
Vol.:(0123456789)

Genetic Programming and Evolvable Machines
https://doi.org/10.1007/s10710-018-9332-5

1 3

Unveiling evolutionary algorithm representation with DU
maps

Eric Medvet4  · Marco Virgolin1 · Mauro Castelli2 · Peter A. N. Bosman1 ·
Ivo Gonçalves3 · Tea Tušar5

Received: 15 December 2017 / Revised: 11 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Evolutionary algorithms (EAs) have proven to be effective in tackling problems in
many different domains. However, users are often required to spend a significant
amount of effort in fine-tuning the EA parameters in order to make the algorithm
work. In principle, visualization tools may be of great help in this laborious task,
but current visualization tools are either EA-specific, and hence hardly available to
all users, or too general to convey detailed information. In this work, we study the
Diversity and Usage map (DU map), a compact visualization for analyzing a key
component of every EA, the representation of solutions. In a single heat map, the
DU map visualizes for entire runs how diverse the genotype is across the population
and to which degree each gene in the genotype contributes to the solution. We dem-
onstrate the generality of the DU map concept by applying it to six EAs that use dif-
ferent representations (bit and integer strings, trees, ensembles of trees, and neural
networks). We present the results of an online user study about the usability of the
DU map which confirm the suitability of the proposed tool and provide important
insights on our design choices. By providing a visualization tool that can be easily
tailored by specifying the diversity (D) and usage (U) functions, the DU map aims at
being a powerful analysis tool for EAs practitioners, making EAs more transparent
and hence lowering the barrier for their use.

Keywords  Representation · Diversity · Usage · GE · WHGE · SGE · GSGP ·
GOMEA · NEAT · Visualization · Heat maps

Electronic supplementary material  The online version of this article (https​://doi.org/10.1007/s1071​0-
018-9332-5) contains supplementary material, which is available to authorized users.

 *	 Eric Medvet
	 emedvet@units.it

Extended author information available on the last page of the article

http://orcid.org/0000-0001-5652-2113
http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-018-9332-5&domain=pdf
https://doi.org/10.1007/s10710-018-9332-5
https://doi.org/10.1007/s10710-018-9332-5

	 Genetic Programming and Evolvable Machines

1 3

1  Introduction

Visualization is a powerful tool for supporting reasoning and is often used to gain
insight into the workings of Evolutionary Algorithms (EAs). Over the years, sev-
eral visualization tools for the analysis of EAs have been proposed [8, 12, 18, 22,
23]. They generally provide exploration of EAs properties at two levels, that of
single solutions (heavily dependent on solution representation) and entire pop-
ulations (mostly showing how the fitness improves over generations). Some of
these tools [8, 12, 18, 31] specifically support visualization of the genetic herit-
age between parents and their offspring and entire ancestry of selected solutions.
While providing a lot of useful information and allowing certain in-depth analysis
of the progress of an EA, existing tools fall short in providing insights about the
appropriateness of solution representation, a component of EAs which has always
be of prominent importance [47, 53].

A representation-focused analysis of EAs can be performed by exploring how
populations evolve at the genotype level. In particular, we are interested in the
diversity and usage of the genotype in the populations, and their interplay. Under-
standing how diversity changes during evolution can be used to adapt EA param-
eters so that the desired balance between exploration and exploitation is achieved
[54]. On the other hand, analyzing the usage of the genotype can help tailor the
representation to the problem at hand by fine tuning some EA-specific parameters
(e.g., the genotype size [36]). In addition, inspecting diversity and usage concur-
rently can reveal further important information. For example, if the entire diver-
sity of the genotype in the population is concentrated at an unused portion of the
genotype, this means that there is no actual diversity in the solutions.

Different diversity measures can be defined and tailored according to the par-
ticular EA in analysis. For instance, considering Grammatical Evolution, one
possible way to measure the diversity of the genotype in the population relies in
counting the different values a gene takes for all the individuals in the popula-
tion (a high number of different values corresponds to high diversity). Similarly,
one viable option to compute the usage of the genotype consists in computing
how many times each gene is used while building the solution. After the diversity
and usage have been calculated, they can be visualized. The Diversity and Usage
map (DU map), first presented by Medvet and Tušar [35], serves exactly the
purpose of jointly visualizing genotype diversity and usage for each generation,
thus showing how they change during evolution. The DU map was conceived for
Grammatical Evolution [48], an EA based on an indirect representation affected
by a high representation redundancy [33, 60].

This paper substantially extends and improves the original formulation of the
DU map. First, we greatly widen the applicability of the DU map, which was
designed specifically for variants of Grammatical Evolution, by making its defini-
tion and building process more general. In particular, we show how to build DU
maps and how to interpret them in terms of usage and diversity according to the
particular representation used by six very different EAs. Second, we improve the
design of the DU map by considering guidelines from visualization literature [4,

1 3

Genetic Programming and Evolvable Machines	

39], and by incorporating feedback from an online user study we designed to vali-
date our contribution. To the best of our knowledge, our work is one of the few in
the EC area with a methodical evaluation of the visualization tool.

Concerning the generalization and extension of the DU map to other EAs, we
considered six EAs which use widely different representations: genotypes are
defined as bit and integer strings, trees, ensemble of trees, and neural networks.
The selected algorithms are:

–	 Grammatical Evolution (GE) [48], an EA that uses a context-free grammar to
map fixed-length genotypes into phenotypes, in three variants: original GE,
Structured Grammatical Evolution (SGE) [28] and Weighted Hierarchical
Grammatical Evolution (WHGE) [34];

–	 Geometric Semantic Genetic Programming (GSGP) [37], a Genetic Program-
ming (GP) variant that uses geometric semantic operators instead of the tradi-
tional GP operators;

–	 Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [68], an EA
that performs variation by modelling and exploiting problem structure at the
level of dependencies between genes;

–	 Neuro-Evolution of Augmenting Topologies (NEAT) [56], an EA which simul-
taneously evolves the topology and weights of a Recurrent Neural Network
(RNN).

We first define genotype diversity and usage for all the algorithms, showing how
to adapt the DU map to these different representations. Then, we construct and
extensively analyze many DU maps for those EAs applied to different problems
with different parameter settings. Finally, by carefully analyzing the outcomes of
the experiments and of the responses to the questionnaire we attempt to answer
the following research questions (RQ):

RQ1:	 Is the DU map useful for unveiling the properties of an EA representation?
RQ2:	 Is the DU map useful for gaining insight into the behavior of an EA run on

a problem, and for comparing problems?
RQ3:	 Is the DU map useful for choosing EA parameters or components?

We find that, despite the large differences in the considered EAs, the DU map
can be used for both drawing quick, high-level, and general conclusions and for
extrapolating low-level, EA-specific considerations, in particular those allowing
for an immediate understanding of the interplay between genotype diversity and
usage. We hence believe that the proposed visualization may serve as a valuable
tool for EA users, practitioners, and researchers.

The remainder of this article is organized as follows. Section 2 lists the tasks,
defined according to an established taxonomy, that can be performed with the
DU maps, motivating the need for this tool. Section 3 briefly surveys the state-
of-the-art in the visualization of EAs. Section 4 presents the general definition of
the DU map, discuss its design choices, and provides a brief tutorial of its usage.

	 Genetic Programming and Evolvable Machines

1 3

Section 5 describes how the DU map is applied to each of the aforementioned
EAs. Section 6 shows the experiments on a number of benchmark optimization
problems. Section 7 illustrates the user study which we conducted in the form
of a questionnaire and presents the results. Finally, we draw the conclusions in
Sect. 8.

2 � Supported visualization tasks

This section specifies which visualization tasks are supported by the DU maps fol-
lowing the visualization task taxonomy from Munzner’s book [39]. We consider the
three levels of actions that define user goals.

At the highest level, the DU maps were conceived to consume information. More
specifically, the DU maps can be used for discovering new knowledge as well as pre-
senting it to others. For example, when researchers visualize their algorithm results
through the DU maps, they are able to make new discoveries, such as finding out
whether the diversity of the genotype is located at a used portion of the genotype or
an unused one, and test their hypotheses, such as confirming that changing a param-
eter of the algorithm has the expected effect on the diversity of the genotype. After
such knowledge has been discovered, the same maps can be exploited for presenting
this knowledge to the scientific community.

At the middle level, the DU maps support the following search tasks: locate
(target known, location unknown), browse (target unknown, location known) and
explore (target and location unknown). An example of a locate search task is finding
the generation at which the evolution stagnates, or alternatively, finding the location
of the genes that are used and have a high diversity. As an illustration of the browse
task, consider the task of determining the usage and diversity of a specific portion
of the genotype. Next, the task of finding out whether the genotype has different
degrees of usage is an example of the explore task.

At the lowest level, the DU maps can be used to query at all three scopes, i.e.,
identify, compare, and summarize. For example, users can identify the diversity
and usage for each genotype position and generation. They can compare the diver-
sity and usage between different portions of the genotype, different generations and
even different DU maps. Finally, the DU map summarizes diversity and usage of the
entire genotype across all generations.

While the three research questions posed in the Introduction are concerned mostly
the high-level task of discovering knowledge, the experimental-based validation in
Sect. 6 and the user-based validation in Sect. 7 comprise all three levels of actions.

3 � Related work

This section presents a short overview of visualization methods designed to facilitate
the understanding of the workings of EAs. More attention is devoted to techniques
that are especially related to DU maps, either because they showcase the diversity

1 3

Genetic Programming and Evolvable Machines	

of individuals within the population [3, 15, 45, 61] or use color to convey multiple
pieces of information [19].

Being population-based, EAs can be visualized on two levels—on the level of
single individuals (such as the currently best solution) and that of entire popula-
tions. Regardless of the perspective, the choice of the visualization method heav-
ily depends on the solution encoding. Some often used representations are simple
“zebras” and Gonzo’s search space view for binary encodings [11, 22, 71], paral-
lel coordinates and heat maps (also called matrix charts or density plots) for real-
valued genotypes [23], graphs and trees for discrete optimization problems [12, 61],
radial trees for genetic programming [13, 26], and domain-specific representations
for some real-world problems [21, 38, 50, 63]. In multi- and many-objective prob-
lems, the focus of the analysis, and consequently visualization, shifts to the objective
space and the challenge of visualizing high-dimensional Pareto front approximations
[62].

To ease visualization, populations of multidimensional individuals are often pro-
jected onto a 2-D space [29, 30, 51]. Although projections inevitably cause some
loss of information, they enable to trace the improvement of individuals during
evolution in the form of trajectories [43, 44]—a technique predominantly used in
visualization of swarm algorithms [20, 24]. While trajectories show the evolution
of individuals from a global viewpoint, some visualization tools support in-depth
analysis of the relations between parent and offspring individuals, and exploration
of the ancestry of the chosen (usually best) solution [8, 12, 18, 31]. Other research
focuses on visualizing the balance between exploration and exploitation during the
optimization [1, 27], which is closely related to the diversity of individuals.

In most visualization tools, diversity is not specifically tackled, but can be
inferred from concurrently visualizing all individuals in the population (the user is
able to see that a population has a high or low diversity by visual inspection). Only
a few studies have explicitly defined and visualized diversity [3, 15, 45, 61]. When
specified as a measure on the population, diversity can be visualized with the same
techniques as the fitness of the best solution, for example, with a simple line graph
showing how it changes during the evolution [3]. Diversity can also be computed
by measuring the distances between pairs of individuals and then visualized with
line graphs and heat maps [45], or more elaborately, using a similarity-preserving
mapping to 2-D that positions similar individuals in clusters [15]. Another option is
to define diversity based on the occurrence of symbols in the genes, in which case
a heat map can be used to illustrate how diversity evolves for each gene separately
[61]. This approach is used in our diversity map.

