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Abstract
Evolutionary algorithms (EAs) have proven to be effective in tackling problems in 
many different domains. However, users are often required to spend a significant 
amount of effort in fine-tuning the EA parameters in order to make the algorithm 
work. In principle, visualization tools may be of great help in this laborious task, 
but current visualization tools are either EA-specific, and hence hardly available to 
all users, or too general to convey detailed information. In this work, we study the 
Diversity and Usage map (DU map), a compact visualization for analyzing a key 
component of every EA, the representation of solutions. In a single heat map, the 
DU map visualizes for entire runs how diverse the genotype is across the population 
and to which degree each gene in the genotype contributes to the solution. We dem-
onstrate the generality of the DU map concept by applying it to six EAs that use dif-
ferent representations (bit and integer strings, trees, ensembles of trees, and neural 
networks). We present the results of an online user study about the usability of the 
DU map which confirm the suitability of the proposed tool and provide important 
insights on our design choices. By providing a visualization tool that can be easily 
tailored by specifying the diversity (D) and usage (U) functions, the DU map aims at 
being a powerful analysis tool for EAs practitioners, making EAs more transparent 
and hence lowering the barrier for their use.
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1  Introduction

Visualization is a powerful tool for supporting reasoning and is often used to gain 
insight into the workings of Evolutionary Algorithms (EAs). Over the years, sev-
eral visualization tools for the analysis of EAs have been proposed [8, 12, 18, 22, 
23]. They generally provide exploration of EAs properties at two levels, that of 
single solutions (heavily dependent on solution representation) and entire pop-
ulations (mostly showing how the fitness improves over generations). Some of 
these tools [8, 12, 18, 31] specifically support visualization of the genetic herit-
age between parents and their offspring and entire ancestry of selected solutions. 
While providing a lot of useful information and allowing certain in-depth analysis 
of the progress of an EA, existing tools fall short in providing insights about the 
appropriateness of solution representation, a component of EAs which has always 
be of prominent importance [47, 53].

A representation-focused analysis of EAs can be performed by exploring how 
populations evolve at the genotype level. In particular, we are interested in the 
diversity and usage of the genotype in the populations, and their interplay. Under-
standing how diversity changes during evolution can be used to adapt EA param-
eters so that the desired balance between exploration and exploitation is achieved 
[54]. On the other hand, analyzing the usage of the genotype can help tailor the 
representation to the problem at hand by fine tuning some EA-specific parameters 
(e.g., the genotype size [36]). In addition, inspecting diversity and usage concur-
rently can reveal further important information. For example, if the entire diver-
sity of the genotype in the population is concentrated at an unused portion of the 
genotype, this means that there is no actual diversity in the solutions.

Different diversity measures can be defined and tailored according to the par-
ticular EA in analysis. For instance, considering Grammatical Evolution, one 
possible way to measure the diversity of the genotype in the population relies in 
counting the different values a gene takes for all the individuals in the popula-
tion (a high number of different values corresponds to high diversity). Similarly, 
one viable option to compute the usage of the genotype consists in computing 
how many times each gene is used while building the solution. After the diversity 
and usage have been calculated, they can be visualized. The Diversity and Usage 
map (DU map), first presented by Medvet and Tušar [35], serves exactly the 
purpose of jointly visualizing genotype diversity and usage for each generation, 
thus showing how they change during evolution. The DU map was conceived for 
Grammatical Evolution [48], an EA based on an indirect representation affected 
by a high representation redundancy [33, 60].

This paper substantially extends and improves the original formulation of the 
DU map. First, we greatly widen the applicability of the DU map, which was 
designed specifically for variants of Grammatical Evolution, by making its defini-
tion and building process more general. In particular, we show how to build DU 
maps and how to interpret them in terms of usage and diversity according to the 
particular representation used by six very different EAs. Second, we improve the 
design of the DU map by considering guidelines from visualization literature [4, 
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39], and by incorporating feedback from an online user study we designed to vali-
date our contribution. To the best of our knowledge, our work is one of the few in 
the EC area with a methodical evaluation of the visualization tool.

Concerning the generalization and extension of the DU map to other EAs, we 
considered six EAs which use widely different representations: genotypes are 
defined as bit and integer strings, trees, ensemble of trees, and neural networks. 
The selected algorithms are:

–	 Grammatical Evolution (GE) [48], an EA that uses a context-free grammar to 
map fixed-length genotypes into phenotypes, in three variants: original GE, 
Structured Grammatical Evolution (SGE) [28] and Weighted Hierarchical 
Grammatical Evolution (WHGE) [34];

–	 Geometric Semantic Genetic Programming (GSGP) [37], a Genetic Program-
ming (GP) variant that uses geometric semantic operators instead of the tradi-
tional GP operators;

–	 Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [68], an EA 
that performs variation by modelling and exploiting problem structure at the 
level of dependencies between genes;

–	 Neuro-Evolution of Augmenting Topologies (NEAT) [56], an EA which simul-
taneously evolves the topology and weights of a Recurrent Neural Network 
(RNN).

We first define genotype diversity and usage for all the algorithms, showing how 
to adapt the DU map to these different representations. Then, we construct and 
extensively analyze many DU maps for those EAs applied to different problems 
with different parameter settings. Finally, by carefully analyzing the outcomes of 
the experiments and of the responses to the questionnaire we attempt to answer 
the following research questions (RQ):

RQ1:	 Is the DU map useful for unveiling the properties of an EA representation?
RQ2:	 Is the DU map useful for gaining insight into the behavior of an EA run on 

a problem, and for comparing problems?
RQ3:	 Is the DU map useful for choosing EA parameters or components?

We find that, despite the large differences in the considered EAs, the DU map 
can be used for both drawing quick, high-level, and general conclusions and for 
extrapolating low-level, EA-specific considerations, in particular those allowing 
for an immediate understanding of the interplay between genotype diversity and 
usage. We hence believe that the proposed visualization may serve as a valuable 
tool for EA users, practitioners, and researchers.

The remainder of this article is organized as follows. Section 2 lists the tasks, 
defined according to an established taxonomy, that can be performed with the 
DU maps, motivating the need for this tool. Section 3 briefly surveys the state-
of-the-art in the visualization of EAs. Section 4 presents the general definition of 
the DU map, discuss its design choices, and provides a brief tutorial of its usage. 
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Section  5 describes how the DU map is applied to each of the aforementioned 
EAs. Section 6 shows the experiments on a number of benchmark optimization 
problems. Section  7 illustrates the user study which we conducted in the form 
of a questionnaire and presents the results. Finally, we draw the conclusions in 
Sect. 8.

2 � Supported visualization tasks

This section specifies which visualization tasks are supported by the DU maps fol-
lowing the visualization task taxonomy from Munzner’s book [39]. We consider the 
three levels of actions that define user goals.

At the highest level, the DU maps were conceived to consume information. More 
specifically, the DU maps can be used for discovering new knowledge as well as pre-
senting it to others. For example, when researchers visualize their algorithm results 
through the DU maps, they are able to make new discoveries, such as finding out 
whether the diversity of the genotype is located at a used portion of the genotype or 
an unused one, and test their hypotheses, such as confirming that changing a param-
eter of the algorithm has the expected effect on the diversity of the genotype. After 
such knowledge has been discovered, the same maps can be exploited for presenting 
this knowledge to the scientific community.

At the middle level, the DU maps support the following search tasks: locate 
(target known, location unknown), browse (target unknown, location known) and 
explore (target and location unknown). An example of a locate search task is finding 
the generation at which the evolution stagnates, or alternatively, finding the location 
of the genes that are used and have a high diversity. As an illustration of the browse 
task, consider the task of determining the usage and diversity of a specific portion 
of the genotype. Next, the task of finding out whether the genotype has different 
degrees of usage is an example of the explore task.

At the lowest level, the DU maps can be used to query at all three scopes, i.e., 
identify, compare, and summarize. For example, users can identify the diversity 
and usage for each genotype position and generation. They can compare the diver-
sity and usage between different portions of the genotype, different generations and 
even different DU maps. Finally, the DU map summarizes diversity and usage of the 
entire genotype across all generations.

While the three research questions posed in the Introduction are concerned mostly 
the high-level task of discovering knowledge, the experimental-based validation in 
Sect. 6 and the user-based validation in Sect. 7 comprise all three levels of actions.

3 � Related work

This section presents a short overview of visualization methods designed to facilitate 
the understanding of the workings of EAs. More attention is devoted to techniques 
that are especially related to DU maps, either because they showcase the diversity 
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of individuals within the population [3, 15, 45, 61] or use color to convey multiple 
pieces of information [19].

Being population-based, EAs can be visualized on two levels—on the level of 
single individuals (such as the currently best solution) and that of entire popula-
tions. Regardless of the perspective, the choice of the visualization method heav-
ily depends on the solution encoding. Some often used representations are simple 
“zebras” and Gonzo’s search space view for binary encodings [11, 22, 71], paral-
lel coordinates and heat maps (also called matrix charts or density plots) for real-
valued genotypes [23], graphs and trees for discrete optimization problems [12, 61], 
radial trees for genetic programming [13, 26], and domain-specific representations 
for some real-world problems [21, 38, 50, 63]. In multi- and many-objective prob-
lems, the focus of the analysis, and consequently visualization, shifts to the objective 
space and the challenge of visualizing high-dimensional Pareto front approximations 
[62].

