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1
Introduction

Airplane crashes, earthquakes, stock market collapses, pandemics, large power
grid failures. . . These are some examples of events that are rare, but that have
a big impact on society nonetheless. Therefore, it is important to study these
phenomena. One would like to know how often these events occur, what the
impact is, how to prevent them from happening, how to predict them, etc.

In order to try to answer these questions, one can try to model these phenom-
ena mathematically. These models can then be analysed in various ways. The
preferred way is to calculate exactly the quantities of interest, such as the asso-
ciated probabilities and most likely causes. However, even for relatively simple
models, this might be very hard or even impossible. Therefore, other methods
to analyse these models have to be used. One method is to perform numerical
simulations, which is one of the main focus points of this thesis. Many methods
for performing simulations exist, each with their advantages and disadvantages.
The first method that comes to mind is (naive) Monte Carlo sampling. Due
to its simplicity, this is a popular method. However, as will be demonstrated
below, it is not well suited to estimate events that have a small probability, due
to the high number of runs that is required. A sampling method that tries to
remedy this is importance sampling, a method that is used in multiple chapters
in this thesis. Simply put, importance sampling means simulating the model
under a different probability measure. The biggest problem often lies in finding
a new measure that performs well, in some yet to be defined sense. Often, large
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2 1.1. Rare event simulation

deviations theory can provide a basis for finding a good new measure and as
such, this thesis also provides several large deviations results. Furthermore, as
one-dimensional models are often too simple to be of practical value, we turn
to analysing multidimensional models. Contrary to their one-dimensional coun-
terparts, multidimensional models have not been studied as much and they are
often much harder to analyse. The focus in this thesis is on two-dimensional
models, although many of the results carry over to higher dimensions.

As the reader of this thesis might not be familiar with the mathematical
topics on which this thesis is based, we give an introduction to the required
knowledge below. More specifically, we can roughly divide the required base
knowledge into four topics, which have also been mentioned above: rare event
simulation, queueing theory, large deviations theory and multidimensional pro-
cesses. References to more in-depth literature will be provided as well. We close
this chapter with an overview of the contributions made in this thesis.

1.1 Rare event simulation

Many mathematical models are hard, or even impossible, to analyse exactly.
This is where numerical simulation comes in. With computers becoming faster
every year, simulation is a viable way to obtain reasonably close approximations
in a short time frame.

Turning to a probabilistic framework, suppose that in some model we want
to estimate the probability of an event E; denote this by pE := P (E). One of
the most intuitive and easy methods to estimate this is to perform Monte Carlo
simulation. In order to execute this, one samples N instances of the model.
For each instance, one observes if the event E occurred; suppose we see Ns
occurrences, or, successes. An unbiased estimator (recall that an estimator Â
of some quantity A is unbiased if E

(
Â
)

= A) for pE , p̂E , then is

p̂E :=
Ns
N
. (1.1)

A natural question that arises is: how good of an approximation of pE is p̂E? In
order to answer this question, we follow the setup of [64]. Let zα, for 0 < α < 1,
be given by the equation P (−zα ≤ N ≤ zα) = α, where N has a standard
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normal distribution. Using the central limit theorem, it can be shown that an
α%-confidence interval for p̂E is given by (p̂E±zασ̂n−1/2), where σ̂ is the square
root of the sample variance. The relative error of the estimator is defined to be
the absolute error (half the size of the confidence interval) divided by the value
of the estimator, i.e., it is equal to zασn−1/2/pE . We often require that the
relative error is smaller than some set precision, e.g. 10%. Suppose now that
p̂E � 1. We then have

RE = zα

√
pE(1− pE)√
NpE

≈ zα√
NpE

. (1.2)

Consider the case pE = 10−9. If we require that the 95%-confidence interval
has a relative error of at most 10%, then we need N ≥ 3.84× 1011, i.e., we need
over three hundred billion runs. This big amount of runs is, for many models,
too high to be executed on most computers in a reasonable amount of time. In
fact, the number of runs needed is inversely proportional to pE . Thus, the need
arises for sampling methods that need a lower number of runs to obtain a fixed
relative error for pE � 1.

In addition to the high number of runs required to estimate small probabil-
ities, the central limit theorem can downright be a very bad approximation of
those probabilities. We will show this with a numerical example.

Example 1.1.1. Let (Xi)i∈N be a sequence of i.i.d. random variables having
an exponential distribution with parameter µ (so that its mean is 1/µ). Let
Ŝn = 1

n

∑n
i=1Xi be its empirical mean. We want to estimate P

(
Ŝn > 2/µ

)
for

large n. According to the central limit theorem, we know that, for large n,

√
n(Ŝn −

1

µ
)

d
≈ N (0,

1

µ2
).

Hence, according to the central limit theorem, for large n, we obtain

P
(
Ŝn >

2

µ

)
= P

(
Ŝn −

1

µ
>

1

µ

)
= P

(√
n(Ŝn −

1

µ
) >

√
n

µ

)
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Figure 1.1: Numerical values corresponding to Example 1.1.1, using µ = 2.

= P
(
µ
√
n(Ŝn −

1

µ
) >
√
n

)
≈ P

(
N (0, 1) >

√
n
)
.

Note that actually nŜn has a gamma distribution with shape parameter n and
scale parameter 1/µ. In Figure 1.1 we see how drastic the difference is.

One of those methods that tries to remedy this issue is importance sampling.
In order to explain this method, let us first generalise the setting. Let the model
under consideration be represented by some random variable X. Furthermore,
let the quantity of interest we want to estimate be ψ(X) for some function ψ.
Assume that X is real-valued and has a density f . Importance sampling is
essentially sampling X from a different density f̃ , which has to be absolutely
continuous with respect to f , i.e., we require that f̃(x) > 0 whenever ψ(x)f(x) >

0; this is called using a change of measure. Observe now that

γ :=

∫
ψ(x)f(x) dx =

∫
ψ(x)

f(x)

f̃(x)
f̃(x) dx. (1.3)

Hence, we can write, using self-explanatory notation, γ = Ef̃ (ψ(X)L(X)),
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where L is the likelihood ratio, which is defined as L(x) = f(x)

f̃(x)
when ψ(x)f(x) >

0 and L(x) = 0 otherwise. This gives rise to the following estimator for γ: if we
sample N samples from X, using density f̃ , the unbiased estimator is

γ̃ :=

N∑
i=1

ψ(Xi)L(Xi)

N
. (1.4)

In order for this procedure to perform better than Monte Carlo sampling, an
appropriate choice for f̃ has to be made. Suppose we choose f̃(x) = f(x)ψ(x)/γ

and thus L = γ/ψ(x). We then have

Var (γ̃) =
1

N
Varf̃ (ψ(X)L(X)) =

1

N
Varf̃ (γ) = 0,

i.e., we have a “perfect” estimator in the sense that it has zero variance. Un-
fortunately, this estimator can not be used in practice, as it requires knowledge
of the value of γ, which is exactly the quantity we’re trying to estimate in the
first place. However, this estimator does provide a benchmark in the sense that
a “good” change of measure probably looks closely like this perfect change of
measure.

Several definitions of what constitutes a “good” change of measure exist.
Generally, the number of runs required to obtain some precision is proportional
to the variance of the estimator. Hence, a good change of measure is one that
achieves variance reduction. Additionally there exist some optimality notions.
Two commonly used notions exist in an asymptotic regime, for which we will
provide the setting first. We restrict to the case where ψ is an indicator function
of the outcome of some event; we will thus replace ψ with I. Let now γ ≡ γn be
indexed by a rarity parameter n and assume that γn → 0 as n → ∞. Suppose
that new density f̃ induces a probability measure Q. We then say that Q is
asymptotically optimal (or asymptotically efficient) with respect to n if

lim
n→∞

lnEQ,n
(
L2I

)
lnEQ,n (LI)

= 2. (1.5)

Note that, by Jensen’s inequality, the limit is always smaller than or equal to
2. In the light-tailed case, i.e., when γn decays exponentially as a function of
n, asymptotic optimality means that the number of runs needed grows at most
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subexponentially as well to obtain a certain precision.
As a second, stronger, notion of optimality, we say that Q has bounded

relative error with respect to n if

lim sup
n→∞

VarQ,n (LI)

γ2
n

<∞. (1.6)

It is a stronger notion of optimality in the sense that to obtain a required
precision, a bounded number of runs is required as n goes to infinity.

We now give an example in which bounded relative error is attained.

Example 1.1.2. Let N have a geometric distribution with success parameter
p ≡ p(x), where x is a rarity parameter (e.g., we could let p(x) = 1/x for
x ≥ 1). Let

z := P (N ≤ m) = 1− (1− p)m,

be such that z → 0 as x → ∞. We want to use importance sampling in
order to efficiently estimate z. We propose that, under Q, N has a geometric
distribution with a different success parameter p̃. Some analysis reveals that a
good candidate is to take p̃ = 1/m. Indeed, we will show that E

(
L2I

)
∼ z2(e−1)

so that bounded relative error is achieved. Using that 1− p ≈ 1, we get

E
(
L2I

)
=

m−1∑
k=0

(1− p̃)kp̃
(

(1− p)kp
(1− p̃)kp̃

)2

=
p2

p̃

m−1∑
k=0

(1− p̃)−k(1− p)2k

=
p2

p̃

1− (1− p̃)−m(1− p)2m

1− (1− p̃)−1(1− p)2
= mp2 1− (1− 1

m )−m(1− p)2m

1− (1− 1
m )−1(1− p)2

≈ mp2 1− (1− 1
m )−m

1− (1− 1
m )−1

≈ mp2 1− e
1− (1− 1

m )−1

= mp2 e− 1
1

m−1

∼ mp2 e− 1
1
m

= m2p2(e− 1)

∼ z2(e− 1).

This example should convince the reader that importance sampling can in-
deed perform much better than Monte Carlo sampling. In this example, a
bounded number of runs in x is needed to achieve a certain precision, whereas
in Monte Carlo sampling, the number of runs is inversely proportional to z(x).
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In Section 1.3, we give an example where importance sampling can also
perform badly if one is not careful enough in choosing a change of measure.

More methods exist that provide a method to efficiently implement rare
event simulation. One of those methods is splitting, which is best explained by
a simple example. Consider a random walk Sk, k ≥ 0, with i.i.d. increments and
a negative drift. Of interest now is the event of the random walk ever reaching
some high level n. As this is a rare event, consider the following idea. Define
levels 0 < n1 < . . . < nj < n. Now, we simulate M0 independent copies of S0.
We simulate each copy until it either reaches level n1 or returns to level 0. The
idea behind splitting is that, conditioning on reaching level n1, reaching level n
is less rare. Hence we continue by discarding the copies that returned to level 0

and creating M1 copies of each of the original copies that reached level n1. We
repeat this procedure, until we end up with some copies entering level n. As an
estimator, we use the number of copies that reached level n divided by the total
number of copies that were created during the process.

In order to optimise this procedure, one has to consider, for example, how
to choose the number of levels j, how to choose the levels n1, . . . , nj and how
to choose the numbers of copies to create at each level. These are just a few
aspects of the splitting method.

Another method for simulating rare events, called conditional Monte Carlo
sampling, is used in Chapter 5. As the name suggests, it involves conditioning
on a random variable or on a sigma-field. In the context of estimating a rare
event, recall that we want to estimate the probability of an event E, denoted
by pE . Suppose that this event depends on some random variable X. For
conditional Monte Carlo estimation, we replace the estimator p̂E (see (1.1))
with the unbiased estimator E (p̂E |X). Using this estimator always gives a
variance reduction. Indeed, using the law of total variance, we get

Var (p̂E) = Var (E (p̂E |X)) + E (Var (p̂E |X)) ≥ Var (E (p̂E |X)) .

However, for this method, the hard part is in finding a suitable X so that the
conditional expectation is computable. The following example is closely related
to Chapter 5.

Example 1.1.3. Let E and X be independent random variables with E having
an exponential distribution with unit mean and X having some distribution
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from which we can easily sample. We want to calculate P (E +X > x) for some
large x. However, depending on the distribution of X, this might not be possible
to do exactly. Furthermore, as this probability is small for large x, performing
Monte Carlo sampling also is not a good option, as explained before in this
section. Therefore, we resort to conditional Monte Carlo sampling. Note that

P (E +X > x) = E (1 (E +X > x)) = E (E (1 (E +X > x) |X)) ,

so an unbiased estimator for P (E +X > x) is

E (1 (E > x−X) |X) = e−(x−X) ∧ 1.

Hence, the probability can easily be estimated by sampling from X and substi-
tuting its values in the formula above.

We refer the reader to [64] and [3] for a more thorough treatment on im-
portance sampling, splitting, conditional Monte Carlo sampling and other rare
event simulation methods.

1.2 Queueing processes and random walks

In this thesis, we look at rare event simulation in the context of queueing pro-
cesses and random walks in a multidimensional setting. The theoretical back-
ground that is required to read the rest of this thesis is treated in this section.
This section doesn’t aim to be a full introduction to queueing processes and
random walks; we provide references to more comprehensive literature below.

Queueing theory is one of the largest and most applicable fields within prob-
ability theory. Many books and papers are devoted to this topic. Although
we could easily write a whole chapter on introducing the field, we will restrict
ourselves to the bare minimum that is required for understanding the rest of this
thesis. We refer to, for example, [26] and [24], for a more thorough introduction
to queueing theory, and to [44] for a more recent publication.

We will first define a discrete-time queue and show its connection to a random
walk. Let Q0 = 0 and let (Xi)i∈N be a sequence of i.i.d. random variables. A
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queueing process is then recursively defined by

Qn := max{Qn−1 +Xn, 0}, n ≥ 1. (1.7)

Hence, Xn describes the amount by which the queue in- or decreases between
time n − 1 and time n, where we restrict the content of the queue to be non-
negative. If we iterate this equation we get

Qn = max{0, X1 + · · ·+Xn, X2 + · · ·+Xn, . . . , Xn}
d
= max{0, X1, X1 +X2, . . . , X1 + · · ·+Xn}.

For the stationary distribution we naturally obtain

Q∞
d
= sup
n=0,1,2,...

n∑
i=1

Xi,

where if n = 0 the sum is to be taken equal to zero. We can conclude that
the stationary distribution of the workload in a queue is equal to the all-time
supremum of a random walk.

This can in some cases be extended to higher dimensions. We will, however,
show that in higher dimensions, two different types of events can be considered.
For ease of notation, we will only show the two-dimensional case. Let (Xi)i∈N
and (X̃i)i∈N be two sequences of i.i.d. random variables and let the two sequences
also be independent of each other (but not necessarily equally distributed). The
first type of event is a ruin probability, which is

P

(
∃n :

n∑
i=1

Xi > q,

n∑
i=1

X̃i > q̃

)
. (1.8)

This event is analysed in Chapter 2.
In order to provide the second type of event, we will first define a two-

dimensional queueing system:(
Qn
Q̃n

)
=

(
max{Qn−1 +Xn, 0}
max{Q̃n−1 + X̃n, 0}

)
= . . .
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=

(
max{0, X1 + · · ·+Xn, . . . , Xn}
max{0, X̃1 + · · ·+ X̃n, . . . , X̃n}

)
d
=

(
max{0, X1, . . . , X1 + · · ·+Xn}
max{0, X̃1, . . . , X̃1 + · · ·+ X̃n}

)
.

Its stationary distribution is given by(
Q∞
Q̃∞

)
d
=

(
supn=0,1,2,...{

∑n
i=1Xn}

supn=0,1,2,...{
∑n
i=1 X̃n}

)
.

This last equality gives rise to the following probability:

P
(
Q∞ > q, Q̃∞ > q̃

)
= P

(
∃n1 :

n1∑
i=1

Xi > q;∃n2 :

n2∑
i=1

X̃i > q̃

)
. (1.9)

The analysis of such an event is the main topic of Chapter 3.
We want to emphasise that in the event of Equation (1.8), the two processes

have to reach the high levels at the same time, while in (1.9), they can reach
the high levels at different times.

1.3 Large deviations theory

Large deviations theory is an extensive collection of mathematical theories and
tools that are developed to analyse rare events. In this thesis, large deviations
theory is used for two main reasons. One is that it provides tools and heuristics
that allow us to find a good change of measure in designing importance sampling
algorithms. The second reason is that it allows us to evaluate the efficiency of
a change of measure.

Consider an i.i.d. sequence of random variables. Extensive theory exists on
the “regular” behaviour of such a sequence: the law of large numbers provides us
with information on its sample mean and the central limit theorem describes the
behaviour around the sample mean. But how can events with a very low prob-
ability be described? Large deviations theory aims to provide a mathematical
framework to answer this question.

Let us illustrate that with an example.



Introduction 11

Example 1.3.1. Let (Xi)i∈N be a sequence of i.i.d. random variables having a
normal distribution with mean zero and unit variance. Let Ŝn = 1

n

∑n
i=1Xi

be its empirical mean. Note that Ŝn again has a normal distribution with zero
mean and variance 1/n. Therefore, for any δ > 0,

lim
n→∞

P
(
|Ŝn| ≥ δ

)
= 0, (1.10)

and for any interval A

lim
n→∞

P
(√

nŜn ∈ A
)

=
1

2π

∫
A

e−x
2/2 dx. (1.11)

Furthermore,

P
(
|Ŝn| ≥ δ

)
= 1− 1

2π

∫ δ
√
n

−δ
√
n

e−x
2/2 dx,

so that

lim
n→∞

1

n
lnP

(√
nŜn ≥ δ

)
= −δ

2

2
. (1.12)

This last equation is a typical large deviations statement. It says that |Ŝn| can
take relatively large values with a probability of the order e−nδ

2/2.

Note that, from the law of large numbers and the central limit theorem,
equations (1.10) and (1.11) still hold for any i.i.d. sequence with finite second
moment. One could ask whether equation (1.12) also still holds in the general
case. It can be derived that the limit indeed always exists, but that its value
depends on the distribution of X1. This is a simple example of a so-called large
deviations principle, which is one of the main tools used in large deviations
theory. We will give the exact definition below, but first we need to introduce
some preliminary definitions.

Most of the definitions and results below are taken from [30]. Let {µε} be
a family of probability measures on some topological space X . A rate function
I then is a non-negative lower semi-continuous function on X , i.e., all level sets
are closed sets. We call I a good rate function if, in addition, all level sets are
compact.

We say that {µε} satisfies a large deviations principle with rate function I
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if for all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε lnµε(Γ) ≤ lim sup
ε→0

ε lnµε(Γ) ≤ − inf
x∈Γ̄

I(x), (1.13)

where in the infima, the interior and closure of Γ are meant respectively.
Informally, if {µε} satisfies a large deviations principle with rate function I,

it means that
µε(Γ) ≈ e

−1
ε infx∈Γ I(x),

i.e., the probability of interest decays exponentially in 1/ε with decay rate
infx∈Γ I(x).

There are several conditions under which a family of probability measures
satisfies a large deviations principle. One of the most famous results is Cramér’s
theorem (originally published in [27]), which is a statement about the sequence
of probability measures corresponding to the sample means of an i.i.d. sequence
of random variables. Before we can state the theorem, some more definitions
are required.

We again consider a sequence of i.i.d. random variables (Xi)i∈N and its em-
pirical mean Ŝn = 1

n

∑n
i=1Xi. Let µn denote the probability law of Ŝn. The

logarithmic moment generating function, or cumulant generating function, of X1

is defined as
Λ(λ) := lnM(λ), M(λ) := E

(
eλX1

)
,

and the Fenchel-Legendre transform of Λ(λ) is defined as

Λ?(x) := sup
λ∈R
{λx− Λ(λ)}.

Theorem 1.3.2 (Cramér). The sequence of probability measures (µn)n∈N sat-
isfy a large deviations principle with convex rate function Λ?(·).

Note that no assumptions on the existence of any moment of X1 were made;
in particular, the theorem holds even when the first moment of X1 doesn’t exist
(though in that case, Λ?(x) would be 0 for all x, and the theorem is not very
informative).

Several generalisations of Cramér’s theorem exist. It should be no surprise
that a multivariate counterpart exists, i.e., in the case where (Xi)i∈N is a se-
quence of i.i.d. random vectors in Rd. A generalisation to the non-i.i.d. case can
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also be made, which is called the Gärtner-Ellis theorem. We use this theorem
in Chapter 2, where it is also stated.

So far, all results have been about the empirical mean of a sequence of
random variables. However, sometimes one wants to obtain information about
the sample path of such a sequence. For example, the maximum of the random
walk can be of interest, or one might want to know what the probability is of the
random walk ever attaining a value in some (rare) set. A result indeed exists,
in the form of Mogulskii’s theorem (see [61] for the original publication). Let’s
again provide some preliminary definitions first.

Since the theorem is stated in higher dimension, we first state the higher
dimensional counterparts of the definitions above. Let (Xi)i∈N be a sequence of
i.i.d. random vectors in Rd, with Λ(λ) = lnE

(
e〈λ,X1〉

)
. Let | · | be the Euclidian

norm on Rd (i.e., |x| =
√
〈x, x〉), let ‖ · ‖ be the supremum norm on L∞([0, 1])

and let Λ?(x) := supλ∈Rd{〈λ, x〉−Λ(λ)} be the d-dimensional Fenchel-Legendre
transform of Λ(·).

Zn(t) :=
1

n

bntc∑
i=1

Xi, 0 ≤ t ≤ 1,

and let µn be the probability law of Zn(·).

Theorem 1.3.3 (Mogulskii). Let Λ(λ) < ∞ for all λ ∈ Rd. The sequence of
probability measures (µn)n∈N satisfy, in L∞([0, 1]), a large deviations principle
with good rate function

I(φ) =

{∫ 1

0
Λ?(φ′(t)) dt, if φ ∈ AC, φ(0) = 0,

∞ otherwise,

where AC is the set of absolutely continuous functions.

We conclude this part by stating an elementary property called the principle
of the largest term. We provide the version as stated in [39]; a slightly more
general version can be found in [30].

Lemma 1.3.4 (Principle of the largest term). Let an and bn be sequences in
R+. If 1/n ln an → a and 1/n ln bn → b as n→∞, then

lim
n→∞

1

n
ln(an + bn) = a ∨ b.
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If an and bn are probabilities, this lemma has the interpretation that rare
events tend to happen in the most likely way.

We conclude this section by providing a change of measure that is often used
in importance sampling, namely exponential twisting. If a random variable X
has a density f(·), then we say that we exponentially twist X with parameter
λ if we sample using density

fλ(x) := f(x)
eλx

M(λ)
.

This change of measure is useful in the following setting. Consider the random
walk Sn =

∑n
i=1Xi, where the Xi are i.i.d. with expected value µ. Suppose

that we are interested in the probability P (Sn/n > a) for some a > µ. Let λ(a)

be the optimising argument of Λ?(a). As shown in [12, Section 5.2.1], when the
random walk is twisted with parameter λ(a), asymptotic optimality is achieved.

1.4 Complications of rare event estimation in a
multidimensional setting

One-dimensional systems have some very useful properties: they are (relatively)
easy to analyse, it is easy to design simulation algorithms for them and a lot
is known about them already. For example, for single server queues, many
results exist on e.g. waiting times, sojourn times and queue length distribution.
However, many practical situations are too complicated to model by, e.g., a
single queue, a single buffer or a one-dimensional random variable. Therefore,
multidimensional models need to be studied.

Although multidimensional models have the potential to be a much closer
approximation of reality than their one-dimensional counterparts, they come
with a cost: they are relatively hard to analyse and as a result, less results
exist for these models. In several special cases, some results do exist. Recent
publications include, e.g., [53], where the stationary workload distribution of a
fluid tandem queue is analysed in heavy traffic, and [66], where the steady-state
marginal workload distribution for a single server polling model with two queues
is analysed. Additional results can be found in e.g. [62], [16] and [55].

Because of this, and because of their inherent mathematical value, this thesis
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focuses on multidimensional models. In order to illustrate the hardness in ana-
lysing multidimensional models in the setting of rare-event simulation, we give
some examples of potential problems that they have.

One example, which is shown in Chapter 2 as well, is briefly introduced
here. Consider a two-dimensional fluid buffer model in which the net inflow
(or outflow) is determined by the state of some finite state space background
process. This means that in between two jumps of the background process, the
net in- or outflow of both buffers is constant. Suppose that one is interested in
the rare event of both buffers attaining a high level simultaneously. If one was
to perform simulations in order to estimate the probability of this event, one
would simulate the background process and calculate at each jump point what
the levels of the buffers must be. An easy trap to fall into is thinking that the
event of interest only occurs if, at a jump point, both buffers reached the high
level. As this is indeed true in the one-dimensional case, one might think that
this extends to the two-dimensional case. However, as Figure 2.2 in Chapter 2
shows, the rare set of interest can also be reached in between two jump points
of the background process. Naturally, this can easily be overcome by linearly
interpolating between two jump points, but this simple example shows that if
one is not careful, mistakes can easily be made when transitioning from one
dimension to multiple.

In the next example, although the stochastic process is one-dimensional,
the rare set of interest is a disjoint union of two sets, in particular, the set is
non-convex. This is an example in which one wants to implement an efficient
importance sampling algorithm. Consider again a random walk (Xi)i∈N and its
empirical mean Ŝn = 1

n

∑n
i=1Xi. We also use the notation Sn =

∑n
i=1Xi and

define λ?(a) to be the optimiser of Λ?(a). We are interested in the probability

pn(a, b) := P

(
Ŝn
n
≥ a or

Ŝn
n
≤ b

)

for b < E (X1) < a. Suppose that the point a is the most likely point for
the rare event to occur, meaning that pn(a)/pn(a, b) → 1 as n → ∞, where
pn(a) := P

(
Ŝn
n ≥ a

)
(this corresponds to the case that Λ?(a) ≤ Λ?(b)). It

seems tempting to perform an exponential twist with parameter λ(a). Let Q
denote the corresponding change of measure of this exponential twist. As shown
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in [12, Section 5.2.3], we have for the second moment of the estimator that

EQ,n
(
L2I

)
=[

EQ,n

(
e−2λ?(a)Sn1{Sn≥na} + EQ,n

(
e−2λ?(a)Sn1{Sn≤nb}

))]
× (M(λ?(a)))2n.

The decay rates of the first and second term respectively are −2Λ?(a) and
−λ?(a))b−Λ?(b)+lnM(λ?(a)). In order to get a subexponential number of runs,
we need that VarQ,n (LI) needs to decay (decrease on an exponential scale) as
fast as p2

n(a, b), which is the case when the inequality Λ?(a) ≤ λ?(a))b+Λ?(b)−
lnM(λ?(a)) must be satisfied. It can be shown that it is satisfied only when
b ≤ b? for some fixed b?. Hence, when b is too large, at least an exponential
number of runs is needed. The heuristic explanation is that, even in importance
sampling, it might occur that Sn/n ≤ b. When that happens, the likelihood
becomes very large, contributing to a large variance. We refer to [12] for various
methods that circumvent this problem, one of which is to write the probability
as the sum of two probabilities and estimating each term separately.

