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ON THE LOVÁSZ THETA FUNCTION FOR INDEPENDENT SETS
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Abstract. We consider the maximum independent set problem on sparse graphs with maximum
degree d. We show that the Lovász ϑ-function based semidefinite program (SDP) has an integrality

gap of Õ(d/ log3/2 d), improving on the previous best result of Õ(d/ log d). This improvement is
based on a new Ramsey-theoretic bound on the independence number of Kr-free graphs for large
values of r. We also show that for stronger SDPs, namely, those obtained using polylog(d) levels

of the SA+ semidefinite hierarchy, the integrality gap reduces to Õ(d/ log2 d). This matches the
best unique-games-based hardness result up to lower-order poly(log log d) factors. Finally, we give
an algorithmic version of this SA+-based integrality gap result, albeit using d levels of SA+, via a
coloring algorithm of Johansson.
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1. Introduction. Given a graph G = (V,E), an independent set is a subset of
vertices S such that no two vertices in S are adjacent. The maximum independent
set problem is one of the most well-studied problems in algorithms and graph the-
ory, and its study has led to various remarkable developments such as the seminal
result of Lovász [Lov79] in which he introduced the ϑ-function based on semidefinite
programming, as well as several surprising results in Ramsey theory and extremal
combinatorics.

In general graphs, the problem is notoriously hard to approximate. Given a
graph on n vertices, the best known algorithm is due to Feige [Fei04] and achieves

an approximation ratio of Õ(n/ log3 n); here Õ(·) suppresses some log log n factors.
On the hardness side, a result of H̊astad [Has96] shows that no n1−ε approximation
exists for any constant ε > 0, assuming NP 6⊆ ZPP. The hardness has been improved
more recently to n/ exp((log n)3/4+ε) by Khot and Ponnuswami [KP06].

In this paper, we focus on the case of bounded-degree graphs, with maximum
degree d. Recall that the näıve algorithm (that repeatedly picks an arbitrary ver-
tex v and deletes its neighborhood) produces an independent set of size at least
n/(d + 1) and hence is a (d + 1)-approximation. The first o(d)-approximation was
obtained by Halldórsson and Radhakrishnan [HR94], who gave an O(d/ log log d) guar-
antee, based on a Ramsey theoretic result of Ajtai et al. [AEKS81]. Subsequently, an
O(d log log d

log d )-approximation was obtained independently by several researchers [AK98,
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1040 NIKHIL BANSAL, ANUPAM GUPTA, AND GURU GURUGANESH

Hal02, Hal00] using the ideas of Karger, Motwani, and Sudan [KMS98] to round the
natural semidefinite program (SDP) for the problem, which was itself based on the
Lovász ϑ-function.

On the negative side, Austrin, Khot, and Safra [AKS11] showed an Ω(d/ log2 d)
hardness of approximation, assuming the Unique Games Conjecture. Assuming P 6=
NP, a hardness of d/ log4 d was recently shown by Chan [Cha13]. We remark that these
hardness results seem to hold only when d is a constant or a very mildly increasing
function of n. In fact for d = Ω(n), the Ω(d/ log2 d) hardness of [AKS11] is inconsistent
with the known O(n/ log3 n) approximation [Fei04]. Hence throughout this paper, it
will be convenient to view d as being a sufficiently large but fixed constant.

Roughly speaking, the gap between the Ω(d/ log2 d)-hardness and the Õ(d/ log d)-
approximation arises for the following fundamental reason. Approaches based on the
SDP work extremely well if the ϑ-function has value more than Õ(n/ log d), but not
below this threshold. In order to to show an Ω(d/ log d)-hardness result, at the very
least, one needs an instance with SDP value around n/ log d but optimum integral
value about n/d. While graphs with the latter property clearly exist (e.g., a graph
consisting of n/(d + 1) disjoint cliques Kd+1), the SDP value for such graphs seems
to be low. In particular, having a large SDP value imposes various constraints on the
graph (for example, they cannot contain many large cliques) which might allow the
optimum to be nontrivially larger than n/d, for example, due to Ramsey-theoretic
reasons.

1.1. Our results. Our results resolve some of these questions. Our first result
considers the integrality gap of the standard SDP relaxation for an independent set
(without applying any lift-and-project steps). We show that it is more powerful than
the guarantee given by Alon and Kahale [AK98] and Halperin [Hal02].

Theorem 1.1. On graphs with maximum degree d, the standard ϑ-function-based
SDP formulation for the independent set problem has an integrality gap of
Õ(d/log3/2d).1

The proof of Theorem 1.1 is nonconstructive; while it shows that the SDP value is
within the claimed factor of the optimal IS size, it does not give an efficient algorithm
to find such an approximate solution. Finding such an algorithm remains an open
question.

The main technical ingredient behind Theorem 1.1 is the following new Ramsey-
type result about the existence of large independent sets in Kr-free graphs. This
builds on a long line of previous results in Ramsey theory (some of which we discuss
in section 2) and is of independent interest. (Recall that α(G) is the maximum
independent set size in G.)

Theorem 1.2. For any r > 0, if G is a Kr-free graph with maximum degree d,
then

(1) α(G) = Ω

(
n

d
·max

(
log d

r log log d
,

(
log d

log r

)1/2
))

.

Previously, the best known bound for Kr-free graphs was Ω(nd
log d

r log log d ) given by

Shearer [She95]. Observe the dependence on r: when r ≥ log d
log log d , i.e., when we are

only guaranteed to exclude very large cliques, Shearer’s result does not give anything

1Here and subsequently, Õ(·) suppresses poly(log log d) factors.
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ON THE LOVÁSZ THETA FUNCTION IN SPARSE GRAPHS 1041

better than the trivial n/d bound. It is in this range of r ≥ log d that the second term
in the maximization in (1) starts to perform better and give a nontrivial improvement.

