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Abstract. In this paper we analyse the dynamic gossip problem using
the algebraic network programming language Netkat.

Netkat is a language based on Kleene algebra with tests and describes
packets travelling through networks. It has a sound and complete axioma-
tisation and an efficient coalgebraic decision procedure. Dynamic gossip
studies how information spreads through a peer-to-peer network in which
links are added dynamically.

In this paper we embed dynamic gossip into Netkat. We show that
a reinterpretation of Netkat in which we keep track of the state of
switches allows us to model Learn New Secrets, a well-studied protocol
for dynamic gossip. We axiomatise this reinterpretation of Netkat and
show that it is sound and complete with respect to the packet-processing
model, via a translation back to standard Netkat.

Our main result is that many common decision problems about gos-
sip graphs can be reduced to checks of Netkat equivalences. We also
implemented the reduction.

Keywords: Dynamic gossip · Kleene algebra with tests (KAT)
Network programming language · NetKAT
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1 Introduction

The dynamic gossip problem is a generalisation of the classic telephone problem,
in which agents exchange secrets in phone calls with the goal to spread all secrets.
In the dynamic setting, also phone numbers are exchanged, hence who can call
whom constantly changes. More generally, dynamic gossip provides a formal
model of any peer-to-peer setting in which information has to be spread or
synchronised between multiple nodes.

As of now, no formal language and logic exists that captures dynamic gossip
in a satisfactory way. There is existing work on gossip using formal languages
which we will discuss in Sect. 7, but to our knowledge there is no sound and
complete proof system to describe dynamic gossip axiomatically.
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Anderson et al. in [1] and Foster et al. in [10], introduced Netkat, a logic to
describe packet-processing behaviour of networks. In this paper we will model
dynamic gossip in Netkat.

Our contributions are twofold. First, we show that we can simulate switch
states in Netkat without losing soundness and completeness, as long as dif-
ferent packets do not interact with each other. This observation is motivated
by the application to dynamic gossip, but also applies to Netkat in general.
Second, we show that simulating switch states in Netkat is a natural choice
for the analysis of dynamic gossip protocols. We provide a way to compute all
call sequences of the so-called Learn New Secrets (LNS) protocol by evaluating
a Netkat policy. Moreover, we reduce the decision problems whether LNS is
weakly or strongly successful to a check of Netkat equivalences. Given the com-
plete axiomatisation and efficient decision procedure of Netkat, any question
about gossip graphs expressible as a Netkat equivalence is decidable. More gen-
erally, this paper builds a bridge between the two areas of gossip protocols and
network programming languages.

We proceed as follows. In Sect. 2 we summarise the main definitions of
Netkat. Then we present a reinterpretation of Netkat simulating switch states
in Sect. 3. In Sect. 4 we recapitulate the dynamic gossip problem and in Sect. 5
we show how to encode it in Netkat, including proofs that these translations are
sound. We describe an implementation of our methods in Sect. 6, discuss related
work in Sect. 7 and conclude with ideas for future work in Sect. 8. Further details
can also be found in the master thesis [20] on which this paper is based on.

2 Standard NetKAT

Netkat was first presented in [1] and is a network programming language with
a strong mathematical foundation. It extends Kleene Algebra with Tests (kat)
and relies on technical results from that field.

A Kleene Algebra with Tests is a Kleene algebra — the algebra of regular
expressions — with a Boolean algebra. Its soundness and completeness with
respect to relational models and language-theoretic models is proven in [16].
Formally, a Kleene algebra with tests (kat) is a two-sorted algebraic structure
(K,B,+, · ,∗ , 0, 1,¬) where B ⊆ K and ¬ is a unary operator defined only on
B such that

– (K,+, · ,∗ , 0, 1) is a Kleene algebra,
– (B,+, · , 0, 1,¬) is a Boolean algebra
– (B,+, · , 0, 1,¬) is a subalgebra of (K,+, · ,∗ , 0, 1)

The equational theory of kat is pspace-complete as shown in [16].
The Kleene algebra operators are + for non-deterministic choice, · for

sequential composition, the Kleene star ∗ for finite iteration, 0 for fail and 1
for skip. Elements of the Boolean algebra are called tests, and on tests the +
and · operators behave as disjunction and conjunction respectively. The nega-
tion operator ¬ can only be applied to elements of the Boolean algebra.
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The axioms of kat are the axioms of Kleene algebra combined with the
axioms of Boolean algebra. They can be found in [15].

Netkat’s main purpose is to describe how packets travel through a net-
work, taking into account both the network topology and the individual switch
behaviours, where a switch is a node in the network topology. To do so, Netkat
extends kat with additional primitives for network behaviour and axioms gov-
erning those primitives. Syntactically, Netkat expressions can be predicates and
policies. Predicates are the constants true and false (1 and 0 respectively), tests
(f = n), negation (¬a), disjunction (a+b) and conjunction (a ·b). Policies are all
predicates, modifications (f ← n), union (p + q), sequential composition (p · q)
and iteration (p∗). We assume finite Netkat networks throughout this paper.

