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SHEARER’S POINT PROCESS, THE HARD-SPHERE
MODEL, AND A CONTINUUM LOVÁSZ LOCAL LEMMA

CHRISTOPH HOFER-TEMMEL,∗ VU Amsterdam University

Abstract

A point process is R-dependent if it behaves independently beyond the minimum
distance R. In this paper we investigate uniform positive lower bounds on the avoidance
functions of R-dependent simple point processes with a common intensity. Intensities
with such bounds are characterised by the existence of Shearer’s point process, the unique
R-dependent and R-hard-core point process with a given intensity. We also present
several extensions of the Lovász local lemma, a sufficient condition on the intensity
andR to guarantee the existence of Shearer’s point process and exponential lower bounds.
Shearer’s point process shares a combinatorial structure with the hard-sphere model with
radius R, the unique R-hard-core Markov point process. Bounds from the Lovász local
lemma convert into lower bounds on the radius of convergence of a high-temperature
cluster expansion of the hard-sphere model. This recovers a classic result of Ruelle
(1969) on the uniqueness of the Gibbs measure of the hard-sphere model via an inductive
approach of Dobrushin (1996).
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1. Introduction

A point process (PP) ξ on a complete separable metric space is R-dependent, if events of ξ
based on Borel sets having mutual distance greater than or equal to R are independent. In this
paper we deal only with simple PPs. Natural examples of R-dependent PPs are as follows.
A Poisson PP, which is even 0-dependent. Range R/2 dependent thinnings of Poisson PPs
[26], [35]. Poisson cluster PPs [4], [10] with an offspring distribution supported on a sphere
of radius R/2 around a cluster centre point. Local constructions based on a Poisson PP, such
as taking the centres of circumscribed circles of radius less than R/2 of triangles formed by
triples of points from the Poisson PP. Determinantal and permanental PPs [7], [15], [34] with
a kernel of bounded range R are also R-dependent.

If the space is discrete then a simple PP is a Bernoulli random field (BRF), an at most
countable collection of {0, 1}-valued random variables indexed by the space. The study of
R-dependent BRFs has a long history in the theory of discrete stochastic processes [1], [2],
[8], [9], [12], [13], [22], [25]. Further uses of R-dependent BRFs are within the scope of the
probabilistic method in combinatorics building on the Lovász local lemma (LLL) [3], [16] and
in graph colouring [21], [23].
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2 C. HOFER-TEMMEL

Let (X, δ) be the complete separable metric space. Without loss of generality, rescaling the
metric reduces the discussion to 1-dependence. Let Bb and B be the set of bounded and all
Borel sets on X, respectively. Let Mb be the space of boundedly finite Borel measures. The
intensity measure of a PP is the expected number of points in a given Borel setB. ForM ∈ Mb,
let C(M) be the class of simple and 1-dependent PP laws with intensity measure M . Where
there is no danger of confusion, identify a PP and its law. For ξ ∈ C(M) and B ∈ Bb, the
avoidance probability is the probability of ξ having no points in B. The avoidance function
of ξ maps Bb to the avoidance probabilities of ξ .

In this paper we study uniform lower bounds on the avoidance function of PPs in C(M).
First, Section 2.1 extends a dichotomy by Shearer [33] from BRFs to PPs. For large intensity
measureM , there exists a PP in C(M) with an avoidance function vanishing on some bounded
Borel set of positiveM-measure (zero phase). For small intensity measureM , there is a uniform
positive lower bound on the avoidance function of PPs in C(M) (positive phase).

Second, for M in the positive phase, Section 2.3 generalises a construction by Shearer [33]
of the unique PP in C(M) with minimal avoidance function. A set of points is r-hard-core, if
its points have mutual distance at least r . A PP ξ is r-hard-core, if its realisations are almost-
surely so. An r-hard-core and R-dependent PP must have r ≤ R. Together R-dependence and
R-hard-core imply uniqueness of the PP law and existence only for small intensity measures.
If a PP with these properties exists, we call it Shearer’s PP. Shearer’s PP has the minimal
avoidance function in C(M), because it avoids clusters of points and spreads its points all over
space. The existence of Shearer’s PP describes the positive phase.

In Section 2.4 we recall the hard-sphere model, the unique Markov PP with range R
interaction and an R-hard-core. The partition function of the hard-sphere model and the
avoidance function of Shearer’s PP have the same algebraic structure. Shearer’s PP exists
for a given intensity measure M , if and only if the cluster expansion of the hard-sphere model
converges uniformly and absolutely at negative fugacity −M , generalising the identification in
the BRF case [?].

Finally, in Section 2.5 we generalise the LLL [16] to the case of PPs. Here, a LLL denotes
a sufficient condition on X and M for a uniform exponential lower bound on the avoidance
functions in C(M) and to be in the positive phase. The core idea is to derive global properties,
i.e. being in the positive phase, from local properties. On Rd , this yields an explicit and uniform
upper bound on the empty space functions F [11, Section 15.1] and J functions [?] of isotropic
and 1-dependent PPs. For the hard-sphere model, a LLL becomes a sufficient condition for the
convergence of the cluster expansion and yields a lower bound on the radius of convergence.
This improves a classic lower bound via cluster expansion techniques by Ruelle [31] by a short
inductive argument of Dobrushin [14] of less than two pages.

In Section 2.6 we explain the relevance of exponential lower bounds on the avoidance
function for uniform stochastic domination by a Poisson PP. In Section 3 we discuss variations
of 1-dependence and a key inequality of the avoidance functions of 1-dependent PPs. The
remaining sections contain proofs.

2. Results

2.1. Uniform bounds on the avoidance functions

The first question is the existence of 1-dependent PPs with a given intensity measure. Let
M∅ := {M ∈ Mb | C(M) = ∅}. In Proposition 3.4 we show that atoms of mass greater
than 1 in the intensity measure are the only obstacle. Thus, C(M) �= ∅, if and only if
M ∈ Mb \ M∅ = {M ∈ Mb | for all x ∈ X : M({x}) ≤ 1}.
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Shearer’s PP, hard spheres, and a continuum LLL 3

Figure 1: The cone of boundedly finite Borel measures Mb, with diffuse measures on the left axis, atomic
measures on the right axis, and the zero measure in the apex. The positive and zero phases (M+ and M0)
and M∅ partition the cone. The sets M+, Msh, and M> are down-sets, whereas M∅ and M0 � M∅ are
up-sets. The dashed line represents the atypical closure properties of M> and contains Msh \ M>. The

LLLs carve out parts of the positive phase and guarantee exponential lower bounds.

In this paper we are concerned with lower bounds on the avoidance functions of 1-dependent
PPs. The first result extends a dichotomy by Shearer [33] from BRFs to PPs.

Theorem 2.1. If M ∈ Mb \ M∅ then it falls into one of two phases. In the zero phase, there
is a ξ ∈ C(M) with zero avoidance probability on some B ∈ Bb of positive measure. That
is, M(B) > 0 and P(ξ(B) = 0) = 0. In the positive phase, there is a unique μ ∈ C(M)
minimizing the (conditional) avoidance probabilities uniformly in space and the class. That is,
for every ξ ∈ C(M) and all A,B ∈ Bb, we have

P(ξ(B) = 0 | ξ(A) = 0) ≥ P(μ(B) = 0 | μ(A) = 0) > 0.

Theorem 2.1 follows from Corollary 2.1 and Theorem 2.4. In Section 2.3 we describe the
distinguished PP μ in the positive phase. Let M0 and M+ be the subsets of Mb \ M∅ being
in the zero phase and positive phase, respectively. See also Figure 1.

2.2. The generating function

A configuration is a countable collection of points in X. A configuration C is 1-hard-core,
if its points have mutual distance at least 1, i.e. for all {x, y} ⊆ C : δ(x, y) ≥ 1. In the classic
case of the metric space (V , 2d) derived from a graphG := (V ,E)with geodesic metric d, the
1-hard-core configurations are the graph-theoretic independent sets of G. For n ∈ N0, let hn
be the indicator function of 1-hard-core tuples in Xn.

Definition 2.1. The generating function Z of weighted 1-hard-core configurations is Bb ×
Mb → R and

(B,M) 
→
∞∑
n=0

(−1)n

n!
∫
Bn
hn(x1, . . . , xn)

n∏
i=1

M(dxi).