In particular, if G does not contain cliques of size r = O(log3/2 d) (which will be the

interesting case for Theorem 1.1), Theorem 1.2 gives a bound of Ω̃(nd (log d)1/2). Even

for substantially larger values such as r = exp(log1−2ε d), this gives a nontrivial bound

of Õ(nd logε d).
Improving on Shearer’s bound has been a long-standing open problem in the area,

and it is conceivable that the right answer for Kr-free graphs of maximum degree d
is α(G) ≥ n

d
log d
log r . This would be best possible, since in section 3.1 we give a simple

construction showing an upper bound of α(G) = O(nd
log d
log r ) for r ≥ log d, which to

the best of our knowledge is the smallest upper bound currently known. The gap
between our lower bound and this upper bound remains an intriguing one to close; in
fact it follows from our proof of Theorem 1.1 that such a lower bound would imply
an Õ(d/ log2 d) integrality gap for the standard SDP. Alon [Alon96] shows that this
bound is achievable under the stronger condition that the neighborhood of each vertex
is (r − 1)-colorable.

The next set of results consider using lift-and-project techniques to address the
approximability of the problem. We consider the standard LP formulation for the
independent set problem strengthened by ` levels of the Sherali–Adams hierarchy,
together with semidefinite constraints at the first level (see section 2 for details). We
will refer to this as ` levels of the mixed hierarchy (this is also referred to as the SA+

hierarchy) and denote this relaxation by SA+
(`). Our first result is the following.

Theorem 1.3. The value of the O(log4 d)-level SA+ semidefinite relaxation has
an integrality gap of O(d(log log d)2/ log2 d).

The main observation behind this result is that as the SA+ relaxation specifies a
local distribution on independent sets, and if the relaxation has high objective value
then it must be that any polylog(d) size subset of vertices X must contain a large
independent subset. We can then use a result of Alon [Alon96], in turn based on the
above-mentioned result of Shearer [She95], to show that such graphs have non-trivially
large independents sets.

Unfortunately, Alon’s argument is non-algorithmic; it shows that the lifted SDP
has a small integrality gap, but does not give a corresponding approximation algorithm
with running time sub-exponential in n. Our next result makes this integrality gap
result algorithmic, although at the expense of more levels and a higher running time.

Theorem 1.4. There is an Õ(d/ log2 d)-approximation algorithm with running
time2 poly(n) · 2O(d), based on rounding a d-level SA+ semidefinite relaxation.

The improvement is simple and is based on bringing the right tool to bear on
the problem: instead of using the nonconstructive argument of Alon [Alon96], we use
an ingenious and remarkable (and stronger) result of Johansson [Joh96b], who shows
that the list-chromatic number of such locally-colorable graphs is χ`(G) = O(d log k

log d ).
His result is based on a very clever application of the Rödl “nibble” method, together
with the Lovász Local Lemma to tightly control the various parameters of the process
at every vertex in the graph. Applying Johansson’s result to our problem gives us the
desired algorithm.

2While a d-level SA+ relaxation has size nO(d) in general, our relaxation only uses variables
corresponding to subsets of vertices that lie in the neighborhood of some vertex v and thus has
n · 2O(d) variables. We comment on this in section 4.2.
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1042 NIKHIL BANSAL, ANUPAM GUPTA, AND GURU GURUGANESH

Unfortunately, Johansson’s preprint (back from 1996) was never published. (We
thank Alan Frieze for sharing a copy with us.) While his main results are summa-
rized in Appendix A, we give the proof in its entirety in the arXiv version of this pa-
per [BGG15] for completeness and to facilitate verification. Our presentation closely
follows his but streamlines some arguments based on recent developments such as
concentration bounds for low-degree polynomials of random variables, and the algo-
rithmic version of the Lovász Local Lemma. (Johansson’s previous preprint [Joh96a]
showing the analogous list-coloring result for triangle-free graphs is also unavailable
publicly but is presented in the graph coloring book by Molloy and Reed [MR02] and
has received considerable attention since, in both the math [AKS99, Vu02, FM13] and
computer science communities [GP00, CPS14].)

Finally, the proof of Theorem 1.4 also implies the following new results about the
LP-based Sherali–Adams (SA) hierarchies, without any SDP constraints.

Corollary 1.5. The LP relaxation with clique constraints on sets of size up
to log d (and hence the relaxation SA(log d)) has an integrality gap of Õ(d/ log d).
Moreover, the relaxation SA(d) can be used to find an independent set achieving an

Õ(d/ log d) approximation in time poly(n) · 2O(d).

Since LP-based relaxations have traditionally been found to be very weak for the
independent set problem, it may be somewhat surprising that a few rounds of the
Sherali–Adams hierarchy improves the integrality gap by a nontrivial amount.

Theorem 1.2, our Ramsey-theoretic result, extends to the case when d is the
average degree of the graph by first deleting the (at most n/2) vertices with degree
more than 2d and then applying the results. In Appendix C, we show that weaker
versions of our SDP-based approximation results hold when d is replaced by the
average degree instead of the maximum degree. Moreover, we show that the loss in
approximation ratio when going from max-degree to average degree is inherent.

2. Preliminaries. Given the input graph G = (V,E), we will denote the vertex
set V by [n] = {1, . . . , n}. Let α(G) denote the size of a maximum independent set in
G, and let d denote the maximum degree in G. The näıve greedy algorithm implies
α(G) ≥ n/(d + 1) for every G. As the greedy guarantee is tight in general (e.g.,
if the graph is a disjoint union of n/(d + 1) copies of the clique Kd+1), the trivial
upper bound of α(G) ≤ n cannot give an approximation better than d+ 1 and hence
stronger upper bounds are needed. A natural bound is the clique-cover number χ(G),
defined as the minimum number of vertex-disjoint cliques needed to cover V . As any
independent set can contain at most one vertex from any clique, α(G) ≤ χ(G).