Definition 1. The syntax of Netkat is given by the following predicates a and
policies p:

a :: = 1 | 0 | f = n | a + b | a · b | ¬a
p :: = a | f ← n | p + q | p · q | p∗

where f ranges over some finite set of fields f :: = f1 | · · · | fk (including a switch
field sw and a port field pt) and n is a value from a finite domain.

Example 1. The Netkat expression sw = A · pt = 4 · dst ← H · pt ← 7 can
be read as “test whether the packet is located at port 4 of switch A and then
set the destination to H and move the packet to port 7”.

There exist multiple models that satisfy the Netkat axioms, but we are
mainly concerned with the packet-processing model. A packet pk is a tuple (f1 =
v1, . . . , fn = vn) which for each field fk provides a value vn from a finite domain.
Among the fields, two are used for the location of the packet in the network:
switch (sw) and port (pt). We write pk.f for the value in field f of pk and
pk[f := n] for the packet obtained from pk by updating field f to n.

Standard Netkat as presented in [1] also tracks the history of packets. It
contains an operator dup to duplicate the current packet so that a copy of it
is kept in the history. We do not need histories to model gossip in Netkat, so
we leave dup out here and simplify the semantics to work on packets instead of
histories of packets.

We show the semantics of Netkat in Fig. 1. The interpretation of a policy p
is a function that maps packets to sets of packets: �p� : P → 2P where P is the
set of all packets. A test or filter f = n takes any input packet pk and outputs
the singleton {pk} if field f of pk equals n, and ∅ otherwise. A modification
f ← n takes any input packet pk and yields the singleton set {pk[f := n]}.

The + is interpreted as a multicast operation: the outcome of the policy
(pt ← 1 + pt ← 2) are two copies of the input packet, one at port 1 and one at
port 2. The policy p · q is the Kleisli composition of p and q which we define
as (f • g)(x) =

⋃{g(y) | y ∈ f(x)}. To iterate sequential composition with ∗ we
define F 0(h) := {h} and F i+1(h) := (F • F i)h.
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Fig. 1. Semantics of Netkat

Fig. 2. Netkat axioms

The Netkat network of switches and hosts is not used in the semantics. As
shown in [1], any network topology can be incorporated into a policy. This is not
important here, because we will use a totally connected Netkat network.

The Netkat axioms are the axioms of kat together with additional axioms
for the interactions between tests and modifications. We show these additional
axioms in Fig. 2. The first one for instance tells us that when modifying two dif-
ferent fields, the order does not matter. The last axiom implies that the values of
the fields are drawn from a finite domain. These axioms are sound and complete
with respect to the packet-processing model of Fig. 1. For proofs, see [1].

3 Simulating Switch States in NetKAT

In standard Netkat, a switch has to treat all incoming packets according to the
same policy. For example, it cannot count how many packets of a certain type
it has seen before. In this section we will demonstrate that we can reinterpret
selected packet fields as switch states, which gives switches the ability to react
differently, depending on previous packets. Netkat can then express examples
like dynamic gossip more naturally.

Standard Netkat describes how packets travel through a network and it can
describe the behaviour of multiple packets with the multicast interpretation of
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the + operator. However, each of these packets form their own network trace,
and Netkat does not allow any interaction between them.

Ideally, a global state would allow us to model interactions between packets
via alterations of the global state. But this immediately yields questions about
concurrency. Versions of Kleene algebra that treat concurrency can be found
in [14] and [13], but to our knowledge a similar extension of kat or Netkat has
not been found yet. For dynamic gossip as studied in [4] we do not actually need
interaction between packets. It suffices to use a single packet, because in standard
Dynamic Gossip no two phone calls can take place at the same time. Hence we
can avoid concurrency questions by linking the global state of all switches to the
current packet.

We have to change the intended meaning of the + operator in order to
reinterpret selected fields as switch states. In standard Netkat the + operator
can be understood as multicasting. However, it is not realistic that a switch is
in multiple states at the same time. Therefore, in Netkat with switch states the
+ operator should be understood as non-deterministic choice.

For clarity, we introduce a new piece of syntax to separate the standard
packet fields from the switch state fields.

Definition 2. The syntax of Netkat with switch states extends the one of
Netkat as follows. For f as in Definition 1, n a packet field value or a switch
state from a finite domain and i a switch identifier:

a :: = 1 | 0 | f = n | state(i) = n | a + b | a · b | ¬a
p :: = a | f ← n | state(i) ← n | p + q | p · q | p∗

We thus add two new operators: the state test state(i) = n and the state
modification state(i) ← n. They work similarly to normal tests and modifications
but act specifically on the switch state fields.

The semantics of the new variant of Netkat is shown in Fig. 3. In order to
also highlight the reinterpretation of selected packet fields in the semantics, we
use a state vector �s that contains all the switch state fields. For the set of all
state vectors we write �S. The interpretation of each policy p is thus a function
�p� : P × �S → 2(P×�S) where P × �S is the set of all tuples ps = (pk, �s) of a packet
pk and a state vector �s. Note the similarity to Fig. 1: We only changed the
underlying set from P to P × �S and added definitions for tests and assignments
on the state vector.