In Proposition 4.1 we show that Z is well-defined. If M is diffuse then Z(B,M) is the
expectation of a functional of a Poisson PP of intensity M . Such a representation fails for
intensity measures containing atoms. The alternating sign inZ(B,M) is a convenience to avoid
using a negative measure as an argument to Z throughout most of this paper. For unambiguous
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4 C. HOFER-TEMMEL

choices of M , Z(B) abbreviates to Z(B,M). While Z(∅) = 1 always holds, a central topic
is which M admit Z(B,M) ≥ 0 uniformly in B. For all A,B ∈ Bb with Z(B) > 0, a key
quantity is z(A,B) := Z(A ∪ B)/Z(B). In Section 4 we discuss the properties of Z and z in
detail.

2.3. Shearer’s PP

In this section we are concerned with 1-dependent PPs with a 1-hard-core. For a given
intensity measure, there is at most one such PP. If it exists, we call it Shearer’s PP, as it
generalises the BRF construction of Shearer [33].

Theorem 2.2. If a 1-hard-core ηM ∈ C(M) exists then its law is unique. Its avoidance function
is Z, i.e. for each B ∈ Bb, P(ηM(B) = 0) = Z(B). Such a PP exists for all intensity measures
in Msh := {M ∈ Mb | for all B ∈ Bb : Z(B,M) ≥ 0}.

The proofs of this section’s statements are in Section 5. If Shearer’s PP exists then it
minimises the (conditional) avoidance probabilities within the class of 1-dependent PPs with
the same intensity measure.

Theorem 2.3. If M ∈ Msh then, for all ξ ∈ C(M) and A,B ∈ Bb with Z(B) > 0,

P(ξ(A) = 0 | ξ(B) = 0) ≥ z(A,B) ≥ 0.

If Shearer’s PP has a positive avoidance function then it is the unique PP μ from the positive
phase in Theorem 2.1. Let M> := {M ∈ Mb | for all B ∈ Bb : Z(B,M) > 0}.
Corollary 2.1. IfM ∈ M> thenM ∈ M+ and Shearer’s PP ηM has the minimal (conditional)
avoidance function in C(M). In short, M> ⊆ M+.

Corollary 2.1 is a direct consequence of Theorem 2.3. On the other hand, if Shearer’s PP
does not have a positive avoidance function on Bb or does not exist, then there is a PP with
zero avoidance probability on some bounded Borel set. This puts the intensity measure M in
the zero phase.

Theorem 2.4. If M �∈ M> and M �∈ M∅ then M ∈ M0.

Theorem 2.4 and Corollary 2.1 together imply that M> = M+.
Independent thinning of Shearer’s PP decreases the intensity measure and preserves the

two characterising properties of 1-dependence and 1-hard-core. A larger intensity measure
decreases the avoidance function or inhibits the existence of 1-dependent PPs.

Theorem 2.5. The sets Msh and M> = M+ are down-sets, i.e. closed under decreasing the
measure. The set M∅ is an up-set, i.e. closed under increasing the measure. The set M0 is an
up-set, as long as atoms do not increase beyond mass 1.

In general, Shearer’s PP differs from all other R-independent models in the introduction.
Probabilistic constructions of Shearer’s PP are known only in special cases. Details are given
in Section 5.4.

2.4. The hard-sphere model

Another simple 1-hard-core PP related to the function Z is the hard-sphere model. It is
a Markov PP with the most repulsive range-1 interaction [31, Section 1.2.2]. A common
visualisation of the hard-sphere model is as a collection of nonoverlapping open spheres with
radius 1

2 representing the hard cores of atoms.
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Shearer’s PP, hard spheres, and a continuum LLL 5

The hard-sphere model hB,M in a finite volume B ∈ Bb with fugacity M ∈ Mb and empty
boundary conditions has Janossy intensity

P(hB,M = d(x1, . . . , xn)) = hn(x1, . . . , xn)

Z(B,−M)
n∏
i=1

M(dxi).

The normalising factor Z(B,−M) is the partition function of the hard-sphere model. The
argument −M cancels the alternating sign in the definition of Z. For diffuseM , hB,M is equal
to a Poisson(M) PP on B conditioned to be 1-hard-core.

The analysis of the hard-sphere model centres on the partition function and derived quantities,
in particular ratios (reduced correlations) and its logarithm (free energy). Lower bounds on Z
and z and their logarithms at negative fugacity play a key role in the low fugacity case (the high
temperature case) and establish uniqueness of the Gibbs measure [17], [?]. A well-known tool
is the cluster expansion, a series expansion of logZ [?]. It fails first at negative fugacities, that
is along the boundary of M>. Details are given in Section 4.2.

2.5. Sufficient conditions for exponential bounds

This section contains several LLLs in Theorems 2.6 and 2.8 and Corollary 2.2. In Theo-
rem 2.7, we discuss the relationship between M> and Msh. The proofs are given in Section 6.

Let B1 be the set of Borel sets of diameter less than 1. Let � denote the disjoint union. The
unit partition number of a Borel set B ∈ B is

κ(B) := inf

{
k ∈ N

∣∣∣∣ there exist A1, . . . , Ak ∈ B1 : B =
k⊔
i=1

Ai

}
.

Let U(x) be the open unit sphere around x. The most straightforward case are spaces where
the unit-scale structure has a uniform exponential growth bound on spheres of radius r . Spaces
such as Rd , the hyperbolic plane or graphs with uniformly bounded degree fulfil this, but
infinite-dimensional metric spaces such as l2 do not. This is equivalent to the bound

K := sup{κ(U(x)) | x ∈ X} < ∞. (2.1)

The first sufficient condition generalises the symmetric LLL [16] and Dobrushin’s condi-
tion [14], respectively.

Theorem 2.6. Let M ∈ Mb. If (2.1) holds and, for each A ∈ B1,

M(A) ≤ (K + 1)K+1

(K + 2)K+2 , (2.2a)

then M ∈ M> and, for all A,B ∈ Bb,

z(A,B) ≥
(
K + 1

K + 2

)κ(A\B)
> 0. (2.2b)

Under condition (2.1), a slight loss of precision sharpens the positive lower bound in the
positive phase to exponential lower bounds. In Proposition 2.7 we show that Msh is a subset
of the closure of M>. In general, Msh is not the closure of M> [32, Chapter 8]. It is so on a
finite graph, but already fails on a connected infinite graph.
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6 C. HOFER-TEMMEL

Theorem 2.7. Let α > 0. If (1 + α)M ∈ Msh and (2.1) holds, then M ∈ M> and, for all A,
B ∈ Bb, z(A,B) ≥ (α/(1 + α))κ(A\B) > 0.

The second sufficient condition generalises the asymmetric LLL [16]. It resembles a
continuous version of the Kotecký–Preiss condition [24].

Theorem 2.8. Let M,N ∈ Mb with N being absolutely continuous with respect to M . If, for
each A ∈ B1, ∫

A

exp(N(U(x) \ A))M(dx) ≤ 1 − exp(−N(A)) , (2.3a)

then M ∈ M> and, for all A,B ∈ Bb,

z(A,B) ≥ exp(−N(A \ B)) > 0. (2.3b)

A stronger and more practical version of condition (2.3a) is

M(A) exp(N(U(x) \ A)) ≤ 1 − exp(−N(A)) for all A ∈ B1, M-a.e. x ∈ A, (2.4)

where M-a.e. stands for to M-almost everywhere. Specialising (2.4) to the space Rd with the
Lebesgue measure yields an explicit bound.

Corollary 2.2. Consider X = Rd with the Lebesgue measure L. Let V be the volume of the
d-dimensional unit sphere. For λ ≤ 1/(eV ), let α be the unique solution of λ = α exp(−αV )
in [0, 1/(eV )]. This implies that λL ∈ M> and, for all A,B ∈ Bb, z(A,B) ≥ exp(−αL(A \
B)) > 0.

In the context of the hard-sphere model, Corollary 2.2 yields a uniform upper bound on finite-
volume free energies. That is, sup{−(logZ(B,−λL))/L(B) | B ∈ Bb} ≤ α. Together with
taking the limit of −(logZ(B,−λL))/L(B) in the van Hove sense [31, Definition 2.1.1], this
implies the existence and complete analyticity of the infinite-volume free energy for fugacities
less than 1/(eV ). Thus, from Corollary 2.2 we have an alternative proof, avoiding cluster
expansion, of a classic result for uniqueness of the Gibbs measure of the hard-sphere model on
Rd for small fugacities [31, Section 4.5, Equation (5.2)].