Throughout this thesis, we will make use of several techniques than can
be applied in multiple dimensions, e.g., partitioned importance sampling and
conditional Monte Carlo sampling. These methods have the advantage that
they are easier to implement than some of the methods that can be found in
the survey paper [10].

1.5 Contributions

This section highlights the contributions that are made in this thesis.
In Chapter 2, we consider a bivariate stochastic process. The (rare) event

of interest is the event of both components exceeding some large level simultan-
eously. Both asymptotic techniques as well as efficient simulation techniques are
provided. The asymptotic result concerns various expressions for the decay rate
of the probability of interest and is valid under Gärtner-Ellis-type conditions.
The simulation result concerns a specific instance of the model under consider-
ation, which is that of two Markov fluid queues driven by the same background
process. An asymptotically efficient importance sampling procedure is provided
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for this example. Furthermore, several numerical experiments are provided that
support the theory.

Chapter 3 is closely related to Chapter 2. Again, a bivariate stochastic
process is analysed, but the event of interest now is that of both components
exceeding some large level, but not necessarily at the same time. This chapter
also provides two results. As in Chapter 2, the first result is an expression
for the decay rate of the probability of interest. The second result focuses on
efficient simulation techniques. Using a “nearest-neighbour random walk” as an
example, we first show that a “naive” implementation of importance sampling,
based on the decay rate, is not asymptotically efficient. To remedy this, we
introduce a technique which we call partitioned importance sampling and prove
that this technique, indeed, is asymptotically efficient. We conclude the chapter
by providing several simulation results.

In Chapter 4, we look at a linear stochastic fluid network under Markov
modulation. The focus is on the probability that the joint storage level will
ever attain a value in a rare set. The majority of the chapter is devoted to
developing efficient importance sampling algorithms. For linear stochastic fluid
networks without modulation, we prove that the algorithm presented needs at
most a polynomial number of runs, whereas the probability of interest decays
exponentially. For linear stochastic fluid networks with modulation, we show
that the algorithm is asymptotically efficient. Furthermore, we point out how
to set up a recursion to evaluate the (transient and stationary) moments of the
joint storage level in Markov-modulated linear stochastic fluid networks.

Chapter 5 focuses on the stationary distribution of a stochastic recursion.
The goal is to estimate the probability that the stationary process has a large
value. We provide a conditional Monte Carlo algorithm that can estimate this
probability both efficiently (bounded relative error is attained) and unbiasedly
in finite running time. We also provide an expression for the asymptotic tail
behaviour.

Together, these chapters show how it is possible to develop efficient simula-
tion techniques for multidimensional models with a variety of approaches, that
complement the approaches in the literature which are surveyed in [10].
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2
A multi-dimensional ruin problem

This chapter is devoted to analysing the event of both components of a bivari-
ate stochastic process exceeding a large threshold at the same time. This is
closely related to Chapter 3. There, the event of both components of a bivari-
ate stochastic process exceeding a large threshold at possibly different times is
analysed. This chapter is based on [21].

2.1 Introduction

Let ((At, Bt))t≥0 be a bivariate stochastic process, with possibly dependent com-
ponents. This chapter focuses on techniques to quantify the so-called (bivariate)
ruin probability over level u, denoted by αu, being defined as the probability that
this process will ever hit the set Su := (u,∞) × (u,∞), for some u > 0. Note
that even in the case that the two processes are independent, this probability
cannot be evaluated from the corresponding one-dimensional ruin probabilities,
since both components have to be bigger than u at the same time.

A leading example of such a bivariate model is the two-dimensional Markov
modulated fluid model, which can be described as follows. Let (Xt)t≥0 be an
irreducible Markov process, taking values on a finite state space. Whenever
Xt = i, both At and Bt change at constant, possibly negative, rates rAi and rBi

19
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respectively so that

(At, Bt) =

(∫ t

0

rAXs ds,

∫ t

0

rBXs ds

)
;

the two processes (At)t≥0 and (Bt)t≥0 thus depend on each other as they react
to the same realisation of the background process (Xt)t≥0. The process (At, Bt)

could be used to model the evolution of two random quantities which are driven
by the same environment. Many examples can be thought of: the process can
represent data buffers in a wireless network whose dynamics react to the same
variations in the channel conditions, or multiple asset prices reacting to the
same market fluctuations. The one-dimensional counterpart of this model is
well understood. In particular, techniques have been developed to evaluate the
ruin probabilities, by setting up a system of linear differential equations which
can be solved by imposing the appropriate boundary conditions; see e.g. [35].
Importantly, in the two-dimensional case these methods fail.

Since an exact analysis of αu has been beyond reach so far, in this chapter we
turn to two approximation techniques that are intended to gain insight into the
quantitative properties of αu. The first technique is of an asymptotic nature:
it characterises the (essentially exponential) tail behaviour of αu for large u.
The second approach is an efficient simulation technique based on importance
sampling; it remedies the complication that straightforward, naïve simulation
methods are typically slow due to the rarity of the event under consideration.

The research reported on in this chapter is in the tradition of a series of
papers on large deviations estimates and importance sampling for queues. For an
introduction to importance sampling, we refer to e.g. [64]. Importance sampling
is a variance-reduction technique which essentially amounts to sampling under
another measure than the actual one, recovering unbiasedness by weighing the
simulation data by appropriate likelihood ratios; the complication lies in the
selection of the new measure, which should ideally be chosen such that the
variance of the resulting estimator is minimised. Part of this chapter relates to
relatively general bivariate processes, and part to the specific case of bivariate
Markov fluid. Asymptotics and efficient simulation for the one-dimensional
model have been studied in detail; see e.g. [60] and [64, Section 5.3.3]. We
also mention [52], where the focus lies on the existence of so-called effective



A multi-dimensional ruin problem 21

bandwidths; as it turns out, despite the fact that this work focuses on one-
dimensional Markov fluids, results from this paper are useful in the context of
our two-dimensional setup.

There is a vast literature that directly relates to the material presented in
this chapter; without aiming to give a complete overview, we mention a number
of relevant contributions. In [41], for a broad class of queues the exponential
decay rate of the waiting time distribution is given; this result can be translated
into the context of ruin probabilities. In [32], it is generalised to continuous
time, as well as to non-linear scaling. [25] considers a related result for multi-
dimensional discrete time Markov additive processes. In [48], a fluid model
is considered as well, but only for a Lévy input process (i.e., without Markov
modulation); the main result is an expression for the Laplace-Stieltjes transform
of the joint steady-state distribution.

This chapter has two main results. The first one is Theorem 2.2.2, which
gives multiple equivalent expressions for the decay rate

lim
u→∞

1

u
lnP (∃t > 0 : At > u,Bt > u)

under mild assumptions. Importantly, these assumptions are satisfied by the
bivariate Markov fluid model. In the first part of the proof, we interpret a rep-
resentation of the decay rate as the solution of a concave optimisation problem
with respect to several constraints. The use of this interpretation we believe is
novel; for example, using this argumentation would have led to a considerably
shorter proof in the one-dimensional case in [39, Lemma 1.7]. A different ex-
pression for the decay rate is provided as well, with a proof that is split into
two parts. First the lower bound is proven, which focuses on the largest con-
tribution to αu (in terms of a ‘dominant time scale’). For the upper bound, we
determine the decay rate of the probability that the bivariate process hits some
set Tu which contains Su; we let Tu be as small as possible so as to still obtain
the correct decay rate. This approach is similar to the one used by [54].

The second main result concerns efficiency properties of an importance-
sampling-based simulation scheme, which applies to the bivariate Markov fluid
model only; it states that the underlying new measure is optimal (in a spe-
cific asymptotic sense). The new measure we propose can be regarded as the
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two-dimensional analogue of the change of measure that was used for the one-
dimensional model in e.g. [60] and [64, Section 5.3.3]. A complication is that
the process (At, Bt) can attain values in the target set while the ‘embedded pro-
cess’ (recording values of (At, Bt) only at transition epochs of the background
process) does not; we describe a technique to remedy this.

The rest of this chapter is organised as follows. Section 2.2 contains the first
main result, namely the decay rate for the general two-dimensional stochastic
process under a Gärtner-Ellis-type condition. In Section 2.3, we specifically
consider the bivariate Markov fluid model; we first present a number of results
for this model, then we develop an efficient simulation algorithm, and finally
we present a number of illustrative numerical examples. For readability, the
proof of Theorem 2.3.1 is given in Appendix 2.5. The chapter concludes with
Section 2.4, in which we discuss two natural extensions of the theory developed
in Section 2.2, namely the extension of the theory to higher dimensions and the
extension to bivariate processes for which the components may hit level u at
different times.

2.2 Logarithmic asymptotics under Gärtner-Ellis
conditions

Let ((At, Bt))t≥0 be a bivariate stochastic process on R2. We are interested in
the probability αu that the process will ever hit the set Su := (u,∞)× (u,∞),
for u� 0, when the average movement of the process is directed away from this
set. More specifically, we wish to characterise the decay rate of this probability,
i.e.,

lim
u→∞

1

u
lnP (∃t : At > u,Bt > u) . (2.1)

We consider the situation that(
lim
t→∞

EAt
t
, lim
t→∞

EBt
t

)
6∈ [0,∞)× [0,∞),

so that the event of interest is indeed rare. We will also assume that the process
can reach the set with a positive probability. Note that we don’t have to restrict
the event of interest to both components having to reach the same level, i.e.,
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the results developed in this chapter can also handle the event

{∃t > 0 : At > u,Bt > cu}

for any c > 0. This can be done by applying the analysis to the stochastic
process ((At, Bt/c))t≥0. Hence, we will choose c = 1 in the remainder of this
chapter.

In order to be able to analyse the above decay rate, we now provide some
results from large deviations theory, following the setup of [39]. We denote the
limiting cumulant generating function of ((At, Bt))t≥0 by

M(θ1, θ2) := lim
t→∞

1

t
lnE

(
eθ1At+θ2Bt

)
. (2.2)

A function I : Rd → R∗ (where R∗ := R ∪ {∞}) is a rate function if it is
non-negative and if it is lower semi-continuous, i.e., all level sets are closed.
Furthermore, it is called a good rate function if in addition all level sets are
compact. We say that ((At, Bt))t≥0 satisfies a large deviations principle in R2

with rate function I : R2 → R∗ if for any measurable set F ⊆ R2

− inf
x∈F◦

I(x) ≤ lim inf
t→∞

1

t
lnP ((At, Bt) ∈ F )

≤ lim sup
t→∞

1

t
lnP ((At, Bt) ∈ F ) ≤ − inf

x∈F̄
I(x),

where F ◦ and F̄ denote the interior and closure of F respectively. For any
function f : Rd → R∗, we denote its convex conjugate by f∗(x) := supθ〈θ, x〉 −
f(θ). A function f : Rd → R∗ is called essentially smooth if the interior of
its effective domain (the set on which f is finite-valued) is non-empty, f is
differentiable in the interior of its effective domain and f is steep, namely, for
any sequence xn which converges to a boundary point of the effective domain,
limn→∞ |∇f(xn)| = ∞. The following well-known theorem will be used in the
proof of our main result.

Theorem 2.2.1 (Gärtner-Ellis, see [39, Theorem 2.11]). If (2.2) exists for
all θ1, θ2, possibly taking value infinity, and if it is essentially smooth, lower
semi-continuous and finite in a neighbourhood of the origin, then the process
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((At/t, Bt/t))t≥0 satisfies a large deviations principle in R2 with good convex
rate function M∗.

Our main result gives the aforementioned decay rate in terms of the corres-
ponding limiting cumulant generating function. Aside from assuming Gärtner-
Ellis conditions, we also want to ensure that the continuous-time process is
locally well-behaved so that we can apply the one-dimensional result from [32].
In order to make this precise, we define for n ∈ N:

(An +Bn)∗ := sup
0≤r<1

(An+r +Bn+r) .

Theorem 2.2.2. Let M(·, ·) satisfy the conditions of the Gärtner-Ellis theorem
and let either

lim sup
n→∞

1

n
lnE

(
e(θ1An+θ2Bn)∗−θ1An−θ2Bn

)
= 0 (2.3)

for all θ1, θ2 > 0, or let (2.3) hold for some θ1, θ2 > 0 and let

lim sup
n→∞

1

n
lnP ((wAn + (1− w)Bn)∗ − wAn − (1− w)Bn > xn) ≤ −I(x, x)

(2.4)
hold for all x > 0 and all w ∈ [0, 1], with I(·, ·) as in (2.6). Then

lim
u→∞

1

u
lnP (∃t > 0 : At > u,Bt > u) = − inf

x>0,y>0

I(x, y)

min(x, y)
(2.5)

holds, where
I(x, y) := sup

θ1,θ2

(θ1x+ θ2y −M(θ1, θ2)) . (2.6)

Furthermore,

inf
x>0,y>0

I(x, y)

min(x, y)
= sup
θ1≥0,θ2≥0:M(θ1,θ2)=0

(θ1 + θ2) . (2.7)

Proof. We begin with the proof of the latter statement, i.e., (2.7). To this end,
write

inf
x,y>0

I(x, y)

min(x, y)
= inf
x,y>0

sup
θ1,θ2

θ1x+ θ2y

min(x, y)
− M(θ1, θ2)

min(x, y)
.
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Setting p := min(x, y) we obtain

inf
x,y>0

sup
θ1,θ2

θ1x+ θ2y

min(x, y)
− M(θ1, θ2)

min(x, y)
=

inf
x,y,p>0,p=min(x,y)

sup
θ1,θ2

θ1x

p
+
θ2y

p
− M(θ1, θ2)

p
.

We may now replace in the infimum p = min(x, y) by p ≤ min(x, y), so that we
find

inf
x,y,p>0,p=min(x,y)

sup
θ1,θ2

θ1x

p
+
θ2y

p
− M(θ1, θ2)

p
=

inf
x,y,p>0,p≤min(x,y)

sup
θ1,θ2

θ1x

p
+
θ2y

p
− M(θ1, θ2)

p
;

this equality holds because

◦ The ‘≥’ part holds because the infimum on the right-hand side is taken
over a larger set.

◦ The ‘≤’ part holds because the supremum is non-negative (choose θ1 =

θ2 = 0), hence p will be taken as large as possible.

The next step is to replace the quantities x/p, y/p and 1/p by u, v and q

respectively, which is allowed as long as we impose the restrictions u, v ≥ 1 and
q > 0 in the infimum. We thus obtain

inf
x,y,p>0,p≤min(x,y)

sup
θ1,θ2

θ1x

p
+
θ2y

p
− M(θ1, θ2)

p
=

inf
u,v≥1,q>0

sup
θ1,θ2

θ1u+ θ2v − qM(θ1, θ2).

We can now write uθ1 = (1 + a)θ1 with a ≥ 0, and similarly for θ2 in order to
obtain the alternative representation

inf
u,v≥1,q>0

sup
θ1,θ2

θ1u+ θ2v − qM(θ1, θ2) =

inf
a,b≥0,q>0

sup
θ1,θ2

(θ1 + θ2) + aθ1 + bθ2 − qM(θ1, θ2).
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The right-hand side of the previous display can now be seen as the Lagrangian
dual of a concave optimisation problem with respect to constraints as given in
the infimum; it should be borne in mind that the limiting cumulant generating
function M(θ1, θ2) is convex. As a consequence,

inf
a≥0,b≥0,q>0

sup
θ1,θ2

(θ1 + θ2) + aθ1 + bθ2 − qM(θ1, θ2) = sup
θ1≥0,θ2≥0,M(θ1,θ2)≤0

θ1 + θ2,

which establishes the proof of (2.7).
We will split the proof of the first statement, i.e., (2.5), into a lower bound

and an upper bound. We first give the lower bound. For all s, u > 0 we have
the obvious bound

P (∃t > 0 : At > u,Bt > u) =

P (∃t > 0 : Atu > u,Btu > u) ≥ P (Asu > u,Bsu > u) .

This means that also, for all s > 0,

lim inf
u→∞

1

u
lnP (∃t > 0 : Atu > u,Btu > u) ≥

lim inf
u→∞

1

u
lnP (Asu > u,Bsu > u) .

As this inequality is uniform in s > 0, we can take the supremum on the right-
hand side. We thus obtain, after rewriting:

lim inf
u→∞

1

u
lnP

(
∃t :

Atu
tu

>
1

t
,
Btu
tu

>
1

t

)
≥

sup
s>0

lim inf
u→∞

1

u
lnP

(
Asu
su

>
1

s
,
Bsu
su

>
1

s

)
. (2.8)
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Furthermore, the Gärtner-Ellis (GE) theorem gives us the following inequality:

lim inf
u→∞

1

u
lnP

(
Atu
tu

>
1

t
,
Btu
tu

>
1

t

)
= t

[
lim inf
u→∞

1

tu
lnP

(
Atu
tu

>
1

t
,
Btu
tu

>
1

t

)]
GE
≥ −t inf

x> 1
t ,y>

1
t

[
sup
θ1,θ2

θ1x+ θ2y −M(θ1, θ2)

]
.

(2.9)

Upon combining (2.8) and (2.9), we thus conclude

lim inf
u→∞

1

u
lnP (∃t : At > u,Bt > u)

= lim inf
u→∞

1

u
lnP

(
∃t :

Atu
tu

>
1

t
,
Btu
tu

>
1

t

)
(2.8)
≥ sup

t>0
lim inf
u→∞

1

u
lnP

(
Atu
tu

>
1

t
,
Btu
tu

>
1

t

)
(2.9)
≥ sup

t>0
−t inf

x,y> 1
t

[
sup
θ1,θ2

θ1x+ θ2y −M(θ1, θ2)

]
= sup

t>0
−t inf

x> 1
t ,y>

1
t

I(x, y)

= − inf
t>0

inf
x,y> 1

t

tI(x, y) = − inf
x,y>0

inf
t>max( 1

x ,
1
y )
tI(x, y)

= − inf
x,y>0

max

(
1

x
,

1

y

)
I(x, y) = − inf

x>0,y>0

I(x, y)

min(x, y)
,

which establishes the lower bound.
For the upper bound, we consider the probability of (At, Bt) reaching a

set in which (u,∞) × (u,∞) is contained. We evidently have, for all ‘weights’
w ∈ [0, 1],

P (∃t > 0 : At > u,Bt > u) ≤ P (∃t > 0 : wAt + (1− w)Bt > u) ;

for the moment we keep w fixed; later in the proof we minimise over w to identify
the tightest upper bound. The crucial idea is that wAt + (1 − w)Bt is now a
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one-dimensional stochastic process, for which we can apply the result of [32,
Corollary 2.3], so as to obtain

lim sup
u→∞

1

u
lnP (∃t > 0 : At > u,Bt > u)

≤ lim
u→∞

1

u
lnP (∃t > 0 : wAt + (1− w)Bt > u) ≤ − inf

x>0

Iw(x)

x
= −θ∗w,

where (i) the rate function Iw(x) is defined by supθ(θx−Mw(θ)), (ii) the limiting
cumulant generating function Mw(θ) by

lim
t→∞

1

t
lnE

(
eθwAt+θ(1−w)Bt

)
= 0,

and (iii) θ∗w > 0 solves Mw(θ) = 0. Because the above upper bound on the
decay rate holds for any w ∈ [0, 1], we can take the infimum with respect to w
on both sides. We thus obtain

lim sup
u→∞

1

u
lnP (∃t > 0 : At > u,Bt > u) ≤ − sup

w∈[0,1]

θ∗w.

Setting θ∗1 := wθ∗w and θ∗2 := (1−w)θ∗w, we observe that M(θ∗1 , θ
∗
2) = 0. So then

lim sup
u→∞

1

u
lnP (∃t > 0 : At > u,Bt > u)

≤ − sup
θ∗w>0,w∈[0,1]:M(wθ∗w,(1−w)θ∗w)=0

wθ∗w + (1− w)θ∗w

= − sup
θ1≥0,θ2≥0:M(θ1,θ2)=0

θ1 + θ2,

which establishes the upper bound.

The first part of the proof uses a Lagrange-multiplier argument in order to
show that the optimising θ1 and θ2 are non-negative. This (seemingly novel)
idea can be used more broadly; for instance in the proof of [39, Lemma 1.7].
In the proof of the upper bound, there is a one-to-one correspondence between
w, θ∗w and θ1, θ2, namely θ1 = wθ∗w and θ2 = (1−w)θ∗w. A similar result is proven
in [25] in a discrete time Markov additive setting, though the representation of
the decay rate is different.
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2.3 Efficient estimation of ruin probability in bi-
variate fluid model

In this section, as mentioned in the introduction, we let At and Bt represent
two fluid processes, modulated by the same Markov process (Xt)t≥0 that at-
tains values on a finite state space N . We apply the theory of the previous
section to set up an importance-sampling-based efficient simulation procedure
for estimating

αu = P (∃t > 0 : At > u,Bt > u) = P (∃t > 0 : (At, Bt) ∈ Su) .

To make the model precise, let rA and rB be two vectors in R|N |. Whenever
Xt = i, the net input per time unit of the two components are rAi and rBi ,
respectively; note that these numbers are not necessarily positive. A compact
representation is

δAt
δt

= rAi ,
δBt
δt

= rBi if Xt = i, (2.10)

where we set A0 = B0 = 0.
In the following subsection, we analyse the above model in greater detail,

and conclude that it satisfies the conditions of Theorem 2.2.2. In Section 2.3.2
we construct a method in order to estimate the ruin probability efficiently and
in Section 2.3.3 we give numerical examples (which also indicate the efficiency
gain with respect to naïve simulation approaches).

2.3.1 Analysis of the fluid model

In order for the process to have a positive probability to hit the set Su, some
conditions have to be imposed on rA and rB . These conditions can be satisfied
in essentially two ways. The first way is that there exists some state i such
that rAi > 0 and rBi > 0. If such a state does not exist, we need two states
i and j such that rAi > 0, rBi ≤ 0, rAj ≤ 0, rBj > 0 such that if the Markov
process spends time in those states in a correct ratio, both At and Bt increase.
A geometrical intuition for these conditions is given in Figure 2.1. The following
theorem characterises these conditions, and shows that if Su can be reached, it
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Figure 2.1: This figure illustrates the conditions under which the process can hit the
set Su = (u,∞)× (u,∞). The arrows represent the direction the process is going when
Xt remains in some state for one time unit. The first possibility is that there is an
arrow in the upper-right quadrant, like the bold arrow. The other possibility is that
there are two arrows in the upper-left and lower-right quadrant respectively, of which
at least one is above the dashed line and the other makes an angle less than 180◦ with
the first one. An example for this possibility is given by the two non-bold arrows.
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can do so by using, indeed, only at most two of the states of the modulating
Markov process. Its (algebraic) proof is postponed to Appendix 2.5.

Theorem 2.3.1. The following three statements are equivalent:

1. The joint process can reach the set Su, in that P (∃t : At > u,Bt > u) > 0.

2. There exist i, j ∈ N (possibly i = j) and c, d ≥ 0 such that crAi + drAj > 0

and crBi + drBj > 0.

3. There exists ~c ∈ R|N |+ such that 〈~c, rA〉 > 0 and 〈~c, rB〉 > 0, where 〈·, ·〉
denotes the inner product.

In order to avoid trivialities, we also assume that both components have a
negative drift, i.e., 〈rA, π〉 < 0 and 〈rB , π〉 < 0, where π denotes the equilibrium
distribution of X.

It is not clear yet that this process satisfies the conditions of the Gärtner-
Ellis theorem. The following theorem, which is a generalisation of [52, page 5],
shows that it indeed does. Note also that condition (2.3) is satisfied trivially,
since (θ1An + θ2Bn)∗ − θ1An − θ2Bn is uniformly bounded in n. We can thus
apply Theorem 2.2.2 to this model.

Theorem 2.3.2. The value of M(θ1, θ2) is equal to the largest real eigenvalue
of the matrix

Q+ θ1R
A + θ2R

B ,

where RA and RB are diagonal matrices with the rate vectors rA and rB, re-
spectively, on their diagonals. Furthermore, M(·, ·) is differentiable.

Proof. We will first derive an expression for f(t) := E (exp(θ1At + θ2Bt)) =∑
i fi(t), where

fi(t) := E
(
eθ1At+θ2Bt1 (X(t) = i)

)
.

Relying on standard ‘Markovian reasoning’, as ∆ ↓ 0,

fi(t) =
∑
k 6=i

fk(t−∆)qki∆e
θ1r

A
ki∆eθ2r

B
ki∆+

fi(t−∆)(1− qi∆)eθ1r
A
i ∆eθ2r

B
i ∆ + o(∆).
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By writing exponentials as power series we straightforwardly obtain:

fi(t) =
∑
k 6=i

fk(t−∆)qki∆(1 + θ1r
A
ki∆)(1 + θ2r

B
ki∆)

+ fi(t−∆)(1− qi∆)(1 + θ1r
A
i ∆)(1 + θ2r

B
i ∆) + o(∆),

which simplifies to

fi(t) =
∑
k 6=i

fk(t−∆)qki∆ + fi(t−∆)(1− qi∆ + θ1r
A
i ∆ + θ2r

B
i ∆) + o(∆).

Rearranging and dividing by ∆ gives

fi(t)− fi(t−∆)

∆
=∑
k 6=i

fk(t−∆)qki + fi(t−∆)(−qi + θ1r
A
i + θ2r

B
i ) + o(1).

Now letting ∆ ↓ 0 and realising that qi := −qii =
∑
k 6=i qki,

f ′i(t) =
∑
k

fk(t)qki + fi(t)(θ1r
A
i + θ2r

B
i ),

which is in matrix-vector notation equivalent to f ′(t) = (QT+θ1R
A+θ2R

B)f(t).

This system of linear differential equations is solved by

f(t) = exp((QT + θ1R
A + θ2R

B)t) f(0).

Along the lines of [52, page 5], the first result now follows.
Note that exp(QT + θ1R

A + θ2R
B) has positive entries only. This can be

seen by choosing some a > 0 large enough such that Q+ θ1R
A + θ2R

B +aI ≥ 0

and hence

eQ+θ1R
A+θ2R

B

= eQ+θ1R
A+θ2R

B+aI−aI = e−aeQ+θ1R
A+θ2R

B+aI > 0.

The last strict inequality holds because Q is irreducible, and thus so is Q +

θ1R
A + θ2R

B + aI, and then according to [67, Lemma 1.3] some power of this
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matrix is positive. Note that each entry of exp(QT+θ1R
A+θ2R

B) can be written
as a power series in the variables θ1 and θ2, so each entry of exp(QT + θ1R

A +

θ2R
B) is infinitely many times differentiable with respect to these variables. It

thus follows from [8, Proposition 1] that M is differentiable.