To ease visualization, populations of multidimensional individuals are often pro-
jected onto a 2-D space [29, 30, 51]. Although projections inevitably cause some 
loss of information, they enable to trace the improvement of individuals during 
evolution in the form of trajectories [43, 44]—a technique predominantly used in 
visualization of swarm algorithms [20, 24]. While trajectories show the evolution 
of individuals from a global viewpoint, some visualization tools support in-depth 
analysis of the relations between parent and offspring individuals, and exploration 
of the ancestry of the chosen (usually best) solution [8, 12, 18, 31]. Other research 
focuses on visualizing the balance between exploration and exploitation during the 
optimization [1, 27], which is closely related to the diversity of individuals.

In most visualization tools, diversity is not specifically tackled, but can be 
inferred from concurrently visualizing all individuals in the population (the user is 
able to see that a population has a high or low diversity by visual inspection). Only 
a few studies have explicitly defined and visualized diversity [3, 15, 45, 61]. When 
specified as a measure on the population, diversity can be visualized with the same 
techniques as the fitness of the best solution, for example, with a simple line graph 
showing how it changes during the evolution [3]. Diversity can also be computed 
by measuring the distances between pairs of individuals and then visualized with 
line graphs and heat maps [45], or more elaborately, using a similarity-preserving 
mapping to 2-D that positions similar individuals in clusters [15]. Another option is 
to define diversity based on the occurrence of symbols in the genes, in which case 
a heat map can be used to illustrate how diversity evolves for each gene separately 
[61]. This approach is used in our diversity map.

The DU map presented in this paper is a population-level visualization method 
that uses color to convey both diversity and usage in a single heat map. To the best 
of our knowledge, the only other approach that employs a similar idea of combin-
ing two measures in one color (the so-called bivariate map) is the visualization with 
pseudo-color [19]. There, individuals are encoded as binary strings and the popu-
lation is presented in a heat map with one individual per row. The color of each 
gene is determined depending on its value and the objective and fitness values of the 
solutions—a distinction is made between the objective and fitness values to accom-
modate for problems where the fitness value contains some other information in 
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addition to the objective value, such as a penalty determined through expert knowl-
edge of the problem. First, a gene is colored either in blue (value 0) or red (value 1). 
Then, these two basic colors are modified for the whole row in hue and brightness 
depending on the solutions’ objective and fitness values, respectively. Our approach 
differs from the one proposed by Ito et al. [19] in two aspects: (1) a single DU map 
visualizes the entire evolution, not just one population; and (2) color is assigned for 
each gene separately and is based on its diversity and usage rather than on its value 
and the fitness and objective of the solution.

4 � DU map: overview

In this section, we describe how a DU map is built from a run of an EA. To this 
end, we first define the class of EAs to which the DU map can be applied. Then, in 
Sect. 5.1 and following sections, we show how to apply the DU map to some consid-
erably different EAs: GE in three variants, GSGP, GOMEA, and NEAT. A prototype 
implementation of the procedures needed to obtain the DU map out of a run of these 
EAs is publicly available at https​://githu​b.com/ericm​edvet​/evolv​ed-ge.

The DU map applies to EAs in which a population of individuals, each one 
described by a fixed-length genotype of length l, evolves for a number ngen 
of generations. We denote by Px the population of the xth generation and by 
� = (g1,… , gl) ∈ 1 ×⋯ × l the genotype of individual � ∈ Px . Each gene gy of 
� takes a value from a set y , the gene domain. The actual domain 1 ×⋯ × l of 
the entire genotype depends on the specific EA to which the DU map is applied 
(possibly 1 = ⋯ = l ), whereas the values for ngen and l depend on the specific EA 
run—they are, usually, part of the EA parameters.

The DU map may also apply to EAs for which the genotype length is not fixed, 
by considering the longest length observed during the run. In Sect. 5.4 we show an 
example of such an approach with NEAT. Note also, that the population size can be 
variable.

Two functions have to be defined for applying the DU map to an EA: the diver-
sity function and the usage function. The diversity function dy ∶ ℕ

y → [0, 1] , 
where ℕy is the set of all the multisets of cardinality |Px| built from values in y , 
measures how diverse is the set Gy = {g1

y
,… , g

|Px|
y } ∈ ℕ

y of the values of the yth 
gene in the population Px : the closer the value of dy(Gy) to 1, the greater the diver-
sity of Gy . In general, up to l different diversity functions can be used, in order to 
accommodate the possibly different domains for the l genes. The usage function 
� ∶ 1 ×⋯ × l → [0, 1]l measures the degree uy(�) ∈ [0, 1] to which the yth gene 
gy contributes to the solution represented by � . The closer the value of uy(�) to 1, the 
larger the contribution of the gene gy to the solution and, from another point of view, 
the greater the usage of gy by the EA in building the solution represented by � . The 
actual form of the functions dy and � depends on the specific EA and on the specific 
aspects of the run which one wants to investigate using the DU map.

The application of the DU map to the results of an EA run consists in building 
a rectangular heat map of size ngen × l out of sequential populations P1,… ,Pngen
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using the functions � and dy (see Fig. 1). We remark that only the genotypes of 
the individuals of each population Px are needed: no other data (e.g., fitness val-
ues, ancestry) is required. Each point (x, y) in the map takes a color (ired, igreen, iblue) 
in the RGB space depending on its coordinates x and y, as follows:

where � is the genotype of the individual in the population Px of the xth generation, 
gy is the yth gene of � , and uy(�) is the yth component of �(�).

In other words, each row of the map (points with the same y coordinate) is 
related to exactly one gene index in the genotype: the red and green color intensi-
ties of the points in the row show how diversity and average usage, respectively, 
of the yth gene varied during the evolution. Each column in the map (points with 
the same x coordinate) is related to a generation of the evolution: the red and 
green color intensities of the points in the column show how the diversity and 
average usage, respectively, vary along the genotypes of the individuals of the 
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Fig. 1   A schematic representation of how the DU map is obtained: red and green intensities for the point 
at (x, y) are computed by considering the yth gene of the individuals at the xth generation through the 
expressions of Eqs. 1 and 2, respectively (Color figure online)
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xth generation. Figure 1 summarizes how the color intensities for each point are 
computed.

All of the DU maps in this work are built in the so-called offline mode—after the 
algorithms have stopped and produced all the required data. Note however, that since 
computing diversity and usage depends only on the data of the current population, 
this could be easily adjusted to enable online analysis of algorithm performance.

4.1 � Design choices

In a preliminary phase, we explored some alternatives of the main design choices 
concerning the DU map. In particular, we focused on the orientation of the map and 
on the color encoding of the information.

Concerning the orientation, an alternative option is to swap the two axes, i.e., 
visualize the generation along the y-axis and the gene index along the x-axis. DU 
maps built according to this alternative design deliver exactly the same information 
of their swapped counterparts. Yet, we opted for visualizing the generation along 
the x-axis, because the x-axis usually represents time and the EC practitioners are in 
general familiar with this way of visualizing how the population changes during the 
evolution (i.e., plotting the evolution). The most prominent example is the simple 
line plot of the fitness of the best individual at a given generation (on the y-axis) ver-
sus the generation (on the x-axis), a plot which is proposed as a debugging tool by 
many introductory EC texts, e.g., [14, 16, 32].

Concerning the color, we experimented with some alternative ways of encoding 
the diversity and usage values through colors, i.e., alternative ways of setting the 
values of (ired, igreen, iblue) for each point. In particular, we considered (a) the design 
choice presented above, (b) a variant in which the red and green channels are dis-
cretized (on three levels each) and (c) a variant using a hue-based, color-blind-safe 
discretized color scheme [4]. Figure 2 shows an example of a DU map and the corre-
sponding legend for the color encoding for the three options. We verified, by means 
of an online user study involving 34 users (see Sect. 7 for a detailed discussion about 
the questionnaire and the corresponding findings), that the DU map can deliver use-
ful information regardless of the color encoding. The respondents expressed prefer-
ence for the two discretized options, with the option b being slightly favored over 
option option c. However, in order to support users with color vision deficiencies, 
we show the maps using option c in the reminder of the paper.

Finally, we also considered the possibility of adding interactivity to the DU 
map. A first option would be to interactively display information that is already 
present in the map, e.g., showing the generation number, the gene index, and 
the corresponding diversity and usage values as the user moves the pointing 
device over the map. A second option would be to interactively change the dis-
cretization of colors (either going from less colors to more or vice versa). A 
third option would be to use interactivity for gaining additional information at 
the granularity level of single individuals. For instance, when the user clicks 
on a map cell in the xth generation, an additional visualization would present 
the usage across the entire population at that generation. We argue that similar 
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proposals could possibly further extend the usefulness of the DU map, but we 
did not explore them in this work. On the other hand, the fact that the DU map 
is not interactive might enable its wider adoption among scholars and practition-
ers because static images are more easily embedded in scientific documents and 
technical reports.