The DU map presented in this paper is a population-level visualization method
that uses color to convey both diversity and usage in a single heat map. To the best
of our knowledge, the only other approach that employs a similar idea of combin-
ing two measures in one color (the so-called bivariate map) is the visualization with
pseudo-color [19]. There, individuals are encoded as binary strings and the popu-
lation is presented in a heat map with one individual per row. The color of each
gene is determined depending on its value and the objective and fitness values of the
solutions—a distinction is made between the objective and fitness values to accom-
modate for problems where the fitness value contains some other information in

	 Genetic Programming and Evolvable Machines

1 3

addition to the objective value, such as a penalty determined through expert knowl-
edge of the problem. First, a gene is colored either in blue (value 0) or red (value 1).
Then, these two basic colors are modified for the whole row in hue and brightness
depending on the solutions’ objective and fitness values, respectively. Our approach
differs from the one proposed by Ito et al. [19] in two aspects: (1) a single DU map
visualizes the entire evolution, not just one population; and (2) color is assigned for
each gene separately and is based on its diversity and usage rather than on its value
and the fitness and objective of the solution.

4 � DU map: overview

In this section, we describe how a DU map is built from a run of an EA. To this
end, we first define the class of EAs to which the DU map can be applied. Then, in
Sect. 5.1 and following sections, we show how to apply the DU map to some consid-
erably different EAs: GE in three variants, GSGP, GOMEA, and NEAT. A prototype
implementation of the procedures needed to obtain the DU map out of a run of these
EAs is publicly available at https​://githu​b.com/ericm​edvet​/evolv​ed-ge.

The DU map applies to EAs in which a population of individuals, each one
described by a fixed-length genotype of length l, evolves for a number ngen
of generations. We denote by Px the population of the xth generation and by
� = (g1,… , gl) ∈ 1 ×⋯ × l the genotype of individual � ∈ Px . Each gene gy of
� takes a value from a set y , the gene domain. The actual domain 1 ×⋯ × l of
the entire genotype depends on the specific EA to which the DU map is applied
(possibly 1 = ⋯ = l ), whereas the values for ngen and l depend on the specific EA
run—they are, usually, part of the EA parameters.

The DU map may also apply to EAs for which the genotype length is not fixed,
by considering the longest length observed during the run. In Sect. 5.4 we show an
example of such an approach with NEAT. Note also, that the population size can be
variable.

Two functions have to be defined for applying the DU map to an EA: the diver-
sity function and the usage function. The diversity function dy ∶ ℕ

y → [0, 1] ,
where ℕy is the set of all the multisets of cardinality |Px| built from values in y ,
measures how diverse is the set Gy = {g1

y
,… , g

|Px|
y } ∈ ℕ

y of the values of the yth
gene in the population Px : the closer the value of dy(Gy) to 1, the greater the diver-
sity of Gy . In general, up to l different diversity functions can be used, in order to
accommodate the possibly different domains for the l genes. The usage function
� ∶ 1 ×⋯ × l → [0, 1]l measures the degree uy(�) ∈ [0, 1] to which the yth gene
gy contributes to the solution represented by � . The closer the value of uy(�) to 1, the
larger the contribution of the gene gy to the solution and, from another point of view,
the greater the usage of gy by the EA in building the solution represented by � . The
actual form of the functions dy and � depends on the specific EA and on the specific
aspects of the run which one wants to investigate using the DU map.

The application of the DU map to the results of an EA run consists in building
a rectangular heat map of size ngen × l out of sequential populations P1,… ,Pngen

https://github.com/ericmedvet/evolved-ge

1 3

Genetic Programming and Evolvable Machines	

using the functions � and dy (see Fig. 1). We remark that only the genotypes of
the individuals of each population Px are needed: no other data (e.g., fitness val-
ues, ancestry) is required. Each point (x, y) in the map takes a color (ired, igreen, iblue)
in the RGB space depending on its coordinates x and y, as follows:

where � is the genotype of the individual in the population Px of the xth generation,
gy is the yth gene of � , and uy(�) is the yth component of �(�).

In other words, each row of the map (points with the same y coordinate) is
related to exactly one gene index in the genotype: the red and green color intensi-
ties of the points in the row show how diversity and average usage, respectively,
of the yth gene varied during the evolution. Each column in the map (points with
the same x coordinate) is related to a generation of the evolution: the red and
green color intensities of the points in the column show how the diversity and
average usage, respectively, vary along the genotypes of the individuals of the

(1)ired = dy({gy;� ∈ Px})

(2)igreen =
1

|Px|
∑
�∈Px

uy(�)

(3)iblue = 0

g1l . . . g . . . g
|Px|
l

...
. . .

. . .
...

. . . g . . . g

...
. . .

. . .
...

g11 . . . g . . . g
|Px|
1











Population Px of xth generation

g1y g
| |
y

gjl

...

...

gj1

gjy

ul(g1) . . . u . . . ul(g|Px|)

...
. . .

. . .
...

. . . u . . . u

...
. . .

. . .
...

u1(g1) . . . u . . . u1(g|Px|)











. . . uy(g|P |uy(g1) . . .)

ul(gj)

...

...

u1(gj)

uy(gj)

u(gj)

0 x ngen
0

y

l

Generation

G
en

e
in
de

x

dy({gy ;g ∈ Px})

1
|Px|

g∈Px

uy(g)
Px

Px

Fig. 1   A schematic representation of how the DU map is obtained: red and green intensities for the point
at (x, y) are computed by considering the yth gene of the individuals at the xth generation through the
expressions of Eqs. 1 and 2, respectively (Color figure online)

	 Genetic Programming and Evolvable Machines

1 3

xth generation. Figure 1 summarizes how the color intensities for each point are
computed.

All of the DU maps in this work are built in the so-called offline mode—after the
algorithms have stopped and produced all the required data. Note however, that since
computing diversity and usage depends only on the data of the current population,
this could be easily adjusted to enable online analysis of algorithm performance.

4.1 � Design choices

In a preliminary phase, we explored some alternatives of the main design choices
concerning the DU map. In particular, we focused on the orientation of the map and
on the color encoding of the information.

Concerning the orientation, an alternative option is to swap the two axes, i.e.,
visualize the generation along the y-axis and the gene index along the x-axis. DU
maps built according to this alternative design deliver exactly the same information
of their swapped counterparts. Yet, we opted for visualizing the generation along
the x-axis, because the x-axis usually represents time and the EC practitioners are in
general familiar with this way of visualizing how the population changes during the
evolution (i.e., plotting the evolution). The most prominent example is the simple
line plot of the fitness of the best individual at a given generation (on the y-axis) ver-
sus the generation (on the x-axis), a plot which is proposed as a debugging tool by
many introductory EC texts, e.g., [14, 16, 32].

Concerning the color, we experimented with some alternative ways of encoding
the diversity and usage values through colors, i.e., alternative ways of setting the
values of (ired, igreen, iblue) for each point. In particular, we considered (a) the design
choice presented above, (b) a variant in which the red and green channels are dis-
cretized (on three levels each) and (c) a variant using a hue-based, color-blind-safe
discretized color scheme [4]. Figure 2 shows an example of a DU map and the corre-
sponding legend for the color encoding for the three options. We verified, by means
of an online user study involving 34 users (see Sect. 7 for a detailed discussion about
the questionnaire and the corresponding findings), that the DU map can deliver use-
ful information regardless of the color encoding. The respondents expressed prefer-
ence for the two discretized options, with the option b being slightly favored over
option option c. However, in order to support users with color vision deficiencies,
we show the maps using option c in the reminder of the paper.

Finally, we also considered the possibility of adding interactivity to the DU
map. A first option would be to interactively display information that is already
present in the map, e.g., showing the generation number, the gene index, and
the corresponding diversity and usage values as the user moves the pointing
device over the map. A second option would be to interactively change the dis-
cretization of colors (either going from less colors to more or vice versa). A
third option would be to use interactivity for gaining additional information at
the granularity level of single individuals. For instance, when the user clicks
on a map cell in the xth generation, an additional visualization would present
the usage across the entire population at that generation. We argue that similar

1 3

Genetic Programming and Evolvable Machines	

proposals could possibly further extend the usefulness of the DU map, but we
did not explore them in this work. On the other hand, the fact that the DU map
is not interactive might enable its wider adoption among scholars and practition-
ers because static images are more easily embedded in scientific documents and
technical reports.

4.2 � Example of how to read a DU map

We provide an example of how a DU map could be used for gaining insights
about a run of an EA. Figure 3 shows an example DU map: four regions of the
map are highlighted by means of red boxes and a possible interpretation of each
of those regions of the map is shown in the form of a short informal text.

The texts in Fig. 3 mention all four information elements contained in a DU
map: the gene index, the generation, the diversity, and the usage. In particu-
lar, the bottom right text concerns both diversity and usage and suggests that
some interplay among them could be inferred. Obviously, deeper insights can be
obtained only upon more profound knowledge of the underlying EA.

Option a Option b Option c

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 0.5 1
0

0.5

1

Usage

D
iv
er
si
ty

Low Med High

L
o
w

M
e
d

H
ig

h

Usage

D
iv
er
si
ty

Low Med High

L
o
w

M
e
d

H
ig

h
Usage

D
iv
er
si
ty

Fig. 2   The three alternative options for the color encoding: example DU map (above) and color legend
(below). The three DU maps were obtained from the same run (Color figure online)

	 Genetic Programming and Evolvable Machines

1 3

5 � DU maps: application to EAs

5.1 � DU map on GE

Grammatical Evolution (GE) [48] is an EA which operates based on an indirect
representation. Individuals are represented as bit strings which are then translated,
according to a genotype-phenotype mapping function, into strings of a user-provided
language defined by means of a context-free grammar (CFG). Because of its map-
ping function, GE can be applied to a wide class of problems—namely all the prob-
lems whose solutions can be described using a CFG—without requiring the user to
choose problem specific genetic operators. On the other hand, the same mapping
function has been shown to scarcely adhere to the variational inheritance principle
[70], which states that offspring should closely resemble, but not be identical to their
parents [14]. As a consequence, many improvements of GE have been proposed:
in this study we consider the original GE and two recent improvements, Structured
Grammatical Evolution (SGE) [28] and Weighted Hierarchical Grammatical Evolu-
tion (WHGE) [34]. The DU map is particularly suited to investigate the different
mappings of GE variants and the related impact on the diversity of the population.
We briefly describe the three variants and how we defined the diversity and usage
functions for them.

5.1.1 � GE

The genotype-phenotype mapping function of the original GE consumes the genes
in the genotype (i.e., bits in the bit string) in groups of 8 (each called codon) in
order to choose one of the options in the grammar derivation rule for the leftmost
non-terminal in the phenotype. If the end of the genotype has been reached and at
least one non-terminal still exists in the phenotype, genes are reused starting from

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

At the beginning of the evo-
lution, the diversity is high
along the entire genotype.

The bottom part of the geno-
type is much less used than
the remaining part.

In the middle part of the
genotype, diversity decreases
and usage increases after only
a few generations.

No visible changes occur in
diversity and usage in the last
third of the evolution.

Low Med High

L
o
w

M
e
d

H
ig

h

Usage

D
iv
er
si
ty

Fig. 3   An example DU map with some possible qualitative interpretations (Color figure online)

1 3

Genetic Programming and Evolvable Machines	

the beginning of the genotype—this operation being called wrapping. A maximum
number nwrap of wrappings is allowed: if exceeded, the mapping is aborted and the
worst possible fitness is associated with the corresponding individual.

With respect to the DU map, in GE 1 = ⋯ = l = {0, 1} (i.e., all genes take val-
ues from the binary alphabet), and we define the diversity and usage functions as
follows:

where cy ∈ ℕ
+
0
 is the number of times the yth bit has been used during the mapping.

Concerning the diversity function, it can be observed that dy(Gy) = 0 if and only if
all bits in Gy are 0 (or 1) and in dy(Gy) = 1 if and only if exactly half of the bits are 0.
The usage function captures the fact that the gene was involved in the genotype-phe-
notype mapping: in GE, it can be observed that 0 ≤ cy ≤ nwrap and
∀y, y� ∶

|||cy − cy�
||| ≤ 1.

