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PAPER
A New Discrete Gaussian Sampler over Orthogonal Lattices

Dianyan XIAO†a), Yang YU††b), Nonmembers, and Jingguo BI†c), Member

SUMMARY Discrete Gaussian is a cornerstone of many lattice-based
cryptographic constructions. Aiming at the orthogonal lattice of a vector,
we propose a discrete Gaussian rejection sampling algorithm, by modify-
ing the dynamic programming process for subset sum problems. Within
O(nq2) time, our algorithm generates a distribution statistically indistin-
guishable from discrete Gaussian at width s > ω(log n). Moreover, we
apply our sampling algorithm to general high-dimensional dense lattices,
and orthogonal lattices of matrices A ∈ ZO (1)×n

q . Compared with previous
polynomial-time discrete Gaussian samplers, our algorithm does not rely
on the short basis.
key words: discrete Gaussian, rejection sampling, dynamic programming,
orthogonal lattice

1. Introduction

Lattice-based cryptography is the most promising candidate
for conventional cryptography, especially in the upcoming
era of quantum computing. Recently, a great deal of lattice-
based cryptographic schemes were proposed, including trap-
door design [1], [2], public key encryption [3], digital signa-
ture [1], [4], identity-based encryption [1], [4], [5] and func-
tional encryption [6]. Efficiently sampling a lattice point
following discrete Gaussian is often a crucial primitive ele-
ment in these cryptographic constructions.

Many discrete Gaussian sampling algorithms for cryp-
tographic purpose have been developed since the trapdoor
of [1] was proposed. A classical sampler is the randomized
variant of Babai’s nearest-plane algorithm [7]. This kind of
samplerwas proposed in [8] and [1], where the output follows
discrete Gaussian distribution for width s > ‖B̃‖ ·ω(

√
log n)

with B̃ the Gram-Schmidt orthogonalization of sampling
basis B. Subsequently, a parallel discrete Gaussian sam-
pling algorithm was introduced by Peikert [9]. Afterwards,
Ducas andNguyen [10] optimized the asymptotic runtime by
floating-point arithmetic and Brakerski et al. [11] refined the
randomized nearest-plane algorithm for smaller parameter
s > ‖B̃‖O(

√
log n). In 2015, discrete Gaussian samplers for

arbitrary width s > 0 [12], [13] were proposed and applied
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to solve SVP and CVP.
Orthogonal lattice, as a special q-ary lattice, is of great

interest in cryptography, especially in LWE/SIS based cryp-
tographic schemes [1], [14], [15]. In this paper, we fo-
cus on these orthogonal lattices of a single vector, which
are common and primitive. Notice that 85% full rank in-
teger lattices can be represented as an orthogonal lattice
of a vector [16], [17], that is, given a full rank lattice
L ∈ Zn, there usually exists a vector a ∈ Rn such that
L = {v ∈ Zn | 〈a, v〉 = 0 mod det(L)}. The orthogonal
lattice of a single vector can be viewed as the set of integer
solutions to a modular subset sum problem.

Dynamic programming is a classical method to solve
dense subset sum problem [18], [19], which requires O(nq)
time and space. We refined the dynamic programming pro-
cess to develop a new rejection sampling algorithm for
discrete Gaussian over orthogonal lattices. It is noted
that our sampling algorithm only requires O(nq2) time
and O(nq) space, which is polynomial when the modulus
q = pol y (n). Different fromprevious polynomial-time sam-
pling algorithms [1], [8]–[11], our algorithmworks for width
s > ω(log n) and is independent of the specific basis.

We introduce some preliminaries in Sect. 2. Then we
describe the detailed algorithm in Sect. 3 and generalize it
in Sect. 4. Comparison with other samplers is presented in
Sect. 5. Finally, we conclude and discuss open problems in
Sect. 6.

2. Preliminary

We denote by ‖ · ‖ the Euclidean norm, by ‖ · ‖∞ the infinity
norm and by 〈·, ·〉 the inner product of Rn. For a matrix
B = (b1, · · · , bn) ∈ Rn×n, we denote by ‖B‖ = maxi ‖bi ‖.
Let B∞n (r) = {x ∈ Rn | ‖x‖∞ < r } and B∞n (r) = {x ∈ Rn |
‖x‖∞ ≤ r }. For convenience of illustration, we denote by
log n the natural logarithm of n and by Zq the ring Z/qZ for
any positive integers n and q.

The statistical distance between distributions D1 and
D2 over a countable domain S is defined as: ∆(D1, D2) :=
1
2
∑

x∈S |D1(x) − D2(x) |. We say that distributions D1 and
D2 are statistically indistinguishable if ∆(D1, D2) ≤ n−ω(1) .

