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Abstract

We study the asymptotic tail probability of the first-passage time over a moving boundary for a ran-
dom walk conditioned to return to zero, where the increments of the random walk have finite variance.
Typically, the asymptotic tail behavior may be described through a regularly varying function with expo-
nent −1/2, where the impact of the boundary is captured by the slowly varying function. Yet, the moving
boundary may have a stronger effect when the tail is considered at a time close to the return point of the
random walk bridge. In the latter case, a phase transition appears in the asymptotics, of which the precise
nature depends on the order of distance between zero and the moving boundary.

1 Introduction

The asymptotic behavior of random walks has long been an extremely popular topic in probability. In 1951,
Donsker [9] shows that a suitably rescaled stable random walk converges to a Brownian motion. Many
extensions have been studied over the years, such as generalizations to random walks in the domain of
attraction of a stable law [18] and additional conditioning properties. For example, an invariance principle
was shown for random walk bridges in [14], whereas [13, 2, 7] developed invariance principles for random
walks conditioned to stay positive. Recently, these two types of conditioning have been combined in [3] to
an invariance principle for random walk bridges conditioned to stay positive over the entire interval.

A natural question that arises is whether and how these results extend to moving boundaries. That is,
how does the random walk behave asymptotically, conditioned it stays above a boundary sequence that is
not necessarily zero or even constant? This topic, as well as the closely related first-passage asymptotics,
has been addressed in [15, 16, 11, 12, 5, 1, 4] and many more.

In this paper, we include a moving boundary in a particular random walk bridge setting. More precisely,
we consider a random walk bridge with increments that have zero mean and finite variance. The purpose is
to derive the asymptotic tail of the first-passage time over a moving boundary for this random walk bridge.
We stress that we are only considering the tail for all times that are well before the random walk bridge
returns to zero. In other words, we extend a random walk bridge in the Brownian setting to stay above a
moving boundary over part of its interval.

Besides this problem being of intrinsic interest, our inspiration comes from a seemingly unrelated area:
cascading failure models. These models are used to describe systems of interconnected components where
failures possibly trigger subsequent failures of other components. A typical reliability measure in such
problems is the probability that the number of failures exceeds a certain threshold. Analytic results are
obtained for particular settings [6, 19], but allow for limited generalizations. It turns out that this problem
has an equivalent random-walk bridge representation, where the objective translates to the probability that
the first-passage time over a moving boundary exceeds the threshold. In Section 3 we demonstrate this
relation in detail.
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Clearly, the asymptotic behavior of this first-passage time depends on the boundary sequence. We con-
sider all boundary sequences that are within square-root order from zero, and hence relatively not too far
from zero with respect to time. Our results distinguishes between two regimes. The first concerns thresh-
olds that are significantly smaller than the time that the random walk returns to zero, whereas the second
considers thresholds close to the return point. In the first case, the objective can be described asymptotically
through a regularly varying function with exponent −1/2. When the boundary sequence satisfies certain
additional conditions, as explained in e.g. [4], the objective has a power-law decay with a preconstant that
can be interpreted in a probabilistic way. However, depending on how close the boundary remains to zero,
a phase transition possibly occurs when the threshold is close to the return point of the random walk bridge.
This intriguing phenomenon reflects the strong dependence on the boundary: the effect may not solely be
captured in a slowly varying function, but can affect the behavior much more drastically.

The paper is organized as follows. In Section 2 we state our assumptions, and point out known results
that are used throughout this paper. Our main results are presented in Section 3. In Section 4 we prove the
result in case that the threshold is sufficiently far from the return point, while the proof in the other case is
given in Section 5. In particular, the proof in the latter case requires a result on the uniform convergence
of an unconditioned random walk while staying above a moving boundary, which we state and prove
in Section 5.1.

2 Preliminaries

Before presenting our main results, we first introduce some notation, state our assumptions and point out
the consequences.

2.1 Notation

Let Xi, i ≥ 1 be independent, identically distributed random variables with EXi = 0 and EX2
i = 1 for all

i ≥ 1. Define the random walk

Sm :=
∑m

i=1 Xi, m ≥ 1.

We refer to {gi}i∈N as the boundary sequence. Define the stopping time

τg := min{i ≥ 1 : Si ≤ gi},

i.e. the first-passage time of the random walk over the (moving) boundary. In case that gi = x for all i ≥ 1,
we write Tx := τg for the stopping to emphasize the constant boundary.

Finally, we use some notation throughout this paper to classify the order of magnitude. We write an =
o(bn) if lim supn→∞ an/bn = 0 and an = O(bn) if lim supn→∞ an/bn < ∞. Similarly, we write an = ω(bn)
if limn→∞ bn/an = 0 and bn = Ω(bn) if lim supn→∞ bn/an < ∞. Finally, we write an = Θ(bn) if both
an = O(bn) and an = Ω(bn), and denote an ∼ bn if limn→∞ an/bn = 1.

2.2 Assumptions and properties

First, we make some assumptions on the increments.

Assumption 1 The increments of the random walk are independent and identically distributed with mean zero and
variance one. Additionally, we assume the that the law of the increments has a density f(·) (almost everywhere) and
that there exists a n0 such that fn0(·), the density corresponding to Sn0 , is bounded (almost everywhere).
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Note that every random walk with increments with mean zero and finite variance can be rescaled to
satisfy Assumption 1, i.e. we cover all random walks with increments that fall in the normal domain of at-
traction of the normal distribution. We point out that the boundedness requirement on the density function
of the random walk for some n0 in Assumption 1 is the necessary and sufficient for a uniform convergence
between the scaled density of the position of the random walk towards the standard normal density [17,
p. 198]. Specifically, let φ(·) and Φ(·) denote the density function and the distribution function of a standard
normal random variable, respectively. Then,

lim
n→∞

sup
x∈R

∣

∣

∣

∣

P

(

Sn√
n
≤ x

)

− Φ(x)

∣

∣

∣

∣

= 0, lim
n→∞

sup
x∈R

∣

∣

√
nfn(

√
nx)− φ(x)

∣

∣ = 0. (2.1)

Next, we assume that the boundary sequence {gi}i∈N does not move too far from zero.

Assumption 2 The boundary sequence {gi}i∈N satisfies

|gi| = o(
√
i) (2.2)

for all i ≥ 1, and

P (τg > n) > 0, ∀n ≥ 1. (2.3)

Under Assumption 2, it is known that the position of the rescaled random walk, conditioned it stays
above the boundary, converges to a Rayleigh distribution [4]. To be precise, as n → ∞,

P
(

Sn > gn + v
√
n|τg > n

)

∼ e−v2/2, ∀v ≥ 0. (2.4)

The first-passage time itself has a regularly varying tail,

P(τg > n) ∼
√

2

π

Lg(n)√
n

, (2.5)

where Lg(·) is a positive, slowly varying function. This slowly varying function has a probabilistic inter-
pretation:

Lg(n) = E(Sn − gn; τg > n) ∼ E(−Sτg ; τg ≤ n) ∈ (0,∞). (2.6)

The literature offers many discussions and results for which this slowly varying function converges to a
finite constant Lg(∞) := limn→∞ Lg(n). We note that in case that Lg(∞) < ∞ exists, the slowly varying
term can hence be replaced by the constant E(−Sτg). We refer the reader to [4] for a thorough discussion of
this issue.