Standard LP/ SDP relaxations. In the standard LP relaxation for the inde-
pendent set problem, there is variable xi for each vertex i that is intended to be 1 if
i lies in the independent set and 0 otherwise. The LP is the following:

max
∑
i

xi s.t. xi + xj ≤ 1 ∀(i, j) ∈ E and xi ∈ [0, 1] ∀i ∈ [n].(2)

Observe that this linear program is very weak and cannot give an approximation
better than (d + 1)/2: even if the graph consists of n/(d + 1) copies of Kd+1, the
solution xi = 1/2 for each i is a feasible one.

In the standard SDP relaxation, there is a special unit vector v0 (intended to
indicate 1) and a vector vi for each vertex i. The vector vi is intended to be v0 if i
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ON THE LOVÁSZ THETA FUNCTION IN SPARSE GRAPHS 1043

lies in the independent set and be 0 otherwise. This gives the following relaxation:

max
∑
i

vi · v0 s.t. v0 · v0 = 1, v0 · vi = vi · vi ∀i ∈ [n], and vi · vj = 0 ∀(i, j) ∈ E.
(3)

Let X denote the (n + 1) × (n + 1) Gram matrix with entries xij = vi · vj for
i, j ∈ {0, . . . , n}. Then we have the equivalent relaxation

max
∑
i

x0i s.t. x00 = 1, x0i = xii ∀i ∈ [n], xij = 0 ∀(i, j) ∈ E and X � 0.

(4)

The above SDP, which is equivalent to the well-known ϑ-function of Lovász (see,
e.g., [Lau, Lemma 3.4.4]), satisfies α(G) ≤ ϑ(G) ≤ χ(G). The O(d log log d

log d ) approxi-

mations due to [AK98, Hal02, Hal00] are all based on this SDP. Indeed, we use the
following important result due to Halperin [Hal02] about the performance of the SDP.

Theorem 2.1 (Halperin [Hal02, Lemma 5.2]). Let η ∈ [0, 1
2 ] be a parameter and

let Z be the collection of vectors vi satisfying ‖vi‖2 ≥ η in the SDP solution. Then

there is an algorithm that returns an independent set of size Ω( d2η

d
√

ln d
|Z|).

The statement above differs slightly from the one in [Hal02] since Halperin works
with a {−1, 1} formulation; a proof of its equivalence appears in Appendix B. Note
that if η = c log log d/ log d, then for c ≤ 1/4 Theorem 2.1 does not return any non-
trivial independent set. On the other hand, for c ≥ 1/4 the size of the independent
set returned rises exponentially fast with c.

For more details on SDPs, and the Lovász ϑ-function, we refer the reader to
[GLS88, GM12].

Lower bounds on the independence number. As SDPs can handle cliques,
looking at ϑ(G) naturally leads to Ramsey theoretic considerations. In particular, if
ϑ(G) is small, then the trivial n/(d+ 1) solution already gives a good approximation.
Otherwise, if ϑ(G) is large, then this essentially means that there are no large cliques
and one must argue that a large independent set exists (and can be found efficiently).

For bounded degree graphs, a well-known result of this type is that α(G) =
Ω(n log d

d ) for triangle-free graphs [AKS80, She83] (i.e., if there are no cliques of size
3). A particularly elegant proof (based on an idea due to Shearer [She95]) is in [AS92].
Moreover this bound is tight, and simple probabilistic constructions show that this
bound cannot be improved even for graphs with large girth.

For the case of Kr-free graphs with r ≥ 4, the situation is less clear. Ajtai et
al. [AEKS81] showed that Kr-free graphs have α(G) = Ω(n(log(log d/r))/d), which
implies that α(G) = Ω(n log log d/d) for r � log d. This result was the basis of the
O(d/ log log d) approximation due to [HR94]. Shearer [She95] improved this result
substantially and showed that

α(G) = Ω

(
1

r

n

d

log d

log log d

)
for Kr-free graphs. This result is based on an elegant entropy-based approach that
has subsequently found many applications. However, it is not known how to make
this method algorithmic. This bound still seems far from optimum. In particular, it
is possible that the dependence on r could be log r. Note that the above bound is
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1044 NIKHIL BANSAL, ANUPAM GUPTA, AND GURU GURUGANESH

trivial when r ≥ log d
log log d . For constant r, in particular r = 4, it is also an important

open question whether the log log d factor above can be removed.
Interestingly, Shearer’s bound also implies another (nonalgorithmic) proof that

the SDP has integrality gap O((d log log d)/ log d). To see this, suppose the SDP
objective is n/r. This essentially implies that the graph is Kr-free as roughly each
vertex contributes about xi = 1/r (formally, one can delete the vertices with xi ≤
1/(2r) and consider the residual graph). Then the integrality gap is (n/r)/α(G),
which by Shearer’s bounds is at least (d log log d)/ log d. It is interesting to note that
both Halperin’s approach and Shearer’s bound seem to get stuck at the same point.

Alon [Alon96] generalized the triangle-free result in a different direction, also
using the entropy method. He considered locally k-colorable graphs, where the neigh-
borhood of every vertex is k-colorable, and showed that α(G) = Ω(nd

log d
log k+1 ). Note

that triangle-free graphs are locally 1-colorable. This result also holds under weaker
conditions and plays a key role in bounding the integrality gap of SA+ relaxations.

Bounds on the chromatic number. Many of the above results also generalize
to the much more demanding setting of list coloring. All of them are based on the
“nibble” method but require increasingly sophisticated ideas. In particular these
results give a bound of Ω̃r(d/ log d) on the list chromatic number of Kr-free or locally
r-colorable graphs. The intuition for why O(d/ log d) arises can be seen via a coupon-
collector argument: if each vertex in the neighborhood N(v) chooses a color from s
colors independently and uniformly at random, they will use up all s colors unless
d ≤ O(s log s), or s ≥ Ω(d/ log d). (Of course, the colors at the neighbors are not
chosen uniformly or independently which substantially complicates the arguments.)
Kim showed that χ`(G) = O(d/ log d) for graphs with girth at least 5 [Kim95]. His
idea was that for any v, and u,w ∈ N(v), N(u)∩N(w) = {v} because of the girth, and
hence the available colors at u,w evolve essentially independently and hence conform
to the intuition.

