where i, j ∈ V. We partition the graph
into C communities, where, for each node i mapping index function
ci = k, for k = 1, . . . , C to its corresponding community. We define
Vk := {i ∈ V : ci = k} as the set of nodes that belong to community
k. Moreover, we define Ci := {k ∈ V : ci = ck} as the set of nodes that
belong to the same community as node i. Note that Ci = Vci . The
graph is initialised by either assigning each node to a unique community
(C = n, ci = i), or by assigning all nodes to one community (C = 1,
ci = 1).
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8.3.2 Modularity metric

Modularity is a well-known metric to determine the quality of a graph
partitioned into communities. It is a measure of strength of the partition
of the network into communities and is defined by a scalar value Q ∈
[−1, 1]. In the literature, the modularity value is often computed for
undirected graphs. Therefore, we first present the undirected version
before we explain the directed one. The modularity value Q for an
undirected graph is defined by

Q = 1
2m

C∑
k=1

∑
i,j∈Vk

[
wi,j −

wiwj
2m

]
, (8.2)

where m = 1
2
∑
i,j∈V wi,j is the total weight in the graph, and wi =∑

j∈V wi,j defines the total edge weight attached to node i. This formula
measures the density of edges inside communities to edges outside com-
munities, the value wi,j − wiwj

2m defines the differences between the actual
weight between nodes i and j and the average node degree weight of i
and j. Maximising the modularity value theoretically, results in the best
possible grouping of nodes of according to the inter and intra cluster
trips for a given network. However, going through all possible iterations
of the nodes into groups is impractical so heuristic algorithms are used.

The modularity metric of Equation (8.2) can easily be extended to
include directionality as was shown by Leicht and Newman [87]. They
show that the total weight connected to these two edges, should be
split into the total in-degree weight of one edge and the total out-degree
weight of the other edge. Moreover, we specify the total weight by
md =

∑
i,j∈V wi,j instead of 2m as we now count each edge weight only

once. This results in the following equation

Qd = 1
md

C∑
k=1

∑
i,j∈Vk

[
wi,j −

wini w
out
j

md

]
, (8.3)

where wini :=
∑
j∈V wj,i, and wouti :=

∑
j∈V wi,j .

8.3.3 Heuristic clustering technique

Clustering based on optimisation of the modularity value is a popular
approach [43]. Many heuristic techniques exist for modularity optimisa-
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tion. A comparative study has been conducted by in [79]. Most of these
heuristics are only implemented for undirected graphs, while our data
consists of directed OD pairs.

For this research, we will not dive into all the clustering heuristics
and their performances. Instead, we only focus on a method well-
known for its computational efficiency, developed in [14], throughout
referred to as the Louvain method. This method was first used to detect
communities in geographical regions by means of telephone data. The
result which captures our interest is the spatially connected clusters
that were found, although no spatial characteristics were included in
the algorithm. Moreover, this algorithm has shown to outperform many
other heuristic methods for benchmark graphs. It has been ranked as
second-best heuristic algorithm [79]. The infomap algorithm by Rosvall
and Bergstrom [124], which is based on compression, has been ranked
as first. Later on, we shortly mention its performance on our dataset.

We now briefly explain the partitioning procedure of the Louvain al-
gorithm; a more detailed description is given in [14]. This algorithm
can be classified as a greedy hierarchical approach for modularity op-
timisation and is known for its computational efficiency. The algorithm
consists of a two-step procedure which is iterated until the modularity
value is no longer improved. The first step is the ‘greedy’ assignment
of nodes to communities, and the second step contains the hierarchical
component, where the obtained communities are combined.

Initialisation:
The graph is initialised by a partition into singletons, meaning that each
node represents a community.

Step 1:
A loop initiates that runs through all the nodes in a random order. For
each node i ∈ V the neighbouring nodes are identified, i.e., wi,j > 0. For
each neighbouring node j, the modularity gain is computed when node
i is added to the community cj of neighbouring node j. The node i is
then added to the neighbouring node j’s community that creates the
largest positive increase in modularity, computed by (8.3.3). The first
loop is re-initiated until the modularity gain is no longer improved.

Step 2:
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All nodes that belong to the same community are combined into one
node representing the community. This means that the total weight to an
external node is combined from all the nodes within the community, and
the total weight of nodes within the community is summed, representing
the total weight from the community to itself.

Stopping criterium:
Repeat steps 1 and 2 until the final communities between the current
and previous iteration are equal.

To speed up the above computation, we focus on the change in modu-
larity when node i is moved to the community of node j, rather than
recomputing the modularity by (8.2). For given modularity Q the new
modularity becomes Q′ = Q+ ∆Q(i, j), where ∆Q(i, j) is defined by

∆Q(i, j) = − 1
2m

 ∑
k∈Ci\i

(
wi,k + wk,i −

wiwk
m

)
+
(
wi,i −

w2
i

2m

)
+ 1

2m

∑
k∈Cj

(
wi,k + wk,i −

wiwk
m

)
+
(
wi,i −

w2
i

2m

)
= 1

2m

∑
k∈Cj

wi,k + wk,i −
wiwk
m

 (8.4)

− 1
2m

 ∑
k∈Ci\i

wi,k + wk,i −
wiwk
m

 .

Similarly, we can compute the change in modularity of Equation (8.3.3)
for the directed case by

∆Qd(i, j) = 1
md

∑
k∈Cj

wi,k + wk,i −
wini w

out
k + wink w

out
i

md

 (8.5)

− 1
md

 ∑
k∈Ci\i

wi,k + wk,i −
wini w

out
k + wink w

out
i

md

 .
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8.3.4 Evaluation technique

In this section we explain the evaluation metric that we use to give an
indication of the partition quality of the OD network, and to make a
comparison of the obtained communities between various time slices.
We explain how we can use the evaluation metric, as the ‘true’ partition
of the network is not known.

In the literature, many evaluation techniques are proposed to determ-
ine the quality of the obtained network partitions. Almeida et al. [2]
describe various metrics that exist to determine the quality. However,
no straightforward method exists to evaluate the quality of a partition
when the ‘true’ partition is unknown. Some of the evaluation techniques
can however be used to compare results and give an indication of their
quality.