Remark 1 To the best of our knowledge [4] provide the least strong conditions that allow for the existence
of a finite Lg(∞). These conditions are a bit cumbersome, and alternatively, we mention two easily checked
cases here that are known from former literature.

In [12], they show that if the boundary sequence gn, n ≥ 1 is non-increasing and concave, then Lg(∞)
exists and

∞
∑

n=1

−gn
n3/2

< ∞ ⇐⇒ Lg(∞) = E(−Sτg) ∈ (0,∞).
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Particularly, this holds for all finite constant boundaries. In Theorem 5 of [20], the concavity condition
is relaxed, but a stronger summability condition is required. Specifically,it is shown that if gn, n ≥ 1 is
non-increasing,

∞
∑

n=1

log1/2 n

n3/2
(−gn) < ∞ =⇒ Lg(∞) = E(−Sτg) ∈ (0,∞).

In this paper, we consider a random walk that returns to zero at time n. The objective is to derive the
asymptotic behavior of the probability that this random walk stay above a moving boundary over part of
its interval. That is, given that the random walk returns to zero at time n, what is the asymptotic probability
of the random walk staying above the moving boundary up to time k := kn? We refer to k as the threshold
and assume that it is at least ω(1) distance from both zero and n.

Assumption 3 The threshold k := kn satisfies both k → ∞ and n− k → ∞ as n → ∞.

3 Main results

We distinguish between two cases: one where the threshold is not too close to the point of return of the
random walk bridge, and one where it is.

Theorem 1 Suppose limn→∞ k/n < 1. Then, as n → ∞,

P (τg > k|Sn = 0) ∼
√

2

π
Lg(k)

√

n− k

n
k−1/2. (3.1)

Note that when k is not too close to the boundary, the impact of the boundary is completely captured by
the slowly varying function. When k moves closer to n, the behavior of the boundary turns more relevant
and possibly results to a change in asymptotics.

Theorem 2 Suppose k = n− o(n). Additional to the Assumption 2, suppose there exists a ǫ ∈ (0, 1) such that

sup
j∈[(1−ǫ)k,k]

|gj − gk| ≤ α(ǫ)|gk|, (3.2)

for every large enough n, with α(ǫ) → 0 as ǫ ↓ 0. Then, as n → ∞,

P (τg > k|Sn = 0) ∼















√

2
πLg(k)

√
n−k
k , if |gk| = o(

√
n− k),

√

2
πLg(k)γ

(

|gk|√
n−k

) √
n−k
k , if |gk| = Θ(

√
n− k),

2Lg(k)
|gk|
k , if |gk| = ω(

√
n− k), gk < 0,

(3.3)

where

γ(y) := e−
y2

2 − y
∫∞
x=y

e−
x2

2 dx. (3.4)
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A typical example that is covered by this framework is when gi = −iα, i ∈ N with α < 1/2. The
additional assumption (3.2) is merely technical: it ensures that the boundary does not fluctuate too much
as it moves closer to the threshold. That is, for every ǫ > 0 there is a value α(ǫ) < ∞ such that the boundary
values does not fluctuate more than 2α(ǫ)gk in the interval [(1− ǫ)k, k] for large enough n. Particularly, this
implies that ǫ ∈ (0, 1) can be chosen small enough such that α(ǫ) < 1, and hence the boundary sequence at
time [(1 − ǫ)k, k] has the same sign (either positive, negative or zero). Cases where the boundary sequence
strongly oscillates close to the threshold are thus excluded from our framework.

The phase transition that appears in Theorem 2 reflects the strong influence of the boundary sequence
in this case. It might not be captured solely by the slowly varying function, but can have a much stronger
effect. Furthermore, this effect is only influenced by the behavior of the boundary sequence close to the
threshold. This observation is best-explained by our approach. We track the position of a random walk at
time k, conditioned that it stays above the moving boundary till that point. Then we evaluate how likely
a reversed random walk moving back from time n can reach that point. The reversed random walk will

converge uniformly to a normal density, and is therefore likely to stay within
√
n− k = o(

√
k) distance from

zero. When gk < 0, those values are thus likely of order max{
√
n− k, |gk|} distance from the boundary. The

phase transition is then a consequence of how likely the random walk staying above the boundary sequence
can move to such values.

Example 1 As pointed out in the introduction, Theorem 1 and 2 can be applied to a seemingly unrelated
problem in cascading failure models. In this example, we will describe a particular cascading failure model
as in [19], and translate it to the random-walk bridge setting we consider in this paper.

Consider a system consisting of n (indistinguishable) components. Each component has a limited capac-
ity for the amount of load it can carry before it fails. The network is initially stable, in the sense that every
component has sufficient capacity that exceeds the initial load. We assume that the difference between the
initial loads and capacities, which we refer to as the surplus capacity, are stochastic random variables that
are independent and identically distributed with continuous distribution function F (·). In order to trig-
ger a possible cascading failure effect, we include an initial disturbance that causes all components to be
additionally loaded with ln(1). When the capacity of a component is exceeded by its load demands, that
component fails. Every component failure causes (equal) additional loading on the remaining components,
possibly triggering knock-on effects. We write ln(i) for the total load surge per component when i − 1
components have failed, and assume this is a deterministic non-decreasing function. The cascading fail-
ure process continues until the capacities on the remaining components are sufficient to deal with the load
increases.

A measure of system reliability is the number of component failures after the cascading failure process
has ended, written by An. Since F (·) is continuous, it satisfies the identity [19]

P (An ≥ k) = P

(

Un
(i) ≤ F (ln(i)) , i = 1, ..., k

)

,

where Un
(i) denotes the i’th order statistic of n uniformly distributed random variables with support [0, 1].

In [19], they are interested which choices of F (·) and ln(·) asymptotically exhibits power-law behavior for
large thresholds k as in Assumption 3. In particular, they consider a setting where

F (ln(i)) =
θ + i− 1

n
. (3.5)

Next, we show how this problem can be related to our random-walk bridge framework. Consider
the random walk Sn = i −∑n

i=1 Ei where (Ei)i∈N are independent identically exponentially distribution
random variables with mean one. It is well-known that

(

Un
(1), U

n
(2), ..., U

n
(n)

)

d
=

(

E1

n
,

∑2
i=1 Ei

n
, ...,

∑n
i=1 Ei

n

∣

∣

∣

∣

n+1
∑

i=1

Ei = n

)

.
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Then the probability that the number of component failures exceeds the threshold can be written as

P(An ≥ k) = P

(

Un
(i) ≤

θ + i− 1

n
, i = 1, ..., k

)

= P (Si ≥ 1− θ, i = 1, ..., k|Sn+1 = 1)

∼ P (Si ≥ 1− θ, i = 1, ..., k|Sn = 0) = P
(

T1−θ > k
∣

∣Sn = 0
)

.

Theorem 1 and 2 yields the result immediately. That is, as n → ∞, we obtain

P(An ≥ k) ∼
√

2

π
L1−θ(k)

√

n− k

kn
,

and since the boundary is constant,

lim
n→∞

L1−θ(k) ∼ E
(

−ST1−θ

)

= −(1− θ) + 1 = θ.

due to the memory-less property of exponentials.