4.2 � Example of how to read a DU map

We provide an example of how a DU map could be used for gaining insights 
about a run of an EA. Figure 3 shows an example DU map: four regions of the 
map are highlighted by means of red boxes and a possible interpretation of each 
of those regions of the map is shown in the form of a short informal text.

The texts in Fig. 3 mention all four information elements contained in a DU 
map: the gene index, the generation, the diversity, and the usage. In particu-
lar, the bottom right text concerns both diversity and usage and suggests that 
some interplay among them could be inferred. Obviously, deeper insights can be 
obtained only upon more profound knowledge of the underlying EA.
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Fig. 2   The three alternative options for the color encoding: example DU map (above) and color legend 
(below). The three DU maps were obtained from the same run (Color figure online)
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5 � DU maps: application to EAs

5.1 � DU map on GE

Grammatical Evolution (GE) [48] is an EA which operates based on an indirect 
representation. Individuals are represented as bit strings which are then translated, 
according to a genotype-phenotype mapping function, into strings of a user-provided 
language defined by means of a context-free grammar (CFG). Because of its map-
ping function, GE can be applied to a wide class of problems—namely all the prob-
lems whose solutions can be described using a CFG—without requiring the user to 
choose problem specific genetic operators. On the other hand, the same mapping 
function has been shown to scarcely adhere to the variational inheritance principle 
[70], which states that offspring should closely resemble, but not be identical to their 
parents [14]. As a consequence, many improvements of GE have been proposed: 
in this study we consider the original GE and two recent improvements, Structured 
Grammatical Evolution (SGE) [28] and Weighted Hierarchical Grammatical Evolu-
tion (WHGE) [34]. The DU map is particularly suited to investigate the different 
mappings of GE variants and the related impact on the diversity of the population. 
We briefly describe the three variants and how we defined the diversity and usage 
functions for them.

5.1.1 � GE

The genotype-phenotype mapping function of the original GE consumes the genes 
in the genotype (i.e., bits in the bit string) in groups of 8 (each called codon) in 
order to choose one of the options in the grammar derivation rule for the leftmost 
non-terminal in the phenotype. If the end of the genotype has been reached and at 
least one non-terminal still exists in the phenotype, genes are reused starting from 
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Fig. 3   An example DU map with some possible qualitative interpretations (Color figure online)
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the beginning of the genotype—this operation being called wrapping. A maximum 
number nwrap of wrappings is allowed: if exceeded, the mapping is aborted and the 
worst possible fitness is associated with the corresponding individual.

With respect to the DU map, in GE 1 = ⋯ = l = {0, 1} (i.e., all genes take val-
ues from the binary alphabet), and we define the diversity and usage functions as 
follows:

where cy ∈ ℕ
+
0
 is the number of times the yth bit has been used during the mapping. 

Concerning the diversity function, it can be observed that dy(Gy) = 0 if and only if 
all bits in Gy are 0 (or 1) and in dy(Gy) = 1 if and only if exactly half of the bits are 0. 
The usage function captures the fact that the gene was involved in the genotype-phe-
notype mapping: in GE, it can be observed that 0 ≤ cy ≤ nwrap and 
∀y, y� ∶

|||cy − cy�
||| ≤ 1.

5.1.2 � WHGE

WHGE differs from GE only in the mapping function which consists, in the for-
mer, in a recursive function which takes a non-terminal symbol and a bit string and 
returns a derivation tree. The function is firstly invoked with the genotype and the 
grammar starting symbol: internally, it uses the input bit string for choosing a deri-
vation rule and then divides the bit string in a number of chunks equal to the number 
of symbols in the chosen derivation; finally, it recursively calls itself for each chunk 
and corresponding symbol—for more details, we refer the readers to the study of 
Medvet [34].

With respect to the DU map, the gene domains and the diversity and usage func-
tions for WHGE are the same of those of GE. However, differently than in GE, con-
ditions on the number cy of times the yth bit has been used do not hold, i.e., the 
upper bound is not nwrap and there can be a large difference between values of cy for 
different gene indexes.

5.1.3 � SGE

In SGE, the genotype consists of an integer string, instead of a bit string. Genes 
(i.e., integers) are grouped together. Each group corresponds to a non-terminal sym-
bol and each gene in the group corresponds to a possible derivation option of that 
non-terminal. Genes in the same group have the same domain, which is related to 
the number of possible derivation options for the corresponding non-terminal. SGE 

(4)dy(Gy) = 1 − 2
|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||

(5)�(�) =
1

maxy∈{1,…,l} cy
�
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lacks a mechanism for reusing the genotype: instead, the ability of coping with infi-
nite languages is obtained by working with a non-recursive grammar derived auto-
matically from the input grammar using a user-provided parameter dmax representing 
the maximum level of recursion of derivation rules. Differently than GE and WHGE, 
SGE works with ad hoc genetic operators which are built considering the structure 
of the genotype—for more details, we refer the reader to the work of Lourenço et al. 
[28].

With respect to the DU map, a number nNT of different gene domains exist, each 
one being a subset {0,… , n

opt

h
− 1} of ℕ , where nNT is the number of non-terminal 

symbols in the grammar and nopt
h

 is the number of derivation options for the hth non-
terminal symbol. The diversity function is defined as:

where it measures the diversity of a multiset Gy as one minus the normalized vari-
ance NV(�Gy,y

) of the relative frequencies �Gy,y
= (f1,… , f|y|) of the |y| possible 

elements in Gy . The normalized variance NV ∶ [0, 1]m → [0, 1] is defined as:

In other words, dy(Gy) = 0 if Gy contains only repetitions of the same element among 
many possible elements (i.e., no diversity) and dy(Gy) = 1 if all possible elements 
appear in Gy for the same number of times (i.e., maximal diversity). The usage func-
tion for SGE is the same of GE and WHGE, but in SGE, cy ∈ {0, 1} , since a gene is 
never reused.

5.2 � DU map on GSGP

Geometric Semantic Genetic Programming (GSGP) was introduced recently by 
Moraglio et al. [37]. It is one of the numerous GP techniques that try to exploit the 
concept of semantics [67]. Even though the term semantics can have several inter-
pretations, it is a common trend in the GP community to define the semantics of a 
solution T as the vector �(T) = (T(x1),… , T(xn)) of its output values on the training 
data. According to this definition, it is possible to identify a GP individual as a point 
�(T) in a multidimensional space called the semantic space (where the number of 
dimensions is equal to the cardinality of the training set).

In GSGP, traditional crossover and mutation are replaced by so-called Geometric 
Semantic Operators (GSOs), which exploit semantic awareness and induce precise 
geometric properties on the semantic space. In particular, GSOs induce a unimodal 
error surface on any problem consisting of matching sets of input data into known 
targets (like supervised learning problems such as symbolic regression and classifi-
cation) [37]. Here, we report the definition of the GSOs as given by Moraglio et al. 
for real functions domains (i.e., T ∶ ℝ

m
→ ℝ ), since these are the operators we will 

(6)dy(Gy) = 1 − NV(�Gy,y
)

(7)
NV(� ) =

m
∑

i f
2
i∑

i fi
− 1

m − 1
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use in this study. For applications that consider other types of data, we refer the 
reader to the work of Moraglio et al. [37].

Geometric Semantic Crossover (GSXO) generates, as the unique offspring of par-
ents T1, T2 , the individual TXO:

where TR is a random real function whose output values range in the interval [0, 1].
Geometric Semantic Mutation (GSM) returns, as the result of the mutation of a 

individual T, the individual Tmut:

where TR1
 and TR2

 are random real functions whose output values range in the inter-
val [0, 1] and � is a parameter called mutation step.

As shown in the work of Moraglio et al. [37], GSXO corresponds to geometric 
crossover in the semantic space (i.e., the point representing the offspring lies on the 
segment joining the points representing the parents) and GSM corresponds to box 
mutation on the semantic space (i.e., the point representing the offspring lies within 
a box of radius � , centered in the point representing the parent).

Despite the property of inducing a unimodal fitness landscape, GSOs present an 
important drawback that is related to the fast growth of the size of the individuals 
in the population. This makes the fitness evaluation unbearably slow (thus making 
the system unusable), but the issue was successfully addressed by Castelli et al. [9] 
with an implementation of Moraglio’s operators that makes them not only usable in 
practice, but also very efficient. With this implementation, the size of the evolved 
individuals is still very large, but they are represented in a particular way that makes 
their evaluation faster than standard syntax-based GP. For the details, we refer the 
reader to the work of Castelli et al. [9, 66], but the main idea is presented here. Upon 
the evaluation of the individuals created after the initialization, their semantics is 
stored in a data structure. In the following generations, the newly created individuals 
are built by plugging the individuals of the initial generation in the structure defined 
by the GSOs. Hence, a new individual consists of the parent individual(s) and one or 
more random trees. That is, we do not need to effectively build the new individuals 
by swapping the subtrees of the parents, but we can compute the offspring by only 
using the information related to the semantics of the parent(s) and the semantics of 
the random tree(s). Hence, individual created in the subsequent generations are cre-
ated and evaluated very efficiently, and their evaluation on a particular training case 
is performed in constant time.

