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Abstract

We define nearest-neighbour point processes on graphs with Euclidean edges and linear
networks. They can be seen as analogues of renewal processes on the real line. We
show that the Delaunay neighbourhood relation on a tree satisfies the Baddeley–Møller
consistency conditions and provide a characterisation of Markov functions with respect
to this relation. We show that a modified relation defined in terms of the local geometry
of the graph satisfies the consistency conditions for all graphs with Euclidean edges that
do not contain triangles.
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1. Introduction

In recent years a theory of point processes on linear networks has been emerging so as to
be able to analyse, for example, the prevalence of accidents on motorways, the occurrence
of street crimes, and other data described in the first chapter of the pioneering monograph
by Okabe and Sugihara [12]. Although there exists a mature theoretical framework for point
processes on Euclidean spaces [7], [8], the development of a similar theory on linear networks
is complicated by the geometry inherent in the network. In particular, it is not possible to define
strictly stationary models, as the network may not be closed under translations. For this reason,
most attention has focussed on the development of second-order summary statistics [13].

Little attention has been paid to model building, with a few notable exceptions. The first
serious work in this direction seems to be that by Baddeley et al. [5], who constructed certain
types of Cox processes as well as a Switzer type and a cell process. The authors concluded that
familiar procedures for constructing models tend not to produce processes on a linear network
that are pseudostationary with respect to the shortest path distance, except when the network
is a tree—an unrealistic assumption for a road network. Another important contribution is the
work by Anderes et al. [1] who expanded the modelling framework in various directions. They
relaxed the assumption of [5], [12], and [13] that a linear network consists of a finite union of
straight line segments which intersect only at the vertices, in the sense that the segments are
replaced by parametrised rectifiable curves that may or may not overlap. The parametrisations
have the additional advantage of naturally defining a weighted shortest path distance. In the
motivating example where the linear network represents a road network, such a generalisation
allows for bridges or tunnels and for distance to be measured in travel time where appropriate.
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1276 M. N. M. VAN LIESHOUT

Additionally, Anderes et al. [1] constructed log-Gaussian Cox processes in terms of a Gaussian
process on the network specified by an isotropic covariance function. In the expanded paper
[2], special attention was paid to alternative metrics.

The Cox models discussed above are clustered in nature, that is, exhibit a positive association
between the points. Moreover, their intensity function and pair correlation function are explic-
itly known, and pseudostationarity is defined to mean that the intensity function is constant, and
that the pair correlation function of a pair of points depends only on the distance between the two
points. In this paper our aim is to develop appropriate analogues of renewal processes, exploiting
the one-dimensional nature of a network. Recall that renewal processes exhibit the property
that the probability (in an infinitesimal sense) of an event at a given location conditional on the
realisation of the process elsewhere depends only on the two nearest points, regardless of how
far away they may be. In general spaces such models are known as nearest-neighbour Markov
point processes [3]. For the related class of fixed-range Markov point processes introduced by
Ripley and Kelly [14], the conditional probabilities of finding a point at a given location depends
on the configuration only through points within a prescribed distance from that location. Note
that Markovian models are particularly, but not exclusively, suited to model inhibition [15].

In contrast to Cox models, the second-order summary statistics of Markov and nearest-
neighbour Markov point processes may not be available in closed form. Instead, explicit expres-
sions exist for the conditional intensities and the likelihood can often be expressed as a product
of interaction functions. Thus, an appropriate concept of pseudostationarity in this context is
that the interaction functions depend on the interpoint distances only. We refer the reader to [11]
for an overview and critique of techniques to define inhomogeneity in point process models.

The plan of this paper is as follows. In Section 2 we recall the definitions ofAnderes et al. [1],
[2] regarding graphs with Euclidean edges, the weighted shortest path metric thereon, and the
Poisson process defined on them. We go on to define point processes in terms of their probability
density with respect to a Poisson process and note that the theory of fixed-range Markov point
processes carries over immediately. In Section 3 we extend the notion of a Markov point process
with respect to the Delaunay nearest-neighbour relation [3] to graphs with Euclidean edges and
state our main results. More specifically, we show that the Delaunay relation on a tree satisfies
the Baddeley–Møller consistency conditions and we provide a characterisation of the Markov
functions with respect to this relation. We then use the graph structure to define a modified
Delaunay relation and show that it satisfies the consistency conditions on a wide class of graphs
with Euclidean edges. The proofs are given in Sections 4 and 5.

2. Preliminaries

2.1. Graphs with Euclidean edges

In their pioneering monograph on the subject, Okabe and Sugihara [12, p. 31] defined a
network as a finite union

L =
n⋃

i=1

li , n ∈ N,

of straight line segments li in R
2 or R

3 that intersect only at their endpoints in such a way that
L is connected. The representation is not unique since a line segment may arbitrarily be split
into two pieces without affecting the union L.

A more general definition is given by Anderes et al. [1]. They replaced the straight line
segments by curves parametrised by bijections. We impose the further condition that these
parametrisations are continuously differentiable.
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Nearest-neighbour Markov point processes 1277

Definition 2.1. A graph with Euclidean edges in R
2 is a triple G = (V , E = (ei)i , � = (φi)i)

such that

• (V , E) is a finite, simple connected graph, that is, has neither loops nor multiple edges;

• every edge ei = {v1
i , v

2
i } ∈ E, v1

i , v
2
i ∈ V , is parametrised by the inverse of homeo-

morphism φi, and φ−1
i : Ji → R

2 for an open interval ∅ �= Ji ⊂ R with endpoints
φi(v

j
i ), j = 1, 2, is continuously differentiable.

In other words, an edge is associated with a set φ−1
i (Ji) ⊂ R

2 that does not contain the
endpoints. The continuity of φ−1

i implies that the set is connected.
A graph with Euclidean edges gives rise to the space

L = ({0} × V ) ∪
n(E)⋃
i=1

({i} × φ−1
i (Ji)),

where n(E) < ∞ is the cardinality of E. The labels i serve to identify the edges and will prevent
paths from ‘jumping from one edge to another’ in case their interiors overlap. For instance, if
L represents a road network, overlap is typically present due to tunnels and bridges [1].

As an aside, if there is no overlap between the edge interiors, one may drop the labels and
simply consider the disjoint union

V ∪
n(E)⋃
i=1

φ−1
i (Ji),

which in turn reduces to the classic linear networks if all edges φ−1
i (Ji) are straight line

segments. From now on, we will work with the general space L including the labels.

2.2. Weighted shortest path metric

The family � of parametrisations that is part of the definition of a graph with Euclidean
edges can be used to define concepts of length and distance [1].

Definition 2.2. Let (V , E, �) be a graph with Euclidean edges. For every i = 1, . . . , n(E),
define the φ−1

i -induced length measure on the σ -algebra {φ−1
i (B) : B ⊂ J̄i , B Borel} on

φ−1
i (J̄i ) generated by the functions φi as follows. The induced length of the set φ−1

i (B) is
equal to the Euclidean length of B in the closed interval J̄i . In particular, the edge ei = {v1

i , v
2
i }

has length |φi(v
1
i ) − φi(v

2
i )| equal to the Euclidean length of J̄i . The �-induced length is

the ensemble of φ−1
i -induced length measures.

Since the parametrisations φ−1
i are continuously differentiable, the edges they define have

finite arc lengths. Indeed, under the arc length parametrisation, the induced length in the sense
of Definition 2.2 corresponds to the arc length [5]. A different parametrisation may induce a
different length measure.

Definition 2.3. Let (V , E, �) be a graph with Euclidean edges. A walk between two elements
(i, x) and (j, y) of L travels alternatingly from (i, x) to (j, y) along a finite number of vertices
and edges such that the vertices are endpoints of the edges and edge labels do not change in
between vertices. If i �= 0, the first part of the walk travels from x along φ−1

i (Ji); similarly,
for j �= 0, the last part of the walk is along φ−1

j (Jj ) to y. In particular, a walk part between
two points along the same curve φ−1

i (Ji) does not reverse its tracks.