5.1.2 � WHGE

WHGE differs from GE only in the mapping function which consists, in the for-
mer, in a recursive function which takes a non-terminal symbol and a bit string and
returns a derivation tree. The function is firstly invoked with the genotype and the
grammar starting symbol: internally, it uses the input bit string for choosing a deri-
vation rule and then divides the bit string in a number of chunks equal to the number
of symbols in the chosen derivation; finally, it recursively calls itself for each chunk
and corresponding symbol—for more details, we refer the readers to the study of
Medvet [34].

With respect to the DU map, the gene domains and the diversity and usage func-
tions for WHGE are the same of those of GE. However, differently than in GE, con-
ditions on the number cy of times the yth bit has been used do not hold, i.e., the
upper bound is not nwrap and there can be a large difference between values of cy for
different gene indexes.

5.1.3 � SGE

In SGE, the genotype consists of an integer string, instead of a bit string. Genes
(i.e., integers) are grouped together. Each group corresponds to a non-terminal sym-
bol and each gene in the group corresponds to a possible derivation option of that
non-terminal. Genes in the same group have the same domain, which is related to
the number of possible derivation options for the corresponding non-terminal. SGE

(4)dy(Gy) = 1 − 2
|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||

(5)�(�) =
1

maxy∈{1,…,l} cy
�

	 Genetic Programming and Evolvable Machines

1 3

lacks a mechanism for reusing the genotype: instead, the ability of coping with infi-
nite languages is obtained by working with a non-recursive grammar derived auto-
matically from the input grammar using a user-provided parameter dmax representing
the maximum level of recursion of derivation rules. Differently than GE and WHGE,
SGE works with ad hoc genetic operators which are built considering the structure
of the genotype—for more details, we refer the reader to the work of Lourenço et al.
[28].

With respect to the DU map, a number nNT of different gene domains exist, each
one being a subset {0,… , n

opt

h
− 1} of ℕ , where nNT is the number of non-terminal

symbols in the grammar and nopt
h

 is the number of derivation options for the hth non-
terminal symbol. The diversity function is defined as:

where it measures the diversity of a multiset Gy as one minus the normalized vari-
ance NV(�Gy,y

) of the relative frequencies �Gy,y
= (f1,… , f|y|) of the |y| possible

elements in Gy . The normalized variance NV ∶ [0, 1]m → [0, 1] is defined as:

In other words, dy(Gy) = 0 if Gy contains only repetitions of the same element among
many possible elements (i.e., no diversity) and dy(Gy) = 1 if all possible elements
appear in Gy for the same number of times (i.e., maximal diversity). The usage func-
tion for SGE is the same of GE and WHGE, but in SGE, cy ∈ {0, 1} , since a gene is
never reused.

5.2 � DU map on GSGP

Geometric Semantic Genetic Programming (GSGP) was introduced recently by
Moraglio et al. [37]. It is one of the numerous GP techniques that try to exploit the
concept of semantics [67]. Even though the term semantics can have several inter-
pretations, it is a common trend in the GP community to define the semantics of a
solution T as the vector �(T) = (T(x1),… , T(xn)) of its output values on the training
data. According to this definition, it is possible to identify a GP individual as a point
�(T) in a multidimensional space called the semantic space (where the number of
dimensions is equal to the cardinality of the training set).

In GSGP, traditional crossover and mutation are replaced by so-called Geometric
Semantic Operators (GSOs), which exploit semantic awareness and induce precise
geometric properties on the semantic space. In particular, GSOs induce a unimodal
error surface on any problem consisting of matching sets of input data into known
targets (like supervised learning problems such as symbolic regression and classifi-
cation) [37]. Here, we report the definition of the GSOs as given by Moraglio et al.
for real functions domains (i.e., T ∶ ℝ

m
→ ℝ ), since these are the operators we will

(6)dy(Gy) = 1 − NV(�Gy,y
)

(7)
NV(�) =

m
∑

i f
2
i∑

i fi
− 1

m − 1

1 3

Genetic Programming and Evolvable Machines	

use in this study. For applications that consider other types of data, we refer the
reader to the work of Moraglio et al. [37].

Geometric Semantic Crossover (GSXO) generates, as the unique offspring of par-
ents T1, T2 , the individual TXO:

where TR is a random real function whose output values range in the interval [0, 1].
Geometric Semantic Mutation (GSM) returns, as the result of the mutation of a

individual T, the individual Tmut:

where TR1
 and TR2

 are random real functions whose output values range in the inter-
val [0, 1] and � is a parameter called mutation step.

As shown in the work of Moraglio et al. [37], GSXO corresponds to geometric
crossover in the semantic space (i.e., the point representing the offspring lies on the
segment joining the points representing the parents) and GSM corresponds to box
mutation on the semantic space (i.e., the point representing the offspring lies within
a box of radius � , centered in the point representing the parent).

Despite the property of inducing a unimodal fitness landscape, GSOs present an
important drawback that is related to the fast growth of the size of the individuals
in the population. This makes the fitness evaluation unbearably slow (thus making
the system unusable), but the issue was successfully addressed by Castelli et al. [9]
with an implementation of Moraglio’s operators that makes them not only usable in
practice, but also very efficient. With this implementation, the size of the evolved
individuals is still very large, but they are represented in a particular way that makes
their evaluation faster than standard syntax-based GP. For the details, we refer the
reader to the work of Castelli et al. [9, 66], but the main idea is presented here. Upon
the evaluation of the individuals created after the initialization, their semantics is
stored in a data structure. In the following generations, the newly created individuals
are built by plugging the individuals of the initial generation in the structure defined
by the GSOs. Hence, a new individual consists of the parent individual(s) and one or
more random trees. That is, we do not need to effectively build the new individuals
by swapping the subtrees of the parents, but we can compute the offspring by only
using the information related to the semantics of the parent(s) and the semantics of
the random tree(s). Hence, individual created in the subsequent generations are cre-
ated and evaluated very efficiently, and their evaluation on a particular training case
is performed in constant time.

GSGP is an interesting case study for DU maps, because of the geometric proper-
ties of GSOs. More specifically, with respect to standard syntax-based GP crossover,
GSXO was shown to be quite ineffective on a large set of applications. The fact that
GSXO generates an offspring whose semantics stands in the segment joining the
semantics of the parents is an important property to ensure that the fitness landscape
is unimodal but, on the other hand, it represents a limitation when population diver-
sity must be guaranteed. In particular, if we imagine a GP population as a cloud of
points in the semantic space, GSXO is only able to generate points that are “inside”
the cloud. The consequences are twofold: (1) if the target (that is also a known point

(8)TXO = T1TR + T2(1 − TR)

(9)Tmut = T + �(TR1
− TR2

)

	 Genetic Programming and Evolvable Machines

1 3

in the semantic space) is not contained inside the cloud, GSXO will never be able to
generate it; (2) the individuals created by crossover present a low degree of diver-
sity. Hence, in GSGP, a greater (with respect to standard GP) mutation rate is com-
monly employed because mutation is the only operator able to explore points of the
semantic space that are “outside” the cloud. However, the fact that GSGP uses muta-
tion to explore the search space has a negative impact on the convergence speed of
GP: typically a GP with GSOs requires a greater number of generations to converge
towards a good quality solutions when compared to standard GP. Using a DU map
we expect to capture features that characterize GSOs.

With respect to the application of the DU map to GSGP, two key observations
can be made: (1) individuals are represented as trees, whose size is, in principle,
unbounded; however (2) each individual may also viewed as the result of the recom-
bination of many other individuals through the application of GSOs—namely, the
individuals of the initial population. We hence consider the yth gene of a GSGP gen-
otype as the number of times the yth individual of the initial population is used: this
way, the genotype has a length l equals to the population size and the gene domains
are 1 = ⋯ = l = ℕ

+
0
 . We define the diversity and usage functions as follows:

where the normalized variance defined in Eq. 7 is applied to the multiset Gy of gene
values after having rescaled the values to [0, 1].

In other words, initial GP individuals are considered as building blocks for the
construction of individuals in the subsequent generations. If the number of times
the yth building block has been used widely varies across the individuals of a gen-
eration, then the corresponding diversity dy will be large, and the opposite. Con-
cerning usage, if in an individual T, the yth building block is used many times with
respect to other building blocks, then the corresponding usage uy will be large, and
the opposite.

5.3 � DU map on GOMEA

The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) [58] is a frame-
work which has been recently applied to GP [68]. GOMEA has been shown to out-
perform standard GP and compete with state-of-the-art methods on deceptive syn-
thetic problems and benchmark problems of binary circuit generation. Thanks to its
capability to learn and exploit problem structure, and together with a new method to
identify and re-use important building blocks, GOMEA reached excellent scalability
on the Even parity problem [68].

(10)dy(Gy) = NV

({
g

maxg�∈Gy
g�
, g ∈ Gy

})

(11)�(�) =
1

maxy∈{1,…,l} gy
�

1 3

Genetic Programming and Evolvable Machines	

Individuals evolved in GOMEA are represented as trees of a predefined shape
and, hence, with a fixed size. This allows typical linkage learning techniques (i.e.,
techniques to measure interdependencies in the genotype) to be applied, resulting
in valuable information that can be exploited during variation [59, 68]. At the same
time, a fixed-size genotype makes it straightforward to compute diversity and usage.

In detail, the GOMEA representation is as follows. Let  be the set of terminal
nodes (e.g., input variables or constants), and let  be the set of function nodes.
Let r be the maximum arity, i.e., the maximum number of arguments required by
any function in  . Given a user-defined height h, the genotype is a full r-ary tree
of height h, where each node with a lower depth than h has exactly r children. The
fixed-length l of the genotype corresponds to the number of nodes in the tree, i.e.,
l =

∑i=h

i=0
ri . Nodes can be inactive: inactive nodes are not parsed during evaluation.

All the children of a terminal or inactive node are inactive; the rightmost r − r� chil-
dren of a function node with r′ arguments are inactive. Figure 4 shows an example of
the representation used by GOMEA.

A key component of GOMEA is the Family of Subsets (FOS), a model which
is learned at each generation and used by the variation operator GOM to generate
the offspring. A FOS F = {F1,… ,Fk} , with Fi ⊂ {1,… , l} , is a set of crossover
masks, where each mask is a set of indices that essentially represent positions in the
genotype—note that Fi is strictly a subset of {1,… , l} because swapping the entire
genotype typically leads to premature convergence. In this work, four types of FOS
are considered: the Linkage Tree (LT), the Random Tree (RT), and two of their vari-
ants which use a simple diversity preservation mechanism (LTd and RTd). Aiming
to model the structure of the problem, the LT represents hierarchical interdepend-
ency between gene positions, and is learned by measuring the mutual information
between all pairs of nodes, and by performing hierarchical clustering based on these
measurements [68]. The RT is built in a similar way to the LT, but randomly. This
FOS may be preferred to LT for problems where the learning structure does not nec-
essarily improve the search, but using (random) hierarchical crossover masks may
still be useful. Finally, LTd and RTd are variants of LT and RT with a basic diversity
preservation mechanism: 1 ∉ Fi , i.e., the root node is not present in any crossover

−(3)

+(2)

x(0)

x(0) y(1)

−(3)

y(1) x(0)

×(4)

x(0)

y(1) y(1)

/(5)

y(1) x(0)

Fig. 4   Example of full binary tree for symbolic regression. The gray nodes are inactive.
By parsing the tree with level-order traversal, the equivalent string of symbols is obtained:
(−,+,×, x,−, x, ∕, x, y, y, x, y, y, y, x)

	 Genetic Programming and Evolvable Machines

1 3

mask, thus will not be changed during variation. In the rest of the paper, the notation
GOMEAF refers to GOMEA using a specific FOS F (e.g., GOMEALT for LT).