GSGP is an interesting case study for DU maps, because of the geometric proper-
ties of GSOs. More specifically, with respect to standard syntax-based GP crossover, 
GSXO was shown to be quite ineffective on a large set of applications. The fact that 
GSXO  generates an offspring whose semantics stands in the segment joining the 
semantics of the parents is an important property to ensure that the fitness landscape 
is unimodal but, on the other hand, it represents a limitation when population diver-
sity must be guaranteed. In particular, if we imagine a GP population as a cloud of 
points in the semantic space, GSXO is only able to generate points that are “inside” 
the cloud. The consequences are twofold: (1) if the target (that is also a known point 

(8)TXO = T1TR + T2(1 − TR)

(9)Tmut = T + �(TR1
− TR2

)
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in the semantic space) is not contained inside the cloud, GSXO will never be able to 
generate it; (2) the individuals created by crossover present a low degree of diver-
sity. Hence, in GSGP, a greater (with respect to standard GP) mutation rate is com-
monly employed because mutation is the only operator able to explore points of the 
semantic space that are “outside” the cloud. However, the fact that GSGP uses muta-
tion to explore the search space has a negative impact on the convergence speed of 
GP: typically a GP with GSOs requires a greater number of generations to converge 
towards a good quality solutions when compared to standard GP. Using a DU map 
we expect to capture features that characterize GSOs.

With respect to the application of the DU map to GSGP, two key observations 
can be made: (1) individuals are represented as trees, whose size is, in principle, 
unbounded; however (2) each individual may also viewed as the result of the recom-
bination of many other individuals through the application of GSOs—namely, the 
individuals of the initial population. We hence consider the yth gene of a GSGP gen-
otype as the number of times the yth individual of the initial population is used: this 
way, the genotype has a length l equals to the population size and the gene domains 
are 1 = ⋯ = l = ℕ

+
0
 . We define the diversity and usage functions as follows:

where the normalized variance defined in Eq. 7 is applied to the multiset Gy of gene 
values after having rescaled the values to [0, 1].

In other words, initial GP individuals are considered as building blocks for the 
construction of individuals in the subsequent generations. If the number of times 
the yth building block has been used widely varies across the individuals of a gen-
eration, then the corresponding diversity dy will be large, and the opposite. Con-
cerning usage, if in an individual T, the yth building block is used many times with 
respect to other building blocks, then the corresponding usage uy will be large, and 
the opposite.

5.3 � DU map on GOMEA

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [58] is a frame-
work which has been recently applied to GP [68]. GOMEA has been shown to out-
perform standard GP and compete with state-of-the-art methods on deceptive syn-
thetic problems and benchmark problems of binary circuit generation. Thanks to its 
capability to learn and exploit problem structure, and together with a new method to 
identify and re-use important building blocks, GOMEA reached excellent scalability 
on the Even parity problem [68].

(10)dy(Gy) = NV

({
g

maxg�∈Gy
g�
, g ∈ Gy

})

(11)�(�) =
1

maxy∈{1,…,l} gy
�
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Individuals evolved in GOMEA are represented as trees of a predefined shape 
and, hence, with a fixed size. This allows typical linkage learning techniques (i.e., 
techniques to measure interdependencies in the genotype) to be applied, resulting 
in valuable information that can be exploited during variation [59, 68]. At the same 
time, a fixed-size genotype makes it straightforward to compute diversity and usage.

In detail, the GOMEA representation is as follows. Let   be the set of terminal 
nodes (e.g., input variables or constants), and let  be the set of function nodes. 
Let r be the maximum arity, i.e., the maximum number of arguments required by 
any function in  . Given a user-defined height h, the genotype is a full r-ary tree 
of height h, where each node with a lower depth than h has exactly r children. The 
fixed-length l of the genotype corresponds to the number of nodes in the tree, i.e., 
l =

∑i=h

i=0
ri . Nodes can be inactive: inactive nodes are not parsed during evaluation. 

All the children of a terminal or inactive node are inactive; the rightmost r − r� chil-
dren of a function node with r′ arguments are inactive. Figure 4 shows an example of 
the representation used by GOMEA.

A key component of GOMEA is the Family of Subsets (FOS), a model which 
is learned at each generation and used by the variation operator GOM to generate 
the offspring. A FOS F = {F1,… ,Fk} , with Fi ⊂ {1,… , l} , is a set of crossover 
masks, where each mask is a set of indices that essentially represent positions in the 
genotype—note that Fi is strictly a subset of {1,… , l} because swapping the entire 
genotype typically leads to premature convergence. In this work, four types of FOS 
are considered: the Linkage Tree (LT), the Random Tree (RT), and two of their vari-
ants which use a simple diversity preservation mechanism (LTd and RTd). Aiming 
to model the structure of the problem, the LT represents hierarchical interdepend-
ency between gene positions, and is learned by measuring the mutual information 
between all pairs of nodes, and by performing hierarchical clustering based on these 
measurements [68]. The RT is built in a similar way to the LT, but randomly. This 
FOS may be preferred to LT for problems where the learning structure does not nec-
essarily improve the search, but using (random) hierarchical crossover masks may 
still be useful. Finally, LTd and RTd are variants of LT and RT with a basic diversity 
preservation mechanism: 1 ∉ Fi , i.e., the root node is not present in any crossover 

−(3)

+(2)

x(0)

x(0) y(1)

−(3)

y(1) x(0)

×(4)

x(0)

y(1) y(1)

/(5)

y(1) x(0)

Fig. 4   Example of full binary tree for symbolic regression. The gray nodes are inactive. 
By parsing the tree with level-order traversal, the equivalent string of symbols is obtained: 
(−,+,×, x,−, x, ∕, x, y, y, x, y, y, y, x)
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mask, thus will not be changed during variation. In the rest of the paper, the notation 
GOMEAF refers to GOMEA using a specific FOS F (e.g., GOMEALT for LT).

In GOMEA, variation and selection are both handled by the Gene-pool Optimal 
Mixing (GOM) operator, which is applied to every individual in the population. 
GOM uses the crossover masks contained in the FOS to generate one offspring that 
is guaranteed to be at least as fit as the parent. Because of this, a separate selection 
phase is not needed. The GOM operator works as follows. To begin, a backup �′

p
 

and the offspring �′
c
 of the parent �p are created. After shuffling the FOS (opera-

tion which is done to diversify the effect of mixing when using hierarchic crossover 
masks), for each set Fi a crossover operation is applied whereby the nodes of �c are 
replaced by the ones of a random donor � ∈ P in the same positions, namely those 
in Fi . If this results in a syntactical change, then �c is evaluated and the new fitness 
is compared with the previous one: if �c becomes less fit than �′

p
 , then the change is 

reverted, otherwise the change is accepted and �′
p
 is updated.

With respect to the DU map, the GOMEA genotype is viewed as a fixed-length 
string of symbols where the first symbol corresponds to the root of the tree, the fol-
lowing r symbols correspond to the root children, the following r2 symbols to the 
root grandchildren, and so on (level-order parsing). As mentioned before, the length 
of the resulting genotype � is l =

∑i=h

i=0
ri . The gene domains y depend on the posi-

tion, i.e., on whether the corresponding nodes in the tree can be function nodes, 
terminal nodes, or both; moreover, they allow to describe active and inactive nodes. 
Since trees are initialized with a minimum height of 2 (specifically, with the Half-
and-Half method [25]), the domains are defined as follows:

In other words, each gene is a pair gy = (sy, ay) where the first element sy corre-
sponds to the tree node and the second element ay is 0 for inactive nodes and 1 
otherwise. The diversity function is defined as in Eq. 6, while we define the usage 
function as follows:

Because GOMEA encodes a tree with level-order parsing, the bottom of the DU 
map (small gene indices) represents the evolution of diversity and usage for the top 
of the trees. More specifically, the bottom row of the map (i.e., G1 ) corresponds to 
the root, and the top half of the map (i.e., the top rh rows) corresponds to the leaves 
at maximum depth.

5.4 � DU map on NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) [56] is an EA which simultane-
ously evolves the topology and the weights of a Recurrent Neural Network (RNN). 

(12)y =

⎧⎪⎨⎪⎩

 × {1, 0} for y ≤ 1 + r (root and its children)

 × {1, 0} for y > l − rh (leaves at maximum depth)

 ∪  × {1, 0} otherwise (other tree nodes)

(13)�(�) = (a1,… , al)
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NEAT has been widely used in many applications, e.g., in evolutionary robotics [17] 
to generate RNN-based controllers able to address complex tasks. Moreover, NEAT 
constitutes the foundations on which other more recent and sophisticated approaches 
for neuro-evolution are built, e.g., HyperNEAT [55] and odNEAT [52].

Stanley and Miikkulainen [56], inventors of NEAT, showed that the simultaneous 
evolution of the RNN topology and weights enabled a faster convergence to better solu-
tions with respect to fixed-topology-based methods. In essence, the improvement was 
motivated by the three main components of NEAT: (1) a principled method of crosso-
ver of different topologies, (2) the protection of structural innovations through specia-
tion, and (3) incremental growing from minimal structure.