Definition 2.4. Let (V , E, �) be a graph with Euclidean edges. A path between two different
elements (i, x) and (j, y) of L is a walk in which all edge segments and all vertices are different.
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1278 M. N. M. VAN LIESHOUT

The weight of the path is the sum of the �-induced lengths of the edge segments in it, and the
weighted shortest path distance dG((i, x), (j, y)) between two elements (i, x) and (j, y) of L

is the smallest weight carried by any path between them.

The weighted shortest path distance on a graph with Euclidean edges defines a metric. Note
that it is possible that the shortest weighted path between two vertices joined by an edge is not
along that edge! For further details, see [1].

2.3. Poisson processes on graphs with Euclidean edges

Our goal in this paper is to define point processes on graphs with Euclidean edges in terms
of a density with respect to a unit-rate Poisson process [15]. To this end, we recall the definition
of a Poisson process on a graph with Euclidean edges given by Anderes et al. [1].

Definition 2.5. Let G = (V , E = (ei)i , � = (φi)i) be a graph with Euclidean edges and let
L be the corresponding network. The Lebesgue–Stieltjes measure λG is defined as follows.
For every i and every set Bi in the σ -algebra on φ−1

i (Ji) generated by φi , set

λi
G(Bi) =

∫
Ji

1{φ−1
i (t) ∈ Bi}

∣∣∣∣ d

dt
φ−1

i (t)

∣∣∣∣ dt,

where | · | denotes the norm of the gradient. Then

λG

(n(E)⋃
i=1

({i} × Bi)

)
=

n(E)∑
i=1

λi
G(Bi)

is a measure on L equipped with the finite disjoint union σ -algebra in which a set is measurable
if and only if it can be written as

⋃n(E)
i=0 ({i} × Bi) with Bi in the σ -algebra generated by φi for

i > 0 and the power set of V for i = 0. By default, the set {0} × V has Lebesgue–Stieltjes
measure zero.

Note that Definition 2.5 does not depend on the choice of parametrisations.

Definition 2.6. Let G = (V , E = (ei)i , � = (φi)i) be a graph with Euclidean edges and let
L be the corresponding network. The unit-rate Poisson process on L is defined as follows.
For every i and every set Bi in the σ -algebra on φ−1

i (Ji) generated by φi , independently for
different i,

• the number of points in {i} × Bi is Poisson distributed with expectation λG({i} × Bi);

• given that the number of points falling in {i} × Bi is ni , these ni points are independent
and identically distributed according to the probability density function 1/λG({i} × Bi).

In words, the unit-rate Poisson process scatters a Poisson number of points independently
and uniformly on every edge, and the average number of such points is equal to the arc length
of the edge. Note that this point process is simple, that is, almost surely, there are no multiple
points. Moreover, the definition does not depend on the choice of parametrisations.

The integral of a measurable function f : R
2 → R

+ with respect to the Lebesgue–Stieltjes
measure λG is defined as the sum of the line integrals of f along the rectifiable curves
parametrised by the functions φ−1

i : Ji → R
2:

∫
L

f dλG =
n(E)∑
i=1

∫
Ji

f (φ−1
i (t))

∣∣∣∣ d

dt
φ−1

i (t)

∣∣∣∣ dt.
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Nearest-neighbour Markov point processes 1279

Higher-order integrals are defined analogously. Note that the definition does not depend on the
choice of parametrisations.

Example 2.1. Consider the functions f i
G defined on φ−1

i (Ji) by

f i
G(x) =

∣∣∣∣
(

d

dt
φ−1

i

)
(φi(x))

∣∣∣∣
−1

.

Then, for Bi in the σ -algebra generated by φi ,∫
L

1{x ∈ Bi}f i
G(x) dλG(x) =

∫
Ji

1{φ−1
i (t) ∈ Bi}

∣∣∣∣
(

d

dt
φ−1

i

)
(φi(φ

−1
i (t))

∣∣∣∣
−1∣∣∣∣ d

dt
φ−1

i (t)

∣∣∣∣ dt

= |φi(Bi)|,
the Euclidean length of φi(Bi). In other words, the functions f i

G, i = 1, . . . , n(E), define the
weighted shortest path distance dG on L.

A simple point process X on L is said to have probability density p with respect to the
unit-rate Poisson process if P(X ∈ F) is equal to

∞∑
n=0

e−λG(L)

n!
∫

L

· · ·
∫

L

1{{x1, . . . , xn} ∈ F }p({x1, . . . , xn}) dλG(x1) · · · dλG(xn) (2.1)

for all F in the usual σ -algebra on finite-point configurations in L generated by the counts
X(B) with B in the finite disjoint union σ -algebra on L [7], [8]. If the probability density p is
such that the ratio

p({x1, . . . , xn, xn+1})
p({x1, . . . , xn}) ,

when well defined, depends only on those xj , j = 1, . . . , n, for which dG(xn+1, xj ) ≤ r for
some fixed r > 0, X is fixed-range Markov and the Hammersley–Clifford theorem [14] applies.
For the sake of convenience, we will use the notation x = {x1, . . . , xn} for configurations of
finitely many distinct points in L.

For further details on graphs with Euclidean edges, we refer the reader to [1] and [2].

3. Nearest-neighbour Markov point processes

The purpose of this section is to define appropriate analogues of the well-known class of
renewal processes on the real line. Intuitively speaking, we are looking for a class of point
processes in which the conditional behaviour at a given point depends on the remainder of the
configuration only through its ‘nearest neighbours’. We shall show that in the case that the
network L is a tree, the weighted shortest path distance may be used to define which points are
each other’s nearest neighbours. In the general case, we will use the geometry of the network
to define a local neighbourhood relation.

3.1. The Delaunay relation

In this section we adapt Baddeley and Møller’s definition of configuration-dependent neigh-
bourhoods and cliques in Euclidean spaces [3] to our context.

Definition 3.1. Let (V , E, �) be a graph with Euclidean edges and let L be the corresponding
network. Let x ⊂ L be a finite configuration of distinct points, and define the Delaunay relation
‘∼x’ as the symmetric, reflexive relation on x given by

x1 ∼x x2 ⇐⇒ C(x1 | x) ∩ C(x2 | x) �= ∅,
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1280 M. N. M. VAN LIESHOUT

Figure 1: Points on a linear network. The Voronoi cells are indicated by solid, dashed, and dotted lines.

where, for xj ∈ x, j = 1, 2,

C(xj | x) = {(i, y) ∈ L : dG((i, y), xj ) ≤ dG((i, y), x) for all x ∈ x}
is the Voronoi cell of xj in x. The x–neighbourhood of a subset z ⊆ x is defined as

N(z | x) = {x ∈ x : x ∼x z for some z ∈ z}.
The configuration z is an x-clique if, for each z1, z2 ∈ z, z1 ∼x z2. By convention, the empty
set and singletons are cliques too.

We shall use the notation y ∈ L and (i, y) ∈ L as the occasion demands, that is, we will
refrain from mentioning i explicitly unless it is necessary to do so.

To illustrate the definitions, consider Figure 1. It depicts four points, shown as filled circles,
on a linear network. The corresponding four Voronoi cells are indicated by solid, dashed, and
dotted lines. Due to the cycle, three different line types are needed. Note that the Voronoi cells
may extend over various line segments and branch off at vertices (e.g. for the cell indicated by a
solid line). The number of Delaunay neighbours varies per point. The topmost point has a single
neighbour, the rightmost point has three, and the other points each have two neighbours. As
for the clique sizes, the empty set, singletons, and pairs of points whose Voronoi cells intersect
are cliques. Additionally, the three lower points that lie on a cycle in the network form a clique
of size three. There is no clique of cardinality 4.