2.1 Lattices

A full-rank lattice L ⊂ Rn is the set of all integer combi-
nations of n linearly independent vectors b1, · · · , bn ∈ R

n,
namely, L(b1, · · · , bn) =

{∑n
i=1 xibi | xi ∈ Z

}
. Since only

Copyright © 2018 The Institute of Electronics, Information and Communication Engineers
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full-rank lattices are used in this article, we refer to full-rank
lattice by the term lattice. The matrix B = (b1, · · · , bn)
is called a basis of L. It is noted that for any unimodular
matrix U ∈ Zn×n, BU is a basis of L(B). We denote by
B̃ = (b̃1, · · · , b̃n) the Gram-Schmidt Orthogonalization of
B where b̃i = bi −

∑i−1
j=1 µi, j b̃j for µi, j = 〈bi, b̃j〉/〈̃bj, b̃j〉.

The determinant (or volume) of lattice L equals det(L) =
| det(B) |, which is an invariant of L. Notice that L ⊂ Zn is
a discrete additive subgroup of Zn, thus the quotient group
Zn/L := {x + L | x ∈ L} is a well-defined additive group,
and |Zn/L| = det(L). The first minimum λ1(L) (resp.
λ∞1 (L)) is the minimum of Euclidean (resp. infinity) norm
of all non-zero vectors of L. The dual lattice of L is
L∗ =

{
u ∈ span(L) | 〈u, v〉 ∈ Z for any v ∈ L

}
. It is known

that det(L) · det(L∗) = 1†.
Given a ∈ Znq , the orthogonal lattice†† of a is

a⊥ :=
{
v ∈ Zn |〈a, v〉 = 0 mod q

}
.

Without loss of generality, we assume that the greatest com-
mon divisor of a1, · · · , an and q is 1 for a = (a1, · · · , an).
Considering the quotient group

Zn/a⊥ =
{
ct + a⊥ | t ∈ Zq, ct ∈ Zn, 〈ct, a〉 = t mod q

}
,

then we know det(a⊥) = |Zn/a⊥ | = q. Moreover, let

Lq (a) :=
{
v ∈ Zn |∃z ∈ Z s.t.v = z · a mod q

}
,

then Lq (a) = q(a⊥)∗.

2.2 Discrete Gaussians

For s > 0, we define the Gaussian function of R:

ρs (x) = e−
πx2
s2 , and the Gaussian function of Rn: ρs (x) =∏n

j=1 ρs (x j ) = e−
π ‖x‖2

s2 for x = (x1, · · · , xn). When s = 1,
we omit the subscript. Given a discrete set S ⊂ Rn,
we define ρs (S) =

∑
x∈S ρs (x). For lattice L ⊂ Rn

and c ∈ Rn, we have the Poisson summation formula
for ρs (x): ρs (L) = sn det(L∗)ρ1/s (L∗), ρs (c + L) =
sn det(L∗)

∑
y∈L∗ e−2πi〈c,y〉ρ1/s (y). It is easy to verify that

ρs (c + L) ≤ ρs (L) since |e−2πi〈c,y〉 | ≤ 1 for any y ∈ L∗.
A discrete Gaussian distribution over L centered at c with
width s is DL,c,s (x) = ρs (x−c)

ρs (L−c) . We usually write DL−c,s as
the distribution DL,c,s − c.

For any lattice L ⊂ Rn and positive real ε > 0, the
smoothing parameter ηε (L) is defined as the unique real
s > 0 such that ρ1/s (L∗ \ {0}) = ε . For s > ηε (L), any
translation of the lattice will not change the total Gaussian
measure essentially.

Lemma 2.1 ([21], implicit in Lemma 4.4): For any full-
rank lattice L ⊂ Rn and ε ∈ (0, 1), s > ηε (L), we have
that for any c ∈ Rn,
†We refer to [20] for a bibliography on lattices.
††It is essentially the q-ary lattice for matrices in Z1×n

q . We refer
to [1] for more details.

1 − ε
1 + ε

≤
ρs (c + L)
ρs (L)

≤ 1.

It is shown in the proof of Lemma 4.4 in [21] that
ρs (c+L) ≥ sn det(L∗)(1− ε ) and ρs (L) ≤ sn det(L∗)(1+
ε ) for s > ηε (L), hence it follows that ρs (c + L)/ρs (L) ≥
(1 − ε )/(1 + ε ).

The following lemmata estimate ηε (L).

Lemma 2.2 ([1], Lemma 3.1): For any n-dimensional lat-
tice L ⊂ Rn and real ε > 0, we have

ηε (L) ≤ b̃l (L)
√

log(2n(1 + 1/ε ))/π,

where b̃l (L) = minB ‖B̃‖ is the minimum over all bases.

Lemma 2.3 ([22], Lemma 3.5): For any lattice L ⊂ Rn
and ε > 0,

ηε (L) ≤

√
log(2n(1 + 1/ε ))/π

λ∞1 (L∗)
.

Lemma 2.4 ([23], Lemma 2.10): For any n-dimensional
lattice L, c ∈ Rn and any r > 0,

ρ((L − c) \ B∞n (r))
ρ(L)

< 2ne−πr
2
.

As a corollary, we have the follow tail inequality of
discrete Gaussian with respect to infinity norm.

Lemma 2.5: For any lattice L ⊂ Rn, c ∈ Rn, µ > 0 and
s > ηε (L), we have

Pr
y∼DL−c,s

[‖y‖∞ ≥ µs] ≤ 2ne−πµ
2
·

1 + ε
1 − ε

.

