
VOL. E101-A NO. 11
NOVEMBER 2018

The usage of this PDF file must comply with the IEICE Provisions
on Copyright.
The author(s) can distribute this PDF file for research and
educational (nonprofit) purposes only.
Distribution by anyone other than the author(s) is prohibited.

1880
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

PAPER
A New Discrete Gaussian Sampler over Orthogonal Lattices

Dianyan XIAO†a), Yang YU††b), Nonmembers, and Jingguo BI†c), Member

SUMMARY Discrete Gaussian is a cornerstone of many lattice-based
cryptographic constructions. Aiming at the orthogonal lattice of a vector,
we propose a discrete Gaussian rejection sampling algorithm, by modify-
ing the dynamic programming process for subset sum problems. Within
O(nq2) time, our algorithm generates a distribution statistically indistin-
guishable from discrete Gaussian at width s > ω(log n). Moreover, we
apply our sampling algorithm to general high-dimensional dense lattices,
and orthogonal lattices of matrices A ∈ ZO (1)×n

q . Compared with previous
polynomial-time discrete Gaussian samplers, our algorithm does not rely
on the short basis.
key words: discrete Gaussian, rejection sampling, dynamic programming,
orthogonal lattice

1. Introduction

Lattice-based cryptography is the most promising candidate
for conventional cryptography, especially in the upcoming
era of quantum computing. Recently, a great deal of lattice-
based cryptographic schemes were proposed, including trap-
door design [1], [2], public key encryption [3], digital signa-
ture [1], [4], identity-based encryption [1], [4], [5] and func-
tional encryption [6]. Efficiently sampling a lattice point
following discrete Gaussian is often a crucial primitive ele-
ment in these cryptographic constructions.

Many discrete Gaussian sampling algorithms for cryp-
tographic purpose have been developed since the trapdoor
of [1] was proposed. A classical sampler is the randomized
variant of Babai’s nearest-plane algorithm [7]. This kind of
samplerwas proposed in [8] and [1], where the output follows
discrete Gaussian distribution for width s > ‖B̃‖ ·ω(

√
log n)

with B̃ the Gram-Schmidt orthogonalization of sampling
basis B. Subsequently, a parallel discrete Gaussian sam-
pling algorithm was introduced by Peikert [9]. Afterwards,
Ducas andNguyen [10] optimized the asymptotic runtime by
floating-point arithmetic and Brakerski et al. [11] refined the
randomized nearest-plane algorithm for smaller parameter
s > ‖B̃‖O(

√
log n). In 2015, discrete Gaussian samplers for

arbitrary width s > 0 [12], [13] were proposed and applied

Manuscript received January 11, 2018.
Manuscript revised June 12, 2018.
†The authors are with the Institute for Advanced Study, Ts-

inghua University, Beijing, 100084, China.
††The author is with the Department of Computer Science and

Technology, Tsinghua University, Beijing, 100084, China.
a) E-mail: xiaody12@mails.tsinghua.edu.cn
b) E-mail: y-y13@mails.tsinghua.edu.cn (Corresponding au-

thor)
c) E-mail: jingguobi@mail.tsinghua.edu.cn
DOI: 10.1587/transfun.E101.A.1880

to solve SVP and CVP.
Orthogonal lattice, as a special q-ary lattice, is of great

interest in cryptography, especially in LWE/SIS based cryp-
tographic schemes [1], [14], [15]. In this paper, we fo-
cus on these orthogonal lattices of a single vector, which
are common and primitive. Notice that 85% full rank in-
teger lattices can be represented as an orthogonal lattice
of a vector [16], [17], that is, given a full rank lattice
L ∈ Zn, there usually exists a vector a ∈ Rn such that
L = {v ∈ Zn | 〈a, v〉 = 0 mod det(L)}. The orthogonal
lattice of a single vector can be viewed as the set of integer
solutions to a modular subset sum problem.

Dynamic programming is a classical method to solve
dense subset sum problem [18], [19], which requires O(nq)
time and space. We refined the dynamic programming pro-
cess to develop a new rejection sampling algorithm for
discrete Gaussian over orthogonal lattices. It is noted
that our sampling algorithm only requires O(nq2) time
and O(nq) space, which is polynomial when the modulus
q = pol y (n). Different fromprevious polynomial-time sam-
pling algorithms [1], [8]–[11], our algorithmworks for width
s > ω(log n) and is independent of the specific basis.

We introduce some preliminaries in Sect. 2. Then we
describe the detailed algorithm in Sect. 3 and generalize it
in Sect. 4. Comparison with other samplers is presented in
Sect. 5. Finally, we conclude and discuss open problems in
Sect. 6.

2. Preliminary

We denote by ‖ · ‖ the Euclidean norm, by ‖ · ‖∞ the infinity
norm and by 〈·, ·〉 the inner product of Rn. For a matrix
B = (b1, · · · , bn) ∈ Rn×n, we denote by ‖B‖ = maxi ‖bi ‖.
Let B∞n (r) = {x ∈ Rn | ‖x‖∞ < r } and B∞n (r) = {x ∈ Rn |
‖x‖∞ ≤ r }. For convenience of illustration, we denote by
log n the natural logarithm of n and by Zq the ring Z/qZ for
any positive integers n and q.

The statistical distance between distributions D1 and
D2 over a countable domain S is defined as: ∆(D1, D2) :=
1
2
∑

x∈S |D1(x) − D2(x) |. We say that distributions D1 and
D2 are statistically indistinguishable if ∆(D1, D2) ≤ n−ω(1) .

2.1 Lattices

A full-rank lattice L ⊂ Rn is the set of all integer combi-
nations of n linearly independent vectors b1, · · · , bn ∈ R

n,
namely, L(b1, · · · , bn) =

{∑n
i=1 xibi | xi ∈ Z

}
. Since only

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers

XIAO et al.: A NEW DISCRETE GAUSSIAN SAMPLER OVER ORTHOGONAL LATTICES
1881

full-rank lattices are used in this article, we refer to full-rank
lattice by the term lattice. The matrix B = (b1, · · · , bn)
is called a basis of L. It is noted that for any unimodular
matrix U ∈ Zn×n, BU is a basis of L(B). We denote by
B̃ = (b̃1, · · · , b̃n) the Gram-Schmidt Orthogonalization of
B where b̃i = bi −

∑i−1
j=1 µi, j b̃j for µi, j = 〈bi, b̃j〉/〈̃bj, b̃j〉.

