

1

Fine-grained Access Control Framework for Igor, a Unified Access

Solution to The Internet of Things

SUBMITTED IN PARTIAL FULLFILLMENT FOR THE DEGREE OF MASTER OF SCIENCE

Pauline Wen Shieng Sia

11305169

MASTER INFORMATION STUDIES

HUMAN-CENTERED MULTIMEDIA

FACULTY OF SCIENCE

UNIVERSITY OF AMSTERDAM

24 May 2018

1st Supervisor 2nd Supervisor

Dr. P.S. César Garcia Dr Frank Nack

Jack Jansen Faculty of Science, University of Amsterdam

Steven Pemberton

Distributed and Interactive Systems, CWI

2

ABSTRACT

With the growing popularity of "Internet of Things" (IoT),
devices in our households and offices are becoming configurable
to be information sharing “smart” devices and be controlled via
network connections. The growth of collection, handling and
distribution of data generated by IoT devices presents ethical and
privacy issues. Users have no control over what information to
keep or reveal, interpretation of data collected, data ownership
and who can access specific information generated by the IoT
devices owned by them. More and more IoT users are seeking
ways to control access to data generated. The main aim of this
paper is to describe how to solve data ethical/privacy issues
related to IoT using a fine-grained access-control framework on
Igor, a centralized home and office automation solution to solve
the data sharing and access issues. Data collected from IoT
devices are stored in a centralized location controlled by the data
owner and all access is controlled and granted through Igor. A
Capability-Based Access Control Model (CapBAC) solution has
been adapted for this project. The implementation, expert
evaluation and performance measurement results demonstrate that
this is a promising solution for securing access to data generated
by IoT devices.

Keywords
Internet of Things, ethical and privacy issues, IoT, authorization,
access control, framework

1. INTRODUCTION

The term "Internet of Things" (IoT) [1] was first expressed

by Kevin Ashton in 1999. Since then, IoT has become more and
more mainstream. In 2013, Ashton insisted on the realization that
IoT is here now; it is not the future but the present [1]. Cisco
IBSG predicts there will be 50 billion devices connected to the
Internet by 2020 [2]. With the growing popularity of IoT, more
and more of the devices in our households and offices are
configurable to be information sharing “smart” devices, controlled
via network connections.

IoT devices’ data collection, handling and distribution are
also growing drastically. With that, users in general are facing
ethical and privacy issues. This raises higher concerns as
corporations start to monetize the data collected. Mason [3]
categorized these ethical issues as PAPA: a) Privacy: What
information about one's self or one's associations must a person
reveal to others, under what conditions and with what
safeguards? What things can people keep to themselves and not
be forced to reveal to others? b) Accuracy: Who is responsible for
the authenticity, fidelity and accuracy of information? c)
Property: Who owns information? What are the just and fair
prices for its exchange? d) Accessibility: What information does a
person or an organization have a right or a privilege to obtain,
under what conditions and with what safeguards?

Caron et. al. [4] performed an analysis on how IoT impacts on
individual privacy and concluded that the IoT key themes related
to the ethical issues highlighted by Mason [3] are: unauthorized
surveillance, uncontrolled data generation and use, inadequate
authentication, and information security risk. Privacy and security
are also the main topics of concern during a public consultation
involving general users, associations, academic groups, civil

societies and industry players conducted by the European
Commission in 2012 [5].

Besides privacy, there is also a need to protect data access at
different levels of detail. Figure 1 shows an example where
Pauline is going away on holiday for 2 weeks. Her 17-year-old
nephew, Jack is coming over to stay at Pauline’s house while she
is away. Pauline would like to give Jack access to the main door
of the house and the guest room, but not her study where she has
confidential documents. The house is equipped with smart door
locks, however, of different makes and models. Each lock uses a
different remote control, and user console, and has a different data
storage location. There is no central control where Pauline can
specify access for Jack to only certain locks and data collected
from these smarts locks to be stored in one location only
accessible to Pauline.

While Pauline is away, she would like to know when Jack is
at home without knowing the details of his activities or his exact
location in the house (for Jack’s privacy). Pauline also wants to
know if there are more visitors in the house besides Jack. For
Jack’s safety, she wants to be triggered if there are unknown
people in the house at night (between 23:00-7:00). Pauline would
like access to all this information without sharing it with other
parties like corporate companies.

Other external parties, for example, Steven, the landlord of
the house where Pauline is the main tenant, only need to know if
there is someone in the house, so that he can come over to service
the heating system. He does not need to know who is at home
because he does not need that information to complete his task.
However, there is no solution currently to trigger Steven when the
number of occupants is more than 0, between working hours 9:00
to 17:00. After 2 weeks, Jack returns to his parents. Pauline needs
to remove all his accesses and information generated during his
stay as they are not needed anymore, and to protect Jack’s
privacy.

Figure 1 – Example of challenges in providing fine-grained

access control

The problem statement this paper addresses is: “The growth of
collection, handling and distribution of data generated by IoT
devices has presented ethical and privacy issues. Users have no
control over what information to keep or reveal, interpretation of
data collected, data ownership and who can access specific
information generated by the IoT devices owned by them.”

Our aim is to solve data ethical/privacy issues related to IoT
as defined by Mason’s PAPA model and as explained in the

3

example above. From the use case, six requirements of the access
control mechanism are formulated:

• R1 – New users or devices can be easily added
• R2 – Access control can be delegated from the owner to others
• R3 – Access control can be revoked by the owners
• R4 - Access control of data should be fine-grained
• R5 – Access control should be easily managed and modified

for/by normal users
• R6 - Access control solution should not add heavy processing

requirement as IoT devices have low processing power

Mason’s
ethical issues
(PAPA)

How to solve that? Requireme
nts

Privacy Through proper access control
mechanism, sensitive data is
concealed / hidden from public

R1, R2, R3,
R4

Accuracy Keeps the data only accessible to
the owners, the data owner can
verify on the accuracy of the
information presented and is able to
choose whether to share it with
others or not

R2, R3, R4,
R5

Property Data is stored in a storage area
controlled by the rightful owner.
Thus, no dispute on data ownership

R1, R2, R3

Accessibility The data owner decides who can
access what data

R1, R2, R3,
R4, R5

Table 1 – Mapping of Mason’s four ethical issues related to
information generated by IoT with proposed solutions and project

requirements

Table 1 shows a summary of the mapping of Mason’s four
ethical issues related to information generated by IoT devices with
our proposed solution through Igor and project requirements. R6
is a non-functional requirement requiring the solution to be able
to be run on light weight IoT devices with acceptable
performance.

The solution is to keep data generated by IoT devices in a
storage location controlled by the data owners, where they are
empowered to decide who can see or access the data, even to a
fine-grained level.

1.1 This Paper’s Contribution
We designed an access control framework on top of Igor, a

unified access solution to the IoT [6] by focusing on authorization
of different agents accessing, interacting, performing tasks and
sharing information with each other. Authentication of agents,
though important, was not in scope and should be addressed in
future work. The solution covers lightweight IoT devices such as
mobile phones, in household and office appliances. Industrial IoT
which can continuously generate huge amount of data and
requires high capacity storage space is out of scope.

The following sections of this paper discuss related work that
has been carried out previously on access control approaches for
IoT, the interaction design, system design, implementation of our
approach, evaluation of the design implementation, conclusion
and future work.

2. RELATED WORK

This paper extends the work done by Jansen & Pemberton [6]
on Igor. Igor, is named after a Discworld [7] character, a butler
who knows and controls everything that goes on in the household,
and makes sure everything runs smoothly and perform tasks
without passing judgements and maintaining complete discretion.
There are also other Igors working together in the environment.

Domoticz [8] is a light weight home automation system
similar to Igor. It allows users to monitor and configure IoT
devices and notifications or alerts can be sent to any mobile
device. Domoticz uses its own embedded web server written in
C++. On top of that, users can write simple Blockly [9] or LUA
[10] scripts right in the graphical user interface (GUI) provided.
Domoticz uses an SQL Lite [11] database and access to the
database is controlled at database level. For Domoticz, access is
granted to users by device and there is no fine-grained data access
control defined.

Fahrny and Park [12] designed authentication and binding
multiple devices where the first device (of a higher security
profile) may vouch for the authenticity of a second device with a
lower security profile. This allows the second device to access the
content from a content provider. The vouching process involves
the overlaying of a digital signature of the first device on a
registration request that has been signed and transmitted by the
second device.

Ouaddah et. al. [13] performed extensive qualitative analysis
on the various security access models for the IoT devices. They
highlight the strengths and weaknesses of each access control
solution proposed by others that are most relevant, such as RBAC
(Role-Based Access Control) by Sandhu, et. al. [14], ABAC
(Attribute-Based Access Control) by Yuan and Tong [15], UCON
(Usage Control Model) by Zhang, et. al. [16], CapBAC
(Capability-Based Access Control Model) by Gong [17] and
OrBAC (Organizational-Based Access Control Model) by Kalam,
et. al. [18]. Ouaddah et. al. [13] found that quantitative
evaluation on most of the proposed access control models from
the available literature is not possible yet because they have not
been developed in practice. Nevertheless, from their analysis, it is
clear that CapBAC has more advantages than the other solutions
as it is one of the oldest and is a proven access control model [19-
21] .

In 2017, Hossain, Hasan and Skjellum [22] performed a meta
study of the challenges, approaches and open problems with the
security of IoT. They concluded that it is hard to find a solution
that accommodates a heterogeneous mix of diverse IoT devices.
They are positive about CapBAC access control mechanism, as it
is suitable for both the human-to-things and things-to-things
communications.

The concept of capability-based access control started with
the paper presented by Dennis and Van Horn [19] in 1966 to
manage computer hardware computation activities in multi-
programmed computer systems. They introduced capability as
token or key that defined permissions to processors to access
computational objects. From then onwards, many more books and
papers have been written about capability-based access control to
further refine the concept and to address its weaknesses. In 1988,
Levy [20] further explained the concept of capability-based
computer systems and its benefits, which are: having high
flexibility, a uniform mechanism for naming objects, a great

4

protection mechanism and normal users can add capabilities
without having special privileges.

Gong [17] introduced Identity-based CAPability protection
system (ICAP) to improve capability propagation and revocation
method of the traditional capability-based access control by
incorporating subject identities. This enforces better security
policies during capability propagation as the subjects are now
traceable. He used an exception list and capability propagation
trees to enable full revocation of granted capabilities. It was
proven by Gong [17] that ICAP requires less storage, incur lower
costs and performs better than prior solutions.

With the growth of IoT, CapBAC has been adopted in many
large-scale projects, for example, the European FP7 IoT@Work
project [23]. Hernández-Ramos et al. [24] later built on the idea
of PDP framework and introduced DCapBAC (Distributed
Capability Based Access Control) by embedding authorization
logic into IoT through Elliptic Curve Cryptography (ECC)
optimization or its standard protocols such as a modified Diffie-
Hellman using ECC (ECCDH) [25] or Ellyptic Curve Digital
Signature Algorithm (ECDSA) [26]. The ECC is specifically
designed for constrained environments (light weight), can be used
in a distributed approach, allows fine-grained and context aware
authorization decisions [24]. Our work taps on the idea of using
exception list [17], capability token and PDP framework [23] and
modify them to suit our needs.

The software Igor is a hierarchical data store (an eXtensible
Markup Language, XML repository), an XPath 1.0 [27]
implementation and a server that allows REST-like [28] access to
the database. There are different people, IoT devices, plug-ins and
different Igors interacting with each other. In this paper, these
different parties are called agents. Igor is primarily state-based,
unlike ITTT (If This Then That) and many other IoT platforms
which are primarily event-based. The advantage of state-based is
that it allows abstraction of information more easily. The
advantages for Igor to use RESTful web services and Xpath
expression are fast performance, better reliability and the ability to
grow (more re-using components) and performing updates
without affecting the system as a whole. Thus, it is suitable for
low resource IoT devices. On top of that, fine-grained access
control can be achieved in a very light way.