The most common quality metric is the Normalised Mutual Information
(NMI) [26]. We use this metric to compare our partition realisations
based on their similarity. This metric is in the range of [0,1] and equals
1 if two partition realisations are identical. This value computes the
mutual information I(·, ·) between the two partitions and normalises it
based on the entropy value H(·) of each realisation. The entropy is a
value of the uncertainty present in a realisation. The mutual information
gives a reduction in uncertainty by using the information of the first
partition to estimate the second partition. In other words, it computes
to what extent the realisations overlap. The NMI is defined as

NMI(Pi, Pj) = 2I(Pi, Pj)√
H(Pi) ·H(Pj)

= 2 (H(Pi)−H(Pi|Pj))√
H(Pi) ·H(Pj)

, (8.6)

where Pi and Pj denote the clustering labels, andH(Pi) = −
∑C
l=1 (pl log pl)

the entropy value, where C defines the number of clusters in Pi, and pl
the fraction of nodes belonging to cluster l.

The value is normalised such that it corrects for differences in the total
number of clusters obtained between realisations. This metric has been
used to compute the quality of various clustering algorithms [80, 81].

The NMI compares two realisations, whereas we have a group of real-
isations and want to determine the overall similarity between these
partitions. To obtain the mutual information over a group of partitions,
we can compute the so-called average-NMI, as defined by Ana and
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Jain [3]

average-NMI(P) =
∑
i 6=j

NMI(Pi, Pj)/
(
r

2

)
, (8.7)

where r denotes the number of cluster realisations, P = {P1, . . . , Pr}
the group of partitions, and Pi, Pj the individual cluster realisations, for
i, j = 1, . . . , r and 6= j.

8.4 Preliminary cluster results
In this section, we show the resulting communities of the OD data in
Amsterdam by using the Louvain algorithm. We partition the dataset
based on time slices and discuss the observed differences in communities
by using the evaluation metrics described in Section 8.3.4.

Various clustering heuristics are compared in [79] such as Fast Greedy,
Walktrap, infomap and OSLOM. In contrast to the positive results on
the benchmark sets used in [79], these methods proved to be unsuccessful
when applied to the OD data of Amsterdam. These methods either
failed to converge or returned near to zero modularity values. Near to
zero modularity is an indication that the corresponding clusters do not
represent any cohesion. In Figure 8.8b the clusters resulting from the
undirected implementation of the Louvain algorithm are visualised, a
close to zero modularity value is obtained. Visually we observe that
these clusters show a certain degree of spatial connectedness, although
the low modularity value indicates that a high spatial connectedness in
the network exists.

Although our data set does not consist of millions of nodes and edges,
we do have a large number of edges to nodes ratio. The dataset consists
of an almost fully connected graph, which is probably the reason that
most clustering methods do not find good communities. Moreover, the
directionality of the connections in the data was not included in most
of these heuristics. Therefore, we continued the analysis by using an
implementation of the directed Louvain method developed in [126]. An
output of this method is visualised in Figure 8.8a. As can be seen, the
clusters that result from the Louvain method including directionality
appear spatially close, although no spatial aspects are taken into account.
Moreover, some of the communities have a close resemblance with the
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(a) Louvain directed (b) Louvain undirected

Figure 8.8. Clustering with respect to destination for each district.

districts of Amsterdam. For example, the ‘Zuid-Oost’ district, which
is more isolated from the rest of Amsterdam, is nearly covered by a
single community. Nevertheless, the modularity value of the resulting
clusters is 0.01, although larger than the undirected output, it is still
rather small.

The geographical visualisation of the directed Louvain method show
connected clusters and are grouped at locations that we would expect.
Therefore, we explore continue to explore the results for this methods
for subsets of the data. We divided the data based on the trips during
the week and the weekend and applied the Louvain clustering algorithm.
The results are shown in Figure 8.9. In both figures, similar clusters
appear. However, there are some clear differences. The main differences
are the clusters in district ‘Oost’ and ‘Westpoort’ that appear only for
the week data, and the cluster in the ‘Amsterdam West’ district that
pops up in the weekend data. The clusters at the outskirts of Amsterdam
appear to be the most prominent.

Table 8.2 shows the average similarities between the clustering realisa-
tions over the same dataset by using the average-NMI value of equa-
tion 8.7. We divided the data based on the ‘Total’ trips, trips during
the ‘Week’ and ‘Weekend’ and the similarity results over the ‘Total
period’ and on a monthly basis. The average-NMI values show that most
subsets show consistent results between runs. However, the weekend
data shows an overall smaller average-NMI value, especially when the
monthly division is used. The consistency of the weekend data for each
run is smaller compared to the week and total data sets. These variations
can be caused by the smaller number of days covered, as well as less
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(a) Week (b) Weekend

Figure 8.9. Clustering with respect to destination for each district using the
Louvain method.

Period Total Period April May June July August September
Total 0.94 0.82 0.83 0.82 0.85 0.79 0.78
Week 0.94 0.84 0.88 0.91 0.83 0.85 0.87

Weekend 0.85 0.43 0.44 0.48 0.48 0.49 0.46

Table 8.2. Comparison of the similarity between cluster realisations for different
subsets of the data by using the similarity metric NMI.

regular travel patterns in the weekend.

To analyse whether large differences and similarities between months
are present, we again use the average-NMI value of Equation 8.7 to
compare the resulting partitions. The results are shown in Table 8.3.
The average-NMI value of each month with itself is shown as well. The
largest NMI value for each subset is with itself, denoted by the values
on the diagonal. The last row compares the total data set with each
month. We do not observe extreme differences between the months in
this comparison.

The small modularity value appears for each of the subsets of the data.
The small modularity combined with a fully connected network is not a
surprising result. The fully connected graph indicates a well-connected
network with a lot of interaction throughout the whole area of Amster-
dam. Nevertheless, we do observe spatially connected communities that
are closely related to district boundaries and the subsets are relatively
similar to each other. We therefore continue our analysis to determine
the strength of the communities.
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Period April May June July August September Total Period
April 0.85 - - - - - -
May 0.75 0.86 - - - - -
June 0.74 0.76 0.91 - - - -
July 0.77 0.76 0.75 0.87 - - -

August 0.73 0.73 0.72 0.77 0.86 - -
September 0.73 0.73 0.72 0.75 0.72 0.87 -
Total period 0.82 0.83 0.82 0.84 0.79 0.78 0.93

Table 8.3. Comparison of the similarity between cluster realisations for monthly
subsets of the data by using the similarity metric NMI.