The determinant (or volume) of lattice L equals det(L) =
| det(B) |, which is an invariant of L. Notice that L ⊂ Zn is
a discrete additive subgroup of Zn, thus the quotient group
Zn/L := {x + L | x ∈ L} is a well-defined additive group,
and |Zn/L| = det(L). The first minimum λ1(L) (resp.
λ∞1 (L)) is the minimum of Euclidean (resp. infinity) norm
of all non-zero vectors of L. The dual lattice of L is
L∗ =

{
u ∈ span(L) | 〈u, v〉 ∈ Z for any v ∈ L

}
. It is known

that det(L) · det(L∗) = 1†.
Given a ∈ Znq , the orthogonal lattice†† of a is

a⊥ :=
{
v ∈ Zn |〈a, v〉 = 0 mod q

}
.

Without loss of generality, we assume that the greatest com-
mon divisor of a1, · · · , an and q is 1 for a = (a1, · · · , an).
Considering the quotient group

Zn/a⊥ =
{
ct + a⊥ | t ∈ Zq, ct ∈ Zn, 〈ct, a〉 = t mod q

}
,

then we know det(a⊥) = |Zn/a⊥ | = q. Moreover, let

Lq (a) :=
{
v ∈ Zn |∃z ∈ Z s.t.v = z · a mod q

}
,

then Lq (a) = q(a⊥)∗.

2.2 Discrete Gaussians

For s > 0, we define the Gaussian function of R:

ρs (x) = e−
πx2
s2 , and the Gaussian function of Rn: ρs (x) =∏n

j=1 ρs (x j) = e−
π ‖x‖2

s2 for x = (x1, · · · , xn). When s = 1,
we omit the subscript. Given a discrete set S ⊂ Rn,
we define ρs (S) =

∑
x∈S ρs (x). For lattice L ⊂ Rn

and c ∈ Rn, we have the Poisson summation formula
for ρs (x): ρs (L) = sn det(L∗)ρ1/s (L∗), ρs (c + L) =
sn det(L∗)

∑
y∈L∗ e−2πi〈c,y〉ρ1/s (y). It is easy to verify that

ρs (c + L) ≤ ρs (L) since |e−2πi〈c,y〉 | ≤ 1 for any y ∈ L∗.
A discrete Gaussian distribution over L centered at c with
width s is DL,c,s (x) = ρs (x−c)

ρs (L−c) . We usually write DL−c,s as
the distribution DL,c,s − c.

For any lattice L ⊂ Rn and positive real ε > 0, the
smoothing parameter ηε (L) is defined as the unique real
s > 0 such that ρ1/s (L∗ \ {0}) = ε . For s > ηε (L), any
translation of the lattice will not change the total Gaussian
measure essentially.

Lemma 2.1 ([21], implicit in Lemma 4.4): For any full-
rank lattice L ⊂ Rn and ε ∈ (0, 1), s > ηε (L), we have
that for any c ∈ Rn,
†We refer to [20] for a bibliography on lattices.
††It is essentially the q-ary lattice for matrices in Z1×n

q . We refer
to [1] for more details.

1 − ε
1 + ε

≤
ρs (c + L)
ρs (L)

≤ 1.

It is shown in the proof of Lemma 4.4 in [21] that
ρs (c+L) ≥ sn det(L∗)(1− ε) and ρs (L) ≤ sn det(L∗)(1+
ε) for s > ηε (L), hence it follows that ρs (c + L)/ρs (L) ≥
(1 − ε)/(1 + ε).

The following lemmata estimate ηε (L).

Lemma 2.2 ([1], Lemma 3.1): For any n-dimensional lat-
tice L ⊂ Rn and real ε > 0, we have

ηε (L) ≤ b̃l (L)
√

log(2n(1 + 1/ε))/π,

where b̃l (L) = minB ‖B̃‖ is the minimum over all bases.

Lemma 2.3 ([22], Lemma 3.5): For any lattice L ⊂ Rn
and ε > 0,

ηε (L) ≤

√
log(2n(1 + 1/ε))/π

λ∞1 (L∗)
.

Lemma 2.4 ([23], Lemma 2.10): For any n-dimensional
lattice L, c ∈ Rn and any r > 0,

ρ((L − c) \ B∞n (r))
ρ(L)

< 2ne−πr
2
.

As a corollary, we have the follow tail inequality of
discrete Gaussian with respect to infinity norm.

Lemma 2.5: For any lattice L ⊂ Rn, c ∈ Rn, µ > 0 and
s > ηε (L), we have

Pr
y∼DL−c,s

[‖y‖∞ ≥ µs] ≤ 2ne−πµ
2
·

1 + ε
1 − ε

.

Proof We notice that for arbitrary µ > 0,

Pr
y∼DL−c,s

[
‖y‖∞ > µs

]
=

ρs
(
(L − c) \ B∞n (µs)

)
ρs (L − c)

=
ρs

(
(L − c) \ B∞n (µs)

)
ρs (L)

·
ρs (L)

ρs (L − c)

=
ρ
(
(L/s − c/s) \ B∞n (µ)

)
ρ(L/s)

·
ρs (L)

ρs (L − c)
.

From Lemma 2.4, it can be derived that,

ρ
(
(L/s − c/s) \ B∞n (µ)

)
ρ(L/s)

< 2ne−πµ
2
.

Hence with Lemma 2.1, we obtain that for s > ηε (L),

Pr
y∼DL−c,s

[
‖y‖∞ > µs

]
< 2ne−πµ

2
·

1 + ε
1 − ε

.

Notice that for arbitrary ε > 0, we have

Pr
y∼DL−c,s

[
‖y‖∞ > (µ − ε)s

]
< 2ne−π (µ−ε)2

·
1 + ε
1 − ε

.