2.3.2 Simulation: construction of an efficient method

As discussed in the introduction, we propose to use importance sampling in
order to efficiently estimate αu. In this section, we identify an appropriate new
measure Q, adopting an approach similar to that used in the one-dimensional
case, see e.g. [60]. There it is argued that the decay rate can be found by solv-
ing the eigensystem −θ∗RAx = Qx, i.e., by calculating the eigenvectors and
eigenvalues of (RA)−1Q, where the non-negative eigenvector that corresponds
to the largest negative eigenvalue, is used in the change of measure; such eigen-
vector/eigenvalue pair exists due to ‘Perron-Frobenius’. For the two-dimensional
model, where the analogous eigensystem is −(θ1R

a + θ2R
b)x = Qx, we can not

use this method anymore, since the left-hand side of the eigensystem can not
be inverted without knowing θ1 and θ2 beforehand. However, we can combine
Theorem 2.2.2 and Theorem 2.3.2 in order to find θ∗1 and θ∗2 numerically, by
using binary search on the value of θ1 + θ2. Once we have found θ∗1 and θ∗2 , we
can use the eigensystem to calculate the appropriate eigenvector.

Theorem 2.3.3. For all θ1, θ2 such that M(θ1, θ2) = 0, there exists x ∈ R|N |+

such that −(θ1R
A + θ2R

B)x = Qx.

Proof. Since the value of M(θ1, θ2) is equal to the largest real eigenvalue of
Q+ θ1R

A + θ2R
B , it follows from [67, Theorem 2.5(e) (p. 40, 41)] that

qi > θ1r
A
i + θ2r

B
i

for all i. We need this for the existence of specific moment generating functions
below. Let

xii := E
(

exp(θ1Ãii + θ2B̃ii)
)
,

where Ãii (B̃ii) denotes the net amount of fluid generated by At (Bt) between
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two consecutive visits of the Markov process to state i. Likewise, we let

xij := E
(
eθ1Âij+θ2B̂ij

)
,

i 6= j, where Âij (B̂ij) denotes the net amount of fluid generated by At (Bt)
between a visit of the Markov process to state i and the next visit to state j 6= i.
We can then write, by conditioning on the first state the Markov process visits,

xii ≡ xii(θ1, θ2) =
∑
j 6=i

λij
λi

λi
λi − θ1rAi − θ2rBi

xji.

Using the reasoning of [60], solutions of M(θ1, θ2) = 0 also solve xii(θ1, θ2) = 1.
Cancelling the qi and multiplying by the denominator of the right-hand side
gives us

(λi − θ1r
A
i − θ2r

B
i )xii =

∑
j 6=i

qijxji,

which is equivalent to

(−θ1r
A
i − θ2r

B
i )xii =

∑
j

qijxji.

In the same way we can also write, for j 6= i,

xji =
qji

qj − θ1rAj − θ2rBj
+

∑
d6=j,d 6=i

qjd
qj − θ1rAj − θ2rBj

xdi,

which can be rewritten as

(−θ1r
A
j − θ2r

B
j )xji = qji +

∑
d6=i

qjdxdi.

As we have that xii = 1, we obtain, for all i, j that

(−θ1r
A
j − θ2r

B
j )xji =

∑
d

qjdxdi.

For fixed i, this can be rewritten as −(θ1R
A + θ2R

B)xi = Qxi, with xi :=

(xji)j .
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The new measure Q under which we sample (Xt)t≥0 is then constructed
as follows. Let θ∗1 and θ∗2 be the optimising values resulting from Theorem
2.2.2, and let x be the corresponding eigenvector as given in Theorem 2.3.2.
We replace Q = (λij)i,j with Q̃ = (q̃ij)i,j , where q̃ij := qijxj/xi for i 6= j and
q̃i := −q̃ii = qi − rAi θ∗1 − rBi θ∗2 .

Our objective is to show that this is indeed a good change of measure, in
the sense that it is asymptotically optimal (see [64, Definition 1, p. 89, 90]). To
this end, let L be the likelihood ratio of a path generated under the change of
measure for which both At > u,Bt > u for some t > 0. Denote by Jm the state
of the Markov process after the m-th jump and let Tm denote the time spent
there. Furthermore, let

N := inf{n ∈ N : ∃t ≤ tn such that At > u and Bt > u},

i.e., N is the smallest number of jumps until there was some t such that both
components were bigger than u at time t. As pointed out in [64], the likelihood
ratio then reads

L =
πJ0

%J0

qJ0J1

q̃J0J1

· · ·
qJN−1JN

q̃JN−1JN

· qJN
q̃JN
· exp

(
−

N∑
m=0

(qJm − q̃Jm)Tm

)
, (2.11)

with % the invariant distribution of Xt under Q.
We first point out a ‘naïve’ implementation, which we denote by Q1. Start

with some initial stateX0, sampled according to %; say we draw j0. Then sample,
according to the corresponding exponential distribution (i.e., with parameter
q̃j0), some time t0 > 0 for which the Markov process remains in this state. We
can then update the likelihood and calculate At0 and Bt0 . If both are bigger
than u we stop; else we sample the next state, say j1, using the probabilities
q̃j0,k/q̃j0 for k 6= j0. We continue with this procedure until both AtN > u and
BtN > u.

There is a complication, however. With the above procedure we only check
at transition epochs of the modulating Markov process whether or not Su has
been reached. However, this poses a problem which does not occur in the one-
dimensional process: it could happen that at two consecutive transition epochs
the process did not reach the desired set, but at some time epoch in between
these jumps, it did. This scenario is illustrated in Figure 2.2. As a result, using
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Figure 2.2: The process hits the desired set, bounded by the dashed lines, between t1
and t2, but is not in the set at t1 or t2.

this procedure we do not estimate αu, but rather, with Un := T0 + . . . Tn,

ᾱu := P (∃n ∈ N : AUn > u,BUn > u) .

Clearly ᾱu < αu, creating a bias.
Whether or not the scenario of Figure 2.2 has occurred can, however, easily

be checked from subsequent pairs of the form (AtN−1
, BtN−1

) and (AtN , BtN ).
If this happens, we propose to replace the factor

qJN
q̃JN
· exp (−(qJN − q̃JN )TN ) (2.12)

in (2.11) by
exp (−(qJN − q̃JN )τ) , (2.13)

where τ is the length of the interval between tN−1 and the first time epoch
at which the process hit the desired set. The theorem below states that this
adapted version of the naïve implementation, denoted by Q2, estimates αu in
an unbiased and asymptotically optimal way.

Theorem 2.3.4. The implementation Q1 yields an unbiased, asymptotically op-
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timal estimate of ᾱu. The implementation Q2 yields an unbiased, asymptotically
optimal estimate of αu.

Proof. We start by proving the claim regarding Q1. Directly from the definition
of the new rates q̃ij and the stopping time TN ,

L =
πJ0

%J0

xJ0

xJN

qJN
q̃JN
· exp

(
−

N∑
m=0

(qJm − q̃Jm)Tm

)
=

=
πJ0

%J0

xJ0

xJN

qJN
q̃JN
· exp

(
−

N∑
m=0

(rAJmθ
∗
1 + rBJmθ

∗
2)Tm

)
≤ k · exp (−(θ∗1 + θ∗2)u)

with
k := max

i,j

πi
%i

xi
xj

qj
q̃j

;

observe that
N∑
m=0

rAJmTm > u,

N∑
m=0

rBJmTm > u.

From this upper bound on the likelihood it follows that

lim
u→∞

1

u
lnEQ1

(
L2
1 (∃n ∈ N : AUn > u,BUn > u)

)
≤

lim
u→∞

1

u
ln
[
k · e−2(θ∗1+θ∗2 )u

]
= −2(θ∗1 + θ∗2).

From this and Theorem 2.2.2, asymptotic optimality follows.
Regarding implementation Q2, observe that, because of the definition of τ ,

N−1∑
m=0

rAJmTm + rAJN τ > u,

N−1∑
m=0

rBJmTm + rBJN τ > u.

In this case

L =
πJ0

%J0

xJ0

xJN

qJN
q̃JN
· exp

(
−θ∗1

(
N−1∑
m=0

rAJmTm + rAJN τ

))
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· exp

(
−θ∗2

(
N−1∑
m=0

rBJmTm + rBJN τ)

))
≤ k · exp (−(θ∗1 + θ∗2)u) .

Asymptotic optimality follows as before. To show that Q2 indeed yields an
unbiased estimate of αu, we need to show that (2.12) and (2.13) have the same
expectation under Q2 whenever TN > τ . Note that

EQ2

(
e−(λJN−µJN )τ

1 (TN > τ)
)

= e−(λJN−µJN )τPQ (TN > τ)

= e−(λJN−µJN )τe−µJN τ = e−λJN τ ,

and

EQ2

(
λJN
µJN

· e−(λJN−µJN )TN1 (TN > τ)

)
=
λJN
µJN

EQ2

(
e−(λJN−µJN )TN |1 (TN > τ)

)
PQ2 (1 (TN > τ))

=
λJN
µJN

e−(λJN−µJN )τEQ2

(
e−(λJN−µJN )(TN−τ)|1 (TN > τ)

)
× PQ2

(1 (TN > τ))

=
λJN
µJN

e−(λJN−µJN )τEQ2

(
e−(λJN−µJN )TN

)
PQ2

(1 (TN > τ))

=
λJN
µJN

e−(λJN−µJN )τ µJN
µJN + (λJN − µJN )

e−µJN τ = e−λJN τ .

2.3.3 Numerical results

We now consider some numerical examples. For the first example, we consider
20 on-off processes feeding into a two-dimensional reservoir.

Each on-off process generates, while on, traffic at constant rate 3 (4) into
the first (second) reservoir. The first reservoir has a constant leak rate of 30.5,
where for the second reservoir this is equal to 47.5. Note that the reservoirs
have an equal net input when 17 of the sources are turned on. When a source
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is off, it will turn on at rate 2, while a working source turns off at rate 3. Since
all sources behave identically, it suffices to take as state space N = {0, . . . , 20},
where Xt = i means that at time t there are i sources turned on. The rate
matrix Q is then

Q =



0 1 2 3 4 · · · 18 19 20

0 −40 40

1 3 −41 38

2 6 −42 36

3 9 −43 34
...

. . .
19 57 −59 2

20 60 −60


,

and rA and rB are

rA =
(
−30.5 −27.5 −24.5 · · · 26.5 29.5

)
,

rB =
(
−47.5 −43.5 −39.5 · · · 28.5 32.5

)
.

The results can be found in Table 2.1.
The second example has the same structure as the first example. We now

consider 5 on-off sources. The first reservoir has a constant service rate of 8.5,
where for the second reservoir this is equal to 12.5. The other numbers are the
same as for the first example. Note that the reservoirs have an equal net input
when 4 of the sources are turned on. A key difference is that under the change
of measure, in this example both queues have the same drift, whereas in the
first example At has a higher drift than Bt. Informally this means that for the
second example the two processes reach level u roughly simultaneously, while for
the first example the joint process will hit the set Su when Bt does. The results
can be found in Table 2.2. In both examples, the number of runs needed when
using importance sampling is significantly lower than when ordinary Monte
Carlo sampling is used. Furthermore, when using Monte Carlo sampling, the
number of runs needed increases rapidly as a function of u, while there is only
a slight increase when using importance sampling.

In our next example the two processes are positively correlated. We let rA
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importance sampling Monte Carlo sampling
u α̂ α̂eθ

∗u # samples α̂ # samples
0.25 2.95E-02 3.79E-02 4884 2.78E-02 13457
0.50 1.76E-02 2.90E-02 5667 1.70E-02 22212
1.00 7.97E-03 2.18E-02 6846 8.22E-03 46369
1.50 4.94E-03 2.23E-02 10987 4.78E-03 80170
2.00 2.24E-03 1.66E-02 5113 - -
3.00 7.61E-04 1.55E-02 8244 - -
4.00 2.83E-04 1.57E-02 14962 - -
5.00 9.01E-05 1.36E-02 8493 - -
6.00 3.42E-05 1.42E-02 9893 - -
7.00 1.14E-05 1.28E-02 9886 - -
8.00 4.63E-06 1.43E-02 10354 - -
9.00 1.66E-06 1.39E-02 12600 - -
10.00 5.87E-07 1.35E-02 12777 - -

Table 2.1: Simulation results of the first example. We denote by α̂ the estimated
probabilities for both importance sampling and Monte Carlo sampling. Furthermore,
we denote by θ∗ the value of (2.7). This table also shows the number of samples needed
to get a 95% confidence interval with 10% precision. The missing values took more than
100000 samples in order to give the desired precision. In this case θ∗1 = 0, θ∗2 = 1.004.

and rB be

rA =
(
−8 −6 8 2

)
, rB =

(
−5 −9 3 9

)
.

We let Q contain only ones off the diagonal, so that all values on the diagonal
are −3. We want to focus on the quality of the importance sampling results,
so we did not do Monte Carlo sampling. The results can be found in Table 2.3.
It can be seen that the logarithmic result is very accurate as u grows large, as
the fraction of the logarithmic result and θ∗ tends to unity. However, from the
next column we can see that by using the logarithmic asymptotics we lose some
information, as the values in that column do not tend to a constant.

In the fourth example, we let the two processes be negatively correlated. We
let rA and rB be

rA =
(
−8 −6 8 2

)
, rB =

(
3 9 −5 −9

)
.
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importance sampling Monte Carlo sampling
u α̂ α̂eθ

∗u # samples α̂ # samples
0.25 1.37E-01 1.85E-01 685 1.38E-01 2407
0.50 9.91E-02 1.81E-01 794 1.03E-01 3339
1.00 4.85E-02 1.61E-01 770 4.88E-02 7507
1.50 2.49E-02 1.51E-01 825 2.69E-02 13908
2.00 1.45E-02 1.60E-01 1001 1.14E-02 33320
3.00 4.08E-03 1.50E-01 856 4.04E-03 94731
4.00 1.21E-03 1.47E-01 855 - -
5.00 3.51E-04 1.42E-01 723 - -
6.00 1.04E-04 1.40E-01 992 - -
7.00 3.30E-05 1.47E-01 1517 - -
8.00 1.02E-05 1.52E-01 932 - -
9.00 2.71E-06 1.34E-01 1035 - -
10.00 7.68E-07 1.26E-01 1075 - -

Table 2.2: Simulation results of the second example. We denote by α̂ the estimated
probabilities for both importance sampling and Monte Carlo sampling. Furthermore,
we denote by θ∗ the value of (2.7). This table also shows the number of samples
needed to get a 95% confidence interval with 10% precision. The missing values took
more than 100000 samples in order to give the desired precision. In this case θ∗1 =
0.128, θ∗2 = 1.072.

Note that rA is the same as in the third example and that rB is a permutation
of rB as in the third example. The results can be found in Table 2.4. It can
be seen that the hitting probability decreases much faster than in the previous
example. This can be explained by the fact that the Markov process in the
previous example just needs to spend enough time in one of the two up-states
for long enough, while in this example the process needs to visit two states long
enough, and also has to do this in a correct ratio. Note that in this example it
will happen frequently that the process will hit the set (u,∞) × (u,∞) in the
way as depicted in Figure 2.2.

2.4 Outlook

There are some natural extensions of the theory developed in Section 2.2 that
can be investigated, of which we briefly comment on two. The first one is
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importance sampling
u α̂ −1

uθ∗ ln(α̂) α̂eθ
∗u # samples

1 6.37E-01 4.748 7.00E-01 73
2 6.14E-01 2.572 7.42E-01 40
3 5.23E-01 2.273 6.96E-01 67
4 4.46E-01 2.125 6.52E-01 84
5 4.72E-01 1.580 7.59E-01 54
6 3.62E-01 1.784 6.40E-01 96
7 3.28E-01 1.677 6.37E-01 100
8 2.98E-01 1.592 6.38E-01 89
9 3.11E-01 1.366 7.31E-01 70
10 2.58E-01 1.428 6.66E-01 80
20 8.60E-02 1.291 5.75E-01 129
50 4.80E-03 1.124 5.54E-01 181
100 3.39E-05 1.084 4.52E-01 260
250 2.00E-11 1.038 4.09E-01 344

Table 2.3: Simulation results of the third example. We denote by α̂ the estimated
probabilities. Furthermore, we denote by θ∗ the value of (2.7). This table also shows
the number of samples needed to get a 95% confidence interval with 10% precision. In
this case θ∗1 = 0.094, θ∗2 = 0.001.

whether the two-dimensional theory can be extended to arbitrary higher di-
mensions. At the expense of introducing additional notation and loss of trans-
parency, Theorem 2.2.2 can indeed be extended to a multi-dimensional result.
For proving (2.5), the proof of the lower bound holds true trivially in mul-
tiple dimensions. In proving the upper bound, instead of using a single weight
w ∈ [0, 1], one has to consider non-negative weights w1, w2, . . . , wd that add up
to unity. The proof of (2.7) does not use any specific two-dimensional argument,
so is also valid for multiple dimensions.

The second extension considers a bivariate process for which the two com-
ponents have to be larger than u but can do so at different times. Of course,
this probability is greater than the probability of the event which is considered
in this chapter. A significant difference also occurs in simulating, because the
simulation can now be split in two parts. First, one simulates under a change-
of-measure until one of the components has hit level u. After this has occurred,
one can use a different change of measure until the other component hits level



A multi-dimensional ruin problem 43

importance sampling
u α̂ −1

uθ∗ ln(α̂) α̂eθ
∗u # samples

1 1.34E-01 3.002 2.62E-01 657
2 6.05E-02 2.098 2.30E-01 766
3 2.95E-02 1.757 2.19E-01 1179
4 1.32E-02 1.619 1.91E-01 1180
5 6.60E-03 1.502 1.87E-01 1531
6 3.26E-03 1.428 1.80E-01 1881
7 1.59E-03 1.377 1.72E-01 1858
8 7.60E-04 1.343 1.60E-01 5005
9 3.84E-04 1.307 1.58E-01 3319
10 1.79E-04 1.291 1.43E-01 4241
20 1.77E-07 1.163 1.13E-01 8366
50 2.16E-16 1.079 7.10E-02 6000
100 5.11E-31 1.043 5.54E-02 26001
250 8.85E-75 1.020 3.43E-02 22857

Table 2.4: Simulation results of the fourth example. We denote by α̂ the estimated
probabilities. Furthermore, we denote by θ∗ the value of (2.7). This table also shows
the number of samples needed to get a 95% confidence interval with 10% precision. In
this case θ∗1 = 0.344, θ∗2 = 0.325.

u; under this different change of measure, the first component to have hit level
u may now also have a negative drift, since it has already hit level u. This
extension is the topic of Chapter 3.

2.5 Proof of Theorem 2.3.1

Proof. This is shown by proving a number of implications.
◦ “2 ⇒ 1”: Suppose there exist i, j ∈ N (possibly i = j) and c, d ≥ 0 such that
crAi + drAj > 0 and crBi + drBj > 0. Assume without loss of generality that a
direct jump of the Markov process from state i to state j is possible. We may do
this, because if this jump is not possible, we can jump from state i to state j in
arbitrarily small time (because we assumed the Markov process is irreducible).
Although this may have a very small probability, of importance is only that it
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has a positive probability. Let

T :=
(c+ d)u

crAi + drAj
∨ (c+ d)u

crBi + drBj
.

If Xt = i for 0 ≤ t < c
c+dT and Xt = j for c

c+dT ≤ t ≤ T , then

AT =
1

c+ d
(crAi + drAj )T ≥ u;

BT =
1

c+ d
(crBi + drBj )T ≥ u.

◦ “3 ⇒ 2”: This follows from Carathéodory’s theorem for convex cones, see
[37, Theorem 2.4], but we give a direct proof below. Define the sets pp,pm,mp
and mm (p stands for plus and m for minus) as follows: pp := {k ∈ N : rAk >

0, rBk > 0}, pm := {k ∈ N : rAk > 0, rBk < 0}, etc. If there exists k ∈ pp, then
we are done (choose i = j = k and c = d = 1). Assume now without loss of
generality that each k ∈ N is either in pm or mp. We can do this, because we
can change the entries of ~c belonging to states in mm to zero, which makes both
inner products even larger. Note now that neither pm nor mp are empty. We
let

i := arg max
k∈pm

rAk
−rBk

, j := arg max
k∈mp

rBk
−rAk

,

i.e., i and j are the states which are the “closest” to the first quadrant in a
geometrical sense. We now want to shift “mass” from the entries of ~c to ci and
cj in such a way that both inner products do not decrease. A correct way of
doing that is by constructing c, d as follows:

c := ci +
∑

k∈pm,k 6=i

ck
rBk
rBi
, d := cj +

∑
k∈mp,k 6=j

ck
rAk
rAj
.

In this way, the negative contributions stay the same, while the positive con-
tributions do not decrease. We have thus found i, j ∈ N and c, d ≥ 0 with the
desired requirements.
◦ “1 ⇒ 3”: Suppose we have a sample path such that At > u,Bt > u for some
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t. We can then write

At =

∫ t

0

rAXs ds =

|N |∑
i=1

cir
A
i , Bt =

∫ t

0

rBXs ds =

|N |∑
i=1

cir
B
i ,

for some ci ≥ 0. Choose ~c = (c1, c2, . . . , c|N |).
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3
Large delay probabilities in two correlated

queues

Whereas in Chapter 2 we analyse the event of the components of a bivari-
ate process exceeding a high threshold simultaneously, this chapter focuses on
the variant where the high threshold can be exceeded at different times. This
chapter is based on [22].

3.1 Introduction

Model Consider a two-dimensional random walk ((As, Bs))s∈N with i.i.d. in-
crements and with the partial sum processes denoted by

As :=

s∑
i=1

Xi, Bs :=

s∑
i=1

Yi.

The focus is on the probability π(u) := P (∃s ∈ N : As ≥ u,∃t ∈ N : Bt ≥ u),
i.e., the probability of the event that both components will ever exceed some
large level u, but not necessarily at the same time. We allow that Xi and Yi
are dependent; note that if they were independent, the probability of interest
would simply be the product of the marginal probabilities. An exact analysis
of π(u), however, seems possible only in special cases. In all of them, the model

47
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is such that the components are ordered: As ≤ Bs for all s, which implies that
the epochs that the two components achieve their respective maximum values
are almost surely ordered. These special cases cover tandem systems of M/D/1

queues [59] and a tandem Brownian queue [58]. In both models, let Ds denote
the amount of work that has arrived up to time s and let c1 and c2 denote
the constant service rate of the upstream and downstream queue respectively
(assume that c1 > c2). The stationary workloads of the upstream and the sum
of the upstream and downstream queues are then respectively distributed as the
supremum of As = Ds− c1s and the supremum of Bs = Ds− c2s. In the above-
mentioned papers the analysis relies on the availability of the distribution of
the maximum over a finite interval, given that we know the position at the end
of the interval (in the Brownian case this is a Brownian bridge, in the M/D/1

case it can be dealt with using ballot theorems); the fact that such results are
not generally available complicates the extension to more general models.

In the transform domain, results for the joint distribution of sups∈NAs and
sups∈NBs have been established under more general conditions, but still an
‘ordering property’ of the type mentioned above needs to be imposed; see for
instance [50, 48, 29]. Having expressions for such multivariate transforms, one
still needs to perform numerical inversion to obtain numerical output, which
tends to be challenging in the tail of the multivariate distribution. Therefore,
we resort in this chapter to large deviations and to rare-event simulation. We
consider the rare-event regime in which both E (Xi) < 0 and E (Yi) < 0.

This model has several applications. First, it can model two correlated
queues. A queue is essentially a stochastic process reflected at zero. Consider
now two queues fed by the (possibly correlated) input processes As and Bs.
Then their stationary versions obey the distributional equalities, see e.g. [39,
Section 1.1],

Q1
d
= sup

s
A−s, Q2

d
= sup

s
B−s,

which follow as a direct application from Lindley’s recursion. The steady-state
probability of both queues having more than an amount u of work is therefore
equal to

P (Q1 > u,Q2 > u) = P (∃s : A−s > u,∃t : B−t > u) ,

which is, after reversing time, precisely the probability of our interest. Another
application is in risk management, where we can use the model to study rare
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events in the context of two correlated portfolios; see e.g. [6] and references
therein.

Literature There is a substantial literature on efficient estimation of rare-
event probabilities for queueing systems, see e.g. the surveys [45], [47], and [12].
We here provide an account of this literature (without aiming at being exhaust-
ive), focusing on multivariate rare events. In addition, we briefly comment on
how these results relate to ours.

Over the past decades, different techniques have been developed, the most
prominent being importance sampling (based on a change of measure) and split-
ting; our present study falls in the former category. Building on the ideas of e.g.
[69], [65] focuses on estimating overflow-related quantities in a stable GI/GI/m
queue using importance sampling. Later attention shifted to more sophisticated
queueing systems. In [28] it is assessed to what extent state-independent change
of measures can lead to asymptotically efficient performance in two-node tandem
Jackson networks. The probability of interest in that paper is of an overflow
event in a two-node tandem Jackson network, whereas we focus on the two
components of a two-dimensional random walk both ever reaching a high level.
In [33], where the focus is on two-node tandem Jackson networks too, the au-
thors consider, contrary to this chapter, state-dependent changes of measure. A
generalisation to arbitrary Jackson networks is treated in [34]. In both papers,
the so-called subsolution method is used, which is also briefly discussed in this
chapter. Improved results are given in [9], where the author focuses on optimal
simulation algorithms for overflow probabilities during a busy period. Instead
of using exponential twisting forward in time, the author proposes a method
that goes backwards in time.

This chapter is a logical continuation of our previous work, see the previous
chapter or [21]. In that chapter, we study a similar model but there the event
of interest corresponds to both components exceeding a large level at the same
time (whereas in the current chapter these epochs can be different).

Decay rate The first result of this chapter is Theorem 3.3.1, which provides
an expression for the decay rate

lim
u→∞

1

u
lnπ(u).
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The proof of this result uses two important theorems in large deviations theory,
namely Cramér’s theorem and Mogulskii’s theorem. In the proof, the lower
bound is attained by conditioning where the “slower” component (i.e. the com-
ponent that hits level u second) of the process is when the “fast” component
hits level u for the first time. For the upper bound, we first show that the decay
rate can be bounded by the decay rate of the probability of the event of interest
occurring on a bounded time-interval. We then use this bounded interval to ap-
ply Mogulskii’s theorem. Then we apply a “linear geodesics” type of argument
to show that the obtained rate function over general sample paths is the same
as over some set of piecewise linear sample paths.