8.5 Robustness of communities

In the previous sections, we observed the spatially connected partitions
of OD data in Amsterdam. To gain more insight in the generated
communities, we analyse the strength of the communities relative to
each other in terms of connectivity.

To analyse what fraction of all edges contributes to the detection of these
district boundary clusters we propose a simple method for analysis. We
remove the smallest x weights edges from each neighbourhood, where
x ∈ {1, . . . , n} and n denotes the number of nodes of the network.
In Figure 8.11a the results show that the modularity value increases
when the number of smallest weights x removed increases, as would
be expected. More interestingly, the number of clusters found remains
relatively constant until almost all values are removed. In Figure 8.11c
the clusters found when 10% of the smallest weights were removed are
visualised. It can be seen that this partition represents the regional
boundaries even more closely than the clusters of the complete set. This
suggests that although the trips within Amsterdam are well spread, trips
within regional boundaries have higher weights in almost every district.
Only part of the ‘Centrum’, ‘West’ and ‘Zuid’ region remain connected
as one cluster.

In addition to the question which edges contribute to the spatially
connected clusters, another question that arises is the connectedness
of the communities with respect to each other. Which are the most
prominent communities in the dataset, and which communities are less
prominent. Although there is no specific metric available in the literature
to evaluate such property of connectedness [43, Chapter XIV], in [54]
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(a) Modularity and cluster results (b) Results based on removal of 10%

Figure 8.10. Cluster analysis for increasing number of removed edges per
neighbourhood.

the authors evaluate the connectedness by adding random noise to the
edge weights.

We applied the same methodology as in [54]. We add random weights
to the edges with a predefined variance. Thus, for each edge in the
network, we draw a random variable X, where X ∼ N(0, σ2), add these
values to the OD matrix, run the Louvain algorithm and visualise the
obtained clusters. We gradually increase the value of σ and evaluate the
resulting clusters between each increment until no coherent structure
can be found. This gives an indication of the connectedness of each
community relative to the other communities in a visual manner.

In Figures 8.11, a realisation for an increasing variability in random
noise is shown. It should be kept in mind that these graphs only show
the result of a single realisation and are only indicative of the impact of
noise. We observe that the cluster ‘Zuidoost’ and ‘Noord’ remain visible
although a large noise value is added to the edges. The cluster ‘Centrum‘
is the first to disappear, and dissolves in the ‘Oost’ cluster. This is a
first step towards analysis of connectedness of clusters with respect to
each other. In [54] a more thorough analysis of the consistency of the
individual nodes is applied. The current analysis so far only uses visually
indicative results. In Section 8.6.2 we introduce a method that reduces
the variations between each realisation of the same subset to obtain
more consistent results at each run, allowing for comparison between
subsets.
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(a) Random noise with σ = 0.5

(b) Random noise with σ = 1

(c) Random noise with σ = 2

Figure 8.11. Clustering results under random noise addition.

180



8.6 Consistency of communities

8.6 Consistency of communities

So far, we analysed the community structure of the communities resulting
from the Louvain clustering heuristic method applied on the OD data
set. We observed variations between realisations of the same dataset
and between subsets of the data. To compare the communities of the
subsets relative to each other, we need a procedure that gives more
or less consistent communities when applied on the same subset. We
use a procedure called consensus clustering to obtain this consistency.
Consensus clustering is an ensemble learning method that combines
multiple realisations to create a more consistent final result. An example
applied to graph clustering is explained in [114].

8.6.1 Consensus clustering procedure

To determine the consistency of each community, we analyse which
neighbourhoods characterise the community. In this section, we explain
the procedure to obtain such a characterisation for the current data set.

The Louvain method aims to maximise the modularity value in a greedy
manner. The greedy approach makes it computationally efficient, and
makes it applicable for clustering on large data sets. However, due to
a randomisation in the approach each realisation can deviate from a
previously obtained realisation. The algorithm evaluates nodes based on
their modularity gain when clustered. Due to randomisation in the order
of which these nodes are evaluated, deviations in initial clusters occur.
As the algorithm progresses, these initial clusters can result in a node
ending up in another cluster than for other initial clusters. Moreover,
some communities might not appear due to initial clusterings of nodes
which in other realisations belong to different communities. We want to
exploit these variations to find the neighbourhoods that can be defined
as the ‘core’ of the community, as well as the neighbourhoods that are
on the boundary between communities.

A method known as cluster ensemble learning can be used to obtain
the core cluster result, ensemble-based learning is a procedure that
combines the results of a certain number of weak learners to obtain
a final more robust result. In [50], an ensemble-learning procedure is
explained which they call evidence accumulation clustering. We use
this procedure to obtain our final partition. The evidence accumulation
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method is composed of three steps. We will explain each step and specify
the implementation that we choose to generate our results.

Step 1 (Generating an ensemble): A cluster ensemble is generated
consisting of m clustering partitions, denoted by

P = (P1, . . . , Pm)

P1 =
(
c

(1)
1 , c

(1)
2 , . . . , c(1)

n

)
...

Pm =
(
c

(m)
1 , c

(m)
2 , . . . , c(m)

n

)
,

where c(j)
i ∈ {1, . . . , C(j)} gives the cluster k ∈ {1, . . . , C(j)} that node i

of partition j is assigned to. These partitions can be obtained by either
using different representations of the data, the choice of algorithms,
or the algorithmic parameters. The randomised order of the node
evaluations in the Louvain algorithm causes variations between each
realisation in our dataset, which make it an appropriate method to apply
the algorithmic parameter approach. The randomisation of the nodes is
then the parameter adjustment.

Step 2 (Determine the similarity): The second step is to com-
bine the cluster realisations by combining ‘evidence’ in the so-called
co-association matrix A, with entries A = (ai,j), with

ai,j = ni,j
m
, (8.8)

where ni,j =
m∑
k=1

1{
c
(k)
i =c(k)

j

} represents the number of times that nodes

i and j belong to the same cluster among the m partitions.