In GOMEA, variation and selection are both handled by the Gene-pool Optimal
Mixing (GOM) operator, which is applied to every individual in the population.
GOM uses the crossover masks contained in the FOS to generate one offspring that
is guaranteed to be at least as fit as the parent. Because of this, a separate selection
phase is not needed. The GOM operator works as follows. To begin, a backup �′

p

and the offspring �′
c
 of the parent �p are created. After shuffling the FOS (opera-

tion which is done to diversify the effect of mixing when using hierarchic crossover
masks), for each set Fi a crossover operation is applied whereby the nodes of �c are
replaced by the ones of a random donor � ∈ P in the same positions, namely those
in Fi . If this results in a syntactical change, then �c is evaluated and the new fitness
is compared with the previous one: if �c becomes less fit than �′

p
 , then the change is

reverted, otherwise the change is accepted and �′
p
 is updated.

With respect to the DU map, the GOMEA genotype is viewed as a fixed-length
string of symbols where the first symbol corresponds to the root of the tree, the fol-
lowing r symbols correspond to the root children, the following r2 symbols to the
root grandchildren, and so on (level-order parsing). As mentioned before, the length
of the resulting genotype � is l =

∑i=h

i=0
ri . The gene domains y depend on the posi-

tion, i.e., on whether the corresponding nodes in the tree can be function nodes,
terminal nodes, or both; moreover, they allow to describe active and inactive nodes.
Since trees are initialized with a minimum height of 2 (specifically, with the Half-
and-Half method [25]), the domains are defined as follows:

In other words, each gene is a pair gy = (sy, ay) where the first element sy corre-
sponds to the tree node and the second element ay is 0 for inactive nodes and 1
otherwise. The diversity function is defined as in Eq. 6, while we define the usage
function as follows:

Because GOMEA encodes a tree with level-order parsing, the bottom of the DU
map (small gene indices) represents the evolution of diversity and usage for the top
of the trees. More specifically, the bottom row of the map (i.e., G1 ) corresponds to
the root, and the top half of the map (i.e., the top rh rows) corresponds to the leaves
at maximum depth.

5.4 � DU map on NEAT

Neuro-Evolution of Augmenting Topologies (NEAT) [56] is an EA which simultane-
ously evolves the topology and the weights of a Recurrent Neural Network (RNN).

(12)y =

⎧⎪⎨⎪⎩

 × {1, 0} for y ≤ 1 + r (root and its children)

 × {1, 0} for y > l − rh (leaves at maximum depth)

 ∪  × {1, 0} otherwise (other tree nodes)

(13)�(�) = (a1,… , al)

1 3

Genetic Programming and Evolvable Machines	

NEAT has been widely used in many applications, e.g., in evolutionary robotics [17]
to generate RNN-based controllers able to address complex tasks. Moreover, NEAT
constitutes the foundations on which other more recent and sophisticated approaches
for neuro-evolution are built, e.g., HyperNEAT [55] and odNEAT [52].

Stanley and Miikkulainen [56], inventors of NEAT, showed that the simultaneous
evolution of the RNN topology and weights enabled a faster convergence to better solu-
tions with respect to fixed-topology-based methods. In essence, the improvement was
motivated by the three main components of NEAT: (1) a principled method of crosso-
ver of different topologies, (2) the protection of structural innovations through specia-
tion, and (3) incremental growing from minimal structure.

The key idea behind NEAT, which essentially enabled the first two components, is
in the individual representation. Each individual is represented by a variable-length
genotype containing two kinds of genes: node genes and connection genes. Node genes
are related to nodes of the RNN (input, output, and hidden nodes): each gene consists
of an innovation number (see below). Connection genes are related to edges between
nodes of the RNN: each gene consists of the in-node innovation number, the out-node
innovation number, the weight, a binary value specifying if the edge is enabled or not
(the enable bit), and an innovation number.

Innovation numbers are unique (across the entire run) positive integer identifiers
and are the salient feature of the NEAT representation. NEAT genetic operators never
change the value of an innovation number, nor in-node and out-node innovation num-
bers in connection genes—as a consequence, the gene with a given innovation number is
the same in all the individuals of all the generations. Moreover, whenever a new hidden
node or a new edge is inserted in an individual, a new innovation number is assigned to
the corresponding gene whose value is set using an evolution-wise global counter. For
further details, we refer the reader to the work of Stanley and Miikkulainen [56].

NEAT is of particular interest in this study because of two reasons. First, we show
that the DU map can be applied also to EAs where the genotype length is not fixed
and known a priori before the run (differently than in GE and variants, GSGP, and
GOMEA). Second, it radically differs from the other considered EAs both in the nature
of the evolved artifacts and in the kinds of problems it is most suited for.

With respect to the application of the DU map to NEAT, two key observations can
be made: (1) the innovation number i ∈ ℕ

+ , due to its uniqueness and semantics, may
be used as an index of the position of a gene in the genotype; (2) if an hidden node of
an individual is connected only to edges for which the enable bit is not set, then it is
irrelevant to the RNN. We hence consider the yth gene domain as y = {1, 0} , if genes
associated with y are node genes, or as y = [−1, 1] × {1, 0} , otherwise—in the former
case, a gene is 0 if the corresponding hidden node is connected only to disabled edges;
in the latter, the gene consists of the weight and the enable bit. The length l of the
genotype is, for what concerns the application of the DU map, equal to the value of the
global counter at the end of the run. We define the diversity and usage functions as fol-
lows. Let denote by gy = (wy, ey) the connection genes; then:

(14)dy(Gy) =

{
NV

({
1+w

2
, (w, e) ∈ Gy

})
for connection genes

NV
(
Gy

)
for node genes

	 Genetic Programming and Evolvable Machines

1 3

In other words, the diversity is determined by the normalized variance of weights,
for connection genes, or of enable bits, for node genes, while the usage of a gene is
determined by its enable bit.

Finally, Tables 1 and 2 summarize the representations, and the diversity and usage
functions for the six considered EAs.

(15)�(�) = (u1,… , ul) where uy =

{
ey for connection genes

gy for node genes

Table 1   Summary of the EA representations for the considered EAs

EA Description Genotype domain y

GE Bit string {0, 1}

WHGE Bit string {0, 1}

SGE Integer string {0,… , n
opt

h
− 1}

GSGP Weights of initial trees ℕ
+
0

GOMEA Predefined shape tree ⎧⎪⎨⎪⎩

 × {1, 0} for y ≤ 1 + r

 × {1, 0} for y > l − rh

 ∪  × {1, 0} otherwise

NEAT Neural network
{

[−1, 1] × {1, 0} for connections

{1, 0} for nodes

Table 2   Summary of the diversity and usage functions for the considered EAs

EA Diversity dy(Gy) Usage �(�)

GE
1 − 2

|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||
1

maxy∈{1,…,l} cy
�

WHGE
1 − 2

|||||
1

2
−

|{b ∈ Gy ∶ b = 0}|
|Gy|

|||||
1

maxy∈{1,…,l} cy
�

SGE 1 − NV(�Gy ,y
) 1

maxy∈{1,…,l} cy
�

GSGP
NV

({
g

maxg�∈Gy
g�
, g ∈ Gy

})
1

maxy∈{1,…,l} gy
�

GOMEA 1 − NV(�Gy ,y
) (a1,… , al)

NEAT
{

NV
({

1+w

2
, (w, e) ∈ Gy

})
for connections

NV
(
Gy

)
for nodes

{
(e1,… , el) for connections

(g1,… , gl) for nodes

1 3

Genetic Programming and Evolvable Machines	

6 � Experimental‑based validation

In this section, we describe the experimental evaluation we performed in order to
validate the usefulness of the DU map. In particular, we aimed at answering the
following research questions (RQs):

RQ1:	 Is the DU map useful for unveiling the properties of an EA representation?
RQ2:	 Is the DU map useful for gaining insight into the behavior of an EA run on

a problem, and for comparing problems?
RQ3:	 Is the DU map useful for choosing EA parameters or components?

To this end, we performed several runs of the six EAs (GE, WHGE, SGE, GSGP,
GOMEA, and NEAT) on various problems and with different parameter settings.

Overall, we considered several benchmark problems, including synthetic and
real-life symbolic regression problems, Boolean problems, and alike, for the five
GP varinats (GE, WHGE, SGE, GSGP, and GOMEA), and a single evolutionary
robotics problem for NEAT. We here briefly describe the problems—we refer the
reader to cited papers for more details:

–	 7T4 [49]: a deceptive synthetic problem of seven concatenated trap functions
of size four;

–	 Airfoil [6]: real-life regression of airfoil self-noise data with five observations
and 1502 features;

–	 Car [57]: evolution of a NN-based controller for a driverless car (with 15
inputs and two outputs) aimed at maximizing traffic efficiency and safety;

–	 Concrete [10]: real-life regression of concrete compressing strength data with
eight observations and 1029 features;

–	 EParity-6 [25]: synthesis of the Even parity 6 Boolean function;
–	 KLandscapes-4 [65]: a synthetic GP benchmark with tunable hardness (we set

k = 4);
–	 MOPM-2 [69]: synthesis of the multiple outputs parallel 2-bit multiplier

Boolean function;
–	 Nguyen7 [64]: symbolic regression of f (x) = log (x + 1) + log (x2 + 1) , with a

training set of 20 points in [0, 2];
–	 Pagie1 [42]: symbolic regression of f (x, y) = 1

1+x−4
+

1

1+y−4
 , with a training set

of 125 points evenly spaced in [−5, 5] × [−5, 5];
–	 Slump [72]: real-life regression of concrete slump test data with eight observa-

tions and 1029 features.
–	 Text [33]: evolution of the target string Hello world! using a predefined

grammar with the fitness given by the edit distance to the target string;
–	 Yacht [41]: real-life regression of yacht hydrodynamics data with eight obser-

vations and 1029 features.

	 Genetic Programming and Evolvable Machines

1 3

The algorithm parameters that are most relevant for the following discussion, i.e.,
the genotype length l, the number of generations ngen , and the size of the population
npop , are shown for each EA in Table 3. Recall that l and ngen determine the size of
the DU map and its aspect ratio. In SGE, l is not set directly but is determined by the
grammar and the parameter dmax , which we set to 6; similarly, l in GOMEA is deter-
mined by the tree height h, which we set to 6. In GSGP, l is by design equal to npop .
In NEAT, l depends on the specific run (see Sect. 5.4).

6.1 � RQ1: Is the DU map useful for unveiling the properties of an EA
representation?

This section shows the DU maps obtained by five different algorithms on the same
synthetic symbolic regression problem (Nguyen7). Considering the different nature
of NEAT with respect to all the other algorithms, a different benchmark was used
for this EA, namely the Car problem.

Figures 5 and 6 show Diversity maps, Usage maps and DU maps for the afore-
mentioned algorithms. Diversity and Usage maps essentially correspond to visualiz-
ing only the corresponding color channel: we show them here to better explain how
the DU map works.

6.1.1 � Non‑EA‑specific observations

It must be stressed that the considered EAs are based on very different individual
representations. Moreover, the considered EAs differ also in other components (e.g.,
NEAT incorporates a innovation preservation mechanism, GSGP employs genetic
operators with geometric properties). Nevertheless, the DU maps shown in Figs. 5
and 6 share some traits which allow to do some general, high-level observations.
This is because the diversity and usage functions can be adapted to the specific EA
to maintain consistency in the semantics of the DU map.

The foremost observation is related to the interplay between diversity and usage:
in general, the DU maps highlight the fact that the portions of the genotype in which
the population exhibits significant diversity are those for which the usage is low (i.e.,

Table 3   Most relevant
parameters of the considered
EAs (see text for more
information)

EA l n
gen

n
pop

GE 256 100 500
WHGE 256 100 500
SGE 92 100 500
GSGP 100 50 100
GOMEA 127 100 1024
NEAT 142 300 100

1 3

Genetic Programming and Evolvable Machines	

blue1 regions are larger than white regions)—the phenomenon being particularly
evident for GE, WHGE, SGE, and GOMEA. It is worth noting that it would be hard
to spot the interaction between diversity and usage by looking only at the values of a
diversity measure during the evolution.