Some elementary properties of the relation are collected in the next lemma.

Lemma 3.1. Let (V , E, �) be a graph with Euclidean edges and let L be the corresponding net-
work. The Delaunay relation on L satisfies the following properties for all finite configurations
of distinct points x ⊂ L:

• if χ(y | x) = 1 then also χ(y | z) = 1 for all y ⊆ z ⊆ x;

• if χ(y | z) = 0 then also χ(y | x) = 0 for all y ⊆ z ⊆ x.

Here χ(y | x) = 1 if y is an x-clique and 0 otherwise.

Proof. See Section 4. �
3.2. The Delaunay relation on trees

Recall that (V , E) is said to be a tree if it has no cycles, that is, there is no closed path
(v0, v1, . . . , vp, v0), vi ∈ V , of positive length (p > 0). A graph with Euclidean vertices
G = (V , E, �) is a tree if (V , E) is a tree.

It is well known that a graph is a tree if and only if there is exactly one path between any
two vertices [6], a property that is inherited by the network associated with G.
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Nearest-neighbour Markov point processes 1281

Lemma 3.2. A graph with Euclidean edges is a tree if and only if there is exactly one path
between any two points (i, x) and (j, y) in L.

Proof. See Section 4. �

We are particularly interested in the geometrical arrangement of the paths between three
points.

Lemma 3.3. Let (V , E, �) be a graph with Euclidean edges that is a tree and let L be its
associated network. Consider a triple y = {y1, y2, y3} ⊂ L of distinct points. Then there exist
unique paths between the elements of y that

• either form a three-pointed star with sides of strictly positive length emanating from a
vertex (0, v) ∈ L; or

• combine into a single path.

Proof. See Section 4. �

A finite configuration y ⊂ L is said to be in general position if no three points lie on the
boundary of the same dG-ball. Clearly, the class of all finite configurations in general position
is hereditary.

Lemma 3.4. Let (V , E, �) be a graph with Euclidean edges that is a tree and let L be its
associated network. Then the clique sizes with respect to the Delaunay relation are at most two
on the class of finite configurations in general position. Moreover, for all y = {y1, y2} ⊆ x with
x in general position, χ(y | x) = 1 if and only if the midpoint of y with respect to the weighted
shortest path metric along the unique path between y1 and y2 lies in C(y1 | x) ∩ C(y2 | x).

Proof. See Section 4. �

In order to define Markov functions, consistency conditions must be imposed on the family
of neighbourhood relations [3].

Definition 3.2. Let (V , E, �) be a graph with Euclidean edges and let L be its associated
network. Consider finite configurations y ⊆ z ⊂ L of distinct points and points u, v ∈ L such
that u, v �∈ z. Then the Baddeley–Møller consistency conditions read as follows:

(C1) χ(y | z) �= χ(y | z ∪ {u}) implies that y ⊆ N({u} | z ∪ {u});
(C2) if u1 �∼x u2 for x = z ∪ {u1, u2} then

χ(y | z ∪ {u1}) + χ(y | z ∪ {u2}) = χ(y | z) + χ(y | x).

To see the rationale behind these conditions, suppose that we wish to build a pairwise
interaction model by setting

p(x) = α
∏

x∼xy

γ (x, y)

for some Borel measurable function γ (·, ·) ≥ 0 that is symmetric in its arguments. Then, for
such functions to be Markovian, the ratio

p(x ∪ {u})
p(x)

=
∏

x∼x∪{u}u
γ (x, u)

∏
x∼x∪{u}y γ (x, y)∏

x∼xy γ (x, y)
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1282 M. N. M. VAN LIESHOUT

should depend only on the neighbours of u in ‘∼x∪{u}’ (for a precise formulation, see Defini-
tion 3.3 below). Hence, any pair {x, y} for which χ({x, y} | x) �= χ({x, y} | x ∪ {u}) should
consist of neighbours of u in x ∪ {u}, as required by (C1). Condition (C2) is needed to ensure
that, reversely, every Markov function can be factorised as a product of interaction functions
(cf. Theorem 3.2).

In general, the consistency conditions of Definition 3.2 do not hold, as illustrated by the
following counterexample.

Example 3.1. Consider the linear network depicted in Figure 1. Let z be the clique consisting
of the three lower points in the network. Then χ(z | z) = 1. However, placing any additional
point u1 �∈ z on the cycle that contains z but not the fourth point in the network would split up
two of the points in z. Hence, χ(z | z∪{u1}) = 0 even though the third point of z is no Delaunay
neighbour of u1 in z ∪ {u1}. Consequently, (C1) does not hold. Upon the addition of a second
point u2 to the cycle in such a way that it is not a Delaunay neighbour of u1 in the resulting five-
point configuration, the identities χ(z | z∪{u1, u2}) = χ(z | z∪{u1}) = χ(z | z∪{u2}) = 0
and χ(z | z) = 1 hold, in violation of (C2).

The main theorem of this section is the following.

Theorem 3.1. Let (V , E, �) be a graph with Euclidean edges that is a tree and let L be its
associated network. Then the Delaunay relation satisfies (C1) and (C2) on the family of finite
configurations in general position.

Proof. See Section 5. �

3.3. Markov functions

We are now ready to define Markov functions on graphs with Euclidean edges, in analogy
with the spatial models of [3].

Definition 3.3. Let (V , E, �) be a graph with Euclidean edges and let L be the corresponding
network. Let ‘∼x’ be a family of reflexive, symmetric relations on finite configurations x of
distinct points in L. Then a function p from the set of finite configurations in general position
into [0, ∞) is a Markov function with respect to ‘∼x’ if, for all x in general position such that
p(x) > 0,

(a) p(y) > 0 for all y ⊆ x;

(b) for all u ∈ L \ x such that x ∪ {u} is in general position, p(x ∪ {u})/p(x) depends only
on u, on N({u} | x ∪ {u}) ∩ x = {x ∈ x : x ∼x∪{u} u}, and on the relations ‘∼x’ and
‘∼x∪{u}’ restricted to N({u} | x ∪ {u}) ∩ x.

If (a) holds, p is said to be hereditary. The next theorem provides a Hammersley–Clifford
factorisation. Similar results for spatial point processes in Euclidean spaces can be found in
[3], [4], [10], and [14]. Recall that a function γ from the space of finite-point configurations in
general position into [0, ∞) gives rise to an interaction function �(y | x) = γ (y)χ(y | x) [3] if
the following properties hold. If γ (x) > 0,

(i) γ (y) > 0 for all y ⊆ x, and

(ii) if, additionally, γ (N({u} | x ∪ {u})) > 0 then γ (x ∪ {u}) > 0.

Theorem 3.2. Let (V , E, �) be a graph with Euclidean edges such that (V , E) is a tree and
let L be the corresponding network. Let p be a measurable function from the set of finite
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configurations in general position into [0, ∞). Then p is a Markov function with respect to the
Delaunay relation if and only if

p(x) ∝

⎧⎪⎨
⎪⎩

∏
xi∈x

γ ({xi})
∏

{i<j : xi∼xxj }
γ ({xi, xj }) if γ ({xi, xj }) > 0 for all distinct xi, xj ∈ x,

0 otherwise

for some measurable, nonnegative function γ , extended to configurations x consisting of three
or more points by assigning the value 1 whenever γ (y) > 0 for all subsets y ⊂ x of cardinality
at most 2 and 0 otherwise, that satisfies (i) and (ii).

Proof. See Section 5. �
If p can be normalised into a probability density, e.g. by assuming that γ ({xi}) is bounded

and γ ({xi, xj }) ≤ 1, p is a Markov density and we can define a nearest-neighbour Markov
point process by (2.1).