These ideas fail for triangle-free graphs (of girth 4): we could have a vertex v, with
u,w ∈ N(v), and N(u) = N(w) (i.e., all their neighbors are common). In this case the
lists of available colors at u and w are far from independent: they would be completely
identical. Johansson [Joh96a] had the crucial insight that this positive correlation is
not a problem, since there is no edge between u and w (because of triangle-freeness!).
His clever proof introduced the crucial notions of entropy and energy to capture and
control the positive correlation along edges in such K3-free graphs.

If there are triangles, say, if the graphs are only locally k-colorable, then using
these ideas näıvely fails. Another key idea, also introduced by Johansson [Joh96b], is
to actually modify the standard nibble process by introducing a probability reshuffling
step at each vertex depending on its local graph structure, which makes it more
complicated. In [BGG15], we give his result for locally-colorable and for Kr-free
graphs in its entirety.

Lift-and-project hierarchies. An excellent introduction to hierarchies and
their algorithmic uses can be found in [CT12, Lau03]. Here, we only describe the
most basic facts needed for this paper.

The Sherali–Adams hierarchy defines a hierarchy of linear programs with increas-
ingly tighter relaxations. At level t, there is a variable YS for each subset S ⊆ [n]
with |S| ≤ t+ 1. Intuitively, one views XS as the probability that all the variables in
S are set to 1. Such a solution can be viewed as specifying a local distribution over
valid {0, 1}-solutions for each set S of size at most t+ 1. A formal description of the
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t-round Sherali–Adams LP SA(t) for the independent set problem can be found in
[CT12, Lemma 1].

More formally, for the independent set problem we have the following theorem
from [CT12].

Theorem 2.2 (see [CT12, Lemma 1]). Consider a family of distributions
{D(S)}S⊆[n]:|S|≤t+2, where each D(S) is defined over {0, 1}S. If the distributions
satisfy

1. for all (i, j) ∈ E and S ⊇ {i, j}, it holds that PrD(S)[(xi = 1)∩ (xj = 1)] = 0,
and

2. for all S′ ⊆ S ⊂ [n] with |S| ≤ t + 1, the distribution D(S′),D(S) agree on
S′,

then XS = PD(S)[∧i∈S(xi = 1)] is a feasible solution for the level-t Sherali–Adams
relaxation.

Conversely, for any feasible solution {X ′S} for the level-(t + 1) Sherali–Adams
relaxation, there exists a family of distributions satisfying the above properties, as
well as XS′ = PD(S)[∧i∈S′(xi = 1)] = X ′S′ for all S′ ⊆ S ⊂ [n] such that |S| ≤ t+ 1.

Here, condition 1 implies that for a subset of vertices S with |S| ≤ t+1, the local-
distribution D(S) has support on the valid independent sets in the graph induced on
S, and condition 2 guarantees that different local distributions induce a consistent
distribution on the common elements.

For our purposes, we will also impose the positive semidefinite constraint on the
variables xij at the first level (i.e., we add the constraints in (4) on xij variables).
We will call this the t-level SA+ formulation and denote it by SA+

(t). Such a solution

specifies values xS for multisets S with |S| ≤ ` + 1. To keep the notation consistent
with the LP (2), we will use xi to denote the marginals xii on singleton vertices.

3. Integrality gap of the standard SDP. In this section, we show Theo-
rem 1.1, that the integrality gap of the standard Lovász ϑ-function based SDP relax-
ation is

O

(
d
(

log log d
log d

)3/2
)

= Õ
(
d/ log3/2 d

)
.

To show this we prove the following result (which is Theorem 1.2, restated).

Theorem 3.1. Let G be a Kr-free graph with maximum degree d. Then

α(G) = Ω

(
n

d
max

(
log d

r log log d
,

(
log d

log r

)1/2
))

.

In particular, for r = logc d with c ≥ 1, we get α(G) = Ω
(
n
d

(
log d

c log log d

)1/2)
.

We need the following basic facts. The first follows from a simple counting argu-
ment (see [Alon96, Lemma 2.2] for a proof).

Lemma 3.2. Let F be a family of 2εx distinct subsets of an x-element set X.
Then the average size of a member of F is at least εx/(10 log(1 + 1/ε)).

Fact 3.3. Let G be a Kr-free graph on x vertices; then

α(G) ≥ max

(
x1/r

2
,

log x

log(2r)

)
.

Note that the latter bound is stronger when r is large, i.e., roughly when r ≥ log x/ log
log x.
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1046 NIKHIL BANSAL, ANUPAM GUPTA, AND GURU GURUGANESH

Proof. Let R(s, t) denote the off-diagonal (s, t)-Ramsey number, defined as the
smallest number n such that any graph on n vertices contains either an independent
set of size s or a clique of size t.

It is well known that R(s, t) ≤
(
s+t−2
s−1

)
[ES35]. Approximating the binomial gives

us the bounds R(s, t) ≤ (2s)t and R(s, t) ≤ (2t)s; the former is useful for t ≤ s and
the latter for s ≤ t. If we set R(s, t) = x and t = r, the first bound gives s ≥ (1/2)x1/r

and the second bound gives s ≥ log x/ log(2r).

We will be interested in lower bounding the number of independent sets I in a
Kr-free graph. Clearly, I ≥ 2α(G) (consider every subset of a maximum independent
set). However the following improved estimate will play a key role in Theorem 3.1.
Roughly speaking it says that if α(G) is small, in particular of size logarithmic in x,
then the independent sets are spread all over G, and hence their number is close to
xΩ(α(G)).

Theorem 3.4. Let G be a Kr-free graph on x vertices, and let I denote the
number of independent sets in G. Then we have

log I ≥ max

(
x1/r

2
,

log2 x

6 log 2r

)
.

Proof. The first bound follows trivially from Fact 3.3, and hence we focus on the
second bound. Also, assume r ≥ 3 and x ≥ 64, else the second bound is trivial.