1882
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

As ε approaches 0, we have

Pr
y∼DL−c,s

[
‖y‖∞ ≥ µs

]
≤ 2ne−πµ

2
·

1 + ε
1 − ε

.

�
We recall the rejection sampling of discrete Gaussian

over integers proposed in [1].
SampleZLet t(n) ≥ ω(

√
log n) be some fixed function.

On input (s, c) and (implicitly) the security parameter n,
choose an integer x fromZ∩[c−t(n) ·s, c+t(n) ·s] uniformly
at random. Then with probability ρs (x − c) ∈ (0, 1] output
x, otherwise repeat.

With reference to Lemma 4.2 of [1], for any t(n) =
ω(

√
log n), ε ∈ (0, e−π) and s > ηε (Z), the output is statis-

tically close to DZ,c,s with overwhelming probability. The
running time of SampleZ is t(n) · ω(log n).

3. Discrete Gaussian Sampler by Dynamic Program-
ming

Dynamic programming (DP) is a classical method to find
binary solutions to dense subset sum problems. By general-
izing and refining the DP technique, we propose a rejection
sampling algorithm for discrete Gaussian.

Firstly, we introduce a global rejection sampling algo-
rithm DGS-GR (Algorithm 1) in Sect. 3.1, which is precise
but costly. Then we explicate the refined algorithm DGS-LR
(Algorithm 2) in Sect. 3.2, in which the DGS-GR is embed-
ded in the head block.

3.1 Global Rejection Sampling of Discrete Gaussian

We recall the DP method to solve subset sum problems.
Given a = (a1, · · · , an) ∈ Znq and t ∈ Zq for q > 0, subset
sum problem asks to find x ∈ {0, 1}n such that 〈a, x〉 =
t mod q. We define the boolean-valued function f (k, z) for
1 ≤ k ≤ n and z ∈ Zq as:

f (k, z) =
{

1, if ∃xi ∈ {0, 1} s.t.
∑k

i=1 ai xi = z mod q;
0, otherwise.

We let f (0, 0) = 1.
First of all, we establish a boolean table to store the

values of f (k, z): for k ranging from 0 to n and arbitrary
z ∈ Zq , if f (k, z) = 1, then we set f (k + 1, z) = 1, f (k +
1, (z + ak+1) mod q) = 1. We note that establishing and
storing the table cost O(nq) time and space.

The DP algorithmworks as follows. For j ranging from
n to 1, it chooses an α ∈ {0, 1} uniformly at random, and
checks the value of f : if f (j −1, (t −αa j) mod q) = 1, then
it assigns x j = α; otherwise, it assigns x j = 1 − α, and then
sets t = (t− x ja j) mod q. Finally it returns a binary solution
x. It is worth noting that randomly choosing an α ∈ {0, 1}
gives a relatively fair backtrack for situations where both
f (j − 1, t) and f (j − 1, (t − a j) mod q) are 1.

Notice that the backtrack only includes addition opera-
tion, thus the complexity of DP mainly relies on computing

the table for f (k, z), which costs O(nq) time and storage.
Now we generalize the DP algorithm to (−r, r)n for

0 < r ≤ q
2 and refine the process of choosing xi . Define the

generalized function fr (k, z) for 1 ≤ k ≤ n and z ∈ Zq as

fr (k, z) =
{

1, if ∃xi ∈ (−r, r) s.t.
∑k

i=1 ai xi = z mod q;
0, otherwise.

Similarly, we define fr (0, 0) = 1 for any r > 0. In this
case, it costs O(rnq) time and space to establish the table for
fr (k, z).

We are to describe our global rejection sampling algo-
rithm for discrete Gaussians. We set the sampling interval
for each vj as (−µs, µs), where µ is a parameter related to
the sample quality. For j ranging from n to 1, we pick a
vj ∈ (−µs, µs) uniformly at random. Then we check that if
fr (j − 1, (t − vja j) mod q) = 1: if it is true, then we accept
vj with probability ρs (vj) and set t = (t − vja j) mod q; oth-
erwise, we restart the algorithm. The detailed procedure is
shown in Algorithm 1.

Algorithm 1 DGS-GR[a, q, s, t, µ]
Input:a ∈ Znq , modulus q, target value t ∈ Zq , width s and parameter µ.
Output:a vector v satisfying 〈a, v〉 = t mod q.
1: Preprocess: establish a table for fµs (j, z) where 1 ≤ j ≤ n and

z ∈ Zq .
2: assign t̄ = t.
3: for j = n to 1 do
4: choose an integer α in interval (−µs, µs) and a probability p in

[0,1) uniformly at random.
5: if fµs (j − 1, t̄ − αa j) = 1 and p ≤ ρs (α) then
6: assign vj = α
7: t̄ = (t̄ − αa j) mod q
8: else
9: go to Step 2.
10: end if
11: end for
12: return v

Remark 3.1: For each vj , accepting vj with probability
ρs (vj) means that sampling a p uniformly distributed in
[0, 1), we accept vj if p ≤ ρs (vj) and otherwise reset the
algorithm. That’s why we need to check p ≤ ρs (α) in Step 5
of DGS-GR.

The following theorem gives an explicit analysis about
the correctness and complexity of DGS-GR.

Theorem 3.2: Given a ∈ Znq , t ∈ Zq , s > ηε (a⊥) for
ε ∈ (0, 1

2) and µ = ω(
√

log n), the output of DGS-
GR(a, q, s, t, µ) follows a distribution statistically indistin-
guishable from Dct+a⊥,s , where ct satisfies 〈a, ct〉 = t mod q.
The time for preprocessing isO(µsnq) and the expected time
for sampling is O(q(2µ)n).