The characterisation allows some flexibility in the choice of γ .

Example 3.2. As we set out to define analogues of renewal processes on graphs, let us first
consider the special case G = (V = {(a, 0), (b, 0)}, E = ({(a, 0), (b, 0)}), � = (φ1)) for
a < b ∈ R with φ−1

1 : (a, b) → R
2, φ−1

1 (t) = (t, 0), embedding (a, b) into the plane. Since
there is only a single edge, we may ignore edge labels and simply consider the linear network

L = V ∪ ((a, b) × {0}) = [a, b] × {0}.
The weighted shortest path metric dG on L then corresponds to the Euclidean distance between
the first coordinates.

Let π be a probability density function on R
+ and write Fπ for the corresponding cumulative

distribution function. Suppose that π(x) > 0 for all x ∈ [0, b − a] and Fπ(b − a) < 1. Set

p(x) = e(b−a)π(min x − a)(1 − Fπ(b − max x))
∏

xi∼xxj

π(dG(x1
i , x1

j )),

where min x = min{x1
i : xi = (x1

i , 0) ∈ x} is the minimal first coordinate in x and, similarly,
max x = max{x1

i : xi = (x1
i , 0) ∈ x}. By default, min ∅ = a and max ∅ = b. Then p

is a Markov function with respect to the Delaunay relation on L with interaction functions
γ (∅) = (1 − Fπ(b − a)) exp(b − a),

γ ((x, 0)) = π(x − a)(1 − Fπ(b − x))

1 − Fπ(b − a)
,

and

γ ((x, 0), (y, 0)) = π(dG((x, 0), (y, 0)))(1 − Fπ(b − a))

π(max{x, y} − a)(1 − Fπ(b − min{x, y})) ,
for x, y ∈ (a, b) and γ (z) ≡ 1 whenever the cardinality of z is bigger than 2. Note that γ

is strictly positive. For exponential interarrival densities π(x) = λ exp(−λx), the interaction
functions γ ((x, 0)) ≡ λ and γ ((x, 0), (y, 0)) ≡ 1 are constant in accordance with the lack
of interaction between points in a Poisson process. In general, the interaction functions may
depend on x and y. Moreover, the second-order interaction function is not necessarily a function
of dG((x, 0), (y, 0)) only due to edge effects captured by the denominator.
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1284 M. N. M. VAN LIESHOUT

Example 3.3. Set γ (∅) = α > 0 and γ ({xi}) ≡ β > 0, and suppose that, for pairs, γ depends
only on the weighted shortest path distance between the members of the pair, that is,

γ ({xi, xj }) = g(dG(xi, xj ))

for some function g : [0, ∞) → [0, ∞). For configurations x with n(x) > 2, set

γ (x) = 1{g(dG(xi, xj )) > 0 for all xi �= xj ∈ x}.
The function γ thus defined gives rise to an interaction function �(y | x) = γ (y)χ(y | x)

provided that, for all configurations x and all u ∈ L \ x, if the conditions

• g(dG(xi, xj )) > 0 for all distinct xi, xj ∈ x, and

• g(dG(xi, u)) > 0 for all xi ∈ x such that xi ∼x∪{u} u

hold, then also g(dG(xi, u)) > 0 for all xi ∈ x. A sufficient condition is that the function g

takes strictly positive values, in which case, using Lemma 3.1,

p(x ∪ {u})
p(x)

= β

∏
xi∼x∪{u}u g(dG(xi, u))∏

{i<j : xi∼xxj , xi �∼x∪{u}xj } g(dG(xi, xj ))
.

Example 3.4. Let (V , E, �) be a graph with Euclidean edges such that (V , E) is a tree and let
L be the corresponding network. Further to Example 3.3, consider the Strauss process defined
by g ≡ γ for some γ ≥ 0.

When γ and, therefore, g is strictly positive, the unnormalised Strauss density is Markov
with respect to the Delaunay relation. Now, a point (i, x) ∈ L on some edge {i} × φ−1

i (Ji)

has at most two Delaunay neighbours on the same edge and at most one on any other edge; a
vertex is related to at most one point on each edge. Therefore, the total number of neighbours
of any point on the network is bounded by n(E) + 1 and the Strauss density is integrable for
all γ > 0. For γ = 1, it coincides with the Poisson process upon normalisation.

For g ≡ 0, the function γ (∅) = α > 0, γ ({x}) = β > 0, and γ (x) = 0 for all x with
n(x) ≥ 2 defines an interaction function since the conditions in Example 3.3 are void. The
resulting density

p(x) =
{

αβn(x) if n(x) ≤ 1,

0 otherwise

is Markov with respect to the Delaunay relation and may be normalised into a probability
density that places mass

1

1 + βλG(L)

on the empty set and spreads the remaining mass evenly over singletons.

Example 3.5. Let (V , E, �) be a graph with Euclidean edges such that (V , E) is a tree and
let L be the corresponding network. Further to Example 3.3, consider the hard-core process
defined by the function

g(r) =
{

0 if r ≤ R,

γ otherwise
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for some fixed R > 0 and γ > 0. For this choice of g, γ ({x1, x2}) = γ if dG(x1, x2) > R, 0
otherwise, and

γ (x) = 1{dG(xi, xj ) > R for all xi �= xj ∈ x}
for configurations x with n(x) > 2.

To verify the conditions in Example 3.3, suppose thatdG(xi, xj )>R for all distinctxi, xj ∈ x

and, upon adding u ∈ L \x, that dG(xi, u) > R for those xi ∈ x that are neighbours of u in the
configuration x∪{u}. The point xi with minimal distance dG(u, xi) belongs to N({u} | x∪{u}),
and, therefore, dG(xj , u) ≥ dG(xi, u) > R for all xj ∈ x. Thus, γ gives rise to an interaction
function and a corresponding Markov density. The latter is integrable for all γ > 0 since the
hard-core constraint imposes an upper bound on the number of points.

The related function g(r) = 1{r ≤ R} for some R > 0 does not satisfy the requirements for
an interaction function.

3.4. The local Delaunay relation

As shown in Example 3.1, the Delaunay relation does not satisfy the consistency relations
(C1) and (C2) if the graph (V , E) is not a tree. On the other hand, networks occurring in practice
are seldom a tree. Therefore, we propose to employ the neighbourhood relation implicit in the
graph to define a local Delaunay relation. Such a procedure is similar to that employed in image
analysis for edge detection and texture analysis [9].

Definition 3.4. Let (V , E, �) be a graph with Euclidean edges and let L be its associated
network. Define a symmetric and reflexive relation ‘∼E’ on L as follows:

(i, x) ∼E (j, y) ⇐⇒

⎧⎪⎨
⎪⎩

φ−1
i (∂Ji) ∩ φ−1

j (∂Jj ) �= ∅, i, j �= 0,

φ−1
i (∂Ji) ∩ {y} �= ∅, i �= 0, j = 0,

{x, y} ∈ E or x = y, i = j = 0.

Write, for i, j �= 0, ‘∼i,j
x ’ for the Delaunay relation restricted to

L ∩ (({i, 0} × φ−1
i (J̄i )) ∪ ({j, 0} × φ−1

j (J̄j ))),

the restriction of L to at most two edges and their incident vertices, and define a symmetric
reflexive relation (i, x) ∼E

z (j, y) for distinct points by

(i, x) ∼E
z (j, y)

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i, x) ∼i,j

z∩({i,0}×φ−1
i (J̄i ))∪({j,0}×φ−1

j (J̄j ))
(j, y); (i, x) ∼E (j, y), i, j �= 0,

(i, x) ∼i,i

z∩({i,0}×φ−1
i (J̄i ))

(0, y); (i, x) ∼E (0, y), i �= 0, j = 0,

(0, x) ∼k,k

z∩({k,0}×φ−1
k (J̄k))

(0, y); {x, y} = ek ∈ E, i = j = 0.