Proof We notice that for arbitrary µ > 0,

Pr
y∼DL−c,s

[
‖y‖∞ > µs

]
=

ρs
(
(L − c) \ B∞n (µs)

)
ρs (L − c)

=
ρs

(
(L − c) \ B∞n (µs)

)
ρs (L)

·
ρs (L)

ρs (L − c)

=
ρ
(
(L/s − c/s) \ B∞n (µ)

)
ρ(L/s)

·
ρs (L)

ρs (L − c)
.

From Lemma 2.4, it can be derived that,

ρ
(
(L/s − c/s) \ B∞n (µ)

)
ρ(L/s)

< 2ne−πµ
2
.

Hence with Lemma 2.1, we obtain that for s > ηε (L),

Pr
y∼DL−c,s

[
‖y‖∞ > µs

]
< 2ne−πµ

2
·

1 + ε
1 − ε

.

Notice that for arbitrary ε > 0, we have

Pr
y∼DL−c,s

[
‖y‖∞ > (µ − ε)s

]
< 2ne−π (µ−ε)2

·
1 + ε
1 − ε

.
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As ε approaches 0, we have

Pr
y∼DL−c,s

[
‖y‖∞ ≥ µs

]
≤ 2ne−πµ

2
·

1 + ε
1 − ε

.

�
We recall the rejection sampling of discrete Gaussian

over integers proposed in [1].
SampleZLet t(n) ≥ ω(

√
log n) be some fixed function.

On input (s, c) and (implicitly) the security parameter n,
choose an integer x fromZ∩[c−t(n) ·s, c+t(n) ·s] uniformly
at random. Then with probability ρs (x − c) ∈ (0, 1] output
x, otherwise repeat.

With reference to Lemma 4.2 of [1], for any t(n) =
ω(

√
log n), ε ∈ (0, e−π ) and s > ηε (Z), the output is statis-

tically close to DZ,c,s with overwhelming probability. The
running time of SampleZ is t(n) · ω(log n).

3. Discrete Gaussian Sampler by Dynamic Program-
ming

Dynamic programming (DP) is a classical method to find
binary solutions to dense subset sum problems. By general-
izing and refining the DP technique, we propose a rejection
sampling algorithm for discrete Gaussian.

Firstly, we introduce a global rejection sampling algo-
rithm DGS-GR (Algorithm 1) in Sect. 3.1, which is precise
but costly. Then we explicate the refined algorithm DGS-LR
(Algorithm 2) in Sect. 3.2, in which the DGS-GR is embed-
ded in the head block.

3.1 Global Rejection Sampling of Discrete Gaussian

We recall the DP method to solve subset sum problems.
Given a = (a1, · · · , an) ∈ Znq and t ∈ Zq for q > 0, subset
sum problem asks to find x ∈ {0, 1}n such that 〈a, x〉 =
t mod q. We define the boolean-valued function f (k, z) for
1 ≤ k ≤ n and z ∈ Zq as:

f (k, z) =
{

1, if ∃xi ∈ {0, 1} s.t.
∑k

i=1 ai xi = z mod q;
0, otherwise.

We let f (0, 0) = 1.
First of all, we establish a boolean table to store the

values of f (k, z): for k ranging from 0 to n and arbitrary
z ∈ Zq , if f (k, z) = 1, then we set f (k + 1, z) = 1, f (k +
1, (z + ak+1) mod q) = 1. We note that establishing and
storing the table cost O(nq) time and space.

The DP algorithmworks as follows. For j ranging from
n to 1, it chooses an α ∈ {0, 1} uniformly at random, and
checks the value of f : if f ( j −1, (t −αa j ) mod q) = 1, then
it assigns x j = α; otherwise, it assigns x j = 1 − α, and then
sets t = (t− x ja j ) mod q. Finally it returns a binary solution
x. It is worth noting that randomly choosing an α ∈ {0, 1}
gives a relatively fair backtrack for situations where both
f ( j − 1, t) and f ( j − 1, (t − a j ) mod q) are 1.

Notice that the backtrack only includes addition opera-
tion, thus the complexity of DP mainly relies on computing

the table for f (k, z), which costs O(nq) time and storage.
Now we generalize the DP algorithm to (−r, r)n for

0 < r ≤ q
2 and refine the process of choosing xi . Define the

generalized function fr (k, z) for 1 ≤ k ≤ n and z ∈ Zq as

fr (k, z) =
{

1, if ∃xi ∈ (−r, r) s.t.
∑k

i=1 ai xi = z mod q;
0, otherwise.

Similarly, we define fr (0, 0) = 1 for any r > 0. In this
case, it costs O(rnq) time and space to establish the table for
fr (k, z).

We are to describe our global rejection sampling algo-
rithm for discrete Gaussians. We set the sampling interval
for each vj as (−µs, µs), where µ is a parameter related to
the sample quality. For j ranging from n to 1, we pick a
vj ∈ (−µs, µs) uniformly at random. Then we check that if
fr ( j − 1, (t − vja j ) mod q) = 1: if it is true, then we accept
vj with probability ρs (vj ) and set t = (t − vja j ) mod q; oth-
erwise, we restart the algorithm. The detailed procedure is
shown in Algorithm 1.