Yet, (3.5) is a very specific case. In [19], they explore for which perturbations the power-law behavior
prevails. That is, if

F (ln(i)) =
θ + i− 1− g(i)

n
,

which perturbations g(·) yield power-law behavior? The analytic approach used in [19] allows for rela-
tively limited generalizations. Theorem 1 and 2 provide the answer to a much broader range of possible
perturbations, and quantifies its effect on the prefactor in a probabilistic way.

4 Threshold sufficiently far from return point

We first consider the case where limn→∞ k/n < 1 as in Theorem 1. Define the reversed random walk as

S̃m = Sn−m, m ≥ 0, (4.1)

where Sn = 0 (and no condition is posed on the S0). Consequently, S̃m obeys the same law as −Sm

for all m ≥ 0. In the proof, we evaluate all events that a random walk conditioned to stay above the
moving boundary meets at time k the reversed (unconditioned) random walk starting at time k. When
limn→∞ k/n < 1, we can use a direct approach to derive the asymptotic behavior.

Proof of Theorem 1. Note that

P (τg > k|Sn = 0) =

∫ ∞

u=gk

P (τg > k;Sk ∈ du|Sn = 0) =
1

fn(0)

∫ ∞

u=gk

P (Sk ∈ du; τg > k) f̃n−k(u)

=
P(τg > k)

fn(0)

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u),

where f̃n−k(·) is the density of the reversed random walk at time n− k.

The strategy is to bound the integral by two sums that coincide to the same expression as n → ∞. Fix
∆ > 0, and write

∆N0 := {∆i : i ≥ 0, i ∈ Z}.
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Since the reversed random walk S̃m is the same in distribution as −Sm, m ≥ 1, it also satisfies (2.1) and
hence there is a uniform convergence to the normal density. Then,

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u) =

∫ ∞

v=gk/
√
k

P

(

Sk√
k
∈ dv|τg > k

)

f̃n−k(v
√
k)

≤
∑

z∈∆N0

P

(

Sk√
k
∈
[

gk√
k
+ z,

gk√
k
+ z +∆

)

∣

∣τg > k

)

sup
y∈[z,z+∆)

f̃n−k(gk + y
√
k)

≤ 1 + o(1)
√

2π(n− k)

∑

z∈∆N0

P

(

Sk√
k
∈
[

gk√
k
+ z,

gk√
k
+ z +∆

)

∣

∣τg > k

)

sup
y∈[z,z+∆)

e−
(gk+y

√
k)2

2(n−k) .

Since e−x2

attains its maximum at x = 0 and is decreasing for x > 0, we see that the supremum over an

interval [x, x+∆) of this function is attained at x for all x ≥ 0. Furthermore, since |gk| = o(
√
k), we observe

that gk + y
√
k > 0 for every y > ∆ for large enough k. Therefore,

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u) ≤
1 + o(1)

√

2π(n− k)

(

P

(

Sk√
k
∈
[

gk√
k
,
gk√
k
+∆

)

∣

∣τg > k

)

+
∑

z∈∆N

P

(

Sk√
k
∈
[

gk√
k
+ z,

gk√
k
+ z +∆

)

∣

∣τg > k

)

e−
(gk+z

√
k)2

2(n−k)

)

.

Using (2.4), we obtain

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u) ≤
1 + o(1)

√

2π(n− k)

(

1− e−
∆2

2 +
∑

z∈∆N

∫ z+∆

v=z

ve−
v2

2 dv · e− z2

2 · k
n−k (1 + o(1))

)

≤ 1 + o(1)
√

2π(n− k)



2
(

1− e−
∆2

2

)

+
∑

z∈∆N≥2

∫ z+∆

v=z

ve−
v2

2 · e−
(v−∆)2k
2(n−k) dv





≤ 1 + o(1)
√

2π(n− k)

(

2
(

1− e−
∆2

2

)

+

∫ ∞

v=2∆

ve−
v2

2 · e−
(v−∆)2k
2(n−k) dv

)

.

We note that limn→∞ k/(n− k) ∈ [0,∞), and hence

lim sup
n→∞

n√
n− k

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u)

≤ 1√
2π

lim sup
n→∞

n

n− k
lim
∆↓0

(

2
(

1− e−
∆2

2

)

+

∫ ∞

v=2∆

ve−
v2

2 · e−
(v−∆)2

2 limn→∞ k
n−k dv

)

=
1√
2π

.

Similarly, we obtain the following lower bound

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u) =

∫ ∞

v=gk/
√
k

P

(

Sk√
k
∈ dv|τg > k

)

f̃n−k(v
√
k)

≥
∑

z∈∆N0

P

(

Sk√
k
∈
[

gk√
k
+ z,

gk√
k
+ z +∆

)

∣

∣τg > k

)

inf
y∈[z,z+∆)

f̃n−k(gk + y
√
k)

≥ 1− o(1)
√

2π(n− k)

∑

z∈∆N

∫ z+∆

v=z

ve−
v2

2 dv · e−
(z+∆)2

2 · k
n−k

≥ 1− o(1)
√

2π(n− k)

∫ ∞

v=∆

ve−
v2

2 · e−
(v+2∆)2

2 · k
n−k dv,
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where we applied (2.1) and (2.4) again. Therefore,

lim inf
n→∞

n√
n− k

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u)

≥ 1√
2π

lim inf
n→∞

n

n− k
lim
∆↓0

∫ ∞

v=∆

ve−
v2

2 · e−
(v+2∆)2

2 ·limn→∞ k
n−k dv =

1√
2π

.

The upper and lower bound asymptotically coincide. Using (2.5), we conclude as n → ∞,

P (τg > k|Sn = 0) =
P(τg > k)

fn(0)

∫ ∞

u=gk

P (Sk ∈ du|τg > k) f̃n−k(u) ∼
√

2/πLg(k)k
−1/2

(2πn)−1/2

1√
2π

√
n− k

n

=

√

2

π
Lg(k)

√

n− k

kn
.

5 Threshold close to return point

Unfortunately, the analysis in the previous section does not follow through when k = n− o(n). The chosen

grid with small steps of order
√
k is not refined enough to capture the asymptotic behavior in this case.

Another approach is needed, which we elaborate on in this section.

5.1 Density of random walk at the threshold

For the evaluation of the objective, it is sensible to consider the position of a random walk at time k itself. A
uniform convergence result is given by Proposition 18 of [8] in case of constant boundaries. As this result
is crucial in our analysis, we pose it here for our setting.

Proposition 3 (Proposition 18 of [8]) Let x := xn ≥ 0 denote the starting point of a random walk (depending on
n) and let y := yn be a sequence of n. Let U(·) denote the renewal function in the (strict) increasing ladder height
process, and V (·) the renewal function corresponding to the decreasing ladder height process. Let E(−ST0) be the
expected position of a random walk at stopping time T0, and E(−S̃T0) the expected position of a random walk with
increments −Xi, i ≥ 0 at stopping time T0. Then the following results hold uniformly for every ∆ ∈ (0,∞) as
n → ∞.