Importance sampling and challenges The second result of this chapter
is the construction of an efficient simulation method in order to estimate π(u).
Since Monte Carlo simulation is slow due to the rarity of the event of interest
when u gets large, we resort to importance sampling (IS). Importance sampling
is a method to simulate stochastic systems using a different underlying prob-
ability measure, such that the (rare) event of interest is not rare anymore;
the simulation output is weighted by appropriate likelihood ratios to recover
unbiasedness. Each probability measure leads to a particular variance perform-
ance, and it is therefore crucial to identify the one that is, according to some
specific definition, optimal. There exist various performance metrics; the metric
we use is called asymptotic optimality. We refer to Section 3.4 for the definition.
For our IS procedure, we first propose a “naive” change of measure based on the
decay rate given in Theorem 3.3.1. We will show, however, that this approach
does not necessarily perform well. More specifically, we show that using this
new measure for a “nearest-neighbour random walk” results in a procedure that
is not asymptotically optimal. The underlying problem with this procedure is
that at the moment when the “fast” component of the process hits level u, we
don’t have any control over the position of the “slow” component.

Partitioned IS In order to solve this problem, we introduce partitioned im-
portance sampling. This approach is based on conditioning where the “slow”
component of the process has to be when the “fast” component hits level u for
the first time. More specifically, we partition the event of interest into disjoint
events and perform simulations to estimate the probabilities corresponding to
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those events. For more details we refer to Section 3.5. We show that this ap-
proach is indeed asymptotically optimal. It is pointed out how the method’s in-
herent bias, arising from the need to truncate the infinite sum obtained through
this method, can be made arbitrarily small.

Numerical results The results above are illustrated through various numer-
ical experiments. In order to carry out the simulations, we chose a specific
instance of the model, namely a model in which the increments (Xi, Yi) have
a bivariate normal distribution. We investigate how the performance of the
three simulation methods described above (i.e., Monte Carlo, naive IS and par-
titioned IS) depend on various factors, e.g., the level u, the covariance of the
two components and the number of partitions used in partitioned importance
sampling.

Organisation of this chapter The rest of this chapter is organised as follows.
Section 3.2 gives a detailed description of the model and a brief overview of
large-deviations theory. In Section 3.3 we state the first main result of this
chapter, namely an expression for the decay rate of the probability of the event
of interest. In Section 3.4 we give a first naive importance sampling-based
simulation scheme and we show that this method is not asymptotically optimal.
This is remedied in Section 3.5, where we introduce partitioned importance
sampling. Moreover, we show that this new approach is indeed asymptotically
optimal. These findings are illustrated in Section 3.6, where we give numerical
results of various simulation experiments. The proof of the result in Section 3.3
is given in Section 3.7.

3.2 Model description and preliminaries

3.2.1 The model

Consider the bivariate random walk ((As, Bs))s∈N where the partial sum process
is denoted by, for s ∈ N,

As :=

s∑
i=1

Xi, Bs :=

s∑
i=1

Yi,
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with (Xi, Yi) i.i.d. bivariate random vectors (whose components are not neces-
sarily independent). We also introduce the events

As(u) ≡ As := {As ≥ u}, Bs(u) ≡ Bs := {Bs ≥ u}.

The main object of study of this chapter is the probability π(u) that both A

and B exceed some (large) threshold u, but not necessarily at the same time:

π(u) := P (∃s ∈ N : As ≥ u,∃t ∈ N : Bt ≥ u) = P

(( ∞⋃
s=1

As

)
∩

( ∞⋃
t=1

Bt

))
.

It is assumed throughout that both E (X1) and E (Y1) are negative, such that
π(u) is a rare-event probability, for u large.

Since an exact analysis of this probability seems not possible in general, we
will look at the so-called decay rate of this probability:

lim
u→∞

1

u
lnπ(u). (3.1)

Our main result, which is an expression for the decay rate and which is
stated in the next section, depends on both Cramér’s and Mogulskii’s theorem.
Before we state Cramér’s theorem below, a quick recap of some large deviation
theory is first given. We follow the setup of [39].

3.2.2 Preliminaries from large deviations

We define the limiting cumulant generating function of ((As, Bs))s≥0 as

ln Λ(θ, η) := lim
s→∞

1

s
lnE

(
eθAs+ηBs

)
= lnE

(
eθX+ηY

)
. (3.2)

A function I : R2 → R∗ (where R∗ := R ∪ {∞}) is a rate function if it is non-
negative and if it is lower semi-continuous, i.e., all level sets are closed (level sets
of some function f are sets of the form {x : f(x) ≤ α}, α ∈ R). Furthermore,
it is called a good rate function if in addition all level sets are compact. We say
that ((As, Bs))s≥0 satisfies a large deviations principle in R2 with rate function
I : R2 → R∗ if for any measurable set F ⊆ R2
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− inf
x∈F◦

I(x) ≤ lim inf
s→∞

1

s
lnP ((As, Bs) ∈ F ) ≤

lim sup
s→∞

1

s
lnP ((As, Bs) ∈ F ) ≤ − inf

x∈F c
I(x),

where F ◦ and F c denote the interior and closure of F respectively. For any
function f : Rd → R∗, we denote its convex conjugate by f?(x) := supθ〈θ, x〉 −
f(θ).

3.3 Large deviations result

This section presents the first main result of this chapter, namely Theorem 3.3.1,
which provides an expression for the decay rate (3.1). This result is based on
both Cramér’s theorem and Mogulskii’s theorem. It requires the definition of
joint (bivariate, that is) moment generating functions and Legendre transforms.
Recall that

Λ(θ, η) = E
(
eθX+ηY

)
;

we define its univariate counterparts through

Λ1(ζ) := Λ(ζ, 0), Λ2(ζ) := Λ(0, ζ),

which we assume to satisfy the condition of Mogulskii’s theorem, i.e., we assume
(3.2) to be finite everywhere. In addition, the bivariate Legendre transform is
given through

I(x, y) := sup
θ,η

(θx+ ηy − ln Λ(θ, η)) ,

and its univariate counterparts through

I1(x) := sup
ζ

(ζx− ln Λ1(ζ)) , I2(x) := sup
ζ

(ζx− ln Λ2(ζ)) .

Define, for i = 1, 2,

αi := inf
z>0

Ii(z)

z
. (3.3)

The main result of this section gives an expression for the decay rate (3.1) in
terms of a variational problem.
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Theorem 3.3.1. If (3.2) exists and is finite everywhere, then

lim
u→∞

1

u
lnπ(u)

= −min

{
inf

x>0,y≤x

(
I(x, y)

x
+
(

1− y

x

)
α2

)
,

inf
y>0,x<y

(
I(x, y)

y
+

(
1− x

y

)
α1

)}
.

(3.4)

Proof. Due to the complexity and length, the proof is postponed to Section 3.7.
Instead, we will give a short summary of the main ideas here.

We will prove this as a lower and an upper bound. For the lower bound, we
first look at specific times s and t such that As ≥ u and Bt ≥ u. We condition
on where the slower process is, call this position y, when the faster process hits
level u. We then first use Cramér’s theorem and subsequently optimise over
the position y. Taking the supremum over s and t then gives us, after some
rewriting, the correct decay rate. For the upper bound, we use the union bound
to again condition where the slow process is when the fast process hits level
u. We then argue that we only need to look at the probability of the event
occurring in a bounded time interval. This allows us to use Mogulskii’s theorem
to arrive at the claimed expression.

In the next section, we will focus on estimating π(u) numerically for u large.
In that section, we propose an implementation of importance sampling which is
based on the ideas behind the decay rate presented in Theorem 3.3.1. We will
show, however, that this method, although natural, is not necessarily asymp-
totically efficient.

3.4 Importance sampling and efficiency

In this and the next sections, we focus on estimating π(u) numerically. We
will show that a naive importance sampling procedure, based on the decay rate
given by Theorem 3.3.1, is not asymptotically optimal in general; recall that a
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simulation procedure is called asymptotically optimal if, in self-evident notation,

lim
u→∞

lnEQ,u
(
L2I

)
lnEQ,u (LI)

= 2, (3.5)

where Q is the new measure and L is the likelihood ratio, or Radon-Nikodym
derivative, between P and Q, i.e., L = δP

δQ . We refer to e.g. [12, Definition 1]
for background information on this optimality concept, or [57] for an in-depth
account of various performance metrics. Note that by Jensen’s inequality, the
limit in (3.5) is always smaller than or equal to 2, so it is left to prove that it is
larger than or equal to 2. We say that we exponentially twist a random variable
X, having density fP(·), with parameter θ if under Q, the density of X equals
(in self-evident notation) fQ(x) = fP(x)eθx/EP

(
eθX

)
.

As an instance of the model, we will consider a “nearest-neighbour random
walk”. More specifically, we let

(Xi, Yi) =


(1, 0) w.p. p1;

(1, 1) w.p. p2;

(−1,−1) w.p. p3;

(−1, 1) w.p. p4.

(3.6)

We will assume that the probabilities add up to unity.
The naive importance sampling procedure, which will yield the change of

measure Q, is as follows. Each simulation run consists of (up to) two sequential
exponential twists; the first twist is used to bring one of the components up
to level u, whereas the second twist (if still necessary) is used to bring the
other (slower) component up to level u. Denote by θ? and η? the optimising
parameters of I(·, ·) in (3.4). We first exponentially twist the joint process with
parameter (θ?, η?) until one of the components hits level u. If process A (B) hits
level u first, then we exponentially twist process B (A) with parameter ζ?, which
is defined as the optimising parameter of I2(·) (I1(·)), until this component hits
level u. The following will be used in the proofs op Property 3.4.2 and Theorem
3.5.1: Let S ≡ S(u) be the first passage time of level u for process A, i.e.,
S := inf{s : As ≥ u}. Furthermore, let T be the analogous counterpart for
process B.



56 3.4. Importance sampling and efficiency

This procedure follows naturally from Theorem 3.3.1 as it tries to mimic the
most likely path given in the theorem: first twist both processes until the fastest
reaches level u and then twist the slower process.

Property 3.4.1. For any x and y in the infimum of Theorem 3.3.1 (even the
non-optimal values), if we perform the exponential twist as described above using
the optimal θ?, η? corresponding to these x and y, then

EQ (Xi) = x, EQ (Yi) = y.

Proof. We only prove this for EQ (Xi), since EQ (Yi) can be dealt with analog-
ously. In the supremum of I, the first-order conditions are

x− ∂ln Λ(θ, η)

∂θ
= x−

∂Λ(θ,η)
∂θ

Λ(θ, η)
= 0, y − ∂ln Λ(θ, η)

∂η
= y −

∂Λ(θ,η)
∂η

Λ(θ, η)
= 0.

Note now that by twisting, we have

EQ (Xi) =

∫
zeθ

?zf(z) dz∫
eθ?zf(z) dz

=
∂Λ(θ,η)
∂θ

Λ(θ, η)
= x,

where the first equality comes from the definition of an exponential twist, the
second equality comes from the definition of the moment generating function
and the final identity comes from the display above.

Under any exponential twist, the model will be as follows:

(Xi, Yi) =


(1, 0) w.p. p̃1;

(1, 1) w.p. p̃2;

(−1,−1) w.p. p̃3;

(−1, 1) w.p. p̃4.

(3.7)

Property 3.4.2. The naive importance sampling procedure (using probability
measure Q) as described above is not asymptotically optimal.

Proof. Without loss of generality assume that A hits level u first. In the case
that B hits level u first, the proof is analogous. The proof indicates that the
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spread in the vertical direction, i.e., the position of BS , at time S causes the
procedure to be not asymptotically optimal. Observe that we can write

BS(u) =

u∑
i=1

Vi,

where the Vi are i.i.d. and Vi
d
= V corresponding to the vertical position at the

moment the horizontal position (i.e., corresponding to A) attains the value 1

for the first time. Hence,

E
(
zBS(u)

)
= (E

(
zV
)
)u = φ(z)u,

where the right-hand side can be seen as the u’th power of some probability
generating function. From this it follows that, for all θ > 0,

lim
u→∞

1

u
lnE

(
eθBS(u)

)
= lnE

(
eθV
)

= θE (V ) +G(θ), (3.8)

with G(θ) := lnE
(
eθ(V−E(V ))

)
such that G(0) = G′(0) = 0 and G(·) is strictly

convex.
Note that the likelihood ratio can be written as

L(u) = Λ(θ?, η?) exp (−θ?AS − η?BS) · Λ(0, ζ?) exp (−ζ?(BT −BS)) .

It is an elementary exercise to verify that Λ(θ?, η?) = Λ(0, ζ?) = 1 (which can
be checked e.g. by working out the first order conditions). Moreover, in this
model we know that AS = BT = u. Hence, the likelihood ratio reads

L(u) = exp (−θ?u− η?BS) · exp (−ζ?(u−BS)) .

From this, we obtain,

lim
u→∞

1

u
lnEQ,u (LI) = −(θ? + ζ?) + lim

u→∞

1

u
lnEQ,u (exp(−(η? − ζ?)BS)) ,

and in the same way, we get for the second moment that

lim
u→∞

1

u
lnEQ,u

(
L2I

)
= −2(θ? + ζ?) + lim

u→∞

1

u
lnEQ,u (exp(−2(η? − ζ?)BS)) .
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From the above properties of G(·), it follows that G(2θ) > 2G(θ) for all
θ 6= 0. From this, it follows that

lnEQ,u

(
e−2(η?−ζ?)(V−E(V ))

)
> 2 lnEQ,u

(
e−(η?−ζ?)(V−E(V ))

)
,

or equivalently

− 2(θ? + ζ?) + lim
u→∞

1

u
lnEQ,u (exp(−2(η? − ζ?)BS))

>− 2(θ? + ζ?) + 2 lim
u→∞

1

u
lnEQ,u (exp(−(η? − ζ?)BS)) .

This reduces to

lim
u→∞

1

u
lnEQ,u

(
L2I

)
> 2 lim

u→∞

1

u
lnEQ,u (LI) ,

which indeed proves that the procedure is not asymptotically optimal.

The proof above indicates that the naive importance sampling procedure
cannot be guaranteed to be asymptotically efficient because of the spread in the
position of the slower component when the faster component hits level u for the
first time. In particular, there is no lower bound for this position. In the next
section, we try to overcome this complication by introducing a method called
“partitioned importance sampling”. This is a method that possesses the desired
control over the position of the slower process.

3.5 Partitioned importance sampling

In the previous section we have seen that ordinary importance sampling does
not yield an asymptotically optimal procedure in general. In this section, we
give a procedure that is asymptotically optimal, namely partitioned importance
sampling. The method’s inherent bias can be made arbitrarily small.

The procedure consists of intersecting the set of interest by a partitioning
in terms of the value of BS . More concretely, we consider a decomposition into
probabilities of disjoint events. First, let

π1(u) := P (∃s, t ∈ N, s ≤ t : ∀r < s : As ≥ u,Br < u,Bt ≥ u) ,
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π2(u) := P (∃s, t ∈ N, s > t : ∀r ≤ t : Bt ≥ u,Ar < u,As ≥ u) ,

i.e., π1(u) is the probability that A hits level u before B, and π2(u) is its
analogous counterpart. Note that π(u) = π1(u) + π2(u). It is sufficient to show
how π1(u) can be estimated efficiently, since the method for estimating π2(u)

can be set up analogously. The decomposition we consider is:

π1(u) =

∞∑
k=−∞

π1,k(u),

where the probabilities π1,k(u) are defined by

π1,k(u) := P (∃s, t ∈ N, t ≥ s : ∀r < s : As ≥ u,Br < u,Bt ≥ u,Bs ∈ sk) ,

with sk := [kf(u), (k + 1)f(u)), where f(·) is a positive function (on which we
impose some conditions below). We let m ≡ m(u),M ≡ M(u) be a suitably
chosen truncation, possibly dependent on u, and hence we estimate

π
(app)
1 (u) :=

M∑
k=m

π1,k(u);

clearly, by choosing m sufficiently small and M sufficiently large the error made
is negligible. We furthermore, in order to guarantee asymptotic optimality, need
to impose that M(u)−m(u) grows subexponentially as a function of u, i.e., we
require that limu→∞

1
u ln(M(u)−m(u)) = 0. We also require that kf(u)/u ≤ 1

for each k ∈ {m(u), . . . ,M(u)}, and impose the related property that f(u)

grows sublinearly in u, for reasons that will become clear soon. In our simulation
procedure we perform a separate simulation run for each k ∈ {m(u), . . . ,M(u)},
as follows.

We start by solving, for each k ∈ {m, . . . ,M}, using definition (3.3),

Jk(u) = inf
x

I(x, x k f(u)
u )

x
+

(
1− kf(u)

u

)+

α2; (3.9)

bear in mind that if f(u) had been allowed to grow superlinearly, the second
term would be identical 0 eventually (for positive k). Denote the optimisers by
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θ?k and η?k (from the definition of I(·, ·)) and ζ ≡ ζ?k (from the definition of I2(·);
use (3.3), and conclude that this twist does not depend on k). Observe that the
first element in the minimum of (3.4) can now be majorised as follows: (3.9),
and in particular

J (1) := inf
x>0,y≤x

(
I(x, y)

x
+
(

1− y

x

)
α2

)
≤ lim
u→∞

inf
k
Jk(u);

the reason for the inequality is that in the left hand side the minimum is taken
over a larger set than in the right hand side. In our refined algorithm, when
estimating π1,k(u), we first twist the (Xs, Ys) by (θ?k, η

?
k) until A exceeds u, and

from that point on twist the (Ys) by ζ? until B exceeds u (if needed). The
simulation output of a single run is LkIk, with Lk ≡ Lk(u) again the likelihood
ratio, and the indicator function Ik ≡ Ik(u) which equals 1 iff the path is such
that both A and B exceed u, but now in addition that (i) A is required to
exceed u before B does (or simultaneously), and (ii) when A exceeds u, B is in
the interval sk; it is this latter requirement that gives us control on the variance
of the estimator, as will turn out below.

Theorem 3.5.1. The simulation procedure described above is asymptotically
optimal.

Proof. Observe that the likelihood reads

Lk(u) = (Λ(θ?k, η
?
k))

S
exp (−θ?kAS − η?kBS) · (Λ(0, ζ?k))

T−S
exp (−ζ?(BT −BS)) .

As in the proof of Property 3.4.2, we have Λ(θ?k, η
?
k) = Λ(0, ζ?) = 1, so that we

can simplify Lk(u) to

Lk(u) = exp (−θ?kAS − η?kBS) · exp (−ζ?(BT −BS)) .

Now note that, on the event that Ik(u) = 1, it holds that (i) AS ≥ u, (ii) BS ∈
sk, and (iii) BT −BS ≥ (1− (k + 1) f(u)/u) · u ≥ 0. Therefore, uniformly in u,
using the definition of Jk(u) and Λ(θ?k, η

?
k) = Λ(0, ζ?) = 1,

1

u
lnLk(u)Ik(u) ≤ −θ?k −min

{
η?k k

f(u)

u
, η?k (k + 1)

f(u)

u

}
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− ζ?
(

1− kf(u)

u

)+

+ ζ?
f(u)

u

≤ −θ?k − η?k k
f(u)

u
− ζ?

(
1− kf(u)

u

)+

+ ζ?
f(u)

u

= −Jk(u) + ζ?
f(u)

u
;

the final equality in the above display can be seen by observing that

α2 = inf
z>0

Ii(z)

z
= inf
z>0

supζ ζz − ln Λ2(ζ)

z
=
ζ?z? − ln Λ2(ζ?)

z?
=
ζ?z? − 0

z?
= ζ?

and similarly for the first term.
We estimate our probability by evaluating sample averages of independent

random variables that are distributed as

Zm,M (u) :=

M∑
k=m

Lk(u)Ik(u),

with m,M a suitably chosen truncation. Note that Zm,M (u) is bounded from
above by

Zm,M (u) ≤ (M −m+ 1) exp

(
− min
k∈{m,...,M}

Jk(u)u+ ζ?f(u)

)
.

We thus see that, using thatM−m grows subexponentially and using that f(u)

is sublinear,

lim sup
u→∞

1

u
lnE

(
(Zm,M (u))2

)
≤ −2J (1) = 2 lim

u→∞

1

u
lnπ1(u),

so the procedure is asymptotically optimal.

3.6 Numerical results

In this section, we show and discuss several numerical experiments. Throughout
this section, we use a specific instance of the general model as described in
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Section 3.2, which, in particular, satisfies the conditions of Theorem 3.3.1.

3.6.1 The model

In the examples considered we assume that the (Xi, Yi) are i.i.d. vectors with a
bivariate normal distribution with mean vector and covariance matrix given by

µ =

(
µ1

µ2

)
, Σ =

(
(σ1)2 ρ

ρ (σ2)2

)
,

respectively. One of the reasons that we chose this model is the following nice
property.

Property 3.6.1. If we exponentially twist (Xi, Yi) with parameter (θ1, θ2), the
twisted process again has a bivariate normal distribution with mean vector

µ̃ =

(
µ1 + θ1(σ1)2 + θ2ρ

µ2 + θ1ρ+ θ2(σ2)2

)
and covariance matrix Σ̃ = Σ.

Proof. This follows from elementary calculations.

Below we perform a number of different experiments, in which we test the
influence of various parameters on the performance of the simulations. The
simulations were carried out in R. Anytime in this section we refer to (non-
partitioned) importance sampling (IS), naive importance sampling is meant.
Unless otherwise stated, in all numerical experiments, we ran simulations until
a 95% confidence interval with 10% precision was obtained. We tested both
the number of runs and the running time (CPU time) required to obtain the
confidence interval. In most cases, the CPU time shows the same quantitative
behaviour as the number of runs. Therefore, the CPU times are only shown in
Section 3.6.4, where this is not the case.

Remark. As already stated before, the truncation used in partitioned import-
ance sampling inherently produces a biased estimator. It is, however, possible
to obtain an estimator with vanishing relative bias as u→∞. This can be ac-
complished by choosing the lower bound m(u)f(u) and upper bound M(u)f(u)
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such that the expected value of the slower process, at the moment the faster
process hits level u, is in between these bounds. This expected value can be
numerically determined by combining Theorem 3.3.1 and Property 3.4.1. We
indeed chose m, M and f such that in the experiments in Figures 3.1, 3.2 and
3.3 we have vanishing relative bias.

Remark. There exist more methods of sampling than naive and partitioned
importance sampling. One method makes use of a so-called subsolution method,
see e.g. [34]. We implemented such a state-dependent importance sampling
scheme, in the following way. In Example 3 of [10, pp. 47–48] it is explained
how to set up a subsolution-based scheme for estimating the probability that at
least one of the components reaches a rare set. The procedure is then:

• In each simulation run, we used this scheme until one of the components
exceeds level u;

• subsequently, we use a single exponential twist for the remainder of the
run (with the relevant αi, as given in (3.3)), until the other component
has exceeded level u as well.

We compared this method with the partitioned importance sampling method
proposed in this chapter. We tested both procedures extensively, both in terms
of the number of runs and the CPU time. In the simulations we performed,
we observed that the partitioned IS method performs better. We suspect that
this may be due to the same problem as in the naïve IS scheme, namely the
random fluctuations of the ‘second component’ (for instance, the fluctuations of
the vertical component at the epoch that the horizontal component first exceeds
u) — the way we set up the subsolution-based scheme the fluctuations of the
second component are apparently not sufficiently controlled (as in the first part
of the run the focus is only on the event that one of the two components exceeds
u).

Clearly, the partitioned importance sampling will become less attractive
when considering problems of higher dimensions. Considering the counterpart
of our problem but then in dimensions higher than 2, one could again come
up with a partitioning such that Zk(u) can be written as sum (over all k) of
Lk(u)Ik(u), but the number of k to be included will increase (which will slow
down the simulation). It is therefore anticipated that in higher dimensions
subsolution-based schemes will become advantageous.
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3.6.2 Variable level

In this section we look at how the level to reach u influences both the probability
π(u) and the number of simulations needed. We ran two different experiments
of which the results can be found in Figures 3.1 and 3.2. The experiments
differ in the sign of the covariance that was used; we refer to the respective
caption for specific details. The results below clearly show that Monte Carlo
sampling is much slower than both importance sampling and partitioned im-
portance sampling. Furthermore, when comparing Figure 3.1 and 3.2 we see
that a negative correlation between the two components negatively influences
both the probability π(u) and the number of samples needed to get the desired
precision.
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Figure 3.1: These plots show the probability π(u) and the number of runs needed to
get the desired accuracy respectively. The parameters that were used were µ =

( −1
−0.5

)
,

Σ = ( 2 1
1 2 ), m(u) = −40u, M(u) = 20u − 1 and f(u) = 0.05. The results show

that importance sampling gives a significant efficiency improvement over Monte Carlo
sampling.

It should be noted that the event of interest in the experiments as described
shown in Figures 3.1 and 3.2 above can hardly be called “rare”. The reason that
we kept the level to reach (u) relatively low is that Monte Carlo sampling quickly
took over 10000 runs, which takes a long time in R. Therefore, in Figure 3.3 we
performed some simulations for larger u, though only for importance sampling
and partitioned importance sampling. The results clearly show that even for
extremely small probabilities (around 10−52), both importance sampling and
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Figure 3.2: These plots show the probability π(u) and the number of runs needed to
get the desired accuracy respectively. We stopped simulations when 50 000 runs were
needed, hence the missing values for Monte Carlo sampling. The parameters that were
used were µ =

( −1
−0.5

)
, Σ =

(
2 −1
−1 2

)
, m(u) = −40u, M(u) = 20u− 1 and f(u) = 0.05.

The results show that importance sampling gives a significant efficiency improvement
over Monte Carlo sampling.

partitioned importance sampling need a modest amount of runs.
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Figure 3.3: These plots show the probability π(u) and the number of runs needed to
get the desired accuracy respectively. The parameters that were used were µ =

( −1
−0.5

)
,

Σ = ( 2 1
1 2 ), m(u) = −10, M(u) = u− 1 and f(u) = 1. The results show that even for

extremely small probabilities, the number of runs needed for IS and partitioned IS is
modest.
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3.6.3 Variable covariance

Having convinced ourselves that Monte Carlo sampling is prohibitively slow, we
will restrict the experiments now to only importance sampling and partitioned
importance sampling. In the previous experiments, both IS and partitioned
IS performed roughly the same: the number of runs required to get the de-
sired confidence interval did not show any significant differences. We will now
identify cases where partitioned IS behaves much better than IS. In the next
simulations we look at how the covariance influences both π(u) and the number
of trials needed. Figures 3.4 and 3.5 give the results of two experiments; the dif-
ference is the level u that has to be reached (5 and 2 respectively). The results
indicate that a negative covariance slows down both methods, but also show
that partitioned importance sampling is faster. When the correlation becomes
positive, the opposite seems to hold.
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Figure 3.4: These plots show the probability π(5) and the number of runs (with a
maximum of 100 000) needed to get the desired accuracy respectively. The parameters
that were used were µ =

( −1
−0.5

)
and Σ =

(
2 ρ
ρ 2

)
. We fixed the number of intervals to

10, the lower bound of those intervals to −5 and the upper bound to 5. The results
show that, when the two components are strongly negatively correlated, partitioned
importance sampling behaves much better than ordinary importance sampling. When
the components are positively correlated, the opposite holds.
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Figure 3.5: The precise same experiment as reported on in Figure 3.4, except that
u = 2 now and that the upper bound for the intervals also equals 2.