Step 3 (Obtain the final partition): The final step in the evidence-
based clustering method is to obtain the final cluster partition from the
generated similarity matrix A. Any clustering can be applied over this
matrix to generate this partition. A hierarchical clustering algorithm is
used to combine the nodes and generate the resulting dendrogram [32].
This last step can become complicated when the number of nodes is
large. However, in [50] Fred and Jain propose to group similar nodes
together before generating the dendrogram. We use this approach to
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group the nodes that belong to the same partition in all iterations before
generating the final dendrogram. We obtain our matrix A by applying
the following three steps:

(a) We combine the nodes which are in the co-association matrix A
with the value 1, meaning that they are grouped in the same cluster
for all realisations. This gives a reduced form matrix A′ ⊂ A.

(b) The subset A′ is then used to obtain the dendrogram using the
Complete-Link method [32]. The Complete-Link method com-
putes the dendrogram based on the furthest neighbour method.
This method is known to generate clusters that are well separated
and compact and is one of the most commonly used methods for
hierarchical clustering. As it computes the furthest neighbour, we
have to determine the dissimilarity between nodes. This means
that we use A′′ = 1−A′.

(c) Having obtained the dendrogram, we then need to determine the
cutoff value to disentangle the dendrogram into separate clusters.
We determine the cutoff value that leads to the identification of k
clusters, where we set k equal to the closest integer value of the
mean number of clusters from the cluster ensemble input P.

In the next section, we show the results obtained from the above pro-
cedure.

8.6.2 Experimental results
We apply the evidence-based learning algorithm to show the consistency
and variation between communities and neighbourhoods. We use this
approach to compare the monthly subsets in a more robust manner as
well.

We applied the ensemble-learning method initially over the whole data
set. We computed the results based on N = 1000 realisations of the
Louvain algorithm and computed the co-association matrix. We grouped
the nodes of the co-association matrix of Equation (8.8) when they
belong to the same community over all realisations. This results in a
subset of the co-association matrix of size 6, of which 34 values are due
to individual nodes. For the current analysis, the size of the dendrogram
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Period April May June July August September Total period
April 0.97 - - - - - -
May 0.79 0.98 - - - - -
June 0.76 0.79 0.96 - - - -
July 0.81 0.83 0.76 1.00 - - -

August 0.76 0.78 0.72 0.81 0.95 - -
September 0.74 0.74 0.70 0.74 0.71 0.90 -
Total period 0.85 0.88 0.82 0.90 0.81 0.77 0.98

Table 8.4. Average-NMI values of the consensus clustering result based on
monthly data.

is still manageable. However, when many individual nodes occur, the
reduction of the co-association matrix can also be performed based on a
high similarity value.

The resulting core clusters of the total OD-data are visualised in Fig-
ure 8.12. Figure 8.14a shows the spatial representation of the final core
cluster assignments by individual colours. The value in each neighbour-
hood represents the initial partition of 61 values in the co-association
matrix. The dendrogram of Figure 8.13b shows the dissimilarity between
the node groups that are grouped together. For example, the pink group
with node groups 21 and 57 have a dissimilarity value near to zero. This
means that in only a few realisations of the algorithm they were not
assigned to the same cluster. On the opposite side, we can observe that
node group 47, denoted by red, does not have a large similarity value
compared to the other node groups in this cluster. It is interesting to
observe that we have two core clusters consisting of only a single group
of nodes. These two node groups were identified in all N realisations,
meaning that the neighbourhoods in these groups were consistently
grouped together.

We applied the same analysis for the weekdays and weekend subsets of
the OD dataset. The resulting partitions and dendrograms are visualised
in Figure 8.14. Especially for the weekend subset we observe more
diversity between the clustering result. The dendrogram of Figure 8.14b
shows that in particular the centre cluster shows large fluctuations over
the partitions. No major differences are observed between the week
and weekend partitions, suggesting that travel behaviour shows similar
groups for the week and weekend days.
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(a) Core cluster

(b) Core cluster dendrogram

Figure 8.12. Core clusters for the complete data set.

We continue to use the cluster ensemble technique to obtain more robust
results for the monthly subsets. In Tables 8.2 and 8.3 the NMI-values of
the cluster partitions of the same dataset were relatively low. Making
it hard to draw conclusions when compared to each other. We use
cluster-ensemble method and run this method several times to compute
the average-NMI values over the subsets. The results are shown in
Tables 8.4 to 8.6. It shows that the self-similarity is increased for the
total and weekly dataset, obtaining values close to 1. This allows for a
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(a) Core cluster business days

(b) Core cluster dendrogram business days

Figure 8.13. Core clusters for the week data set.

better comparison between the several months as the monthly subset
gives more self-consistent results.

The average-NMI values in Tables 8.4 to 8.6 show that in particular
September gives a lower NMI value compared to other months. To
determine whether specific results deviate, visual representations of the
maps should be compared. However, we first analysed the number of
clusters that were formed for each month. The average number of clusters
for each monthly subset are shown in Table 8.8 for the weekdays, weekend
and total set. Interestingly, the September month shows fewer clusters
compared to the other months, possibly explaining the lower similarity
value. June and August result in slightly more clusters compared to
the other months. We expect that the main differences between the
resulting core clusters are caused by the number of partitions.
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(a) Core cluster weekend

(b) Core cluster dendrogram weekend

Figure 8.14. Core clusters for the weekend data set.

Period April May June July August September Total period
April 0.97 - - - - - -
May 0.76 0.97 - - - - -
June 0.77 0.79 0.99 - - - -
July 0.75 0.75 0.71 0.93 - - -

August 0.74 0.77 0.72 0.76 0.95 - -
September 0.75 0.74 0.72 0.71 0.72 0.95 -
Total period 0.70 0.73 0.70 0.72 0.73 0.64 0.98

Table 8.5. Average-NMI values of the consensus clustering result based on
monthly data during business days.
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Period April May June July August September Total period
April 0.64 - - - - - -
May 0.38 0.66 - - - - -
June 0.38 0.40 0.66 - - - -
July 0.40 0.45 0.44 0.69 - - -

August 0.38 0.40 0.41 0.42 0.69 - -
September 0.38 0.39 0.39 0.42 0.39 0.65 -
Total period 0.49 0.54 0.55 0.57 0.52 0.53 0.99

Table 8.6. Average-NMI values of the consensus clustering result based on
monthly data during the weekend.