(i) For max{x/√n, y/
√
n} → 0,

P (Sn ∈ [y, y +∆), T0 > n|S0 = x) ∼
V (x)

∫ y+∆

y U(w) dw
√
2πn3/2

. (5.1)

(ii) For any (fixed) D > 1 with x/
√
n → 0 and y/

√
n ∈ [D−1, D],

P (Sn ∈ [y, y +∆), T0 > n|S0 = x) ∼
√

2

π

E(−ST0)V (x)∆√
n

y

n
e−

y2

2n , (5.2)

and uniformly for y/
√
n → 0 and x/

√
n ∈ [D−1, D],

P (Sn ∈ [y, y +∆), T0 > n|S0 = x) ∼
√

2

π

E(−S̃T0)U(y)∆√
n

x

n
e−

x2

2n , (5.3)
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(iii) For any (fixed) D > 1 with x/
√
n ∈ [D−1, D] and y/

√
n ∈ [D−1, D],

P (Sn ∈ [y, y +∆), T0 > n|S0 = x) ∼ ∆q(x/
√
n, y/

√
n)√

n
, (5.4)

where q(x, y) is the density of P(W (1) ∈ dy, inf0≤t≤1 W (t) > 0|W (0) = x) with {W (t), t ≥ 0} the standard
Wiener process. This has the explicit form [10]

q(u, v) =
1√
2π

(

e
−(u−v)2

2 − e
−(u+v)2

2

)

. (5.5)

for every u, v > 0.

The asymptotic behaviors of V (·) and U(·) are quite well-understood: the functions are both non-
decreasing functions and regularly varying with exponent one. In particular, as t → ∞,

U(t) ∼ t/E(−S̃T0), V (t) ∼ t/E(−ST0). (5.6)

Moreover, for all random walks with finite variance σ2 = 1 it holds that

E(−S̃T0)E(−ST0) =
σ2

2
=

1

2
. (5.7)

The goal is to exploit Proposition 3 to derive the asymptotic behavior of the random walk at time k,
while staying above the moving boundary. Intuitively, we derive this by looking at the position of the
random walk at time (1 − ǫ)k, where ǫ ∈ (0, 1) satisfies (3.2). Due to the additional assumption on ǫ, one
can replace the boundary between (1− ǫ)k and k by the constant boundary gk. The density is then derived
using (2.4), (2.5) and the result of Doney [8] with constant boundaries. This strategy yields the following
result.

Proposition 4 Let t ≥ gk with t− gk = Ω(|gk|) and (t− gk) → ∞ as k → ∞. Then, uniformly as k → ∞,

P (Sk ∈ dt; τg > k)

dt
∼
√

2

π

Lg(k)

k3/2
·
{

E

(

−S̃T0

)

U(t− gk) if t = o(
√
k),

te−
t2

2k if t = Ω(
√
k).

For the proof of Proposition 4 we use the two following lemmas that show that it is unlikely for the
random walk to be close to its boundary at time (1 − ǫ)k.

Lemma 5 Suppose t = o(
√
k) such that t − gk = Ω(|gk|) and (t − gk) → ∞ as k → ∞. Let ǫ ∈ (0, 1) be such

that (3.2) is satisfied. Choose xǫ > 0 small enough such that

1− e−
−xǫ

2

2(1−ǫ) < ǫ3/2 (5.8)

holds, and define

g+k,ǫ =

{

(1 + α(ǫ))gk if gk < 0,
(1− α(ǫ))gk if gk ≥ 0.

(5.9)

Then there exist a constant C1 ∈ (0,∞) such that for all ǫ ∈ (0, 1),

lim sup
k→∞

k3/2

Lg(k)U(t− gk)

∫ g(1−ǫ)k+xǫ

√
k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1 − ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ C1
xǫ

√

(1− ǫ)
dt.
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Lemma 6 Suppose t = Θ(
√
k) such that t ≥ gk. Let ǫ ∈ (0, 1) be such that (3.2) holds, and choose xǫ small enough

such that (5.8) is satisfied. Define g+k,ǫ as in (5.9). Then there exist a constant C2 ∈ (0,∞) such that for all ǫ ∈ (0, 1),

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ g(1−ǫ)k+xǫ

√
k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ C2
xǫ

√

(1− ǫ)
dt.

The proofs of Lemma 5 and 6 are given in Appendix A. Next, we will prove Proposition 4.

Proof of Proposition 4. We consider the position of the random walk at time (1 − ǫ)k with ǫ ∈ (0, 1).
Specifically, fix ǫ > 0 such that (3.2) holds and, additionally,

α(ǫ) < lim
k→∞

t− gk
|gk|

(5.10)

is satisfied. Note that

P (Sk ∈ dt; τg > k) =

∫ ∞

v=g(1−ǫ)k

P
(

Sk ∈ dt; τg > k;S(1−ǫ)k ∈ dv
)

=

∫ ∞

v=g(1−ǫ)k

P
(

Sk ∈ dt; τg > k|S(1−ǫ)k = v; τg > (1− ǫ)k
)

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

=

∫ ∞

v=g(1−ǫ)k

P (Sǫk ∈ dt; τğǫ > ǫk|S0 = v)P
(

S(1−ǫ)k ∈ dv|τg > (1− ǫ)k
)

P (τg > (1 − ǫ)k) ,

where ğǫ, i ≥ 1 is defined as

ğǫj := g(1−ǫ)k+j , ∀1 ≤ j ≤ ǫk.

Observe that (3.2) is then equivalent to

sup
1≤j≤k

∣

∣

∣

∣

ğǫj
gk

− 1

∣

∣

∣

∣

≤ α(ǫ).

Define g+k,ǫ as in (5.9) and let

g−k,ǫ =

{

(1− α(ǫ))gk if gk < 0,
(1 + α(ǫ))gk if gk ≥ 0.

(5.11)

We obtain the bounds

P (Sk ∈ dt; τg > k) ≤
∫ ∞

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

, (5.12)

and

P (Sk ∈ dt; τg > k) ≥
∫ ∞

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

. (5.13)

The goal is to show that the bounds asymptotically coincide when ǫ ↓ 0.

10



Let vǫ,k = g(1−ǫ)k + xǫ

√
k, where xǫ > 0 is chosen small enough such that

1− e−
x2
ǫ

2(1−ǫ) < ǫ3/2. (5.14)

Note that this choice of xǫ implies that xǫ/
√

ǫ(1− ǫ) → 0 as ǫ ↓ 0, since

lim
ǫ↓0

xǫ
√

ǫ(1− ǫ)
< lim

ǫ↓0

√

−2 log(1− ǫ3/2)

ǫ
= 0.

Then, (5.12) can be written as

P (Sk ∈ dt; τg > k) ≤
∫ vǫ,k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

+

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1 − ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

.

Lemma 5 and 6 provide a bound for the first term, i.e. there exists c1, c2 ∈ (0,∞) such that for every ǫ ∈ (0, 1)
satisfying (3.2),

∫ vǫ,k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ Lg(k)

k3/2
xǫ√
1− ǫ

{

c1U(t− gk) dt if |t| = o(
√
k),

c2te
− t2

2k dt if |t| = Θ(
√
k).