Proof We write the distribution Dct+a⊥,s as D for short. Let
Y be the output of the algorithm DGS-GR and D̃ be the
distribution of Y , then Y ∈ ct + a⊥ and ‖Y ‖∞ < µs. Without
loss of generality, we assume that µs is an integer, then

XIAO et al.: A NEW DISCRETE GAUSSIAN SAMPLER OVER ORTHOGONAL LATTICES
1883

there are at most 2µs − 1 integers in the interval (−µs, µs).
When Y = v = (v1, · · · , vn), since vj is uniformly sampled
from (−µs, µs) and accepted with probability ρs (vj) in each
round of the loop, we have that v is output with probability∏n

j=1
ρs (vj)
2µs−1 =

ρs (v)
(2µs−1)n . Therefore we deduce that

D̃(v) = Pr[Y = v] =
ρs (v)∑

y∈ct+a⊥
‖y‖∞<µs

ρs (y)
. (1)

A straightforward computation leads to that for y ∈
ct + a⊥,∑

‖y‖∞<µs

�����
ρs (y)∑

‖y‖∞<µs ρs (y)
−

ρs (y)
ρs (c + a⊥)

�����
=

∑
‖y‖∞≥µs ρs (y)
ρs (c + a⊥)

.

Notice that∑
‖y‖∞≥µs ρs (y)
ρs (c + a⊥)

= Pr
y∼D

[‖y‖∞ ≥ µs]=
∑

‖y‖∞≥µs
D(y).

According to Lemma 2.5, the statistical distance ∆̃ be-
tween D̃ and D is

∆̃ =
1
2

∑
‖y‖∞≥µs

|D(y) | +
1
2

∑
‖y‖∞<µs

|D(y) − D̃(y) |

=
∑

‖y‖∞≥µs
|D(y) | ≤ 2ne−πµ

2
·

1 + ε
1 − ε

.

Therefore, when µ = ω(
√

log n) and ε < 1
2 , the distribu-

tions D̃ and Dct+a⊥,s are statistically indistinguishable. For
simplicity, we denote δ = 2ne−πµ

2
· 1+ε

1−ε .
Now we analyze the running time. For the preprocess-

ing, we need O(µsnq) operations to establish the table of
fµs (j, z) with 1 ≤ j ≤ n and z ∈ Zq . Since the table is
binary, we need O(nq) bits of storage.

The algorithm DGS-GR terminates once it successfully
outputs a vector. The probability that DGS-GR successfully
outputs v is ρs (v)

(2µs−1)n . Thus the expected number of iterations
before DGS-GR ends is

(2µs − 1)n

ρs ((ct + a⊥) ∩ B∞n (µs))
≤

(2µs − 1)n

(1 − δ)ρs (ct + a⊥)
.

By Lemma 2.1, we obtain that for s ≥ ηε
(
a⊥

)
,

ρs (ct + a⊥) ≥
1 − ε
1 + ε

· ρs (a⊥).

The Poisson summation formula leads to

ρs (a⊥) =
1

det(a⊥)
· sn · ρ1/s

(
(a⊥)∗

)
≥

sn

q
.

Observing that (2µs − 1)n < (2µs)n, we derive that

(2µs − 1)n

(1 − δ)ρs (ct + a⊥)
≤

1 + ε
(1 − δ)(1 − ε)

· q(2µ)n.

Notice that for small ε, δ > 0, 1+ε
(1−δ)(1−ε) can be bounded

by a constant. Consequently, the expected running time is
O(q(2µ)n). �

As shown in Theorem 3.2, the time consumption of
DGS-GR algorithm is quite expensive. Actually, it can be
improved. We will modify the algorithm in Sect. 3.2 to
achieve a better performance.

3.2 Local Rejection Sampling of Discrete Gaussian

Notice that Algorithm 1 is super-exponential because it
would start a new iteration once the conditions in Step 5
can not be satisfied. A possible optimization would be for
each 1 ≤ j ≤ n, keeping sampling (α, p) until the conditions
of Step 5 are reached. However, it may increase the gap
between the output distribution and Dct+a⊥,s . Indeed, we are
able to apply a local optimization to improve the efficiency
without affecting the distribution of outputs.

It is observed that, when j is large, fµs (j, z) = 1 for any
z ∈ Zq , which means that the sampling process of vj seems
independent of the value of vj+1, · · · , vn. For these j’s, we
can independently and repeatedly sample eligible (α, p).

We now elaborate our refined sampling algorithmDGS-
LR (Algorithm 2). Let n0 = d

log(nq)
log(2µ) e and a = (a1, a2) where

a1 ∈ Z
n0
q . It is worth noting that n0 ≤ n is a necessary

condition to ensure DGS-LR works, which is satisfied when

nq ≤ (2µ)n. (2)

Wewant to have λ∞1 ((a⊥1)∗) ≥ 1/(4µ), that is λ∞1 (Lq (a1)) ≥
q/(4µ). If this condition could not be satisfied, then we
cyclically left shift a by n0 indices. Indeed, within log n
such cyclic left shifts of a, we can obtain that λ∞1 (Lq (a1)) ≥
q/(4µ) with high probability. Then we establish the table
for fµs (j, z). For j > n0, we run the algorithm SampleZ
in [1] to obtain vj respectively and independently. For
j ≤ n0, we invoke the small-scaled DGS-GR (Algorithm 1)
with parameters

(
a1, q, s, (t −

∑
j>n0 a jvj) mod q, µ

)
to ob-

tain (v1, · · · , vn0). Finally, we get the sample v.

Algorithm 2 DGS-LR(a, q, s, t, µ)
Input:a ∈ Znq , modulus q, target value t ∈ Zq , width s and parameter µ.
Output:a vector v satisfying 〈a, v〉 = t mod q.
1: Preprocess I: Let n0 = d

log(nq)
log(2µ) e and a = (a1, a2) where a1 ∈ Z

n0
q .

Check if λ∞1 (Lq (a1)) ≥ q
4µ . If so, set L = 0; otherwise, cyclic left

shift a by n0 indices and increase L by 1 repeatly until λ∞1 (Lq (a1)) ≥
q

4µ . If L exceeds log n, output ⊥ and terminate.
2: Preprocess II: Establish a table of fµs (j, z) with 1 ≤ j ≤ n and

z ∈ Zq
3: for j = n to n0 + 1 do
4: vj = SampleZ(s, 0).
5: end for
6: Let t′ = (t −

∑
i>n0 ai vi) mod q.