Algorithm 1 DGS-GR[a, q, s, t, µ]
Input:a ∈ Znq , modulus q, target value t ∈ Zq , width s and parameter µ.
Output:a vector v satisfying 〈a, v〉 = t mod q.
1: Preprocess: establish a table for fµs ( j, z) where 1 ≤ j ≤ n and

z ∈ Zq .
2: assign t̄ = t.
3: for j = n to 1 do
4: choose an integer α in interval (−µs, µs) and a probability p in

[0,1) uniformly at random.
5: if fµs ( j − 1, t̄ − αa j ) = 1 and p ≤ ρs (α) then
6: assign vj = α
7: t̄ = (t̄ − αa j ) mod q
8: else
9: go to Step 2.
10: end if
11: end for
12: return v

Remark 3.1: For each vj , accepting vj with probability
ρs (vj ) means that sampling a p uniformly distributed in
[0, 1), we accept vj if p ≤ ρs (vj ) and otherwise reset the
algorithm. That’s why we need to check p ≤ ρs (α) in Step 5
of DGS-GR.

The following theorem gives an explicit analysis about
the correctness and complexity of DGS-GR.

Theorem 3.2: Given a ∈ Znq , t ∈ Zq , s > ηε (a⊥) for
ε ∈ (0, 1

2 ) and µ = ω(
√

log n), the output of DGS-
GR(a, q, s, t, µ) follows a distribution statistically indistin-
guishable from Dct+a⊥,s , where ct satisfies 〈a, ct〉 = t mod q.
The time for preprocessing isO(µsnq) and the expected time
for sampling is O(q(2µ)n).

Proof We write the distribution Dct+a⊥,s as D for short. Let
Y be the output of the algorithm DGS-GR and D̃ be the
distribution of Y , then Y ∈ ct + a⊥ and ‖Y ‖∞ < µs. Without
loss of generality, we assume that µs is an integer, then
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there are at most 2µs − 1 integers in the interval (−µs, µs).
When Y = v = (v1, · · · , vn), since vj is uniformly sampled
from (−µs, µs) and accepted with probability ρs (vj ) in each
round of the loop, we have that v is output with probability∏n

j=1
ρs (vj )
2µs−1 =

ρs (v)
(2µs−1)n . Therefore we deduce that

D̃(v) = Pr[Y = v] =
ρs (v)∑

y∈ct+a⊥
‖y‖∞<µs

ρs (y)
. (1)

A straightforward computation leads to that for y ∈
ct + a⊥,∑

‖y‖∞<µs

�����
ρs (y)∑

‖y‖∞<µs ρs (y)
−

ρs (y)
ρs (c + a⊥)

�����
=

∑
‖y‖∞≥µs ρs (y)
ρs (c + a⊥)

.

Notice that∑
‖y‖∞≥µs ρs (y)
ρs (c + a⊥)

= Pr
y∼D

[‖y‖∞ ≥ µs]=
∑

‖y‖∞≥µs
D(y).

According to Lemma 2.5, the statistical distance ∆̃ be-
tween D̃ and D is

∆̃ =
1
2

∑
‖y‖∞≥µs

|D(y) | +
1
2

∑
‖y‖∞<µs

|D(y) − D̃(y) |

=
∑

‖y‖∞≥µs
|D(y) | ≤ 2ne−πµ

2
·

1 + ε
1 − ε

.

Therefore, when µ = ω(
√

log n) and ε < 1
2 , the distribu-

tions D̃ and Dct+a⊥,s are statistically indistinguishable. For
simplicity, we denote δ = 2ne−πµ

2
· 1+ε

1−ε .
Now we analyze the running time. For the preprocess-

ing, we need O(µsnq) operations to establish the table of
fµs ( j, z) with 1 ≤ j ≤ n and z ∈ Zq . Since the table is
binary, we need O(nq) bits of storage.

The algorithm DGS-GR terminates once it successfully
outputs a vector. The probability that DGS-GR successfully
outputs v is ρs (v)

(2µs−1)n . Thus the expected number of iterations
before DGS-GR ends is

(2µs − 1)n

ρs ((ct + a⊥) ∩ B∞n (µs))
≤

(2µs − 1)n

(1 − δ)ρs (ct + a⊥)
.

By Lemma 2.1, we obtain that for s ≥ ηε
(
a⊥

)
,

ρs (ct + a⊥) ≥
1 − ε
1 + ε

· ρs (a⊥).

The Poisson summation formula leads to

ρs (a⊥) =
1

det(a⊥)
· sn · ρ1/s

(
(a⊥)∗

)
≥

sn

q
.

Observing that (2µs − 1)n < (2µs)n, we derive that

(2µs − 1)n

(1 − δ)ρs (ct + a⊥)
≤

1 + ε
(1 − δ)(1 − ε )

· q(2µ)n.