Define s := log x/ log(2r). Let G′ be the graph obtained by sampling each vertex
of G independently with probability p := 2/x1/2. The expected number of vertices
in G′ is px = 2x1/2. Let G denote the good event that G′ has at least x1/2 vertices.
Clearly, Pr[G] ≥ 1/2 (in fact it is exponentially close to 1). Since the graph G′ is also
Kr-free, conditioned on the event G, by Fact 3.3 it has an independent set of size at
least log(x1/2)/ log(2r) = s/2. Thus the expected number of independent sets of size
s/2 in G′ is at least 1/2.

Now consider some independent set Y of size s/2 in G. The probability that Y
survives in G′ is exactly ps/2. As the expected number of independent sets of size s/2
in G′ is at least 1/2, it follows that G must contain at least (1/2)(1/ps/2) independent
sets of s/2. This gives us that

log I ≥ s

2
log

(
1

p

)
− 1 ≥ s

2
log x1/2 − s

2
− 1 ≥ s

6
log x,

where the last inequality assumes that x is large enough.

We are now ready to prove Theorem 3.1.

Proof. We can assume that d ≥ 16, else the claim is trivial. Our arguments follow
the probabilistic approach of [She95, Alon96]. Let W be a random independent set
of vertices in G, chosen uniformly among all independent sets in G. For each vertex
v, let Xv be a random variable defined as Xv = d|{v} ∩W |+ |N(v) ∩W |.

Observe that |W | can be written as
∑
v |v ∩ W |; moreover, it satisfies |W | ≥

(1/d)
∑
v |N(v) ∩W |, since a vertex in W can be in at most d sets N(v). Hence we

have that

|W | ≥ 1

2d

∑
v

Xv.
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ON THE LOVÁSZ THETA FUNCTION IN SPARSE GRAPHS 1047

Let γ = max
(

log d
r log log d ,

(
log d
log r

)1/2)
denote the improvement factor in Theorem 3.1 over

the trivial bound of n/d. Thus to show that α(G) is large, it suffices to show that

(5) E[Xv] ≥ cγ

for each vertex v and some fixed constant c.
In fact, we show that (5) holds for every conditioning of the choice of the indepen-

dent set in V − (N(v) ∪ {v}). In particular, let H denote the subgraph of G induced
on V − (N(v) ∪ {v}). For each possible independent set S in H, we will show that

E[Xv |W ∩ V (H) = S] ≥ cγ.

Fix a choice of S. Let X denote the nonneighbors of S in N(v), and let x = |X|. Let
ε be such that 2εx denotes the number of independent sets in the induced subgraph
G[X]. Now, conditioning on the intersection W ∩ V (H) = S, there are precisely
2εx + 1 possibilities for W: one in which W = S ∪ {v} and 2εx possibilities in which
v /∈W and W is the union of S with an independent set in G[X].

By Lemma 3.2, the average size of an independent set in X is at least εx
10 log(1/ε+1)

and thus we have that

(6) E[Xv |W ∩ V (H) = S] ≥ d 1

2εx + 1
+

εx

10 log(1/ε+ 1)

2εx

2εx + 1
.

Now, if 2εx + 1 ≤
√
d, then the first term is at least

√
d, and we’ve shown (5) with

room to spare. So we can assume that εx ≥ (1/2) log d. Moreover, by Theorem 3.4,

εx ≥ max

(
x1/r

2
,

log2 x

6 log(2r)

)
and hence the right-hand side in (6) is at least

1

20 log(1/ε+ 1)
max

(
log d

2
,
x1/r

2
,

log2 x

6 log 2r

)
≥ 1

20 log(x+ 1)
max

(
log d

2
,
x1/r

2
,

log2 x

6 log 2r

)
,(7)

where the inequality uses ε ≥ 1/x (since εx ≥ (1/2) log d ≥ 1).
First, let’s consider the first two expressions in (7). If x ≥ logr d, then as

x1/r/ log(x + 1) is increasing in x, it follows that the right-hand side of (7) is at
least

x1/r

40 log(x+ 1)
= Ω

(
log d

r log log d

)
.

On the other hand if x ≤ logr d, then we have that the right-hand side is again at
least

1

20 log(x+ 1)

log d

2
= Ω

(
log d

r log log d

)
.

Now, consider the first and third expressions in (7). Using the fact that max(a, b) ≥√
ab with a = (log d)/2 and b = (log2 x)/(6 log 2r), we get that (7) is at least

Ω( log d
log r )1/2. Hence, for every value of x we get that (7) is at least Ω(γ) as desired

in (5); this completes the proof of Theorem 3.1.
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1048 NIKHIL BANSAL, ANUPAM GUPTA, AND GURU GURUGANESH

We can now show the main result of this section.

Theorem 3.5. The standard SDP for an independent set has an integrality gap of

O

(
d

(
log log d

log d

)3/2
)
.

Proof. Given a graph G on n vertices, let β ∈ [0, 1] be such that the SDP on G

has objective value βn. If β ≤ 2/ log3/2 d, the näıve greedy algorithm already implies

a d/ log3/2 d approximation. Thus, we will assume that β ≥ 2/ log3/2 d. Recall we use
xi to denote the marginals xii on singleton vertices in the SDP.

Let us delete all the vertices that contribute xi ≤ β/2 to the objective. The
residual graph has objective value at least βn− (β/2)n = βn/2.

Let η = 2 log log d/ log d. If there are more than n/ log2 d vertices with xi ≥ η,
applying Theorem 2.1 to the collection of these vertices already gives an independent
set of size at least

Ω

(
d2η

d
√

ln d
· n

log2 d

)
= Ω

(
n log3/2 d

d

)
and hence a O(d/ log3/2 d) approximation.

Thus we can assume that fewer than n/ log2 d vertices have xi ≥ η. As each
vertex can contribute at most 1 to the objective, the SDP objective on the residual
graph obtained by deleting the vertices with xi ≥ η is at least βn/2−n/(log2 d) which

is at least βn/3, since β ≥ 2/ log3/2 d.
So we have a feasible SDP solution on a subgraph G′ of G, where the objective is

at least βn/3 (here n is the number of vertices in G and not G′) and each surviving
vertex i has value xi in the range [β/2, η].