In words, a vertex is a ∼E-neighbour of the edges it is incident with and edges are neighbours
if they share a common vertex. Thus, the ∼E-relation does not depend on the configuration. It
does, however, crucially depend on the geometry of the graph—splitting an edge will result in
a different relation. After combination with the Delaunay relation, the resulting relation ‘∼E

z ’
is configuration dependent and depends on the geometry of the graph.

To illustrate the definition, again consider Figure 1. The number of local Delaunay neigh-
bours is one for the two topmost points, and two for the other points. As for the clique sizes,
the empty set and singletons are cliques, and pairs of neighbours form a clique. There is no
clique of cardinality 3.
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1286 M. N. M. VAN LIESHOUT

The main result of this section is the following.

Theorem 3.3. Let G = (V , E, �) be a graph with Euclidean edges and let L be its associated
network. If G does not contain any triangles then the local Delaunay relation ‘∼E

x ’ satisfies
(C1) and (C2) on the family of finite simple configurations.

Proof. See Section 5. �
Theorem 3.3 implies the following Hammersley–Clifford theorem.

Corollary 3.1. Suppose that the conditions of Theorem 3.3 hold, and let p be a measurable
function from the set of finite simple configurations into [0, ∞). Then p is a Markov function
with respect to the local Delaunay relation if and only if

p(x) ∝
∏
y⊆x

γ (y)χ(y | x)

for some interaction function γ (y)χ(y | x) under the convention that 00 = 0.

Its proof is a direct application of [3, Theorem 4.13]. Note that, other than in Theorem 3.2,
cliques may contain more than two points.

Example 3.6. Let (V , E, �) be a graph with Euclidean edges such that (V , E) does not contain
triangles and let L be the corresponding network. Consider the Strauss process defined by

p(x) = αβn(x)
∏

{i<j : xi , xj ∈x}
γ χ({xi ,xj } | x),

where γ (∅) = α > 0, γ ({x}) = β > 0, and γ ({x1, x2}) = γ ∈ [0, ∞).
Forγ > 0, p(x) = αβn(x)γ sE(x), where sE(x)denotes the number of point pairsxi �=xj ∈ x

that are ∼E
x -neighbours. Writing dmax for the maximal degree in the graph, the number of

neighbours per point with respect to the local Delaunay relation is bounded by 2dmax, so p(x)

is integrable. It is also Markov by Corollary 3.1.
For γ = 0,

p(x) =
{

αβn(x) if n(x) ≤ 1,

0 otherwise

is subtly different from the, perhaps more natural, definition

p̃(x) =
{

αβn(x) if sE(x) = 0,

0 otherwise.

In words, under p̃, no two points are allowed to lie on the same edge or on neighbouring edges.
Both functions may be normalised, but the first one is not in general Markov with respect to the
local Delaunay relation. Indeed, p is defined in terms of a function γ (x) that takes value 0 when
the cardinality n(x) of x exceeds 1 in accordance with property (i) of interaction functions. But
then property (ii) fails, for example, for x = {(i, x)} and u = (j, y) such that (i, x) �∼E (j, y).

Example 3.7. Let (V , E, �) be a graph with Euclidean edges such that (V , E) does not contain
triangles and let L be the corresponding network. Consider the hard-core function introduced
in Example 3.5 with R > 0 and γ > 0, and define a function γ as in that example. Then
condition (ii) for an interaction function may fail with respect to the local Delaunay relation,
for example, when a new point (i, x) is placed on an edge ei that has no vertex in common with
edge ej of an existing point (j, y), but for which dG((i, x), (j, y)) ≤ R.
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4. Proofs of the lemmas

Proof of Lemma 3.1. We claim that y1 ∼x y2 implies that y1 ∼z y2 for any z ⊆ x and
y1, y2 ∈ z. To see this, note that

y1 ∼x y2 ⇐⇒ there exists ξ ∈ L : ξ ∈ C(y1 | x) ∩ C(y2 | x).

Since C(yj | x) ⊆ C(yj | z) when z ⊆ x, also ξ ∈ C(y1 | z) ∩ C(y2 | z) and y1 ∼z y2.
By convention, the clique indicator function takes the value 1 for singletons and the empty

set regardless of the configuration. Hence, we may focus on configurations y of cardinality at
least 2.

For the first statement, suppose that χ(y | x) = 1. Pick any y1, y2 ∈ y. Then y1 ∼x y2
and, by the above claim, y1 ∼z y2. Since y1 and y2 are chosen arbitrarily, χ(y | z) = 1.

For the second statement, if χ(y | z) = 0, there exist y1, y2 ∈ z such that y1 �∼z y2. By the
claim, also y1 �∼x y2; hence, χ(y | x) = 0. �

Proof of Lemma 3.2. Suppose that (V , E, �) is a tree. Since (V , E) is a tree, there is a
unique path between each pair of vertices. Hence, we may restrict ourselves to a pair of points
(i, x) and (j, y) of which at least one belongs to the set L \ ({0} × V ).

If i = j , one path runs along the edge. Since a walk does not reverse its tracks by definition,
any other walk from (i, x) to (i, y) would visit at least one of the two end vertices of ei

before returning. If the same vertex were used for the return journey, the walk would not be a
path. Otherwise, a cycle would be created between the end vertices in contradiction with the
assumption.

If i = 0 and j �= 0, first consider the case that x ∈ {v1
j , v

2
j }. Then one path from (i, x) to

(j, y) runs along the edge ej . Any other path would have to run via the other end vertex of ej

since it cannot reverse its tracks along the edge, thus creating a cycle between the end vertices
in contradiction with the assumption.

When (i, x) and (j, y) do not lie on the same closed edge, note that there is a unique path
from x to v1

j in the graph (V , E) and, hence, a corresponding one in the labelled space L. If
this path includes edge ej , by deleting the j -labelled curve segment from y to v1

j , we obtain a
path from (i, x) to (j, y); otherwise, such a path is found by extending the path to v1

j with this
segment. Any other path (i, x) to (j, y) would have to pass at least one of the vertices in ej .
In case this vertex would be v1

j , by the uniqueness of paths in the tree (V , E), the path would
coincide with the original construction up to the vertex and, hence, entirely. In case the vertex
would be v2

j , a cycle would be created, which cannot happen since (V , E) is a tree.
Finally, if i �= j and i, j �= 0, as seen in the previous case, there is a unique path from (0, v1

i )

to (j, y). If this path includes edge ei , this yields the path from (i, x) to (j, y). Otherwise,
precede by the segment along ei from (i, x) to (0, v1

i ). By the same arguments as used in the
previous case, the path is unique.

Conversely, let (V , E, �) be such that there is a unique path between any pair of distinct
points (i, x) and (j, y) in L. In particular, there is a unique path between any pair of 0-labelled
vertices, and, therefore, (V , E) is a tree. �

Proof of Lemma 3.3. Since L is a tree, by Lemma 3.2, there are unique paths from y1 to y2
and from y2 to y3, say with consecutively labelled vertices

y1, (0, v1), . . . , (0, vp), y2, (0, vp+1), . . . , (0, vp+q), y3,

p, q ≥ 0 and no vertex replication in v1, . . . , vp or in vp+1, . . . , vp+q .
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Suppose that vk = vl for some 1 ≤ k ≤ p and p + 1 ≤ l ≤ p + q. Then the
paths ((0, vk), . . . , (0, vp), y2) and ((0, vl), . . . , (0, vp+1), y2) both connect (0, vk) = (0, vl)

and y2 in L, and must therefore coincide. Extending, if possible, we may assume that
vk−1 �= vl+1. If some earlier vertex vi, i ≤ k − 1, would be identical to vj for l + 1 ≤
j ≤ p + q, a cycle would be created from vi via vk = vl to vj = vi . Hence, the
sequences ((0, v1), . . . , (0, vk−1)) and ((0, vl+1), . . . , (0, vp+q)) do not intersect, and the paths
(y1, (0, v1), . . . , (0, vk−1)), (y2, (0, vp), . . . , (0, vk+1)) and (y3, (0, vp+q), . . . , (0, vl+1)) are
connected at (0, vk) = (0, vl) and, therefore, form three sides of a star provided the lengths are
positive. It therefore remains to consider the cases k = 1, k = p, and l = p + q.