Notice that for small ε, δ > 0, 1+ε
(1−δ)(1−ε ) can be bounded

by a constant. Consequently, the expected running time is
O(q(2µ)n). �

As shown in Theorem 3.2, the time consumption of
DGS-GR algorithm is quite expensive. Actually, it can be
improved. We will modify the algorithm in Sect. 3.2 to
achieve a better performance.

3.2 Local Rejection Sampling of Discrete Gaussian

Notice that Algorithm 1 is super-exponential because it
would start a new iteration once the conditions in Step 5
can not be satisfied. A possible optimization would be for
each 1 ≤ j ≤ n, keeping sampling (α, p) until the conditions
of Step 5 are reached. However, it may increase the gap
between the output distribution and Dct+a⊥,s . Indeed, we are
able to apply a local optimization to improve the efficiency
without affecting the distribution of outputs.

It is observed that, when j is large, fµs ( j, z) = 1 for any
z ∈ Zq , which means that the sampling process of vj seems
independent of the value of vj+1, · · · , vn. For these j’s, we
can independently and repeatedly sample eligible (α, p).

We now elaborate our refined sampling algorithmDGS-
LR (Algorithm 2). Let n0 = d

log(nq)
log(2µ) e and a = (a1, a2) where

a1 ∈ Z
n0
q . It is worth noting that n0 ≤ n is a necessary

condition to ensure DGS-LR works, which is satisfied when

nq ≤ (2µ)n. (2)

Wewant to have λ∞1 ((a⊥1 )∗) ≥ 1/(4µ), that is λ∞1 (Lq (a1)) ≥
q/(4µ). If this condition could not be satisfied, then we
cyclically left shift a by n0 indices. Indeed, within log n
such cyclic left shifts of a, we can obtain that λ∞1 (Lq (a1)) ≥
q/(4µ) with high probability. Then we establish the table
for fµs ( j, z). For j > n0, we run the algorithm SampleZ
in [1] to obtain vj respectively and independently. For
j ≤ n0, we invoke the small-scaled DGS-GR (Algorithm 1)
with parameters

(
a1, q, s, (t −

∑
j>n0 a jvj ) mod q, µ

)
to ob-

tain (v1, · · · , vn0 ). Finally, we get the sample v.

Algorithm 2 DGS-LR(a, q, s, t, µ)
Input:a ∈ Znq , modulus q, target value t ∈ Zq , width s and parameter µ.
Output:a vector v satisfying 〈a, v〉 = t mod q.
1: Preprocess I: Let n0 = d

log(nq)
log(2µ) e and a = (a1, a2) where a1 ∈ Z

n0
q .

Check if λ∞1 (Lq (a1)) ≥ q
4µ . If so, set L = 0; otherwise, cyclic left

shift a by n0 indices and increase L by 1 repeatly until λ∞1 (Lq (a1)) ≥
q

4µ . If L exceeds log n, output ⊥ and terminate.
2: Preprocess II: Establish a table of fµs ( j, z) with 1 ≤ j ≤ n and

z ∈ Zq
3: for j = n to n0 + 1 do
4: vj = SampleZ(s, 0).
5: end for
6: Let t′ = (t −

∑
i>n0 ai vi ) mod q.

7: Run DGS-GR(a1, q, s, t
′, µ) to obtain v1.

8: Let v′ = (v1, vn0+1, · · · , vn ) and cyclic right shift v′ by Ln0 indices,
then obtain v.

9: return v.
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Before proving the correctness of Algorithm 2, we need
some lemmata.

Lemma 3.3: For a uniformly distributed in Znq , we have
that

Pr[λ∞1 (Lq (a)) ≥ q/(2r)] ≥ 1 − q
(

1
r
+

1
q

)n
.

Proof For a vector v ∈ Zn, we have that v ∈ Lq (a) if and
only if v = za mod q for some z ∈ Zq . Notice that for each
v, there are at most q a ∈ Znq such that v ∈ Lq (a) and the
number of v’s with ‖v‖∞ <

q
2r is at most

(
q
r + 1

)n
. Hence

we have that

Pr
a∼U (Znq )

[λ∞1 (Lq (a)) < q/(2r)] ≤
( q

r
+ 1

)n
· q ·

1
qn

= q
(

1
r
+

1
q

)n
.

�
Due to Lemma 2.3 and the fact that Lq (a) = q(a⊥)∗,

we have the following bound for ηε (a⊥).

Corollary 3.4: For a uniformly distributed in Znq , it follows
that

ηε (a⊥) ≤ 2r
√

log(2n(1 + 1/ε ))/π

with probability at least 1 − q
(

1
r +

1
q

)n
.

We claim that the output of Algorithm 2 follows a dis-
tribution indistinguishable from Dct+a⊥ .

Theorem 3.5: For a uniformly distributed in Znq , t ∈ Zq ,
µ = ω(

√
log n) and s > 4µ

√
log(2n(1 + 1/ε ))/π with

ε = n−ω(1) , the output of DGS-LR(a, q, s, t, µ) follows a dis-
tribution statistically indistinguishable from Dct+a⊥,s , where
ct ∈ Zn satisfying 〈a, ct〉 = t mod q. The expected run-
ning time is O(nq2) and space complexity is O(nq) if
q = pol y (n).