The key idea behind NEAT, which essentially enabled the first two components, is 
in the individual representation. Each individual is represented by a variable-length 
genotype containing two kinds of genes: node genes and connection genes. Node genes 
are related to nodes of the RNN (input, output, and hidden nodes): each gene consists 
of an innovation number (see below). Connection genes are related to edges between 
nodes of the RNN: each gene consists of the in-node innovation number, the out-node 
innovation number, the weight, a binary value specifying if the edge is enabled or not 
(the enable bit), and an innovation number.

Innovation numbers are unique (across the entire run) positive integer identifiers 
and are the salient feature of the NEAT representation. NEAT genetic operators never 
change the value of an innovation number, nor in-node and out-node innovation num-
bers in connection genes—as a consequence, the gene with a given innovation number is 
the same in all the individuals of all the generations. Moreover, whenever a new hidden 
node or a new edge is inserted in an individual, a new innovation number is assigned to 
the corresponding gene whose value is set using an evolution-wise global counter. For 
further details, we refer the reader to the work of Stanley and Miikkulainen [56].

NEAT is of particular interest in this study because of two reasons. First, we show 
that the DU map can be applied also to EAs where the genotype length is not fixed 
and known a priori before the run (differently than in GE and variants, GSGP, and 
GOMEA). Second, it radically differs from the other considered EAs both in the nature 
of the evolved artifacts and in the kinds of problems it is most suited for.

With respect to the application of the DU map to NEAT, two key observations can 
be made: (1) the innovation number i ∈ ℕ

+ , due to its uniqueness and semantics, may 
be used as an index of the position of a gene in the genotype; (2) if an hidden node of 
an individual is connected only to edges for which the enable bit is not set, then it is 
irrelevant to the RNN. We hence consider the yth gene domain as y = {1, 0} , if genes 
associated with y are node genes, or as y = [−1, 1] × {1, 0} , otherwise—in the former 
case, a gene is 0 if the corresponding hidden node is connected only to disabled edges; 
in the latter, the gene consists of the weight and the enable bit. The length l of the 
genotype is, for what concerns the application of the DU map, equal to the value of the 
global counter at the end of the run. We define the diversity and usage functions as fol-
lows. Let denote by gy = (wy, ey) the connection genes; then:

(14)dy(Gy) =

{
NV

({
1+w

2
, (w, e) ∈ Gy

})
for connection genes

NV
(
Gy

)
for node genes
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In other words, the diversity is determined by the normalized variance of weights, 
for connection genes, or of enable bits, for node genes, while the usage of a gene is 
determined by its enable bit.

Finally, Tables 1 and 2 summarize the representations, and the diversity and usage 
functions for the six considered EAs.

(15)�(�) = (u1,… , ul) where uy =

{
ey for connection genes

gy for node genes

Table 1   Summary of the EA representations for the considered EAs

EA Description Genotype domain y

GE Bit string {0, 1}

WHGE Bit string {0, 1}

SGE Integer string {0,… , n
opt

h
− 1}

GSGP Weights of initial trees ℕ
+
0

GOMEA Predefined shape tree ⎧⎪⎨⎪⎩

 × {1, 0} for y ≤ 1 + r

 × {1, 0} for y > l − rh

 ∪  × {1, 0} otherwise

NEAT Neural network
{

[−1, 1] × {1, 0} for connections

{1, 0} for nodes

Table 2   Summary of the diversity and usage functions for the considered EAs

EA Diversity dy(Gy) Usage �(�)

GE
1 − 2

|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||
1

maxy∈{1,…,l} cy
�

WHGE
1 − 2

|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||
1

maxy∈{1,…,l} cy
�

SGE 1 − NV(�Gy ,y
) 1

maxy∈{1,…,l} cy
�

GSGP
NV

({
g

maxg�∈Gy
g�
, g ∈ Gy

})
1

maxy∈{1,…,l} gy
�

GOMEA 1 − NV(�Gy ,y
) (a1,… , al)

NEAT
{

NV
({

1+w

2
, (w, e) ∈ Gy

})
for connections

NV
(
Gy

)
for nodes

{
(e1,… , el) for connections

(g1,… , gl) for nodes
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6 � Experimental‑based validation

In this section, we describe the experimental evaluation we performed in order to 
validate the usefulness of the DU map. In particular, we aimed at answering the 
following research questions (RQs):

RQ1:	 Is the DU map useful for unveiling the properties of an EA representation?
RQ2:	 Is the DU map useful for gaining insight into the behavior of an EA run on 

a problem, and for comparing problems?
RQ3:	 Is the DU map useful for choosing EA parameters or components?

To this end, we performed several runs of the six EAs (GE, WHGE, SGE, GSGP, 
GOMEA, and NEAT) on various problems and with different parameter settings.

Overall, we considered several benchmark problems, including synthetic and 
real-life symbolic regression problems, Boolean problems, and alike, for the five 
GP varinats (GE, WHGE, SGE, GSGP, and GOMEA), and a single evolutionary 
robotics problem for NEAT. We here briefly describe the problems—we refer the 
reader to cited papers for more details:

–	 7T4 [49]: a deceptive synthetic problem of seven concatenated trap functions 
of size four;

–	 Airfoil [6]: real-life regression of airfoil self-noise data with five observations 
and 1502 features;

–	 Car [57]: evolution of a NN-based controller for a driverless car (with 15 
inputs and two outputs) aimed at maximizing traffic efficiency and safety;

–	 Concrete [10]: real-life regression of concrete compressing strength data with 
eight observations and 1029 features;

–	 EParity-6 [25]: synthesis of the Even parity 6 Boolean function;
–	 KLandscapes-4 [65]: a synthetic GP benchmark with tunable hardness (we set 

k = 4);
–	 MOPM-2 [69]: synthesis of the multiple outputs parallel 2-bit multiplier 

Boolean function;
–	 Nguyen7 [64]: symbolic regression of f (x) = log (x + 1) + log (x2 + 1) , with a 

training set of 20 points in [0, 2];
–	 Pagie1 [42]: symbolic regression of f (x, y) = 1

1+x−4
+

1

1+y−4
 , with a training set 

of 125 points evenly spaced in [−5, 5] × [−5, 5];
–	 Slump [72]: real-life regression of concrete slump test data with eight observa-

tions and 1029 features.
–	 Text [33]: evolution of the target string Hello world! using a predefined 

grammar with the fitness given by the edit distance to the target string;
–	 Yacht [41]: real-life regression of yacht hydrodynamics data with eight obser-

vations and 1029 features.
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The algorithm parameters that are most relevant for the following discussion, i.e., 
the genotype length l, the number of generations ngen , and the size of the population 
npop , are shown for each EA in Table 3. Recall that l and ngen determine the size of 
the DU map and its aspect ratio. In SGE, l is not set directly but is determined by the 
grammar and the parameter dmax , which we set to 6; similarly, l in GOMEA is deter-
mined by the tree height h, which we set to 6. In GSGP, l is by design equal to npop . 
In NEAT, l depends on the specific run (see Sect. 5.4).

6.1 � RQ1: Is the DU map useful for unveiling the properties of an EA 
representation?

This section shows the DU maps obtained by five different algorithms on the same 
synthetic symbolic regression problem (Nguyen7). Considering the different nature 
of NEAT with respect to all the other algorithms, a different benchmark was used 
for this EA, namely the Car problem.

Figures 5 and 6 show Diversity maps, Usage maps and DU maps for the afore-
mentioned algorithms. Diversity and Usage maps essentially correspond to visualiz-
ing only the corresponding color channel: we show them here to better explain how 
the DU map works.

6.1.1 � Non‑EA‑specific observations

It must be stressed that the considered EAs are based on very different individual 
representations. Moreover, the considered EAs differ also in other components (e.g., 
NEAT incorporates a innovation preservation mechanism, GSGP employs genetic 
operators with geometric properties). Nevertheless, the DU maps shown in Figs. 5 
and  6 share some traits which allow to do some general, high-level observations. 
This is because the diversity and usage functions can be adapted to the specific EA 
to maintain consistency in the semantics of the DU map.

The foremost observation is related to the interplay between diversity and usage: 
in general, the DU maps highlight the fact that the portions of the genotype in which 
the population exhibits significant diversity are those for which the usage is low (i.e., 

Table 3   Most relevant 
parameters of the considered 
EAs (see text for more 
information)

EA l n
gen

n
pop

GE 256 100 500
WHGE 256 100 500
SGE 92 100 500
GSGP 100 50 100
GOMEA 127 100 1024
NEAT 142 300 100
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blue1 regions are larger than white regions)—the phenomenon being particularly 
evident for GE, WHGE, SGE, and GOMEA. It is worth noting that it would be hard 
to spot the interaction between diversity and usage by looking only at the values of a 
diversity measure during the evolution.