If l = p + q, y3 may lie on the path from y1 to y2; if it does not, the curve segment from
(0, vl) to y3 forms a side of positive length. Similarly, if k = p, y2 may lie on the path from y1
to y3; if it does not, the curve segment from (0, vk) to y2 forms a side of positive length. Also,
if k = 1, y1 may lie along the path between y2 and y3; if it does not, the curve segment from
y1 to (0, vk) forms a side of positive length.

Finally, if there is no 1 ≤ k ≤ p such that vk = vl for some p + 1 ≤ l ≤ p + q, the unique
path from y1 to y3 runs via y2. �

Proof of Lemma 3.4. Suppose that χ(y | x) = 1 for some y = {y1, y2, y3} ⊆ x ⊂ L. By
Lemma 3.1, χ(y | y) = 1; hence, we need consider only x = y.

By Lemma 3.3, the elements of y either form a star or a path. First consider the case that y

is a three-pointed star emanating from a centre (0, v), v ∈ V . Ordering the sides according to
their length, without loss of generality, suppose that a ≤ b ≤ c, where a = dG(y1, (0, v)), b =
dG(y2, (0, v)), and c = dG(y3, (0, v)). Since, by assumption, y is in general position, at least
one of the inequalities must be strict. If a < b ≤ c, since L is a tree, C(y2 | y)∩C(y3 | y) = ∅

and y2 �∼y y3. The remaining case that a = b < c cannot happen as it would violate the
assumption that the points are in general position.

It remains to consider the case that all three elements of y lie along a path, without loss of
generality from y1 via y2 to y3. Then C(y1 | y)∩C(y3 | y) = ∅, again using the tree property
to ensure that there are no paths to connect y1 and y3 other than via y2. Therefore, y1 �∼y y3.
In conclusion, there cannot be a clique of cardinality 3 or larger.

To prove the second assertion, let y = {y1, y2} and write ξ for the midpoint with respect to
dG along the path between y1 and y2. Since L is assumed to be a tree, by Lemma 3.2, the path
is unique. Moreover, as all φi ∈ � are homeomorphisms, the midpoint exists and is unique.
Let x ⊇ y be some configuration in general position. If ξ ∈ C(y1 | x) ∩ C(y2 | x), clearly
χ(y | x) = 1.

Conversely, suppose that y is a clique in x. Then there exists some η ∈ L such that
η ∈ C(y1 | x) ∩ C(y2 | x). By Lemma 3.3, the triple {η, y1, y2} either forms a path or a star.
In the first case, the property of equidistance to y1 and y2 implies that η = ξ and the proof is
complete.

Next consider the case that η and y form a three-pointed star whose sides have strictly
positive length and emanate from some centre (0, v). Since dG(η, yj ) = dG(η, (0, v)) +
dG((0, v), yj ), j = 1, 2, by the uniqueness of the paths from η to yj (cf. Lemma 3.2),
dG((0, v), y1) = dG((0, v), y2). Hence, ξ = (0, v), now using the uniqueness of the path
between y1 and y2.

It remains to show that no other point of x lies closer to ξ than the yj , j = 1, 2. To this
end, note that any such x ∈ x cannot be connected to the star by means of paths attached to
different sides, as that would create a cycle.

Any x ∈ x connected to the endpoints y1 or y2 lies further from ξ than y1 and y2.
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For any x ∈ x connected to the side of η at a point other than ξ , since η is assumed to lie in
C(y1 | x) ∩ C(y2 | x),

dG(η, x) ≥ dG(η, yj ) = dG(η, ξ) + dG(ξ, yj ), j = 1, 2,

again using the uniqueness of paths for the last equality. If the connection is at the endpoint η

then dG(ξ, x) = dG(ξ, η) + dG(η, x); hence, by the above equation, dG(ξ, x) ≥ 2dG(ξ, η) +
dG(ξ, yj ) ≥ dG(ξ, yj ). If the connection is at a vertex (0, w), w ∈ V ,

dG(ξ, x) = dG(ξ, (0, w)) + dG(x, (0, w))

= dG(ξ, (0, w)) + dG(η, x) − dG(η, (0, w))

≥ dG(ξ, (0, w)) + dG(η, yj ) − dG(η, (0, w))

= dG(ξ, (0, w)) + dG(yj , (0, w))

≥ dG(ξ, yj ).

Finally, any x ∈ x connected to the side of a yj at ξ or some other vertex (0, w) satisfies,
since η is assumed to lie in C(y1 | x) ∩ C(y2 | x),

dG(η, x) ≥ dG(η, yj ) = dG(η, ξ) + dG(ξ, yj ),

so that dG(ξ, x) = dG(η, x) − dG(η, ξ) ≥ dG(ξ, yj ), and the proof is complete. �

5. Proofs of the main theorems

Proof of Theorem 3.1. First note that if n(y) ∈ {0, 1}, (C1) and (C2) are automatically
satisfied. The assumption that L is a tree and the restriction to configurations in general position
imply, by Lemma 3.4, that χ(y | z) = 0 for all z when the cardinality of y is 3 or more. Hence,
(C1) and (C2) hold for y with n(y) ≥ 3 as well, and it suffices to consider pairs y = {y1, y2}.

Condition (C1). Take y1, y2 ∈ z ⊂ L and u ∈ L with u �∈ z, and suppose that χ({y1, y2} | z)

differs from χ({y1, y2} | z ∪ {u}). By Lemma 3.1, if χ({y1, y2} | z ∪ {u}) = 1 then we have
χ({y1, y2} | z) = 1 also, so it suffices to consider the case that χ({y1, y2} | z ∪ {u}) = 0, but
χ({y1, y2} | z) = 1.

Let ỹj be the point lying halfway between yj and u along the unique path between them
(cf. Lemma 3.2), and let ξ be the halfway point between y1 and y2. These points exist since
the parametrisations are homeomorphisms. Since χ(y | z) = 1, ξ ∈ C(y1 | z) ∩ C(y2 | z)

by Lemma 3.4, so that, for all z ∈ z, dG(ξ, z) ≥ dG(ξ, yj ), j = 1, 2. Also, by construction,
dG(ỹj , yj ) = dG(ỹj , u). We shall show that ỹj ∈ C(yj | z∪{u})∩C(u | z∪{u}) for j = 1, 2,
and, therefore, yj ∼z∪{u} u. To this end, we must demonstrate that

dG(ỹj , z) ≥ dG(ỹj , u) = dG(ỹj , yj ) for z ∈ z \ {yj }. (5.1)

By Lemma 3.3, since L is a tree, the paths between the three points u, y1, and y2 form either
a three-pointed star whose sides emanate from η = (0, v) with v ∈ V , or the points lie on a
path.