3.6.4 Variable number of intervals

In this part we restrict ourselves to partitioned importance sampling only. The
goal is to find how the number of intervals affects the performance. From Figure
3.6 we can conclude that the number of intervals does not seem to have an effect
on the number of trials needed. The total running time, however, does seem to
suffer from a high number of intervals, though only linearly.

3.7 Proof of Theorem 3.3.1

This section presents the proof of Theorem 3.3.1. The right-hand side of (3.4)
will be proved first as a lower bound and then as an upper bound for the left-
hand side of (3.4).

Lower bound First observe that π(u) ≥ P (Asu > u,Btu > u) for all s, t
(where we allow ourselves, here and elsewhere, the imprecise notation su and
tu when we mean their respective rounded-off values). It thus follows, for all s
and t,

lim inf
u→∞

1

u
lnπ(u) ≥ lim inf

u→∞

1

u
lnP (Asu,Btu) .
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Figure 3.6: These plots show the probability π(2), the number of runs (with a maximum
of 100 000) needed to get the desired accuracy, and the running time, respectively. The
parameters that were used were µ =

( −1
−0.5

)
and Σ = ( 2 1

1 2 ). The lower and upper
bound for the intervals were −5 and 2 respectively. The results show that the number of
intervals doesn’t seem to have any impact on the number of runs needed. The running
time, however, seems to increase linearly as a function of the number of intervals.
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Since this holds for all s and t, we take the supremum over all s and t:

lim inf
u→∞

1

u
lnπ(u) ≥ sup

s,t
lim inf
u→∞

1

u
lnP (Asu,Btu) .

Suppose, without loss of generality, that s < t and let ∆ > 0. Then for all y,
using the independence,

P (Asu,Btu) ≥ P
(
Asu
su

>
1

s
,
Bsu
su
∈ [y, y + ∆],

Btu
tu

>
1

t

)
≥ P

(
Asu
su

>
1

s
,
Bsu
su
∈ [y, y + ∆], Btu −Bsu > u− suy

)
= P

(
Asu
su

>
1

s
,
Bsu
su
∈ [y, y + ∆]

)
· P (Btu −Bsu > u− suy)

= P
(
Asu
su

>
1

s
,
Bsu
su
∈ [y, y + ∆]

)
· P
(
B(t−s)u

(t− s)u
>

1− sy
t− s

)
.

By Cramér’s theorem, we have that the decay rate of this expression equals

−s inf
p> 1

s ,q∈[y,y+∆]
I(p, q)− (t− s) inf

q> 1−sy
t−s

I2(q).

As this relation holds for any ∆, using the continuity of I, we thus find that

lim inf
u→∞

1

u
lnP (Asu,Btu) ≥ −s inf

p> 1
s

I(p, y)− (t− s) inf
q> 1−sy

t−s

I2(q).

This relation holds for any y, so in particular for all y < 1/s; as I2(q) increases
in q for q positive, we obtain

inf
q> 1−sy

t−s

I2(q) = I2

(
1− sy
t− s

)
,
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and as a consequence

sup
0<s<t

lim inf
u→∞

1

u
lnP (Asu,Btu) ≥

− inf
0<s<t,y<1/s

(
s inf
p> 1

s

I(p, y) + (t− s)I2
(

1− sy
t− s

))
.

(3.10)

Now we put v := t− s, so as to obtain that the right-hand side of the previous
display equals

− inf
s>0,y<1/s

s

(
inf
p>1/s

I(p, y) + (1− sy) inf
v>0

v

1− sy
I2

(
1− sy
v

))
= − inf

s>0,y<1/s

(
s inf
p> 1

s

I(p, y) + (1− sy)α2

)

= − inf
x>0,y<x

(
inf
p>x

I(p, y)

x
+
(

1− y

x

)
α2

)
≥ − inf

x>0,y<x

(
I(x, y)

x
+
(

1− y

x

)
α2

)
.

Upper bound Now turn to the upper bound. We split the event in multiple
sub-events. Fix some s? and t?. Then the union bound implies that, for any
a > 0,

π(u) ≤ P (∃s < (1 + a)s?u : As,∃t < (1 + a)t?u : Bt)

+ P (∃s ≥ (1 + a)s?u : As,∃t ∈ N : Bt)

+ P (∃s ∈ N : As,∃t ≥ (1 + a)t?u : Bt)

≤ P (∃s < (1 + a)s?u : As,∃t < (1 + a)t?u : Bt)

+ P (∃s ≥ (1 + a)s?u : As) + P (∃t ≥ (1 + a)t?u : Bt) .

We now show that the latter two terms have a higher decay rate (i.e., decay
faster) than the first term. First we use the union bound to get

P (∃s ≥ (1 + a)s?u : As) ≤
∞∑

s=(1+a)s?u

P (As > u) .
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We now focus on the individual terms of the right-hand side. Using Markov’s
inequality, we get for all s:

P (As > u) ≤ E
(
eθAs

)
e−θu.

Note that, since the process is a random walk,

E
(
eθAs

)
=
(
E
(
eθX

))s
= Λ1(θ)s = es ln Λ1(θ).

Since this holds for all θ, we take the infimum:

P (As > u) ≤ inf
θ
es ln Λ1(θ)e−θu = e− supθ(θu−s ln Λ1(θ)) = e−sI1(u/s) ≤ e−sI1(0);

in the second inequality we have used that E (X1) < 0. Now we return to the
sum again. Using the display above, we get

P (∃s ≥ (1 + a)s?u : As) ≤
∞∑

s=(1+a)s?u

e−sI1(0) =
e−I1(0)·(1+a)s?u

1− e−I1(0)
,

so that for the decay rate of the probability above we get

lim sup
u→∞

1

u
lnP (∃s ≥ (1 + a)s?u : As) ≤ −(1 + a)s?I1(0).

We conclude that the decay rate can be made arbitrarily large by letting a→∞.
Obviously, the same procedure can be followed for P (∃t ≥ (1 + a)t?u : Bt). It
thus follows that the first term has the lowest decay rate, and therefore the
Principle of the Largest Term (Lemma 1.3.4) gives

lim sup
u→∞

1

u
lnπ(u) ≤ lim

u→∞

1

u
lnP (∃s < (1 + a)s?u : As,∃t < (1 + a)t?u : Bt) .

(3.11)
Define T := max{s?, t?} and α := (1 + a)T . We introduce the scaled processes
Āu(s) := 1

αuAαus and B̄u(t) := 1
αuBαut. The probability on the right-hand side

above is then smaller than or equal to

P
(

sup
s≤1

Āu(s) ≥ 1/α, sup
t≤1

B̄u(t) ≥ 1/α

)
.
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Let f be the sample path of a 2 dimensional function. Also, let φ1(f) :=

sups≤1 f1(s) and likewise let φ2(f) := supt≤1 f2(t). We now invoke Mogulskii’s
theorem (Theorem 1.3.3). This gives us

− inf
{f :φ1(f)≥1/α,φ2(f)≥1/α}o

J(f)

≤ lim inf
u→∞

1

αu
lnP

(
sup
s≤1

Āu(s) ≥ 1/α, sup
t≤1

B̄u(t) ≥ 1/α

)
≤ lim sup

u→∞

1

αu
lnP

(
sup
s≤1

Āu(s) ≥ 1/α, sup
t≤1

B̄u(t) ≥ 1/α

)
≤ − inf

{f :φ1(f)≥1/α,φ2(f)≥1/α}c
J(f),

with

J(f) =

∫ 1

0

I(f ′(t)) dt;

note that the conditions imposed allow that Mogulskii’s theorem can be applied.
Note that the set over which the infimum is taken is closed, hence we will drop
the closure operator. So an upper bound for the right-hand side of (3.11) is

− α inf
{f :φ1(f)≥1/α,φ2(f)≥1/α}

J(f). (3.12)

In the calculations below, we will drop the factor α in front of the infimum; we
will later see that it cancels.

Assume that Āu(·) hits u for the first time at time s̄ and B̄u(·) hits u for the
first time at time t̄, i.e., s̄ ≡ s̄(f) = infs∈[0,1]{s : f1(s) ≥ 1/α} and likewise for
t̄. We can then rewrite the upper bound in two cases:

inf
{f :φ1(f)≥1/α,φ2(f)≥1/α}

J(f)

= inf
{f :s̄(f)≤1,t̄(f)≤1}

J(f)

= min

{
inf

{f :s̄(f)≤1,t̄(f)≤1,s̄≤t̄}
J(f), inf

{f :s̄(f)≤1,t̄(f)≤1,s̄>t̄}
J(f)

}
.

We will now focus on the first entry of the minimum above; the second entry
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can be treated analogously. It can be rewritten as

inf
v≤1/α

inf
{f :s̄(f)≤1,t̄(f)≤1,s̄≤t̄,f2(s̄)=v}

J(f).

Pick a fixed but arbitrary f which confines to the restrictions in the infima
above. We will now rewrite J(f) as a sum of three integrals:

J(f) =

∫ 1

0

I(f ′(t))(f ′(t)) dt =∫ s̄

0

I(f ′(t)) dt+

∫ t̄

s̄

I(f ′(t)) dt+

∫ 1

t̄

I(f ′(t))(f ′(t)) dt.

In the spirit of [39], we will construct a straightened path f̃ and then show that
the upper bound in the LDP is the same as −J(f̃). Let

(f̃ ′1(τ), f̃ ′2(τ)) =


( 1
αs̄ ,

v
s̄ ) if 0 ≤ τ ≤ s̄;

( c?

t̄−s̄ ,
1/α−v
t̄−s̄ ) if s̄ < τ ≤ t̄;

(µ, ν) if t̄ < τ ≤ 1,

where c? := arg minc I( c
t̄−s̄ ,

1/α−v
t̄−s̄ ), µ := E (X1) and ν := E (Y1). Now note

that

1. using Jensen’s inequality,∫ s̄

0

I(f̃ ′(t)) dt = s̄I

(
1

αs̄
,
v

s̄

)
= s̄I

(
1

s̄

∫ s̄

0

f ′(t) dt

)
≤
∫ s̄

0

I(f ′(t)) dt;

2. using the minimisation gives us∫ t̄

s̄

I(f̃ ′(t)) dt = (t̄− s̄)I
(

c?

t̄− s̄
,

1/α− v
t̄− s̄

)
≤ (t̄− s̄)I

(
1

t̄− s̄

∫ t̄

s̄

f ′(t) dt

)

≤
∫ t̄

s̄

I(f ′(t)) dt;
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3. using [39, Lemma 2.6.iv] gives us∫ 1

t̄

I(f̃ ′(t)) dt = 0 ≤
∫ 1

t̄

I(f ′(t)) dt,

hence, J(f) ≥ J(f̃). Furthermore,

inf
v≤1/α

inf
{f :s̄(f)≤1,t̄(f)≤1,s̄≤t̄,f2(s̄)=v}

J(f) ≤ inf
v≤1/α

inf
{f̃ :s̄(f̃)≤1,t̄(f̃)≤1,s̄≤t̄,f̃2(s̄)=v}

J(f̃),

where on the right-hand side we restrict the infimum to straightened paths as
described above. Hence, this inequality is in fact an equality.

We will now focus on J(f̃). Note that it is equal to

s̄I

(
1

αs̄
,
v

s̄

)
+ (t̄− s̄)I

(
c?

t̄− s̄
,

1/α− v
t̄− s̄

)
.

When we now bring back the infimum we get

inf
v≤1/α,0≤s̄≤t̄≤1

s̄I

(
1

αs̄
,
v

s̄

)
+ (t̄− s̄)I

(
c?

t̄− s̄
,

1/α− v
t̄− s̄

)
,

or, using the definition of c?

inf
v≤1/α,0≤s̄≤t̄≤1

s̄I

(
1

αs̄
,
v

s̄

)
+ (t̄− s̄) inf

c
I

(
c

t̄− s̄
,

1/α− v
t̄− s̄

)
.

This is larger than or equal to

inf
v≤1/α,0≤s̄≤t̄≤1

s̄I

(
1

αs̄
,
v

s̄

)
+ (t̄− s̄) inf

c∈R,z>0

I
(

c
t̄−s̄ , z

)
z t̄−s̄

1/α−v
,

and cancelling the factors gives us

inf
v≤1/α,0≤s̄≤t̄≤1

s̄I

(
1

αs̄
,
v

s̄

)
+

(
1

α
− v
)

inf
c∈R,z>0

I
(

c
t̄−s̄ , z

)
z

.
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This is again larger than or equal to

inf
v≤1/α,0≤s̄≤t̄≤1

s̄I

(
1

αs̄
,
v

s̄

)
+

(
1

α
− v
)

inf
z>0

I2(z)

z
.

Now define x := 1/αs̄ and y := αvx. Then the expression above is equal to

inf
v≤1/α,0≤s̄≤t̄≤1,x=1/αs̄,y=αvx

1

αx
I(x, y) +

(
1

α
− y

αx

)
inf
z>0

I2(z)

z
,

which equals

1

α

(
inf

x≥1/α,y≤x

1

x
I(x, y) + (1− y

x
) inf
z>0

I2(z)

z

)
,

which majorises

1

α

(
inf

x>0,y≤x

1

x
I(x, y) + (1− y

x
) inf
z>0

I2(z)

z

)
.

Recall that the factor 1
α cancels against the factor α of (3.12), hence we have

proven the upper bound.

3.8 Concluding remarks

In this chapter, we studied both logarithmic asymptotics and several numer-
ical methods to study large delay probabilities of two correlated queues. In the
first part of the chapter, the first main result, Theorem 3.3.1, was given, which
provided an expression for the decay rate of the probability of both components
ever reaching some high level. The second part consisted of analysing two numer-
ical procedures, namely a naive importance sampling procedure and partitioned
importance sampling. It was shown that the former method is not necessar-
ily asymptotically optimal. This is caused by the undershoot of the slowest
component. This problem is overcome by the second method, partitioned im-
portance sampling. It was indeed shown that this procedure is asymptotically
optimal. Subsequently, numerical results of simulation experiments were shown,
confirming the theory.
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4
Linear stochastic fluid networks with Markov

modulation

In the previous chapters, the focus was on the probability of ever hitting a rare
set. The current chapter, in contrast, treats the event of a multidimensional
stochastic process attaining a value in a rare set at a fixed time. This chapter
is based on [18].

4.1 Introduction

Linear stochastic fluid networks, as introduced in [51], can be informally de-
scribed as follows. Consider a network consisting of L stations. Jobs, whose
sizes are i.i.d. samples from some general L-dimensional distribution, arrive at
the stations according to a Poisson process. At each of the nodes, in between ar-
rivals the storage level decreases exponentially. Processed traffic is either trans-
ferred to the other nodes or leaves the network (according to a given routing
matrix). In addition to this basic version of the linear stochastic fluid network,
there is also its Markov modulated counterpart [49], in which the arrival rate,
the distribution of the job sizes, and the routing matrix depend on the state of
an external, autonomously evolving finite-state continuous-time Markov chain
(usually referred to as the background process).

Linear stochastic fluid networks can be seen as natural fluid counterparts of

77
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corresponding infinite-server queues. As such, they inherit several nice proper-
ties of those infinite-server queues. In particular, separate infinitesimally small
fluid particles, moving through the network, do not interfere, and are therefore
mutually independent. Essentially due to this property, linear stochastic fluid
networks allow explicit analysis; in particular, the joint Laplace transform of
the storage levels at a given point in time can be expressed in closed form as
a function of the arrival rate, the Laplace transform of the job sizes and the
routing matrix [51, Thm. 5.1].

When Markov modulation is imposed, the analysis becomes substantially
harder. Conditional on the path of the background process, again explicit ex-
pressions can be derived, cf. [49, Thm. 1]. Unconditioning, however, cannot
be done in a straightforward manner. As a consequence the results found are
substantially less explicit than for the non-modulated linear stochastic fluid net-
work. In [49] also a system of ordinary differential equations has been set up that
provides the transform of the stationary storage level; in addition, conditions
are identified that guarantee the existence of such a stationary distribution.

In this chapter we focus on rare events for Markov-modulated linear stochas-
tic fluid networks. More specifically, in a particular scaling regime (paramet-
erised by n) we analyse the probability pn that at a given point in time the
network storage vector is in a given rare set. By scaling the arrival rate as
well as the rare set (which amounts to multiplying them by a scaling para-
meter n), the event of interest becomes increasingly rare. More specifically,
under a Cramér-type assumption on the job-size distribution, application of
large-deviations theory yields that pn decays (roughly) exponentially. As pn
can be characterised only asymptotically, one could consider the option of using
simulation to obtain precise estimates. The effectiveness, however, of such an
approach is limited due to the rarity of the event under consideration: in order
to get a reliable estimate, one needs sufficiently many runs in which the event
occurs. This is the reason why one often resorts to simulation using importance
sampling (or: change of measure). This is a variance reduction technique in
which one replaces the actual probability measure by an alternative measure
under which the event under consideration is not rare; correcting the simulation
output with appropriate likelihood ratios yields an unbiased estimate.

The crucial issue when setting up an importance sampling procedure con-
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cerns the choice of the alternative measure: one would like to select one that
provides a substantial variance reduction, or is even (in some sense) optimal.
The objective of this chapter is to develop a change of measure which performs
provably optimally.

Our ultimate goal is to obtain an efficient simulation procedure for Markov-
modulated linear stochastic fluid networks. We do so by (i) first considering
a single node without modulation, (ii) then multi-node systems, still without
modulation, and (iii) finally modulated multi-node systems. There are two
reasons for this step-by-step setup:

◦ For the non-modulated models we have more refined results than for the
modulated models. More specifically, for the non-modulated models we
have developed estimates for the number of runs Σn required to obtain an
estimate with predefined precision (showing that Σn grows polynomially
in the rarity parameter n), whereas for modulated models we can just
prove that Σn grows subexponentially.

◦ In addition, this approach allows the reader to get gradually familiar with
the concepts used in this chapter.

The construction and analysis of our importance sampling methodology is based
on the ideas developed in [15]; there the focus was on addressing similar issues
for a single-node Markov modulated infinite-server system. In line with [15], we
consider the regime in which the background process is ‘slow’: while we (lin-
early) speed up the driving Poisson process, we leave the rates of the Markovian
background process unaltered.

A traditional, thoroughly examined, importance sampling problem concerns
the sample mean Sn of n i.i.d. light-tailed random variables X1, . . . , Xn; the
objective there is to estimate P(Sn > a) for a > EX1 and n large. As described
in [3, Section VI.2], in this situation importance sampling (i.e., sampling under
an alternative measure, and translating the simulation output back by applying
appropriate likelihood ratios) works extremely well. To this end, the distribution
of the Xi s should be exponentially twisted. As it turns out, in our setup, the
probability of our interest can be cast in terms of this problem. Compared
to the standard setup of sample means of one-dimensional random variables,
however, there are a few complications: (i) in our case it is not a priori clear



80 4.1. Introduction

how to sample from the exponentially twisted distributions, (ii) we consider
multi-dimensional distributions (i.e., rare-event probabilities that concern the
storage levels of all individual buffers in the network), (iii) we impose Markov
modulation. We refer to e.g. [40, 56] for earlier work on similar problems.

We refer to [18, Section 4.1] for additional results on how to set up a recursion
to evaluate the (transient and stationary) moments of the joint storage level in
Markov-modulated linear stochastic fluid networks (where the results in [49] are
restricted to just the first two stationary moments at epochs that the background
process jumps).

The single-node model without modulation falls in the class of (one-dimen-
sional) shot-noise models, for which efficient rare-event simulation techniques
have been developed over the past, say, two decades. Asmussen and Nielsen
[5] and Ganesh et al. [38] consider the probability that a shot-noise process
decreased by a linear drift ever exceeds some given level. Relying on sample-
path large deviations results, an asymptotically efficient importance sampling
algorithm is developed, under the same scaling as the one we consider in our
paper. The major difference with our model (apart from the fact that we deal
with considerably more general models, as we focus on networks and allow
modulation) is that we focus on a rare-event probability that relates to the
position of the process at a fixed point in time; in this setting we succeed in
finding accurate estimates of the number of runs needed to get an estimate of
given precision.

There is a vast body of literature related to the broader area of rare-event
simulation for queueing systems. We refer to the literature overviews [12, 47];
interesting recent papers include [4, 21, 68].

This chapter is organised as follows. In Section 4.2 the focus is on a single-
node network, without Markov modulation (addressing complication (i) above),
Section 4.3 addresses the extension to multi-node systems (addressing complic-
ation (ii)), and in Section 4.4 the feature of modulation is added (addressing
complication (iii)). In each of these three sections, we propose a change of meas-
ure, quantify its performance, and demonstrate its efficiency through simulation
experiments. A discussion and concluding remarks are found in Section 4.5.
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4.2 Single resource, no modulation

To introduce the concepts we work with in this chapter, we analyse in this section
a linear stochastic fluid network consisting of a single node, in which the input is
just compound Poisson (so no Markov modulation is imposed). More precisely,
in the model considered, jobs arrive according to a Poisson process with rate λ,
bring along i.i.d. amounts of work (represented by the sequence of i.i.d. random
variables (B1, B2, . . .)), and the workload level decays exponentially at a rate
r > 0. This model belongs to the class of shot-noise processes. As mentioned in
the introduction, we gradually extend the model in the next sections.

4.2.1 Preliminaries

We first present a compact representation for the amount of work in the system
at time t, which we denote by X(t), through its moment generating function.
To this end, let N(t) denote a Poisson random variable with mean λt, and
(U1, U2, . . .) i.i.d. uniformly distributed random variables (on the interval [0, t]).
Assume in addition that the random objects (B1, B2, . . .), N(t), and (U1, U2, . . .)

are independent. Then it is well-known that the value of our shot-noise process
at time t can be expressed as

X(t) =

N(t)∑
j=1

Bje
−r(t−Uj) d

=

N(t)∑
j=1

Bje
−rUj , (4.1)

where the distributional equality is a consequence of the fact that the distribu-
tion of U is symmetric on the interval [0, t]. It is easy to compute the moment
generating function (mgf) of X(t), by conditioning on the value of N(t):

M(ϑ) := E eϑX(t) =

∞∑
k=0

e−λt
(λt)k

k!

(
E exp(ϑB e−rU )

)k
= exp

(
λ

∫ t

0

(
β(e−ru ϑ)− 1

)
du

)
, (4.2)
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where β(·) is the mgf corresponding to B (throughout assumed to exist). By
differentiating and inserting ϑ = 0, it follows immediately that

m(t) := EX(t) =
λ

r
(1− e−rt)EB.

Higher moments can be found by repeated differentiation. We note that, as t is
held fixed throughout the current chapter, we often write N rather than N(t).

4.2.2 Tail probabilities, change of measure

The next objective is to consider the asymptotics of the random variable X(t)

under a particular scaling. In this scaling we let the arrival rate be nλ rather
than just λ, for n ∈ N. The value of the shot-noise process is now given by

Yn(t) :=

n∑
i=1

Xi(t),

with the vector (X1(t), . . . , Xn(t)) consisting of i.i.d. copies of the random vari-
able X(t) introduced above; here the infinite divisibility of a Compound Poisson
distribution is used.

Our goal is to devise techniques to analyse the tail distribution of Yn(t).

Standard theory now provides us with the asymptotics of

pn(a) = P(Yn(t) > na)

for some a > m(t); we are in the classical ‘Cramér setting’ [30, Section 2.2] if
it is assumed that M(ϑ) is finite in a neighbourhood around the origin (which
requires that the same property is satisfied by β(·)). Let I(a) and ϑ? ≡ ϑ?(a),
respectively, be defined as

I(a) := sup
ϑ

(
ϑa− logM(ϑ)

)
, ϑ? := arg sup

ϑ

(
ϑa− logM(ϑ)

)
,

with M(·) as above. Using ‘Cramér’, we obtain that, under mild conditions,

lim
n→∞

1

n
log pn(a) = −I(a) = −ϑ?a+ logM(ϑ?).
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More refined asymptotics are available as well; we get back to this issue in
Section 4.2.3.

As these results apply in the regime that n is large, a relevant issue concerns
the development of efficient techniques to estimate pn(a) through simulation.
An important rare-event simulation technique is importance sampling, relying
on the commonly used exponential twisting technique. We now investigate how
to construct the exponentially twisted version Q (with twist ϑ?) of the original
probability measure P. The main idea is that under Q the Xi(t) have mean a,
such that under the new measure the event under study is not rare anymore.

More concretely, exponential twisting with parameter ϑ? means that under
the new measure Q, the Xi(t) should have the mgf

EQ eϑX(t) =
E e(ϑ+ϑ?)X(t)

E eϑ?X(t)
=
M(ϑ+ ϑ?)

M(ϑ?)
; (4.3)

under this choice the random variable has the desired mean:

EQX(t) =
M ′(ϑ?)

M(ϑ?)
= a.

The question is now: how to sample a random variable that has this mgf? To
this end, notice that M(ϑ) = exp(−λt+ λtE exp(ϑBe−rU )) and

M(ϑ+ ϑ?) =

∞∑
k=0

e−λt
(λtE exp(ϑ?B e−rU ))k

k!

(
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )

)k
,

such that the expression in (4.3) equals

∞∑
k=0

exp(−λtE exp(ϑ?B e−rU ))
(λtE exp(ϑ?B e−rU ))k

k!
×

(
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )

)k
. (4.4)

From this expression we can see how to sample the Xi(t) under Q, as follows. In
the first place we conclude that under Q the number of arrivals becomes Poisson
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with mean

λtE exp(ϑ?B e−rU ) = λ

∫ t

0

β(e−ru ϑ?)du, (4.5)

rather than λt (which is an increase). Likewise, it entails that under Q the
distribution of the Bje−rUj should be twisted by ϑ?, in the sense that these
random variables should have under Q the mgf

EQ exp((ϑ+ ϑ?)B e−rU ) =
E exp((ϑ+ ϑ?)B e−rU )

E exp(ϑ?B e−rU )
.

We now point out how such a random variable should be sampled. To this end,
observe that

E exp((ϑ+ ϑ?)B e−rU ) =

∫ t

0

β(e−ru(ϑ+ ϑ?))

β(e−ru ϑ?)

1

t
β(e−ru ϑ?)du,

so that

EQ exp((ϑ+ ϑ?)B e−rU ) =

∫ t

0

β(e−ru(ϑ+ ϑ?))

β(e−ru ϑ?)

β(e−ru ϑ?)∫ t

0

β(e−rv ϑ?)dv

du.