Period All Week Weekend
April 8 9 8
May 9 9 9
June 9 10 8
July 9 9 8

August 10 10 9
September 7 8 7

Total 9 9 9

Table 8.7. Number of clusters in the final core cluster result.

An easy analysis of the partition differences observed in Table 8.8 of
August and September is a geographical visualisation of the core result
obtained from the ensemble method. In Figure 8.15 both months are
shown. We observe that in Figure 8.15b, representing September, the
centre cluster disappeared. A possible explanation for the absence of this
cluster is the end of the tourist season, generating fewer trips in the city
centre. As for August, we observe a very prominent cluster at the border
of district ‘West’ and ‘Zuid’, consisting of only one neighbourhood. This
neighbourhood consists of the largest city park in Amsterdam, which is
a famous hotspot during warm weather.

Finally, we can interpret the cutoff values that are used to determine
the cluster results. The cutoff value is determined by the dissimilarity
value for which we obtain a specific number of clusters, which is equal
to the average number of clusters in the ensemble of partitions P. The
higher the cutoff value, the higher dissimilarity value to combine the
correct number of partitions. As expected, the cutoff value is larger for
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(a) Core cluster of August (b) Core cluster of September

Figure 8.15. Core clusters for the complete data set.

Period All Week Weekend
Total 0.51 0.70 0.51
April 0.63 0.67 0.95
May 0.69 0.57 0.96
June 0.62 0.57 0.92
July 0.48 0.69 0.93

August 0.66 0.67 0.94
September 0.57 0.61 0.92

Table 8.8. Cutoff values, representing the highest dissimilarity between cluster
branches that were combined to obtain the core cluster results.

the monthly weekend data, again confirming our observations that the
weekend trip data shows less consistent clusters.

8.7 Conclusion
In this chapter we analysed travel behaviour in Amsterdam based on
Origin-Destination travel intensity data. We analysed both the spatial
variation as well as the time-dependent variation of the intensity of trips.
We then applied a specific clustering method which uses the spatial
travel intensity to discover strongly connected regions. This clustering
technique heuristically optimises a metric known as modularity. We
analysed the consistency between the heuristic optimisation method
and used ensemble learning to increase the consistency in the obtained
clustered regions. This allowed us to discover deviations in the spatial
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travel patterns for specific time slices.

The weekly pattern and spatial plots confirm expected behaviour, such
as the morning and evening commute. We observed that the trips taken
from the metro region of Amsterdam are largely commuting trips. There
are three areas that show a high density of trips coming from the Metro
region, each of them contains large business districts. However, from this
analysis, we also discovered a gap between the total inflow and outflow.
As there is no logical explanation for this behaviour, we assume that
this occurs due to some transformation to censor the data. In order
to properly analyse the data we restored this imbalance, and obtained
scaling values for each neighbourhood. This revealed a couple of outliers
in the data. Especially in the East of Amsterdam a few neighbourhoods
which mostly consist of water showed a large difference between the
total inflow and outflow value. With these outliers in mind we continued
our analysis.

We were able to identify clusters when the directionality is taken into
account. These clusters happen to be very similar to the regional districts
defined in Amsterdam. Especially at the outskirts of Amsterdam we
can clearly identify clusters. The city centre is represented by one large
cluster, together with parts of the east of Amsterdam. When the method
is separated into monthly periods, and a division between the weekend
and weekday trips is introduced, the results suggest that we observe
slightly different clusters in the weekend compared to the week data.
Although this is difficult to conclude, given the inconsistency between
different instances of the same data partition.

We analysed the results when part of the data is removed. This revealed
that a lot of small weight edges can be removed without losing the
spatially obtained clusters. We can conclude from the above analysis
that trips in Amsterdam are quite homogeneously spread over the city.
However, we do observe clustering, although not very prominently. Fi-
nally, we used a cluster-ensemble technique to obtain more consistent
results, allowing for a better comparison. The results from the cluster
ensemble method show minimal deviations between the obtained clusters
over the time-dependent subsets, regarding week and weekend. The
monthly subsets revealed some differences in the number of partitions
obtained in each month. Nevertheless, no big differences in clusters were
found between these subsets, suggesting that the partitioning is quite
robust over the entire period.
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The current cluster results show that the city of Amsterdam is highly
connected in terms of travel behaviour, however, by means of clustering
on the travel intensity we were able to identify spatially connected
regions. These regions correspond to what would be expected. This
confirms on one hand that people are inclined to travel within specific
regional boundaries. On the other hand it shows that such clustering
techniques is a powerful means to detect structure in travel patterns
without prior domain knowledge.

For future studies it is interesting to extend the above analysis to discover
the main factors that contribute to the appearance of these clusters,
i.e., which type of trips contribute to the formation of these regions.
An option would be to develop a method for dynamic time-window
clustering to see whether we can detect periods in which clusters appear
more strongly. Moreover, a segmentation on, for example, trip purpose
(such as commutes, leisure, etcetera) can be done to reveal which factors
contribute to the occurrence of strongly connected clusters and which
do not.
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Summary

In this dissertation, we develop models and control techniques for road
traffic congestion in which the main focus lies on incorporating the
impact of uncertainty by means of quantitative stochastic methods.

The overall goal of the research in this dissertation is to gain under-
standing in the impact of uncertainty on the effectiveness of control
mechanisms for road traffic congestion. The effectiveness of traffic man-
agement solutions depends on the interaction between travellers and the
settings of roadside systems, amongst others. However, the inclusion
of uncertainty in modelling large-scale networks often leads to com-
putational intractability. Therefore, it is crucial to partition the road
network into a hierarchical structure of manageable subnetworks to keep
a scalable solution. We analyse the impact of uncertainty by taking
into account the aspects mentioned above. This leads to a division of
this dissertation into three parts: actuator control, user behaviour, and
lastly, network analysis.

Actuator control
A common goal in traffic management is to keep traffic density near
bottleneck junctions low enough to avoid traffic deadlock, but on the
other hand, provide sufficient throughput to prevent unnecessary delay
in the upstream direction. In Chapters 2-4, we introduce a generic model
for such traffic flow control applications. The stochastic nature of traffic
flow in both capacity and demand leads to complex system dynamics.
This makes it hard to determine effective control mechanisms to reduce
or prevent the impact of congestion. Understanding and quantifying the
interplay between queues incorporating the stochasticity of the arrival
process and capacity is a starting point for stochastic traffic flow control
strategies. In these chapters, we study control strategies that avoid
accumulation of traffic at strategic points in a network.