Example 2. Consider policy (sw ← A · state(A) ← 1) + (sw ← B · state(B) ←
2). Applied to (pk, �s), this policy outputs {(pk[sw := A], �s[A := 1]), (pk[sw :=
B], �s[B := 2])}. Hence, state vectors denote the state of the network as a result
of how the corresponding packet was processed by the policy.

Note that in Example 2 the packet first moves to a switch before modifying
its state. The semantics of Netkat with switch states in principle allows us to
change the state of a switch without the packet actually being there at this
moment. Such policies are unrealistic. We therefore restrict ourselves to policies
that only modify the state of switches when they are there.



Towards an Analysis of Dynamic Gossip in Netkat 285

Definition 3 (Topology Respecting). We say that a policy is topology
respecting iff it is equivalent to its localised version which is obtained by replac-
ing every state(x) ← n with sw = x · state(x) ← n.

The axioms of Netkat with switch states are the same as for standard
Netkat, except that we add axioms for state tests and state modifications. These
are exactly the same as those shown in Fig. 2 with state(i) replacing f .

It is easy to see that Netkat with switch states can be translated back
to standard Netkat. This allows us to use the soundness and completeness of
standard Netkat to argue that Netkat with switch states is sound and complete.
Intuitively, the translation relies on the fact that the packet and state vector are
always paired together. Hence we can simply map the state vector to extra fields
wi for each switch i.

Definition 4. Let m : (P × �S) → P be the translation defined by

m ({f1 = v1, . . . , fn = vn}, [s1, . . . , sn]) :=
{

f1 = v1, . . . , fn = vn,
w1 = s1, . . . , wn = sn

}

and let m−1 denote its inverse. Let t map a Netkat expression with state to a
standard Netkat expression, proceeding by recursion for compositional policies
and mapping policies concerning the state vector as follows:

t(state(i) = n) := wi = n t(state(i) ← n) := wi ← n

For all other atomic policies p, let t(p) := p.

Lemma 1. For every policy p and every packet with state ps we have:

�p�(ps) = {m−1(pk) | pk ∈ �t(p)�(m(ps))}

Fig. 3. Semantics of Netkat with switch states
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Lemma 2. For every two policies p and q we have:

1. �p� = �q� if and only if �t(p)� = �t(q)� and
2. p ≡ q if and only if t(p) ≡ t(q).

Both lemmas can be proven by induction on the structure of policies, but as
these proofs do not contain any new insights we omit them here.

Theorem 1 (Soundness and Completeness). For all policies p and q of
Netkat with switch states we have �p� = �q� if and only if p ≡ q.

This finishes our explanation of Netkat with switch states. In Sect. 5 we will
use it to give an intuitive formalisation of dynamic gossip.

4 Dynamic Gossip

Dynamic Gossip is an extension of the simpler gossip problem, also known as the
telephone problem: A group of agents each has a secret. They can communicate
via phone calls in which two agents exchange all the secrets they know. How
many calls are needed, until all agents know all the secrets? This scenario was
widely studied in the 1980s and a classic result is that for n ≥ 4 agents 2n − 4
phone calls are necessary and sufficient to distribute all secrets to everyone.

In the original setting every agent can call every other agent. Later studies
removed this assumption and used a reachability graph to define which agents
can communicate with each other. Different classes of graphs lead to different
minimal numbers of calls. For a survey on classical static gossip, see [11].

Dynamic gossip from [7] is another variation of the problem: not only is there
a reachability graph restricting who can call whom, but this graph is also manip-
ulated when phone calls are made. Intuitively, the agents now also exchange
phone numbers, in addition to the secrets. The dynamic gossip literature focuses
on epistemic protocols [2,8], which can be executed by a group of agents with-
out a central authority. The prime example of such a protocol is “Learn New
Secrets”, short LNS. It allows agent a to call agent b if and only if a knows the
number of b but does not know the secret of b.

In the remainder of this section we briefly state the basic definitions and a
main result about the dynamic gossip problem.

Definition 5 (Gossip Graph). Given a finite set of agents A, a gossip graph
G is a triple (A,N, S) where N and S are binary relations over A such that
I ⊆ S ⊆ N where I is the identity relation on A. We write Na as an abbreviation
for {b | (a, b) ∈ N}. We abbreviate (a, b) ∈ N with Nab. An initial gossip graph
is a gossip graph where S = I. The set of all initial gossip graphs is denoted by
G. A gossip graph is called total if S = A × A.