The LLLs and derived bounds here are not optimal. For example, the optimal bound on R in
the context of Corollary 2.2 is 1/e instead of 1/(2e) [19]. There are two reasons not to pursue
further improvements of the LLLs here. First, improvements in the main cases of interest are
already present in the literature on the hard-core and hard-sphere models [17], [18]. Second,
in the context of Corollary 2.2, the best bounds differ by at most a factor of e [31, Section 4.5,
Equation (5.17)].

2.6. Stochastic domination and order

A PP law ϕ stochastically dominates a PP law ξ , if there is a coupling of them such that ϕ
contains almost surely all of ξ ’s points. Stochastic domination implies that ϕ’s avoidance
function is smaller than ξ ’s avoidance function. In the context of 1-dependent BRFs on locally
finite graphs, the existence of Shearer’s PP is equivalent to uniform stochastic domination by a
Bernoulli product field [25], [?]. Uniform exponential lower bounds from the LLLs are a first
step towards extending the stochastic domination result to 1-dependent PPs.

Stochastic domination of Shearer’s PP by a Poisson PP would permit a probabilistic construc-
tion and simulation by thinning the dominating Poisson PP. The intrinsic coupling of Shearer’s
PP by independent thinning implies that stochastic domination for the largest intensities in Msh

suffices [30].
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Shearer’s PP, hard spheres, and a continuum LLL 7

Using the terminology from [5], ηM is weakly sub-Poisson. This means that its moments
and avoidance function are both smaller than those of a Poisson(M) PP. The first follows from
Proposition 5.1 and (4.1). The second follows by applying [5, Proposition 3.1] to the implication
of Proposition 4.4, that, for disjoint A,B ∈ Bb,

P(ηM(A � B) = 0) = Z(A � B,M) ≤ P(ηM(A) = 0)P(ηM(B) = 0).

Being weakly sub-Poisson yields concentration inequalities [6, Section 3.3].

3. About 1-dependent PPs

In this section we discuss different notions of 1-dependence in (3.1). In Proposition 3.1 we
characterise the avoidance functions of 1-dependent PPs. In Proposition 3.3 we present a key
inequality of avoidance functions of 1-dependent PPs. In Proposition 3.4 we investigate the
existence of simple 1-dependent PPs.

ForA ∈ B and a PP ξ , letAξ be the restriction of ξ toA. Recall that the metric is δ. A PP ξ
is strong 1-dependent, if, for all A,B ∈ B ,

δ(A,B) := inf{δ(x, y) | x ∈ A, y ∈ B} ≥ 1 ⇒ Aξ is independent of Bξ. (3.1a)

All the examples in the introduction, the PP in the zero phase of Theorem 2.1, the PP coun-
terexample in the proof of Theorem 2.4, Shearer’s PP, and the PP in Proposition 3.4 are strong
1-dependent.

Proposition 3.1. A PP is strong 1-dependent, if and only if its avoidance function Q is
1-multiplicative. That is, for allA,B ∈ B , δ(A,B) ≥ 1 implies thatQ(A∪B) = Q(A)Q(B).

Proof. The necessity is evident, and the sufficiency follows from the fact that the avoidance
function determines the law of a simple PP [11, Section 9.2.XIII]. �

A PP ξ is weak 1-dependent, if, for M-a.e. x, and every B ∈ B ,

δ(x, B) := δ({x}, B) ≥ 1 ⇒ Px(ξ(B) = 0) = P(ξ(B) = 0). (3.1b)

In other words, weak 1-dependence reduces Palm probabilities for events at distance more than
one away from the base point to normal probabilities.

Proposition 3.2. A strong 1-dependent PP is weak 1-dependent.

Examples of weak, but not strong, 1-dependent PPs are mixtures of random shifts of strong
1-dependent BRFs in [25, Section 5].

Proof of Proposition 3.2. Let ξ ∈ C(M). The Campbell measureC [11, Equation (13.1.1a)]
on (B,E) ∈ B × σ(ξ) is C(B × E) := ∑∞

n=1nP(ξ(B) = n, ξ ∈ E). If A,B ∈ Bb with
δ(A,B) ≥ 1 and E ∈ σ(Aξ) with embedding E′ into σ(ξ), then strong 1-dependence (3.1a)
allows us to factorise C(B × E′) = ∑∞

n=1nP(ξ(B) = n, Aξ ∈ E) = E(ξ(B))P(Aξ ∈ E).
Hence,M-a.e., the Palm density on σ(Aξ) simplifies to Px(ξ ∈ E) = dC(· × E)/dE(ξ({·})) =
P(ξ ∈ E). As the σ -algebras of the form σ(Aξ), for A ∈ Bb with A ∩ U(x) = ∅, generate
σ((X \ U(x))ξ), weak 1-dependence follows. �

The inequality in Proposition 3.3 lies at the core of the dichotomy in Theorem 2.1 and
the minimality of the avoidance function of Shearer’s PP in Theorem 2.3. In Proposition 4.2
we show that the 1-hard-core of Shearer’s PP makes it the only 1-dependent PP to fulfil the
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8 C. HOFER-TEMMEL

inequality uniformly as an equality. The inequality motivates the relaxation from strong to
weak 1-dependence. Thus, C(M)may be extended to be the class of weak 1-dependent simple
PPs with intensity measure M .

Proposition 3.3. For all ξ ∈ C(M), A ∈ B1, and B ∈ Bb with P(ξ(B) = 0) > 0,

P(ξ(A ∪ B) = 0)

P(ξ(B) = 0)
≥ 1 −

∫
A\B

P(ξ(B \ U(x)) = 0)

P(ξ(B) = 0)
M(dx).

Proof. With the Campbell measure C and the event E := {ω | ξ(B) = 0},

P(ξ(A \ B) ≥ 1, ξ(B) = 0) ≤
∞∑
n=1

nP(ξ(A \ B) = n, ξ ∈ E)

= C((A \ B)× E)

=
∫
A\B

Px(ξ(B) = 0)M(dx)

≤
∫
A\B

Px(ξ(B \ U(x)) = 0)M(dx)

(3.1b)=
∫
A\B

P(ξ(B \ U(x)) = 0)M(dx)

and
P(ξ(A ∪ B) = 0) = P(ξ(B) = 0)− P(ξ(A \ B) ≥ 1, ξ(B) = 0)

≥ P(ξ(B) = 0)−
∫
A\B

P(ξ(B \ U(x)) = 0)M(dx). �

Proposition 3.4. Let M ∈ Mb. If M has no atom of mass greater than 1 then there exists a
strong 0-dependent PP with intensity measure M . If M has an atom of mass greater than 1
then no simple PP with intensity measure M exists.

Proof. For each ξ ∈ C(M) and atom x of M , 1 ≥ E(ξ({x})) = M({x}) =: mx . Hence, an
atom of mass greater than 1 contradicts the simpleness of the PP.

For the converse, letM ∈ Mb without atoms greater than 1. Let A and D be the atomic and
diffuse support domains ofM , respectively. Let A= and A< be the locations of atoms of mass
equal to or less than 1, respectively. Construct a measure N with the same atomic and diffuse
domains as follows. On D , let N ∩ D := M ∩ D . On A, let nx := N({x}) := −log(1 −mx),
if x ∈ A<, and 0 otherwise. ForB ∈ Bb, letmB := max{mx | x ∈ B ∩ A<}. AsM(B) < ∞,
so is mB < 1. Also, N(B \ A) = M(B \ A) < ∞. The inequality

−log(1 − y) =
∞∑
n=1

yn

n
≤

∞∑
n=1

yn = y

1 − y
for all y ∈ [0, 1[, (3.2)

entails the bounded finiteness of N on A via

N(B ∩ A) = −
∑

x∈B∩A<

log(1 −mx)
(3.2)≤

∑
x∈B∩A<

mx

1 −mx
≤ M(B ∩ A<)

1 −mB
< ∞.