In our project, Igor acts as the main “trusted” device that
controls all the other connected IoT devices via various plug-ins.
Once Igor has established the first authenticated connection with
an IoT device, that connection is assumed to be trusted for all
future access requests under specified conditions. All the other
IoT devices or users who want access to that registered device
would need to first request access via Igor. Igor offers a solution
to accommodate the communication of heterogenous mix of
diverse devices. Policy decision points (PDPs) are used to obtain
authorization decisions. Whenever the subject tries to access an
object or service, a capability token is presented to the access
request. PDP decides whether to grant access or not based on the
received capability and the internal rules defined.

As Igor is based on XML, various access control policies for
XML databases have been explored. Bertino et al. [29] introduced
access control policies that are enforced at DTD (Document Type
Definitions) level as well as the specific XML document level.
Their access control model supports positive and negative
authorization as well as authorization propagation for hierarchical
data store and documents. The access controls are defined at

different granularity levels. Two kinds of privileges are supported:
browsing privileges (read and navigate) and authoring privileges
(append and write). The propagation policies are also defined by
Bertino et al. [29]:

• Cascade: authorization to all direct and indirect levels
• First level – authorization to all the direct sub-levels
• None – no authorization propagation is performed

They also introduced different direction of propagation
within the XML document or DTD, depending on different
classification levels: homogenous, heterogeneous and mixed.
Homogenous level would apply a “top-down” strategy for
granting authorization, whereas the heterogenous level would
apply a “bottom-up” strategy for granting authorization. The third
option is to implement both “top-down” and “bottom-up”
strategies (mix level). They mentioned that the authorization
defined at lower levels always supersedes the higher level. This
proposed model has been implemented on a system called Author-
X [30,31]. Author-X provides an interface for system
administrators to define access control to XML documents. It
supports multi-granularity protection objects and
positive/negative authorizations at document and DTD levels.
Chebotko et al. [32] later enhanced this access control model by
introducing graphs matching to analyze if an input query is fully
acceptable, fully rejected or partially acceptable. They also
included an index structure for XML element types to speed up
the processing of access granting. Nevertheless, this solution was
introduced for large DTDs and is very complex to implement.

Seitz, Selander and Gehrmaan [33] introduced an
authorization framework for the IoT. The aim of the framework is
to allow fine-grained and flexible access control for the
connection of devices with limited processing power and memory.
Their approach uses the access control standard called eXtensible
Access Control Markup Language (XACML) [34]. The
framework that allows definition of differentiated access rules for
different requesting agents and access control at granularity of
RESTful resources. Instead of using a full syntax of XACML,
they proposed a subset of XACML to create a compact JSON-
based [35] assertion standard. This compact assertion is only 10
percent of the size of the corresponding full XML assertion.

For the case of Igor, access control at the XML database level
is sufficient. The concept of propagation, the two types of
privileges (browsing and authoring), and access controls defined
at different granularity levels in the XML document have been
adopted in our proposed access control model. In our solution, the
framework of Seitz, Selander and Gehrmaan [33] is adopted for
the access control model proposed for Igor.

3. INTERACTION DESIGN
This section covers who are the target agents, and examples

of scenarios applicable for these agents as well as the main
authorization workflows defined for Igor.

3.1 Target Agents
The objective of Igor is to provide security and offer data

protection for users of IoT devices either at home or office
locations. The target “agents” of Igor are:

• People/Users – physical users who are usually “owners”
of the IoT devices, as well as other users who interact or

5

would like to view information from the IoT devices
like the house temperature readings, whether the lights
are on, etc.

• Igor – there can be multiple Igor devices, each with
different tasks to perform, like monitoring hardware
performance in the server room, controlling who can
access the office locations, controlling lighting based on
the presence of inhabitants in the rooms, etc.
Sometimes, these different Igors interact and share
information with each other1.

• Devices – The IoT devices that are controlled by Igor as
the “helper” of their owners. Once connections have
been established between these devices and Igor, the
access to the data and information generated by these
devices are stored securely in Igor and only authorized
agents are allowed to view or modify them.

• Plug-ins – Igor uses different plug-ins to access
heterogenous IoT devices. These plug-ins stand between
the devices and Igor. Access has to be granted to these
plug-ins to ensure that they can only perform functions
that are allowed such as trigger the lights of the house to
be on, alert the owners of the house if there are any
intruders detected through the IoT sensors, etc.

3.2 Scenarios

This section describes the scenarios to illustrate what and
how access rights are granted to different agents and the relevant
process flow.

Figure 2 – Scenario of Pauline, Jack, Steven and other IoT

devices accessing Igor

3.2.1 Adding new users, devices and plug-ins
into the Igor system

As illustrated in Figure 2, Pauline just bought a new smart
phone. She would like to add this new mobile phone for Igor to
know whether she is at home or not by detecting the Bluetooth

1 Although interaction between different Igors is possible, it is not implemented in this
project.

unique ID address of the smart mobile phone. As Pauline is the
owner of Igor, Pauline has administrator rights to Igor. This
allows Pauline to log in to Igor and trigger Igor to register the
mobile phone’s Universally Unique Identifier (UUID) [36]
address in her profile, so that Igor knows that the UUID address
belongs to Pauline’s mobile phone.

Next, she will need to add the BLE (Bluetooth Low Energy)
server. This little server keeps track of which Bluetooth LE
devices are in range. For each device it remembers when it was
first seen (and for devices that are no longer available when it was
last seen). Steps to setup BLE server is available at [37]. The
Bluetooth LE plug-in is used by Igor to pull data from the BLE
server into its XML database and triggers Igor if the UUID
address specified for Pauline’s mobile phone is in range. Once
detected, Pauline can allow Igor to perform some activities like
trigger the IoT smart lights (via the Lights Plug-in) of the house to
be on if it is already dark.

From the scenario mentioned earlier, when Pauline’s 17-
year-old nephew, Jack comes over to stay for two weeks, she then
registers Jack and his mobile phone to Igor so that Jack can access
most of the IoT devices in the house, except the lock of Pauline’s
study. The IoT sensors in Pauline’s house are also given the rights
to know when Jack is at home from the UUID address of his
mobile phone.

3.2.2 Specifying different access levels
The different agents accessing Igor have different access

capabilities. Pauline as the owner of Igor has the full control of all
the information in Igor, she is able to add new users, plug-ins and
devices to Igor. Jack is granted access only to the lock of the front
entrance and the guest room as he is living in her house
temporarily. The Bluetooth LE plug-in will need to be granted
access to trigger Igor when Jack’s mobile phone is in range. Igor
will then trigger Lights Plug-in to switch on the lights of the
house. The plug-ins only have access to the actions that they are
allowed to do.

Steven, the landlord, needs to perform routine service on the
heating system. As Steven is an external party, Pauline grants
Steven access to the information of the number of occupants in
the house, but not who in particular. Via his mobile phone, Steven
can tell if there is someone at home, so that he can come over to
service the heating system.

3.2.3 Editing (Update) the current settings of
the access rights of the users, devices and
plug-ins

If Jack decides to stay longer with Pauline, Pauline then logs
in to Igor again to extend the capability of Jack to access all the
IoT devices in the house except for the study. Besides switching
on the light, Pauline would like Igor to show if there are any
unknown visitors at home via sensors between 23:00 to 8:00 for
Jack’s safety. As Pauline is the administrator and the owner of the
IoT devices, she is able to perform the task of changing the
settings of Igor and other IoT devices. Jack is not able to perform
that function as he is only a visitor to the house and he does not
have the edit rights to the IoT devices settings.

3.2.4 Delegation
During Pauline’s holiday, Jack’s parents would like to visit

Jack for 2 days. Pauline has to delegate her access rights to allow
other visitors to enter her house to Jack, so that Jack can grant

6

access to the front door to his parents. Pauline then logs on to Igor
and since Jack already has a profile in Igor, she just selects the
right to delegate access rights to open the main door and assign
them to Jack. Igor checks if Pauline has the right to delegate the
capabilities to Jack and if yes, replicate that capability to Jack. If
necessary, Igor is able to trace back who delegated the access of
those capabilities to Jack.

3.2.5 Revocation
After two weeks, Jack goes home. He no longer needs the

access to Igor and the IoT devices in Pauline’s house. Pauline
then logs on to Igor and revokes all the accesses of the user Jack
and his mobile phone. Igor verifies if Pauline has the access rights
to perform capability revocation and if yes, the accesses of Jack
and his mobile phone are removed. Unfortunately, when Pauline
was on holiday, she lost her mobile phone. Pauline logs on to Igor
and revokes all accesses related to that mobile phone.

3.3 Workflows
This section presents the workflows of the proposed access

control framework which is based on the CapBAC approach as
discussed in Section 2.

3.3.1 Basic Authorization Model
The basic access control model used by Igor is shown in

Figure 3.

Figure 3 – Basic access control model

In a basic access control model, a subject (any agent)
requests access to a resource (such as thermometer readings or to
switch on the lights) to Igor. Igor then checks if the request is
valid and if the Subject has the correct capabilities for the request.
If yes, Igor will grant access or performs the tasks as requested by
the Subject towards the Object, else, the request will be denied.

3.3.2 Performing Actions / Requests

Figure 4 – Igor’s policy checking workflow.

There are two types of requests going to Igor:

• Request from external devices (for example, the bell button
would like to trigger the house door bell to ring) – Figure 4

shows the policy checking workflow for external devices.
Capabilities are represented in the form of tokens.
1. the Subject starts the request by presenting R1 (request),
T1 (token containing the access permissions required to
perform the task) and K1 (the result of running hash
function with T1 and the shared symmetric secret key
between Igor and the Subject). When Igor receives the
request, Igor will run the same hash function with T1 and
the shared secret key and checks if the result is the same as
K1. This is to ensure that the token presented has not been
tampered with.
2. If the request is valid, Igor checks if the requested Object
is registered in Igor. If the Object is not available, the
request will be denied.
3. If the Object is found, the Policy Decision Point (PDP) in
Igor then checks whether T1 contains the access rights
required for the request. By default, access is always denied
unless the token/policy assigned to the subject is found and
access is mentioned. The token content design is covered in
Section 4.
4. The PDP reaches a decision (Permit / Deny) and returns
it to the request service.
5. If permitted, Igor then sends the access request to the
Object by also presenting R1 (request), T2 (token
containing the access permissions required to perform the
task) and K2 (the result of running the hash function with
T2 and the shared symmetric secret key between Igor and
the Object).
6. The Object repeats the same process in validating
whether the request from Igor is valid.

• Request from people (for example, Pauline would like to
ring the bell by sending a request directly to Igor) – for
existing users of Igor, their capabilities are contained inside
their profiles. Therefore, users are only required to produce
their login ID and passwords to access Igor and send their
request without the need to present an external token and a
generated key. Igor then checks if the user has the access
rights (available capabilities) to perform the request. If yes,
Igor sends the access request to the Object (similar process
as mentioned above), if no, the request is rejected.

3.3.3 Subject Updating Capabilities / Data in
Igor

Figure 5 shows the process of updating or changing any
capabilities or data in Igor. The Subject (user) first logins to Igor
by specifying a login ID and password. Igor checks if the ID and
password are valid. If yes, the user is successfully logged in,
otherwise, the login request is rejected. The user then tries to edit
the capabilities or data in Igor. The Policy Decision Point (PDP)
in Igor then checks if the user has the right capabilities to carry
out the action. If yes, the action is permitted otherwise, the action
request is rejected.

7

Figure 5 – Update Capabilities / Data in Igor

3.3.4 Delegation
Capabilities that are owned by the Subject can be delegated

either to a person (user) or another device:

Figure 6 – Delegation process for person

 Steps for the delegation process as shown in Figure 6:
1. Pauline logs into Igor (by keying in ID and password)

and sends a request to delegate the right to access
Button1 (Token 2) to Jack. It is assumed that Jack has a
profile in Igor.