From this representation two conclusions can be drawn. In the first place,
supposing there are k arrivals, then the arrival epochs U1, . . . , Uk are i.i.d. under
Q, with the density given by

fQU (u) =
β(e−ru ϑ?)∫ t

0

β(e−rv ϑ?) dv

.

In the second place, given that the k-th arrival occurs at time u, the density of
the corresponding job size Bk should be exponentially twisted by e−ru ϑ? (where
each of the job sizes is sampled independently of everything else).

Now that we know how to sample from Q it is straightforward to implement
the importance sampling. Before we describe its complexity (in terms of the
number of runs required to obtain an estimate with given precision), we first
provide an example in which we demonstrate how the change of measure can
be performed.
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Example 4.2.1. In this example we consider the case that the Bi are exponentially
distributed with mean µ−1. Applying the transformation w := e−ru ϑ/µ, it is
first seen that∫ s

0

β(e−ru ϑ)du =

∫ s

0

µ

µ− e−ru ϑ
du =

1

r

∫ ϑ/µ

e−rsϑ/µ

1

1− w
1

w
dw

=
1

r

[
log

w

1− w

]ϑ/µ
e−rsϑ/µ

=
1

r
log

(
µers − ϑ
µ− ϑ

)
.

As ϑ? solves the equation M ′(ϑ?)/M(ϑ?) = a, we obtain the quadratic equation

m(t) = a

(
1− ϑ

µ

)(
1− ϑ

µ
e−rt

)
,

leading to

ϑ? =
µert

2

(
(1 + e−rt)−

√
(1− e−rt)2 + 4e−rt

m(t)

a

)

(where it is readily checked that ϑ? ∈ (0, µ)).
Now we compute what the alternative measure Q amounts to. In the first

place, the number of arrivals should become Poisson with parameter

λ

r
log

(
µert − ϑ?

µ− ϑ?

)
(which is larger than λt). In addition, we can check that

FQ
U (u) := Q(U 6 u) = log

(
µeru − ϑ?

µ− ϑ?

)/
log

(
µert − ϑ?

µ− ϑ?

)
(rather than u/t). The function FQ

U (u) has the value 0 for u = 0 and the value
1 for u = t, and is concave. This concavity reflects that the arrival epochs of the
shots tend to be closer to 0 under Q than under P. This is because we identified
each of the Ui with t minus the actual corresponding arrival epoch in (4.1); along
the most likely path of Yn(t) itself the shots will be typically closer to t under Q.
Observe that one can sample U under Q using the classical inverse distribution



86 4.2. Single resource, no modulation

function method [3, Section II.2a]: with H denoting a uniform number on [0, 1),
we obtain such a sample by

1

r
log

((
ert − ϑ?

µ

)H (
1− ϑ?

µ

)1−H

+
ϑ?

µ

)
.

Also, conditional on a Ui having attained the value u, the jobs Bi should be
sampled from an exponential distribution with mean (µ− e−ru ϑ?)−1.

Remark. In the model we study in this section, the input of the linear stochastic
fluid network is a compound Poisson process. As pointed out in [51] the class
of inputs can be extended to the more general class of increasing Lévy processes
in a straightforward manner.

4.2.3 Efficiency properties of the IS procedure

In this subsection we analyse the performance of the procedure introduced in
the previous section. The focus is on a characterisation of the number of runs
needed to obtain an estimate with a given precision (at a given confidence level).

In every run Yn(t) is sampled under Q, as pointed out above. As Q is an
implementation of an exponential twist (with twist ϑ?), the likelihood ratio (of
sampling Yn(t) under P relative to Q) is given by

L =
dP
dQ

= e−ϑ
?Yn(t)en logM(ϑ?).

In addition, define I as the indicator function of the event {Yn(t) > na}. Clearly,
EQ(LI) = pn(a). We keep generating samples LI (under Q), and estimate pn(a)

by the corresponding sample mean, until the ratio of the half-width of the con-
fidence interval (with critical value T ) and the estimator drops below some
predefined ε (say, 10%). Under P the number of runs needed is effectively in-
versely proportional to pn(a), hence exponentially increasing in n. We now focus
on quantifying the reduction of the number of runs when using the importance
sampling procedure we described above, i.e., the one based on the measure Q.

Using a Normal approximation, it is a standard reasoning that when per-
forming N runs the ratio of the half-width of the confidence interval and the
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estimator is approximately

1

pn(a)
· T√

N

√
VarQ(L2I),

and hence the number of runs needed is roughly

Σn :=
T 2

ε2

VarQ(L2I)

(pn(a))2
.

We now analyse how Σn behaves as a function of the ‘rarity parameter’ n. Due
to the Bahadur-Rao result [7], with fn ∼ gn denoting fn/gn → 1 as n→∞,

pn(a) = EQ(LI) ∼ 1√
n

1

ϑ?
√

2πτ
e−nI(a), τ :=

d2

dϑ2
logM(ϑ)

∣∣∣∣
ϑ=ϑ?

. (4.6)

Using the same proof technique as in [7], it can be shown that

EQ(L2I) ∼ 1√
n

1

2ϑ?
√

2πτ
e−2nI(a); (4.7)

see Appendix A for the underlying computation. It also follows that EQ(L2I) ∼
VarQ(L2I).

We can use these asymptotics, to conclude that under Q the number of runs
required grows slowly in n. More specifically, Σn is essentially proportional to√
n for n large. This leads to the following result; cf. [11, Section 2] for related

findings in a more general context.

Proposition 4.2.2. As n→∞,

Σn ∼ α
√
n, α =

T 2

ε2
ϑ? · 1

2

√
2πτ. (4.8)

4.2.4 Simulation experiments

In this subsection we present numerical results for the single-node model without
Markov modulation. We focus on the case of exponential jobs, as in Ex-
ample 4.2.1. We simulate until the estimate has reached the precision ε = 0.1,
with confidence level 0.95 (such that the critical value is T = 1.96). The para-
meters chosen are: t = 1, r = 1, λ = 1, and µ = 1. We set a = 1 (which is
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larger than m(1) = 1− e−1). As it turns out, ϑ? = 0.2918 and

τ =
λ

r

(
1

(µ− ϑ?)2
− 1

(µert − ϑ?)2

)
= 1.8240.

The top-left panel of Fig. 4.1 confirms the exponential decay of the probability
of interest, as a function of n. In the top-right panel we verify that the number
of runs indeed grows proportionally to

√
n; the value of α, as defined in (4.8),

is 198.7, which is depicted by the horizontal line. The bottom-left panel shows
the density of the arrival epochs, which confirms that the arrival epochs tend
to be closer to 0 under Q than under P; recall that under P these epochs are
uniformly distributed on [0, t]. Recall that we reversed time in (4.1): for the
actual shot-noise system that we are considering, it means that in order to reach
the desired level at time t, the arrival epochs tend to be closer to t under Q
than under P. The bottom-right panel presents the rate of the exponential job
sizes as a function of u. Using (4.5), the arrival rate under Q turns out to be
1.2315.

4.3 Multi-node systems, no modulation

In this section we consider multi-node linear stochastic fluid networks, of the
type analysed in the work by Kella and Whitt [51]. It is instructive to first
consider the simplest multi-node system: a tandem network without external
input in the downstream node and no traffic leaving after having been served
by the upstream node (and rate r` for node `, ` = 1, 2); later we extend the
ideas developed to general linear stochastic fluid networks.

4.3.1 Preliminaries

As mentioned above, we first consider the two-node tandem. The content of the
first node is, as before,

X(1)(t) =

N∑
j=1

Bje
−r1(t−Uj)
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Figure 4.1: Numerical results for Section 4.2.4.
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(with N having a Poisson distribution with mean λt), but it can be argued
that the content of the second node satisfies a similar representation. More
specifically, using the machinery developed in [51], it turns out that

X(2)(t) =

N∑
j=1

Bj
r1

r1 − r2

(
e−r2(t−Uj) − e−r1(t−Uj)

)
d
=

N∑
j=1

Bj
r1

r1 − r2

(
e−r2Uj − e−r1Uj

)
.

(4.9)

As before, perform the scaling by n, meaning that the arrival rate λ is in-
flated by a factor n. It leads to the random vectors (X

(1)
1 (t), . . . , X

(1)
n (t)) and

(X
(2)
1 (t), . . . , X

(2)
n (t)). With these vectors we can define Y (1)

n (t) and Y
(2)
n (t),

analogously to how this was done in the single-node case; these two random
quantities represent the contents of the upstream resource and the downstream
resource, respectively.

The state of this tandem system can be uniquely characterised in terms of
its (bivariate) moment generating function. The technique to derive an explicit
expression is by relying on the above distributional equality (4.9). Again, the
key step is to condition on the number of shots that have arrived in the interval
[0, t]: with ϑ = (ϑ1, ϑ2),

M(ϑ) := E eϑ1X
(1)(t)+ϑ2X

(2)(t)

=

∞∑
k=0

e−λt
(λt)k

k!

×
(
E exp

(
ϑ1Be−r1U + ϑ2B

r1

r1 − r2

(
e−r2U − e−r1U

)))k
=

∞∑
k=0

e−λt
(λt)k

k!

×
(∫ t

0

1

t
E exp

(
ϑ1Be−r1u + ϑ2B

r1

r1 − r2

(
e−r2u − e−r1u

))
du

)k
=

∞∑
k=0

e−λt
(λt)k

k!
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×
(∫ t

0

1

t
β

(
e−r1uϑ1 +

r1

r1 − r2

(
e−r2u − e−r1u

)
ϑ2

)
du

)k
= exp

(
λ

∫ t

0

(
β

(
e−r1uϑ1 +

r1

r1 − r2

(
e−r2u − e−r1u

)
ϑ2

)
− 1

)
du

)
.

(4.10)

The above computation is for the two-node tandem system, but the underly-
ing procedure can be extended to the case of networks with more than 2 nodes,
and external input in each of the nodes. To this end, we consider the follow-
ing network consisting of L nodes. Jobs are generated according to a Poisson
process. At an arrival epoch, an amount is added to the content of each of the
resources ` ∈ {1, . . . , L}, where the amount added to resource ` is distributed as
the (non-negative) random variable B(`); β(ϑ), with ϑ ∈ RL, is the joint mgf
of B(1) up to B(L) (note that the components are not assumed independent).
In addition, let the traffic level at node ` decay exponentially with rate r` (i.e.,
the value of the output rate is linear in the current level, with proportionality
constant r`). A deterministic fraction p``′ > 0 (` 6= `′) is then fed into node `′,
whereas a fraction p`` > 0 leaves the network (with

∑L
`′=1 p``′ = 1). We denote

r``′ := r`p``′ . As an aside we mention that this general model covers models in
which some arrivals (of the Poisson process with parameter λ) actually lead to
arrivals at only a subset of the L queues (since the job sizes B(1), . . . , B(L) are
allowed to equal 0).

We now point out how the joint buffer content process can be analysed.
Again our objective is to evaluate the moment generating function. Define the
matrix R as follows: its (`, `)-th entry is r`` +

∑
`′ 6=` r``′ , whereas its (`, `′)-th

entry (with ` 6= `′) is −r``′ . We have, according to Kella and Whitt [51], with
N again Poisson with mean λt, the following distributional equality: for any
` ∈ {1, . . . , L},

X(`)(t) =

L∑
`′=1

N∑
j=1

B
(`′)
j (e−R(t−Uj))`′`.

It means we can compute the joint mgf of X(1)(t) up to X(L)(t) as follows, cf.
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[51, Thm. 5.1]:

M(ϑ) := E exp

(
L∑
`=1

ϑ`X
(`)(t)

)

=

∞∑
k=0

e−λt
(λt)k

k!

(
E exp

(
L∑
`=1

ϑ`

L∑
`′=1

B(`′)(e−R(t−U))`′`

))k

=

∞∑
k=0

e−λt
(λt)k

k!

(∫ t

0

1

t
E exp

(
L∑
`=1

ϑ`

L∑
`′=1

B(`′)(e−Ru)`′`

)
du

)k

=

∞∑
k=0

e−λt
(λt)k

k!

×

(∫ t

0

1

t
β

(
L∑
`=1

(e−Ru)1`ϑ`, . . . ,

L∑
`=1

(e−Ru)L`ϑ`

)
du

)k

= exp

(
−λt+ λ

∫ t

0

β

(
L∑
`=1

(e−Ru)1`ϑ`, . . . ,

L∑
`=1

(e−Ru)L`ϑ`

)
du

)

= exp

(
λ

∫ t

0

(
β
(
e−Ru ϑ

)
− 1
)

du

)
,

which is the matrix/vector-counterpart of the expression (4.2) that we found in
the single-node case; for the two-node case the special form (4.10) applies.

4.3.2 Tail probabilities, change of measure

In this subsection we introduce the change of measure that we use in our im-
portance sampling approach. Many of the concepts are analogous to concepts
used for the single-node case in Section 2.

Define (in self-evident notation)

pn(a) := P
(
Y (1)
n (t) > na1, . . . , Y

(L)
n (t) > naL

)
.

Due to the multivariate version of Cramér’s theorem, with A := [a1,∞)× · · · ×
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[aL,∞),

lim
n→∞

1

n
log pn(a) = − inf

b∈A
I(b), where I(b) := sup

ϑ
(〈ϑ, b〉 − logM(ϑ)) . (4.11)

More refined asymptotics than the logarithmic asymptotics of (4.11) are avail-
able as well, but these are not yet relevant in the context of the present subsec-
tion; we return to these ‘exact asymptotics’ in Section 4.3.3.

We assume that the set A is ‘rare’, in the sense that

m(t) 6∈ A, with mi(t) :=
∂M(ϑ)

∂ϑi

∣∣∣∣
ϑ=0

.

Let us now construct the importance sampling measure. Let ϑ? be the
optimising ϑ in the decay rate of pn(a). Mimicking the reasoning we used in
the single-node case, the number of arrivals becomes Poisson with mean

λ

∫ t

0

β
(
e−Ru ϑ?

)
du.

The arrival epochs should be drawn using the density

fQU (u) =
β
(
e−Ru ϑ?

)∫ t

0

β
(
e−Rv ϑ?

)
dv

.

Given an arrival at time u, (B(1), . . . , B(L)) should be exponentially twisted by(
(e−Ru ϑ?)1, . . . , (e

−Ru ϑ?)L
)
.

4.3.3 Efficiency properties of the IS procedure

We now consider the efficiency properties of the change of measure proposed in
the previous subsection. To this end, we first argue that the vector ϑ generally
has some (at least one) strictly positive entries, whereas the other entries equal
0; i.e., there are no negative entries. To this end, we first denote by b? the ‘most
likely point’ in A:

b? := arg inf
b∈A

I(b),
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so that ϑ? = ϑ(b?). It is a standard result from convex optimisation that

∂I(b)

∂bi
= ϑi(b). (4.12)

Suppose now that ϑi(b?) < 0. Increasing the i-th component of the b? (while
leaving all other components unchanged) would lead to a vector that is still in
A, but that by virtue of (4.12) corresponds to a lower value of the objective
function I(·), thus yielding that b? was not the optimiser; we have thus found a
contradiction. Similarly, when ϑi(b?) = 0 we have that b?i > ai (as otherwise a
reduction of the objective function value would be possible, which contradicts
b? being minimiser).

Now define Θ as the subset of i ∈ {1, . . . , L} such that ϑi > 0, and let
D ∈ {1, . . . , L} the number of elements of Θ. We now argue that the number of
runs needed to obtain an estimate of predefined precision scales as nD/2. Rely-
ing on the results from [23] (in particular their Thm. 3.4), it follows that pn(a)

behaves (for n large) proportionally to n−D/2 exp(−nI(b?)); using the same
machinery, EQ(L2I) behaves proportionally to n−D/2 exp(−2nI(b?)). Mimick-
ing the line of reasoning of Section 4.2.3, we conclude that the number of runs
needed is essentially proportional to nD/2. The formal statement is as follows;
in Appendix A we comment on the underlying computations.

Proposition 4.3.1. As n→∞,

Σn ∼ αnD/2, α =
T 2

ε2

(∏
i∈D

ϑ?i

)
· 1

2D

(√
2π
)D√

τ , (4.13)

where τ is the determinant of the Hessian of logM(ϑ) in ϑ?.

We further illustrate the ideas and intuition behind the qualitative result
described in the above proposition by considering the case L = 2. It is noted
that three cases may arise: (i) Θ = {1, 2}, (ii) Θ = {1}, (iii) Θ = {2}; as case
(iii) can be dealt with in the same way as case (ii), we concentrate on the cases
(i) and (ii) only. In case (i), where D = 2, the necessary condition [23, Eqn.
(3.4)] is fulfilled as ϑ > 0 componentwise. As in addition the conditions A–C of
[23] are in place, it is concluded that [23, Thm. 3.4] can be applied, leading to
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b? = a, and

pn(a) ∼ 1

n

1

ϑ?1ϑ
?
2 · 2π

√
τ

e−nI(a),

where τ is the determinant of the Hessian of logM(ϑ) in ϑ?. Along the same
lines, it can be shown that

EQ(L2I) ∼ 1

n

1

4ϑ?1ϑ
?
2 · 2π

√
τ

e−2nI(a).

It now follows that Σn is roughly linear in n: with ε and T as introduced in
Section 4.2.3,

Σn = αn, α :=
T 2

ε2
ϑ?1ϑ

?
2 ·
π
√
τ

2
. (4.14)

In case (ii), we do not have that ϑ > 0 componentwise, and hence [23, Thm.
3.4] does not apply; in the above terminology, D = 1 < 2 = L. Observe that
in this case the exponential decay rate of the event {Y (1)

n (t) > na1, Y
(2)
n (t) <

na2} strictly majorises that of {Y (1)
n (t) > na1} (informally: the former event

is substantially less likely than the latter). It thus follows that b?1 = a1 and
b?2 > a2, and

pn(a) = P
(
Y (1)
n (t) > na1

)
− P

(
Y (1)
n (t) > na1, Y

(2)
n (t) < na2

)
∼ P

(
Y (1)
n (t) > na1

)
∼ 1√

n

1

ϑ?1
√

2πτ
e−2nI(b?), τ :=

d

dϑ2
logM(ϑ, 0)

∣∣∣∣
ϑ=ϑ?1

,

and in addition
EQ(L2I) ∼ 1√

n

1

2ϑ?1
√

2πτ
e−2nI(b?).

As a consequence in this regime Σn grows essentially proportional to
√
n for n

large:

Σn ∼ α
√
n, α :=

T 2

ε2
ϑ?1 ·

1

2

√
2πτ.

In case (iii) Σn behaves proportionally to
√
n as well.
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4.3.4 Simulation experiments

We conclude this section by providing a few numerical illustrations. In the
first set we focus on the downstream queue only (i.e., we analyse pn(0, a2)),
whereas in the second set we consider the joint exceedance probability pn(a).

The precision and confidence have been chosen as in Example 4.2.1. Throughout
we take t = 1, r1 = 2, r2 = 1, λ = 1, and µ = 1.

In the first set of experiments we take a1 = 0 and a2 = 1. Elementary
numerical analysis yields that ϑ? = 0.8104 and τ = 1.4774, leading to α, as
defined in (4.14), equalling 474.3. For graphs on the behaviour of pn(1) as a
function of n and the number of runs needed, we refer to [17, Fig. 2]. The
two panels of Fig. 4.2 should be interpreted as the bottom panels of Fig. 4.1.
Interestingly, the left panel indicates that in the tandem system it does not
pay off to let jobs arrive right before t (as they first have to go through the
first resource to end up in the second resource), as reflected by the shape of
the density of the arrival epochs under Q; to this end, recall that we reversed
time in (4.9), so that a low density at u = 0 in the graph corresponds to a high
density at u = t in the actual system. The arrival rate under Q is 1.5103.

In the second set of experiments we take a1 = 1.2 and a2 = 1.1; all other
parameters are the same as in the first set. As mentioned above, we now consider
the joint exceedance probability. As it turns out, ϑ?1 = 0.1367 and ϑ?2 = 0.2225.
For graphs describing the behaviour of pn(1.2, 1.1) as a function of n and the
number of runs needed, we refer to [17, Fig. 3]; the latter graph reveals that for
this specific parameter setting Σn/n converges to the limiting constant rather
slowly. Concerning the left panel of Fig. 4.3, note that in Section 4.2 we saw
that to make sure the first queue gets large it helps to have arrivals at the
end of the interval, whereas above we observed that to make the second queue
large arrivals should occur relatively early. We now focus on the event that both
queues are large, and consequently the arrival distribution becomes relatively
uniform again, as shown in the left panel of Fig. 4.3. The arrival rate under Q
is 2.3478.



Linear stochastic fluid networks with Markov modulation 97

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

u

de
ns

ity
 o

f a
rr

iv
al

 e
po

ch
s

IS
MC

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

1.
2

u

ra
te

 o
f e

xp
on

en
tia

l j
ob

 s
iz

es

IS
MC

Figure 4.2: Numerical results for Section 4.3.4: downstream queue only.
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Figure 4.3: Numerical results for Section 4.3.4: both queues.
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4.4 Multi-node systems under Markov modula-
tion

In this section consider the networks analysed in the previous section, but now
in a random environment. More specifically, the type of random environment
we focus on here is known as Markov modulation: the system dynamics are
affected by the state of an external finite-state irreducible Markov process J(·)
with generator matrix Q = (qjj′)

d
j,j′=1. When this Markov process (usually

referred to as the background process) is in state j, arrivals occur according to a
Poisson process with rate λj , the mgf of the job size is βj(ϑ), and the routing
matrix is Rj . Analogously to the definitions used in the case without Markov
modulation, this routing matrix’ (i, i)-th entry is

(Rj)ii := r
(j)
ii +

∑
i′ 6=i

r
(j)
ii′ ,

which can be interpreted as the rate at which fluid leaves server i when the
background process is in j. Likewise, for i 6= i′,

(Rj)ii′ := −r(j)
ii′ ,

which is the rate at which fluid flows from server i to i′ when the background
process is in j.

Below we assume that J(0) = j0 for a fixed state j0 ∈ {1, . . . , d}; it is seen
that all results generalise to an arbitrary initial distribution in a straightforward
manner.

The structure of the section is as follows: we propose an importance sampling
measure, establish efficiency properties of the corresponding estimator, and
present a number of numerical experiments.

For the models covered in Sections 4.2 and 4.3, already detailed explicit
analysis is available; see e.g. the results in terms of transforms and moments in
[51]. Such a complete analysis is lacking for the model featuring in the present
section; we refer to [18, Section 4.1] for results on exact expressions for moments.
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4.4.1 Tail probabilities, change of measure

We now characterise the decay rate of the rare-event probability under study,
and we propose a change of measure to efficiently estimate it. In the notation
we have been using so far, we again focus on

pn(a) := P
(
Y (1)
n (t) > na1, . . . , Y

(L)
n (t) > naL

)
= P (Yn(t) ∈ A) ,

where Yn(t) = (Y
(1)
n (t), . . . , Y

(L)
n (t)). It is stressed that, following [15], we con-

sider the regime in which the background process is ‘slow’. In concrete terms,
this means that we linearly speed up the driving Poisson process (i.e., we replace
the arrival rates λj by nλj), but leave the rates of the Markovian background
process unaltered.

First we find an alternative characterisation of the state of the system at time
t. Let Ft denote the set of all functions from [0, t] onto the states {1, . . . , d}.
Consider a path f ∈ Ft. Let f have K(f) jumps between 0 and t, whose
epochs we denote by t1(f) up to tK(f)(f) (and in addition t0(f) := 0 and
tK(f)+1(f) := t). Let

ji(f) := lim
t↓ti(f)

f(t)

(i.e., the state of f immediately after the i-th jump). We also introduce

Di(u, f) := exp
(
−(ti+1(f)− u)Rji(f)

)
,

Di(f) := exp
(
−(ti+1(f)− ti(f))Rji(f)

)
.

Suppose now that the Markov process J(·) follows the path f ∈ Ft. Then
the contribution to the mgf of X(t) due to shots that arrived between ti(f)

and ti+1(f) is, mimicking the arguments that we used in Section 4.3.2 for non-
modulated networks,

ψi(f,ϑ) :=

exp

(
λji(f)

∫ ti+1(f)

ti(f)

(
βji(f)

(
Di(u, f)Di+1(f) · · ·DK(f)(f)ϑ

)
− 1
)
du

)
.
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As a consequence, the mgf of X(t) given the path f is

Mf (ϑ) :=

K(f)∏
i=0

ψi(f,ϑ).

First conditioning on the path of J(·) ∈ Ft between 0 and t and then uncondi-
tioning, it then immediately follows that the mgf of X(t) is given by

M(ϑ) = EMJ(ϑ).

Then, precisely as is shown in [15] for a related stochastic system, the decay
rate can be characterised as follows:

lim
n→∞

1

n
log pn(a) = − inf

f∈Ft

If (a), If (a) := inf
b∈A

sup
ϑ

(〈ϑ, b〉 − logMf (ϑ)) .

(4.15)
The argumentation to show this is analogous to the one in [15, Thm. 1], and
can be summarised as follows. In the first place, let f? be the optimising path
in (4.15). Then, as J(·) does not depend on n, we can choose a ‘ball’ Bt(f

?)

around f? such that the decay rate of the probability of J(·) being in that ball
is 0. The lower bound follows by only taking into account the contribution due
to paths in Bt(f

?). The upper bound follows by showing that the contribution
of all f ∈ Ft \Bt(f

?) is negligible.
Informally, the path f? has the interpretation of the most likely path of J(·)

given that the rare event under consideration happens. To make sure that the
event under consideration is rare, we assume that for all f ∈ Ft(

∂

∂ϑ1
Mf (ϑ)

∣∣∣∣
ϑ=0

, . . . ,
∂

∂ϑL
Mf (ϑ)

∣∣∣∣
ϑ=0

)
6∈ A.

The change of measure we propose is the following. In every run we first
sample the path J(s) for s ∈ [0, t] under the original measure P (i.e., with
J(0) = j0, and then using the generator matrix Q). We call the resulting path
f ∈ Ft. For this path, define ϑ?f > 0 as the optimising ϑ in the definition of
I(f) in (4.15); b?f ∈ A is the optimising b.

Conditional on the path f of the background process, under the new measure
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Q the number of external arrivals between ti(f) and ti+1(f) is Poisson with
parameter ∫ ti+1(f)

ti(f)

λji(f)βji(f)

(
Pi(u, f)ϑ?f

)
du,

where Pi(u, f) := Di(u, f)Di+1(f) · · ·DK(f)(f). The arrival epochs between
ti(f) and ti+1(f) should be drawn using the density

fQU (u) =
βji(f)

(
Pi(u, f)ϑ?f

)∫ ti+1(f)

ti(f)

βji(f)

(
Pi(v, f)ϑ?f

)
dv

.