The aim is to construct a strong 0-dependent PP with intensity M . Let ϕ be the Poisson PP
with intensityN . It may not be simple because of atoms inN . Let ϕ• be its simple support PP,
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Shearer’s PP, hard spheres, and a continuum LLL 9

collapsing multiple points of ϕ. Let ξ := ϕ• + ∑
x∈A=δx . The 0-dependence of ξ holds by

construction and it remains to verify that ξ has intensity M . On the diffuse part of M , ϕ is
simple, whence the intensity of ξ is M . On A=, ϕ is almost surely 0, but the atoms of mass 1
are present deterministically in ξ . For all x ∈ A<,

E(ξ({x})) = P(ξ({x}) = 1) = 1 − P(ϕ({x}) = 0) = 1 − e−nx = mx.

Hence, for each B ∈ Bb, the intensity measure is

E(ξ(B ∩ A<)) =
∑

x∈B∩A<

mx = M(B ∩ A<). �

4. Properties of the generating function

Most properties of Z and z are trivial, if one knows that Z is the avoidance function of
Shearer’s PP. The properties are needed to establish the existence of Shearer’s PP first, though.
The equality in Proposition 4.2 (cf. the inequality in Proposition 3.3) and monotonicity in
Proposition 4.4 are the most important ones.

Let [n] := {1, . . . , n}, with [0] := ∅. For a set S, let Sn be the Cartesian product of n copies
of S, with S0 := ∅. Empty products evaluate to 1 and empty sums to 0. ForB ∈ Bb,M ∈ Mb,
and λ ∈ [0,∞), let λM be the scaling ofM by the factor λ andM|B the restriction ofM to B.

4.1. Basic properties

For B ∈ Bb and M ∈ Mb, a basic bound is∫
Bn
hn(x1, . . . , xn)

n∏
i=1

M(dxi) ≤ M(B)n. (4.1)

Also, for each B ∈ Bκ , n ∈ N0, and x1, . . . , xn ∈ B,

hn(x1, . . . , xn) = 1 ⇐⇒ n ≤ κ(B). (4.2)

Proposition 4.1. It holds that Z is well defined and 1-multiplicative as in Proposition 3.1.

Proof. For k ∈ N0, the bound (4.1) implies that∣∣∣∣
∞∑
n=k

(−1)n

n!
∫
Bn
hn(x1, . . . , xn)

n∏
i=1

M(dxi)

∣∣∣∣ ≤
∞∑
n=k

M(B)n

n! .

For k = 0, this yields |Z(B)| ≤ exp(M(B)). For k → ∞, this shows the convergence of the
series Z(B).

Let A,B ∈ Bb with δ(A,B) ≥ 1. The 1-hard-core condition trivially holds for pairs in
A×B. For n,m ∈ N0, x1, . . . , xn ∈ A and y1, . . . , ym ∈ B, hn+m(x1, . . . , xn, y1, . . . , ym) =
hn(x1, . . . , xn)hm(y1, . . . , ym). Hence, 1-multiplicativity follows from

Z(A ∪ B) =
∞∑
n=0

1

n!
∫
(A∪B)n

(−1)nhn(x1, . . . , xn)

n∏
i=1

M(dxi)

=
∞∑
n=0

1

n!
n∑
j=0

(
n

j

)(∫
Aj
(−1)jhj (x1, . . . , xj )

j∏
i=1

M(dxi)

)

×
(∫

Bn−j
(−1)n−j hn−j (x1, . . . , xn−j )

n−j∏
i=1

M(dxi)

)
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10 C. HOFER-TEMMEL

=
( ∞∑
n=0

1

n!
∫
An
(−1)nhn(x1, . . . , xn)

n∏
i=1

M(dxi)

)

×
( ∞∑
n=0

1

n!
∫
Bn
(−1)nhn(x1, . . . , xn)

n∏
i=1

M(dxi)

)

= Z(A)Z(B). �

Proposition 4.2. For all A ∈ B1 and B ∈ Bb with Z(B) > 0,

z(A,B) = 1 −
∫
A\B

z(B ∩ U(x), B \ U(x))−1M(dx). (4.3)

Proof. By (4.2), at most one point of a 1-hard-core configuration C lies in A. If y ∈ A∩C
then the 1-hard-core implies that C ∩ (B \ U(y)) = ∅. This leads to

Z(B) =
∞∑
n=0

(−1)n

n!
∫
Bn
hn(x1, . . . , xn)

n∏
i=1

M(dxi)

=
∞∑
n=0

(−1)n

n!
(∫

(B\A)n
hn(x1, . . . , xn)

n∏
i=1

M(dxi)

+ n

∫
A×Bn−1

hn(x1, . . . , xn)

n∏
i=1

M(dxi)

)
.

A point in A excludes the possibility of other points in A. Thus,

Z(B) =
∞∑
n=0

(−1)n

n!
∫
(B\A)n

hn(x1, . . . , xn)

n∏
i=1

M(dxi)

−
∫
A

∞∑
n=1

(−1)n−1

(n− 1)!
∫
Bn−1

hn(x1, . . . , xn−1, y)

n−1∏
i=1

M(dxi)M(dy)

= Z(B \ A)−
∫
A

∞∑
n=0

(−1)n

n!
∫
(B\U(y))n

hn(x1, . . . , xn)

n∏
i=1

M(dxi)M(dy)

= Z(B \ A)−
∫
A

Z(B \ U(y))M(dy). �

4.2. Cluster expansion and monotonicity

Cluster expansion is a series expansion of the logarithm of a generating series. It is a classic
technique from statistical mechanics [31, Section 4.4].

Proposition 4.3. Let A,B ∈ Bκ , and M ∈ Mb with M|X\(A∪B) = 0, i.e. it is concentrated
on A ∪ B. The statement that for all N ≤ M : N ∈ M> holds, if and only if

log z(A,B,M) = −
∞∑
n=1

1

n!
∫
(A∪B)n\Bn

P (x1, . . . , xn)

n∏
i=1

M(dxi)

is a convergent series, with P(x1, . . . , xn) ∈ N0 well defined.
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Shearer’s PP, hard spheres, and a continuum LLL 11

Proof. A cluster expansion of the partition function of a hard-sphere gas with radius 1 at
negative fugacity [?] with an application of Penrose’s identity [29] implies that the coefficients
P(x1, . . . , xn) have the desired properties. �

Proposition 4.4. As long as they are positive, the functions Z and z are monotone decreasing
in both space and measure.

Proof. As −log z(A,B,M) is a sum over integrals over nonnegative integrands, it is mono-
tone increasing in both the integration domains and the measure. Since Z(∅) = 1, the same
holds for the cluster expansion of Z. �

Monotonicity implies the following telescoping identity. For allA,B ∈ Bb with Z(B) > 0
and every partition {Ai}ni=1 of A \ B by elements of Bb,

z(A,B) =
n∏
i=1

z

(
Ai, B �

i−1⊔
j=1

Aj

)
. (4.4)

4.3. Continuity properties

In this section we investigate the continuity properties of Z in both space and measure.

Proposition 4.5. For B ∈ Bb and M ∈ Mb, the function fB : [0,∞] → R, λ 
→ Z(B, λM)

is continuous.

Proof. The scaling ofM by λ implies that continuity of fB at 1 suffices. This follows from
the bound, for each ε with |ε| < 1,

|Z(B, (1 + ε)M)− Z(B,M)|

=
∣∣∣∣

∞∑
n=0

(−1)n

n!
∫
Bn
hn(x1, . . . , xn)(1 − (1 − ε)n)

n∏
i=1

M(dxi)

∣∣∣∣
≤

∞∑
n=1

1

n!
n∑
j=1

(
n

j

)
|ε|j

∫
Bn

n∏
i=1

M(dxi)

(4.1)≤
∞∑
n=0

1

n!2n|ε|M(B)n

= |ε| exp(2M(B)). �

Proposition 4.6. For B ∈ Bb, let λB := inf{λ | fB(λ) < 0}. If B ⊇ A ∈ Bb then λB ≤ λA.
If M(B) > 0 then λB = min{λ | fB(λ) = 0} ∈ (0,∞) and λBM|B ∈ Msh.

Proof. First prove the contra-variance of λB . Let � < λB . Proposition 4.3 implies that
fB(λ) ≤ fA(λ) for all λ ≤ �. Hence, λA ≥ λB .