As xi ≤ η for each i, and the SDP objective is at least βn/3, the number of
vertices n′ in G′ satisfies n′ ≥ (βn/3)/η = Ω(nβ/η). Moreover, as xi ≥ β/2 for each
vertex i ∈ G′, and the SDP does not put more than one unit of probability mass on
any clique, it follows that G′ is Kr-free for r = 2/β = log3/2 d. Applying Theorem 3.1

to G′ with parameter r = log3/2 d, we obtain that G′ has an independent set of size

Ω

(
n′

d

√
log d

log r

)
= Ω

(
n′

d

√
log d

log log d

)
= Ω

(
nβ

d η

√
1/η

)
= Ω

(
βn

d
· η−3/2

)
.

The SDP objective for G was βn, so the integrality gap is O(dη3/2) =
O(d( log log d

log d )3/2).

3.1. An upper bound.

Lemma 3.6. There exists Kr-free graphs G with maximum degree d such that
α(G) ≤ O

(
n
d

log d
log r

)
whenever r ≥ log d.

Proof. We use the standard lower bound R(s, t) = Ω(
(

t
log t

)s/2
) for off-diagonal

Ramsey numbers for t ≥ s. While stronger lower bounds exist (see Theorem 1.2
in [BK10]), this one suffices for the lemma. Setting t = r and s = O(log d/(log r −
log log r)), it follows that there exist Kr-free graphs H on d vertices such that α(H) =
O(log d/(log r − log log r)) whenever t ≥ s. We now apply two simplifications. First,
as log d ≥ s, we can simplify the condition t ≥ s to be r ≥ log d. Second, as
log r ≥ 2 log log r for all r > 1, we can say α(H) = O

(
log d
log r

)
. Setting G to be n/d

disjoint copies of H completes the lemma.
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4. An algorithm using lift-and-project. In this section, we give our results
bounding the integrality gap of the SA+ mixed hierarchy. We first show that the
O(log4 d)-level SA+ relaxation has an integrality gap of Õ(d/ log2 d). This result,
however, does not give an effective procedure to find such a large independent set.
Then we show how to round a vector solution to the d-level SA+ relaxation to get an
independent set of size at least an Õ(d/ log2 d) factor of the optimal independent set.

Consider the SA+
(t) relaxation on G; for the subsequent results we choose the

value of t to be O(log4 d) and d, respectively. Let sdpt(G) denote its value. We can
assume that

sdpt(G) ≥ n/ log2 d;(8)

otherwise the näıve greedy algorithm already gives an O(d/ log2 d) approximation.
Let η = 3 log log d/ log d, and let Z denote the set of vertices i with xi ≥ η. We can

assume that |Z| ≤ n/(4 log2 d); otherwise applying Theorem 2.1 gives an independent
set of size Ω(|Z|·d2η/(d

√
log d)) = Ω(n log2 d/d). Note that we can apply Theorem 2.1,

since our solution belongs to SA+ and hence is a valid SDP solution. Hence,

sdpt(G) ≤ |Z| · 1 + (n− |Z|) · η ≤
(
n/
(
4 log2 d

))
· 1 + n · η ≤ 2ηn.

Let V ′ denote the set of vertices i with xi ∈ [1/(4 log2 d), η], and let G′ = G[V ′] be
the graph induced on these vertices.

Claim 4.1. |V ′| ≥ sdpt(G)/(2η).

Proof. The total contribution to sdpt(G) of vertices i with xi ≤ 1/(4 log2 d) can
be at most n/(4 log2 d), which by (8) is at most sdpt(G)/4. Similarly, the contribution
of vertices in Z is at most |Z|, which is again at most sdpt(G)/4. Together this gives
sdpt(G

′) ≥ sdpt(G)/2. As each vertex in V ′ has xi ≤ η, the claim follows.

Lemma 4.2. Let t ≥ log4 d. For the graph G′ = G[V ′], let v ∈ V ′ and let T ⊆
NG′(v) be a subset of neighbors of v in G′ having size at most t.

(a) T contains an independent set of size at least |T |/ log2 d.

(b) The induced subgraph G′[T ] is O(log3 d)-colorable.

Proof. Consider the solution SA+
(t) restricted to G′. Since |T | ≤ t and xi ≥

1/(4 log2 d) for all i ∈ NG′(v), we use Theorem 2.2 to deduce that the SA+
(t) so-

lution defines a “local distribution” {XS}S⊆T over subsets of T with the following
properties:

(i) XS ≥ 0 and
∑
S⊆T XS = 1,

(ii) XS > 0 only if S is independent in the induced subgraph G′[T ] (and hence
in G), and

(iii) for each vertex i ∈ T , it holds that

xi =
∑

S⊆T :i∈S

xS ≥ 1/(4 log2 d).

Now scaling up the solution {XS} by 4 log2 d gives a valid fractional coloring of T
using 4 log2 d colors. This means at least one of the color classes must have size at
least |T |/(4 log2 d). This proves (a).

To prove (b), we can use a set-covering argument. The fractional coloring can be
viewed as a fractional set cover of T , where the sets are all independent sets in G.
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The (fractional) number of sets used is 4 log2 d. Now the integrality gap of the LP
relaxation of set cover implies that we can cover T using at most 4 log2 d ·O(log |T |) =
O(log3 d).

4.1. The integrality gap result. We now bound the integrality gap of the
O(log4 d)-round SA+ relaxation. The following Ramsay-theoretic result will be cru-
cial.

Theorem 4.3 (Alon [Alon96, Theorem 1.1]). Let H = (V,E) be a graph on n
vertices with maximum degree d ≥ 1 such that for every vertex v ∈ V the induced
subgraph on the set of all neighbors of v is k-colorable. Then,

α(H) ≥ Ω

(
n

d

log d

log(k + 1)

)
.