Given an arrival at time u between ti(f) and ti+1(f), the job sizes (B(1), . . . ,

B(L)) should be sampled from a distribution with mgf βji(f)(ϑ), but then ex-
ponentially twisted by((

Pi(u, f)ϑ?f
)

1
, . . . ,

(
Pi(u, f)ϑ?f

)
L

)
.

Remark. As mentioned above, the background process is sampled under the ori-
ginal measure, whereas an alternative measure is used for the number of arrivals,
the arrival epochs, and the job sizes. The intuition behind this, is that the rare
event under consideration is caused by two effects:

◦ In the first place, samples of the background process J should be close to
f?. Under P a reasonable fraction ends up close to f? — more precisely,
the event of J being close to f? does not become increasingly rare when n
grows. As a consequence, no change of measure is needed here.

◦ In the second place, given the path of the background process, the Y (`)
n (t)

should exceed the values na`, for ` = 1, . . . , L. This event does become
exponentially rare as n grows, so importance sampling is to be applied
here.
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4.4.2 Efficiency properties of the IS procedure

We now analyse the speed up realised by the change of measure introduced in the
previous subsection. Unlike our results for the non-modulated systems, now we
cannot find the precise rate of growth of Σn.What is possible though, is proving
asymptotic efficiency (also sometimes referred to as logarithmic efficiency), in
the sense that we can show that

lim
n→∞

1

n
logEQ(L2I) = lim

n→∞

2

n
log pn(a) = −2 inf

f∈Ft

inf
b∈A

sup
ϑ

(〈ϑ, b〉 − logMf (ϑ))

(where the second equality is a consequence of (4.15)). This equality is proven
as follows. As by Jensen’s inequality EQ(L2I) > (EQ(LI))2 = (pn(a))2, we are
left to prove the upper bound:

lim
n→∞

1

n
logEQ(L2I) 6 lim

n→∞

2

n
log pn(a).

If the path of J(·) equals f ∈ Ft, it follows by an elementary computation that
we have constructed the measure Q such that

L =
dP
dQ

=

L∏
`=1

exp
(
−〈ϑ?f ,Yn(t)〉+ n logMf (ϑ?f )

)
.

The fact that ϑ?f is componentwise non-negative, in combination with the fact
that Yn(t) > a when I = 1, entails that

LI 6 exp
(
−n 〈ϑ?f ,a〉+ n logMf (ϑ?f )

)
=

exp
(
−n 〈ϑ?f , b

?
f 〉+ n logMf (ϑ?f )

)
= e−n If (a),

noting that a and b?f may only differ if the corresponding entry of ϑ?f equals
0 (that is, 〈a − b?f ,ϑ

?
f 〉 = 0). The upper bound thus follows: with f? the

minimising path in (4.15), recalling that J(·) is sampled under P,

EQ(L2I) 6 E e−2n IJ (a) 6 e−2n If? (a).

We have established the following result.
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Proposition 4.4.1. As n → ∞, the proposed importance sampling procedure
is asymptotically efficient. This means that the number of runs needed grows
subexponentially:

lim
n→∞

1

n
log Σn = 0.

Remark. In the scaling considered, for both the logarithmic asymptotics of pn(a)

and our importance sampling algorithm, the precise transition rates qij do not
matter; the only crucial element is that the background process is irreducible.
Observe that, even though the logarithmic asymptotics of pn(a) do not depend
on the actual values of the transition rates qij, the probability pn(a) itself and
its exact asymptotics do depend on those rates. We refer to [14] for the exact
asymptotics of a related infinite-server model; it is noted that the derivation of
such precise asymptotics is typically highly involved.

The above reasoning indicates that the proposed procedure remains valid un-
der more general conditions: the ideas carry over to any situation in which the
rates are piecewise constant along the most likely path.

4.4.3 Simulation experiments

We performed experiments featuring a single-node system under Markov mod-
ulation. In our example the job sizes stem from an exponential distribution.
When the background process is in state i, the arrival rate is λi, the job-size
distribution is exponential with parameter µi, and the rate at which the storage
level decays is ri, for i ∈ {1, . . . , d}.

The change of measure is then implemented as follows. As pointed out in
Section 4.4.1, per run a path f of the background process is sampled under the
original measure P. Suppose along this path there are K transitions (remarking
that, for compactness, we leave out the argument f here), say at times t1 up
to tK ; with t0 = 0 and tK+1 = t, the state between ti and ti+1 is denoted by
ji, for i = 0, . . . ,K. Per run a specific change of measure is to be computed,
parametrised by the ti and ji, as follows.

We define

Pi(u) := P̄ie
rjiu, P̄i := e−rji ti+1

K∏
i′=i+1

e−rji′ (ti′+1−ti′ );
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Figure 4.4: Numerical results for Section 4.4.3: first example.
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Figure 4.5: Numerical results for Section 4.4.3: second example.
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the product in this expression should be interpreted as 1 if i + 1 > K. It is
readily checked that

M(ϑ) =

K∏
i=0

exp

(
λji

∫ ti+1

ti

Pi(u)ϑ

µji − Pi(u)ϑ
du

)
.

Let ϑ? be the maximising argument of ϑa− logM(ϑ).
We can now provide the alternative measure Q for this path of the back-

ground process. The number of arrivals between ti and ti+1 (for i = 0, . . . ,K)
becomes Poisson with parameter∫ ti+1

ti

λji
µji

µji − Pi(u)ϑ?
du =

λji
rji

log

(
µji − P̄ierji tiϑ?

µjie
−rji (ti+1−ti) − P̄ierji tiϑ?

)
=

λji
rji

log

(
µji − P̄ierji tiϑ?

µji − P̄ierji ti+1ϑ?

)
+ λji(ti+1 − ti),

(where it is noted that this expression is larger than λji(ti+1 − ti), which was
the parameter under P). The density of each of the arrivals between ti and ti+1

becomes(
1

µji − Pi(u)ϑ?

)/∫ ti+1

ti

(
1

µji − Pi(v)ϑ?

)
dv

=

(
µji

µji − Pi(u)ϑ?

)/
1

rji
log

(
µji − P̄ierji tiϑ?

µjie
−rji (ti+1−ti) − P̄ierji tiϑ?

)
(rather than a uniform distribution, as was the case under P); sampling from this
distribution is easy, since the inverse distribution function can be determined in
closed form. Given an arrival that takes place at time u between ti and ti+1, the
job size is exponential with parameter µji − Pi(u)ϑ? (rather than exponential
with parameter µji).

We now describe two examples in which the dimension of the background
process is d = 2, q12 = q21 = 2, and t = 1. In the first example we fix
a = 3, λ = (2, 1), µ = ( 1

2 , 1), and r = (5, 1), in the second example a = 0.8,
λ = (0.9, 1), µ = (0.9−1, 1), and r = (0.3, 0.6). As before, we simulate until the
precision of the estimate has reached ε = 0.1. The top two panels in Figs. 4.4–
4.5 should be read as those in Figs. 4.1–4.3; the bottom two panels correspond
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to the density of the arrival epochs and the rate of the exponential job sizes,
respectively, for f the ‘empirical maximiser’ of If (a) (i.e., the maximiser of If (a)

over all paths f of the background process that were sampled in the simulation
experiment).

In the first example the thus obtained ‘optimal path’ successively visits states
1, 2, and 1, where the corresponding jump times are t?1 = 0.654 and t?2 = 0.739,
and the decay rate is 0.573. The mean numbers of arrivals in the three parts
of the optimal path are 1.392, 0.090 and 0.963 respectively, whereas for Monte
Carlo sampling these are 1.308, 0.085 and 0.522 respectively.

In the second example the optimal path successively visits states 2 and 1,
where the corresponding jump time is t?1 = 0.790. In this case the decay rate
has the value 0.000806. The mean numbers of arrivals in the two parts of
the optimal path are 0.812 and 0.195 respectively, which are slightly higher
than the corresponding values under Monte Carlo sampling (0.790 and 0.189

respectively). Observe that in this example the difference between the two
measures is relatively small, also reflected by the small value of the decay rate;
the event under consideration technically qualifies as ‘rare’ in that pn(0.8)→ 0

as n → ∞, but has a relatively high likelihood (e.g. as compared to the first
example). As a consequence of the fact that both measures almost coincide, the
two densities in the bottom-left panel can hardly be distinguished.

We observe that the top panels confirm that in both examples (i) pn(a)

decays roughly exponentially in n, (ii) the number of runs needed grows roughly
linearly in n (in the first example slightly sublinearly).

4.5 Discussion and concluding remarks

In this chapter we have considered the probability of attaining a value in a rare
set A at a fixed point in time t: with A = [a1,∞)× · · · × [aL,∞),

pn(a) = P
(
Y (1)
n (t) > na1, . . . , Y

(L)
n (t) > naL

)
.

A relevant related quantity is the probability of having reached the set A before
t:

P
(
∃s 6 t : Y (1)

n (s) > na1, . . . , Y
(L)
n (s) > naL

)
; (4.16)
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observe that this probability increases to 1 as t→∞. Alternatively, one could
study the probability that all a` (for ` = 1, . . . , L) are exceeded before t, but not
necessarily at the same time:

P
(
∃s1 6 t : Y (1)

n (s1) > na1, . . . ,∃sL 6 t : Y (L)
n (sL) > naL

)
. (4.17)

Powerful novel sample-path large deviations results by Budhiraja and Nyquist
[19], which deal with a general class of multi-dimensional shot-noise processes,
may facilitate the development of efficient importance sampling algorithms for
non-modulated linear stochastic fluid networks. The results in [19] do not cover
Markov modulation, though.

In the current setup of Section 4.4 the speed of the background process is
kept fixed, i.e., not scaled by n. For modulated diffusions a sample-path large
deviation principle has been recently established in [46] for the case that the
background process is sped up by a factor n (which amounts to multiplying the
generator matrix Q by n); the rate function decouples into (i) a part concerning
the rare-event behaviour of the background process and (ii) a part concerning the
rare-event behaviour of the diffusion (conditional on the path of the background
process). With a similar result for the Markov-modulated linear stochastic fluid
networks that we have studied in this chapter, one could potentially set up an
efficient importance sampling procedure for the probabilities (4.16) and (4.17)
under this scaling.

4.6 Appendix A

We here point out how (4.7) can be established; the line of reasoning is precisely
the same as in the derivation of (4.6) in [30, Thm. 3.7.4]. First write

EQ(L2I) = EQ(e−2ϑ?Yn(t)e2n logM(ϑ?)1{Yn(t)>na}) =

e−2nI(a) EQ(e−2ϑ?(Yn(t)−na)1{Yn(t)>na}),

which, with Zn := (Yn(t)− na)/
√
n, equals

e−2nI(a) EQ(e−2ϑ?Zn
√
n1{Zn>0}).



Linear stochastic fluid networks with Markov modulation 109

Observe that EQ Yn = na, due to the very choice of Q. This entails that Zn
converges in distribution to a centred Normal random variable; as can be veri-
fied, the corresponding variance is τ (where τ is defined in (4.6)). Using the
Berry-Esseen-based justification presented in [30, page 111], we conclude that,
as n→∞,

EQ(e−2ϑ?Zn
√
n1{Zn>0}) ∼

∫ ∞
0

e−2ϑ?
√
nx 1√

2πτ
e−x

2/(2τ)dx.

Completing the square, the right-hand side of the previous display equals, with
N (m,v) a normal random variable with mean m and variance v,

e2(ϑ?)2nτ P
(
N (−2ϑ?

√
n τ, τ) > 0

)
= e2(ϑ?)2nτ P

(
N (0, 1) > 2ϑ?

√
nτ
)
.

Now we use the standard equivalence (as x→∞)

P(N (0, 1) > x) ∼ 1

x

1√
2π

e−x
2/2,

to obtain ∫ ∞
0

e−2ϑ?
√
nx 1√

2π
e−x

2/(2τ)dx ∼ 1√
n

1

2ϑ?
√

2πτ
.

Combining the above, we derive the claim:

EQ(L2I) ∼ 1√
n

1

2ϑ?
√

2πτ
e−2nI(a).

We now proceed with the computations underlying (4.13). To this end, first
observe that

L =
dP
dQ

= e−〈ϑ
?,Y n(t)〉en logM(ϑ?).

As a consequence, in line with the above computation for the one-dimensional
case,

EQ(LI) = e−nI(b
?)EQ(e−〈ϑ

?,Y n(t)−na〉1{Y n(t)∈A}),

EQ(L2I) = e−2nI(b?)EQ(e−2〈ϑ?,Y n(t)−na〉1{Y n(t)∈A}).
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It was proven in [23, Thm. 3.4] that

pn(a) = EQ(LI) ∼ 1√
τ

(∏
i∈D

ϑ?i

)−1 (
2πn

)−D/2
e−nI(b

?),

while at the same time

EQ(L2I) ∼ 1√
τ

(∏
i∈D

(2ϑ?i )

)−1 (
2πn

)−D/2
e−2nI(b?).

This immediately leads to (4.13).



5
The stationary limit of a multidimensional

stochastic recursion

In the previous chapters we have analysed both the probability of ever hitting a
multidimensional rare set as well as the probability of hitting a multidimensional
rare set at a fixed time. In this chapter, however, we analyse the stationary
behaviour of a multidimensional stochastic process.

5.1 Introduction

Consider the stochastic recursion in dimension d given by

Xn+1 = AXn +Bn, (5.1)

where Xn and Bn are stochastic column vectors of length d and A is a determ-
inistic d-by-d matrix. Its stationary limit satisfies

X
d
= AX +B (5.2)

when it exists. Of interest is the rare event that (a weighted sum of the com-
ponents of) X exceeds some high level x. More specifically, we consider the
case where the components of B have a light tail. One would expect, since A is

111
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deterministic, that the components of X have a light tail as well.
A large amount of research has been dedicated to Equation (5.2), see e.g. [20].

In [13], various simulation problems in one dimension are considered, where the
focus is on importance sampling. An older article is [42], where the asymptotic
tail behaviour of X is analysed when B has a light tail, again in one dimension.
A more recent paper is [2], where the stability of Equation (5.1) is investigated
when (An, Bn) is modulated by a Markov chain.

It seems that in the multidimensional case, most of the work focuses on
heavy tails, whereas work on the light-tailed settings seems to mostly be done
in the one-dimensional case. The goal of this chapter is to provide results, for a
certain class of cases, for the light-tailed case in higher dimensions.

In Section 5.2, we analyse the relatively simple case of dimension d = 1, in
which A is a constant between zero and one in order to obtain stability. Fur-
thermore, in an attempt to make the calculations easy to follow, we assume
that Bn has an exponential distribution with rate parameter µ (independently
of n). When we analyse the multidimensional model, we will weaken this as-
sumption to that of the components of B having an exponentially decaying tail.
As an exact analysis of the probability of interest seems prohibitive, it is natural
to try to estimate this quantity through simulations. A first approach might
be to apply crude Monte Carlo sampling. However, this is not feasible due to
two reasons: First since the event of interest is rare, a high number of samples
is needed before a good estimation is obtained, see e.g. [3, Chapter VI]. And
second, it is not clear if and how a sample from the distribution of X can be
generated. Therefore, we propose to use a conditional Monte Carlo procedure.
We will show that this procedure solves the efficiency problem. However, the
second problem of not being able to generate from the distribution of X, still
persists. Therefore, we combine the conditional Monte Carlo procedure with
the method from [63]. The key in using this method is that X can be written
as an infinite stochastic sum.

The chapter continues in Section 5.3 with analysing the multidimensional
counterpart of this model. The event of interest is now that of a weighted sum
of the components of X exceeding a large threshold. As in the one-dimensional
case, the goal is to construct an efficient simulation procedure that produces un-
biased samples of the probability at hand. In order to use the method of [63] to
obtain unbiased samples, it is needed that all components of X can, independ-
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ently from each other, be written as an infinite sum, so that each component of
X can be seen as the limit of an approximating sequence. However, in higher
dimensions, the components of X might be dependent on each other through
the matrix A. Therefore, to ensure that the desired infinite-sum representation
still exists, a restriction on the matrix A is needed.

This chapter is organised as follows. Section 5.2 contains the analysis for the
one-dimensional case. First, the model is presented. Furthermore, difficulties in
analysing and simulating the tail probability of X are described. Section 5.2.1
and 5.2.2 provide solutions for efficient and unbiased simulation respectively.
The section ends by presenting numerical results of an implementation of the
simulation procedure as developed in the section. Section 5.3 follows the same
set-up, but then for the multidimensional counterpart of the model in Section
5.2.

5.2 One dimension

Consider the one-dimensional stochastic recursion defined by X0 = 0 and

Xn+1 = aXn + En, n ∈ Z+, (5.3)

with 0 < a < 1 and the En being i.i.d. copies of a random variable E, having
an exponential distribution with rate parameter µ. The stationary distribution
of the sequence (Xn)n∈Z+

is given by letting n → ∞ in Equation (5.3), which
yields

X
d
= aX + E. (5.4)

We want to analyse px := P (X > x) for large x. However, there seems to be no
closed-form expression to calculate this probability exactly. For the exponential
case, though, a lot is known for transforms, see e.g. [43] for a result on the
so-called Mellin transform. This does not scale to higher dimensions, though.
Therefore, other methods are needed to analyse this event. One method is to
estimate px using crude Monte Carlo simulations. This method, however, has
two problems:

1. For large x, the probability px is very small, hence a large number of
simulation runs is required to get a good estimate.
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2. It is not clear if and how samples can be taken from the distribution of
X.

Below, we will first provide solutions to these problems separately. These solu-
tions can then be easily combined into a simulation algorithm that can estimate
px efficiently and unbiasedly.

5.2.1 Fast estimation

In order to solve the problem of crude Monte Carlo simulations requiring a large
amount of runs, we will use a method called conditional Monte Carlo sampling.
For now, we assume that we can sample from X. As the name suggests, this
method involves conditioning on X. Note that

P (X > x) = P (aX + E > x) = P (E > x− aX)

= E (1 (E > x− aX)) = E (E (1 (E > x− aX) |X)) .

Hence, an unbiased estimator for px is

E (1 (E > x− aX) |X) . (5.5)

This can be rewritten as

E (1 (E > x− aX) |X) = F̄ (x− aX) = e−µ(x−aX) ∧ 1,

where we used that the complementary distribution function of E has a closed-
form expression. Hence, in order to estimate px, we first take a sample from X

and then substitute the value in the formula above.
We now proceed to show that this procedure is indeed “fast” in the sense

that bounded relative error is achieved. However, we can only prove this for
a < 1

2 . We will later show how this method can be adapted so that bounded
relative error is obtained for all a < 1.

Theorem 5.2.1. The simulation procedure described above has bounded relative
error only for a < 1

2 .

Proof. We first look at the first moment of the estimator. We can apply [31, Pro-
position 4.1], since E

(
eaµE

)
<∞. We write f(x) ∼ g(x) if limx→∞ f(x)/g(x) =
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C for some C > 0.

P (X > x) = E
(
F̄ (x− aX)

)
=

∫ ∞
0

P
(
F̄ (x− aX) > z

)
dz

=

∫ 1

0

P
(
e−µ(x−aX) > z

)
dz

=

∫ 1

0

P
(
X >

ln(z) + µx

µa

)
dz

∼
∫ 1

0

P
(
E >

ln(z) + µx

µa

)
dz

= e−µx +

∫ 1

e−µx
e−

ln(z)+µx
a dz

= e−µx + e−µx/a
∫ 1

e−µx
z−1/a dz

= e−µx + e−µx/a
a

−1 + a
(1− e−µx

−1+a
a ).

Note that for all 0 < a < 1, this decays like e−µx. Assume now that a 6= 1
2 .

Then, similarly, we get for the second moment

E
(
F̄ 2(x− aX)

)
=

∫ 1

0

P
(
e−2µ(x−aX) > z

)
dz

∼
∫ 1

0

P
(
E >

ln(z) + 2µx

2µa

)
dz

= e−2µx +

∫ 1

e−2µx

e−
ln(z)+2µx

2a dz

= e−2µx + e−µx/a
2a

−1 + 2a
(1− e−µx

−1+2a
2a ).

Note first that 1
a + −1+2a

2a = 1+2a
2a . When a < 1

2 , this is larger than or equal
to 2. Therefore, in this case, the second moment decays like e−2µx. Comparing
this to the first moment, as calculated above, we can conclude that in this case,
bounded relative error is achieved. When a > 1

2 , the second moment decays like
e−µx/a. Hence, bounded relative error is not achieved.
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Let’s finally consider the case a = 1
2 . Then

E
(
F̄ 2(x− aX)

)
=

∫ 1

0

P
(
e−2µ(x−aX) > z

)
dz

∼
∫ 1

0

P
(
E >

ln(z) + 2µx

2µa

)
dz

= e−2µx +

∫ 1

e−2µx

e−
ln(z)+2µx

2a dz

= e−2µx + e−µx/a2µx = e−2µx(1 + 2µx).

The factor (1 + 2µx) makes that bounded relative error is not achieved. Note,
however, that the weaker optimality notion of asymptotic optimality is achieved.

We will now show that a similar result holds for all a < 1 if we change the
procedure in the following way. Note that we can iterate Equation (5.3) so that
we obtain

Xn+2 = aXn+1 + En+1

= a(aXn + En) + En+1

= a2Xn + aEn + En+1

= a2Xn + E
(2)
n+1

Since a E(2)
n+1 has an exponentially decaying tail, this seems to suggest that we

can find a conditional Monte Carlo procedure that attains bounded relative error
when a2 ≤ 1

2 . If this is indeed the case, then by iterating Equation (5.3) further,
it can be expected that an efficient Monte Carlo procedure can be constructed
when an ≤ 1

2 for some n ∈ N. This effectively gives us an efficient procedure for
all a < 1. Before describing this procedure and proving its efficiency, we first
give a lemma that will be used multiple times in this chapter.

Lemma 5.2.2. Let E1, . . . , En be independent non-negative random variables
with an exponentially decaying tail, i.e., we have

P (Ei > x) = cie
−µix(1 + o(1)),
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for some µi, ci > 0. Define µ := mini=1,...,n µi. Then

P

(
n∑
i=1

Ei > x

)
= ce−µx(1 + o(1)),

for some c > 0.

Proof. In order to simplify the proof, we assume that all µi are unique. As-
sume further without loss of generality that the Ei are ordered by their decay
parameter. We thus have µ = µ1 < µ2 · · · < µn.

We will use an iterative argument. Assume first that we have two terms,
i.e., n = 2. Define

X := eE1 , Y := e
∑n
i=2 Ei .

This allows us to write

P

(
n∑
i=1

Ei > x

)
= P (XY > ex) .

Note that
E (Y µ) <∞,

by uniqueness of the µi, and that

P (X > x) = P (E1 > ln(x)) = c1x
−µ1(1 + o(1)),

P (Y > x) = P

(
n∑
i=2

Ei > ln(x)

)
= c2x

−µ2(1 + o(1)).

Note that c1(1+o(1)) is slowly varying and converges to c1. And lastly, we have

lim
x→∞

P (Y > x)

P (X > x)
= lim
x→∞

P (
∑n
i=2Ei > ln(x))

P (E1 > ln(x))
= 0.

Therefore, we can apply Proposition 2.1 of [31] to conclude that

P (XY > ex) ∼ E (Y µ)P (X > ex) =

E
(
eµ

∑n
i=2 Ei

)
P (E1 > x) = c1E

(
eµ

∑n
i=2 Ei

)
e−µx(1 + o(1)).
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These steps can be repeated iteratively for n = 3, 4, . . . so that the conclusion
of the lemma follows.

Let E(k) d
=
∑k
i=1 a

i−1Ei. Note that

X(n+1)k = akXnk + E(k)
n , n ∈ Z+, k ∈ N. (5.6)

The limit is given by

X
d
= akX + E(k), k ∈ N. (5.7)

Before we give the estimator, note that from Lemma 5.2.2 we can conclude that
P
(
E(k) > x

)
= e−µx(C + o(1)) for some C > 0. In fact, the exact expression

can be calculated. The density of E(k), see e.g. [1, Theorem 2.1], is

k∑
i=1

µ1 · · ·µk∏d
j=1,j 6=i(µj − µi)

e−xµi ,

where µi := µ/ai−1 (we use that µi 6= µj for i 6= j). In line with the previous
case, we use as estimator

E (P (X > x) |X) = E
(
P
(
akX + E(k) > x

)
|X
)

=

E
(
P
(
E(k) > x− akX

)
|X
)

= F̄ (k)(x− akX),

where F̄ (k) is the complementary distribution function of E(k).

Theorem 5.2.3. Let k be such that ak < 1
2 . The simulation procedure described

above has bounded relative error.

Proof. Note that, for x large enough, it follows from Lemma 5.2.2 that there
exist 0 < m ≤M <∞ such that me−µx ≤ P

(
E(k) > x

)
≤Me−µx. As we don’t

want to show anymore that bounded relative error is not achieved when a ≥ 1
2 ,

we present a proof that is more crude than the proof of Theorem 5.2.1. Note
that

E
(
F̄ (k)(x− akX)

)
≥ me−µxE

(
ea
kµX

)
.
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Similarly, for the second moment we have

E
([
F̄ (k)(x− akX)

]2)
≤M2e−2µxE

(
e2akµX

)
,

where we need that ak < 1
2 to ensure that E

(
e2akµX

)
<∞.

It should be noted that, when implementing the described procedure, it is
desirable to choose k as the smallest integer such that ak < 1

2 , as each run
requires sampling k exponentially distributed random variables. Likewise, for
values of a close to 1, k will be high, so that the computational effort will be
relatively high as well.

5.2.2 Unbiased sampling

In the previous part, we have seen that, if we can sample from the distribution
of X, an efficient simulation algorithm exists. However, it is not clear if and
how a sample from X can be obtained. We will remedy this by applying the
algorithm from [63], which does not give us a sample from the distribution of
X itself, but it will provide us with an unbiased estimator of px. Below, we will
first briefly explain how the algorithm works in a general setting. Afterwards,
we describe how the algorithm can be applied to our setting.

The method of [63] is used for estimating α := E (Y ) for some random
variable Y , when samples from Y can not be generated in finite time. This can
be resolved if one has access to a sequence (Yn)n∈Z+

of L2-approximations, from
which samples can be generated in finite time. We will then use one of the three
estimators from [63], called the single-term estimator. Let Y−1 := 0 and let N
be a non-negative discrete random variable for which pn := P (N = n) > 0 for
all n ∈ Z+. The single-term estimator then is defined as

Z =
YN − YN−1

pN
.
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The result from [63] that we will use is Theorem 1, which states that if

∞∑
n=1

E
(
(Yn−1 − Y )2

)
P (N ≥ n)

<∞, (5.8)

then Z is an unbiased estimator for α and

E
(
Z2
)

=

∞∑
n=0

E
(
(Yn − Yn−1)2

)
pn

<∞, (5.9)

where this second moment is given on page 1030 of [63].
We will now apply the algorithm to our setting. At the heart of applying

the algorithm is iterating (5.3). Using that X0 = 0, we can write

Xn =

n−1∑
k=0

an−1−kEk
d
=

n−1∑
k=0

akEk, n ∈ N. (5.10)

For the stationary distribution we then get

X
d
=

∞∑
k=0

akEk. (5.11)

Using the estimator we used above, we can write

P (X > x) = E
(
e−µ(x−aX) ∧ 1

)
= E

(
e−µ(x−a

∑∞
k=0 a

kEk) ∧ 1
)
.