If M(B) > 0 then there is B ⊇ A ∈ B1 with M(A) > 0. Since fA(λ) = 1 − λM(A),
λA = 1/M(A). Contra-variance yields λB ≤ λA = 1/M(A) < ∞. The continuity of fB from
Proposition 4.5 implies, together with fB(0) = Z(∅) = 1, that λB > 0.

The continuity of fB renders the infimum a minimum. Contra-variance implies that, for all
λ ≤ λB and B ⊇ A ∈ Bb, fA(λ) ≥ 0. Proposition 4.3 implies that λBM|B ∈ Msh. �

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.76
Downloaded from https://www.cambridge.org/core. KIT Library, on 25 Jan 2018 at 15:12:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.76
https://www.cambridge.org/core


12 C. HOFER-TEMMEL

Proposition 4.7. Let B ∈ Bb be a continuity set of M , i.e. M(B \ B) = 0, where B is the
closure of B. For each sequence (Bn)n∈N in Bb decreasing to B with M(B1) > 0, the limit
Z(Bn) → Z(B) as n → ∞ holds.

Proof. For A,B ∈ Bb with A ⊆ B and M(B) > 0, bound the difference as

|Z(B)− Z(A)| =
∣∣∣∣

∞∑
n=0

(−1)n

n!
∫
Bn\An

hn(x1, . . . , xn)

n∏
i=1

M(dxi)

∣∣∣∣
(4.1)≤

∞∑
n=1

1

n! (M(B)
n −M(A)n)

=
∞∑
n=1

1

n!
n∑
j=1

(
n

j

)
M(B \ A)jM(A)n−j

≤
∞∑
n=1

1

n!M(B \ A)2n max {1,M(B)}n−1

≤ 2M(B \ A) exp(max {1,M(B)}).
Thus, |Z(Bn)− Z(B)| ≤ 2M(Bn \B) exp(max {1,M(B1)}) → 0 by the continuity ofM at B
as n → ∞. �
4.4. Behaviour under the set difference operator

The set difference operator  at A ∈ B transforms a set function φ : B → R into
(A)φ : B → R, B 
→ φ(B)− φ(B ∪ A).
Lemma 4.1. For all n ∈ N and A1, . . . , An, B ∈ B , and φ : B → R, iterated application of
difference operators commutes and has the canonical form

({A1, . . . , An}) := (A1)(· · · ((An)φ) · · · )(B) =
∑
I⊆[n]

(−1)|I |φ
(
B ∪

⋃
i∈I
Ai

)
. (4.5)

In particular, ({A}) = (A) and (∅) is the identity.

Lemma 4.2. Let {Ai}ni=1 be disjoint Borel sets. For I ⊆ [n], let AI := ⊔
i∈I Ai . For each

φ : B → R, we have
∑
I⊆[n]({Ai}i∈I )φ(A[n]\I ) = φ(∅).

Proposition 4.8. If M ∈ Msh then Z is completely monotone, i.e. for each n ∈ N0 and all
A1, . . . , An, B ∈ Bκ , the iterated difference ({Ai}ni=1)Z(B) is nonnegative.

Proof. Proceed by induction over n. For n = 0, M ∈ Msh implies that (∅)Z(B) =
Z(B) ≥ 0. Forn = 1, the monotonicity ofZ from Proposition 4.4 implies that({A1})Z(B) =
(A1)Z(B) = Z(B) − Z(B ∪ A) ≥ 0. The induction step from n to n + 1 needs more
preparation. For I ⊆ [n], let AI := ⋃

i∈I Ai . For x ∈ An+1, let Bx := B \ U(x) and, for
i ∈ [n+ 1], let Axi := Ai \ U(x). In particular, Axn+1 = An+1 \ U(x) = ∅. As (∅)φ = φ,
the degree of the iterated difference decreases in

({Ai}n+1
i=1 )Z(B)

= (An+1)(({Ai}ni=1)Z(B))

= ({Ai}ni=1)Z(B)−({Ai}ni=1)Z(B ∪ An+1)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/apr.2016.76
Downloaded from https://www.cambridge.org/core. KIT Library, on 25 Jan 2018 at 15:12:25, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/apr.2016.76
https://www.cambridge.org/core


Shearer’s PP, hard spheres, and a continuum LLL 13

(4.5)=
∑
I⊆[n]

(−1)|I |Z(B ∪ AI )−
∑
I⊆[n]

(−1)|I |Z(B ∪ AI ∪ An+1)

(4.3)=
∑
I⊆[n]

(−1)|I |
(
Z(B ∪ AI )− Z(B ∪ AI ∪ An+1)︸ ︷︷ ︸

)

=
∑
I⊆[n]

(−1)|I |
(
Z(B ∪ AI )−

︷ ︸︸ ︷
Z(B ∪ AI )+

∫
An+1

Z((B ∪ AI ) \ U(x))M(dx)
)

=
∑
I⊆[n]

(−1)|I |
∫
An+1

Z(Bx ∪ AxI )M(dx)

=
∫
An+1

({Axi }ni=1)Z(B
x)︸ ︷︷ ︸

≥0 by the induction hypothesis

M(dx) ≥ 0. �

Proposition 4.9. Let A1, . . . , An, B ∈ Bκ be disjoint. If κ(B � ⊔n
i=1Ai) < n then

({Ai}ni=1)Z(B) = 0.

Proof. For I ⊆ [n], let AI := ⊔
i∈IAi . Let A := A[n]. Then

({Ai}ni=1)Z(B) =
∑
I⊆[n]

(−1)|I |Z(B � AI )

=
∑
I⊆[n]

(−1)|I |
∞∑
m=0

(−1)m

m!
∫
(B�AI )m

hm(x1, . . . , xm)

m∏
i=1

M(dxi).

For m ∈ N0 and x1, . . . , xm ∈ A � B, regard the indices I (x1, . . . , xm) := {i ∈ [n] | {x1, . . . ,

xm} ∩ Ai �= ∅} of the partition elements containing the points
∞∑
m=0

(−1)m

m!
∫
(B�AI )m

hm(x1, . . . , xm)
∑

I (x1,...,xm)⊆I⊆[n]
(−1)|I |

m∏
i=1

M(dxi)

=
∞∑
m=0

(−1)m

m!
∫
(B�AI )m

hm(x1, . . . , xm)
∑

I (x1,...,xm)=[n]
(−1)n

m∏
i=1

M(dxi).

Using (4.2) yields n ≤ m ≤ κ(A � B) < n and a zero integrand. �
Proposition 4.10. Let {Ai}ni=1 be disjoint elements of B1. For I ∈ [n], let AI := ⊔

i∈I Ai .
For all r ≥ κ(A[n]),

∑
I⊆[n],|I |≤r ({Ai}i∈I )Z(A[n]\I ) = 1 holds.

Proof. We use Proposition 4.9 and evaluate the sum with Lemma 4.2. �

5. Proofs around Shearer’s PP

Section 5.1 contains the uniqueness and characterisation in Proposition 5.1 and the existence
in Proposition 5.2. Together they imply Theorem 2.2. In Section 5.2 we prove the minimality
of Shearer’s PP for the avoidance function in Theorem 2.3. In Section 5.3 we discuss intrinsic
couplings between Shearer’s PP at different intensities and the monotonicity properties of the
sets of measures. In Section 5.4 we show that Shearer’s PP law differs from well known
hard-core or 1-dependent PP laws and reference probabilistic constructions. The notation of
Section 4 applies.
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14 C. HOFER-TEMMEL

Besides the σ -algebra of all Borel sets B , there are also the algebras of bounded, κ-finite,
and less than unit-diameter Borel sets Bb, Bκ , and B1, respectively. Note that Bκ is an
algebra of B1. Both algebras Bb and Bκ generate the σ -algebra B . The distinction between
Bκ and Bb plays a key role, as key proofs employ induction over κ . The strategy is to first
establish results on Bκ , extend them by σ -finiteness to B and project them onto Bb. Sufficient
conditions for Bκ and Bb to coincide are that (X, δ) is either σ -compact or total (bounded sets
are pre-compact). The structure of the space below the distance 1 plays no role.

5.1. Characterisation, uniqueness, and existence

For a, n ∈ N0, let the falling factorial be a[n] := ∏
i∈[n](a − i + 1). The factorial moment

measure of ξ of order n on B ∈ B is E(ξ(B)[n]) [11, Section 9.5].