Another interesting observation concerns the relative “amount of used geno-
type”, which roughly corresponds to, in a given generation (i.e., column of the
DU map), the average intensity of yellow. Leaving aside any consideration about
possible premature convergence to local minima, it can be seen that different
EAs actually use different amounts of the genotype. For instance, GE uses the
full genotype, whereas SGE and GSGP only use a small fraction. From another

GE WHGE SGE GSGP
D
iv
er
si
ty

m
ap

s

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

23

46

69

92

Generation

G
en

e
in
d
ex

0 25 50
0

25

50

75

100

Generation

G
en

e
in
d
ex

U
sa
ge

m
ap

s

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

23

46

69

92

Generation

G
en

e
in
d
ex

0 25 50
0

25

50

75

100

Generation

G
en

e
in
d
ex

D
U

m
ap

s

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

64

128

192

256

Generation

G
en

e
in
d
ex

0 50 100
0

23

46

69

92

Generation

G
en

e
in
d
ex

0 25 50
0

25

50

75

100

Generation

G
en

e
in
d
ex

Fig. 5   Diversity maps, Usage maps, and DU maps obtained from one run of GE, WHGE and SGE on the
Nguyen7 problem (Color figure online)

1  For readability, we use the terms “black”, “yellow”, ”white”, and “blue” for the four colors at the cor-
ners of the color legend (see Fig. 2) corresponding to, respectively, low diversity and low usage, low
diversity and high usage, high diversity and high usage, and high diversity and low usage.

	 Genetic Programming and Evolvable Machines

1 3

point of view, this finding might be an indication that (parameters of) the repre-
sentation need to be fine-tuned (e.g., increase or reduce the number of bits in GE
[35] or the depth in SGE) in order to allow for a more effective or more efficient
search.

The final observation we make, is that the DU maps visualize the rate of
change in the evolution dynamic, giving an indication of when the dynamic is
reduced to a negligible amount. Essentially, that moment can be inferred by see-
ing when the DU map columns stop varying in colors. For instance, Figs. 5 and 6
show that for SGE, GSGP, and GOMEA the evolution dynamic becomes negli-
gible after few generations, whereas in GE and WHGE it lasts longer—roughly
to the first third of the evolution. Differently, NEAT (whose DU map is obtained
on a very different problem, see Fig. 6) apparently never stops evolving.

GOMEALT NEAT
D
iv
er
si
ty

m
ap

s

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0030510
0

35

70

105

140

Generation
G
en

e
in
d
ex

U
sa
ge

m
ap

s

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0030510
0

35

70

105

140

Generation

G
en

e
in
d
ex

D
U

m
ap

s

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0030510
0

35

70

105

140

Generation

G
en

e
in
d
ex

Fig. 6   Diversity map, Usage map, and DU map obtained from one run of GOMEALT on the Nguyen7
problem and one run of NEAT on the Car problem (Color figure online)

1 3

Genetic Programming and Evolvable Machines	

6.1.2 � EA‑specific observations

Concerning GE, WHGE, and SGE, Fig. 5 shows that the way in which usage varies
along the genotype is consistent with the respective genotype-phenotype mapping
functions. In GE, the genotype is used starting from the beginning up to a given
position (note that in the specific DU map of Fig. 5 no wrapping can be seen). In
WHGE, the usage of a single gene (bit) is not binary: a wide range of usage values
can be observed in the corresponding usage map; this is reflected in three different
colors (yellow, dark yellow and black) in the DU map. In SGE, the genotype is par-
titioned in a number of portions corresponding to grammar non-terminal symbols
(see Sect. 5.1.3): the DU map reflects this structure because yellow stripes highlight
the fact that for each possible genotype portion (i.e., non-terminal symbol) only a
small part is actually used.

With respect to GSGP, the Diversity map of Fig. 5 shows that at in the early
stages of evolution, individuals present a certain degree of diversity that is com-
pletely lost after (approximately) the first 10 generations. Considering the definition
of the diversity function, and the behaviour of the GSOs, this finding is somewhat
expected. In fact, each application of the GSOs creates a new individual that is a lin-
ear combination of the original parent individuals. In particular the offspring stands
in the middle of the parents in the semantic space. With respect to the genotype,
the offspring contains by construction the whole structure of the parents plus a ran-
dom tree. Hence, after the application of GSOs, the defined diversity function is able
to capture this aspect of the evolution. With respect to usage, only a subset of the
individuals created after initialization is actually used during evolution (those corre-
sponding to the yellow stripes). This is something that can be explained considering
the constructions of the individuals in GSGP and their fitness. More in detail, each
application of the GSOs produces a new individual that contains the whole struc-
ture of the parents (hence the initial genes). Moreover, the offspring of the crosso-
ver cannot be worse than the worse of its parents [37], while the mutation operator
has a probability of 0.5 to improve or maintain the fitness of the current individual.
Hence, generation by generation, there is an increasing number of the initial genes
associated to good-quality individuals and the selection process will favour these
individuals.

The DU map of a run of GOMEALT on Nguyen-7 (see Fig. 6) shows a dichotomy
between diversity and usage: with few exceptions, active nodes quickly converge,
while inactive nodes maintain diversity due to a lack of fitness contribution and thus
a lack of selection bias. This can also be noticed by looking at the diversity and
usage maps separately. Because the genotype of GOMEA is a level-order encod-
ing of a tree, we can tell which parts of the tree are active in which generation, and
when they converge. For instance, the evolution of the root is represented in the bot-
tom row of the map. After a few generations, the whole population has the same
node as root, and will not diverge from it. This is due to the definition of the GOM
variation operator which does not allow offspring to become worse during variation.
Moreover, GOM is known to induce high selection pressure, which, in combina-
tion with a FOS that fits the problem at hand well, enables the high performance of
GOMEA [68]. The top half of the map shows the evolution of diversity and usage of

	 Genetic Programming and Evolvable Machines

1 3

the leaves. Because the single input variable can only be a leaf, diversity is absent.
On usage, it is possible to see that in the beginning of the evolution few leaves are
active, and after some generations new leaves are activated. This means that the size
of individuals quickly grows and then stabilizes, together with the loss of diversity
in the upper part of the tree.

Finally, concerning NEAT, the DU map in Fig. 6 clearly reflects that this EA is
based on a very different individual representation. In particular, the fact that NEAT
genotypes are variable in size shows in the DU map by means of the peculiar shape
of the non-black region. The DU map for this NEAT run shows that, on the one
hand, new genes appear over the time (i.e., complexification of the NN topology
happens); on the other hand, few of the innovations introduced during the evolu-
tion are actually used. We recall that in NEAT, individuals of the initial population
correspond to NNs with only the input layer, the output layer, and few connections
between them. The yellow stripes in the bottom-most region of the DU map sug-
gests that, in this particular run, the initial topology essentially remains the same.

6.2 � RQ2: Is the DU map useful for gaining insight into the behavior of an EA run
on a problem, and for comparing problems?

In this section we show how the DU map can be used to investigate the behavior of
an EA across different runs on the same problem or on different problems.

6.2.1 � Comparing different runs

Figures 7, 8 and 9 present the results on the Nguyen7 symbolic regression problem
for multiple runs of WHGE, GSGP, and GOMEA, respectively.

Figure 7 shows the DU maps for different runs of WHGE. Different from
GSGP and NEAT, but similar to GOMEA (see below), in WHGE the gene index
matters. Hence, by observing how the usage is distributed along the genotype one
can reason about the existence of local optima. For instance, Fig. 7 shows that
the usage in the last generations of Runs 2 and 4 is similar and close to the usage

Run 1 Run 2 Run 3 Run 4 Avg. of 10

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

Fig. 7   DU maps obtained from different evolutions of WHGE on the Nguyen7 symbolic regression prob-
lem: the four leftmost maps are related to four different runs; the rightmost map is the average map of 10
runs (Color figure online)

1 3

Genetic Programming and Evolvable Machines	

obtained by the average DU map; usage of Runs 1 and 3 is different. This may
corresponds to different (local) optima (1 and 3).

Next, consider the results of GSGP presented in Fig. 8. The first row shows the
DU maps for GSGP runs with the same initial population, while the second row
depicts the runs with different initial populations. Starting the analysis from the
first row, it is possible to see that each run presents a similar degree of diversity.
Moreover, diversity is lost quickly after a few generations. With respect to usage,
a subset of the initial individuals is selected to build new, fitter, individuals. It
is important to underline that this subset varies in a significant way in each run:
both which individuals are selected as well as how many are selected, differs.
Initially, all individuals have similar fitness. Hence, tournament selection initially
selects different individuals with (approximately) the same probability, result-
ing in the observed similarity in diversity. Considering the usage and taking into
account, for example, Runs 3 and 4, it is possible to see a difference in terms
of usage, where in Run 3 only a few individuals are largely used, while in Run
4 there are a lot of individuals that contribute to the creation of new individu-
als. This behaviour is a side effect of the loss of diversity. When this problem is
particularly relevant (i.e., equal semantics for a vast amount of individuals) a DU
map similar to the one achieved for Run 3 is obtained. On the other hand, when
the individuals present different semantics a DU map similar to the one shown in
Fig. 8 for Run 4 is obtained.

Same initial population
Run 1 Run 2 Run 3 Run 4 Avg. of 10

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

Random initial population
Run 1 Run 2 Run 3 Run 4 Avg. of 10

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

Fig. 8   DU maps obtained from different evolutions of GSGP on the Nguyen7 symbolic regression prob-
lem, with the same or random initial population: the four leftmost maps are related to four different runs;
the rightmost map is the average map of 10 runs (Color figure online)

	 Genetic Programming and Evolvable Machines

1 3

The same considerations are valid for the second experimental setting, where dif-
ferent initial populations are considered (see the bottom row of Fig. 8). Again, diver-
sity is lost after a few generations, and the usage is different in each run. Also in
this case, there are runs (for instance Run 3) where the majority of the individuals is
used to create new individuals by applying the GSOs, and there are other runs (like
Run 4) where a small subset of the initial individuals is used to drive the evolution-
ary process towards fitter individuals. As previously explained, this relates with the
selection process and with the definition of the GSOs, where there is an increasing
number of the initial genes associated to good-quality individuals.

The behavior of different runs of GOMEALT on Nguyen7 is shown in Fig. 9. The
most evident difference among the runs is in terms of usage, with Run 1 exhibit-
ing considerably more active nodes than the others. Despite these differences, all
runs found a good approximating function (average mean squared error of 0.0002,
standard deviation of 0.0003 on the test set). This suggests that the function can be
efficiently approximated both by small and large trees. Considering the average DU
map, common patterns of usage can be spotted by looking at yellow bands. In par-
ticular, the top of the tree is always used, followed by an intermittent use of lower
nodes. Furthermore, we can observe a growth of active nodes in all maps. As to
diversity, the runs show very similar behavior. The population is initially composed
by different individuals, but after a few generations, most of the active nodes con-
verge to the same value. Interestingly, we can see that few active nodes maintain

3nuR2nuR1nuR

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation
G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

03fo.gvA5nuR4nuR

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation
G
en

e
in
d
ex

Fig. 9   DU maps obtained from different runs of GOMEALT on the Nguyen7 symbolic regression prob-
lem: the three maps of the top row and the first two maps of the second row are related to five different
runs; the last map of the second row is the average map of 30 runs (Color figure online)

1 3

Genetic Programming and Evolvable Machines	

their diversity during evolution. Possibly these nodes do not have an impact on
the fitness (e.g., their output is multiplied by the constant 0, generated by a sibling
node), and computational effort is wasted by parsing their subtree during fitness
evaluations. Lastly, note that no diversity is present for the leaves, since only one
node is possible (only one input variable is used as terminal).