Proof Given uniformly distributed a ∈ Znq , we check that if
λ∞1 ((a⊥1 )∗) ≥ q/(4µ). If not, we cyclic shift a by n0 indices
until λ∞1 ((a⊥1 )∗) ≥ q/(4µ). It is indeed easy to figure out
λ∞1 ((a⊥1 )∗). Note that (a⊥1 )∗ = 1

qLq (a1), by checking all
x ∈ Zq and reducing xa into [−q/2, q/2]n, it suffices to
obtain λ∞1 . Thus the time in Preprocess I is O(nq log n).
Furthermore, notice that a is left shifted n0 indices each
time, thus a1 is uniformly random over Zn0

q . According to
Lemma 3.3, we have that for n0 = d

log(nq)
log(2µ) e ≥

log(nq)
log(2µ) , there

exists a constant c > 0, such that

Pr
[
λ∞1 (Lq (a1)) ≥ q/(4µ)

]
≥ 1−q

(
1

2µ
+

1
q

)n0

≥ 1−
c
n
.

Thus the algorithm terminates in Preprocess I with proba-
bility at most (1/n)log n which is negligible. Without loss
of generality, we assume no cyclic shift occurs in later dis-
cussion, because the Gaussian measure keeps unchanged for
cyclic shifted vectors.

Notice that for a⊥1 , λ
∞
1

(
(a⊥1 )∗

)
= 1

q λ
∞
1 (Lq (a1)) ≥

1
4µ , and for Zn−n0 , λ∞1 ((Zn−n0 )∗) = λ∞1 (Zn−n0 ) = 1.
Hence according to Lemma 2.3, we have that for s >
4µ

√
log(2n(1 + 1/ε ))/π,

ηε (a⊥1 ) ≤

√
log(2n0(1 + 1/ε ))/π

λ∞1

(
(a⊥1 )∗

) < s,

ηε (Zn−n0 ) ≤
√

log(2(n − n0)(1 + 1/ε )/π) < s.

For j > n0, we have fµs ( j, z) = 1 for any z ∈ Zq . Otherwise,
there must exist z0 ∈ Zq such that f (n0, z0) = 0, which is
(cz0 + a⊥1 ) ∩ B∞n0 (µs) = ∅. By Lemma 2.4, it leads to

ρs (cz0 + a⊥1 )
ρs (a⊥1 )

=
ρs ((cz0 + a⊥1 ) \ B∞n0 (µs))

ρs (a⊥1 )
≤ 2n0e−πµ

2
.

Observe that 2n0e−πµ
2
< 1−ε

1+ε for µ = ω(
√

log n) and
ε ∈ (0, 1), which conflicts with Lemma 2.1. Therefore,
for arbitrary y2 ∈ Z

n−n0 , we can always find y1 ∈ Z
n0 such

that (y1, y2) ∈ a⊥.
We write the distribution Dct+a⊥,s as D for short. We

denote by Y the output of algorithm DGS-LR(a, q, s, t, µ)
and D̂ the distribution of Y . Let Y = (Y1,Y2) where Y1 is a
random variable corresponding to the first n0 entries of Y ,
then

Pr[Y = v] = Pr[Y1 = v1 |Y2 = v2] · Pr[Y2 = v2].

Since the last n − n0 entries are sampled by SampleZ
independently, the probability that Y2 = v2 is that

Pr[Y2 = v2] =
ρs (v2)

ρs
(
Zn−n0 ∩ B∞n−n0 (µs)

) .
Let t(y2) = (t − 〈a2, y2〉) mod q for y2 ∈ Z

n−n0 . It is noted
that v1 is sampled by DGS-GR with target value t(v2). Thus
by Eq. (1) we have

Pr[Y1 = v1 | Y2 = v2] =
ρs (v1)

ρs
((

ct (v2) + a⊥1
)
∩ B∞n0 (µs)

) ,
where ct (v2) ∈ Z

n0 is an arbitrary vector such that
〈ct (v2), a1〉 = t(v2) mod q. Thus, we get that

D̂(v)=
ρs (v)

ρs
(
Zn−n0∩B∞n−n0 (µs)

)
ρs

((
ct (v2) + a⊥1

)
∩B∞n0 (µs)

) .
Let δ = 2ne−πµ

2
· 1+ε

1−ε , then δ ≥ 2n′e−πµ
2
· 1+ε

1−ε for any
n′ ≤ n, including n′ = n0 and n′ = n − n0. On the basis of
Lemma 2.5, we have that

ρs
(
Zn−n0 ∩ B∞n−n0 (µs)

)
ρs (Zn−n0 )

∈ (1 − δ, 1]

ρs
((

ct (v2) + a⊥1
)
∩ B∞n0 (µs)

)
ρs (ct (v2) + a⊥1 )

∈ (1 − δ, 1].