Proposition 5.1. If there exists a strong 1-dependent and 1-hard-core PP ηM with intensity
measure M ∈ Mb, then its factorial moment measure of order n at B ∈ Bb fulfils

E(ηM(B)
[n]) =

∫
Bn
hn(x1, . . . , xn)

n∏
i=1

M(dxi)

and its avoidance function is Z. There is at most one PP with these three properties in C(M).

Proof. If ηM has finite factorial moment measures of all orders then its avoidance function
is P(ηM(B) = 0) = ∑∞

n=0((−1)n/n!)E(ξ(B)[n]) = Z(B) [10, Equation (5.4.10)]. Because
the avoidance function determines the PP’s law [11, Section 9.2.XIII], uniqueness follows.

For all r, n1, . . . , nr ∈ N0 with n := ∑r
i=1 ni and disjoint A1, . . . , Ar ∈ B1, we need to

show that

E

( r∏
i=1

ηM(Ai)
[ni ]

)
=

∫
∏r
i=1 A

ni
i

hn(x1, . . . , xn)

n∏
l=1

M(dxl). (5.1)

The 1-hard-core of ηM and (4.2) imply that ηM(Ai)[ni ] = 1, if both ηM(Ai) = 1 and ni = 1,
and 0 otherwise. Suppose that there is an j ∈ [r] with nj ≥ 2. On the one hand, the j th factor
of the left-hand side of (5.1) is equal to 0, whence the left-hand side of (5.1) is equal to zero.
On the other hand, this gives an upper bound on the right-hand side of (5.1) of

( ∏
j �=i∈[r]

M(Ai)
ni

) ∫
A
nj
j

hnj (x1, . . . , xnj )︸ ︷︷ ︸
=0

nj∏
l=1

M(dxl) = 0.

The remaining case has r = n and all ni = 1. We proceed by induction over n. If n = 1 and
A ∈ B1 then E(ηM(A)) = P(ηM(A) = 1) = M(A) = ∫

A
h1(x)M(dx). The induction step

from (n− 1) to n is

E

( n∏
i=1

ηM(Ai)

)
(4.2)= P(for all i ∈ [n] : ηM(Ai) = 1)

=
∫
An

Pxn(for all i ∈ [n− 1] : ηM(Ai) = 1)M(dxn)

(3.1b)=
∫
An

P(for all i ∈ [n− 1] : ηM(Ai \ U(xn)) = 1)M(dxn)
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Shearer’s PP, hard spheres, and a continuum LLL 15

=
∫
An

(∫
∏n−1
i=1 (Ai\U(xn))

hn−1(x1, . . . , xn−1)

n−1∏
i=1

M(dxi)

)
M(dxn)

=
∫
An

(∫
∏n−1
i=1 Ai

hn(x1, . . . , xn)

n−1∏
i=1

M(dxi)

)
M(dxn)

=
∫

∏n
i=1 Ai

hn(x1, . . . , xn)

n∏
i=1

M(dxi).

Let k := κ(B) and {Ai}ki=1 be a, possibly countable, partition of B into elements of B1.
If k = ∞ then [k] = N. Let Nk,n := {(n1, . . . , nk) ∈ Nk0 | ∑k

i=1 ni = n}. For a ∈ Rk , the
multinomial Chu–Vandermonde identity is

(∑
i∈[k]

ai

)[n]
=

∑
(n1,...,nk)∈Nk,n

(
n

n1, . . . , nk

) k∏
i=1

a
[ni ]
i .

The multinomial Chu–Vandermonde identity together with (5.1) yields

E(ηM(B)
[n]) = E

( ∑
(n1,...,nk)∈Nk,n

(
n

n1, . . . , nk

) k∏
i=1

ηM(Ai)
[ni ]

)

=
∑

(n1,...,nk)∈Nk,n

(
n

n1, . . . , nk

)
E

( k∏
i=1

ηM(Ai)
[ni ]

)

=
∑

(n1,...,nk)∈Nk,n

(
n

n1, . . . , nk

) ∫
∏k
i=1 A

ni
i

hn(x1, . . . , xn)

n∏
l=1

M(dxl)

=
∫
Bn
hn(x1, . . . , xn)

n∏
l=1

M(dxl). �

Proposition 5.2. IfM ∈ Msh then a strong 1-dependent and 1-hard-core PP with intensityM
exists.

Proof. Four sufficient conditions [11, Section 9.2.XV] jointly guarantee the existence of a
simple PP with avoidance function Z.

• Proposition 4.8 implies the complete monotonicity of Z.

• Unit at ∅, i.e. Z(∅) = 1, holds trivially.

• Continuity in space at ∅ follows from Proposition 4.7 combined with the fact that ∅ is
a continuity set of M , as M(∅ \ ∅) = M(∅) = 0.

• Almost sure bounded finiteness of the PP. Let {Ai,n}i∈[kn], n∈N
be a dissecting system [10,

Proposition A2.1.V] of B ∈ Bκ . By intersecting every partition of the dissecting system
with a fixed B1-partition of B, we may assume that the dissecting system contains only
finite B1-partitions. Let

F(n, r) :=
∑

I⊆[kn], |I |≤r
({Ai,n}i∈I )Z

(
B \

⊔
i∈I
Ai,n

)
.
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16 C. HOFER-TEMMEL

By Proposition 4.10, F(n, r) = 1 for n ≥ r ≥ κ(B). Hence,

lim
r→∞ lim

n→∞F(n, r) = 1.

Recall that the algebra Bκ generates the σ -algebra B . Thus, there exists a simple PP ηM
on X with avoidance function Z on Bκ . It remains to show that the PP ηM is simple, strong
1-dependent, 1-hard-core, and has intensity measureM . The characterisation in Proposition 5.1
shows that there is a unique extension of its law to all of Bb.

Simpleness follows from the 1-hard-core. By Proposition 4.1, the functionZ is 1-multiplicat-
ive. Proposition 3.1 asserts strong 1-dependence.

Let A ∈ B1. The PP ϕA on the closure A of A chooses no point with probability 1 −M(A)
and one point with probabilityM(A) distributed with the densityM(dx)/M(A). The avoidance
functions of ϕA and AηM coincide, since, for each A ⊇ B ∈ Bb,

P(ϕA(B) = 0) = 1 −M(A)+M(A)

∫
A\B

M(dx)

M(A)

= 1 −M(A)+M(A \ B)
= 1 −M(B)

= Z(B).

For a countable dense subset S of X, consider the following countable subset of B1.

H := {{x ∈ X | δ(x, s) ≤ α or δ(x, t) ≤ α} | s, t ∈ S with 1 − 3α := δ(s, t) < 1}.
If δ(x, y) < 1 then there is a closed A ∈ H containing both x and y. Therefore,

P(ηM is not 1-hard-core) = P(inf{δ(x, y) | x, y ∈ ηM} < 1)

= P(there exists A ∈ H : ηM(A) ≥ 2) ≤
∑
A∈H

P(ϕA ≥ 2) = 0.

For closed A ∈ B1 and all A ⊇ B ∈ Bb,

E(ηM(B)) = E(AηM(B)) = E(ϕA(B)) =
∫
B

1

M(A)
M(dx)M(A) = M(B).

Linearity of expectations extends this to the intensity measure of ηM . �
5.2. Proofs of Theorems 2.3 and 2.4

Proof of Theorem 2.3. First, we prove the statement only over Bκ . The general statement
over Bb follows by taking limits along sequences in Bκ to a limit in Bb. Let A,B ∈ Bκ .
Assume that Z(B) > 0. Use induction over k := κ(A ∪ B). Let ξ ∈ C(M) with avoidance
function Q. If Q(B) > 0, let q(A,B) := Q(A ∪ B)/Q(B). If k = 0 then A = B = ∅

and q(∅,∅) = 1 = z(∅,∅). If k > 0 then telescoping (4.4) restricts to the case A ∈ B1

and A ∩ B = ∅. Let {Ai}ki=1 be a B1-partition of A � B. For x ∈ A, let A(x) be the unique
partition element containing x. Apply Proposition 3.3 twice to obtain

q(A,B) = 1 −
∫
A

q(B,B \ U(x))−1M(dx)

= 1 −
∫
A

q(B,B \ A(x))−1q(B \ A(x), B \ U(x))−1M(dx) (5.2a)
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Shearer’s PP, hard spheres, and a continuum LLL 17

and, for x ∈ A,

q(B,B \ A(x)) = 1 −
∫
B∩A(x)

q(B \ A(x), B \ A(x) \ U(y))−1M(dy). (5.2b)

In the second half of this proof we show that the expansions (5.2) are well defined. For
x ∈ A and y ∈ A(x), we have A(x) ⊆ U(y) and κ(B \ A(x)) ≤ k − 1. Hence, the inductive
hypothesis applies to the integrand in (5.2b) and the second factor of the integrand in (5.2a).
For x ∈ A, the inductive hypothesis implies that Q(B \ A(x)) > 0. Applying (4.3) to (5.2b),
we see that

q(B,B \ A(x)) ≥ 1 −
∫
B∩A(x)

z(B \ A(x), B \ A(x) \ U(y))−1M(dy) = z(B,B \ A(x)).