6.2.2 � Comparing different problems

This section analyzes the DU maps produced by three of the algorithms on a set of
selected benchmarks (see Figs. 10, 11 and 12).

The DU maps for WHGE presented in Fig. 10 show how the hierarchical rep-
resentation of this EA is differently exploited in each of the considered problems.
We recall that in WHGE the usage of a gene (bit) is given by the number of times
that bit is re-used in the genotype-phenotype mapping and this number itself
depends on the depth of the corresponding part of the derivation tree. It follows
that, for WHGE, the usage in the DU map gives an intuition of how balanced the
derivation trees are in the population. The user might exploit this information
when adapting the grammar of the problem at hand—a task for which automatic,
meta-evolution approaches have already been proposed [40]. The maps of Fig. 10
also show how diversity varies across the problems. E.g., in MOPM-2 there is
still some diversity in highly used genes in a late stage of evolution: this is an

MOPM-2 KLand-4 Text Pagie1 Nguyen7

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

0 50 100
0

64

128

192

256

Fig. 10   DU maps obtained from evolutions with WHGE on five different problems (Color figure online)

Airfoil Concrete Slump Yacht Nguyen7

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

0 25 50
0

25

50

75

100

Fig. 11   DU maps obtained from evolutions with GSGP on five different problems (Color figure online)

	 Genetic Programming and Evolvable Machines

1 3

indication that evolution is still ongoing, a finding which is consistent with the
fact that MOPM-2 is an hard problem for this EA.

For GSGP, the resulting DU maps present a similar pattern with respect to
both diversity and usage. In particular, it is possible to see that, over the different
test problems, a subset of the individuals is used most of the times for creating
newer individuals. This is a behaviour that is more evident in the yacht dataset
(Fig. 11) and less evident for the slump dataset. We hypothesize that this different
behaviour is somehow related to the different effect that GSOs have on differ-
ent problems. For instance, the effect of geometric semantic mutation is strongly
dependent of the the value of the mutation step, while crossover has a different
impact on the distribution of the individuals in semantic space for each problem
[67]. All in all, DU maps are a suitable tool for capturing the main features of
GSGP, but a future analysis aimed at investigating the effect of the GSOs on the
search process is needed for a better comprehension of the semantics of DU maps
for GSGP.

DU maps for one GOMEALT run on four selected problems are shown in
Fig. 12. Despite the considered problems being very different from each other,

4T76-ytiraPE

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

7neyugNetercnoC

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

Fig. 12   DU maps obtained from evolutions with GOMEALT on four different problems (Color figure
online)

1 3

Genetic Programming and Evolvable Machines	

the algorithm shows similar behavior on 7T4, Concrete, and Nguyen7. Compared
to the other experiments, in the EParity-6 map more diversity on the used por-
tion of the genotype can be seen (a larger portion of the DU map is white). This
aspect corroborates the hypothesis that it is possible to discover equally fit indi-
viduals with different genotypes due to a high redundancy in the genotype-pheno-
type mapping. After roughly half of the evolution, however, the individuals start
to converge to the same genotype (the diversity is decreased), as shown by the
white color turning into yellow. In 7T4, only one function node is possible, thus
diversity in the top of the tree is only related to presence of terminal nodes, and
is mostly low. For the leaves, which are depicted in the top half of he map, diver-
sity is instead moderate to high. This is due to the fact that the fitness is based
on the order of the terminal nodes, but not on their exact position. The symbolic
regressions of Concrete and Nguyen7 have a similar evolution, with a brief first
phase with high diversity followed by a quick convergence to the same genotype,
for the majority of the nodes. Despite the fact that the Concrete dataset has eight
input variables (thus eight possible terminal nodes), the evolution is very similar
to the one of Nguyen7, where only one variable is possible. This observation sug-
gests that the convergence behavior of GOMEALT is similar on different symbolic
regression problems.

6.3 � RQ3: Is the DU map useful for choosing EA parameters or components?

To answer this research question, we consider the behavior of GOMEA in tackling
EParity-6 using different FOS choices. Picking the right FOS can be crucial for the
effectiveness of GOMEA. If a DU map could provide insight into the effect of a
particular FOS in terms of evolution of diversity and usage, such insights could
then be used to determine which FOS to use for what problem, or how to design an
improved, problem-specific FOS. A similar analysis could be performed with other
EAs and different parameters or components, but this is outside the scope of this
paper.

We measured the performance of 30 runs of GOMEA with the four FOS vari-
ants: LT, RT, LTd, RTd. In Table 4 the percentange of successful runs is reported (a
run is successful if the perfect Boolean formula is found within the last generation).
These results show that using LTd leads to clearly superior performance, with a suc-
cess rate of 0.87. The adoption of the LT leads to the second best performance with
a success rate of 0.40, followed by the RT and RTd, with success rate of 0.23 and
0.03, respectively.

Table 4   Success rate for
GOMEA on EParity-6 problem
using LT, RT, LTd, and RTd

FOS Success rate

LT 0.40
RT 0.23
LTd 0.87
RTd 0.03

	 Genetic Programming and Evolvable Machines

1 3

Figure 13 shows, for each FOS, a DU Map of the average of the 30 runs. The
maps obtained by using RT and RTd are extremely similar. While using the RTd
leads to better conservation of diversity, using the RT leads to a similar behavior.
In particular, the minimum diversity of the root for the runs with RT is 0.964 in
the last generation (with RTd it is 0.998, given by the initial sampling of the pop-
ulation). However, RT performs statistically better than RTd in terms of success
rate, which is in contrast with the fact that the DU Maps are nearly identical. A
possible explanation of this fact is that while not possible with RTd, with RT the
root can be swapped (together with other nodes at the same time), and this allows
for the discovery of more fit individuals. However, diversity can remain high,
with the RT being a random set of crossover masks which are different every gen-
eration. Hence, this is a type of performance improvement that cannot necessarily
be detected by studying DU maps.

When using the LT, usage follows a similar pattern, but the evolution of
diversity is dramatically different. Here, GOMEALT exhibits a markedly dif-
ferent convergence behavior compared to GOMEART and GOMEARTd. Due
to the high selection pressure of GOM, the pattern of nodes with a positive

TRTL

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

dTRdTL

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

0 50 100
0

31

62

93

124

Generation

G
en

e
in
d
ex

Fig. 13   Average DU maps obtained on 30 runs of GOMEA using different choices of FOS on EParity-6
(Color figure online)

1 3

Genetic Programming and Evolvable Machines	

contribution to the fitness quickly spread in the population, and the interde-
pendencies among those nodes are captured by mutual information. Because the
LT is built from this information the hierarchical crossover masks are made to
mix individuals according to these patterns. Therefore, there is a mutual, rein-
forced convergence of genotype and the structure of the LT itself in GOMEALT,
which results in the rapid loss of diversity. This can be clearly seen in the DU
map. It should be noted that this type of diversity loss is desirable as it is the
result of extremely effective mixing behavior as a result of the right patterns
being present in the population and being correctly modeled by the LT. Indeed,
the fast convergence of GOMEALT does not compromise the success rate when
compared with GOMEART and GOMEARTd. Rather, using the LT results in the
second-best performance. This means that, almost half of the times (0.4 success
rate), the right patterns are present in the population and are correctly modeled
by the FOS. We hypothesize that either the correct information is present in the
population, and a perfect solution is quickly found, or the wrong information is
modeled and GOMEALT quickly converges to a suboptimal solution. If a larger
population size were to be chosen, the performance of GOMEALT will increase
because it enables more robust learning of the salient linkage information, and
the consequent propagation of the correct patterns of nodes. This result was
experimentally shown on different problems by adopting a framework of multi-
ple interleaved runs with increasing population size (and tree height) [68]. Here,
we consider only a single population size however. By looking at the DU map
of GOMEALT, we can see that, on average, the population almost completely
converges in roughly the first quarter of the evolution. The improvement that can
be achieved during the subsequent generations is likely to be minimal. This is
a key insight to improve the performance of GOMEALT: given the same budget
(i.e., evaluations or time), it is better to use a bigger population size for less
generations.

Together with increasing the population size, another way to provide GOMEA
more time to find the salient building blocks to be used in GOM before selection
drives the population to convergence, is to promote diversity. The compromise
in this respect that is achieved by LTd can be seen in the respective DU map.
The use of LTd results in the best performance for this problem, with a suc-
cess rate close to 0.9. The simple diversity mechanism consisting of excluding
the root from the FOS forces GOMEALTd to look for different solutions to the
problem, namely one per different value that the root can have (i.e., the number
of functions in the function set). The map shows that this moderates the conver-
gence of the whole genotype. It could be said, therefore that the DU map in this
case makes the interplay between selection pressure, proper mixing, and diver-
sity maintenance clear, and a correspondence with the ultimate EA performance
can be observed. It should be noted, however, that to find which type of FOS
truly leads to the best possible performance (i.e., finding the optimum within the
least number of evaluations), the influence of the population size should also be
considered.

	 Genetic Programming and Evolvable Machines

1 3

7 � User‑based validation

We performed an online user study to assess the usability and the usefulness of the
DU map. The user study consisted of a questionnaire which we built guided by the
literature sources [5, 7, 39, 46]. We shared the questionnaire through our personal
network of colleagues at different research institutions and through the GP mailing
list2 collecting 34 responses. We stress the fact the respondents filled the question-
naire online without any influence from our side: i.e., the study was not a controlled
user study. We made the complete set of answers publicly available.3

The questionnaire consisted of four parts. The first one introduced the DU map,
provided a tutorial of the DU map (similar to Fig. 3), and asked the participants
about their expertise level. The second part tested the comprehension of the DU
map, showing visualizations and asking whether considerations on diversity and
usage are true or false. This part aimed at assessing whether the participants were
effectively capable of inferring the correct information from the visualizations. Also,
the second part asked the participants which of the three different color options they
used to answer the questions (Sect. 4.1). The third part asked the participants about
their opinion on the usefulness of the DU map. The fourth and last part was the Sys-
tem Usability Scale (SUS) [2, 5], a widely applicable questionnaire which is often
adopted to assess the usability of a system.

7.1 � Questionnaire results

In the first part, 67.6% of the respondents declared to be experts in EC, and only
5.9% considered themselves not experts. The remaining neither agreed nor disagreed
with this definition ( 26.5% ). For the genotype-to-phenotype mappings, 23.5% of
respondents stated to be experts, while the others were equally divided between not
experts and in-between ( 38.2% each).

The summary of the results from the comprehension tests of the second part of
the questionnaire are reported in Table 5. Each of the three proposed tests contained
four or five statements and the users were asked whether they agree with those state-
ments (three possible answers were given: “yes”,“no” and “I don’t know”). For
instance, one statement was “Diversity of the used genes lasts longer in the DU map

Table 5   Percentage
of correct, wrong, and
unanswered responses to each
comprehension test of the
questionnaire

Test Correct Wrong Unanswered

1 92.9 6.5 0.6
2 82.4 9.5 8.1
3 86.5 8.8 4.7

2  http://www.genet​ic-progr​ammin​g.org/gpmai​lingl​ist.html.
3  http://machi​nelea​rning​.ingin​f.units​.it/data-and-tools​/unvei​ling-evolu​tiona​ry-algor​ithm-repre​senta​tion-
with-du-maps.

http://www.genetic-programming.org/gpmailinglist.html
http://machinelearning.inginf.units.it/data-and-tools/unveiling-evolutionary-algorithm-representation-with-du-maps
http://machinelearning.inginf.units.it/data-and-tools/unveiling-evolutionary-algorithm-representation-with-du-maps

1 3

Genetic Programming and Evolvable Machines	

1 than in the DU map 2” in a test showing two DU maps. The table shows, for each
test, the percentage of answers. Overall, participants were typically able to answer
correctly, and performed slightly better on Test 1, where considerations on a single
map were presented. Test 2 and 3 showed two DU maps and asked questions regard-
ing their comparison, thus they may be considered harder than Test 1. Interestingly,
the percentage of 87.3% correct answers over the three tests is substantially higher
compared to the number of respondents who declared to be experts in EC ( 67.6% ),
and to the number of genotype-to-phenotype mappings experts (only 23.5%).