7: Run DGS-GR(a1, q, s, t
′, µ) to obtain v1.

8: Let v′ = (v1, vn0+1, · · · , vn) and cyclic right shift v′ by Ln0 indices,
then obtain v.

9: return v.

1884
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

Before proving the correctness of Algorithm 2, we need
some lemmata.

Lemma 3.3: For a uniformly distributed in Znq , we have
that

Pr[λ∞1 (Lq (a)) ≥ q/(2r)] ≥ 1 − q
(

1
r
+

1
q

)n
.

Proof For a vector v ∈ Zn, we have that v ∈ Lq (a) if and
only if v = za mod q for some z ∈ Zq . Notice that for each
v, there are at most q a ∈ Znq such that v ∈ Lq (a) and the
number of v’s with ‖v‖∞ <

q
2r is at most

(
q
r + 1

)n
. Hence

we have that

Pr
a∼U (Znq)

[λ∞1 (Lq (a)) < q/(2r)] ≤
(q

r
+ 1

)n
· q ·

1
qn

= q
(

1
r
+

1
q

)n
.

�
Due to Lemma 2.3 and the fact that Lq (a) = q(a⊥)∗,

we have the following bound for ηε (a⊥).

Corollary 3.4: For a uniformly distributed in Znq , it follows
that

ηε (a⊥) ≤ 2r
√

log(2n(1 + 1/ε))/π

with probability at least 1 − q
(

1
r +

1
q

)n
.

We claim that the output of Algorithm 2 follows a dis-
tribution indistinguishable from Dct+a⊥ .

Theorem 3.5: For a uniformly distributed in Znq , t ∈ Zq ,
µ = ω(

√
log n) and s > 4µ

√
log(2n(1 + 1/ε))/π with

ε = n−ω(1) , the output of DGS-LR(a, q, s, t, µ) follows a dis-
tribution statistically indistinguishable from Dct+a⊥,s , where
ct ∈ Zn satisfying 〈a, ct〉 = t mod q. The expected run-
ning time is O(nq2) and space complexity is O(nq) if
q = pol y (n).

Proof Given uniformly distributed a ∈ Znq , we check that if
λ∞1 ((a⊥1)∗) ≥ q/(4µ). If not, we cyclic shift a by n0 indices
until λ∞1 ((a⊥1)∗) ≥ q/(4µ). It is indeed easy to figure out
λ∞1 ((a⊥1)∗). Note that (a⊥1)∗ = 1

qLq (a1), by checking all
x ∈ Zq and reducing xa into [−q/2, q/2]n, it suffices to
obtain λ∞1 . Thus the time in Preprocess I is O(nq log n).
Furthermore, notice that a is left shifted n0 indices each
time, thus a1 is uniformly random over Zn0

q . According to
Lemma 3.3, we have that for n0 = d

log(nq)
log(2µ) e ≥

log(nq)
log(2µ) , there

exists a constant c > 0, such that

Pr
[
λ∞1 (Lq (a1)) ≥ q/(4µ)

]
≥ 1−q

(
1

2µ
+

1
q

)n0

≥ 1−
c
n
.

Thus the algorithm terminates in Preprocess I with proba-
bility at most (1/n)log n which is negligible. Without loss
of generality, we assume no cyclic shift occurs in later dis-
cussion, because the Gaussian measure keeps unchanged for
cyclic shifted vectors.

Notice that for a⊥1 , λ
∞
1

(
(a⊥1)∗

)
= 1

q λ
∞
1 (Lq (a1)) ≥

1
4µ , and for Zn−n0 , λ∞1 ((Zn−n0)∗) = λ∞1 (Zn−n0) = 1.
Hence according to Lemma 2.3, we have that for s >
4µ

√
log(2n(1 + 1/ε))/π,

ηε (a⊥1) ≤

√
log(2n0(1 + 1/ε))/π

λ∞1

(
(a⊥1)∗

) < s,

ηε (Zn−n0) ≤
√

log(2(n − n0)(1 + 1/ε)/π) < s.

For j > n0, we have fµs (j, z) = 1 for any z ∈ Zq . Otherwise,
there must exist z0 ∈ Zq such that f (n0, z0) = 0, which is
(cz0 + a⊥1) ∩ B∞n0 (µs) = ∅. By Lemma 2.4, it leads to

ρs (cz0 + a⊥1)
ρs (a⊥1)

=
ρs ((cz0 + a⊥1) \ B∞n0 (µs))

ρs (a⊥1)
≤ 2n0e−πµ

2
.

Observe that 2n0e−πµ
2
< 1−ε

1+ε for µ = ω(
√

log n) and
ε ∈ (0, 1), which conflicts with Lemma 2.1. Therefore,
for arbitrary y2 ∈ Z

n−n0 , we can always find y1 ∈ Z
n0 such

that (y1, y2) ∈ a⊥.
We write the distribution Dct+a⊥,s as D for short. We

denote by Y the output of algorithm DGS-LR(a, q, s, t, µ)
and D̂ the distribution of Y . Let Y = (Y1,Y2) where Y1 is a
random variable corresponding to the first n0 entries of Y ,
then

Pr[Y = v] = Pr[Y1 = v1 |Y2 = v2] · Pr[Y2 = v2].