The relations model the basic knowledge of the agents. We say that agent a
knows the number of b iff Nab and that a knows the secret of b iff Sab. Hence a
total gossip graph is one in which everyone knows all secrets.
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Definition 6 (Possible Call; Call Execution). A call is an ordered pair of
agents (a, b) ∈ (A×A). We usually write ab instead of (a, b). Given a gossip graph
G = (A,N, S), a call ab is possible iff Nab. Given a possible call ab, Gab is the
graph (A′, N ′, S′) such that A′ := A, N ′

a := N ′
b := Na ∪ Nb, S′

a := S′
b := Sa ∪ Sb,

and N ′
c := Nc, S′

c := Sc for c 	= a, b. For a sequence of calls ab; cd; . . . from the
set (A × A)∗ we write σ. The empty sequence is ε. We extend the notation Gab

to sequences of calls: Gε := G, Gσ;ab := (Gσ)ab.

Definition 7 (LNS). The Learn New Secrets protocol is defined as follows.
Given a gossip graph G = (A,N, S), the set of LNS-allowed calls is:

lns(G) := {(a, b) ∈ A × A | Nab and not Sab in G}
The extension of LNS on G is the set of call sequences defined recursively by

LNS (G) :=
{{ab;σ | (a, b) ∈ lns(G) and σ ∈ LNS(Gab)} if lns(G) 	= ∅

{ε} otherwise

Example 3. Consider an initial gossip graph G for three agents in which a
knows the number of b, and b knows the number of c. Suppose that a
calls b. We then obtain the gossip graph Gab in which a and b know each
other’s secret and a now also knows the number of c. We can visualise
the two graphs as follows, with dashed lines for N and solid lines for S:

a b c
ab
⇒ a b c

There are three LNS sequences on G, namely ab; ac; bc, ab; bc; ac and bc; ab. The
first two sequences are successful, i.e. they lead to a total graph in which everyone
knows all three secrets. The shorter sequence bc; ab is stuck: no more calls are
allowed according to LNS but not everyone knows all the secrets yet.

The gossip graph in Example 3 is a case in which LNS is only weakly, but
not strongly successful, which we define as follows.

Definition 8 (Weak and Strong Success). Consider a gossip graph G.

1. We say that LNS is weakly successful on G if and only if there is a call
sequence σ ∈ LNS(G) such that Gσ is total.

2. We say that LNS is strongly successful on G if and only if for all call
sequences σ ∈ LNS(G) we have that Gσ is total.

We conclude this section with a definition and theorem from [7].

Definition 9 (Sun Graphs). An initial gossip graph G is a sun graph if and
only if N is strongly connected on the restriction of G to non-terminal nodes
(nodes with at least one out-going edge).

Theorem 2 (Theorem 20 in [7]). Let G be an initial gossip graph. LNS is
strongly successful on G if and only if G is a sun graph.
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5 Dynamic Gossip in NetKAT

In this section we will discuss how to translate gossip to Netkat. We will build a
Netkat network and input packet that together represent a gossip graph. Then
we will construct a policy that performs the LNS protocol.

The switches in Netkat will represent the gossiping agents, and the state of a
switch will be the list of phone numbers and secrets this agent knows. We stress
that the Netkat network does not describe the gossip graph. Instead, we ensure
that during the execution of LNS each agent can in principle communicate with
every other agent by using a totally connected Netkat network.

The numbers and secrets an agent knows are part of the local state of the
corresponding switch. Instead of encoding the N and S relation into one integer
field state(i) for each switch i, we simplify notation and use multiple Netkat
fields Nij and Sij with values 0 and 1 to describe the state of i. For example,
the field N12 is part of the local state of switch 1 and Nab = 1 means that agent
a knows the phone number of agent b. We will ensure that the gossip policies
will be topology respecting in the sense of Definition 3 applied to all fields Nij
and Sij belonging to switch i, instead of only one field state(i).

In addition to the Sij and Nij fields, the input packet will have fields for the
location of the packet, sw and pt, and fields callm for denoting what call took
place in round m.

Definition 10 (NetKAT network and graph packet). Consider a group A
of n := |A| gossiping agents. The Netkat network Nn for n agents is a fully
connected network of n switches, each of which has an additional port homei

that is not connected to any other switch. Suppose we have a gossip graph G =
(A,N, S). The Netkat input packet pkG describes the S and N relations as
follows. The callm fields represent call rounds and we will explain them later.

pkG := {sw = 0, pt = 0} ∪ {callm = 0 | m ∈ {0, . . . , n(n − 1)}}
∪ {Nij = 1 | (i, j) ∈ N} ∪ {Nij = 0 | (i, j) /∈ N}
∪ {Sij = 1 | (i, j) ∈ S} ∪ {Sij = 0 | (i, j) /∈ S}

We will now describe a Netkat policy that represents the LNS protocol. On
an input packet representing a gossip graph G = (A,N, S), this policy should
output packets corresponding to call sequences σ and the Nij and Sij fields
should describe Nσ and Sσ. We want an output for each σ ∈ LNS(G).

The policy describing LNS starts by distributing the initial input packet to
every agent’s home port — a private port not connected to any other agent. This
is necessary to ensure that any agent can make the first call.