Another interesting observation concerns the relative “amount of used geno-
type”, which roughly corresponds to, in a given generation (i.e., column of the 
DU map), the average intensity of yellow. Leaving aside any consideration about 
possible premature convergence to local minima, it can be seen that different 
EAs actually use different amounts of the genotype. For instance, GE uses the 
full genotype, whereas SGE and GSGP only use a small fraction. From another 
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Fig. 5   Diversity maps, Usage maps, and DU maps obtained from one run of GE, WHGE and SGE on the 
Nguyen7 problem (Color figure online)

1  For readability, we use the terms “black”, “yellow”, ”white”, and “blue” for the four colors at the cor-
ners of the color legend (see Fig.  2) corresponding to, respectively, low diversity and low usage, low 
diversity and high usage, high diversity and high usage, and high diversity and low usage.
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point of view, this finding might be an indication that (parameters of) the repre-
sentation need to be fine-tuned (e.g., increase or reduce the number of bits in GE 
[35] or the depth in SGE) in order to allow for a more effective or more efficient 
search.

The final observation we make, is that the DU maps visualize the rate of 
change in the evolution dynamic, giving an indication of when the dynamic is 
reduced to a negligible amount. Essentially, that moment can be inferred by see-
ing when the DU map columns stop varying in colors. For instance, Figs. 5 and 6 
show that for SGE, GSGP, and GOMEA the evolution dynamic becomes negli-
gible after few generations, whereas in GE and WHGE it lasts longer—roughly 
to the first third of the evolution. Differently, NEAT (whose DU map is obtained 
on a very different problem, see Fig. 6) apparently never stops evolving.
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Fig. 6   Diversity map, Usage map, and DU map obtained from one run of GOMEALT on the Nguyen7 
problem and one run of NEAT on the Car problem (Color figure online)
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6.1.2 � EA‑specific observations

Concerning GE, WHGE, and SGE, Fig. 5 shows that the way in which usage varies 
along the genotype is consistent with the respective genotype-phenotype mapping 
functions. In GE, the genotype is used starting from the beginning up to a given 
position (note that in the specific DU map of Fig. 5 no wrapping can be seen). In 
WHGE, the usage of a single gene (bit) is not binary: a wide range of usage values 
can be observed in the corresponding usage map; this is reflected in three different 
colors (yellow, dark yellow and black) in the DU map. In SGE, the genotype is par-
titioned in a number of portions corresponding to grammar non-terminal symbols 
(see Sect. 5.1.3): the DU map reflects this structure because yellow stripes highlight 
the fact that for each possible genotype portion (i.e., non-terminal symbol) only a 
small part is actually used.

With respect to GSGP, the Diversity map of Fig.  5 shows that at in the early 
stages of evolution, individuals present a certain degree of diversity that is com-
pletely lost after (approximately) the first 10 generations. Considering the definition 
of the diversity function, and the behaviour of the GSOs, this finding is somewhat 
expected. In fact, each application of the GSOs creates a new individual that is a lin-
ear combination of the original parent individuals. In particular the offspring stands 
in the middle of the parents in the semantic space. With respect to the genotype, 
the offspring contains by construction the whole structure of the parents plus a ran-
dom tree. Hence, after the application of GSOs, the defined diversity function is able 
to capture this aspect of the evolution. With respect to usage, only a subset of the 
individuals created after initialization is actually used during evolution (those corre-
sponding to the yellow stripes). This is something that can be explained considering 
the constructions of the individuals in GSGP and their fitness. More in detail, each 
application of the GSOs produces a new individual that contains the whole struc-
ture of the parents (hence the initial genes). Moreover, the offspring of the crosso-
ver cannot be worse than the worse of its parents [37], while the mutation operator 
has a probability of 0.5 to improve or maintain the fitness of the current individual. 
Hence, generation by generation, there is an increasing number of the initial genes 
associated to good-quality individuals and the selection process will favour these 
individuals.

The DU map of a run of GOMEALT on Nguyen-7 (see Fig. 6) shows a dichotomy 
between diversity and usage: with few exceptions, active nodes quickly converge, 
while inactive nodes maintain diversity due to a lack of fitness contribution and thus 
a lack of selection bias. This can also be noticed by looking at the diversity and 
usage maps separately. Because the genotype of GOMEA is a level-order encod-
ing of a tree, we can tell which parts of the tree are active in which generation, and 
when they converge. For instance, the evolution of the root is represented in the bot-
tom row of the map. After a few generations, the whole population has the same 
node as root, and will not diverge from it. This is due to the definition of the GOM 
variation operator which does not allow offspring to become worse during variation. 
Moreover, GOM is known to induce high selection pressure, which, in combina-
tion with a FOS that fits the problem at hand well, enables the high performance of 
GOMEA [68]. The top half of the map shows the evolution of diversity and usage of 
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the leaves. Because the single input variable can only be a leaf, diversity is absent. 
On usage, it is possible to see that in the beginning of the evolution few leaves are 
active, and after some generations new leaves are activated. This means that the size 
of individuals quickly grows and then stabilizes, together with the loss of diversity 
in the upper part of the tree.

Finally, concerning NEAT, the DU map in Fig. 6 clearly reflects that this EA is 
based on a very different individual representation. In particular, the fact that NEAT 
genotypes are variable in size shows in the DU map by means of the peculiar shape 
of the non-black region. The DU map for this NEAT run shows that, on the one 
hand, new genes appear over the time (i.e., complexification of the NN topology 
happens); on the other hand, few of the innovations introduced during the evolu-
tion are actually used. We recall that in NEAT, individuals of the initial population 
correspond to NNs with only the input layer, the output layer, and few connections 
between them. The yellow stripes in the bottom-most region of the DU map sug-
gests that, in this particular run, the initial topology essentially remains the same.

6.2 � RQ2: Is the DU map useful for gaining insight into the behavior of an EA run 
on a problem, and for comparing problems?

In this section we show how the DU map can be used to investigate the behavior of 
an EA across different runs on the same problem or on different problems.

6.2.1 � Comparing different runs

Figures 7, 8 and 9 present the results on the Nguyen7 symbolic regression problem 
for multiple runs of WHGE, GSGP, and GOMEA, respectively.

Figure  7 shows the DU maps for different runs of WHGE. Different from 
GSGP and NEAT, but similar to GOMEA (see below), in WHGE the gene index 
matters. Hence, by observing how the usage is distributed along the genotype one 
can reason about the existence of local optima. For instance, Fig.  7 shows that 
the usage in the last generations of Runs 2 and 4 is similar and close to the usage 
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Fig. 7   DU maps obtained from different evolutions of WHGE on the Nguyen7 symbolic regression prob-
lem: the four leftmost maps are related to four different runs; the rightmost map is the average map of 10 
runs (Color figure online)
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obtained by the average DU map; usage of Runs 1 and 3 is different. This may 
corresponds to different (local) optima (1 and 3).

Next, consider the results of GSGP presented in Fig. 8. The first row shows the 
DU maps for GSGP runs with the same initial population, while the second row 
depicts the runs with different initial populations. Starting the analysis from the 
first row, it is possible to see that each run presents a similar degree of diversity. 
Moreover, diversity is lost quickly after a few generations. With respect to usage, 
a subset of the initial individuals is selected to build new, fitter, individuals. It 
is important to underline that this subset varies in a significant way in each run: 
both which individuals are selected as well as how many are selected, differs. 
Initially, all individuals have similar fitness. Hence, tournament selection initially 
selects different individuals with (approximately) the same probability, result-
ing in the observed similarity in diversity. Considering the usage and taking into 
account, for example, Runs 3 and 4, it is possible to see a difference in terms 
of usage, where in Run 3 only a few individuals are largely used, while in Run 
4 there are a lot of individuals that contribute to the creation of new individu-
als. This behaviour is a side effect of the loss of diversity. When this problem is 
particularly relevant (i.e., equal semantics for a vast amount of individuals) a DU 
map similar to the one achieved for Run 3 is obtained. On the other hand, when 
the individuals present different semantics a DU map similar to the one shown in 
Fig. 8 for Run 4 is obtained.
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Fig. 8   DU maps obtained from different evolutions of GSGP on the Nguyen7 symbolic regression prob-
lem, with the same or random initial population: the four leftmost maps are related to four different runs; 
the rightmost map is the average map of 10 runs (Color figure online)
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The same considerations are valid for the second experimental setting, where dif-
ferent initial populations are considered (see the bottom row of Fig. 8). Again, diver-
sity is lost after a few generations, and the usage is different in each run. Also in 
this case, there are runs (for instance Run 3) where the majority of the individuals is 
used to create new individuals by applying the GSOs, and there are other runs (like 
Run 4) where a small subset of the initial individuals is used to drive the evolution-
ary process towards fitter individuals. As previously explained, this relates with the 
selection process and with the definition of the GSOs, where there is an increasing 
number of the initial genes associated to good-quality individuals.

The behavior of different runs of GOMEALT on Nguyen7 is shown in Fig. 9. The 
most evident difference among the runs is in terms of usage, with Run 1 exhibit-
ing considerably more active nodes than the others. Despite these differences, all 
runs found a good approximating function (average mean squared error of 0.0002, 
standard deviation of 0.0003 on the test set). This suggests that the function can be 
efficiently approximated both by small and large trees. Considering the average DU 
map, common patterns of usage can be spotted by looking at yellow bands. In par-
ticular, the top of the tree is always used, followed by an intermittent use of lower 
nodes. Furthermore, we can observe a growth of active nodes in all maps. As to 
diversity, the runs show very similar behavior. The population is initially composed 
by different individuals, but after a few generations, most of the active nodes con-
verge to the same value. Interestingly, we can see that few active nodes maintain 
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Fig. 9   DU maps obtained from different runs of GOMEALT on the Nguyen7 symbolic regression prob-
lem: the three maps of the top row and the first two maps of the second row are related to five different 
runs; the last map of the second row is the average map of 30 runs (Color figure online)
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their diversity during evolution. Possibly these nodes do not have an impact on 
the fitness (e.g., their output is multiplied by the constant 0, generated by a sibling 
node), and computational effort is wasted by parsing their subtree during fitness 
evaluations. Lastly, note that no diversity is present for the leaves, since only one 
node is possible (only one input variable is used as terminal).