2. The Policy Decision Point (PDP) in Igor responds on the
access request from Pauline (Subject).

3. PDP checks the policy on whether Pauline is the owner
of Token 2 and has the right to delegate the capability.

4. If yes, Igor executes the Delegation Service, else, the
request is rejected.

5. The Delegation Service will first “clone” Token 2 and
renamed it to Token 3. Token 3 will be stored in his
profile. Igor informs Jack of his new access via email.

For traceability, Igor inserts Token 3’s ID in Token 2 as a
“child” and Token 2 is recorded as “parent” in Token 3.
Pauline can decide if Jack is allowed to delegate further
this capability. If yes, Jack is named as the new Subject
of Token 3, else, Token 3 will not have a Subject named
and Jack is not allowed to delegate the capability further.

The process to delegate access to a device is similar to the
process described for delegation to another user except that Igor
does not need to inform the device via email but the new token
contents are transferred and stored on the external device. The
Token ID is stored in the device’s profile in Igor. It is assumed
that the communication channel between Igor and the external
device is secure.

3.3.5 Transfer Capability
There is also an option to transfer capabilities to another user

from the original “owner”. This function works just like
delegation as discussed in Section 3.3.4 except that the first
subject (Pauline) no longer has access to the device after the
capability (Token 6) has been transferred to Jack, as shown in
Figure 7.

Figure 7 – Transfer capability to another user

3.3.6 Remove access (revocation)

Figure 8 – Removing access (Revocation) process

As shown in Figure 8, subject (Pauline) requests Igor to
revoke the access rights of an agent (Token 1). The Policy
Decision Point (PDP) in Igor then checks if the subject has the

8

rights to revoke that access (revocation capability is granted to all
the owners of devices when these devices are first registered with
Igor). If no, the request is rejected, else, Igor will send request to
the Revocation Service to remove Token 1 from the Subject’s
profile and add them into the Revocation list.

There are two kinds of capabilities: internal capabilities (that
are only stored in Igor’s XML database) and external capabilities
which Igor provided to external IoT devices.

Only external capabilities will be recorded into the
Revocation list upon revocation. For external capabilities also, the
“Refresh” approach is used, where each capability will have a
limited lifespan (1 year or any other duration specified upon
creation) and after that date, it will need to be refreshed (to check
if it has been revoked) with Igor. There is no expiry date for
internal capabilities. To revoke internal capabilities, the requestor
must first have the access right to do so and if yes, the capabilities
are immediately removed from Igor’s XML database.

3.3.7 Adding agents and specifying access

levels
All agents need to be registered on Igor before any access

can be granted. Figure 9 shows the process of adding a new
device to Igor.

Figure 9 – Adding new device process

First, both Igor and the new device have to be on the same
local Wi-Fi2. Then, the new device generates a new identity (ID)
which also is its Public Key. An example function to generate
unique ID can be found in [38]. It then sends a connection request
to Igor together with its ID. As mentioned in Section 2, the
ECCDH symmetric key agreement protocol can be used to allow
both Igor and the new device, each having elliptic-curve public–
private key pair to establish a shared secret key. It is assumed that
the connection establishment channel is secure by using security
protocol like Datagram Transport Layer Security (DTLS) [39].

2 https://en.wikipedia.org/wiki/Wi-Fi

The owner of the device specifies the access rights to be
given to the new device. For example, for a new bell button, the
device owner can grant the device the right to ring the house door
bell. Igor then generates the message (T1, K1) where K1 = T1*
(shared secret key). After that, Igor will send the message back to
the new device and at the same time, insert the unique ID of the
new capability (T1) in the device owner’s capability profile for
traceability. At the same time, the new device ID is also stored in
the device tracking list in Igor.

For adding new users, Igor will follow the similar process as
mentioned above but instead of passing the message (T1, K1),
Igor will create a new profile and asks the new user to specify a
new password and a unique logon ID for the new user through an
interface.

4. SYSTEM DESIGN
This section covers the hierarchical data store, system

architecture, token (assertion) design and the access control policy
for Igor.

4.1 Hierarchical Data Store
As mentioned earlier, Igor is basically a hierarchical data

store (an XML database). There are three basic operations on the
database [40]:

• Plugin/ “Helpers” modules – enable the IoT devices to
modify/update the database (for example, the BLE Plug-
in will update the XML database with all the Bluetooth
LE devices detected by the BLE Server)

• Rules – rules which trigger certain actions whenever
changes in the XML database are detected (for example,
if Pauline’s mobile UUID is detected, then, Pauline is
home)

• Action plugins – trigger the database changes and allow
control over external IoT hardware and software (for
example, if it is getting dark, the “Light On” action
switches the status and triggers the Light plugin to
switch on the lights)

Figure 10 – Igor’s BLE device detection

Figure 10 shows an example of an Igor function, the BLE
(Bluetooth Low Energy) device detection. In this case, the BLE
device, BLE server and Lights plug-in are agents. The BLE server
detects and keeps track of which Bluetooth LE devices are in
range. Both Igor server and BLE server can be setup on the same
device.

4.2 System Architecture
Figure 11 shows the system architecture for Igor. Igor has

very low hardware requirements and it can be setup on a

9

Raspberry Pi33 or equivalent devices. As mentioned earlier, Igor
functions as the “intermediary” between the IoT device owners
and their heterogenous IoT devices. It is completely self-
contained (not dependent on any cloud infrastructure). This means
that the IoT devices and Igor can continue to function even if the
connection to the Internet is down. Igor stores all IoT devices’
generated data in its database and owners of the data can decide
which information to share and with whom. However, Igor can
work together with cloud based IoT servers and the owners can
combine this information with other IoT device data. Igor is
“state-based”, which mean any change in state triggers other
actions automatically.

Figure 11 – Igor’s System Architecture

This paper has introduced new security and access control
modules which comprises five new services:

• Creation Service – add new agents into the Igor system

• Edit Services – change the current settings of the access
rights of the agents. In any case, new tokens are
generated to replace the old one.

• Revocation Service – revoke accesses of agents and the
relevant delegated accesses

• Policy Decision Point (PDP) – The concept of PDP and
PAP (Policy Administration Point) has been adapted
from the XACML architecture [34]. The PDP decides
whether access should be granted by first validating
whether the token presented is valid or if the user/device
is in the revocation list and by the defined policies in
the PAP.

• Delegation Service – existing users can delegate all or
partial of his/her access rights to another person (either
permanent or temporarily)

Besides the new access management services, there are other
modules/components required to complete the access
authorization and XML database updating processes:

3 https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

• Token Generator (Issuer) – as described in Section
3.3.7, whenever a new agent is added into Igor, tokens
(capabilities) are generated to define the access rights
the agent will have. The Token Generator service
generates these tokens. There are two categories of
tokens: internal or external. For a new person/user, Igor
stores new tokens under his/her profile in the main
XML database (internal) and if the newly added agent is
an external IoT device, the Token Generator generates
an external token (T1) and creates the message (T1, K1)
where K1 = T1* (shared secret key)

• Updating Services – once the authorization processes
move completed, the updating services updates the
XML database with the requested actions

• (Thin) Client User Interface – users access the
functionalities of Igor via a thin client user interface
(UI). The design and development of a user-friendly UI
is not in the scope of this project

• Mail server – Igor communicates with new or existing
users via email by informing them on their new or
updated ID and password. The mail server enables Igor
to send emails to these users. The mail server is also not
in scope for implementation for this project

4.3 Token (Assertion) Design
As mentioned before, the CapBAC model [24] and the

authorization framework introduced by [33] are used as a guide
for the design of the access control policy and authorization
process for Igor. When an agent is granted access by Igor, the
Token Generator encodes the authorization decision as a token
(assertion). The contents of the tokens are used by Igor for the
enforcement of the access control decisions.

For a token to be valid and usable, the token presented to
Igor must contain:

• Which object/service does the decision apply to?
• Which actions (create, read, update and delete) do the

decision apply to?
• Which subject (agent) does the token belong to?
• Which Token Generator (ID of Igor) has issued this

token?
• Under what conditions are the tokens valid (e.g. expiry

date, propagation direction, etc.)

As suggested by [33], a subset of the full XACML and
SAML [41] standard is adopted to simplify the processing on
Igor. The format of the token in XML is as shown below:
<au:capability>

 <comment>This allows all access to own data</comment>

 <id>id-pauline-readself</id>

 <ii>2018-02-15T10:02:52Z</ii>

 <is>IGOR1</is>

 <sk>BvDgLAXSHe...0RLhfwS1fue </sk>

 <obj>/data/identities/pauline</obj>

 <get>descendant-or-self</get>

 <put>descendant</put>

 <post>descendant</post>

 <delete>descendant</delete>
 <ob> NB="2018-02-15 12:00:00" NA="2019-02-15 12:00:00"</ob>

</au:capability>

The “comment” is just a free text description on what is the
purpose of the token. The “id” is the token identifier, “ii” is the
Issue Instant in UTC [42] format, “is” is the identifier of the

10

Assertion Issuer (only available in external token) and “sk”
(Subject Key) is the owner of the token, using a public key for
confirmation. “obj” (object) the target resource URI authorized by
the assertion. “get”, “put”, “post”, “delete” are the actions, with
propagation type for each action. “ob” is an abbreviated XACML
Obligation, a local condition that is verified on the device. In this
case we have not-before (NB) and not-after (NA) times. For
external token, an additional value is defined: the audience of the
capability. For the prototype implementation, JSON Web Token
(JWT) [43] is used by Token Generator in Igor to generate the
outgoing “Authentication Bearer” header of the external access
tokens.

The abstraction is: “Subject may do Action to Resource
(object) under Conditions and the other values (id, ii, is) are
administrative (for traceability purposes).

For example, Pauline (subject) may read, update and delete
her own profile (object) if the current date is between 2018-02-15
and 2019-02-15 (obligation).

4.4 Access Control Policy

4.4.1 Propagation
As Igor is based on an XML database, access control policies

are enforced as authorization propagation for hierarchical data
stores. Homogenous level of only "top-down" strategy for
granting authorization is applied here. Table 2 shows the different
types of authorization propagation used in Igor.

Propagation
Type

Symbol Description

Self ° Access to the one
specified level only

Child + Access to one level below

Descendants * Access to all levels below

Descendants or
Self

^ Access to the specified
level and all the levels
below it

No Propagation - No access for all levels

Table 2 – Types of Authorization propagations

Figure 12 - Sample part of XML Database

There are five types of propagation defined for Igor. “Self”
propagation means access to the one specified level only. In the

example of XML database in Figure 12, access to the line 02
<pauline> means the access is defined only for that line. “Child”
propagation for <pauline> means access is applied to the level
below <pauline>, which is line
“<encryptedPassword>Dc6q7d4HA</encryptedPassword>” only.
“Descendants” propagation means access applies for all levels
below <pauline>. “Self or Descendants” means access granted for
that defined level and all the levels below it. “No propagation”
means the access for that level is not granted.

4.4.2 Access Control Permission Type
As an advantage of the CapBAC model, the Principle of

Least Authority (PoLA) (Least Privilege) is the default [23].
Therefore, no agents are able to access any of the data or actions
defined in Igor unless granted the permission to do so. There are
four access control permission types defined in Igor as shown in
Table 3.

Permission
Type

Function Description

POST Create The capability to create new lines /
command in the XML database

GET Read The capability to read the code/data in
the XML database

PUT Update The capability to update code/data in the
XML database

DELETE Delete The capability to delete code/data in the
XML database

Table 3 – Access Control Permission Types
Fine-grained access control can be achieved with the

combination of the permission types defined with the propagation
access control type and these are later mapped with the Xpath of
the XML database. Figure 13 shows a sample list of access tokens
defined in Igor’s XML database. Each token is given a unique
identity (ID). In this example, these tokens belong to Pauline
(Subject) and the Xpath (object) is defined in each token, with the
access right permissions. For token ID “1” for example, the
Object defined is “/data/environment” and the permission “GET”
assigned to it with the propagation “Descendants or Self”. This
means that Pauline has the permission to read only the data in
“/data/environment” and the levels below it. For each user
registered in Igor, he/she can create, read, update and delete data
in his/her own profile (as shown as token ID “3” in Figure 13).