First consider the case in which u, y1, and y2 lie on a path. If u were an extremity of this
path, say with y1 on the path between u and y2, then

dG(ξ, u) = dG(ξ, y1) + dG(y1, u) > dG(ξ, y1).
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1290 M. N. M. VAN LIESHOUT

By the assumption that χ(y | z) = 1 and Lemma 3.4, for any z ∈ z, also dG(ξ, z) ≥
dG(ξ, y1) = dG(ξ, y2), so that ξ ∈ C(y1 | z ∪ {u}) ∩ C(y2 | z ∪ {u}), thus violating the
assumption that χ(y | z ∪ {u}) = 0. We conclude that u has to lie on the path from y1 to y2.
Suppose that (5.1) does not hold, that is, for some j and some z ∈ z \ {yj }, the distance
dG(ỹj , z) < dG(ỹj , yj ). Then

dG(ξ, z) ≤ dG(ξ, ỹj ) + dG(ỹj , z) < dG(ξ, ỹj ) + dG(ỹj , yj ) = dG(ξ, yj ),

using uniqueness of paths (Lemma 3.2). However, if dG(ξ, z) < dG(ξ, yj ) then ξ �∈ C(yj | z),

in contradiction with Lemma 3.4.
Next suppose that the triple {u, y1, y2} forms a star and, without loss of generality, that the

path from y1 to y2 passes first ξ and then η. Since χ(y | z ∪ {u}) = 0, the intersection of the
C(yj | z ∪ {u}), j = 1, 2, is empty and, in particular, does not contain ξ . Hence,

dG(ξ, u) < dG(ξ, y1) = dG(ξ, y2).

Therefore,
dG(η, u) < dG(η, y2) ≤ dG(η, y1),

with equality only if η = ξ . Consequently, ỹj lies on the side of yj for each j = 1, 2. Now, if
dG(ỹ2, z) < dG(ỹ2, y2) for some z ∈ z \ {y2}, since ỹ2 lies on the path from ξ to y2 via η, then

dG(ξ, z) ≤ dG(ξ, ỹ2) + dG(ỹ2, z) < dG(ξ, ỹ2) + dG(ỹ2, y2) = dG(ξ, y2),

in contradiction with the assumption that ξ ∈ C(y2 | z). Similarly, for y1, recalling that
dG(ξ, u) < dG(ξ, y1), the point ỹ1 lies on the path between ξ and y1. Hence, if dG(ỹ1, z) <

dG(ỹ1, y1) then

dG(ξ, z) ≤ dG(ξ, ỹ1) + dG(ỹ1, z) < dG(ξ, ỹ1) + dG(ỹ1, y1) = dG(ξ, y1),

in contradiction with the assumption that ξ ∈ C(y1 | z). Therefore, (5.1) cannot be violated
and (C1) holds.

Condition (C2). Take y1, y2 ∈ z ⊂ L and u1, u2 ∈ L such that u1, u2 �∈ z with u1 �∼x u2,

where x = z∪{u1, u2}. Write y = {y1, y2}. Lemma 3.1 implies that if χ(y | z) = 0, the same
is true upon adding points to z and (C2) holds in this case. Therefore, it suffices to consider the
case that χ({y1, y2} | z) = 1. The same lemma implies that if χ({y1, y2} | z ∪ {u1, u2}) = 1,
this remains true when deleting points from x and (C2) holds. The only case left to consider is
that when χ({y1, y2} | z) = 1 and χ({y1, y2} | z ∪ {u1, u2}) = 0. We must show that exactly
one of χ({y1, y2} | z ∪ {u1}) and χ({y1, y2} | z ∪ {u2}) takes the value 1 and will do so by
contradiction.

Let η ∈ L be the point that lies halfway between u1 and u2 along the unique path between
them (cf. Lemma 3.2), and write ξ for the halfway point between y1 and y2. These points exist
since the parametrisations are homeomorphisms.

Suppose that χ(y | z∪{u1}) = 0 = χ(y | z∪{u2}). By the proof of condition (C1) above,
the triple {u1, y1, y2} forms a direct path with u1 on the path from y1 to y2, or a three-pointed
star. In either case,

dG(ξ, u1) < dG(ξ, y1) = dG(ξ, y2).

The same is true for the triple {u2, y1, y2}. Therefore, the ensemble can be seen as a path
from y1 to y2 that passes points leading off to u1 and to u2 if we include the degenerate cases
of a branch consisting of the single point u1 or u2, respectively. Without loss of generality,
suppose that the order is y1, then the side(s) of u1 and u2, and finally y2. We claim that such
an arrangement would imply that u1 ∼x u2, in contradiction with the assumption.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.60
Downloaded from https://www.cambridge.org/core. Centrum Wiskunde & Informatica, on 30 Nov 2018 at 08:14:31, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.60
https://www.cambridge.org/core


Nearest-neighbour Markov point processes 1291

To prove the claim, we show that η ∈ C(u1 | z ∪ {u1, u2}) ∩ C(u2 | z ∪ {u1, u2}), that is,
dG(η, u1) = dG(η, u2) ≤ dG(η, z) for all z ∈ z. Suppose otherwise. Then, for some z ∈ z,
possibly y1 or y2, dG(η, z) < dG(η, u1) = dG(η, u2) and, therefore,

dG(ξ, z) ≤ dG(ξ, η) + dG(η, z) < dG(ξ, η) + dG(η, u1) = dG(ξ, η) + dG(η, u2).

The right-hand side is equal to either dG(ξ, u1) or dG(ξ, u2) and, upon recalling that both are
strictly smaller than dG(ξ, yj ), we obtain dG(ξ, z) < dG(ξ, y1) = dG(ξ, y2), in contradiction
with the assumption that χ(y | z) = 1, that is, ξ ∈ C(yj | z) for j = 1, 2 (Lemma 3.4). Hence,
C(u1 | z∪{u1, u2})∩C(u2 | z∪{u1, u2}) contains η, implying that u1 ∼x u2 in contradiction
with the assumption.

Finally, suppose that χ(y | z ∪ {u1}) = 1 = χ(y | z ∪ {u2}). By Lemma 3.4, we have
ξ ∈ C(y1 | z ∪ {u1}) ∩ C(y2 | z ∪ {u1}) and, therefore, dG(ξ, u1) ≥ dG(ξ, y1) = dG(ξ, y2).
Similarly, dG(ξ, u2) ≥ dG(ξ, y1) = dG(ξ, y2). By assumption, χ(y | z∪{u1, u2}) = 0, which
means that C(y1 | z∪{u1, u2})∩C(y2 | z∪{u1, u2}) = ∅ and, in particular, does not contain ξ .
Therefore, recalling the assumption that χ(y | z) = 1, we have min(dG(ξ, u1), dG(ξ, u2)) <

dG(ξ, y1) = dG(ξ, y2), a contradiction.
In conclusion, exactly one of χ(y | z ∪ {u1}) and χ(y | z ∪ {u2}) takes the value 1. �
Proof of Theorem 3.2. Suppose that p is a Markov function. By Theorem 3.1, the Delaunay

relation satisfies (C1) and (C2), and [3, Theorem 4.13] implies that p can be factorised as

p(x) =
∏
y⊆x

γ (y)χ(y | x)

for some interaction function γ (y)χ(y | x) under the convention that 00 = 0. Since the cliques
have cardinality at most 2 (cf. Lemma 3.4), the factorisation reduces to

p(x) = γ (∅)
∏
i

γ ({xi})
∏
i<j

γ ({xi, xj })χ({xi ,xj } | x)

( ∏
{y⊆x : n(y)>2}

γ (y)

)0

.

Note that p(x) > 0 if and only if γ (y) > 0 for all y ⊆ x. We claim that it suffices to consider
only subsets of cardinality at most 2, that is, p(x) = 0 if and only if there exists some y ⊆ x

with n(y) ≤ 2 such that γ (y) = 0. Then

p(x) = γ (∅)
∏
i

γ ({xi})
∏

{i<j : xi∼xxj }
γ ({xi, xj }),

unless γ ({xi, xj }) = 0 for some xi, xj ∈ x in which case p(x) = 0. Moreover,

p(x) =
∏
y⊆x

γ̃ (y)χ(y | x)

for γ̃ (y) equal to γ (y) when n(y) ≤ 2 and γ̃ (y) = 1{γ (z) > 0 for all z ⊂ y with n(z) ≤ 2}
otherwise. The function γ̃ (y)χ(y | x) is an interaction function. Indeed, since, as an interaction
function, γ (x) > 0 if and only if γ (y) > 0 for all y ⊆ x, so, according to the claim, if and
only if γ̃ (x) > 0, properties (i) and (ii) carry over from γ to γ̃ .