Substitute this into (5.2a), multiply and we see that this implies thatQ(B) > 0. Applying (4.3)
to (5.2a), we obtain

q(A,B) ≥ 1 −
∫
A

z(B,B \ A(x))−1z(B \ A(x), B \ U(x))−1M(dx)

= 1 −
∫
A

z(B,B \ U(x))−1M(dx) = z(A,B). �

Proof of Theorem 2.4. IfM has an atom of mass one at x then the strong 0-dependent PP ξ
from Proposition 3.4 has P(ξ({x}) = 0) = 0. Thus, it suffices to consider only measures with
atoms smaller than one. For everyM ∈ Msh \M>, the avoidance function of Shearer’s PP ηM
vanishes on some bounded Borel set and Proposition 2.4 follows trivially.

For every M �∈ Msh, there exists B ∈ Bb with Z(B,M) < 0 and M(B) > 0. Let
B be the closure of B. Proposition 4.6 implies that λB = min{λ | Z(B, λM) ≤ 0}, 0 <

λB ≤ λB < 1, and λBM|B ∈ Msh. Proposition 4.4 asserts that, for each B ⊇ A ∈ Bb

and N ≤ λBM , we have Z(A,N) ≥ 0. From here on, assume that B is closed with
Z(B,M) < 0. Let � := λB .

Consider three independent PPs.

• Proposition 3.4 guarantees the existence of a strong 1-dependent ϕ ∈ C(M).

• For a yet undetermined N ∈ Mb, a (maybe nonsimple) Poisson(N ) PP ϑ on B.

• As �M|B ∈ Msh, Proposition 5.2 guarantees the existence Shearer’s PP η�M .

Recall that ψ• is the simple support PP of a general PP ψ . The target PP is ξ := (X \ B)ϕ +
(η�M + ϑ)•. As all three component PPs are strong 1-dependent, so is ξ . Since P(ξ(B) =
0) = P(η�M(B) = 0, ϑ(B) = 0) ≤ P(η�M(B) = 0) = 0, the avoidance probability of ξ
vanishes on B.

To determine N , verify that it has finite mass on B and that M is the intensity of ξ . Let A
be the atoms ofM in B. The diffuse domain is D := B \ A. Set N |D := (1 −�)M|D , which
is finite. Because Dη�M and Dϑ are simple and independent, for each B ⊇ A ∈ Bb,

E(ξ(D ∩A)) = E((η�M + ϑ)•(D ∩A)) = E(η�M(D ∩A))+ E(ϑ(D ∩A)) = M(D ∩A).
For an atom x ∈ A, let nx := E(ϑ({x})). The construction demands that

mx := E(ξ({x})) = E((η�M + ϑ)•({x}))
= P(η�M({x}) = 1)+ P(η�M({x}) = 0, ϑ({x}) ≥ 1)
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18 C. HOFER-TEMMEL

= E(η�M({x}))+ Z({x}, �M)(1 − P(ϑ({x}) = 0))

= �mx + (1 −mx)(1 − exp(−nx)).
Since mx < 1 then so is (1 −�)mx/(1 −�mx) < 1 and

nx = −log

(
1 − (1 −�)mx

1 −�mx

)
(3.2)≤ (1 −�)mx/(1 −�mx)

1 − (1 −�)mx/(1 −�mx)
= (1 −�)mx

1 −mx
.

AsM(A) ≤ M(B) < ∞ and all atoms ofM are less than 1, letmB := max{mx | x ∈ A} < 1.
The finiteness of the atomic part of N follows from

N(A) =
∑
x∈A

nx ≤
∑
x∈A

(1 −�)mx

1 −mx
≤ (1 −�)

1 −mB

∑
x∈A

mx = (1 −�)

1 −mB
M(A) < ∞. �

5.3. Intrinsic coupling and monotonicity

Proposition 5.3. Let ηM be Shearer’s PP with intensity measure M . Let p : X → [0, 1] be
measurable. Define N ∈ Mb by N(B) := ∫

B
p(x)M(dx). The independent p-thinning [11,

Section 11.3] of ηM has the same law as ηN .

Proof. Independent thinning preserves strong 1-dependence and the 1-hard-core. It also
implies the intensity measure N . We conclude by the uniqueness from Proposition 5.1. �

Proof of Theorem 2.5. Choose the thinning in Proposition 5.3 with p = dN/ dM . This
proves that Msh and M> = M+ are down-sets. The proofs of Proposition 3.4 and Theorem 2.4
imply that M∅ and M0 � M∅ are up-sets, respectively. �

5.4. Shearer’s PP is different

Except in trivial cases (zero intensity measure, space with isolated small components),
Shearer’s PP differs from other well known hard-core PPs. Because a hard-core radius lower
bounds a dependence radius, the difficulty is combining 1-dependence and 1-hard-core. Shear-
er’s PP is not a Poisson PP, nor one of Matérn’s constructions [26], [35], [36], nor a hard-sphere
model as in Section 2.4, and is neither a determinantal nor permanental PP [7], [15]. In special
cases explicit constructions are possible, though. These are: on the graph Z for homogeneous
intensity and all radii R [27], on R for homogeneous intensity and all radii R [19], and on
chordal graphs for R = 2 and all admissible intensities [20].

The space (X, δ) is r-connected, if each pair of points is part of a finite point sequence with
consecutive pairwise distance less than r , and (X, δ) is r-disconnected, if inf{δ(x, y) | {x, y} ⊆
X} ≥ r . If (X, δ) is 1-disconnected then Shearer’s PP is a product BRF. For the remainder of
this section, we assume that (X, δ) is 1-connected with diameter greater than 1 and that, for all
x ∈ X and each neighbourhood B of x, M(B) > 0.

Proposition 5.4. Shearer’s PP is not a Matérn-style hard-core PP.

Proof. LetN ∈ Mb. For the extreme cases of diffuse and atomicN , letϕ be a Poisson(N ) PP
and a product BRF of intensity N , respectively. Additionally, attach independent and identi-
cally distributed Uniform([0, 1]) marks to points of ϕ. There are disjoint A1, A2, A3 ∈ B1

with positive M-measure with the diameters of A1 � A2 and A2 � A3 smaller than R and
δ(A1, A3) ≥ R. This reduces the setting to BRFs on the graphG := ([3], {{1, 2}, {2, 3}})with
the geodesic metric d , inducing the metric space ([3], 2d). The aim is to show that a 1-hard-core
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Shearer’s PP, hard spheres, and a continuum LLL 19

clashes with independence of the marginals at 1 and 3. Let (n1, n2, n3) and (m1,m2,m3) be
the underlying and positive target atomic intensities, respectively.

For the Matérn I hard-core PP [26], [?], delete all points of ϕ having at least another point
at distance less than 1. The target intensities are m1 = n1(1 − n2), m2 = (1 − n1)n2(1 − n3),
and m3 = (1 − n2)n3. 1-dependence demands that n1(1 − n2)

2n3 = m1m3 = n1(1 − n2)n3.
This implies that n2 = 0 and contradicts m2 > 0.

To obtain the Matérn II hard-core PP [26], [35], delete every point x of ϕ whose mark l
fulfils l = max{h | (y, h) ∈ ϕ, δ(x, y) < 1}. By symmetry, the comparison between the labels
on neighbouring sites yields a probability of 1

2 in a site’s favour. The target intensities are
m1 = n1(1 − n2/2), m2 = n2(1 − n1/4)(1 − n3/4), and m3 = n3(1 − n2/2). 1-dependence
demands that n1(1 − n2/2)2n3 = m1m3 = n1(1 − 3n2/4)n3. This implies that n2 = 0, a
contradiction to m2 > 0.