An access control policy table can be drawn for Igor based
on the concept of mapping each Subject to the access rights
permission and the propagation type for each Xpath (object) in
the Igor’s XML database mentioned in the earlier sections. An
example of the access control policy for Igor can be found in
Appendix A. Subject can be any agents (people, devices, plug-ins,
etc.).

4.5 Scalability
The advantage of using a state-based XML database is that it

provides flexibility to add multiple heterogenous IoT devices and
actions can be defined upon changes in state. However, Igor
might face inability to cope with overload of concurrent requests.
This can be overcome by introducing external firewall
functionality restricting the number of simultaneous requests.

It is also possible to have multiple Igors working together
and thus, creating distributed centralized access control devices.
With the current access control design, there is no limit in adding

01 <identities>

02 <pauline>

03 <encryptedPassword>Dc6q7d4HA

04 </encryptedPassword>

05 <au:carries>xxxxxxxxxx</au:carries>

06 <plugindata>

07 <ble>

08 <device>

09 <id>a4:77:33:c0:5d:8f</id>

10 <name>chromecast.pauline</name>

11 </device>

12 </ble>

13 </plugindata>

14 </pauline>

15 </identities>

“Self” is level
<pauline>

“Child” of the level
<pauline>

“Descendants”
of the level
<pauline>

11

more IoT devices and defining their actions in this distributed
ecosystem of private Igors. However, the complexity in managing,
updating capabilities and revocation lists increases with the
additional number of Igors interacting with each other.

Figure 13 – Sample access token defined in XML Database

4.6 Technical Limitations
Igor is not built to manage multiple concurrent access to the

XML database (no access locking mechanism). Some IoT devices
are vendor locked and users are forced to use their application to
access and store data in their cloud infrastructure. The lightweight
database file is not built to store high data loads from connections
to thousands of IoT devices. However, the threshold of the data
capacity depends highly on the hardware Igor runs on. In the
current design also, data sharing through group credentials has not
been explored.

During the commissioning of IoT devices to Igor, there could
be the possibility of an Eavesdropping [44] attack. This can be
overcome by having secure connections (via HTTPS) and
performing physical verification that indeed the correct devices
are connected. Nevertheless, the authentication and encryptions

methods used in this project are “off-the-shelf” market solutions
and are suitable for IoT devices. It is assumed that these solutions
have been extensively tested and proven to be secure. Their
security weaknesses are not addressed in this project.

5. IMPLEMENTATION

The implementation part of the proposed framework was
carried out by setting up Igor on a Raspberry Pi 3. The hardware
specifications were:

• Quad Core 1.2GHz Broadcom BCM2837 64bit CPU
• 1GB RAM
• BCM43438 wireless LAN and Bluetooth Low Energy (BLE) on

board
• 16GB MicroSDHC memory card
• Micro USB power source up to 2.5A

Raspberry Pi 3 was chosen because we wanted a simple,

small and yet sufficiently powerful device to perform all the
functionalities required for Igor as the unified access for the IoT.

As mentioned in Section 4.1, the core of Igor is a
hierarchical data store (an XML database). Igor is programmed in
Python 2, which is simple to code and lightweight, suitable for
constrained devices. All the code is shared as open source in
Github [45,46] . Igor and other IoT devices are connected through
Wi-Fi or CoAP [47]. Figure 14 shows the Raspberry Pi 3, Iotsa
[48] (bell ringer) and smart key finder [49] devices used to test
the Igor access control framework. We have simulated adding new
users (Pauline, Jack and Steven) and adding a new Iotsa device to
Igor. The smart key finder is used to allow Igor to sense a BLE
device which is tied to a user’s identity.

Figure 14 – Raspberry Pi 3, Iotsa (bell ringer) and smart key
finder used to implement the Igor access control framework

design
The secure https [50] protocol is used to create a secure

channel for Igor to connect to the Internet and other IoT devices.
One can either buy the SSL certificates [51] from SSL certificate
vendors like Verisign [52] or to use self-signed certificates. We
opted for self-signed certificate as it is sufficient to meet our needs
for this implementation.

We chose not to perform encryption on internal tokens for
better performance and because it is assumed that Igor can trust its
own internal capabilities. For external tokens, there are extra
fields implemented as compared to the internal tokens, such as the
Issuer ID, audience of the capability, subject of the capability and
the period of validity of the token. This is for better traceability
and to enable security checks on those external tokens when
presented back to Igor. As mentioned before, JWT is used to
generate the outgoing “Authentication Bearer” header of the
external access tokens. It takes a couple of seconds to generate

<identities>

 <pauline>

 <au:capability>

 <id>1</id>

 <comment>Allows reading environment</comment>

 <obj>/data/environment</obj>

 <get>descendant-or-self</get>

 </au:capability>

 <au:capability>

 <id>2</id>

 <comment>This allows reading status

 </comment>

 <obj>/data/status</obj>

 <get>descendant-or-self</get>

 </au:capability>

 <au:capability>

 <id>3</id>

 <comment>Allows access to own data

 </comment>

 <obj>/data/identities/Pauline</obj>

 <get>descendant-or-self</get>

 <put>descendant</put>

 <post>descendant</post>

 <delete>descendant</delete>

 </au:capability>

 <au:capability>

 <id>4</id>

 <comment>Allows reading identity existence,

adding or deleting users</comment>

 <obj>/identities</obj>

 <get>self</get>

 <post>descendant</post>

 <delete>descendant</delete>

 </au:capability>

 <au:capability>

 <id>5</id>

 <comment>This allows running

action/ringringer</comment>

 <obj>/action/ringringer</obj>

 <get>self</get>

 <iss>https://igor.local:9333/issuer</iss>

 <aud>https://igor.local:9333/data</aud>

 <cid>1B79E63F-2C8F-439F-A0BE </cid>

 </au:capability>

 </pauline>

</identities>

 Token ID “3”
defines that
the user
(Pauline) is
able to create,
read, update
and delete her
profile data

Identity (ID) of the
token /capability

Comments that
explain the
function of the
token

XPath that the
access applies
to

 Access
permission
type and
propagation
type

12

these external tokens because of JWT, but as the number of
external tokens is far less than the internal ones, performance is
bearable.

Different sections of the XML database were added to
implement the authorization framework [53] :

• Registered users profile
(/data/identities/user/au:capability) – stores all the
capabilities this user carry when logged in

• Actions profile (/data/actions/action/au:capability) –stores
the capabilities the respective “action” carry when
executing.

• Plug-in data section
(/data/plugindata/pluginname/au:capability) – stores the
capabilities the respective plugins carry when executing.

• External devices section
(/data/externaldevices/au:capability) – stores the capability
IDs granted to the respective devices. This allows early
validation whether the requested device is available in Igor

• Default capabilities
(/data/au:access/au:defaultCapabilities) – stores the
capabilities that are used for any request that has no
Authentication: Bearer header, or actions, users or plugins
that do not have their capabilities specified.

• Profile of symmetric keys (/data/au:access/au:sharedKeys)
– stored the symmetric keys shared between Igor and a
single external party. These keys are used to sign outgoing
capabilities (and check incoming capabilities). Each key is
stored in an au:sharedKey element with the following
fields:

1. iss Issuer.
2. aud (optional) Audience.
3. sub (optional) Subject.
4. externalKey Symmteric key to use.
5. Keys are looked up either by the combination

of iss and aud (for outgoing keys) or iss and
sub (for incoming keys).

Other design choices that we made during implementation are:

• Separation of policy administration and checking from the
XML database. Separate Python modules are used
(checker.py, capability.py and vars.py) [54] to function as
the Policy Decision Point (PDP) and PAP (Policy
Administration Point). This is to enable better code
management and reduce errors when replicating
capabilities and performing policy checks.

• There are several approaches to perform delegation. For
example, the approach proposed by Gong [17] as
discussed in Section 2. In our design, the capability owner
can login to Igor using his/her credentials and delegate the
capability through a user interface and the receiver of the
capability is notified through email that he/she is granted
access to certain objects. We have also given the choice to
the token owner to specify if the newly delegated token
can be further delegated by the new owner or not.

• All external tokens have limited lifespan (1 year or any
other duration specified upon creation) and a renewal
process is forced upon the token holder after the expiry
date. This forces token renewal process for not more than
1 year, instead for an unlimited duration.

• Each agent (device, people, plug-ins, other Igors) have
their own profiles or listing in the XML database where
the assigned capabilities and other credentials (e.g. logon
ID, passwords, secret keys, etc.) are stored for ownership
tracking purpose.

• For this implementation, Igor and the external IoT devices
use secret symmetric keys to establish trust and JWT is
used to transfer generated token from the “token
generator” in Igor to the external IoT devices.
Simple user interfaces are implemented to demonstrate the

workings of the access control design. Some of the screens
implemented for the prototype of Igor can be found in
Appendix B.

6. EVALUATION

In this section, we discuss the evaluation conducted with IoT
security and privacy issues experts, performance assessment of the
system and summarise the results.

6.1 Goals
Our first goal was to test our prototype and obtain feedback

on the design of fine-grained access control mechanism with
experts in IoT access control, familiar with the ethical and privacy
issues related to them. There are three parts of the evaluation:

• To test whether the solution covers all the six
requirements discussed in the introduction of this paper.

• To assess if the design choices made are acceptable.

• To gather general feedback from experts on how they
feel about the usefulness of the solution and discuss any
improvement points.

An additional goal was to perform comparison of the
response time of the system before and after the implementation
of the proposed security framework.

6.2 Method
Evaluation forms were prepared as shown in Appendix C.

Separate evaluation sessions were conducted with five experts
independently. These experts are selected for their experience and
knowledge in security around IoT devices. Three of them are from
an international company and have experience as security
administrators and run projects related to IoT. One of them is an
IoT security scientist from a renowned research organization and
another one is a lead cyber scientist who published journals and
books on high performance computing, cyber security and IoT.

The design and functionalities of the security framework of
Igor explained and later tests were done on the prototype and
feedback captured. This is a qualitative evaluation and is
subjective to the experts’ personal opinions. The Likert Scale [55]
was used (0 the lowest and 5 the highest) to measure whether the
project meets the overall objectives in addressing ethical and
privacy issues users are facing regarding information generated by
IoT devices.