Since the last n − n0 entries are sampled by SampleZ
independently, the probability that Y2 = v2 is that

Pr[Y2 = v2] =
ρs (v2)

ρs
(
Zn−n0 ∩ B∞n−n0 (µs)

) .
Let t(y2) = (t − 〈a2, y2〉) mod q for y2 ∈ Z

n−n0 . It is noted
that v1 is sampled by DGS-GR with target value t(v2). Thus
by Eq. (1) we have

Pr[Y1 = v1 | Y2 = v2] =
ρs (v1)

ρs
((

ct (v2) + a⊥1
)
∩ B∞n0 (µs)

) ,
where ct (v2) ∈ Z

n0 is an arbitrary vector such that
〈ct (v2), a1〉 = t(v2) mod q. Thus, we get that

D̂(v)=
ρs (v)

ρs
(
Zn−n0∩B∞n−n0 (µs)

)
ρs

((
ct (v2) + a⊥1

)
∩B∞n0 (µs)

) .
Let δ = 2ne−πµ

2
· 1+ε

1−ε , then δ ≥ 2n′e−πµ
2
· 1+ε

1−ε for any
n′ ≤ n, including n′ = n0 and n′ = n − n0. On the basis of
Lemma 2.5, we have that

ρs
(
Zn−n0 ∩ B∞n−n0 (µs)

)
ρs (Zn−n0)

∈ (1 − δ, 1]

ρs
((

ct (v2) + a⊥1
)
∩ B∞n0 (µs)

)
ρs (ct (v2) + a⊥1)

∈ (1 − δ, 1].

(3)

Combining the fact that

XIAO et al.: A NEW DISCRETE GAUSSIAN SAMPLER OVER ORTHOGONAL LATTICES
1885

ρs (ct + a⊥) =
∑

y2∈Z
n−n0

ρs (y2)ρs (ct (y2) + a⊥1)

and

ρs (ct (y2) + a⊥1)
ρs (ct (v2) + a⊥1)

∈

[
1 − ε
1 + ε

,
1 + ε
1 − ε

]
,

for y2 ∈ Z
n−n0 from Lemma 2.1, we have that

ρs (ct + a⊥)
ρs (Zn−n0)ρs (ct (v2) + a⊥1)

∈

[
1 − ε
1 + ε

,
1 + ε
1 − ε

]
.

Together with Eq. (3), for y ∈ (ct + a⊥)∩B∞n (µs), it follows
that

1 − ε
1 + ε

≤
D̂(y)
D(y)

≤
1 + ε
1 − ε

·
1

(1 − δ)2 ,

Besides, we know that
∑
‖y‖∞>µs D(y) ≤ δ, which implies

that the statistical distance ∆̂ between D̂ and Dct+a⊥ is

∆̂ =
1
2

∑
‖y‖∞>µs

|D(y) | +
1
2

∑
‖y‖∞≤µs

|D̂(y) − D(y) |

≤
1
2
δ +

1
2

(
1 + ε
1 − ε

·
1

(1 − δ)2 − 1
)

≤ 2δ + 2ε + 6δε

since 1+ε
1−ε ≤ 1+4ε and 1

(1−δ)2 ≤ 1+3δ when ε = n−ω(1) and
µ = ω(

√
log n). Thus the distribution D̃ is statistically indis-

tinguishable from D when ε = n−ω(1) and µ = ω(
√

log n).
Next we evaluate the running time of DGS-LR. As

clarified in Theorem 3.2, the complexity for Preprocess II
is O(µsnq) and thus that for the whole preprocessing is
O(µsnq) +O(nq log q) = O(µsnq). The loop of Step 3 − 5
is n − n0 rounds of SampleZ. It is noted that the complex-
ity for SampleZ is µ · ω(log n), which can be bounded by
µ log2 n. Thus the cost of Step 3− 5 is at most Θ(nµ log2 n).
Step 7 mainly calls DGS-GR without preprocessing, which
costs O(q(2µ)n0) = O(nq2). �

4. Applications to General Lattices

In this section, we will generalize the sampling algorithm
DGS-LR (Algorithm 2) to some other lattices. We claim
that DGS-LR is efficient for most high-dimensional dense
lattices and q-ary lattices {v ∈ Zn | Av = 0 mod q} for
A ∈ ZO(1)×n

q and q = pol y (n).

4.1 Application to High-Dimensional Dense Lattices

For full rank L ⊂ Zn, according to Proposition 1 in [16], we
know that there exists an a ∈ Zndet(L) such that

L = {v ∈ Zn | 〈a, v〉 = 0 mod det(L)}

if and only if the quotient group Zn/L is cyclic. The work
in [17] proved that the natural density of such L over all full

rank lattices of Zn is approximately 0.85, which means that
85% full rank integer lattices are equivalent to an orthogonal
lattice of a vector. Notice that such vector a ∈ Zndet(L) for L
can be calculated in polynomial time (Proposition 2, [16]).

In line with Theorem 3.5, when the lattice L is dense,
especially det(L) = pol y (n), our sampling algorithm DGS-
LR can generate a discrete Gaussian distribution over L
within polynomial time and space. However, when det(L)
is large, such as the exponential of n, the sampler DGS-LR
does not work as indicated by Eq. (2).

4.2 Discussion on General q-Ary Lattices

We also extend DGS-LR to general q-ary lattices. Given a
matrix A ∈ Zk×nq , we define its orthogonal lattice

A⊥ =
{
v ∈ Zn | Av = 0 mod q

}
.

By similar analysis in Sect. 2.1, we have that det(A⊥) ≤ qk

with overwhelming probability and (A⊥)∗ = 1
qLq (A) where

Lq (A) :=
{
v ∈ Zn | ∃z ∈ Zk s.t. v = z · A mod q

}
.

The first minimum λ∞1 (Lq (A)) also has a lower bound with
a high probability when A is uniformly distributed in Zk×nq .

Lemma 4.1: Given A uniformly distributed in Zk×nq , it fol-
lows that

Pr[λ∞1 (Lq (A)) ≥ q/(2r)] ≥ 1 − qk

(
1
r
+

1
q

)n
.

Proof Given arbitrary v ∈ Rn, if v ∈ Lq (A) for some
A, then v =

∑k
i=1 xiai mod q where a1, · · · , ak are the row

vectors of A and xi ∈ Zq . We observe that xkak = v −∑k−1
i=1 xiai mod q. Let (xi, ai) runs over Zq × Znq for i =

1, · · · , k − 1. Then we have the number of A ∈ Zk×nq ’s such
that v ∈ Lq (A) is at most qnk−n+k .

Also, there are at most
(
q
r + 1

)n
points in (− q

2r ,
q
2r)n,

thus

Pr
[
λ∞1 (Lq (A))<

q
2r

]
≤

(qr + 1)nqnk−n+k

qnk
≤ qk

(
1
r
+

1
q

)n
.