(5.15)

To evaluate the second integral term, we use a similar analysis as we have done for the case where k is
sufficiently far from n. First, due to Proposition 3, it holds uniformly as k → ∞,

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt
=

P

(

Sǫk ∈ d(t− g+k,ǫ);T0 > ǫk|S0 = v − g+k,ǫ

)

d(t− g+k,ǫ)

∼











√

2
πE(−S̃T0)

U(t−g+
k,ǫ)√

ǫk

v−g+
k,ǫ

ǫk e−
(v−g

+
k,ǫ

)2

2ǫk if t = o(
√
k),

1√
2πǫk

(

e−
(v−t)2

2ǫk − e−
(v+t−2g

+
k,ǫ

)2

2ǫk

)

if t = Θ(
√
k).

(5.16)

Moreover, using (2.4), (2.5) and the fact that Lg(·) is slowly varying,

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

= P
(

S(1−ǫ)k ∈ dv|τg > (1− ǫ)k
)

P (τg > (1 − ǫ)k)

∼
√

2

π

Lg(k)
√

(1− ǫ)k

v − g(1−ǫ)k

(1− ǫ)k
e−

(v−g(1−ǫ)k )2

2(1−ǫ)k dv.
(5.17)

These asymptotic results can be used to evaluate the second term. For readability of the proof, we complete

the proof separately for the two cases stated in the proposition, i.e. for t = o(
√
k) and t = Θ(

√
k). Fix

∆ < xǫ/2 and recall

∆N0 = {∆i : i ≥ 0, i ∈ Z}.
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In the case t = o(
√
k), using (5.17) and (5.16), we find for every fixed 0 < ∆ < xǫ/2,

lim sup
k→∞

k3/2

Lg(k)U(t− g+k,ǫ)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim sup
k→∞

k3/2

Lg(k)U(t− g+k,ǫ)

(

∑

z∈∆N0

P

(

S(1−ǫ)k ∈ [vǫ,k + z
√
k, vǫ,k + (z +∆)

√
k); τg > (1 − ǫ)k

)

· sup
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt





≤ lim sup
k→∞

k3/2

Lg(k)U(t− g+k,ǫ)

(

∑

z∈∆N0

∫ vǫ,k+(z+∆)
√
k

v=vǫ,k+z
√
k

√

2

π

Lg(k)
√

(1− ǫ)k

v − g(1−ǫ)k

(1 − ǫ)k
e−

(v−g(1−ǫ)k )2

2(1−ǫ)k dv

·
√

2

π
E(−S̃T0)

U(t− g+k,ǫ)√
ǫk

vǫ,k + (z +∆)
√
k − g+k,ǫ

ǫk
e−

(vǫ,k+z
√

k−g
+
k,ǫ

)2

2ǫk

)

≤ 2

π

E(−S̃T0)
√

ǫ(1− ǫ)

∫ ∞

y=xǫ

y

(1− ǫ)
e−

y2

2(1−ǫ)
y + 2∆

ǫ
e−

(y−2∆)2

2ǫ dy,

where the final inequality is due to variable substitution, and since for every v ∈ [vǫ,k+z
√
k, vǫ,k+(z+∆)

√
k],

vǫ,k + (z +∆)
√
k − g+k,ǫ ≤ v − g(1−ǫ)k + 2∆

√
k

and

vǫ,k + z
√
k − g+k,ǫ ≥ v − g(1−ǫ)k − 2∆

√
k

for k large enough. Letting ∆ ↓ 0 and invoking Lemma 8 yields

lim sup
k→∞

k3/2

Lg(k)U(t− g+k,ǫ)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim
∆↓0

(

2

π
E(−S̃T0)

1
√

ǫ(1− ǫ)

∫ ∞

y=0

y(y + 2∆)

ǫ(1− ǫ)
e−

y2

2(1−ǫ)
− (y−2∆)2

2ǫ dy

)

=

√

2

π
E(−S̃T0).

Recall (5.9) and (5.6). Hence,

lim sup
k→∞

U(t− g+k,ǫ)

U(t− gk)
≤ 1 + α(ǫ) lim sup

k→∞

|gk|
t− gk

< ∞.

Combining this with (5.15), we obtain the upper bound

lim sup
k→∞

k3/2

Lg(k)U(t− gk)

P (Sk ∈ dt; τg > k)

dt

≤ lim
ǫ↓0

(

c1
xǫ√
1− ǫ

+

√

2

π
E(−S̃T0)

(

1 + α(ǫ) lim sup
k→∞

|gk|
t− gk

)

)

=

√

2

π
E(−S̃T0).
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Similarly, using (5.16) and (5.17), we obtain a lower bound for every fixed 0 < ∆ < xǫ/2,

lim inf
k→∞

k3/2

Lg(k)U(t− g−k,ǫ)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

dt

≥ lim inf
k→∞

(

k3/2

Lg(k)U(t− g−k,ǫ)

∑

z∈∆N0

P

(

S(1−ǫ)k ∈ [vǫ,k + z
√
k, vǫ,k + (z +∆)

√
k); τg > (1− ǫ)k

)

· inf
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

dt





≥ lim inf
k→∞

(

k3/2

Lg(k)U(t− g−k,ǫ)

∑

z∈∆N0

∫ vǫ,k+(z+∆)
√
k

v=vǫ,k+z
√
k

√

2

π

Lg(k)
√

(1− ǫ)k

v − g(1−ǫ)k

(1− ǫ)k
e−

(v−g(1−ǫ)k )2

2(1−ǫ)k dv

·
√

2

π
E(−S̃T0)

U(t− g−k,ǫ)√
ǫk

vǫ,k + z
√
k − g−k,ǫ

ǫk
e−

(vǫ,k+(z+∆)
√

k−g
−
k,ǫ

)2

2ǫk

)

≥ 2

π
E(−S̃T0)

1
√

(1 − ǫ)ǫ

∫ ∞

y=xǫ

y

(1 − ǫ)
e−

y2

2(1−ǫ)
y − 2∆

ǫ
e−

(y+2∆)2

2ǫk dy.

Invoking Lemma 8 yields

lim inf
k→∞

k3/2

Lg(k)U(t− g−k,ǫ)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

dt

≥ lim
∆↓0

(

2

π
E(−S̃T0)

1
√

(1− ǫ)ǫ

∫ ∞

y=xǫ

y

(1 − ǫ)
e−

y2

2(1−ǫ)
y − 2∆

ǫ
e−

(y+2∆)2

2ǫk dy

)

=
2

π
E(−S̃T0)

(

xǫ
√

ǫ(1− ǫ)
e−

xǫ
2ǫ(1−ǫ) +

∫ ∞

y=xǫ/
√

ǫ(1−ǫ)

e−y2/2 dy

)

.

Recall that the choice of xǫ ensures that xǫ/
√

ǫ(1− ǫ) → 0 as ǫ ↓ 0. Moreover, we observe that due to (5.10),
(5.11) and (5.6),

lim inf
k→∞

U(t− g−k,ǫ)

U(t− gk)
≥ 1− α(ǫ) lim inf

k→∞

|gk|
t− gk

.

Therefore,

lim inf
k→∞

k3/2

Lg(k)U(t− gk)

P (Sk ∈ dt; τg > k)

dt

≥ 2

π
E(−S̃T0) lim

ǫ↓0

(

1− α(ǫ) lim inf
k→∞

|gk|
t− gk

)





xǫ
√

ǫ(1− ǫ)
e−

xǫ
2ǫ(1−ǫ) +

∫ ∞

y= xǫ√
ǫ(1−ǫ)

e−y2/2 dy



 =

√

2

π
E(−S̃T0).