For measuring the response time of the system, Apache
Benchmarking (ab) [56] tool was used. Measurements were taken
to compare the difference of response time before and after the
implementation of the proposed security framework for:

13

• Loading the first landing page of Igor (with and without
https)

• Executing a read (GET) request function

• Executing an update (PUT) request function

• Executing an add (POST) request function

6.3 Results

6.3.1 Expert Evaluation Results

The detailed results of the evaluation can be found in

Appendix D. The main results of the evaluation are discussed
here:

a) Lack of friendly user interface for current prototype

As the objective of the prototype implementation is to
demonstrate the authorization framework of the proposed
solution, user-friendly interfaces and automation of some
of the steps are still lacking (Appendix B). Designing
friendly user interface is out of scope for this project.
Although all of the experts interviewed can understand
easily the proposed solution, almost all of the them feel
that friendly user interfaces and automation would help
normal users to understand better how the system would
actually work in real life.

b) Capability transfer should be retractable

In the current design, revocation of capabilities can be
done after they have been delegated. When capabilities
are transferred to a new owner, the action is irreversible.
It is suggested to cater for any mistake done in
transferring and allow the administrator or special
privileged user to reverse the action.

c) Risk of having centralized revocation list for external

capabilities
All of the evaluators agree that the approach of using a
revocation list to revoke external capabilities is a good
approach. However, at least two of the evaluators raised
the concern that there are complications if a revocation
list is corrupted or unreachable because of malicious
attacks, especially if the revocation list is centralized and
many Igors are sharing one list. It is suggested to have
distributed revocation lists to lower the risk of depending
on one centralized list.

d) Separation of policy administration and checking from
the XML database is a good design
Four of the evaluators feel that the separation of the main
Igor database from the policy administration and
checking, e.g. the Policy Decision Point and Policy
Administration point, is a good design as it enables easier
code maintenance and reduce errors when performing
policy checks.

e) The capability delegation approach is easy to
understand
All of the evaluators feel that the proposed capability
delegation approach is easy and simple. However, the
automation of this process can be improved for external

capabilities as the current implementation still needs
manual intervention from users to “copy and paste” the
JWT generated the to external IoT devices.

f) External capabilities should have limited lifespan
All of the evaluators agree that the external capabilities
should have limited lifespan. However, flexibility should
be given to the capability owners to decide how long is
the lifespan during the generation of new external
capabilities. For future expansion, careful thought should
be given on how to cater for generation of external
capabilities by multiple Igors and multiple revocation
lists.

g) Internal capabilities do not need to be encrypted
In the current implementation, there are two types of
capabilities: internal and external. Internal capabilities
are used to control access to data, actions and plugins
within the Igor’s database. For better performance,
internal capabilities do not to use any encryptions. All
the evaluators think this is an acceptable solution with
the assumption that the access to the XML file is secure.

h) Performance is good and acceptable
All of the evaluators agree that the subjective
performance of the system provided is good and
acceptable. One of them even challenged us to use more
basic hardware such as Arduino [57] instead of the
Raspberry Pi.

As a summary, all of the evaluators agree that the project
requirements mentioned in Section 1 are met with the ranking of 4
or higher (Likert Scale). They feel that the proposed solution is
very useful in solving the problem and use case presented in the
beginning of the paper. All of them agree that the prototype
presented is sufficient to demonstrate how the proposed solution
works. With the feedback collected, we are able to redesign and
improve further the proposed access control framework.

6.3.2 Performance Measurement Results

Figure 15 – Mean value of the response time for loading the front
page of Igor, executing GET, PUT and POST requests before and

after implementation of the security framework
Figure 15 shows the breakdown of the response time before

and after the implementation of the security framework for Igor.
The readings are based on the time taken for 10 concurrent
sessions of 100 requests in milliseconds. There is minimal
difference between the time of loading the first page of Igor and

14

for executing GET and PUT requests. However, a greater
difference in response time is observed when POST requests are
executed with access control checking, which is about 3.5 seconds
(470% increase) as shown in Table 4. The readings of the system
average load performance are also taken but they show no
significant difference despite the longer response time when
security checks are performed.

Table 4 – Comparison of system response time before and after

implementation of the security framework for Igor
In summary, performance degradation of the system after the

implementation of the security framework for Igor in a lightweight
device is acceptable. This fulfils the R6 requirement mentioned in
Section 1.

7. DISCUSSION
During the development and evaluation phases of the access

control framework a few points for discussion have been raised:

a) XML database design
The current design uses an XML database with Xpath

expression and RESTful web services. The Xpath expression has
produced fast performance, high reliability and flexibility to grow
for lightweight IoT devices. The proposed authorization
propagation types are designed for an XML database.
Nevertheless, the design is not tied to XML and should be
generic. Similar implementation can also be achieved using
another simple file format like JSON.

b) REST versus SOAP
Two very popular approaches to access Web services are:

Simple Object Access Protocol (SOAP) and Representational
State Transfer (REST) [58]. Both approaches have their
advantages and disadvantages. REST is chosen in our case as it is
simpler to use, flexible and provides a lighter weight alternative.
The four different HTTP 1.1 verbs (GET, POST, PUT, and
DELETE) provides a simple and light solution for Igor.
Furthermore, REST is not limited to XML but it can also output
to CSV [59], JSON and RSS [60]. Therefore, for future expansion
opportunity for IoT solution, REST is a better option.

c) Higher security or better performance
The main challenge is to create an access control framework

that is functional and applicable to solve the research problem in
sharing information to certain people or devices at a fine-grained
level without compromising on performance and requiring high
hardware specifications. The question is how much security can
you get while maintaining a performing system? All the evaluators
feel that performance is acceptable even when the capabilities and
policy checking are implemented on Igor. However, this is a
subjective assessment. Security checks and access granting should
be seamless allowing users to continue their tasks on the IoT
devices without interruptions. Automation is also key to the
success of the solution as users should not notice the verification
and validations performed by Igor or on the IoT devices.

d) Adopting available security solutions and
authentication methods

The current implementation of https secure protocol and
shared symmetric key generations are based on the off-the-shelf
security solutions available in the market today. Shall security
technology change with new and more secure authentication and
encryption solutions, it should be easy to adopt those changes in
the future versions of Igor.

e) Hardware performance baseline
As part of the feedback gathered from the evaluators,

hardware specifications for IoT devices are improving rapidly
with higher specifications being built, the sizes of the devices are
shrinking with every new version at cheaper price. Therefore, the
performance benchmark gathered with the current implementation
on the Raspberry Pi 3 and Iotsa devices would quickly be
outdated when new and better versions of IoT devices are released
in the market. Nevertheless, the performance measurements
gathered are important to prove that the proposed solution is
lightweight and suitable for constrained IoT devices.

f) Centralized versus decentralized solution
In the proposed access control mechanism, Igor performs

centralized checks on all access requests to all devices, services
and actions. There are concerns that this is a single point of failure
or this approach carries a high risk in the event the single Igor is
attacked. However, the current design has capabilities assigned to
every component in Igor that if one component is attacked, the
others will still be protected. In a way, allowing different
capability owners to grant access to their own capabilities is a
decentralized approach [61]. Having a centralized access control
approach carries its own benefits as well [62]. The proposal of
having multiple Igors working together to control accesses to
different IoT devices is trying to get the best of both approaches -
decentralized centralization.

8. CONCLUSION & FUTURE WORK

With the rapid growth of the data generated by IoT devices,
users are facing ethical issues in how the data are handled.
Mason's [3] PAPA model (privacy, accuracy, property and
accessibility) presents the main ethical issues hitting the data
management effort in the IoT industry. More and more IoT users
are seeking ways to control accesses to data generated by the IoT
devices they own, even to a detailed level (fine-grained). The
main aim of this paper is to work on how to solve data
ethical/privacy issues related to IoT as defined by Mason’s PAPA
model. This paper presents a fine-grained access control solution
framework on Igor, a centralized home and office automation
solution which is also called the unified access to the IoT to solve
the data sharing and access issues. Data collected from IoT
devices are stored in a centralized location controlled by the data
owner and all accesses are controlled and granted through Igor.

CapBAC has been identified as access control model suitable
to meet the objectives for this project. Among many access
control approaches, the CapBAC solution is the most proven one
and has been used since 1966 [19]. One of the main advantage is
that it solves the “confused deputy problem” [63] where the
system is tricked in believing the presenter has the right to access
a request which it actually does not. The implementation, expert
evaluation results and performance measurements taken show this

15

is a promising solution for securing access to data generated by
IoT devices.

Based on the evaluations conducted, there are still room for
improvement in future work:

a) General Data Protection Regulation (GDPR)

The current design of Igor ensures highest privacy settings by
default. No user or device can access to any information unless it
is granted by the owner of the capability. More analysis need to be
done to see how Igor’s design can help to further enforce the
General Data Protection Regulation introduced by the European
Union [64] for IoT devices.

b) Authentication mechanism

The current implementation of the authentication mechanism
covers checking mutual shared symmetric keys and the ID and
password presented by the user who wants to login to Igor to view
the data they are granted access to. More work should be done to
analyze the strengths and weaknesses of different authentication
approaches for IoT devices and select the best solution for Igor.
The current implementation uses a self-signed SSL certificate
which is not trusted by Internet browsers. To solve this, the
implementation can be done using a trusted SSL certificate
generated by a trusted certificate authorities like Let’s Encrypt
[65] and Verisign.

c) User-friendly Interfaces

Adoption of the proposed access control mechanism will
increase once user-friendly interfaces are built for novice users.
Users should be able to select the list of devices managed by Igor
and to view what actions are available for each of the devices.
Once found, users can easily select which access to the data or
actions they want to grant to their chosen users or devices. All
creation, modification, delegation and transfer of capabilities
should be seamless and easy to perform via a single user interface
accessible by different mobile devices (e.g. mobile phones, tablets
or laptops).

d) Capabilities templates and definition of user groups

For future implementation, each person or device should be
given a set of default capabilities with pre-defined templates
which can be assigned to different user groups. Access
capabilities can be grouped by the owner’s preference such as
family group, external parties, cleaners, etc. For example, for
those who are categorized as “family”, they can have access to all
sensitive information related to the household like the power
utilization trends, who is in the house at certain times, room
temperature readings, etc. The group only needs to be defined
once and all the other subsequent access management can be done
automatically by selecting the defined groups. A similar concept
can be applied when granting access to different IoT devices.

e) Autonomous external capabilities renewal and easy
delegation to external parties

External capabilities have a limited lifespan as defined upon
creation. The renewal of these capabilities should happen
autonomously whenever the capabilities are presented by the
subject to request access to certain objects, with the condition that
these capabilities are not listed in the revocation list. This
approach keeps these external capabilities fresh and in check.
More work needs to be done to define how the holder of external
capabilities can further delegate them to other parties. For

example, a service manager for the IoT devices should be able to
grant short-term access to these devices to his colleagues who
need to support and perform maintenance on these devices.
However, they cannot delegate further the granted capabilities
which expire after being used once.

e) Interaction between multiple Igors and revocation lists

The current design allows different Igors to connect with
each other as separate devices. However, this is not fully tested
and implemented in this paper. More work needs to be done to
review all the different approaches for high volume capabilities
creation or the possibility of sharing revocation lists when there
are more than one Igors in the household or office ecosystem. In
the event one Igor is being hacked or attacked, for example, by a
DDos attack [66] other Igors in the ecosystem should continue to
function and the attack should only be contained to that one
impacted Igor.

9. ACKNOWLEDGEMENTS
I would like to thank all evaluators participating in the expert

evaluation on the proposed solution and the testing of the
prototype: Jorrit Jorritsma, Jeroen Vlieg and Dr Hadi Jamali-Rad
from Shell, Sander de Kievit from TNO and Dr Anthony Skjellum
from SimCenter, University of Tennessee at Chattanooga (UTC).
Also, I would like to thank Jack Jansen, Steven Pemberton and all
other colleagues in CWI-DIS for sharing their expertise and
support. Finally, to Frank Nack from the Information Studies,
University of Amsterdam, for valuable guidance to complete this
paper.

10. REFERENCES
[1] Kramp T, van Kranenburg R, and Lange S. Introduction to the
Internet of Things. In: Bassi A, Bauer M, Fiedler M, et al eds. Enabling
Things to Talk: Designing IoT Solutions with the IoT Architectural
Reference Model. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013:
1-10.

[2] D. Evans. The internet of things how the next evolution of the internet
is changing everything. Cisco Internet Business Solutions Group (IBSG)
2011; 1: 1-11.

[3] Mason RO. Four ethical issues of the information age. MIS Quarterly
1986; 10: 5-12.

[4] Caron X, Bosua R, Maynard SB, and Ahmad A. The internet of things
(IoT) and its impact on individual privacy: An australian perspective.
Computer Law & Security Review: The International Journal of
Technology Law and Practice 2016; 32: 4-15.

[5] European Commission. Conclusions of the internet of things public
consultation. 2013. Retrieved 15 March, 2018, from
https://ec.europa.eu/digital-single-market/news/conclusions-internet-
things-public-consultation .

[6] J. Jansen, S. Pembenton. An architecture for unified access to the
internet of things. XML London 2017 – Conference Proceedings 2017; 1:
38-42.