The next part of the policy will describe all LNS-allowed calls. In particular, a
call from a to b is defined in policy polab and describes a packet moving from the
caller to the callee and back. We first check that the LNS conditions are satisfied.
If so, the call takes place by moving the packet back and forth and updating the
knowledge of the agents when the packet is located at the corresponding switch.
We also keep track of the call sequences by overwriting the field callk in round
k, up to round n(n − 1). This is a safe upper bound on the number of calls,
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because no call happens more than once in LNS. After a call has taken place,
the resulting packet is again distributed to all home ports to ensure that any
other agent can initiate the next call. Finally, we use the Kleene star to iterate
the whole procedure.

Definition 11 (Gossip Policies). Let A be the set of all agents and let n :=
|A|. Consider the Netkat network Nn for n agents. For all a, b ∈ A, let linkab

denote the port of agent a connected to agent b, and for all i ∈ A let homei be
the home port of agent i. For distributing the packet, we define a policy:

poldstr :=
n∑

i=1

(sw ← i · pt ← homei)

Suppose f is a field which takes values 0 and 1. We use the following Netkat
abbreviation for “if . . . then . . . ” programs: (if f then p) := (f = 1 ·p)+(f =
0). For each call (a, b) we define a policy:

polab := sw = a · pt = homea · Nab = 1 · Sab = 0
· pt ← linkab · sw ← b · pt ← linkba

· ∏
x∈A (if Sax then Sbx ← 1) · ∏

x∈A (if Nax then Nbx ← 1)
· sw ← a · pt ← linkab

· ∏
x∈A (if Sbx then Sax ← 1) · ∏

x∈A (if Nbx then Nax ← 1)
· ∑n(n−1)

k=1

(∏
y<k (¬(cally = 0)) · callk = 0 · callk ← ab

)

To make any LNS call, we define the policy pollns :=
∑

i∈A

(∑
j∈A\{i} polij

)
.

For the whole LNS protocol, let polLNS := (poldstr · pollns)
∗ and for any sequences

of LNS calls σ = c1; . . . ; ck, let polσ := poldstr · polc1 · . . . · poldstr · polck .

The polLNS policy only depends on the number of agents, and not on the
gossip graph. It is topology respecting because we only update those N and S
fields of agents that are emulated by the switches where the packet is at that
moment of evaluation.

We now get the following correspondence between the original definition of
Gσ and the result of applying polσ to pkG.

Lemma 3. Consider a gossip graph G = (A,N, S), the corresponding pkG,
any LNS sequence of calls σ and the resulting graph Gσ = (A,Nσ, Sσ). Then
�polσ�(pkG) describes Gσ, i.e. we have:

Nσ = {(a, b) | ∀pk ∈ �polσ�(pkG) : pk.Nab = 1}

Sσ = {(a, b) | ∀pk ∈ �polσ�(pkG) : pk.Sab = 1}
In fact, polσ is such that the output is always exactly one packet.

Lemma 3 only talks about a single sequence, but we can lift it to the whole
LNS protocol as follows. The LNS call sequences for a gossip graph G are the
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same call sequences as those generated by applying polLNS to pkG and the distri-
bution of knowledge in the output packets of polLNS is the same as in the gossip
graphs resulting from the same call sequences (this latter fact follows directly
from Lemma 3).

Let polstop be a policy checking whether the LNS protocol has finished, i.e.
testing whether for every two agents i and j we have either Sij = 1 or Nij = 0:
polstop :=

∏
i,j∈A(Sij = 1 + Nij = 0).

Theorem 3. Definitions 7 and 11 agree with each other. Formally, for every
gossip graph G = (A,N, S) ∈ G we have:

LNS(G) = {c0; . . . ; ck ∈ (A × A)∗ | ∃pk ∈ �polLNS · polstop�(pkG) :
∀m ≤ k : pk.callm = cm and pk.callk+1 = 0}

Proof. We first show ⊆. Suppose an LNS call sequence σ is a result of the LNS
protocol on gossip graph G. We now prove by induction on the length of σ that
this call sequence is also happening through polLNS. In case σ is ε, it means no
calls were allowed according to LNS for gossip graph G. The initial input pkG

to polLNS will resemble this, and thus no calls happen through polLNS either.
For the induction step, we use Lemma 3 as follows. Suppose we have a

sequence xy;σ ∈ LNS(G) and σ consists of k calls. Then by Definition 7,
we know that σ ∈ LNS(Gxy). By the induction hypothesis we then know
that there exists a packet pk ∈ �polLNS · polstop�(pkGxy ) such that for all
m ≤ k − 1 we have pk.callm = cm. Moreover, pk ∈ �polσ�(pkGxy ). From
Lemma 3 we know that Nxy = {(a, b) | ∀pk ∈ �polxy�(pkG) : pk.Nab = 1} and
Sxy = {(a, b) | ∀pk ∈ �polxy�(pkG) : pk.Sab = 1}. Thus we can conclude that
pkGxy ∈ �polxy�(pkG), as pkGxy is the packet resembling gossip graph Gxy and
thus such that it corresponds to Nxy and Sxy. This gives us a pk′ ∈ �polxy;σ�(pkG)
where pk′ is the same as packet pk except that pk′ will have one more call
field. The values of the call fields are such that they match xy;σ in the sense
that c0 = xy and c1; . . . ; ck = σ. Moreover, xy;σ is a finished LNS sequence.
Hence we have pk′ ∈ �polLNS · polstop�(pkG) such that for all m ≤ k we have
pk′.callm = cm.