Note this coincides with the upper bound, proving the result in case of t = o(
√
k).

Next, we complete the proof in case of t = Θ(
√
k). Again, using (5.16) and (5.17), we obtain for any
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0 < ∆ < min{xǫ, limk→∞ t/
√
k}/3,

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∑

z∈∆N0

P

(

S(1−ǫ)k ∈ [vǫ,k + z
√
k, vǫ,k + (z +∆)

√
k); τg > (1− ǫ)k

)

· sup
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∑

z∈∆N0

∫ vǫ,k+(z+∆)
√
k

v=vǫ,k+z
√
k

√

2

π

Lg(k)
√

(1 − ǫ)k

v − g(1−ǫ)k

(1− ǫ)k
e−

(v−g(1−ǫ)k )2

2(1−ǫ)k dv

· sup
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

1√
2πǫk

(

e−
(v−t)2

2ǫk − e−
(v+t−2g

+
k,ǫ

)2

2ǫk

)

.

Since for any a ≤ b,

sup
v∈[a,b]

e−
(v−t)2

2ǫk =











e−
(b−t)2

2ǫk if b ≤ t,

e−
(a−t)2

2ǫk if a ≥ t,
1 othterwise,

we obtain

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim sup
k→∞

1

π

k1/2

te−t2/(2k)
√

ǫ(1− ǫ)

(

∫ t/
√
k−3∆

y=xǫ

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y+3∆−t/

√
k)2

2ǫ − e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

+

∫ ∞

y=t/
√
k+3∆

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−3∆−t/

√
k)2

2ǫ − e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

+

∫ t/
√
k+3∆

y=t/
√
k−3∆

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

1− e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

)

.

Since t = Θ(
√
k),

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim
∆↓0

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

(

∫ t/
√
k−3∆

y=xǫ

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y+3∆−t/

√
k)2

2ǫ − e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

+

∫ ∞

y=t/
√
k+3∆

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−3∆−t/

√
k)2

2ǫ − e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

+

∫ t/
√
k+3∆

y=t/
√
k−3∆

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

1− e−
(y+3∆+t/

√
k)2

2ǫ

)

dy

)

= lim
k→∞

1

π

k1/2

te−t2/(2k)
√

ǫ(1− ǫ)
·
∫ ∞

y=xǫ

y

(1 − ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−limk→∞ t/

√
k)2

2ǫ − e−
(y+limk→∞ t/

√
k)2

2ǫ

)

dy
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with xǫ > 0. Invoking Lemma 9 concludes

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt

≤ lim sup
k→∞

1

π

k1/2

te−t2/(2k)
√

ǫ(1− ǫ)

∫ ∞

y=0

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−limk→∞ t/

√
k)2

2ǫ − e−
(y+limk→∞ t/

√
k)2

2ǫ

)

dy

=
1

π
·
√
2π =

√

2

π
.

Combining this expression with (5.15) and letting ǫ ↓ 0, we obtain the upper bound

lim sup
k→∞

k3/2

Lg(k)te−t2/(2k)

P(Sk ∈ dt; τg > k)

dt
≤
√

2

π
.

For the lower bound, using (5.16) and (5.17), we obtain for any 0 < ∆ < min{xǫ, limk→∞ t/
√
k}/3,

lim inf
k→∞

k3/2

Lg(k)te−t2/(2k)

∫ ∞

v=vǫ,k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

dt

≥ lim inf
k→∞

k3/2

Lg(k)te−t2/(2k)

∑

z∈∆N0

P

(

S(1−ǫ)k ∈ [vǫ,k + z
√
k, vǫ,k + (z +∆)

√
k); τg > (1− ǫ)k

)

· inf
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

P

(

Sǫk ∈ dt;Tg−
k,ǫ

> ǫk|S0 = v
)

dt

≥ lim inf
k→∞

1

π

k1/2

te−t2/(2k)
√

ǫ(1− ǫ)

∑

z∈∆N0

∫ vǫ,k+(z+∆)
√
k

v=vǫ,k+z
√
k

v − g(1−ǫ)k

(1− ǫ)k
e−

(v−g(1−ǫ)k )2

2(1−ǫ)k dv

· inf
v∈[vǫ,k+z

√
k,vǫ,k+(z+∆)

√
k)

(

e−
(v−t)2

2ǫk − e−
(v+t−2g

−
k,ǫ

)2

2ǫk

)

≥ lim inf
k→∞

1

π

k1/2

te−t2/(2k)
√

ǫ(1− ǫ)

(

∫ t/
√
k−3∆

y=xǫ

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−3∆−t/

√
k)2

2ǫ − e−
(y−3∆+t/

√
k)2

2ǫ

)

dy

+

∫ ∞

y=t/
√
k+3∆

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y+3∆−t/

√
k)2

2ǫ − e−
(y−3∆+t/

√
k)2

2ǫ

)

dy

)

.

We observe that the limiting expression tends to a constant as k → ∞. Then, setting ∆ ↓ 0 and invoking
Lemma 9 yields

lim inf
k→∞

k3/2

Lg(k)te−t2/(2k)

P (Sk ∈ dt; τg > k)

dt
≥ 1

π

(

√
2π − c3π

√

ǫ(1− ǫ)

(

1− e−
x2
ǫ

2(1−ǫ)

)

)

≥
√

2

π
− c3

ǫ√
1− ǫ

for some constant c3 > 0. Finally, we observe that as ǫ ↓ 0 the upper and lower bound coincode, concluding

the proof for t = Θ(
√
k).
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5.2 Proof of Theorem 2

Recall that S̃m, m ≥ 1 denotes the reversed random walk defined in (4.1), and f̃m(·) the corresponding
density function at time m. Then,

P (τg > k|Sn = 0) =

∫ ∞

u=gk

P (τg > k;Sk ∈ du|Sn = 0) =
1

fn(0)

∫ ∞

u=gk

P (Sk ∈ du; τg > k) f̃n−k(u).

Since the reversed random walk also satisfies property (2.1),

P (τg > k|Sn = 0) ∼ 1

fn(0)
√

2π(n− k)

∫ ∞

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k)

∼
√

n

n− k

∫ ∞

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k) .

It is clear from the above identity that one may use Proposition 4 to obtain the main result. There appears a
technical difficulty for the evaluation of the integral within o(|gk|) distance from the boundary, as Proposi-
tion 4 does not provide the asymptotic behavior for these values. Alternatively, we provide an appropriate
bound at this interval that is is obtained by using the following lemma.

Lemma 7 Suppose xk = o(
√
k) is such that xk = Ω(|gk|) and xk → ∞ as k → ∞. Then,

P (Sk ≤ gk + xk; τg > k) ≤ (1 + o(1))
x2
k√
2π

Lg(k)

k3/2
.

Proof. Note that

P (Sk ≤ gk + xk; τg > k) = P (τg > k)− P (Sk > gk + xk; τg > k) ,

where can determine the latter probability by using Proposition 4. Note that due to (5.6), for any yk satisfy-
ing yk = Ω(|gk|) and yk → ∞ as k → ∞,

U(yk)E(−S̃T0) ∼ yk ≥ yke
− y2k

2k .