In Chapter 2, we introduce two versions of a Markovian tandem model
for which the service rate of the first queue can be controlled. In the
first model, the control of the service rate at the first queue is limited
to being turned on or off. In the second model, the system contains
a batch-processing server where the number of jobs to be transferred
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can be specified at all times. For several applications the batch server
is a more realistics assumption, for example to model multiple vehicles
driving over the same stretch of road simultanously. For both models, the
objective is to keep the mean number of jobs in the second queue as low
as possible, without compromising the total system delay (i.e. avoiding
starvation of the second queue). The balance between these objectives
is governed by a linear cost function of the queue lengths. We formulate
this model as a Markov Decision Process (MDP).

It turns out that the optimal strategy for both versions is characterised
by a switching curve dividing the state space into two regions. In this
case, the state space represents the number of jobs in the first queue
on the x-axis, and the number of jobs in the second queue on the y-
axis. The state space in the first version, where jobs are only handled
sequentially, is divided by a sub-linear line. Below this line the first
queue is processing at full speed, while above this line the service is
paused. For the batch-processing server, a similar sub-linear shape is
encountered when grouping states with the same optimal decision.

Real-time evaluation of the theoretical optimal strategy under changing
conditions can become computationaly demanding. Especially when
such strategies are to be analysed for a sequence of bottlenecks for which
the second queue of the one system serves as the input for the next.
Therefore, we introduce two approximation approaches in Chapters 3
and 4.

When the optimal switching curve is rather flat, it can be well approxim-
ated by a horizontal one, which corresponds to a fixed threshold strategy.
In Chapter 3, we develop an approximation technique to investigate
the effectiveness of such fixed threshold strategies. For the ‘optimal’
threshold level, we verify that it performs very closely to the optimal
MDP strategy under medium loaded systems. However, when the load
of the system increases, the performance gap between the MDP strategy
and the approximation increases. Under heavily loaded systems the
structure of the optimal policy becomes more important. To overcome
this performance gap, we develop a dynamic approximation strategy in
Chapter 4.

In Chapter 4 we exploit the structure of the optimal strategy and develop
heuristic policies motivated by the analysis of a related controlled fluid
problem. The fluid approach provides excellent approximations, and thus
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understanding, of the optimal MDP policy. The computational effort to
determine the heuristic policies is much lower and, more importantly,
hardly affected by the system load. The heuristic approximations can
be extended to models with general service distributions, for which we
numerically illustrate the accuracy.

User behaviour
In practice, travellers can strategically choose their departure times and
the routes they take. Congestion occurs when more users simultaneously
access the infrastructure than can be sustained by that infrastructure.
These location are refered as bottlenecks.

The models in Chapters 5 and 6 are based on a popular approach to
model congestion and user response. The main goal is to find compatible
departure times of travellers, such that all travellers suffer the same
discomfort. This discomfort is expressed in a cost function that accounts
for three cost components: the cost of being too early at the destination,
the cost of arriving too late and the cost of travelling time; the latter
component is determined by the delay due to traffic congestion. The
compatible departure times are found by the Nash equilibrium, which
means that no traveller can improve its costs by shifting its departure
time.

In Chapter 5 this model is extended with stochastic (uncertain) arrival
times and travelling speeds by using a Poisson arrival process with time-
fluctuating rate and exponential travel times. The strategic behaviour
of users is captured in the aggregated intensity function of the Poisson
arrival process. We discuss the error made by the fluid approximation,
and show that the Nash equilibrium of the original model results in
highly varying costs when applied in the more realistic setting with
stochasticity. We then develop an algorithm to numerically approximate
the equilibrium arrival rate for the stochastic bottleneck model, and
propose a closed-form estimation for the approximated equilibrium. This
approach can be applied to other extensions that have been developed
for the standard deterministic bottleneck model. The results give intu-
ition on the impact of uncertainty in a broad range of transportation
models. Examples include heterogeneity among travellers’ departure
time, interpretation of early and late arrival, demand elasticity, etcetera.

In Chapter 6, we use a more detailed model for the rational behaviour
of travellers: each can strategically choose a preferred time to join the
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bottleneck, but the actual time at which the bottleneck is reached is
subject to a random shift in time. This captures uncertainty with respect
to departure and travelling times prior to joining the bottleneck. We
show that the arrival density advocated by the Nash equilibrium in
Vickrey’s model is not a user equilibrium in the model with random
uncertainty. We then investigate the existence of a user equilibrium for
the latter and show that, in general, such an equilibrium can neither
be a pure Nash equilibrium, nor a mixed equilibrium with a continuous
density. With numerical examples, we illustrate the mechanics that
prevent existence of such a user equilibrium. Our results demonstrate
that when random distortions influence user decisions, the dynamics of
standard bottleneck models are inadequate to describe such complex
situations.

In Chapter 7 we develop a strategic scheduling model. As in the previous
two chapters, the goal is to dynamically spread arrivals, but now travel
times are optimised in a joint effort between travellers and a central co-
ordinator. The central coordination allows for effective synchronisation
of travellers’ preferences. For this study, we split the travellers into two
groups: (1) participating travellers whose departure time interval can
be adjusted, and (2) non-participating ‘background’ travellers whose
departure times cannot be adjusted. This allows us to assess the impact
of the fraction ‘adjustable traffic’ on the total delay. Our results show
that a significant decrease in average delay can be established when only
a small fraction of the total traffic uses a personal departure advice.

Network analysis
In Chapter 8, we examine the structure of an empirical data set consist-
ing of time-dependent origin-destination pairs in terms of connectedness.
A network partitioning algorithm is applied to aggregate travel patterns
into high-level partitions of the network. These partitions are composed
of historical travel movements in the city of Amsterdam. We show that
we can distinguish spatially connected regions when we use a heuristic
method that optimises a performance metric called modularity. We
proceed to analyse variations in the partitions that arise due to the
non-optimal greedy optimisation method. We use a method known as
ensemble learning to combine these variations by means of the overlap
in community partitions. Ultimately, the combined partition leads to a
more consistent result when evaluated again, compared to the individual
partitions.
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Samenvatting

In dit proefschrift ontwikkelen we modellen en controletechnieken voor
het reduceren en voorkomen van files in het wegverkeer. Hierbij ligt de
nadruk op het meenemen van de invloed van onzekerheid door middel
van kwantitatieve stochastische methoden.