(3)

Combining the fact that
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ρs (ct + a⊥) =
∑

y2∈Z
n−n0

ρs (y2)ρs (ct (y2) + a⊥1 )

and

ρs (ct (y2) + a⊥1 )
ρs (ct (v2) + a⊥1 )

∈

[
1 − ε
1 + ε

,
1 + ε
1 − ε

]
,

for y2 ∈ Z
n−n0 from Lemma 2.1, we have that

ρs (ct + a⊥)
ρs (Zn−n0 )ρs (ct (v2) + a⊥1 )

∈

[
1 − ε
1 + ε

,
1 + ε
1 − ε

]
.

Together with Eq. (3), for y ∈ (ct + a⊥)∩B∞n (µs), it follows
that

1 − ε
1 + ε

≤
D̂(y)
D(y)

≤
1 + ε
1 − ε

·
1

(1 − δ)2 ,

Besides, we know that
∑
‖y‖∞>µs D(y) ≤ δ, which implies

that the statistical distance ∆̂ between D̂ and Dct+a⊥ is

∆̂ =
1
2

∑
‖y‖∞>µs

|D(y) | +
1
2

∑
‖y‖∞≤µs

|D̂(y) − D(y) |

≤
1
2
δ +

1
2

(
1 + ε
1 − ε

·
1

(1 − δ)2 − 1
)

≤ 2δ + 2ε + 6δε

since 1+ε
1−ε ≤ 1+4ε and 1

(1−δ)2 ≤ 1+3δ when ε = n−ω(1) and
µ = ω(

√
log n). Thus the distribution D̃ is statistically indis-

tinguishable from D when ε = n−ω(1) and µ = ω(
√

log n).
Next we evaluate the running time of DGS-LR. As

clarified in Theorem 3.2, the complexity for Preprocess II
is O(µsnq) and thus that for the whole preprocessing is
O(µsnq) +O(nq log q) = O(µsnq). The loop of Step 3 − 5
is n − n0 rounds of SampleZ. It is noted that the complex-
ity for SampleZ is µ · ω(log n), which can be bounded by
µ log2 n. Thus the cost of Step 3− 5 is at most Θ(nµ log2 n).
Step 7 mainly calls DGS-GR without preprocessing, which
costs O(q(2µ)n0 ) = O(nq2). �

4. Applications to General Lattices

In this section, we will generalize the sampling algorithm
DGS-LR (Algorithm 2) to some other lattices. We claim
that DGS-LR is efficient for most high-dimensional dense
lattices and q-ary lattices {v ∈ Zn | Av = 0 mod q} for
A ∈ ZO(1)×n

q and q = pol y (n).

4.1 Application to High-Dimensional Dense Lattices

For full rank L ⊂ Zn, according to Proposition 1 in [16], we
know that there exists an a ∈ Zndet(L) such that

L = {v ∈ Zn | 〈a, v〉 = 0 mod det(L)}

if and only if the quotient group Zn/L is cyclic. The work
in [17] proved that the natural density of such L over all full

rank lattices of Zn is approximately 0.85, which means that
85% full rank integer lattices are equivalent to an orthogonal
lattice of a vector. Notice that such vector a ∈ Zndet(L) for L
can be calculated in polynomial time (Proposition 2, [16]).

In line with Theorem 3.5, when the lattice L is dense,
especially det(L) = pol y (n), our sampling algorithm DGS-
LR can generate a discrete Gaussian distribution over L
within polynomial time and space. However, when det(L)
is large, such as the exponential of n, the sampler DGS-LR
does not work as indicated by Eq. (2).

4.2 Discussion on General q-Ary Lattices

We also extend DGS-LR to general q-ary lattices. Given a
matrix A ∈ Zk×nq , we define its orthogonal lattice

A⊥ =
{
v ∈ Zn | Av = 0 mod q

}
.

By similar analysis in Sect. 2.1, we have that det(A⊥) ≤ qk

with overwhelming probability and (A⊥)∗ = 1
qLq (A) where

Lq (A) :=
{
v ∈ Zn | ∃z ∈ Zk s.t. v = z · A mod q

}
.

The first minimum λ∞1 (Lq (A)) also has a lower bound with
a high probability when A is uniformly distributed in Zk×nq .

Lemma 4.1: Given A uniformly distributed in Zk×nq , it fol-
lows that

Pr[λ∞1 (Lq (A)) ≥ q/(2r)] ≥ 1 − qk

(
1
r
+

1
q

)n
.

Proof Given arbitrary v ∈ Rn, if v ∈ Lq (A) for some
A, then v =

∑k
i=1 xiai mod q where a1, · · · , ak are the row

vectors of A and xi ∈ Zq . We observe that xkak = v −∑k−1
i=1 xiai mod q. Let (xi, ai) runs over Zq × Znq for i =

1, · · · , k − 1. Then we have the number of A ∈ Zk×nq ’s such
that v ∈ Lq (A) is at most qnk−n+k .

Also, there are at most
(
q
r + 1

)n
points in (− q

2r ,
q
2r )n,

thus

Pr
[
λ∞1 (Lq (A))<

q
2r

]
≤

( qr + 1)nqnk−n+k

qnk
≤ qk

(
1
r
+

1
q

)n
.