To prove the claim, we will inductively show that, when γ (y) > 0 for all subsets with
n(y) ≤ k, k ≥ 2, the same is true for sets of cardinality k + 1. Suppose otherwise. Then
γ (y ∪ {u}) = 0 for some y with n(y) = k and some u �∈ y. As γ is an interaction function,
if γ (N({u} | y ∪ {u})) is strictly positive, also γ (y ∪ {u}) > 0, in contradiction with the
assumption. Hence, γ (N({u} | y ∪ {u})) = 0. Therefore, the cardinality of N({u} | y ∪ {u})

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2018.60
Downloaded from https://www.cambridge.org/core. Centrum Wiskunde & Informatica, on 30 Nov 2018 at 08:14:31, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2018.60
https://www.cambridge.org/core


1292 M. N. M. VAN LIESHOUT

must be k + 1. Hence, N({u} | y ∪ {u}) = y ∪ {u}, that is, yi ∼y∪{u} u for all yi ∈ y. Because
k + 1 ≥ 3, by Lemma 3.4, the set y ∪ {u} is no clique and there exist y1, y2 ∈ y for which
y1 �∼y∪{u} y2. Therefore, y2 �∈ N({y1} | y ∪{u}) and, hence, γ (N({y1} | y ∪{u})) > 0 as well
as γ ({u}∪y \ {y1}) > 0 in view of their cardinalities. Property (ii) implies that γ (y ∪{u}) > 0
and we arrive at a contradiction.

Conversely, any function of the specified form is a Markov function. To see this, suppose
that p(x) > 0. Then γ (y) > 0 for all y ⊆ x. Hence, p(y) > 0 for all y ⊆ x. Furthermore,
the ratio p(x ∪ {ξ})/p(x) can be written as

γ ({ξ}) 1{γ (x ∪ {ξ}) > 0}
∏

{i : xi∼x∪{ξ}ξ}
γ ({xi, ξ})

∏
{i<j : xi∼x∪{ξ}xj } γ ({xi, xj })∏

{i<j : xi∼xxj } γ ({xi, xj }) .

By Theorem 3.1, the Delaunay relation satisfies condition (C1), so that, if χ({xi, xj } | x) �=
χ({xi, xj } | x ∪{ξ}), both xi and xj belong to the neighbourhood N({ξ} | x ∪{ξ}). Hence, the
last term in the ratio of interest depends only on points in the configuration x ∩N({ξ} | x ∪{ξ})
and on the relations ‘∼x’, ‘∼x∪{ξ}’restricted to this configuration. The product of γ ({xi, ξ}) over
points in the configuration x ∩N({ξ} | x ∪{ξ}) depends on this configuration and on ξ, γ ({ξ})
is a function of ξ , and, finally, by property (ii) of γ , to verify that γ (x ∪ {ξ}) > 0, it suffices
to verify that γ (N({ξ} | x ∪ {ξ})) > 0, which depends on ξ and x ∩ N({ξ} | x ∪ {ξ}). �

Proof of Theorem 3.3. Let y ⊆ z ⊂ L and u, v ∈ L be such that u, v �∈ z and u �∼z∪{u,v} v.
We first observe that cliques in ‘∼E’ consist of points lying either on a single closed edge,

on a triangle of edges, or on two or more closed edges emanating from a single vertex. The
no-triangle assumption excludes the second case.

The Delaunay relation restricted to a pair of such edges coincides with the sequential
neighbourhood relation on the edges. In other words, consecutive points on a single edge
are each other’s nearest neighbours; also the point on one of the edges that is closest to the
vertex that joins the two edges, if it exists, is a nearest neighbour of the point closest to that
vertex on the other edge, and no other points are nearest neighbours. Cliques in the combined
relation ‘∼E

z ’ are therefore either empty, consist of a single point, of two consecutive points on
a single edge, or of points on different edges that are closest on their edge to the central vertex
from which all edges emanate. The clique size is therefore at most the degree of the central
vertex.

Condition (C1). If χ(y | z) = 0, there exists a pair y1 �= y2 ∈ y for which y1 �∼E
z y2. Then

eithery1 andy2 lie on edges that are not adjacent, in which casey1 �∼E
z∪{u}y2 andχ(y | z∪{u}) =

0, or y1 and y2 lie on related edges, but y1 and y2 are not sequential neighbours in z restricted to
their edge(s). The addition of u cannot make them sequential neighbours, so χ(y | z∪{u}) = 0.

Suppose therefore that χ(y | z) = 1, but that there exists a pair y1 �= y2 ∈ y for which
y1 �∼E

z∪{u}y2. Then y1 and y2 must lie on ∼E-related edges (either a single edge, or two adjacent
edges) and be consecutive in z but not in z ∪ {u} on these edge(s). This can happen only if u

lies in between y1 and y2, making y1 and y2 both ∼E
z∪{u}-neighbours of u. Should y contain

additional points, say y3, by the general remarks, y3 lies on a different edge closest to the central
vertex, as do y1 and y2 on their respective edges. Therefore, y3 is a neighbour of u with respect
to ‘∼E

z∪{u}’.
Condition (C2). As shown when proving (C1), if χ(y | z) = 0, y cannot be a clique in

configurations with more points. If χ(y | z ∪ {u1, u2}) = 1, all pairs of points in y lie on
adjacent edges and are sequential neighbours in the set z ∪ {u1, u2}) restricted to their edges.
The same remains true when u1 and u2 are removed, so that χ(y | z) = 1. Hence, it remains
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to consider the case when χ(y | z) = 1 but χ(y | z ∪ {u1, u2}) = 0. In this case, the points
of y must lie on a single edge or on a number of edges that emanate from a single vertex
(0, w) ∈ L, w ∈ V .

Now, if u1 and u2 do not lie on any of these y-edges, χ(y | z∪{u1, u2}) = 1, in contradiction
with the assumptions.

If exactly one of u1 and u2 does not lie on any of the y-edges, without loss of generality,
assume that u1 does not lie on any of the y-edges and that u2 does lie on some y-edge. Then
χ(y | z ∪ {u1}) = χ(y | z) = 1. Moreover, since, by assumption, χ(y | z ∪ {u1, u2}) = 0,
there is a pair y1, y2 ∈ y that are not consecutive in the configuration z ∪ {u1, u2} restricted
to the edge or edges on which y1 and y2 lie. Since they are adjacent in the configuration z, u2
must lie in between y1 and y2, which implies that χ(y | z∪{u2}) = 0 in accordance with (C2).

Finally, suppose that both u1 and u2 lie on the y-edges that emanate from (0, w). If y =
{y1, y2} consists of two consecutive points in z, since y1 and y2 are no longer consecutive in
the configuration z∪{u1, u2}, they must be separated by either u1 or u2, but not by both, since,
by assumption, u1 and u2 are not sequential neighbours in z ∪ {u1, u2}. Hence, (C2) holds. If
y consists of more than two points y = {y1, . . . , yk}, the assumption that χ(y | z) = 1 implies
that the yj , j = 1, . . . , k, must lie on different edges e1, . . . , ek emanating from w and no
points of z lie between yi and w. Since u1 and u2 are not sequential neighbours, they cannot
both lie between some yi and (0, w); one of them, however, must, since the clique indicator
function of y in z ∪ {u1, u2} takes the value 0. Consequently, also in this case (C2) is seen to
hold. �
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