Het hoofddoel in dit proefschrift is het begrijpen van de impact van onze-
kerheid op de effectiviteit van verkeerscontrole strategieën. De dynamiek
in het wegverkeer is onderhevig aan onzekerheid, deze is voor een groot
deel toe te schrijven is aan de onvoorspelbaarheid in het keuzegedrag van
individuen. Als gevolg hiervan ontstaan schommelingen in het verkeers-
aanbod en de wegcapaciteit die van grote invloed zijn op de effectiviteit
van verkeersmanagement oplossingen. In verkeersmanagement worden
dit soort schommelingen vaak niet meegenomen. In dit proefschrift
richten we ons op deze onzekerheid vanuit verschillende perspectieven,
in het bijzonder: aansturing vanuit wegkantsystemen, gebruikersgedrag
en netwerkanalyse.

Controlestrategie van wegkantsystemen
Een veelvoorkomende strategie in verkeersbeheer is om aan de ene kant
de verkeersdichtheid laag te houden om verkeersopstoppingen te voorko-
men, maar aan de andere kant voldoende doorstroom te behouden om
onnodige vertraging in de stroomopwaartse richting te vermijden. In
de hoofdstukken 2-4 introduceren we een generiek model voor dit soort
verkeersstroomcontrole toepassingen. De aanwezigheid van onzekerheid
in zowel het verkeersaanbod als in de wegcapaciteit leiden tot een com-
plexe dynamiek. Het bepalen van effectieve controlemechanismen om
de impact van congestie te verminderen of te voorkomen is dan ook
een gecompliceerd vraagstuk. Een startpunt voor het verbeteren van
verkeersstroomcontrole strategieën is het begrijpen en kwantificeren van
de wisselwerking tussen opeenvolgende wegdelen onderhevig aan onzeker-
heid. In dit deel bestuderen we controlestrategieën om accumulatie van
verkeer op strategische punten van het netwerk te reduceren en idealiter
voorkomen.

In hoofdstuk 2 introduceren we twee versies van een tandem wachtrijmo-
del waarbij de bediening van de eerste rij gestuurd kan worden. In het
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eerste model is de sturing van de bediening gelimiteerd tot het wel of
niet doorsturen van de volgende klant in het systeem. Het tweede model
bestaat uit een batch bedienings mechanisme, waarbij het aantal klanten
dat per keer bediend wordt te allen tijden gespecificeerd kan worden. In
meerdere toepassingen is dit batch systeem een realistischere aanname
ten opzichte van de individuele bediening. Bijvoorbeeld om meerdere
voortuigen (klanten) te modelleren die tegelijkertijd over hetzelfde stuk
weg rijden. Voor beide modellen is de doelstelling om te balanceren
tussen een zo laag mogelijk gemiddelde rijlengte in de tweede rij, zonder
dat dit ten koste gaat van de totale doorstroom (e.g. het vermijden
van een lege tweede wachtrij terwijl de eerste nog klanten bevat). De
balans tussen deze twee doelstellingen wordt beheerst door middel van
een lineaire kostenfunctie over de wachtrijlengtes. We formuleren dit
model als een Markov Beslissings Process (MDP).

De optimale strategie voor beide modellen wordt gekarakteriseerd door
middel van een schakelstrategie waarbij de systeemtoestand verdeeld
word in twee regio’s. De systeemtoestand in dit model bestaat uit het
aantal klanten in de eerste rij op de x-as en het aantal klanten in de
tweede rij op de y-as. De toestandsruimte in de eerste versie, waarbij
klanten individueel worden bediend, is opgesplitst door middel van
een sublineaire lijn. Onder deze lijn worden klanten bediend op volle
snelheid, en boven deze lijn is de bediending gepauzeerd. Bij het batch
bedieningsmodel observeren we een soortgelijke sublineaire lijn. Onder
de lijn wordt het aantal klanten tegelijkertijd in bediening bepaald door
de afstand tot deze lijn, en boven deze lijn is de bediening gepauzeerd.

Real-time evaluatie van de optimale strategie wordt al snel complex.
Met name wanneer dit soort analyses wordt uitgevoerd voor een aaneen-
schakeling van wachtrijen tot een netwerk, waarbij de tweede wachtrij
van het ene systeem als input dient voor het daaropvolgende tandem
systeem. Daarom worden twee benaderingsmethodieken geïntroduceerd
in de hoofdstukken 3 en 4.

Wanneer de optimale schakelstrategie vrij monotoom is, kan deze goed
worden benaderd door middel van een vaste drempelstrategie. Om dit
te kunnen vaststellen ontwikkelen we in hoofdstuk 3 een benaderingsme-
thodiek om de afwijking van een vaste waarde te onderzoeken. Hieruit
volgt dat de prestatie van het ‘optimale’ drempelniveau zeer dicht bij
de optimale MDP-strategie ligt voor systemen van middelhoge belas-
ting. Echter, wanneer de belasting van het systeem toeneemt, neemt
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de prestatiekloof tussen de MDP-strategie en de benadering drastisch
toe. Voor zwaarbelaste systemen wordt de exacte structuur van de
optimale strategie belangrijker. Daarom ontwikkelen we een dynamische
benaderingsstrategie in hoofdstuk 4.

In hoofstuk 4 ontwikkelen we een heuristische benadering van de optimale
strategie door middel van een vloeistofaanpak. Deze vloeistofaanpak
geeft een uitstekende benadering voor een grote set van parameter-
waarden, daarnaast geeft het een intuïtie over de structuur van de
MDP-oplossing. Bovendien is de benodigde rekentijd voor deze bena-
dering slechts een fractie van de rekentijd van de MDP-oplossing en is
deze vrij ongevoelig voor de systeembelasting. Dit suggereert dat deze
aanpak interessant is om te verkennen voor grotere wachtrijnetwerken
met niet-exponentiële servicetijden, hiervoor verifiëren we de accuraat-
heid numeriek.