Therefore, Proposition 4 yields

P (Sk > gk + xk|τg > k) =

∫ ∞

t=gk+xk

P (Sk ∈ dt|τg > k) ≥ (1− o(1))

∫ ∞

y=xk

y

k
e−

y2

2k = (1 − o(1))e−
x2
k

2k .

Recalling (2.5) and expanding 1− e−x2
k/(2k), we conclude that

P (Sk ≤ gk + xk; τg > k) ≤ (1 + o(1))

√

2

π

Lg(k)√
k

(

1− e−
x2
k

2k

)

≤ (1 + o(1))
x2
k√
2π

Lg(k)

k3/2
.

Next, we prove our main result.

Proof of Theorem 2. Similar as the proof of Proposition 4, we will provide an appropriate upper and
lower bound of our objective, and show that these converge. Fix δ > 0, let gk,δ = o(

√
n− k) be such that
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gk,δ → ∞ as n → ∞ if |gk| converges to a finite constant, gk,δ = (1 − δ)gk if −gk → ∞ as n → ∞, and
gk,δ = (1 + δ)gk if gk → ∞ as n → ∞. Then, using (2.1),

P (τg > k|Sn = 0) ≤ (1 + o(1))

√

n

n− k

∫ ∞

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k)

≤ (1 + o(1))

√

n

n− k

(

∫ gk,δ

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k) +

∫ ∞

u=gk,δ

P (Sk ∈ du; τg > k) e−
u2

2(n−k)

)

.

For the first term we obtain the following bounds. If |gk| converges to a finite constant, Lemma 7 yields that
∫ gk,δ

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k) ≤ P (Sk ≤ gk,δ; τg > k) = o

(

Lg(k)
n− k

k3/2

)

.

If |gk| → ∞ when n → ∞, then Lemma 7 yields

∫ gk,δ

u=gk

P (Sk ∈ du; τg > k) e−
u2

2(n−k) ≤ P (Sk ≤ gk,δ; τg > k) e−
g2k(1−δ)2

2(n−k) ≤ 1 + o(1)√
2π

· δ2Lg(k)g
2
k

k3/2
e−

g2k(1−δ)2

2(n−k) .

for all |gk| = O(
√
n− k) and for all gk < 0 with |gk| = ω(

√
n− k).

For the second term, due to Proposition 4 and (5.6), we obtain
∫ ∞

u=gk,δ

P (Sk ∈ du; τg > k) e−
u2

2(n−k)

≤ (1 + o(1))

√

2

π

Lg(k)

k3/2

(
∫ ∞

u=gk

(u− gk)e
− u2

2(n−k) du+

∫ ∞

u=u⋆

ue−
u2

2k e−
u2

2(n−k)

)

du,

where u⋆ = o(
√
k) is large enough such that u⋆ = ω(n− k). The second term is relatively small, i.e.

∫ ∞

u=u⋆

ue−
u2

2k e−
u2

2(n−k) du =
(n− k)k

n
e−

u2
⋆
2

n
k(n−k) = o (n− k) .

On the other hand, due to Lemma 10,

∫ ∞

u=gk

(u − gk)e
− u2

2(n−k) du =

∫ ∞

y=0

ye−
(y+gk)2

2(n−k) dy =

(

(n− k)e−
g2k

2(n−k) − gk
√
n− k

∫ ∞

x=gk/
√
n−k

e−
x2

2 dx

)

≤ (1 + o(1))







n− k if |gk| = o(
√
n− k),

(n− k)γ(|gk|/
√
n− k) if |gk| = Θ(

√
n− k),√

2π|gk|
√
n− k if |gk| = ω(

√
n− k) and gk < 0,

where γ(·) is defined as in (3.4). Hence, we obtain the following upper bounds. If |gk| = o(
√
n− k),

lim sup
n→∞

k

Lg(k)
√
n− k

P (τg > k|Sn = 0) ≤
√

2

π
.

If |gk| = Θ(
√

n− k), define η = limn→∞ |gk|/
√
n− k ∈ (0,∞). Then,

lim sup
n→∞

k

Lg(k)
√
n− k

P (τg > k|Sn = 0) ≤ δ2
η2√
2π

e−
η2(1−δ)2

2 +

√

2

π
γ(η).

Finally, if |gk| = ω(
√

n− k) and gk < 0, then

lim sup
n→∞

k

Lg(k)|gk|
P (τg > k|Sn = 0) ≤

√

2

π
·
√
2π = 2.
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For the lower bound, using Proposition 4, note that

P (τg > k|Sn = 0) ≥ (1− o(1))

√

n

n− k

∫ ∞

u=gk,δ

P (Sk ∈ du; τg > k) e−
u2

2(n−k)

≥ (1− o(1))

√

2

π

Lg(k)

k
√
n− k

∫ u⋆

y=δ|gk|
ye−

(y+gk)2

2(n−k) dy,

where u⋆ = o(
√
k) is large enough such that (u⋆ + gk) = ω(n− k). Using Lemma 10, we find

∫ u⋆

y=δ|gk|
ye−

(y+gk)2

2(n−k) dy = (n− k)

(

e−
(δ|gk|+gk)2

2(n−k) − e−
(u⋆+gk)2

2(n−k)

)

− gk
√
n− k

∫ gk+u⋆

x=δ|gk|+gk

e−
x2

2 dx.

Therefore, if |gk| = o(
√

n− k), then

lim inf
n→∞

k

Lg(k)
√
n− k

P (τg > k|Sn = 0) ≥
√

2

π
.

If |gk| = Θ(
√

n− k), then

lim inf
n→∞

k

Lg(k)
√
n− k

P (τg > k|Sn = 0) ≥







√

2
π

(

e−
η2(1+δ)2

2 − η
∫∞
x=η(1+δ)

e−
x2

2

)

if η < 0,
√

2
π

(

e−
η2(1+δ)2

2 − η
∫∞
x=η(1−δ) e

−x2

2

)

if η > 0,

where η = limn→∞ |gk|/
√
n− k. Finally, if |gk| = ω(

√
n− k) and gk < 0, then

lim inf
n→∞

k

Lg(k)|gk|
P (τg > k|Sn = 0) ≥

√

2

π
·
√
2π = 2.

We see that as δ ↓ 0 all lower bounds coincide with the upper bounds, concluding (3.3).
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A Proofs of Lemma 5 and 6

Proof of Lemma 5. Note that

∫ g(1−ǫ)k+xǫ

√
k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ P

(

S(1−ǫ)k ≤ g(1−ǫ)k + xǫ

√
k; τg > (1 − ǫ)k

)

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

.

For v = o(
√
k), Equation (5.1) yields uniformly

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt
∼

U(t− g+k,ǫ)√
2π(ǫk)3/2

V (v − g+k,ǫ).
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On the other hand, if v = Θ(
√
k), then (5.3) yields

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt
∼
√

2

π
E(−S̃T0)

U(t− g+k,ǫ)

(ǫk)3/2
(v − g+k,ǫ)e

−
(v−g

+
k,ǫ

)2

2ǫk ,

We observe that e−x ≤ 1 for all x ≥ 0, and E(−S̃T0) ∈ (0,∞) since the increments of the random walk have
variance one. Moreover, due to (5.6) and (5.7), there exists a constant c1 ∈ (0,∞) such that

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ c1(g(1−ǫ)k + xǫ

√
k − g+k,ǫ)

U(t− g+k,ǫ)

(ǫk)3/2
dt.