For the converse ⊇, we again proceed by induction on the length of call
sequences. For the base case, if pkG matches graph G and no calls are allowed
to take place by polLNS, then also LNS(G) will be empty.

For the induction step, take any outcome pk ∈ �polLNS · polstop�(pkG) that
is the result of k + 1 iterations inside polLNS. Then we get a call sequence
c0; . . . ; ck such that for all m ≤ k we have that pk.callm = cm. Let us say
that c0 = xy and denote c0; . . . ; ck with xy;σ. In other words, pk is the
result of policy polxy;σ applied to pkG where xy;σ is a finished LNS sequence
on G. Similar to what we did before, we can conclude from Lemma3 that
pkGxy ∈ �polxy�(pkG). Hence, pk′ ∈ �polσ�(pkGxy

) where pk′ is the same as
pk except that pk′ has one less call field as pk and the call fields of pk′ cor-
respond to σ which is a finished call sequence on Gxy. We then get that
pk′ ∈ �polLNS · polstop�(pkGxy ) such that there is a sequence σ = c0; . . . ; ck
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where for all m ≤ k we have that pk′.callm = cm. By our induction hypothesis
we can now conclude that σ ∈ LNS(Gxy). From Definition 7 we know that to
show that xy;σ ∈ LNS(G) we need to have that (x, y) ∈ lns(G). This holds
because �polxy�(pkG) was nonempty and pkG corresponds to G. ��

This connection between the standard gossip definitions and our definitions
in Netkat might seem obvious to the reader — of course we defined the policies
exactly to get this correspondence. Theorem 3 is still useful because it means that
we can use Netkat to compute all LNS call sequences and to check whether LNS
is successful, with the following translation of Definition 8 to Netkat.

Definition 12 (Graphs and Success in NetKAT). Given a gossip graph G,
we define a policy polG to check whether the current packet encodes G:

polG :=
(∏{Nij = 1 | Nij in G} · ∏{Nij = 0 | not Nij in G} ·∏{Sij = 1 | Sij in G} · ∏{Sij = 0 | not Sij in G}

)

We also define a policy to test whether LNS has been successful, i.e. whether
the S relation encoded in a given packet is total: polsuccess :=

∏
i,j∈A(Sij = 1).

Theorem 4. The LNS protocol is weakly successful on gossip graph G if and
only if the following Netkat equivalence holds:

polG · polLNS · polsuccess 	≡ 0

Similarly, we can reduce the check whether LNS is strongly successful to
Netkat as follows. See the appendix for proofs of Theorems 4 and 5.

Theorem 5. The LNS protocol is strongly successful on gossip graph G if and
only if the following Netkat equivalence holds:

polG · polLNS · polstop ≡ polG · polLNS · polsuccess

We can also translate the notion of a sun graph from Definition 9 to Netkat.
For this we need to express that an agent has an N -path to every other agent.

Definition 13 (N-paths in NetKAT). For any set of agents A, we define the
following two policies:

polnum :=

⎛

⎝
∑

x∈A

∑

y∈A\{x}

(
sw = x · pt = homex · Nxy = 1 · pt ← linkxy

· sw ← y · pt ← linkyx · pt ← homey

)
⎞

⎠

∗

polNi :=
∏

j∈A\{i}
(sw = i · pt = homei · polnum · sw = j · sw ← i · pt ← homei)

Lemma 4. Consider a gossip graph G = (A,N, S). An agent i ∈ A has an
N -path in to every other agent if and only if we have polG · polNi 	≡ 0.
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The policy polnum distributes a packet following the N -relation between any
two agents. We prepend and append it with location tests to check whether we
can go from agent i to another agent j. As we want an N -path to every other
agent in the network, we take a product over all agents. If this does not return
the empty set, we know that agent i has an N -path to every agent in the network.

Theorem 6 (Sun Graphs in NetKAT). A gossip graph G is a sun graph if
and only if the following Netkat equivalence holds:

polG ·
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi)) 	≡ 0

where polselfi is a policy checking whether agent i only has its own number.

The proof is straightforward and can be found in the appendix.

Corollary 1. For every gossip graph G, “LNS is strongly successful on G if and
only if G is a sun” can be expressed and proven using Netkat equivalences.

Admittedly, this corollary is the easy direction: By Theorems 2 and 6 and
the completeness of Netkat, we know that for each G there exists a proof of
Theorem 2 in Netkat — see appendix. We leave the more interesting and chal-
lenging task as future work: to actually find these algebraic proofs. Moreover, it
would be interesting to find a proof on the meta-level by working with schemata
of Netkat expressions instead of a specific G. This could yield a completely new
proof of Theorem 2 or one can try to translate the proof from [7] to Netkat.