Gebruikersgedrag
In de praktijk baseren reizigers over het algemeen hun vertrektijden en
routekeuzes vanuit een strategisch perspectief. Files treden op wanneer
meerdere reizigers tegelijkertijd gebruikmaken van de infrastructuur dan
de wegcapaciteit toelaat. Deze plekken worden gezien als knelpunten.

De modellen in hoofdstuk 5 en 6 zijn gebaseerd op een populaire benade-
ring voor het modelleren van knelpunten door strategisch reizigersgedrag,
het zogenoemde Vickrey-model. Dit model gaat ervan uit dat de strate-
gische keuzes van reizigers resulteren in een aankomstpatroon waarbij
elke reiziger hetzelfde ongemak ervaart. Dit ongemak wordt uitgedrukt
door middel van een kostenfunctie bestaande uit drie componenten:
kosten voor te vroeg arriveren op de bestemming, kosten voor het te laat
arriveren op de bestemming en kosten voor extra reistijd; het laatste
component wordt bepaald door de extra reistijd als gevolg van de on-
stane file. Er wordt gezocht naar een Nash-evenwicht in de vertrektijden,
wat betekent dat geen enkele reiziger zijn kosten kan verlagen door zijn
vertrektijd aan te passen.

In hoofdstuk 5 wordt dit model uitgebreid naar een model met stochas-
tiek in de aankomstintensiteit en doorstroomsnelheden. Hierin wordt
gebruik gemaakt van de aanname dat aankomsten gemodelleerd kunnen
worden als een Poisson-aankomstproces met tijd-fluctuerende intensiteit
en waarbij de verdeling van de reistijd exponentieel verdeeld is. Het
strategische gedrag van gebruikers wordt vastgelegd op basis van een
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geaggregeerde intensiteitsfunctie van het Poisson aankomstproces. We
bespreken de fout die gemaakt wordt door de deterministische aanpak,
en laten zien dat het Nash-evenwicht van het oorspronkelijke model
resulteert in een sterke variatie in de kostenfunctie gedurende de knel-
puntperiode. Vervolgens benaderen we numeriek het Nash-evenwicht
voor het stochastische model en onwikkelen we een methodiek die een
schatting van het evenwicht in gesloten-vorm formule geeft. Boven-
staande aanpak kan worden toegepast op een groot aantal extensies
van het originele deterministische model. Een intuïtie over de impact
van onzekerheid in een breed scala van vervoersmodellen is hiervoor
mogelijk. Voorbeelden van extensies zijn onder meer heterogeniteit in de
vertrektijd van reizigers, de interpretatie van vroege en late aankomst,
vraagelasticiteit, etcetera.

In hoofdstuk 6 gebruiken we een meer gedetailleerd model voor het
rationele gedrag van reizigers. In dit model kiest elke reiziger strategisch
een voorkeurstijd om te arriveren bij het knelpunt. Echter, het werkelijke
tijdstip waarop de reiziger het knelpunt bereikt is onderhevig aan een
zekere verschuiving in tijd waar de reiziger geen invloed op heeft. Hier-
mee wordt onzekerheid in de exacte vertrek- en reistijden voorafgaand
aan toetreding tot het knelpunt meegenomen. We laten zien dat de aan-
komstintensiteit die leidt tot een Nash-evenwicht in het originele model
niet leidt tot een evenwicht in het model met onzekerheid in de exacte
aankomsttijd. Vervolgens onderzoeken we het bestaan van een Nash-
evenwicht in onze uitbreiding van het model. We laten zien dat er voor
dit model geen zuiver Nash-evenwicht bestaat, noch dat er een gemengd
evenwicht met een continue aankomstdichtheid gevonden kan worden.
Met numerieke voorbeelden illustreren we de mechaniek die het bestaan
van een dergelijk gebruikersevenwicht voorkomt. Onze resultaten de-
monstreren dat wanneer willekeurige verstoringen gebruikersbeslissingen
beïnvloeden, de dynamiek van standaard knelpuntmodellen ontoereikend
zijn om evenwichtsituatie te vinden.

In hoofdstuk 7 ontwikkelen we een strategisch planningsmodel. Net als
in de vorige twee hoofdstukken gaan we uit van een tijdsafhankelijk
aankomstpatroon onderhevig aan onzekerheid. In dit geval kiezen
reizigers niet meer strategisch hun eigen vertrekmoment, maar worden
reistijden geoptimaliseerd in een gezamenlijke inspanning tussen de
reizigers en een centrale coördinator. Deze coördinator zorgt voor
een effectieve synchronisatie van de voorkeuren van reizigers. Voor
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deze studie splitsen we de reizigers in twee groepen: (1) deelnemende
reizigers waarvan de vertrektijd kan worden aangepast, en (2) niet-
deelnemende ‘achtergrond’-reizigers waarvan de vertrektijden niet
kunnen worden aangepast. Deze aanpak stelt ons in staat om de impact
van de fractie ‘aanpasbaar verkeer’ op de totale vertraging in kaart te
brengen. Onze resultaten tonen aan dat een aanzienlijke afname van
de gemiddelde vertraging teweeggebracht kan worden wanneer slechts
een kleine fractie van het totale verkeer bestaat uit deelnemende reizigers.

Netwerk analyse
In hoofdstuk 8 onderzoeken we de structuur en connectiviteit van
een empirische dataset die bestaat uit tijdsafhankelijke oorsprong-
bestemmingsparen op basis van historische reisbewegingen in Am-
sterdam. We laten zien dat door middel van een netwerkclustering
algoritme reispatronen kunnen worden geaggregeerd naar een hoger
abstractieniveau om de structuur van het netwerk te ontdekken. Hierbij
kunnen we geografisch verbonden gebieden onderscheiden door middel
van het toepassen van een heuristisch clusteringsalgoritme. Dit algo-
ritme optimaliseert op basis van een bekende prestatiemaat, genaamd
modulariteit. Door de heuristische aanpak observeren we variaties
in de resulterende clusters. Om tot een consistenter eindresultaat te
komen, maken we gebruik van een overeenstemmingsmethodiek. Deze
methodiek combineert de gevonden variaties door middel van meest
voorkomende overlappingen. Dit leidt tot een gecombineerde partitie
die de variaties in de resultaten reduceert.
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