A marked point (x, l) inhibits a marked point (y, k), if δ(x, y) < 1 and l ≤ k. A marked point
(x, l) is uninhibited, if it fulfils l = min{h | (y, h) ∈ ϕ, δ(x, y) < 1}. Iteratively, delete all
inhibited points. Uninhibited points only contribute once to the deletion and every 1-connected
cluster of points contains at least one uninhibited point. Hence, the deletion procedure stabilises
locally almost surely and the resulting PP is the Matérn III hard-core PP [36] with radius 1. The
target intensities are m1 = n1(1 − n2/2 + n2n3/4) and m3 = n3(1 − n2/2 + n2n1/4). This
implies that n1, n3 ∈ ]0, 1[ . 1-dependence demands that n1n3(1−n2/2 +n2n3/4)(1 −n2/2 +
n2n1/4) = m1m3 = n1(1 − n2/4)n3. This is impossible, as the left-hand side is always larger
than the right-hand side. �
Proposition 5.5. Shearer’s PP is not the hard-sphere model.

Proof. Let A,B ∈ B1 with A � B and 0 < M(A) < M(B). Let hB be the hard-sphere
model with fugacityN on B. It has avoidance functionN/(1+N(B)). Demanding equal laws
for Shearer’s PP of intensity N and the hard-sphere model with fugacity N on A, B and B \A
leads to only trivial solutions of

N(B)

1 +N(B)
= M(B) = M(A)+M(B \ A) = N(A)

1 +N(A)
+ N(B)−N(A)

1 +M(B)−M(A)
. �

Proposition 5.6. Shearer’s PP is neither determinantal nor permanental.

Proof. The higher moment densities of a determinantal PP are the determinants of a matrix
with entries from a bivariate, symmetric and measurable kernel K : X2 → R. Consider the
correlation function of n points, i.e. the Radon–Nikodyn derivative of the nth factorial moment
measure of ηM with respect to the n-fold product of M . It depends only on the 1-connected
graph structure of the n points and takes values 1 and 0, for 1-disconnected graphs and graphs
containing at least one 1-edge, respectively.

For x ∈ X, this yields detK(x, x) = 1. For {x, y} ⊆ X, this yields K(x, y) = ±1
and K(x, y) = 0 for δ(x, y) < 1, and δ(x, y) ≥ 1, respectively. For n = 3, the graph
({x, y, z}, {{x, y}, {y, z}}) yields the contradiction 0 = 1 −K(x, y)2 −K(y, z)2 = −1.

The attraction of permanental PPs contradicts the 1-hard-core of Shearer’s PP. �

6. Proofs of the LLLs

Lemma 6.1. If (2.1) holds then Bb = Bκ .

Proof. Induction on diam(B) := sup{δ(x, y) | x, y ∈ B} shows that, for each B ∈ Bb,
κ(B) ≤ K�diam(B)� < ∞. �
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20 C. HOFER-TEMMEL

Proof of Theorem 2.6. By (2.1) and Lemma 6.1, Bb = Bκ . Let A,B ∈ Bκ . This proof
uses induction over k := κ(A ∪ B). If k = 0 then A = B = ∅ and z(∅,∅) = 1. If k > 0
then we telescope (4.4) to restrict to A \B ∈ B1. Let {Ai}ki=1 be a B1-partition of A∪B. For
x ∈ A ∪ B, let A(x) be the partition element containing x. Applying (4.3) twice, we obtain

z(A,B) = 1 −
∫
A\B

z(B,B \ U(x))−1M(dx)

= 1 −
∫
A\B

z(B,B \ A(x))−1z(B \ A(x), B \ U(x))−1M(dx) (6.1a)

and, for x ∈ A \ B,

z(B,B \ A(x)) = 1 −
∫
B∩A(x)

z(B \ A(x), B \ U(y))−1M(dy). (6.1b)

For x ∈ A \B and y ∈ A(x), A(x) ⊆ U(y), whence κ(B \U(y)) ≤ κ(B \A(x)) ≤ k − 1.
Thus, the inductive hypothesis applies to the integrand of (6.1b) and the second factor in (6.1a).
Bounding the integrand of (6.1b) by the inductive hypothesis (2.2b) leads to

z(B,B \ A(x)) ≥ 1 −
∫
B∩A(x)

(
K + 2

K + 1

)κ(U(y))
M(dy)

(2.1)≥ 1 −
(
K + 2

K + 1

)K
M(B ∩ A(x))

(2.2a)≥ 1 −
(
K + 2

K + 1

)K
(K + 1)K+1

(K + 2)K+2

≥ 1 − 1

K + 2

= K + 1

K + 2
.

Substituting this into the right-hand side of (6.1a) and bounding the right factor of the integrand
by the inductive hypothesis (2.2b) leads to

z(A,B) ≥ 1 −
∫
A\B

K + 2

K + 1

(
K + 2

K + 1

)κ(U(x))
M(dx)

(2.1)≥ 1 −
(
K + 2

K + 1

)K+1

M(A \ B)
(2.2a)≥ 1 −

(
K + 2

K + 1

)K+1
(K + 1)K+1

(K + 2)K+2

= 1 − 1

K + 2

= K + 1

K + 2
. �

Proof of Theorem 2.7. By (2.1) and Lemma 6.1, we have Bb = Bκ . Theorem 2.7 fol-
lows from telescoping the statement, for all A ∈ B1, B ∈ Bb : z(A,B) ≥ α/(1 + α).
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Shearer’s PP, hard spheres, and a continuum LLL 21

Let N := (1 + α)M . The equality (4.3) and the monotonicity of z in M from Proposition 4.4
imply that

0 ≤ z(A,B,N)

= 1 −
∫
A\B

z(B \ A,B \ U(x),N)−1N(dx)

≤ 1 −
∫
A\B

z(B \ A,B \ U(x),M)−1 dN

dM
(x)M(dx)

≤ 1 − (1 + α)

∫
A\B

z(B \ A,B \ U(x),M)−1M(dx)

= 1 − (1 + α)(1 − z(A,B,M)). �

Proof of Theorem 2.8. Assuming that (2.3b) holds for A,B ∈ Bκ , the general case follows
from a limiting argument. Let A,B ∈ Bb with A ∩ B = ∅. Take sequences (An)n∈N

and (Bn)n∈N in Bκ exhausting A and B, respectively. The monotonicity of z in space from
Proposition 4.4 implies that

z(A,B) = lim
n→∞ z(An, Bn) ≥ lim

n→∞ exp(−N(An \ Bn)) = exp(−N(A \ B)).

It remains to prove (2.3b) for A,B ∈ Bκ . The first part of the proof is verbatim the same as
the one of Theorem 2.6, leading to (6.1). For x ∈ A, bounding the integrand in (6.1b) by the
inductive hypothesis (2.3b) leads to

z(B,B \ A(x)) ≥ 1 −
∫
B∩A(x)

exp(N((B \ A(x)) ∩ U(y)))M(dy)

≥ 1 −
∫
B∩A(x)

exp(N(U(y) \ (B ∩ A(x))))M(dy)
(2.3a)≥ exp(−N(B ∩ A(x))).

Substituting this into the right-hand side of (6.1a) and using the inductive hypothesis on the
right factor of the integrand leads to

z(A,B) ≥ 1 −
∫
A\B

exp(N(B ∩ A(x))) exp(N((B ∪ U(x)) \ A(x)))M(dx)

= 1 −
∫
A\B

exp(N(B ∩ U(x)))M(dx)

≥ 1 −
∫
A\B

exp(N(U(x) \ (A \ B)))M(dx)
(2.3a)≥ exp(−N(A \ B)). �

Proof of Corollary 2.2. Here X = Rd , M = λL, and N = αL. For each A ∈ B1 with
L := L(A), condition (2.4) can be written as λL eα(V−L) ≤ 1 − e−αL. The identity λ eαV = α

simplifies this to αL e−αL+e−αL ≤ 1. The last inequality is just 1+z ≤ ez with z := αL ≥ 0.
Thus, condition (2.3a) holds. We conclude via Theorem 2.8. �
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