[7] Pratchett T. Discworld. 1983. Retrieved 4 April, 2018, from
https://en.wikipedia.org/wiki/Discworld .

[8] Gizmocuz. Domoticz. 2018. Retrieved 10 February, 2018, from
https://www.domoticz.com/wiki/Main_Page .

https://ec.europa.eu/digital-single-market/news/conclusions-internet-things-public-consultation
https://ec.europa.eu/digital-single-market/news/conclusions-internet-things-public-consultation
https://en.wikipedia.org/wiki/Discworld
https://www.domoticz.com/wiki/Main_Page

16

[9] Google Developers. Blocky. 2018. Retrieved 27 April, 2018, from
https://developers.google.com/blockly/ .

[10] Ierusalimschy R, Celes W, and Henrique de Figueiredo L. Lua
(programming language). 1993. Retrieved 27 April, 2018, from
https://www.lua.org/ .

[11] SQLite Consortium. SQL lite. 2018. Retrieved 27 April, 2018, from
https://www.sqlite.org/index.html .

[12] Fahrny JW, Park K. Authentication and binding of multiple devices.
2013; .

[13] Ouaddah, A., Mousannif, H., Elkalam, and Ouahman. Access control
in the internet of things: Big challenges and new opportunities. Computer
Networks 2017; 112: 237-262.

[14] C. E. Youman, R. S. Sandhu, H. L. Feinstein, and E. J. Coyne. Role-
based access control models. Computer 1996; 29: 38.

[15] Yuan E, Tong J. Attributed based access control (ABAC) for web
services. Web Services, 2005.ICWS 2005.Proceedings.2005 IEEE
International Conference on 2005; 569.

[16] Zhang X, Park J, Parisi-Presicce F, and Sandhu R. A logical
specification for usage control. Proceedings of the ninth ACM symposium
on access control models and technologies Jun 2, 2004; 1-10.

[17] Gong L. A secure identity-based capability system. 1989; 56-63.

[18] A. A. E. Kalam, R. E. Baida, P. Balbiani, S. Benferhat, F. Cuppens,
Y. Deswarte, A. Miege, C. Saurel, and G. Trouessin. Organization based
access control. Proceedings POLICY 2003 IEEE 4th International
Workshop on Policies for Distributed Systems and Networks 2003; 120-
131.

[19] Dennis J, Van Horn E. Programming semantics for multiprogrammed
computations. Communications of the ACM 1966; 9: 143-155.

[20] Henry M. Levy. Capability-Based Computer Systems. GB: Digital
Press. 1984: .

[21] Tanenbaum AS, Mullender SJ, and Renesse v,R. Using sparse
capabilities in a distributed operating system. 1986; .

[22] Hossain M, Hasan R, and Skjellum A. Securing the internet of
things: A meta-study of challenges, approaches, and open problems.
Distributed Computing Systems Workshops (ICDCSW), 2017 IEEE 37th
International Conference on 2017; 220-225.

[23] Gusmeroli S, Piccione S, and Rotondi D. A capability-based security
approach to manage access control in the internet of things. Math Comput
Model 2013; 58: 1189-1205.

[24] Hernández-Ramos JL, Jara AJ, Marín L, and Skarmeta Gómez AF.
DCapBAC: Embedding authorization logic into smart things through
ECC optimizations. International Journal of Computer Mathematics
2016; 93: 345-366.

[25] Flylib.com. The ECCDH key exchange. 2018. Retrieved 27 April,
2018, from https://flylib.com/books/en/1.188.1.42/1/ .

[26] BitcoinWiki. Elliptic curve digital signature algorithm. 2017.
Retrieved 27 April, 2018, from
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm .

[27] W3Schools. XPath tutorial. 1999. Retrieved 27 April, 2018, from
https://www.w3schools.com/xml/xpath_intro.asp .

[28] Oracle. What are RESTful web services? 2013. Retrieved 27 April,
2018, from https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html .

[29] Bertino E, Castano S, Ferrari E, and Mesiti M. Specifying and
enforcing access control policies for XML document sources. World Wide
Web 2000; 3: 139-151.

[30] Bertino E, Castano S, Ferrari E, and Mesiti M. Protection and
administration of XML data sources. Data & Knowledge Engineering
2002; 43: 237-260.

[31] Bertino E, Castano S, and Ferrari E. Securing XML documents with
author-X. IEEE Internet Computing 2001; 5: 21-31.

[32] Chebotko A, Chang S, Lu S, and Fotouhi F. Secure XML querying
based on authorization graphs. Inf Syst Front 2012; 14: 617-632.

[33] Seitz L, Selander G, and Gehrmann C. Authorization framework for
the internet-of-things. 2013 IEEE 14th International Symposium on "A
World of Wireless, Mobile and Multimedia Networks" (WoWMoM) 2013;
1-6.

[34] OASIS. eXtensible access control markup language (XACML)
version 3.0. 2013. Retrieved 2 January, 2018, from http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html .

[35] Introducing JSON. Retrieved 27 April, 2018, from
https://www.json.org/ .

[36] Leach P, Mealling M, and Salz R. A universally unique IDentifier
(UUID) URN namespace. 2005. Retrieved 27 April, 2018, from
https://tools.ietf.org/html/rfc4122 .

[37] Jansen J. Setup BLE server. 2017. Retrieved 22 April, 2018, from
https://github.com/cwi-dis/igor/tree/master/helpers/bleServer .

[38] XSLT generate-id() function. 1999. Retrieved 24 Jan, 2018, from
https://www.w3schools.com/xml/func_generateid.asp .

[39] Rescorla E, Modadugu N. Datagram transport layer security version
1.2. 2012; .

[40] Jansen J. Igor, your personal IoT butler (readme). 2017. Retrieved 27
Jan, 2018, from https://github.com/cwi-dis/igor .

[41] Oasis. Security assertion markup language (SAML) V2.0 technical
overview. 2008. Retrieved 27 April, 2018, from http://docs.oasis-
open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html .

[42] W3C. Date and time formats. Retrieved 27 April, 2018, from
https://www.w3.org/TR/NOTE-datetime .

[43] Auth0. Introduction to JSON web tokens. from
https://jwt.io/introduction/ .

[44] Investopedia. Eavesdropping attack. 2018. Retrieved 27 April, 2018,
from https://www.investopedia.com/terms/e/eavesdropping-attack.asp .

[45] Jansen J. Igor, an extensible home automation server. 2017.
Retrieved 10 Feb, 2018, from https://github.com/cwi-dis/igor .

[46] Jansen, J., Sia, P. Igor database. 2018. Retrieved 8 April, 2018, from
https://github.com/cwi-dis/igorDatabase.pauline .

[47] Bormann C. RFC 7252 constrained application protocol. 2014. from
http://coap.technology/ .

[48] Jansen J. Iotsa - internet of things server architecture. 2016. from
https://github.com/cwi-dis/iotsa .

https://developers.google.com/blockly/
https://www.lua.org/
https://www.sqlite.org/index.html
https://flylib.com/books/en/1.188.1.42/1/
https://en.bitcoin.it/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://www.w3schools.com/xml/xpath_intro.asp
https://docs.oracle.com/javaee/6/tutorial/doc/gijqy.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.json.org/
https://tools.ietf.org/html/rfc4122
https://github.com/cwi-dis/igor/tree/master/helpers/bleServer
https://www.w3schools.com/xml/func_generateid.asp
https://github.com/cwi-dis/igor
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
https://www.w3.org/TR/NOTE-datetime
https://jwt.io/introduction/
https://www.investopedia.com/terms/e/eavesdropping-attack.asp
https://github.com/cwi-dis/igor
https://github.com/cwi-dis/igorDatabase.pauline
http://coap.technology/
https://github.com/cwi-dis/iotsa

17

[49] SoundLogic M. Wireless key finder. Retrieved 27 April, 2018, from
http://wirelesskeyfinder.xyz/soundlogic_xt_track_find_wireless_bluetooth
_key_valuable_finder_iphone_android.php .

[50] Google. Secure your site with HTTPS. 2018. Retrieved 27 April,
2018, from
https://support.google.com/webmasters/answer/6073543?hl=en .

[51] Globalsign. What is an SSL certificate? 2018. Retrieved 27 April,
2018, from https://www.globalsign.com/en/ssl-information-center/what-
is-an-ssl-certificate/ .

[52] Verisign. Verisign security services. Retrieved 27 April, 2018, from
https://www.verisign.com .

[53] Jansen J. Access control schema. 2018. Retrieved 10 Feb, 2018, from
https://github.com/cwi-dis/igor/blob/access-
capabilities/doc/capabilities.md .

[54] Jansen J. Igor. 2018. Retrieved 27 April, 2018, from
https://github.com/cwi-dis/igor/tree/access-capabilities/igor/access .

[55] Trochim W. Likert scaling. 2006. Retrieved 27 April, 2018, from
https://socialresearchmethods.net/kb/scallik.php .

[56] The Apache Software Foundation. Ab - apache HTTP server
benchmarking tool. 2018. Retrieved 20 April, 2018, from
https://httpd.apache.org/docs/2.4/programs/ab.html .

[57] Arduino. What is arduino? 2018. Retrieved 27 April, 2018, from
https://www.arduino.cc/ .

[58] Mueller J. Understanding SOAP and REST basics and differences.
2013. Retrieved 3 April, 2018, from
https://blog.smartbear.com/apis/understanding-soap-and-rest-basics/ .

[59] Python Software Foundation. CSV file reading and writing.
Retrieved 27 April, 2018, from https://docs.python.org/3/library/csv.html .

[60] RSS America LLC. What is RSS? 2018. Retrieved 27 April, 2018,
from https://www.rss.com/whatisrss .

[61] Sandhu RS, Samarati P. Access control: Principle and practice.
Communications Magazine, IEEE 1994; 32: 40-48.

[62] Manufacturer benefits from centralized access control.(ACCESS
CONTROL). Security Distributing & Marketing 2013; 43: 107.

[63] Wikipedia. Confused deputy problem. 2018. Retrieved 27 April,
2018, from https://en.wikipedia.org/wiki/Confused_deputy_problem .

[64] European Union. Regulation (eu) 2016/679 of the european
parliament and of the council. Official Journal of the European Union
2016; L 119/1: 119.

[65] Linux Foundation. Lets encrypt. Retrieved 27 April, 2018, from
https://letsencrypt.org/ .