6 Implementation

The embedding of dynamic gossip into Netkat allows us to reduce decision
problems about gossip graphs to Netkat equivalence checking. We implemented
the methods described in this paper in Haskell. The code is available at https://
github.com/janawagemaker/GossipKATS and can be used in three ways.

1. Gossip-only: We provide a direct and explicit implementation of dynamic gos-
sip, using custom data types in Haskell. A similar implementation is described
in [20]. These methods do not use Netkat at all and we only use them as a
reference to check other methods for correctness.

2. Explicit-NetKAT: Also in Haskell, we implemented the packet-processing
model for Netkat, Definitions 10 and 11. We thus take a gossip graph G and
generate the corresponding packet pkG. We then apply the LNS policy on
this packet. The result is a set of packets from which we can obtain LNS(G)
by reading the callk fields.

3. Equivalence-NetKAT: If we are not interested in the call sequences, but only
in whether LNS is successful on a given graph, then we can use Theorems 4
and 5. Given a gossip graph, we generate the Netkat equivalence that holds
iff LNS is weakly or strongly successful on it. We then pass this statement

https://github.com/janawagemaker/GossipKATS
https://github.com/janawagemaker/GossipKATS
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to the implementation of [10], a coalgebraic decision procedure for Netkat
equivalence. The implementation we use is part of the general network pro-
gramming framework frenetic available at https://github.com/frenetic-lang/
frenetic.1

All three methods are fully automated, i.e. the user only needs to input an
initial gossip graph. We also provide automated tests that randomly generate
gossip graphs to verify that the methods agree.

Unfortunately, the third method is currently too slow for interesting examples
and the implementation is mainly a proof of work. We hope to improve it in the
near future. In particular, we plan to switch to a symbolic decision method as
discussed in [18] and currently being developed by the authors of [19].

7 Related Work

The idea of Netkat with additional state is not new: another version of it is
discussed in [17]. However, the system developed there is no longer a kat and
hence cannot base a soundness and completeness proof on the corresponding
proofs for kat. Such a proof is also not given via a different route. Our system
is much less expressive but still sound and complete. Also related to our work
is the temporal version of Netkat presented in [6]. The authors add temporal
operators to inspect histories of packets. It also seems possible to embed the
gossip problem into temporal Netkat, but we expect this to be less intuitive.

Static and dynamic gossip has mainly been studied in the logic community,
with a focus on how the primitive and higher-order knowledge of gossiping agents
develops [3,12]. Some of these works also use formal languages and define logics
for gossip. For example, in [4] action models of Dynamic Epistemic Logic are used
to describe the effects of different gossip calls. This also yields an axiomatization
via standard reduction axioms. However, the action models and axioms are of
size exponential in the number of agents. This makes an axiomatization of gossip
via action models impractical. Another language for the static gossip problem
based on Propositional Dynamic Logic is studied in [9]. It is used to distinguish
different variants of the gossip problem, but no axiomatization is given.

8 Conclusion

We have seen that switch states can be simulated in Netkat without losing
soundness and completeness. This reinterpretation of Netkat provides a natu-
ral framework to describe dynamic gossip. We translated the LNS protocol to
a Netkat policy, and the definitions of strong/weak success and sun graphs.
With these translations we can answer questions about gossip graphs by decid-
ing Netkat equivalences. By completeness we know that any question about
1 To be precise, we use the verification and felix branch currently at com-

mit be47c929ed84904f9bdb81bf9765a0432db63069. We would like to thank Steffen
Smolka and Nate Foster for their help to get the decision method running.

https://github.com/frenetic-lang/frenetic
https://github.com/frenetic-lang/frenetic
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gossip that is expressible in Netkat can be decided this way. As mentioned
above, we hope to find algebraic proofs and to improve the performance of our
implementation in the future.

We also plan to model social influence and diffusion phenomena in Netkat.
They are often similar to dynamic gossip and have been modelled in dynamic
epistemic logics, see for example [5]. A crucial difference however, is that social
influence settings are, in contrast to dynamic gossip, not monotone: agents do
not forget secrets or phone numbers, but they can change their behaviour and
influence back and forth. Describing the fixpoints in these settings can thus be
a challenge. We think that Netkat is a suitable language to formalise such non-
monotone phenomena, given that its fixpoints are allowed to exist of sets of
packets describing multiple outcomes.

Acknowledgements. We received helpful feedback from Jan van Eijck, Tobias Kappé,
Jurriaan Rot, Jan Rutten and the anonymous RAMiCS reviewers. The first author was
affiliated with the ILLC at the University of Amsterdam during most of this work. The
research of the second author is funded by the Dutch NWO project 612.001.210.

Appendix

Proof of Lemma3

By induction on the call sequence σ. The base case follows instantly as polε = 1
outputs the same packet and thus the same gossip graph.