6.2.2 � Comparing different problems

This section analyzes the DU maps produced by three of the algorithms on a set of 
selected benchmarks (see Figs. 10, 11 and 12).

The DU maps for WHGE presented in Fig. 10 show how the hierarchical rep-
resentation of this EA is differently exploited in each of the considered problems. 
We recall that in WHGE the usage of a gene (bit) is given by the number of times 
that bit is re-used in the genotype-phenotype mapping and this number itself 
depends on the depth of the corresponding part of the derivation tree. It follows 
that, for WHGE, the usage in the DU map gives an intuition of how balanced the 
derivation trees are in the population. The user might exploit this information 
when adapting the grammar of the problem at hand—a task for which automatic, 
meta-evolution approaches have already been proposed [40]. The maps of Fig. 10 
also show how diversity varies across the problems. E.g., in MOPM-2 there is 
still some diversity in highly used genes in a late stage of evolution: this is an 
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Fig. 10   DU maps obtained from evolutions with WHGE on five different problems (Color figure online)
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Fig. 11   DU maps obtained from evolutions with GSGP on five different problems (Color figure online)
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indication that evolution is still ongoing, a finding which is consistent with the 
fact that MOPM-2 is an hard problem for this EA.

For GSGP, the resulting DU maps present a similar pattern with respect to 
both diversity and usage. In particular, it is possible to see that, over the different 
test problems, a subset of the individuals is used most of the times for creating 
newer individuals. This is a behaviour that is more evident in the yacht dataset 
(Fig. 11) and less evident for the slump dataset. We hypothesize that this different 
behaviour is somehow related to the different effect that GSOs have on differ-
ent problems. For instance, the effect of geometric semantic mutation is strongly 
dependent of the the value of the mutation step, while crossover has a different 
impact on the distribution of the individuals in semantic space for each problem 
[67]. All in all, DU maps are a suitable tool for capturing the main features of 
GSGP, but a future analysis aimed at investigating the effect of the GSOs on the 
search process is needed for a better comprehension of the semantics of DU maps 
for GSGP.

DU maps for one GOMEALT run on four selected problems are shown in 
Fig.  12. Despite the considered problems being very different from each other, 
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Fig. 12   DU maps obtained from evolutions with GOMEALT on four different problems (Color figure 
online)
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the algorithm shows similar behavior on 7T4, Concrete, and Nguyen7. Compared 
to the other experiments, in the EParity-6 map more diversity on the used por-
tion of the genotype can be seen (a larger portion of the DU map is white). This 
aspect corroborates the hypothesis that it is possible to discover equally fit indi-
viduals with different genotypes due to a high redundancy in the genotype-pheno-
type mapping. After roughly half of the evolution, however, the individuals start 
to converge to the same genotype (the diversity is decreased), as shown by the 
white color turning into yellow. In 7T4, only one function node is possible, thus 
diversity in the top of the tree is only related to presence of terminal nodes, and 
is mostly low. For the leaves, which are depicted in the top half of he map, diver-
sity is instead moderate to high. This is due to the fact that the fitness is based 
on the order of the terminal nodes, but not on their exact position. The symbolic 
regressions of Concrete and Nguyen7 have a similar evolution, with a brief first 
phase with high diversity followed by a quick convergence to the same genotype, 
for the majority of the nodes. Despite the fact that the Concrete dataset has eight 
input variables (thus eight possible terminal nodes), the evolution is very similar 
to the one of Nguyen7, where only one variable is possible. This observation sug-
gests that the convergence behavior of GOMEALT is similar on different symbolic 
regression problems.

6.3 � RQ3: Is the DU map useful for choosing EA parameters or components?

To answer this research question, we consider the behavior of GOMEA in tackling 
EParity-6 using different FOS choices. Picking the right FOS can be crucial for the 
effectiveness of GOMEA. If a DU map could provide insight into the effect of a 
particular FOS in terms of evolution of diversity and usage, such insights could 
then be used to determine which FOS to use for what problem, or how to design an 
improved, problem-specific FOS. A similar analysis could be performed with other 
EAs and different parameters or components, but this is outside the scope of this 
paper.

We measured the performance of 30 runs of GOMEA with the four FOS vari-
ants: LT, RT, LTd, RTd. In Table 4 the percentange of successful runs is reported (a 
run is successful if the perfect Boolean formula is found within the last generation). 
These results show that using LTd leads to clearly superior performance, with a suc-
cess rate of 0.87. The adoption of the LT leads to the second best performance with 
a success rate of 0.40, followed by the RT and RTd, with success rate of 0.23 and 
0.03, respectively.

Table 4   Success rate for 
GOMEA on EParity-6 problem 
using LT, RT, LTd, and RTd

FOS Success rate

LT 0.40
RT 0.23
LTd 0.87
RTd 0.03
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Figure 13 shows, for each FOS, a DU Map of the average of the 30 runs. The 
maps obtained by using RT and RTd are extremely similar. While using the RTd 
leads to better conservation of diversity, using the RT leads to a similar behavior. 
In particular, the minimum diversity of the root for the runs with RT is 0.964 in 
the last generation (with RTd it is 0.998, given by the initial sampling of the pop-
ulation). However, RT performs statistically better than RTd in terms of success 
rate, which is in contrast with the fact that the DU Maps are nearly identical. A 
possible explanation of this fact is that while not possible with RTd, with RT the 
root can be swapped (together with other nodes at the same time), and this allows 
for the discovery of more fit individuals. However, diversity can remain high, 
with the RT being a random set of crossover masks which are different every gen-
eration. Hence, this is a type of performance improvement that cannot necessarily 
be detected by studying DU maps.

When using the LT, usage follows a similar pattern, but the evolution of 
diversity is dramatically different. Here, GOMEALT exhibits a markedly dif-
ferent convergence behavior compared to GOMEART and GOMEARTd. Due 
to the high selection pressure of GOM, the pattern of nodes with a positive 
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Fig. 13   Average DU maps obtained on 30 runs of GOMEA using different choices of FOS on EParity-6 
(Color figure online)
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contribution to the fitness quickly spread in the population, and the interde-
pendencies among those nodes are captured by mutual information. Because the 
LT is built from this information the hierarchical crossover masks are made to 
mix individuals according to these patterns. Therefore, there is a mutual, rein-
forced convergence of genotype and the structure of the LT itself in GOMEALT, 
which results in the rapid loss of diversity. This can be clearly seen in the DU 
map. It should be noted that this type of diversity loss is desirable as it is the 
result of extremely effective mixing behavior as a result of the right patterns 
being present in the population and being correctly modeled by the LT. Indeed, 
the fast convergence of GOMEALT does not compromise the success rate when 
compared with GOMEART and GOMEARTd. Rather, using the LT results in the 
second-best performance. This means that, almost half of the times (0.4 success 
rate), the right patterns are present in the population and are correctly modeled 
by the FOS. We hypothesize that either the correct information is present in the 
population, and a perfect solution is quickly found, or the wrong information is 
modeled and GOMEALT quickly converges to a suboptimal solution. If a larger 
population size were to be chosen, the performance of GOMEALT will increase 
because it enables more robust learning of the salient linkage information, and 
the consequent propagation of the correct patterns of nodes. This result was 
experimentally shown on different problems by adopting a framework of multi-
ple interleaved runs with increasing population size (and tree height) [68]. Here, 
we consider only a single population size however. By looking at the DU map 
of GOMEALT, we can see that, on average, the population almost completely 
converges in roughly the first quarter of the evolution. The improvement that can 
be achieved during the subsequent generations is likely to be minimal. This is 
a key insight to improve the performance of GOMEALT: given the same budget 
(i.e., evaluations or time), it is better to use a bigger population size for less 
generations.