�
We write A = (â1, · · · , ân) where âi ∈ Zkq for i =

1, · · · , n. Comparably, we define the discriminant function
fr (j, ẑ) for 0 < r < q

2 , 1 ≤ j ≤ n and ẑ ∈ Zkq:

fr (j, ẑ) =
{

1, if ∃xi ∈ (−r, r) s.t.
∑j

i=1 âi xi = ẑ mod q,
0, otherwise

with fr (0, 0̂) = 1.
Given input (A, q, s, t̂, µ), we set n0 = d

log(nqk)
log(2µ) e and

A = (A1,A2) where A1 = (â1, · · · , ân0) ∈ Zk×n0
q . We firstly

check whether λ∞1 (Lq (AT
1)) ≥ q/(4µ). If not, we cyclically

left shift the columns of A by n0 indices. Assume that
λ∞1 (Lq (AT

1)) ≥ q/(4µ) can be achieved within log n shifts,

1886
IEICE TRANS. FUNDAMENTALS, VOL.E101–A, NO.11 NOVEMBER 2018

otherwise the algorithm would halt with failure. Then we
establish the boolean table of size n × qk for fµs (j, ẑ) with
1 ≤ j ≤ n, ẑ ∈ Zkq . Similar with DGS-LR, SampleZ is
called to sample vj for any j > n0, and v1 = (v1, · · · , vn0) is
generated by a vectorial DGS-GR(Algorithm 1) with input
(A1, q, s, t̂−

∑
j>n0 vj âj, µ). Finally the algorithm return v =

(v1, vn0+1, · · · , vn). We call this sampling algorithm GDGS-
LR.

Theorem 4.2: For A uniformly distributed in Zk×nq , t̂ ∈
Zkq , µ = ω(

√
log n) and s > 4µ

√
log(2n(1 + 1/ε))/π with

ε = n−ω(1) , the output of GDGS-LR(A, q, s, t̂, µ) follows
a distribution statistically indistinguishable from Dct̂+a⊥,s ,
where ct̂ ∈ Z

n satisfying Act̂ = t̂ mod q. The expected
running time is O(nq2k) and space complexity is O(nqk) if
q = pol y (n).

Remark 4.3: Theorem 3.5 is essentially the case of k = 1
for Theorem 4.2. With a trivial generalization, the proof of
Theorem 3.5 still applies to Theorem 4.2 and therefore we
omit the proof. For those q-ary lattices where k = O(1) and
q = pol y (n), GDGS-LR still runs in polynomial time.

5. Comparison with Other Discrete Gaussian Samplers

We compare our algorithm with existing discrete Gaussian
sampling algorithms.

From Theorem 3.5, sampling Dc+L,s for s > ω(log n)
can be achieved by DGS-LR within O(nq2) time. The table
for fµs (j, z) is binary, thus the storage is O(nq) bits. Hence
when q = pol y (n), our sampling algorithm is polynomial-
time. One highlight of DGS-LR is that it is applicable to any
width s > ω(log n) and independent of the basis.

Diversely, other two polynomial-time samplers pro-
posed in [1] and [9] sample Dc+L,s with the help of a short
basis B. The sampler in [1] works for s > ‖B̃‖ω(

√
log n).

The usual cost is Õ(n3) operations and Ω(n3) bits of storage
according to the analysis in [9], [10]. Utilizing the round-
ing technique and convolution theorem, Peikert presented
an efficient and parallel sampler in [9] which applies for
width s > s1(B)ω(

√
log n) where s1(B) is the largest sin-

gular value of the basis B. It requires Õ(n3) for the offline
computation and Õ(n2) for the online [10], and Õ(n2) bits
for storage [9].

To get rid of the limitations of short basis and width,
a sampling algorithm was proposed in [12], [13] that can
sample vectors following Dc+L,s at any width s > 0 and
does not require short basis in advance. However, the time
and space complexity of this sampler are 2n+o(1) .

The detailed comparison of these discrete Gaussian
samplers is listed in Table 1.

We remark that all these three existing algo-
rithms [1], [9] and [12], [13] work for arbitrary q-array
lattices L ⊂ Rn, while DGS-LR only works efficiently for
specific high-dimensional dense lattices and q-ary lattices as
clarified in Sect. 4.2.

Table 1 Comparison with other samplers.

Samplers Time Space Needs for WidthShort Basis
DGS-LR O(nq2) O(nq) No ω(log n)
Alg. in [1] Õ(n3) Ω(n3) Yes ‖B̃‖ω(

√
log n)

Alg. in [9] Õ(n3) Õ(n2) Yes s1 (B)ω(
√

log n)
Alg. in [12], [13] 2n+o(1) 2n+o(1) No s > 0

6. Conclusion

Wepropose a newdiscreteGaussian sampler over orthogonal
lattices by generalizing and refining dynamic programming.
Our sampler is polynomial-time for high-dimensional dense
lattices. It is worth noting that our sampler generates discrete
Gaussian at any width s > ω(log n), which is independent
of the basis.

Notice that we exploit the basic dynamic programming
for subset sum problems that needs space to store a large ta-
ble. Exploiting optimized dynamic programming techniques
may save space and time.

It would be interesting to improve the efficiency of our
sampling algorithm for general q-ary lattice, which is crucial
in the design and cryptanalysis of lattice-based cryptography.
We leave it as future work.

Acknowledgments

This research was supported by The National Key
Research and Development Program of China (No.
2017YFA0303903) and National Natural Science Founda-
tion of China (No. 61502269).

References

[1] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” STOC 2008, pp.197–
206, 2008.

[2] D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler,
tighter, faster, smaller,” EUROCRYPT 2012, pp.700–718, 2012.

[3] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit for Ring-LWE
cryptography,” EUROCRYPT 2013, pp.35–54, 2013.

[4] D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert, “Bonsai trees, or how
to delegate a lattice basis,” EUROCRYPT 2010, pp.523–552, 2010.