To reduce the number of rounds of SA+, we use a version of the result above that
holds under a considerably weaker condition.

Theorem 4.4 (Alon [Alon96]). Let H = (V,E) be a graph on n vertices with
maximum degree d, and let k ≥ 1 be an integer. If for every vertex v and every
subset T ⊂ N(v) with |T | ≤ k log2 d, it holds that the subgraph induced on T has an
independent set of size at least |T |/k, then

α(H) ≥ Ω

(
n

d

log d

log(k + 1)

)
.

For completeness, a proof of Theorem 4.4 can be found in Appendix B.2.
Now consider the graph G′ = G[V ′]. By Lemma 4.2(a) with the parameter

t = log2 d, the graph G′ satisfies the requirements in Theorem 4.4 with k = log2 d;
that theorem gives us that

α(G′) ≥ Ω

(
|V ′|
d

log d

log(log2 d)

)
.

Finally, using Claim 4.1, the integrality gap is

sdp(log4 d)(G)

α(G)
≤

sdp(log4 d)(G)

α(G′)
≤ O

(
dη log(log2 d)

log d

)
= Õ

(
d

log2 d

)
,

This completes the proof of Theorem 1.3.

4.2. The algorithmic result. To get an algorithm, note that Lemma 4.2(b)
with t = d implies that the neighborhood of each vertex in G′ is O(log3 d) colorable.
In other words, G′ is locally k-colorable for k = O(log3 d). We now use Johansson’s
coloring algorithm for locally k-colorable graphs (Theorem A.1) to find an independent
set of G′ with size

alg(G′) = Ω

(
|V ′|
d
· log d

log(k + 1)

)
.

Using k = O(log3 d) and Claim 4.1 this implies an algorithm to find independent sets
in degree d graphs, with an integrality gap of

sdpd(G)

alg(G)
≤ sdpd(G)

alg(G′)
≤ O

(
dη log(k + 1)

log d

)
= Õ

(
d

log2 d

)
.

Our algorithm only required a fractional coloring on the neighborhood of vertices.
Since there are at most 2d independent sets in each neighborhood, there are at most
n · 2d relevant variables in our SDP. Hence, we can compute the relevant fractional
coloring in time poly(n) · 2O(d). This completes the proof of Theorem 1.4.
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ON THE LOVÁSZ THETA FUNCTION IN SPARSE GRAPHS 1051

5. LP-based guarantees. We prove Corollary 1.5, showing the integrality gap
of the Sherali–Adams hierarchy (without the SDP constraints).

Proof. Consider the standard LP (2) strengthened by the clique inequalities∑
i∈C xi ≤ 1 for each clique C with |C| ≤ log d. As each clique lies in the neigh-

borhood of some vertex, the number of such cliques is at most n ·
(
d

log d

)
. Let βn

denote the objective value of this LP relaxation. We assume that β ≥ 2/ log d; other-
wise the näıve algorithm already gives a d/ log d approximation.

Let B0 denote the set of vertices with xi ≤ 1/ log d = β/2. For j = 1, . . . , k,
where k = log log d, let Bj denote the set of vertices with xi ∈ (2j−1/ log d, 2j/ log d].
Note that

∑
j≥1

∑
i∈Bj xi = βn−

∑
i∈B0

xi ≥ βn/2, and thus there exists some index

j such that
∑
i∈Bj xi ≥ βn/(2k).

Let γ = 2j−1/ log d; for each i ∈ Bj , xi ∈ (γ, 2γ]. Since xi > γ for each i ∈ Bj ,
the clique constraints ensure that the graph induced on Bj is Kr-free for r = 1/γ.

Moreover, since xi ≤ 2γ for each i ∈ Bj , |Bj | ≥ 1
2γ ·

βn
2k . By Shearer’s result for

Kr-free graphs we obtain

α(Bj) = Ω

(
|Bj | ·

γ log d

d log log d

)
= Ω

(
βn log d

d(log log d)2

)
.

This implies the claim about the integrality gap.
A similar argument implies the constructive result. Let βn denote the value of

the SA(d) relaxation. As before, we assume that β ≥ 2/ log d and divide the vertices
into 1 + log log d classes. Consider the class Bj with j ≥ 1 that contributes most to
the objective, and use the fact that the graph induced on Bj is locally k-colorable
for k = (log d/2j−1 · log d) = O(log2 d). As in section 4, we can now use Johansson’s
coloring algorithm Theorem A.1 to find a large independent set.

Appendix A. Johansson’s algorithm for coloring sparse graphs. For
completeness, we state two results of Johansson [Joh96b] on coloring degree-d graphs:
one about graphs where vertex neighborhoods can be colored using few colors (“locally-
colorable” graphs), and another about Kr-free graphs. Since the original manuscript
is not available online, a complete proof is presented in the arXiv version of this
paper [BGG15].

Theorem A.1. For any r,∆, there exists a randomized algorithm that, given
a graph G with maximum degree ∆ such that the neighborhood of each vertex is
r-colorable, outputs a proper coloring of V (G) using O( ∆

ln ∆ ln r) colors in expected
poly(n2∆) time.

Theorem A.2. For any r,∆, there exists a randomized algorithm that, given a
graph G with maximum degree ∆ which excludes Kr as a subgraph, outputs a proper
coloring of V (G) using O

(
∆

ln ∆ (r2 + r ln ln ∆)
)

colors in expected poly(n) time.

Appendix B. Miscellaneous proofs.

B.1. Proof of Theorem 2.1. Recall the statement of Halperin’s theorem: for
η ∈ [0, 1

2 ], suppose Z is the collection of vectors vi satisfying ‖vi‖2 ≥ η in the SDP

solution. Then we want to find an independent set of size Ω( d2η

d
√

ln d
|Z|).