Due to our assumption (3.2), we have that (g(1−ǫ)k − g+k,ǫ) < 2α(ǫ)|gk| = o(
√
k). Also, as U(·) is non-

decreasing and (5.6) holds, there exists a constant c2 ∈ (0, 1) such that

U(t− g+k,ǫ) ≤ c2(1 + α(ǫ))U(t− gk).

That is, there exists a c3 ∈ (0,∞),

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ (1 + o(1))c3xǫ
U(t− gk)

ǫ3/2k
dt.

Finally, since (2.4) and (2.5) hold with Lg(·) a slowly varying function,

P

(

S(1−ǫ)k ≤ g(1−ǫ)k + xǫ

√
k; τg > (1− ǫ)k

)

= P

(

S(1−ǫ)k ≤ g(1−ǫ)k + xǫ

√
k|τg > (1− ǫ)k

)

P (τg > (1− ǫ)k)

∼
(

1− e−
−xǫ

2

2(1−ǫ)

)

√

2

π

Lg(k)
√

(1− ǫ)k
<

√

2

π

ǫ3/2√
1− ǫ

Lg(k)√
k

.

Multiplying the final two expressions yields the result.

Proof of Lemma 6. The proof is similar to the proof of Lemma 5, but in this case we have to consider

the asymptotics for t = Θ(
√
k). Again,

∫ g(1−ǫ)k+xǫ

√
k

v=g(1−ǫ)k

P
(

S(1−ǫ)k ∈ dv; τg > (1− ǫ)k
)

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ P

(

S(1−ǫ)k ≤ g(1−ǫ)k + xǫ

√
k; τg > (1 − ǫ)k

)

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

.

For v = o(
√
k), Equation (5.2) yields uniformly

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt
∼
√

2

π
E(−ST0)

V (v − g+k,ǫ)

(ǫk)3/2
(t− g+k,ǫ)e

−
(t−g

+
k,ǫ

)2

2ǫk .

Note e−x ≤ 1 for all x ≥ 0 and g+k,ǫ = o(
√
k). Since V (·) is non-decreasing and satisfies (5.6), we find that

there exists a c1 ∈ (0,∞) such that

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

√

2

π
E(−ST0)

V (v − g+k,ǫ)

(ǫk)3/2
(t− g+k,ǫ)e

−
(t−g

+
k,ǫ

)2

2ǫk ≤ (1 + o(1))c1
xǫ

√
k

(ǫk)3/2
te−

t2

2k e−
(1−ǫ)t2

2ǫk

≤ (1 + o(1))c1
xǫ

ǫ3/2k
te−

t2

2k .
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On the other hand, if v = Θ(
√
k), then (5.3) yields

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

dt
∼ 1√

2πǫk

(

e−
(v−t)2

2ǫk − e−
(v+t−2g

+
k,ǫ

)2

2ǫk

)

∼ 1√
2πǫk

(

e−
(v−t)2

2ǫk − e−
(v+t)2

2ǫk

)

,

Using a Taylor expansion, we obtain

(

e−
(v−t)2

2ǫk − e−
(v+t)2

2ǫk

)

= e−
v2

2ǫk− t2

2ǫk

(

e
vt
ǫk − e−

vt
2ǫk

)

≤ e−
t2

2k

(

2
vt

ǫk
+ o

(

vt

ǫk

))

.

Therefore there exists a c2 ∈ (0,∞) such that

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

1√
2πǫk

(

e−
(v−t)2

2ǫk − e−
(v+t)2

2ǫk

)

≤ (1 + o(1))c2
xǫ

ǫ3/2k
te−

t2

2k .

We can conclude that there must exist a c3 ∈ (0,∞) such that

sup
v∈[g(1−ǫ)k ,g(1−ǫ)k+xǫ

√
k]

P

(

Sǫk ∈ dt;Tg+
k,ǫ

> ǫk|S0 = v
)

≤ (1 + o(1))c3
xǫ

ǫ3/2k
te−

t2

2k .

Again, since (2.4) and (2.5) hold with Lg(·) a slowly varying function,

P

(

S(1−ǫ)k ≤ g(1−ǫ)k + xǫ

√
k; τg > (1− ǫ)k

)

∼
(

1− e−
−xǫ

2

2(1−ǫ)

)

√

2

π

Lg(k)
√

(1− ǫ)k
<

√

2

π

ǫ3/2√
1− ǫ

Lg(k)√
k

.

Multiplying this with the previous expression then concludes the proof.

B Useful integral identities

Lemma 8 Suppose ǫ ∈ (0, 1). For every x ≥ 0,

∫ ∞

y=x

y2e−
y2

2ǫ(1−ǫ) dy = xǫ(1− ǫ)e−
x2

2ǫ(1−ǫ) + (ǫ(1− ǫ))3/2
∫ ∞

y=x/
√

ǫ(1−ǫ)

e−y2/2 dy.

Proof. This follows directly from an integration by parts and a variable substitution.

Lemma 9 Suppose ǫ ∈ (0, 1) and c ∈ (0,∞). Then,

∫ ∞

y=0

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−c)2

2ǫ − e−
(y+c)2

2ǫ

)

dy =
√
2π
√

ǫ(1− ǫ)ce−
c2

2 .

Moreover, for every x ≥ 0,

∫ x

y=0

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−c)2

2ǫ − e−
(y+c)2

2ǫ

)

dy ≤ 1− e−
x2

2(1−ǫ) .
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Proof. First note that for every a, b ∈ R,

∫

ye−
y2

2a+ y
b dy = −ae−

y2

2a+ y
b − a3/2

b
e

a
2b2

∫
a−by√

ab

s=0

e−
s2

2 ds.

Therefore,

∫ ∞

y=0

y

(1− ǫ)
e−

y2

2(1−ǫ)

(

e−
(y−c)2

2ǫ − e−
(y+c)2

2ǫ

)

dy = e−
c2

2ǫ

∫ ∞

y=0

y

(1− ǫ)
e−

y2

2ǫ(1−ǫ)

(

e
yc
ǫ − e−

yc
ǫ

)

dy

=
1

1− ǫ
e−

c2

2ǫ ·
√
2πǫ1/2(1− ǫ)3/2ce

c2

2
1−ǫ
ǫ =

√
2π
√

ǫ(1− ǫ)ce−
c2

2 .

The second claim follows easily by observing that for every y ∈ R,

e−
(y−c)2

2ǫ − e−
(y+c)2

2ǫ ≤ 1.

Lemma 10 Let a, b ∈ R be such that 0 ≤ a ≤ b ≤ ∞. Then

∫ b

y=a

ye−
(y+g)2

2(n−k) dy = (n− k)

(

e−
(a+gk)2

2(n−k) − e−
(b+gk)2

2(n−k)

)

− gk
√
n− k

∫ (b+gk)/
√
n−k

x=(a+gk)/
√
n−k

e−
x2

2 dx.

In particular,

∫ ∞

y=0

ye−
(y+g)2

2(n−k) dy = (n− k)e−
g2k

2(n−k) − gk
√
n− k

∫ ∞

x=gk/
√
n−k

e−
x2

2 dx.

Proof. This is an easy consequence of a variable substitution.
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