[5] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (H)IBE in the
standard model,” EUROCRYPT 2010, pp.553–572, 2010.

[6] S. Agrawal, D.M. Freeman, and V. Vaikuntanathan, “Functional
encryption for inner product predicates from learning with errors,”
ASIACRYPT 2011, pp.21–40, 2011.

[7] L. Babai, “On Lovász’ lattice reduction and the nearest lattice point
problem,” Combinatorica, vol.6, no.1, pp.1–13, 1986.

[8] P.N. Klein, “Finding the closest lattice vector when it’s unusually
close,” SODA 2000, pp.937–941, 2000.

[9] C. Peikert, “An efficient and parallel Gaussian sampler for lattices,”
CRYPTO 2010, pp.80–97, 2010.

[10] L. Ducas and P.Q. Nguyen, “Faster Gaussian lattice sampling us-
ing lazy floating-point arithmetic,” ASIACRYPT 2012, pp.415–432,
2012.

[11] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé,
“Classical hardness of learning with errors,” STOC 2013, pp.575–
584, 2013.

http://dx.doi.org/10.1145/1374376.1374407
http://dx.doi.org/10.1145/1374376.1374407
http://dx.doi.org/10.1145/1374376.1374407
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-29011-4_41
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-642-38348-9_3
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-642-13190-5_27
http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/978-3-642-25385-0_2
http://dx.doi.org/10.1007/bf02579403
http://dx.doi.org/10.1007/bf02579403
http://dx.doi.org/10.1007/978-3-642-14623-7_5
http://dx.doi.org/10.1007/978-3-642-14623-7_5
http://dx.doi.org/10.1007/978-3-642-34961-4_26
http://dx.doi.org/10.1007/978-3-642-34961-4_26
http://dx.doi.org/10.1007/978-3-642-34961-4_26
http://dx.doi.org/10.1145/2488608.2488680
http://dx.doi.org/10.1145/2488608.2488680
http://dx.doi.org/10.1145/2488608.2488680

XIAO et al.: A NEW DISCRETE GAUSSIAN SAMPLER OVER ORTHOGONAL LATTICES
1887

[12] D. Aggarwal, D. Dadush, O. Regev, and N. Stephens-Davidowitz,
“Solving the shortest vector problem in 2n time using discrete Gaus-
sian sampling: Extended abstract,” STOC 2015, pp.733–742, 2015.

[13] D. Aggarwal, D. Dadush, and N. Stephens-Davidowitz, “Solving the
closest vector problem in 2ˆn time – The discrete Gaussian strikes
again!,” FOCS 2015, pp.563–582, 2015.

[14] M. Ajtai and C. Dwork, “A public-key cryptosystemwith worst-case/
average-case equivalence,” STOC 1997, pp.284–293, 1997.

[15] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” STOC 2005, pp.84–93, 2005.

[16] A. Paz and C. Schnorr, “Approximating integer lattices by lattices
with cyclic factor groups,” ICALP 1987, pp.386–393, 1987.

[17] P.Q. Nguyen and I.E. Shparlinski, “Counting co-cyclic lattices,”
SIAM J. Discrete Math., vol.30, no.3, pp.1358–1370, 2016.

[18] Z. Galil and O. Margalit, “An almost linear-time algorithm for
the dense subset-sum problem,” SIAM J. Comput., vol.20, no.6,
pp.1157–1189, 1991.

[19] D. Lokshtanov and J. Nederlof, “Saving space by algebraization,”
STOC 2010, pp.321–330, 2010.

[20] O. Regev, “Lattices in computer science, fall 2004,” ch. Introduction,
2004.

[21] D. Micciancio and O. Regev, “Worst-case to average-case reduc-
tions based on Gaussian measures,” SIAM J. Comput., vol.37, no.1,
pp.267–302, 2007.

[22] C. Peikert, “Limits on the hardness of lattice problems in `p norms,”
IEEE Conference on Computational Complexity, pp.333–346, 2008.

[23] W. Banaszczyk, “Inequalities for convex bodies and polar reciprocal
lattices in Rn ,” Discrete Comput. Geom., vol.13, no.1, pp.217–231,
1995.

Dianyan Xiao received her B.S. fromSchool
of Mathematics, Shandong University in 2008.
She is currently a Ph.D. student of Institute
for Advanced Study, Tsinghua University. Her
research interests include (but not limited to)
lattice-based cryptography, computational com-
plexity and discrete logarithms.

Yang Yu received his B.S. in Computer Sci-
ence from Tsinghua University in 2009. He is
currently a Ph.D. student of Department of Com-
puter Science and Technology, Tsinghua Univer-
sity. His current research interests include lattice
reduction algorithm, lattice-based cryptography
and public key schemes.

Jingguo Bi received the B.Sc. and Ph.D.
degree in information security from Shandong
University in 2007 and 2012, respectively. He
is currently an associate researcher in Tsinghua
University, Beijing, China. His research interests
are designs and analysis of public key cryptosys-
tems.

http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1145/2746539.2746606
http://dx.doi.org/10.1109/focs.2015.41
http://dx.doi.org/10.1109/focs.2015.41
http://dx.doi.org/10.1109/focs.2015.41
http://dx.doi.org/10.1145/258533.258604
http://dx.doi.org/10.1145/258533.258604
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1007/3-540-18088-5_33
http://dx.doi.org/10.1007/3-540-18088-5_33
http://dx.doi.org/10.1137/15m103950x
http://dx.doi.org/10.1137/15m103950x
http://dx.doi.org/10.1137/0220072
http://dx.doi.org/10.1137/0220072
http://dx.doi.org/10.1137/0220072
http://dx.doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1145/1806689.1806735
http://dx.doi.org/10.1137/s0097539705447360
http://dx.doi.org/10.1137/s0097539705447360
http://dx.doi.org/10.1137/s0097539705447360
http://dx.doi.org/10.1109/ccc.2007.12
http://dx.doi.org/10.1109/ccc.2007.12
http://dx.doi.org/10.1007/bf02574039
http://dx.doi.org/10.1007/bf02574039
http://dx.doi.org/10.1007/bf02574039