�
We write A = (â1, · · · , ân) where âi ∈ Zkq for i =

1, · · · , n. Comparably, we define the discriminant function
fr ( j, ẑ) for 0 < r < q

2 , 1 ≤ j ≤ n and ẑ ∈ Zkq:

fr ( j, ẑ) =
{

1, if ∃xi ∈ (−r, r) s.t.
∑j

i=1 âi xi = ẑ mod q,
0, otherwise

with fr (0, 0̂) = 1.
Given input (A, q, s, t̂, µ), we set n0 = d

log(nqk )
log(2µ) e and

A = (A1,A2) where A1 = (â1, · · · , ân0 ) ∈ Zk×n0
q . We firstly

check whether λ∞1 (Lq (AT
1 )) ≥ q/(4µ). If not, we cyclically

left shift the columns of A by n0 indices. Assume that
λ∞1 (Lq (AT

1 )) ≥ q/(4µ) can be achieved within log n shifts,
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otherwise the algorithm would halt with failure. Then we
establish the boolean table of size n × qk for fµs ( j, ẑ) with
1 ≤ j ≤ n, ẑ ∈ Zkq . Similar with DGS-LR, SampleZ is
called to sample vj for any j > n0, and v1 = (v1, · · · , vn0 ) is
generated by a vectorial DGS-GR(Algorithm 1) with input
(A1, q, s, t̂−

∑
j>n0 vj âj, µ). Finally the algorithm return v =

(v1, vn0+1, · · · , vn). We call this sampling algorithm GDGS-
LR.

Theorem 4.2: For A uniformly distributed in Zk×nq , t̂ ∈
Zkq , µ = ω(

√
log n) and s > 4µ

√
log(2n(1 + 1/ε ))/π with

ε = n−ω(1) , the output of GDGS-LR(A, q, s, t̂, µ) follows
a distribution statistically indistinguishable from Dct̂+a⊥,s ,
where ct̂ ∈ Z

n satisfying Act̂ = t̂ mod q. The expected
running time is O(nq2k ) and space complexity is O(nqk ) if
q = pol y (n).

Remark 4.3: Theorem 3.5 is essentially the case of k = 1
for Theorem 4.2. With a trivial generalization, the proof of
Theorem 3.5 still applies to Theorem 4.2 and therefore we
omit the proof. For those q-ary lattices where k = O(1) and
q = pol y (n), GDGS-LR still runs in polynomial time.

5. Comparison with Other Discrete Gaussian Samplers

We compare our algorithm with existing discrete Gaussian
sampling algorithms.

From Theorem 3.5, sampling Dc+L,s for s > ω(log n)
can be achieved by DGS-LR within O(nq2) time. The table
for fµs ( j, z) is binary, thus the storage is O(nq) bits. Hence
when q = pol y (n), our sampling algorithm is polynomial-
time. One highlight of DGS-LR is that it is applicable to any
width s > ω(log n) and independent of the basis.

Diversely, other two polynomial-time samplers pro-
posed in [1] and [9] sample Dc+L,s with the help of a short
basis B. The sampler in [1] works for s > ‖B̃‖ω(

√
log n).

The usual cost is Õ(n3) operations and Ω(n3) bits of storage
according to the analysis in [9], [10]. Utilizing the round-
ing technique and convolution theorem, Peikert presented
an efficient and parallel sampler in [9] which applies for
width s > s1(B)ω(

√
log n) where s1(B) is the largest sin-

gular value of the basis B. It requires Õ(n3) for the offline
computation and Õ(n2) for the online [10], and Õ(n2) bits
for storage [9].

To get rid of the limitations of short basis and width,
a sampling algorithm was proposed in [12], [13] that can
sample vectors following Dc+L,s at any width s > 0 and
does not require short basis in advance. However, the time
and space complexity of this sampler are 2n+o(1) .

The detailed comparison of these discrete Gaussian
samplers is listed in Table 1.

We remark that all these three existing algo-
rithms [1], [9] and [12], [13] work for arbitrary q-array
lattices L ⊂ Rn, while DGS-LR only works efficiently for
specific high-dimensional dense lattices and q-ary lattices as
clarified in Sect. 4.2.

Table 1 Comparison with other samplers.

Samplers Time Space Needs for WidthShort Basis
DGS-LR O(nq2) O(nq) No ω(log n)
Alg. in [1] Õ(n3) Ω(n3) Yes ‖B̃‖ω(

√
log n)

Alg. in [9] Õ(n3) Õ(n2) Yes s1 (B)ω(
√

log n)
Alg. in [12], [13] 2n+o(1) 2n+o(1) No s > 0

6. Conclusion

Wepropose a newdiscreteGaussian sampler over orthogonal
lattices by generalizing and refining dynamic programming.
Our sampler is polynomial-time for high-dimensional dense
lattices. It is worth noting that our sampler generates discrete
Gaussian at any width s > ω(log n), which is independent
of the basis.

Notice that we exploit the basic dynamic programming
for subset sum problems that needs space to store a large ta-
ble. Exploiting optimized dynamic programming techniques
may save space and time.

It would be interesting to improve the efficiency of our
sampling algorithm for general q-ary lattice, which is crucial
in the design and cryptanalysis of lattice-based cryptography.
We leave it as future work.
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