Together with increasing the population size, another way to provide GOMEA 
more time to find the salient building blocks to be used in GOM before selection 
drives the population to convergence, is to promote diversity. The compromise 
in this respect that is achieved by LTd can be seen in the respective DU map. 
The use of LTd results in the best performance for this problem, with a suc-
cess rate close to 0.9. The simple diversity mechanism consisting of excluding 
the root from the FOS forces GOMEALTd to look for different solutions to the 
problem, namely one per different value that the root can have (i.e., the number 
of functions in the function set). The map shows that this moderates the conver-
gence of the whole genotype. It could be said, therefore that the DU map in this 
case makes the interplay between selection pressure, proper mixing, and diver-
sity maintenance clear, and a correspondence with the ultimate EA performance 
can be observed. It should be noted, however, that to find which type of FOS 
truly leads to the best possible performance (i.e., finding the optimum within the 
least number of evaluations), the influence of the population size should also be 
considered.
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7 � User‑based validation

We performed an online user study to assess the usability and the usefulness of the 
DU map. The user study consisted of a questionnaire which we built guided by the 
literature sources [5, 7, 39, 46]. We shared the questionnaire through our personal 
network of colleagues at different research institutions and through the GP mailing 
list2 collecting 34 responses. We stress the fact the respondents filled the question-
naire online without any influence from our side: i.e., the study was not a controlled 
user study. We made the complete set of answers publicly available.3

The questionnaire consisted of four parts. The first one introduced the DU map, 
provided a tutorial of the DU map (similar to Fig.  3), and asked the participants 
about their expertise level. The second part tested the comprehension of the DU 
map, showing visualizations and asking whether considerations on diversity and 
usage are true or false. This part aimed at assessing whether the participants were 
effectively capable of inferring the correct information from the visualizations. Also, 
the second part asked the participants which of the three different color options they 
used to answer the questions (Sect. 4.1). The third part asked the participants about 
their opinion on the usefulness of the DU map. The fourth and last part was the Sys-
tem Usability Scale (SUS) [2, 5], a widely applicable questionnaire which is often 
adopted to assess the usability of a system.

7.1 � Questionnaire results

In the first part, 67.6% of the respondents declared to be experts in EC, and only 
5.9% considered themselves not experts. The remaining neither agreed nor disagreed 
with this definition ( 26.5% ). For the genotype-to-phenotype mappings, 23.5% of 
respondents stated to be experts, while the others were equally divided between not 
experts and in-between ( 38.2% each).

The summary of the results from the comprehension tests of the second part of 
the questionnaire are reported in Table 5. Each of the three proposed tests contained 
four or five statements and the users were asked whether they agree with those state-
ments (three possible answers were given: “yes”,“no” and “I don’t know”). For 
instance, one statement was “Diversity of the used genes lasts longer in the DU map 

Table 5   Percentage 
of correct, wrong, and 
unanswered responses to each 
comprehension test of the 
questionnaire

Test Correct Wrong Unanswered

1 92.9 6.5 0.6
2 82.4 9.5 8.1
3 86.5 8.8 4.7

2  http://www.genet​ic-progr​ammin​g.org/gpmai​lingl​ist.html.
3  http://machi​nelea​rning​.ingin​f.units​.it/data-and-tools​/unvei​ling-evolu​tiona​ry-algor​ithm-repre​senta​tion-
with-du-maps.

http://www.genetic-programming.org/gpmailinglist.html
http://machinelearning.inginf.units.it/data-and-tools/unveiling-evolutionary-algorithm-representation-with-du-maps
http://machinelearning.inginf.units.it/data-and-tools/unveiling-evolutionary-algorithm-representation-with-du-maps
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1 than in the DU map 2” in a test showing two DU maps. The table shows, for each 
test, the percentage of answers. Overall, participants were typically able to answer 
correctly, and performed slightly better on Test 1, where considerations on a single 
map were presented. Test 2 and 3 showed two DU maps and asked questions regard-
ing their comparison, thus they may be considered harder than Test 1. Interestingly, 
the percentage of 87.3% correct answers over the three tests is substantially higher 
compared to the number of respondents who declared to be experts in EC ( 67.6% ), 
and to the number of genotype-to-phenotype mappings experts (only 23.5%).

After each of the three tests, we asked which color scheme the respondent used to 
answer the questions among the three presented in Fig. 14. Multiple answers were 
allowed. The most used scheme was option b, which was used 50.0% of the time. 
Slightly less preferred was option c, with 48.0% ; the last one was option a, picked 
38.2% of the time. We used this feedback to improve the representation of the DU 
map compared to its original form [35]: we opted for option c as it was only slightly 
less popular than option b, but it allows people with color vision deficiencies to use 
the tool. We remark that the maps appeared in the questionnaire in the same order 
for all the participants and that it is fair to assume that most of them read from left to 
right. This may have resulted in a bias in the choice of the preferred color schemes 
and is hence a limitation of this user study.

The third part of the questionnaire consisted of four statements where the 
respondents could pick among five options, ranging from “completely disagree” to 
“completely agree”, plus two open questions about the weak and strong points of the 
DU map. Figure 14 shows the distribution of responses of the four statements. Over-
all, the responses support the idea that the DU map is an useful tool.

The majority of the respondents agreed (or totally agreed) that the DU map 
allows to spot the interplay between diversity and usage (Statement 1, 70.6% ). This 
is important as it is the main contribution of the DU map. When dealing with an 
algorithm that is well known to the respondent, the majority thought that the DU 

Fig. 14   Violin plot indicating the responses to the 4 statements of the third part of the questionnaire. The 
purple shape represents the overall distribution of the results. White points are the responses
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map could still give extra insight (Statement 2, 58.9% ), although one third was not 
sure about this ( 35.3% ). This is the weakest score among our statements. Zooming 
in by taking into account expertise, it shows that users with high expertise thought 
that the DU map can provide further insights even for familiar algorithms in a larger 
percentage (65.2 and 75.0% for experts in EC and genotype-to-phenotype mapping, 
respectively). This suggests that more experienced users can better appreciate the 
contribution of the DU map. Statement 3 proposed one of the practical uses that the 
DU map can have, i.e., understanding if the evolution is stagnating. Respondents 
mostly agreed that the DU map can be useful with respect to this issue ( 73.5% ). 
The last statement explored the usefulness of the discrete versions of the DU map 
(option b and c) compared to the continuous version (option a). The users clearly felt 
that the discrete versions bring enough information, which supports the adoption of 
the option c.

Concerning the two open questions about the weak and strong points of the DU 
map, we collected several interesting responses. Many respondents said that being 
able to understand a DU map may require some practice: e.g., “As a first time user, 
I kept going back and forth to the legend to decipher the graphs”, and “It takes 
some time to understand what is going on, if you haven’t seen them before”. On the 
other hand, respondents appreciated the fact that the DU map can deliver a quick 
overview of a run: e.g., “It concisely displays information about all generations of 
an algorithm”, and “A nice succinct presentation of the genotype usage during the 
evolution”.

The fourth and last part of the questionnaire was the SUS. The SUS asked the 
respondents wether they agree or disagree with ten statements on the usability of 
a system, using the a scale of five possibilities ranging from “strongly disagree” to 
“strongly agree”. The SUS is used in many different domains as its questions are 
very general, and it can be very accurate even when a limited number of responses 
are collected [5]. We remark that we modified two questions of the SUS as they did 
not apply to the DU map, as the latter is a visualization tool rather than a system. 
The statement “I found the various functions in this system were well integrated” 
was modified to “I find different DU Maps are easy to compare”, and “I thought 
there was too much inconsistency in this system” was modified to “I think there is 
too much inconsistency to compare different DU Maps”. By using the SUS, a score 
ranging from 0 to 100 can be computed. The DU map scored, on average among 
all participants, 65.7 (with a standard deviation of 17.0). This score is considered a 
positive score (which start above 50), albeit not excellent [2].

8 � Concluding remarks

Understanding if and why an EA is capable of (efficiently) solving a certain prob-
lem is a cornerstone research question of the field. Moreover, figuring out how 
to best fine-tune parameters of an EA is a time-consuming task. Tackling both of 
these issues could well be supported by the use of adequate and insightful visuali-
zation tools. In this article, we have considered the Diversity and Usage map (the 
DU map), a visualization tool that focuses specifically on representations, one of the 
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most prominent components of any EA. In particular, the two goals targeted by the 
DU map, at the same time, are (1) to convey detailed information about the internal 
workings of an EA using key, well-understood concepts in the EA field and (2) to 
have the same semantics for widely varying EAs. No other visualization tools have 
been proposed that tackle these goals simultaneously.

We improved the DU map, hence extending the previous work by Medvet and 
Tušar [35], in two ways. First, we greatly extended the applicability of the DU map 
by making its definition more general. We also showed how to apply it to six EAs 
that use considerably different representations (bit and integer strings, trees, ensem-
ble of trees, and neural networks). Second, we better grounded the DU map as a 
visualization tool by discussing in detail its purpose and design rationale. In particu-
lar, we performed an online user study that involved 34 EC researchers in order to 
assess the perceived usefulness of the DU map and validate its main design choices.

The outcome of our experimental validation and of the user study show that by 
inspecting DU maps users may better understand the impact of using certain repre-
sentations, parameter settings, or components on the evolutionary process. As such, 
we believe that the DU map offers clear added value to tools that are currently avail-
able to users, practitioners, and researchers who wish to unveil key properties of 
the EAs that they are designing and analyzing. From a broader point of view, we 
have shown that visualization tools may be very useful to EC practitioners and that 
designing and assessing those tools based on visualization practices can improve 
their quality and applicability, and favor their adoption.

We also discussed possible improvements to the DU map, including those intro-
ducing some form of interaction. Motivated by the perceived usefulness of the DU 
map in investigating the individual representation in terms of diversity and usage, 
other researchers could propose similar visualization tools able to deliver in a suc-
cinct view important information about EAs and/or to aid practitioners in specific 
analysis tasks, e.g., fitness landscape analysis.
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