For the induction step we use that calling agents exchange everything they
know and that this is encoded in the modifications done by polab. As an example,
consider the ⊆ direction for N . By the induction hypothesis for σ we have

Nσ ⊆ {(a, b) | ∀pk ∈ �polσ�(pkG) : pk.Nab = 1}
and want to show for σ;xy that

Nσ;xy ⊆ {(a, b) | ∀pk ∈ �polσ;xy�(pkG) : pk.Nab = 1}
Suppose (a, b) ∈ Nσ;xy. Either (a, b) ∈ Nσ, in which case we are done by the
induction hypothesis because pk.Nab = 1 is preserved by polxy, or (a, b) /∈ Nσ.
For the latter case, w.l.o.g. we can assume that a = x. Thus we know that (y, b) ∈
Nσ. From our induction hypothesis we can conclude that ∀pk ∈ �polσ�(pkG) :
pk.Nyb = 1. Then in polxy the field Nxb gets set to 1. Hence we know that
∀pk ∈ �polσ;xy�(pkG) : pk.Nxb = 1. ��

Proof of Theorem4

Using soundness and completeness of Netkat the given syntactic equivalence
holds iff we semantically have �polG · polLNS · polsuccess� 	= ∅.

Suppose LNS is weakly successful on G. Let us consider input packet pkG

from Definition 10. We have �polG�(pkG) = {pkG} by definition. There is at least
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one call sequence σ ∈ LNS(G) that is successful. By Theorem 3 we know that
σ corresponds to an execution of polLNS on input pkG and there is a packet pk
such that pk ∈ �polLNS · polstop�(pkG) and its fields callm encode σ. Because
σ is successful we also have �polsuccess�(pk) = {pk}. Hence we can conclude
pk ∈ �polG · polLNS · polsuccess�(pkG) and thus that �polG · polLNS · polsuccess� 	= ∅.

The other direction is similar, so we omit the proof here. ��

Proof of Theorem5

By soundness and completeness of Netkat the equivalence holds iff we have
�polG · polLNS · polstop� = �polG · polLNS · polsuccess�.

Suppose LNS is strongly successful on G. We immediately have ⊇ because
any packet passing the success check also passes the test that LNS has finished.

To show ⊆, take any pk and pk′ such that pk′ ∈ �polG · polLNS · polstop�(pk).
We then know that pk = pkG because pk passed the test polG. Hence
pk′ ∈ �polG · polLNS · polstop�(pkG). As �polG�(pkG) = {pkG}, we get that
pk′ ∈ �polLNS · polstop�(pkG). From Theorem 3 we know that every output pk′

of �polLNS · polstop�(pkG) corresponds to a call sequence σ ∈ LNS(G). From
the assumption that LNS is strongly successful on G we get that all of these σ
are successful call sequences. We thus know that �polsuccess�(pk′) = {pk′} and
thereby pk′ ∈ �polG · polLNS · polsuccess�(pk).

The other direction is similar. ��

Proof of Theorem6

By soundness and completeness of Netkat, the statement is equivalent to:
�

polG ·
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi))

�

	= ∅

⇒ Take the packet pkG. We know that �polG�(pkG) = {pkG}. As G is a sun graph,
we know that for each agent i either �polNi�(pkG) = {pkG} or �polselfi�(pkG) =
{pkG}. Hence we have

�
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi))

�

(pkG) = {pk}

for some packet pk. Thus we can conclude:

pk ∈
�

polG ·
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi))

�

(pkG)

⇐ is similar. ��
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Proof of Corollary 1

Fix some G. By Theorem 5 LNS is strongly successful on G if and only if

polG · polLNS · polstop ≡ polG · polLNS · polsuccess

and from Theorem 6 that G is a sun graph if and only if

polG ·
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi)) 	≡ 0

Now suppose we have polG · polLNS · polstop ≡ polG · polLNS · polsuccess.
From Theorem 5 we then know that LNS is strongly successful on G. By
Theorem 2 it follows that G is a sun graph. From Theorem6 we know this is
equivalent to

polG ·
∏

i∈A

(sw ← i · pt ← homei · (polNi + polselfi)) 	≡ 0

The other direction is similar. ��
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14. Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent kleene algebra: free model
and completeness. In: Ahmed, A. (ed.) Programming Languages and Systems
(ESOP 2018), pp. 856–882 (2018). ISBN: 978-3-319-89884-1. https://doi.org/10.
1007/978-3-319-89884-1 30

15. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997). https://doi.org/10.1145/256167.256195

16. Kozen, D., Smith, F.: Kleene algebra with tests: completeness and decidability. In:
Computer Science Logic, pp. 244–259 (1997). Edited by Dirk van Dalen and Marc
Bezem. ISBN: 978-3-540-69201-0. https://doi.org/10.1007/3-540-63172-0 43

17. McClurg, J., Hojjat, H., Foster, N., Černý, P.: Event-driven network programming.
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