After each of the three tests, we asked which color scheme the respondent used to
answer the questions among the three presented in Fig. 14. Multiple answers were
allowed. The most used scheme was option b, which was used 50.0% of the time.
Slightly less preferred was option c, with 48.0% ; the last one was option a, picked
38.2% of the time. We used this feedback to improve the representation of the DU
map compared to its original form [35]: we opted for option c as it was only slightly
less popular than option b, but it allows people with color vision deficiencies to use
the tool. We remark that the maps appeared in the questionnaire in the same order
for all the participants and that it is fair to assume that most of them read from left to
right. This may have resulted in a bias in the choice of the preferred color schemes
and is hence a limitation of this user study.

The third part of the questionnaire consisted of four statements where the
respondents could pick among five options, ranging from “completely disagree” to
“completely agree”, plus two open questions about the weak and strong points of the
DU map. Figure 14 shows the distribution of responses of the four statements. Over-
all, the responses support the idea that the DU map is an useful tool.

The majority of the respondents agreed (or totally agreed) that the DU map
allows to spot the interplay between diversity and usage (Statement 1, 70.6% ). This
is important as it is the main contribution of the DU map. When dealing with an
algorithm that is well known to the respondent, the majority thought that the DU

Fig. 14   Violin plot indicating the responses to the 4 statements of the third part of the questionnaire. The
purple shape represents the overall distribution of the results. White points are the responses

	 Genetic Programming and Evolvable Machines

1 3

map could still give extra insight (Statement 2, 58.9% ), although one third was not
sure about this ( 35.3% ). This is the weakest score among our statements. Zooming
in by taking into account expertise, it shows that users with high expertise thought
that the DU map can provide further insights even for familiar algorithms in a larger
percentage (65.2 and 75.0% for experts in EC and genotype-to-phenotype mapping,
respectively). This suggests that more experienced users can better appreciate the
contribution of the DU map. Statement 3 proposed one of the practical uses that the
DU map can have, i.e., understanding if the evolution is stagnating. Respondents
mostly agreed that the DU map can be useful with respect to this issue ( 73.5% ).
The last statement explored the usefulness of the discrete versions of the DU map
(option b and c) compared to the continuous version (option a). The users clearly felt
that the discrete versions bring enough information, which supports the adoption of
the option c.

Concerning the two open questions about the weak and strong points of the DU
map, we collected several interesting responses. Many respondents said that being
able to understand a DU map may require some practice: e.g., “As a first time user,
I kept going back and forth to the legend to decipher the graphs”, and “It takes
some time to understand what is going on, if you haven’t seen them before”. On the
other hand, respondents appreciated the fact that the DU map can deliver a quick
overview of a run: e.g., “It concisely displays information about all generations of
an algorithm”, and “A nice succinct presentation of the genotype usage during the
evolution”.

The fourth and last part of the questionnaire was the SUS. The SUS asked the
respondents wether they agree or disagree with ten statements on the usability of
a system, using the a scale of five possibilities ranging from “strongly disagree” to
“strongly agree”. The SUS is used in many different domains as its questions are
very general, and it can be very accurate even when a limited number of responses
are collected [5]. We remark that we modified two questions of the SUS as they did
not apply to the DU map, as the latter is a visualization tool rather than a system.
The statement “I found the various functions in this system were well integrated”
was modified to “I find different DU Maps are easy to compare”, and “I thought
there was too much inconsistency in this system” was modified to “I think there is
too much inconsistency to compare different DU Maps”. By using the SUS, a score
ranging from 0 to 100 can be computed. The DU map scored, on average among
all participants, 65.7 (with a standard deviation of 17.0). This score is considered a
positive score (which start above 50), albeit not excellent [2].

8 � Concluding remarks

Understanding if and why an EA is capable of (efficiently) solving a certain prob-
lem is a cornerstone research question of the field. Moreover, figuring out how
to best fine-tune parameters of an EA is a time-consuming task. Tackling both of
these issues could well be supported by the use of adequate and insightful visuali-
zation tools. In this article, we have considered the Diversity and Usage map (the
DU map), a visualization tool that focuses specifically on representations, one of the

1 3

Genetic Programming and Evolvable Machines	

most prominent components of any EA. In particular, the two goals targeted by the
DU map, at the same time, are (1) to convey detailed information about the internal
workings of an EA using key, well-understood concepts in the EA field and (2) to
have the same semantics for widely varying EAs. No other visualization tools have
been proposed that tackle these goals simultaneously.

We improved the DU map, hence extending the previous work by Medvet and
Tušar [35], in two ways. First, we greatly extended the applicability of the DU map
by making its definition more general. We also showed how to apply it to six EAs
that use considerably different representations (bit and integer strings, trees, ensem-
ble of trees, and neural networks). Second, we better grounded the DU map as a
visualization tool by discussing in detail its purpose and design rationale. In particu-
lar, we performed an online user study that involved 34 EC researchers in order to
assess the perceived usefulness of the DU map and validate its main design choices.

The outcome of our experimental validation and of the user study show that by
inspecting DU maps users may better understand the impact of using certain repre-
sentations, parameter settings, or components on the evolutionary process. As such,
we believe that the DU map offers clear added value to tools that are currently avail-
able to users, practitioners, and researchers who wish to unveil key properties of
the EAs that they are designing and analyzing. From a broader point of view, we
have shown that visualization tools may be very useful to EC practitioners and that
designing and assessing those tools based on visualization practices can improve
their quality and applicability, and favor their adoption.

We also discussed possible improvements to the DU map, including those intro-
ducing some form of interaction. Motivated by the perceived usefulness of the DU
map in investigating the individual representation in terms of diversity and usage,
other researchers could propose similar visualization tools able to deliver in a suc-
cinct view important information about EAs and/or to aid practitioners in specific
analysis tasks, e.g., fitness landscape analysis.

Acknowledgements  This work is part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant Agreement No. 692286. This work was
also financed through the Regional Operational Programme CENTRO2020 within the scope of the Pro-
ject CENTRO-01-0145-FEDER-000006. Marco Virgolin received financial support from the Kinderen
Kankervrij foundation (Project No. 187).

References

	 1.	 H.B. Amor, A. Rettinger, Intelligent exploration for genetic algorithms: using self-organizing maps
in evolutionary computation, in Companion Material Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’05, pp. 1531–1538. ACM (2005)

	 2.	 A. Bangor, P. Kortum, J. Miller, Determining what individual sus scores mean: adding an adjective
rating scale. J. Usability Stud. 4(3), 114–123 (2009)

	 3.	 M. Barlow, J. Galloway, H.A. Abbass, Mining evolution through visualization, in Workshop Pro-
ceedings of the Eighth International Conference on Artificial Life, Alife VIII, pp. 103–110. MIT
Press (2002)

	 4.	 C.A. Brewer, Color use guidelines for data representation, in Proceedings of the Section on Statisti-
cal Graphics, pp. 55–60. American Statistical Association (1999)

	 Genetic Programming and Evolvable Machines

1 3

	 5.	 J. Brooke, SUS—a quick and dirty usability scale, in Usability Evaluation in Industry, vol.
189(194), ed. by P.W. Jordan, B. Thomas, I.L. McClelland, B. Weerdmeester (CRC Press, Boca
Raton, 1996), pp. 4–7

	 6.	 T.F. Brooks, D.S. Pope, M.A. Marcolini, Airfoil self-noise and prediction. Technical report NASA
RP-1218, National Aeronautics and Space Administration (1989)

	 7.	 T.F. Burgess, Guide to the design of questionnaires. A general introduction to the design of ques-
tionnaires for survey research (University of Leeds, Leeds, 2001), pp. 1–27

	 8.	 B. Burlacu, M. Affenzeller, M. Kommenda, S.M. Winkler, G. Kronberger, Visualization of genetic
lineages and inheritance information in genetic programming, in Companion Material Proceed-
ings of the Genetic and Evolutionary Computation Conference, GECCO ’13, pp. 1351–1358. ACM
(2013)

	 9.	 M. Castelli, S. Silva, L. Vanneschi, A C++ framework for geometric semantic genetic program-
ming. Genet. Program. Evolvable Mach. 16(1), 73–81 (2015)

	10.	 M. Castelli, L. Vanneschi, S. Silva, Prediction of high performance concrete strength using genetic
programming with geometric semantic genetic operators. Exp. Syst. Appl. 40(17), 6856–6862
(2013)

	11.	 T.D. Collins, Applying software visualization technology to support the use of evolutionary algo-
rithms. J. Vis. Lang. Comput. 14(2), 123–150 (2003)

	12.	 A. Cruz, P. Machado, F. Assunção, A. Leitão, ELICIT: Evolutionary computation visualization,
in Companion Material Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO ’15, pp. 949–956. ACM (2015)

	13.	 J.M. Daida, A.M. Hilss, D.J. Ward, S.L. Long, Visualizing tree structures in genetic programming.
Genet. Program. Evolvable Mach. 6(1), 79–110 (2005)

	14.	 K.A. De Jong, Evolutionary Computation: A Unified Approach (MIT Press, Cambridge, 2006)
	15.	 J. Drchal, M. Šnorek, Diversity visualization in evolutionary algorithms, in Proceedings of 41th

Spring International Conference, MOSIS’07, pp. 77–84. Ostrava: MARQ (2007)
	16.	 A.E. Eiben, J.E. Smith, Introduction to Evolutionary Computing, vol. 53 (Springer, Berlin, 2003)
	17.	 D. Floreano, P. Husbands, S. Nolfi, Evolutionary robotics, in Springer Handbook of Robotics, ed. by

B. Siciliano, O. Khatib (Springer, Berlin, 2008), pp. 1423–1451
	18.	 E. Hart, P. Ross, GAVEL—a new tool for genetic algorithm visualization. IEEE Trans. Evol. Com-

put. 5(4), 335–348 (2001)
	19.	 S. Ito, Y. Mitsukura, H.N. Miyamura, T. Saito, M. Fukumi, A visualization of genetic algorithm

using the pseudo-color, in Revised Selected Papers from the 14th International Conference on Neu-
ral Information Processing, ICONIP 2007, Lecture Notes in Computer Science, vol. 4985, pp. 444–
452. Springer (2007)

	20.	 G. Jornod, E.D. Mario, I. Navarro, A. Martinoli, SwarmViz: An open-source visualization tool for
particle swarm optimization, in Congress on Evolutionary Computation, CEC 2015, pp. 179–186.
IEEE (2015)

	21.	 E. Keedwell, M.B. Johns, D.A. Savic, Spatial and temporal visualisation of evolutionary algorithm
decisions in water distribution network optimisation, in Companion Material Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO ’15, pp. 941–948. ACM (2015)

	22.	 A. Kerren, T. Egger, EAVis: a visualization tool for evolutionary algorithms, in 2005 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC 2005), pp. 299–301. IEEE
(2005)

	23.	 N. Khemka, C. Jacob, VISPLORE: a toolkit to explore particle swarms by visual inspection, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’09, pp. 41–48. ACM
(2009)

	24.	 Y. Kim, K.H. Lee, Y. Yoon, Visualizing the search process of particle swarm optimization, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’09, pp. 49–56. ACM
(2009)

	25.	 J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selec-
tion, vol. 1 (MIT Press, Cambridge, 1992)

	26.	 W.B. Langdon, Long-term evolution of genetic programming populations, in Companion Material
Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, pp. 235–236.
ACM (2017)