[66] Cloudflare Inc. What is a DDoS attack? Retrieved 27 April, 2018,
from https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/ .

http://wirelesskeyfinder.xyz/soundlogic_xt_track_find_wireless_bluetooth_key_valuable_finder_iphone_android.php
http://wirelesskeyfinder.xyz/soundlogic_xt_track_find_wireless_bluetooth_key_valuable_finder_iphone_android.php
https://support.google.com/webmasters/answer/6073543?hl=en
https://www.globalsign.com/en/ssl-information-center/what-is-an-ssl-certificate/
https://www.globalsign.com/en/ssl-information-center/what-is-an-ssl-certificate/
https://www.verisign.com/
https://github.com/cwi-dis/igor/blob/access-capabilities/doc/capabilities.md
https://github.com/cwi-dis/igor/blob/access-capabilities/doc/capabilities.md
https://github.com/cwi-dis/igor/tree/access-capabilities/igor/access
https://socialresearchmethods.net/kb/scallik.php
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.arduino.cc/
https://blog.smartbear.com/apis/understanding-soap-and-rest-basics/
https://docs.python.org/3/library/csv.html
https://www.rss.com/whatisrss
https://en.wikipedia.org/wiki/Confused_deputy_problem
https://letsencrypt.org/
https://www.cloudflare.com/learning/ddos/what-is-a-ddos-attack/

18

Appendix A
Example of Access Control Policy for Igor

“Object” Description Pauline (Admin
with Full Access
Rights)

Jack
(Sub-
Admin)

Steven
(Normal
User)

Frank (guest) Button1
(Device)

Button2
(Device)

data/environment The status of the
environment (e.g.
whether it is at night, in
the morning, if there is a
message, etc)
Default capability

C^
R^
U^
D^

C^
R^
U^

R^

R^

- -

data/status/ Default capability.
This allows reading status

C^
R^
U^
D^

C^
R^
U^

R^

R^

- -

data/status/igor/save C^
R^
U^
D^

C^
R^
U^

R^

R^

data/status/igor/web C^
R^
U^
D^

C^
R^
U^

R^

R^

data/sensors C^
R^
U^
D^

C^
R^
U^

 - -

data/services/igor Default capability.
Different types of
services (e.g.
announcetime service,
createtoken service) to
show on the dashboard

C^
R^
U^
D^

C^
R^
U^

R^

R^

- -

/static Default capability. This
allows reading static web
pages

C^
R^
U^
D^

C^
R^
U^

R^

R^

- -

/internal/accessControl Default capability.
This allows accessing
capability information

C^
R^
U^
D^

C^
R^
U^

R^

R^

- -

data/people To detect if the person is
present or not (Boolean
value)

C^
R^
U^
D^

C^
R^
U^

R^

- - -

data/identities

Each person/device are
provided a profile with
information like token,
MAC address, etc

R+
C+
D+

R+
C+

- - - -

data/identities
/pauline

 C^
R^
U^
D^

R°
C°

- - - -

19

“Object” Description Pauline (Admin
with Full Access
Rights)

Jack
(Sub-
Admin)

Steven
(Normal
User)

Frank (guest) Button1
(Device)

Button2
(Device)

data/identities
/jack

Jack can access to his
own data in his profile.
Administrator cannot
read the detail content in
his profile but he/she can
remove his identity

R°
C°
D°

R^
C*
U*
D*

- - - -

data/identities
/steven

Steven can access to his
own data in his profile.
Administrator cannot
read the detail content in
his profile but he/she can
remove his identity

R°
C°
D°

R°
C°

R^
C*
U*
D*

- - -

data/identities
/frank

Frank can access to his
own data in his profile.
Administrator cannot
read the detail content in
his profile but he/she can
remove his identity

R°
C°
D°

R°
C°

- R^
C*
U*
D*

-

Data/actions Actions to be performed
within Igor

C^
R^
U^
D^

R^
C^
U^

R^

R^

Data/actions/pressbutton1 C^
R^
U^
D^

R°
C°

- - R^
U*

-

Data/actions/pressbutton2 C^
R^
U^
D^

R°
C°

- - - R^
U*

Legend

 Permission Symbols Propagation

C
R
U
D

Create (POST)
Read (GET)
Update (PUT)
Delete (DELETE)

 °
+
*
^
-

Self
Child
Descendants
Self or Descendants
No propagation

20

Appendix B - User Interfaces for Igor

Main Page

Login Page

Shows who is currently
logged in

Logout button

User name textbox

Log-in button

Password textbox

Link to system health
dashboard

Link to login page

Link to view XML
database (only accessible
for those who have
access)

Link to capability listing
page

21

Capabilities Listing Page

Click to transfer, delegate or
export capability Click to revoke

Default
capabilities

22

Appendix C – Evaluation Guidelines

Guideline for the Interviewers
Below you will find all the questions. It’s important to read the comment section to ask the questions in such a way that you don’t
influence the answer. Since it’s qualitative research, don’t be afraid to continuously throw the “Why?” question. It’s advised that you
record and immediately write down the answers.

Evaluation Questions

INTRODUCTION

Get to know about person’s expertise in IoT and Access Control Security models

Intro What is your education level? (BSc, MSc,
PhD)

Intro How do you describe your knowledge level
on IoT and Access Control security models?

Adding New Device / User

a) Requirement 1: New users or devices can be easily added to be IoT solution

Scenario Questions Comments

Adding a new user pauline • Is it easy to add a new user?
• Is it easy to add capabilities to new

user?
• Any improvement points?

Adding new devices: Button1 and Ringer • Is it easy to add a new device?
• Any improvement points?

Delegation & Transfer
b) Requirement 2 : Access control can be delegated from the owner to others

Scenario Questions Comments

Login as admin.
Go to the Capabilities list screen. Delegate the capability to view
/data/profiles/Pauline to user Pauline
Login as Pauline, check whether you have access to information
in Pauline’s profile.

Transfer a capability to jack. Once transferred, the capability will
no longer available to the first owner.

Login as jack, check whether jack is able to access to the
information that you just transferred.

Note: Delegation/transfer can only be done for users/devices that
are already registered with Igor

• Is it easy to delegate capabilities to new
users / devices

• Any improvement points?

23

Revocation
c) Requirement 3 : Access control can be revoked by the owners when not needed anymore

Scenario Questions Comments

Login as admin. Revoke the capability that you just delegated to
Pauline.

Logout. Login as Pauline. Go to the capabilities screen. Check if
the capability is now removed from your capability list.

Note: There are 2 types of capabilities: internal and external
capabilities. External capabilities are assigned to external IoT
devices.

• Is it useful to revoke access?

• Any improvement points?

Fine-grained access control
d) Requirement 4 : Access control of data should be to the detailed level (fine-grained)

Scenario Questions Comments

Login as ID: admin

Go to the Capabilities list screen. Grant access to Pauline the
information in /data/people/jack/device

Logout. Login as Pauline. Check if Pauline is able to see the
information in /data/people/jack/device

• Is the access control model fine-grained
enough?

• Any improvement points?

Easily Managed and Modified
e) Requirement 5 : Access control should be easily managed and modified for normal users

Scenario Questions Comments

Login as ID: pauline
Go to the Capabilities list screen
Try to modify access for the capabilities granted to Jack

• Is it useful to manage and modify
access?

• Is this function simple and easy?
• Any improvement points?

Lightweight – suitable for IoT devices
f) Requirement 6 : Access control solution should be lightweight as IoT devices have low processing power (with acceptable

performance)

Scenario Questions Comments

The implementation part of the proposed framework is carried
out by setting up Igor on a Raspberry Pi 3. The core of Igor are
an XML database, a web server and Xpath 1.0.

Is the performance acceptable?

Any improvement points?

Other design choices (Optional)

Area Questions Comments

Design choice 1 - Separation of policy administration and
checking from the XML database. A separate Python module is
used (access.py) to function as the Policy Decision Point (PDP)
and PAP (Policy Administration Point). This is to enable better
code management and reduce errors when replicating capabilities
and performing policy checks

Do you think this design is useful? Why?

Any improvement points?

24

Design choice 2 - There are several approaches to perform
delegation. Gong’s approach is for the initiator to create a
delegation message and pass it to the person who need the
capability. He/she will then request access from the access server
by presenting the message from the owner and the access server
will then generate new capability and assign it to the requestor.
We did not go with that approach as it presents too many steps
and is cumbersome for the users. Instead, the capability owner
can login to Igor using his/her credentials and delegate the
capability through a user interface and the receiver of the
capability will be notified through email that he/she has been
granted access to certain objects. We have also given the choice
to the token owner to specify if the newly delegated token can be
further delegated by the new owner or not.

Do you think this design is useful? Why?

Any improvement points?

Design choice 3 - We have also made the choice to enforce that
all external tokens have limited lifespan (1 year) and a renewal
process is forced upon the token holder after the expiry date.

Do you think this design is useful? Why?

Any improvement points?

Design choice 4 - Each agent (device, people, plug-ins, other
Igors) have their own profiles or listing in the XML database
where the assigned capabilities and other credentials (e.g. logon
ID, passwords, secret keys, etc.) are stored for ownership
tracking purpose

Do you think this design is useful? Why?

Any improvement points?

Design choice 5 - We have chosen to have two types of
capabilities: internal and external. Internal capabilities are used
to control access to data, actions and plugins within the Igor’s
database. For better performance, internal capabilities do not to
use any encryptions. External capabilities are used by Igor to
control access for external IoT devices that are requesting
services from Igor. For this implementation, Igor and the external
IoT devices use secret symmetric keys to establish trust and JWT
is used to transfer generated token from the “token generator” in
Igor to the external IoT devices

Do you think this design is useful? Why?

Any improvement points?

Summary

Questions Comments

What is your overall feedback about the usefulness of the design
of the fine-grained access control for Igor?

How would you rate whether the project meets the overall
objectives in address ethical/privacy issues we are facing
regarding information generated by IoT devices?

Rating from 1 – 5 (where 1 is the lowest and
5 the highest)

25

Appendix D – Detail Results of the Expert Evaluation (Part 1: Expert 1-3)

 Expert 1 Expert 2 Expert 3

Profile

What is your education level MSc MSc PhD

How do you describe your knowledge level on IoT
and Access Control security models Expert Expert Moderate - Expert

Adding New Device / User

a) Requirement 1: New users or devices can be easily added to be IoT solution

Adding a new user pauline

• Is it easy to add a new user?
• Is it easy to add capabilities to new
user?
• Any improvement points?

Yes, easy to add
use/capabilities,
however, there is
no friendly UI Yes Yes

Adding new devices: Button1 and Ringer
• Is it easy to add a new device?
• Any improvement points?

Yes, however, there
is no friendly UI Yes Yes

Delegation & Transfer

b) Requirement 2 : Access control can be delegated from the owner to others

Login as admin.
Go to the Capabilities list screen. Delegate the
capability to view /data/profiles/Pauline to user
Pauline
Login as Pauline, check whether you have access to
information in Pauline’s profile.
Transfer a capability to jack. Once transferred, the
capability will no longer available to the first owner.
Login as jack, check whether jack is able to access
to the information that you just transferred.
Note: Delegation/transfer can only be done for
users/devices that are already registered with Igor

• Is it easy to delegate capabilities to
new users / devices?
• Any improvement points? Yes Yes

Yes. Provided that
the person/devices
first establish trust
with Igor. I don’t
really see this as
“delegation” if the
trust is not fully
established first
with Igor. External
token delegation
makes sense as it is
given to an external
device.

Revocation

c) Requirement 3 : Access control can be revoked by the owners when not needed
anymore

Login as admin. Revoke the capability that you just
delegated to Pauline.
Logout. Login as Pauline. Go to the capabilities
screen. Check if the capability is now removed from
your capability list.
Note: There are 2 types of capabilities: internal and
external capabilities. External capabilities are
assigned to external IoT devices.

• Is it useful to revoke access?

• Any improvement points? Yes

Yes. The
revocation list for
external capability
is a good idea.
However, how do
we handle if the
revocation list gets
corrupted or lost?
There is another
option to keep a
"key list" and
delete the list if not
needed anymore? Yes, good design.

26

Fine-grained access control

d) Requirement 4 : Access control of data should be to the detailed level (fine-grained)

Login as ID: admin

Go to the Capabilities list screen. Grant access to
Pauline the information in /data/people/jack/device

Logout. Login as Pauline. Check if Pauline is able
to see the information in /data/people/jack/device

• Is the access control model fine-
grained enough?

• Any improvement points? Yes

Yes. Good fine-
grained.
Suggestion to use
template for
access. E.g. a
device comes with
a "set of
capabilities"
granted to it or to
its owners. New
devices will have
list of actions it
can perform, along
with list of
capabilities Yes

Easily Managed and Modified

e) Requirement 5 : Access control should be easily managed and modified for normal
users

Login as ID: pauline
Go to the Capabilities list screen
Try to modify access for the capabilities granted to
Jack
Access need to be revoked, then, delegate a new
capability with new obligations

• Is it useful to manage and modify
access?
• Is this function simple and easy?
• Any improvement points? Yes Yes, simple Yes

Lightweight – suitable for IoT devices

f) Requirement 6 : Access control solution should be lightweight as IoT devices have
low processing power (with acceptable performance)

The implementation part of the proposed framework
is carried out by setting up Igor on a Raspberry Pi 3.
The core of Igor are an XML database, a web server
and Xpath 1.0.

Is it performing well?

Any improvement points?