In the setting of [63], we have

Y = e−µ(x−a
∑∞
k=0 a

kEk) ∧ 1

and we set
Yn := e−µ(x−a

∑n
k=0 a

kEk) ∧ 1, n ∈ Z+.

By first using the upper bound on Y and by checking the three cases that can
occur for the values of Yn and Y (that is, Yn = Y = 1 or Yn < 1, Y = 1 or
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Yn < 1, Y < 1), it can be verified that

E
(
(Y − Yn)2

)
= E

(
Y 2

(
1− Yn

Y

)2
)

≤ E

(
1×

(
1− Yn

Y

)2
)

≤ E

(1− e−µ(x−a
∑n
k=0 a

kEk)

e−µ(x−a
∑∞
k=0 a

kEk)

)2


= E
((

1− e−aµ
∑∞
k=n+1 a

kEk
)2
)
.

We now use that (1 − e−x)2 ≤ x2 for x ≥ 0 so that an upper bound for
E
(
(Y − Yn)2

)
is

E

(aµ ∞∑
k=n+1

akEk

)2
 = E

(an+2µ2
∞∑
k=0

akEk

)2
 = a2n+4µ2E

(
X2
)
.

From [36, Proposition 8.4.3] we know that the second moment of X is finite.
Hence, E

(
(Y − Yn)2

)
converges to zero not slower than Ca2n for some C > 0.

This result allows us to choose a suitable distribution for N . Let b such that
a2 < b < 1. We define N such that

P (N ≥ n) = bn, n ∈ Z+,

i.e., N has a geometric distribution with success parameter 1 − b and support
Z+. Then (5.8) is satisfied.

In order to analyse the efficiency of the estimator Z, we need to calculate its
first two moments. Since the estimator is unbiased, its first moment equals px.
We will show that the second moment (given in (5.9)) behaves like the second
moment of the estimator used in the previous subsection. The steps used are
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similar to showing how E
(
(Y − Yn)2

)
behaves.

E
(
Z2
)

=

∞∑
n=0

E
(
(Yn − Yn−1)2

)
pn

=

∞∑
n=0

E
(
Y 2
n−1

(
Yn
Yn−1

− 1
)2
)

pn

≤
∞∑
n=0

E

(
Y 2
n−1

(
e−µ(x−a

∑n
k=0 a

kEk)

e−µ(x−a
∑n−1
k=0

akEk)
− 1

)2
)

pn

∗
=

∞∑
n=0

E
(
Y 2
n−1

(
eaµa

nEn − 1
)2)

pn

=

∞∑
n=0

E
(
Y 2
n−1

) 1
1−2an+1 − 2

1−an+1 + 1

bn(1− b)

≤
∞∑
n=0

E
(
Y 2
) 1

1−2an+1 − 2
1−an+1 + 1

bn(1− b)
.

Note that we need that a < 1
2 to ensure that at the step with the asterisk, all

terms are finite. We are done if we can show that the series above converges.
The numerator of the fraction is equal to

1− an+1 − 2(1− 2an+1) + (1− 2an+1)(1− an+1)

(1− 2an+1)(1− an+1)

=
1− an+1 − 2(1− 2an+1) + (1− 2an+1)(1− an+1)

1− 3an+1 + 2a2n+2

=
2a2n+2

1− 3an+1 + 2a2n+2
.

Since a2/b < 1, we can conclude that

E
(
Z2
)
≤ CE

(
Y 2
)
,

for some C that is constant in x. Hence, from Theorem 5.2.1 we can conclude
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that bounded relative error is achieved for a < 1
2 .

The next step would be to try to adapt this method in order to obtain
bounded relative error for all a < 1. This can be done by combining the current
method with the method as described in Section 5.2.1. The arguments used in
the current section, although more tedious, carry over to this case.

5.2.3 Numerical results

In Figures 5.1, 5.2 and 5.3, we present the results of some numerical experiments.
For the results of “unbiased” we used the combination of the methods described
above, so that we get unbiased estimators that have bounded relative error for
all a < 1. For “biased”, we still used the conditional Monte Carlo method.
However, we didn’t use the method of [63] to obtain unbiased samples. Instead,
we took the first hundred terms of the infinite-sum representation (5.11). More
importantly, we didn’t use the iterative method in order to obtain bounded
relative error for all a < 1, which is the cause of the method requiring many
runs. We stopped a simulation run when the 95% confidence interval had a
precision of 10% or less, or when a certain number of runs were used (2000,
2000 and 10000 respectively). Refer to the captions for the numerical values of
the parameters.

It can be seen that in the case that a < 1
2 (i.e., Figure 5.1), our algorithm

(“unbiased”) performs worse (in number of runs) than the standard algorithm
(“biased”). This can be explained by the extra variance that the algorithm of
[63] induces. When a > 1

2 (i.e., Figures 5.2 and 5.3), our algorithm outperforms
the standard algorithm (where the iterative method is not used) as x grows,
since a < 1

2 is required to obtain bounded relative error. The variance induced
by the method of [63] probably explains why our algorithm performs worse for
small values of x.

5.3 Multiple dimensions

In this section, we will analyse the multidimensional counterpart of the one-
dimensional model as described in the previous section. Let X0 be the d-
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Figure 5.1: We set a = 0.45 and µ = 1.
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Figure 5.2: We set a = 0.75 and µ = 1.
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Figure 5.3: We set a = 0.95 and µ = 1.
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dimensional zero-vector and define recursively

Xn+1 = AXn +Bn, n ∈ Z+, (5.12)

where A is a d-by-d (constant) matrix and Bn is a d-dimensional stochastic
vector. Its stationary limit satisfies

X
d
= AX +B, (5.13)

if it exists. From here on, we will assume that the stationary limit indeed exists,
see e.g. [20, Section 4.1.1] for a discussion on necessary and sufficient conditions
for existence of the limit. We will assume that the components of B, denoted
by B(1), . . . , B(d), have an exponentially decaying tail, i.e., P (B(j) > x) =

cje
−µjx(1 + o(1)) for j = 1, . . . , d.
Let u ≥ 0 be a d-dimensional row vector such that

∑d
j=1 u(j) = 1. The

probability of interest is P (uX > x).
As in the one-dimensional case, we will make use of the following represent-

ation for X:

X
d
=

∞∑
k=0

AkBk. (5.14)

However, this representation has two problems that don’t exist in the one-
dimensional counterpart. First, this representation involves powers of A, which
are hard to calculate in general. And second, we can not explicitly write the
individual components of X in an infinite-sum representation, since they might
depend on each other through A. We will see how this is a problem when trying
to construct a method to get an unbiased estimator. To solve both of these prob-
lems, we will assume that A is diagonalisable, i.e., we can write A = SΛS−1,
where Λ is a diagonal matrix containing the eigenvalues of A. This clearly solves
the problem that powers of A are hard to calculate. We will see below how this
solves the second problem as well. We will have to make one more assumption,
namely that all eigenvalues of A are in absolute value smaller than one.

5.3.1 Fast estimation

As in the one-dimensional case, we will first show how bounded relative error
can be achieved using a conditional Monte Carlo algorithm, assuming that we
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can sample from the distribution of X.
Similarly to the one-dimensional case, the estimator that will be used is

F̄ (x− uAX) , (5.15)

where F̄ (x) := P (uB > x). Let µ? := min1≤j≤d{ µj
u(j)}. From Lemma 5.2.2 we

can conclude that there exists some M > 0 such that

F̄ (x) ≤Me−µ
?x.

Hence, for the second moment of the estimator we get

E
(
F̄ 2 (x− uAX)

)
≤M2e−2µ?xE

(
e2µ?uAX

)
.

If the moment generating function above exists, bounded relative error is indeed
achieved. This is the case when the largest element of uA is smaller than 1

2 .
If this is not the case, however, we need to adapt the procedure. We will

use the multidimensional counterpart of (5.6). Let B(k) d
=
∑k
i=1A

i−1Bk. This
allows us to write

X
d
= AkX +B(k). (5.16)

Let furthermore
γ := min

k∈Z+

min
j=1,...,d

µj
(uAk)(j)

. (5.17)

Note that γ can be interpreted as the slowest decay rate of the tail probability
of a (weighted) component of B(k) for all k.

Define F̄ (k)(x) := P
(
uB(k) > x

)
.

Theorem 5.3.1. Let k? be larger than the optimiser in Equation (5.17) such
that (uAk

?

)(j) < 1
2 for j = 1, . . . , d. Then the estimator

F̄ (k?)
(
x− uAk

?

X
)

has bounded relative error as x→∞.

Proof. Note that γ is defined such that there are m,M > 0 (see Lemma 5.2.2)
such that

me−γx ≤ F̄ (k?)(x) ≤Me−γx.
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Hence, for the first moment of the estimator we get

E
(
F̄ (k?)

(
x− uAk

?

X
))
≥ me−γxE

(
eγuA

k?X
)

and likewise we get for the second moment

E
(

(F̄ (k?))2
(
x− uAk

?

X
))
≤M2e−2γxE

(
e2γuAk

?
X
)
.

5.3.2 Unbiased sampling

As in the one-dimensional case, we have shown that a fast simulation algorithm
exists if we can sample from (X,Y ). However, it is again not clear if and how
this can be done. Therefore, we will show, in two dimensions, how the method
of [63] can be applied.

In order to be able to use the estimator given in (5.15), we need to write
all the components of X in infinite-sum representation. As mentioned above,
this is not possible for general A, since these components might depend on each
other through A. Therefore, we imposed the restriction that A needs to be in
the set of diagonalisable matrices. Under this restriction, note that (5.13) can
be rewritten as

X
d
= SΛS−1X +B.

If we pre-multiply both sides with S−1, this is equivalent to

S−1X
d
= ΛS−1X + S−1B.

Note that this can be seen as a stochastic equation for X̃ := S−1X, so that we
can write

X̃
d
= ΛX̃ + S−1B.

Since Λ is diagonal, the components of X̃ can be written in infinite-sum repres-
entation. Indeed,

X̃(j)
d
=

∞∑
n=0

λnj (S−1Bn)(j), j = 1, . . . , d.
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Moreover, we can combine this with (5.16). From

X
d
= SΛkS−1X +B(k),

we obtain
X̃

d
= ΛkX̃ + S−1B(k).

We will use this in finding a suitable estimator. Let k? be as in Theorem 5.3.1.
We can write

F̄ (k?)
(
x− uAk

?

X
)

= F̄ (k?)
(
x− uSΛk

?

S−1X
)

= F̄ (k?)
(
x− uSΛk

?

X̃
)

= F̄ (k?)
(
x− uSΛk

?

(
∑∞
k=0(λk

?

j )k(S−1B
(k?)
k )(j) )j=1,...,d

)
.

Define B̃(k?)
n := (

∑n
k=0(λk

?

j )k(S−1B
(k?)
k )(j) )j=1,...,d for n ∈ Z+ ∪ {∞}. In the

setting of [63] (see Section 5.2.2 for a short overview of the method), we have
that Y = F̄ (k?)

(
x− uSΛB̃

(k?)
∞

)
and we set Yn := F̄ (k?)

(
x− uSΛB̃

(k?)
n

)
. We

choose N such that P (N ≥ n) = bn, with 0 < b < 1 such that b > λ2k?

j for all
j.

Theorem 5.3.2. The procedure as described above satisfies (5.8). Moreover,
the procedure has bounded relative error.

Proof. We will first show that (5.8) is satisfied. Note that F̄ (k?)(x) = Me−γx(1+

o(1)). Using that Yn ≤ Y ≤ 1, we get

E
(
(Y − Yn)2

)
= E

(
Y 2

(
1− Yn

Y

)2
)

≤ E

(
1×

(
1− Yn

Y

)2
)

∼ E

(1− e−γ(x−uSΛB̃(k?)
n )

e−γ(x−uSΛB̃
(k?)
∞ )

)2

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= E
((

1− e−γuSΛ(B̃(k?)
∞ −B̃(k?)

n )
)2
)
.

Now note that B̃(k?)
∞ − B̃(k?)

n
d
= Λn+1B̃

(k?)
∞ . Hence, the last expression in the

display above is equal to

= E
((

1− e−γuSΛn+2B̃(k?)
∞

)2
)

= E
((

1− e−γuSΛn+2X̃
)2
)

= E
((

1− e−γuSΛn+2S−1X
)2
)

= E
((

1− e−γuA
n+2X

)2
)
.

Define λ? := max{|λj |}. Note that there exists some s > 0 such that

max
i,j
{|Sij |} ×max

i,j
{|S−1

ij |} ≤ s

and therefore it follows that, since u ≥ 0 and sums to unity,

(uAn)j ≤ s(λ?)n.

Therefore, the second moment above is smaller than or equal to

E
((

1− e−γsλ
n+2 max1≤j≤d{|X(j)|}

)2
)
.

We again use that (1− e−x)2 ≤ x2 for x ≥ 0, so that the following is an upper
bound for the expression above:

E

((
γsλn+2 max

1≤j≤d
{|X(j)|}

)2
)
.

It follows, from the choice of b, that (5.8) is indeed satisfied.
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5.3.3 Numerical results

In Figures 5.4 and 5.5, we present the results of some numerical experiments.
We stopped a simulation run when the 95% confidence interval had a precision
of 10% or less, or when 2000 runs were used. Refer to the captions for the
numerical values of the parameters. In both cases, k? = 1.

In both figures it can be seen that the asymptotic regime is attained for
low values of x. The bounded number of runs confirms that the method has
bounded relative error.

5.4 Concluding remarks

We have shown that it is possible to develop asymptotic estimates, as well
as computational algorithms for a class of multidimensional light-tailed non-
Gaussian stochastic recursions. A drawback of our method is that it is restricted
to deterministic matrices A, and it is of interest to develop methods to handle
the case of random A as well. In addition, we think that the procedure of using
conditional Monte Carlo can be useful in other rare event simulation problems
as well. The essential feature that seems to make this approach work is that the
rare event here is a single big jump of one of the summands, that occurs after
O(1) time, and it would be of interest to formalise this for other Markov chains.



The stationary limit of a multidimensional stochastic recursion 133

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

level to reach

pr
ob

ab
ili

ty

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

1e
−

55
1e

−
31

1e
−

07

level to reach

pr
ob

ab
ili

ty

●

●
●

●
●

●

●

●
●●●●●

●

●

●●
●
●

●●

●
●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●
●●

●

●

●
●

●

●

●●●●

●●
●●
●

●●

●
●
●

●

●

●

●

●
●

●

●

●
●

●
●●
●●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●●
●
●

●

●
●

●

●

●
●

●

●
●
●●●

●

●

●●
●
●

●

●
●●
●

●●
●●●

●

●
●
●
●
●●
●

●
●
●
●

●

●

●
●
●
●
●

●

●
●
●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●
●

●
●

●●●

●
●

●
●●

●

●●●

●●

●
●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●●

●

●●

●

●
●

●

●
●
●
●
●
●

●

●
●●

●●●●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●●●
●

●

●●

●
●
●

●

●

●

●

●

●

●●●
●
●
●●
●

●
●●●

●

●●

●
●
●

●
●

●●●

●

●
●
●
●

●●
●
●●

●

●
●
●●
●

●

●

●
●

●

●

●
●

●●
●
●

●
●
●

●

●

●

●
●●

●

●

●
●●
●●
●
●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●
●
●

●

●●
●
●

●

●

●

●

●

●●●
●●
●

●

●
●
●●

●

●

●●●

●

●

●

●
●

●

●●
●

●

●●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●
●
●
●
●
●
●
●

●
●●●●●
●●
●

●

●

●

●

●

●

●

●●●
●●

●

●●

●

●

●
●

●
●
●

●

●●

●

●

●●

●●

●
●

●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●
●
●
●●

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00

level to reach

nu
m

be
r 

of
 r

un
s

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●●

●●

●
●
●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

0 10 20 30 40 50

0.
00

0.
02

0.
04

level to reach

ru
nn

in
g 

tim
e 

(s
)

Figure 5.4: We used A = ( 0.2 0
0.4 0.3 ), u = 0.4, v = 0.6, µ1 = 1 and µ2 = 2.



134 5.4. Concluding remarks

●●

●
●
●
●
●●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●
●

●●

●●
●●

●

●●

●●●

●●
●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

level to reach

pr
ob

ab
ili

ty

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50

1e
−

24
1e

−
14

1e
−

04

level to reach

pr
ob

ab
ili

ty

●●
●
●●●●
●

●

●

●
●
●●●

●●●●
●
●●
●
●

●
●●

●

●
●
●●●

●

●●
●
●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0 10 20 30 40 50

0
50

0
10

00
15

00
20

00

level to reach

nu
m

be
r 

of
 r

un
s

●●
●
●
●
●
●
●

●
●

●
●
●●
●

●
●●
●●
●

●

●
●

●
●●

●

●
●
●●●

●

●
●●
●
●●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●●

●
●●

●

●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0 10 20 30 40 50

0.
00

0.
05

0.
10

0.
15

level to reach

ru
nn

in
g 

tim
e 

(s
)

Figure 5.5: We used A = ( 0.2 0
0.8 0.3 ), u = 0.4, v = 0.6, µ1 = 0.5 and µ2 = 0.7.
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Summary

Rare-event simulation for multidimensional stochastic models

Stochastic models are often used to model real world phenomena. However,
many of these models are too complicated to analyse exactly. Therefore, sim-
ulation is often used in order to estimate the quantities of interest. As the
focus of this thesis is on rare events, naive Monte Carlo sampling is not a good
method, as it requires a high number of runs, and thus a high running time.
Therefore, we focus on finding efficient rare-event simulation methods, using
importance sampling, partitioned importance sampling and conditional Monte
Carlo sampling.

Many results already exist for one-dimensional models. However, these res-
ults rarely carry over to a multidimensional setting, which is much harder to
analyse. Therefore, and because of their ability to model real world processes
better, we focus on rare-event estimation for multidimensional models. More
specifically, we focus on two-dimensional models, as they are easier to analyse,
and the results carry over to higher dimension easier than in the case from one
dimension to two.

Several rare-event simulation algorithms are developed. Their efficiency is
illustrated both by using theoretical means as well as by showing the results of
numerical experiments. Furthermore, a number of large deviations results are
presented as well.

This thesis starts by introducing various mathematical concepts that are
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required to understand the rest of the content. The introduction contains theory
on rare event simulation, queueing processes, random walks and large deviations
theory. It also discusses some of the complications that can arise when using
rare event simulation techniques in multiple dimensions.

The first results are presented in Chapter 2. There, we analyse a two-
dimensional ruin probability, which is the event that both components of a
stochastic process exceed a high level at the same time. We provide several
expressions for the decay rate of this probability. Furthermore, we give an
importance sampling algorithm for a special case of the model at hand, and
show that it is asymptotically efficient. This result is supported by several
numerical experiments.

Chapter 3 is closely related to Chapter 2. The event of interest is again that
of both components of a stochastic process exceed a high level. The difference
with the previous chapter is that now the components of the process are allowed
to reach the high level at different times. Again, an expression for the decay rate
is given. We then show that a ‘naive’ implementation of importance sampling is
not necessarily asymptotically efficient. We introduce a technique, which we call
partitioned importance sampling, and we show that it is indeed asymptotically
efficient. Also, this result is illustrated by numerical experiments.

In Chapter 4 we consider a linear stochastic fluid network under Markov
modulation. We analyse the probability of the event that the joint storage level
ever attains a value in some rare set. We develop an importance sampling al-
gorithm and provide its efficiency properties in various settings. Some numerical
results are shown as well.

Chapter 5 focuses on the stationary distribution of a stochastic recursion.
The goal is to estimate the probability that the stationary process has a large
value. We provide a conditional Monte Carlo algorithm that can estimate this
probability both efficiently (we show that bounded relative error is attained)
and unbiased in finite running time.



Dankwoord – Acknowledgments

Met het schrijven van dit dankwoord komt er een einde aan ruim vier jaar on-
derzoek. Het maken van een proefschrift is geen gemakkelijke opgave, maar ik
kan vooral terugkijken op een heel leuke tijd. Dit komt ook omdat ik de afge-
lopen vier jaar, direct en indirect, veel hulp heb gekregen van diverse personen.
Ik wil dan ook gebruik maken van deze gelegenheid om mijn dank te betuigen
aan iedereen die me heeft ondersteund.

Als eerste wil ik mijn begeleiders bedanken. De afgelopen jaren heb ik met
veel plezier met jullie samengewerkt. Jullie hebben me, in goede en in minder
goede tijden, altijd het vertrouwen gegeven, waarvoor veel dank. Ik herinner me
ook de besprekingen die we regelmatig met z’n drieën hadden, waarin jullie vaak
tegen het einde, op nuchtere wijze, de ins en outs van de academische wereld
bespraken. Bert, jouw kennis en doorzettingsvermogen zijn een grote inspiratie
voor mij. Als ik ergens niet uitkwam wist jij me altijd op weg te helpen met
een nieuwe aanpak en jouw vermogen om alle literatuur die ook maar enigszins
relevant is uit je hoofd te kennen is indrukwekkend. Michel, jouw optimisme en
betrokkenheid hebben me altijd weer weten te motiveren. Jouw enthousiasme
voor de wiskunde uitte zich vaak in het direct uitproberen van nieuwe ideeën
op het bord. Al met al had ik me geen betere begeleiders kunnen wensen.

Ook wil ik alle leden van de promotiecommissie, Daan Crommelin, Ad Rid-
der, Ivo Adan, Sem Borst en Onno Boxma bedanken voor hun bereidheid om
deel te nemen aan de commissie. Dankzij jullie commentaar is dit proefschrift
aanzienlijk verbeterd.

145



146

My project was part of an NWO TOP-project. I want to thank all the people
involved with this project, Onno Boxma, Stella Kapodistria, David Koops,
Michel Mandjes, Sindo Núñez-Queija, Mayank Saxena and Bert Zwart, for the
many insightful meetings that we had. In particular, I want to thank Onno and
David, who are co-authors of the paper on which Chapter 4 is based.

My research took place in the Stochastics group of the CWI, Amsterdam.
I want to thank all people who are and were part of this group for the many
breaks we spent together, for the countless hours of playing table tennis, for
introducing me to bouldering and for their support. Many thanks also go to the
colleagues of other groups and institutions for their pleasant company. A special
thanks goes to my roommate Bart for our many discussions, for his willingness
to listen to my problems and for the many fun moments that we shared.

Muziek is een van de mooiste dingen die er is en misschien wel de mooiste toe-
passing van wiskunde die bestaat. Daarom wil ik Harmonie Orkest Amstelveen
bedanken. De repetities op donderdagavond en de vele optredens boden aange-
name momenten van onstpanning, in het bijzonder als datgene wat we wisten
te produceren “grenst aan het muzikale”.

Naast muziek maken zijn er andere bezigheden die het leven een stukje
prettiger maker. Daarom wil ik spellenclub Tyche bedanken voor de gezel-
lige maandagavonden en wil ik stichting Kinderland Amstelveen danken voor
de fijne zomers.

Ik voel mij vereerd met de fijne personen die ik mijn vrienden mag noemen.
Jullie weten me altijd op te vrolijken en ik heb dan ook fijne herinneringen aan de
vele spelletjesdagen, de feestjes, de filmavonden, het samen koken (en afwassen)
en de vele andere momenten. Jullie worden daarvoor hartelijk bedankt!

I am very grateful for my paranymphs Bohan and Marjolein for their support
and friendship throughout the years. We have spent many fun moments together
and I have always been able to count on you. I am very happy to have you at
my side during my defence.

Tot slot wil ik het woord richten tot mijn broertje, vader en moeder. Jullie
hebben me altijd gesteund en stonden altijd voor me klaar met veel liefde, een
luisterend oor, advies en chocola. Ik wil jullie daar dan ook voor bedanken en
zeggen dat ik heel veel van jullie hou.

Ewan Cahen
Amsterdam, december 2018



About the author

Ewan was born on 17 December 1990 in Amsterdam, the Netherlands. He
obtained his atheneum diploma at the Keizer Karel College in Amstelveen in
2009. From 2009 to 2012, Ewan proceeded to study Mathematics at the Vrije
Universiteit Amsterdam. For the results of the first year of his study, Ewan
was awarded a Young Talent Incentive Award from the Royal Holland Soci-
ety of Sciences and Humanities. Ewan obtained his bachelor’s degree cum
laude. Subsequently, he completed the master’s programme Mathematics at
the same university in 2014. In September 2014, he started a PhD project at
Centrum Wiskunde & Informatica in the Stochastics group under the supervi-
sion of Michel Mandjes and Bert Zwart. The results of this project are presented
in this dissertation.

147




	Introduction
	Rare event simulation
	Queueing processes and random walks
	Large deviations theory
	Complications in multiple dimensions
	Contributions

	A multi-dimensional ruin problem
	Introduction
	Logarithmic asymptotics under Gärtner-Ellis conditions
	Efficient estimation in a fluid model
	Analysis of the fluid model
	Simulation: construction of an efficient method
	Numerical results

	Outlook
	Proof of Theorem 2.3.1

	Large delay probabilities in two correlated queues
	Introduction
	Model description and preliminaries
	The model
	Preliminaries from large deviations

	Large deviations result
	Importance sampling and efficiency
	Partitioned importance sampling
	Numerical results
	The model
	Variable level
	Variable covariance
	Variable number of intervals

	Proof of Theorem 3.3.1
	Concluding remarks

	Linear stochastic fluid networks with Markov modulation
	Introduction
	Single resource, no modulation
	Preliminaries
	Tail probabilities, change of measure
	Efficiency properties of the IS procedure
	Simulation experiments

	Multi-node systems, no modulation
	Preliminaries
	Tail probabilities, change of measure
	Efficiency properties of the IS procedure
	Simulation experiments

	Multi-node systems under Markov modulation
	Tail probabilities, change of measure
	Efficiency properties of the IS procedure
	Simulation experiments

	Discussion and concluding remarks
	Appendix A

	The stationary limit of a multidimensional stochastic recursion
	Introduction
	One dimension
	Fast estimation
	Unbiased sampling
	Numerical results

	Multiple dimensions
	Fast estimation
	Unbiased sampling
	Numerical results

	Concluding remarks

	Bibliography
	Summary
	Dankwoord – Acknowledgments
	About the author