	27.	 S.H. Liu, M. Črepinšek, M. Mernik, Analysis of VEGA and SPEA2 using exploration and exploi-
tation measures, in Proceedings of the 5th International Conference on Bioinspired Optimization
Methods and their Applications, BIOMA 2012, pp. 97–108. Jožef Stefan Institute (2012)

1 3

Genetic Programming and Evolvable Machines	

	28.	 N. Lourenço, F.B. Pereira, E. Costa, Sge: A structured representation for grammatical evolution, in
Revised Selected Papers from the International Conference on Artificial Evolution (Evolution Artifi-
cielle), EA 2015, Lecture Notes in Computer Science, vol. 9554, pp. 136–148. Springer (2015)

	29.	 E. Lutton, J. Foucquier, N. Perrot, J. Louchet, J. Fekete, Visual analysis of population scatterplots, in
Revised Selected Papers from the 10th International Conference on Artificial Evolution (Evolution
Artificielle), EA 2011, Lecture Notes in Computer Science, vol. 7401, pp. 61–72. Springer (2011)

	30.	 M. Mach, Z. Zetakova, Visualising Genetic Algorithms: A Way Through the Labyrinth of Search
Space (IOS Press, Amsterdam, 2002), pp. 279–285

	31.	 N.F. McPhee, M.M. Casale, M. Finzel, T. Helmuth, L. Spector, Visualizing genetic programming
ancestries, in Companion Material Proceedings of the Genetic and Evolutionary Computation Con-
ference, GECCO ’16, pp. 1419–1426. ACM (2016)

	32.	 N.F. McPhee, R. Poli, W.B. Langdon, Field Guide to Genetic Programming. http://lulu.com (2008)
	33.	 E. Medvet, A comparative analysis of dynamic locality and redundancy in grammatical evolution, in

Proceedings of the 20th European Conference, EuroGP 2017, pp. 326–342. Springer (2017)
	34.	 E. Medvet, Hierarchical grammatical evolution, in Companion Material Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO ’17, pp. 249–250. ACM (2017)
	35.	 E. Medvet, T. Tušar, The DU map: a visualization to gain insights into genotype-phenotype map-

ping and diversity, in Companion Material Proceedings of the Genetic and Evolutionary Computa-
tion Conference, GECCO ’17, pp. 1705–1712. ACM (2017)

	36.	 J.F. Miller, S.L. Smith, Redundancy and computational efficiency in Cartesian genetic program-
ming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

	37.	 A. Moraglio, K. Krawiec, C. Johnson, Geometric semantic genetic programming, in Proceedings of
the International Congress on Parallel Problem Solving from Nature, PPSN XII, Lecture Notes in
Computer Science, vol. 7491, pp. 21–31. Springer (2012)

	38.	 M.M. Mourshed, S. Shikder, A.D.F. Price, Phi-array: a novel method for fitness visualization and
decision making in evolutionary design optimization. Adv. Eng. Inf. 25(4), 676–687 (2011)

	39.	 T. Munzner, Visualization Analysis and Design (CRC Press, Boca Raton, 2014)
	40.	 M. O’Neill, C. Ryan, Grammatical evolution by grammatical evolution: the evolution of grammar

and genetic code, in Genetic Programming, pp. 138–149 (2004)
	41.	 I. Ortigosa, R. Lopez, J. Garcia, A neural networks approach to residuary resistance of sailing yachts

prediction, in Proceedings of the International Conference on Computational Methods in Marine
Engineering, MARINE 2007, vol. 2007, p. 250 (2007)

	42.	 L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–
418 (1997)

	43.	 K.E. Parsopoulos, V.C. Georgopoulos, M.N. Vrahatis, A technique for the visualization of popula-
tion-based algorithms, in Proceedings of the Congress on Evolutionary Computation, CEC 2008,
pp. 1694–1701. IEEE (2008)

	44.	 H. Pohlheim, Multidimensional scaling for evolutionary algorithms—visualization of the path
through search space and solution space using Sammon mapping. Artif. Life 12(2), 203–209 (2006)

	45.	 H. Pohlheim, Understanding the course and state of evolutionary optimizations using visualization:
ten years of industry experience with evolutionary algorithms. Artif. Life 12(2), 217–227 (2006)

	46.	 D. Rajanen (Marghescu), Evaluating multidimensional visualization techniques in data mining tasks
(2018)

	47.	 F. Rothlauf, Representations for genetic and evolutionary algorithms, in Representations for Genetic
and Evolutionary Algorithms, pp. 9–32. Springer, Berlin (2006)

	48.	 C. Ryan, J. Collins, M. O’Neill, Grammatical evolution: Evolving programs for an arbitrary lan-
guage, in Proceedings of the First European Workshop on Genetic Programming, EuroGP’98, Lec-
ture Notes in Computer Science, vol. 1391, pp. 83–96. Springer (1998)

	49.	 K. Sastry, D.E. Goldberg, Probabilistic model building and competent genetic programming. Genet.
Program. Ser. 6, 205–220 (2003)

	50.	 L. Sekanina, V. Kapusta, Visualisation and analysis of genetic records produced by Cartesian
genetic programming, in Companion Material Proceedings of the Genetic and Evolutionary Com-
putation Conference, GECCO ’16, pp. 1411–1418. ACM (2016)

	51.	 W.B. Shine, C.F. Eick, Visualizing the evolution of genetic algorithm search processes, in Interna-
tional Conference on Evolutionary Computation, pp. 367–372. IEEE (1997)

	52.	 F. Silva, P. Urbano, L. Correia, A.L. Christensen, odNEAT: an algorithm for decentralised online
evolution of robotic controllers. Evol. Comput. 23(3), 421–449 (2015)

http://lulu.com

	 Genetic Programming and Evolvable Machines

1 3

	53.	 L. Spector, Introduction to the peer commentary special section on “On the mapping of genotype
to phenotype in evolutionary algorithms” by Peter A. Whigham, Grant Dick, and James Maclaurin.
Genet. Program. Evol. Mach. 18(3), 351–352 (2017)

	54.	 G. Squillero, A. Tonda, Divergence of character and premature convergence: a survey of methodolo-
gies for promoting diversity in evolutionary optimization. Inf. Sci. 329, 782–799 (2016)

	55.	 K.O. Stanley, D.B. D’Ambrosio, J. Gauci, A hypercube-based encoding for evolving large-scale
neural networks. Artif. Life 15(2), 185–212 (2009)

	56.	 K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol.
Comput. 10(2), 99–127 (2002)

	57.	 J. Talamini, G. Scaini, E. Medvet, A. Bartoli, Selfish vs. global behavior promotion in car control-
ler evolution, in Proceedings of the Genetic and Evolutionary Computation Conference Companion
(2018)

	58.	 D. Thierens, P.A. Bosman, Optimal mixing evolutionary algorithms, in Proceedings of the 13th
Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 617–624. ACM,
New York, NY, USA (2011)

	59.	 D. Thierens, P.A.N. Bosman, Hierarchical problem solving with the linkage tree genetic algorithm,
in Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 877–
884. ACM (2013)

	60.	 A. Thorhauer, On the non-uniform redundancy in grammatical evolution, in Proceedings of the
International Conference on Parallel Problem Solving from Nature, PPSN XIV, Lecture Notes in
Computer Science, vol. 9921, pp. 292–302. Springer (2016)

	61.	 Z. Tóth, A graphical user interface for evolutionary algorithms. Acta Cybern. 16(2), 337–365 (2003)
	62.	 T. Tušar, B. Filipič, Visualization of Pareto front approximations in evolutionary multiobjective

optimization: a critical review and the prosection method. IEEE Trans. Evol. Comput. 19(2), 225–
245 (2015)

	63.	 T. Ulrich, Pareto-set analysis: biobjective clustering in decision and objective spaces. J. Multi-Crite-
ria Decis. Anal. 20(5–6), 217–234 (2013)

	64.	 N.Q. Uy, N.X. Hoai, M. O’Neill, R.I. McKay, E. Galván-López, Semantically-based crossover in
genetic programming: application to real-valued symbolic regression. Genet. Program. Evol. Mach.
12(2), 91–119 (2011)

	65.	 L. Vanneschi, M. Castelli, L. Manzoni, The k landscapes: a tunably difficult benchmark for genetic
programming, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
’11, pp. 1467–1474. ACM (2011)

	66.	 L. Vanneschi, M. Castelli, L. Manzoni, S. Silva, A new implementation of geometric semantic GP
and its application to problems in pharmacokinetics, in Proceedings of the 16th European Confer-
ence on Genetic Programming, EuroGP 2013, Lecture Notes in Computer Science, vol. 7831, pp.
205–216. Springer (2013)

	67.	 L. Vanneschi, M. Castelli, S. Silva, A survey of semantic methods in genetic programming. Genet.
Program. Evol. Mach. 15(2), 195–214 (2014)

	68.	 M. Virgolin, T. Alderliesten, C. Witteveen, P.A.N. Bosman, Scalable genetic programming by gene-
pool optimal mixing and input-space entropy-based building-block learning, in Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1041–1048. ACM (2017)

	69.	 J.A. Walker, J.F. Miller, The automatic acquisition, evolution and reuse of modules in Cartesian
genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

	70.	 P.A. Whigham, G. Dick, J. Maclaurin, On the mapping of genotype to phenotype in evolutionary
algorithms. Genet. Program. Evol. Mach. 18, 1–9 (2017)

	71.	 A.S. Wu, K.A. De Jong, D.S. Burke, J.J. Grefenstette, C.L. Ramsey, Visual analysis of evolutionary
algorithms, in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2,
pp. 1419–1425. IEEE (1999)

	72.	 I.C. Yeh, Simulation of concrete slump using neural networks. Proc. Inst. Civ. Eng. Constr. Mater.
162(1), 11–18 (2009)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1 3

Genetic Programming and Evolvable Machines	

Affiliations

Eric Medvet4  · Marco Virgolin1 · Mauro Castelli2 · Peter A. N. Bosman1 ·
Ivo Gonçalves3 · Tea Tušar5

	 Marco Virgolin
	 marco.virgolin@cwi.nl

	 Mauro Castelli
	 mcastelli@novaims.unl.pt

	 Peter A. N. Bosman
	 peter.bosman@cwi.nl

	 Ivo Gonçalves
	 icpg@dei.uc.pt

	 Tea Tušar
	 tea.tusar@ijs.si

1	 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
2	 NOVA Information Management School (NOVA IMS), Universidade Nova de Lisboa, Campus

de Campolide, Lisbon, Portugal
3	 INESC Coimbra, DEEC, University of Coimbra, Coimbra, Portugal
4	 Department of Engineering and Architecture, University of Trieste, Trieste, Italy
5	 Department of Intelligent Systems, Joŭef Stefan Institute, Ljubljana, Slovenia

http://orcid.org/0000-0001-5652-2113

	Unveiling evolutionary algorithm representation with DU maps
	Abstract
	1 Introduction
	2 Supported visualization tasks
	3 Related work
	4 DU map: overview
	4.1 Design choices
	4.2 Example of how to read a DU map

	5 DU maps: application to EAs
	5.1 DU map on GE
	5.1.1 GE
	5.1.2 WHGE
	5.1.3 SGE

	5.2 DU map on GSGP
	5.3 DU map on GOMEA
	5.4 DU map on NEAT

	6 Experimental-based validation
	6.1 RQ1: Is the DU map useful for unveiling the properties of an EA representation?
	6.1.1 Non-EA-specific observations
	6.1.2 EA-specific observations

	6.2 RQ2: Is the DU map useful for gaining insight into the behavior of an EA run on a problem, and for comparing problems?
	6.2.1 Comparing different runs
	6.2.2 Comparing different problems

	6.3 RQ3: Is the DU map useful for choosing EA parameters or components?

	7 User-based validation
	7.1 Questionnaire results

	8 Concluding remarks
	Acknowledgements
	References