Yes, performance is
good

Yes, performance
is good. Don’t
really need to do
performance test
as the hardware
will always change
when we want to
go to production.
We can choose the
higher spec for
example, as price
drops all the time.

Suggestion to use
lower end hardware
for Igor, e.g.
Arduino instead of
Raspberry Pi.
Performance is
good now.

Other design choices
Design choice 1 - Separation of policy
administration and checking from the XML
database. A separate Python module is used
(access.py) to function as the Policy Decision Point
(PDP) and PAP (Policy Administration Point). This
is to enable better code management and reduce
errors when replicating capabilities and performing
policy checks

Do you think this design is useful?
Why?

Any improvement points? Yes, design is

useful Yes, good design No comment
Design choice 2 - There are several approaches to
perform delegation. Gong’s approach is for the
initiator to create a delegation message and pass it
to the person who need the capability. He/she will
then request access from the access server by
presenting the message from the owner and the
access server will then generate new capability and
assign it to the requestor. We did not go with that
approach as it presents too many steps and is
cumbersome for the users. Instead, the capability
owner can login to Igor using his/her credentials and
delegate the capability through a user interface and
the receiver of the capability will be notified
through email that he/she has been granted access to
certain objects. We have also given the choice to the
token owner to specify if the newly delegated token
can be further delegated by the new owner or not.

Do you think this design is useful?
Why?

Any improvement points?

Yes, design is
useful

Good, simple
design Yes

27

Design choice 3 - We have also made the choice to
enforce that all external tokens have limited lifespan
(1 year) and a renewal process is forced upon the
token holder after the expiry date.

Do you think this design is useful?
Why?

Any improvement points?

With condition its
autonomous. If not,
its not a good idea.
Perhaps to give the
owner options to
specify if expiry
date is required. I
do not want to
renew the tokens
even once a year

Yes, its ok.
Renewal should be
automated. Owner
should be able to
choose the lifespan
of the token during
creation.

This should be
dynamic, not tied to
a specific duration.
But the lifespan
concept is good.

Design choice 4 - Each agent (device, people, plug-
ins, other Igors) have their own profiles or listing in
the XML database where the assigned capabilities
and other credentials (e.g. logon ID, passwords,
secret keys, etc.) are stored for ownership tracking
purpose

Do you think this design is useful?
Why?

Any improvement points?

Yes, it is easy to
maintain Yes Yes

Design choice 5 - We have chosen to have two types
of capabilities: internal and external. Internal
capabilities are used to control access to data,
actions and plugins within the Igor’s database. For
better performance, internal capabilities do not to
use any encryptions.

Do you think this design is useful?
Why?

Any improvement points?

Yes, very obvious,
common sense Yes Yes

Summary

What is your overall feedback about the usefulness
of the design of the fine-grained access control for
Igor? Useful Good, very useful Useful

Other comments

I feel this is a good
design - if there are
good UI and
enough plug-ins to
connect to Igor.
Currently, its not
very user friendly.

The prototype
works well with
centralized home
environment,
within the same
network. How
about devices
spread across
different networks?
Have multiple
Igors across
different locations
and different
access technology
(Bluetooth,
Zigbee, Z-Wave,
6LowPAN)?
Maybe to have
Igor sitting in the
gateway?
How about
working with other
off the shelf
harware like
Printer? I need to
write my own
plug-in?

Problem with
centralized control
is that if Igor is
hacked, all the
secret keys are
being
compromised?
To improve on the
current design,
instead of having
one Igor as token
generator
(centralized), why
not use multiple
Igors (group of
Igors) and these
collectively create a
secret key for new
persons/devices or
any Igor can be
randomly appointed
to create the secret
key? For example,
with the concept of
blockchain, secret
key can be
generated by any
node in the chain.
The demonstration
can be better with
more user-friendly
interfaces and more
automation – future
work.

How would you rate whether the project meets the
overall objectives in addressing ethical/privacy
issues we are facing regarding information
generated by IoT devices?

Rating from 1 – 5 (where 1 is the
lowest and 5 the highest) 5 5 4.5

28

Appendix C – Detail Results of the Expert Evaluation (Part 2: Expert 4-5)

 Expert 4 Expert 5

Profile
What is your education level PhD MSc

How do you describe your knowledge level on IoT
and Access Control security models Expert Moderate - Expert

Adding New Device / User

a) Requirement 1: New users or devices can be easily added to be IoT solution

Adding a new user pauline

• Is it easy to add a new user?
• Is it easy to add capabilities to
new user?
• Any improvement points?

Yes. User friendly interfaces are not
available now, but can be future work and
it’s not in the current requirement Yes, but lack friendly UI

Adding new devices: Button1 and Ringer
• Is it easy to add a new device?
• Any improvement points? Yes Yes

Delegation & Transfer
b) Requirement 2 : Access control can be delegated from the owner to others
Login as admin.
Go to the Capabilities list screen. Delegate the
capability to view /data/profiles/Pauline to user
Pauline
Login as Pauline, check whether you have access
to information in Pauline’s profile.
Transfer a capability to jack. Once transferred, the
capability will no longer available to the first
owner.
Login as jack, check whether jack is able to access
to the information that you just transferred.
Note: Delegation/transfer can only be done for
users/devices that are already registered with Igor

• Is it easy to delegate
capabilities to new users /
devices?
• Any improvement points?

Yes. Question: For transferring
capabilities, how about when the owner or
the Admin “accidentally” transferred
wrong rights to the wrong person/device?
Currently, there is no way to take the
capability back? Suggest to have a “special
privileged” role (administrator, etc) to be
able to recover / revoke transferred
capabilities – For future work Yes

Revocation

c) Requirement 3 : Access control can be revoked by the owners when not needed
anymore
Login as admin. Revoke the capability that you
just delegated to Pauline.
Logout. Login as Pauline. Go to the capabilities
screen. Check if the capability is now removed
from your capability list.
Note: There are 2 types of capabilities: internal
and external capabilities. External capabilities are
assigned to external IoT devices.

• Is it useful to revoke access?

• Any improvement points?

Yes. Revocation list is acceptable solution,
but do bear in mind there are weaknesses
in revocation list and assume it is never
corrupted, hacked, etc.

Yes. Revocation list is a
good solution

Fine-grained access control
d) Requirement 4 : Access control of data should be to the detailed level (fine-
grained)
Login as ID: admin
Go to the Capabilities list screen. Grant access to
Pauline the information in
/data/people/jack/device
Logout. Login as Pauline. Check if Pauline is able
to see the information in /data/people/jack/device

• Is the access control model
fine-grained enough?

• Any improvement points? Yes Yes

Easily Managed and Modified

e) Requirement 5 : Access control should be easily managed and modified for
normal users

29

Login as ID: pauline
Go to the Capabilities list screen
Try to modify access for the capabilities granted to
Jack
Access need to be revoked, then, delegate a new
capability with new obligations

• Is it useful to manage and
modify access?
• Is this function simple and
easy?
• Any improvement points? Yes Yes

Lightweight – suitable for IoT devices

f) Requirement 6 : Access control solution should be lightweight as IoT devices
have low processing power (with acceptable performance)

The implementation part of the proposed
framework is carried out by setting up Igor on a
Raspberry Pi 3. The core of Igor are an XML
database, a web server and Xpath 1.0.

Is it performing well?

Any improvement points?

Yes. For the scenario given (use case),
using a normal mobile phone can be
supported by the current setup of Igor (on
Raspberry Pi), which I think meets your
project requirements.
However, I do not believe it can cover all
ranges of IoT. For practical
implementation, there are many other
“ranges” of IoT – e.g. higher range / very
demanding IoT machines, e.g. Smart cars,
oil rigs, refineries?

Yes. But I would like to
see how to implement
this in large scale?

Other design choices
Design choice 1 - Separation of policy
administration and checking from the XML
database. A separate Python module is used
(access.py) to function as the Policy Decision
Point (PDP) and PAP (Policy Administration
Point). This is to enable better code management
and reduce errors when replicating capabilities and
performing policy checks

Do you think this design is
useful? Why?

Any improvement points?

Yes, good design. The XML database is
readable, easy to understand and for
support/troubleshooting. At the same time,
the “capabilities” are hidden.

Yes, I think this is
usually the design I've
seen

Design choice 2 - There are several approaches to
perform delegation. Gong’s approach is for the
initiator to create a delegation message and pass it
to the person who need the capability. He/she will
then request access from the access server by
presenting the message from the owner and the
access server will then generate new capability and
assign it to the requestor. We did not go with that
approach as it presents too many steps and is
cumbersome for the users. Instead, the capability
owner can login to Igor using his/her credentials
and delegate the capability through a user interface
and the receiver of the capability will be notified
through email that he/she has been granted access
to certain objects. We have also given the choice
to the token owner to specify if the newly
delegated token can be further delegated by the
new owner or not.

Do you think this design is
useful? Why?

Any improvement points?

I cannot comment much which approach is
better as it is not clear to me how effective
the steps of key exchange and trusts are
being established (in actual application),
user interface, method of the transfer of
keys and if the mechanism is flawless
cannot be assessed now.

I do understand currently, a lot of “copy
and paste” exercise in the secret key
exchange, which is acceptable now, as
authentication and security threats analysis
is not in scope for this project. Yes, its good

Design choice 3 - We have also made the choice to
enforce that all external tokens have limited
lifespan (1 year) and a renewal process is forced
upon the token holder after the expiry date.

Do you think this design is
useful? Why?

Any improvement points?

It is useful design as long as you have only
one Igor, and revocation list not be shared
with multiple Igors.

It is useful design as long
as you have only one
Igor, and revocation list
not be shared with
multiple Igors.

Design choice 4 - Each agent (device, people,
plug-ins, other Igors) have their own profiles or
listing in the XML database where the assigned
capabilities and other credentials (e.g. logon ID,
passwords, secret keys, etc.) are stored for
ownership tracking purpose

Do you think this design is
useful? Why?

Any improvement points? Yes, great design Yes, great design

30

Design choice 5 - We have chosen to have two
types of capabilities: internal and external. Internal
capabilities are used to control access to data,
actions and plugins within the Igor’s database. For
better performance, internal capabilities do not to
use any encryptions.

Do you think this design is
useful? Why?

Any improvement points?

If the project is about authorization, this is
actually not really in scope of this project
but I appreciate that this has been thought
of. There is indeed if anyone hacks Igor
and access to its database directly (standard
services server), it will be compromised. Yes

Summary

What is your overall feedback about the usefulness
of the design of the fine-grained access control for
Igor?

Yes, very useful. A good start for many
future work by other students.

Yes, the demand for this
kind of solution will be
more as more IoT devices
entering the market

Other comments

I think the PAPA model and the use case
are great and it is clear on what you want to
achieve.
Well done, you have done a very detail
software design and development, careful
thoughts have been put into the design with
different user scenarios being taken care of.
Extra efforts have been put into the
implementation which is not in project
requirement, e.g. the https secure protocol,
hiding of the capabilities from the web
interface.
For future work, more thoughts should be
made on how multiple Igors interacting
with each other: How to manage each Igor
has different data structures but they need
to share information, updating each other,
and key generations can be very complex
without compromising security and open to
attacks. Example, when one Igor in the
group got D-DOS attack, you will have
problem if you have many capability
issuers and many revocation lists – the task
of updating each other will be jammed.
Great work! Do share your paper and git
hub after your project. I would like to ask
my students to try out your codes and
experiment in our lab and continue future
work.

I have reservation about
the centralized design.
What if Igor is down and
not available, this means
no one can access to all
the IoT devices? Should
look at more de-
centralized solution or
how to ensure continuous
availability of the service.
I feel user friendly
interface is important for
this to be adopted by
normal users.

How would you rate whether the project meets the
overall objectives in addressing ethical/privacy
issues we are facing regarding information
generated by IoT devices?

Rating from 1 – 5 (where 1 is
the lowest and 5 the highest) 5 4