Let ai = vi · v0 = ‖vi‖2, and let wi = vi − 〈vi, v0〉v0 denote the projection of
vi to v⊥0 , the hyperplane orthogonal to v0. As ‖wi‖2 + 〈vi, v0〉2 = ‖vi‖2, we obtain
‖wi‖2 = ai − a2

i . Let ui = wi/|wi|.
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Now for any pair of vertices i, j, we have that wi · wj = vi · vj − 〈vi, v0〉〈vj , v0〉.
As vi · vj = 0 if (i, j) ∈ E, we have that

wi · wj = vi · vj − 〈vi, v0〉〈vj , v0〉 = −aiaj

and hence

ui · uj = −
√
aiaj√

(1− ai)(1− aj)
≤ − η

(1− η)
.

The last step follows as ai, aj ≥ η and as x/1− x is increasing for x ∈ [0, 1].
Thus the unit vectors ui can be viewed as a feasible solution to a vector k-coloring

(in the sense of [KMS98]), where k is such that 1/(k − 1) = η/(1 − η). This gives
k = 1/η, and now we can use the result of [KMS98, Lemma 7.1] that such graphs
have independent sets of size Ω(|Z|/d1−2/k

√
ln d) = Ω(|Z|d2η/(d

√
ln d)).

B.2. Proof of Theorem 4.4. The proof of Theorem 4.4 is similar to that of
Theorem 3.1, and we give only the differences. We set γ = log d

log k . As in that proof, we

wish to show that E[Xv] ≥ cγ for each vertex v and some constant c > 0. The next
few steps of the proof are identical, culminating in (6), which shows that

E[Xv |W ∩ V (H ′) = S] ≥ d 1

2εx + 1
+

εx

10 log(1/ε+ 1)

2εx

2εx + 1
.

Again, if 2εx+ 1 ≤
√
d, then the first term is at least

√
d and we are done. Otherwise,

it must be that εx ≥ (1/2) log d and hence the right-hand side in (6) is at least

(9)
log d

20 log(1/ε+ 1)
.

We now consider two cases depending on the value of x. Recall the assumptions on
the graph H: namely, for any vertex v and any subset T lying in the neighborhood
of v of size at most k log2 d, there is an independent set of size at least |T |/k.

• If x ≤ k log2 d, then by our assumption, X contains an independent set of
size at least |X|/k. Every subset of this is also an independent set, and hence
the number of independent sets in X is 2εx ≥ 2x/k. Hence ε ≥ 1/k and so
gives that (9) is at least log d

40 log(k+1) .

• If x ≥ k log2 d, then again by our assumption, X contains at least 2log2 d

independent sets, and hence εx ≥ log2 d. As x ≤ d, it follows that ε ≥
log2 d/d ≥ 1/d and hence log(1/ε+ 1) ≤ 2 log d. Thus the right-hand side of
(6) is at least

εx

20 log(1/ε+ 1)
≥ log2 d

40 log d
.

In all cases we have an independent set of size Ω(nd
log d

log(k+1) ), which completes the

proof of Theorem 4.4.

Appendix C. The average-degree case. In this section, we show that any
algorithm for graphs with maximum degree d based on (lifts of) the standard SDP
can be translated into an algorithm for graphs with average degree δ, albeit with a
slight loss in performance. For example, an integrality gap of O(d/ log2 d) translates
to one of O(δ/ log1.5 δ). Moreover, we show that it is unlikely that we can do better.
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Lemma C.1. Let ε ≤ 1 and ` ≥ 1. Suppose the integrality gap of the `-level SA+

semidefinite relaxation on graphs with maximum degree d is

Õ

(
d

(log d)1+ε

)
;

then its integrality gap on graphs with average degree δ is at most

Õ

(
δ

(log δ)1+ε/2

)
.

Proof. Let sdp denote the value of the `-level SA+ semidefinite relaxation on the
graph G, and define β := 1/(log1+ε/2 δ). We can assume that sdp ≥ 3βn: indeed, the
greedy algorithm finds an independent set of size at least n/(δ+ 1) ≥ sdp/(3β(δ+ 1))

and thus bounds the integrality gap by Õ(δ/ log1+ε/2 δ).
Define η = c log log δ

log δ and partition the vertices into three sets as follows:

A = {v | xv ≥ η},
B = {v | β ≤ xv < η},
C = {v | xv < β}.

Let x(S) =
∑
v∈S xv. Since sdp ≥ 3βn, the SDP value of vertices in C is x(C) <

|C|β ≤ βn ≤ sdp/3. Hence, at least one of x(A) or x(B) is greater than sdp/3. In

each case, we will exhibit an independent set of size Ω((log1+ε/2 δ)/δ) · sdp, which in
turn will bound the integrality gap.

Case I. Suppose x(A) ≥ sdp/3. This implies that |A| ≥ x(A) ≥ sdp/3 ≥ βn.
We define a vertex v to be “A-high” if deg(v) ≥ a := 2

β δ. By Markov’s inequality,

there are at most βn/2 A-high vertices in G. If we drop A-high vertices from A, there
are at least |A| − βn/2 ≥ |A|/2 vertices in the remaining set A′. Furthermore, the
graph G[A′] has maximum degree a. Applying Theorem 2.1 to the set of vectors in
the solution induced on vertices from A′ gives an independent set of size

Ω

(
|A′| · a2η

a
√

log a

)
≥ Ω

(
|A| · (log δ)2c

δ(log δ)2

)
≥ Ω

(
(log δ)2c

δ(log δ)2

)
sdp.

Setting c ≥ 3/2 + ε/4 completes this case.
Case II. Suppose x(B) ≥ sdp/3. This implies that |B| · η ≥ x(B) ≥ sdp/3 ≥ βn.

Hence, we can say that |B| ≥ β
ηn. We define a vertex v to be “B-high” if deg(v) ≥

b := 2 ηβ δ. By Markov’s inequality, there are at most β
ηn/2 B-high vertices in G. If we

drop B-high vertices from B, there are at least |B|/2 vertices in the remaining set B′.
The graph G[B′] now has maximum degree b. Moreover, x(B′) ≥ x(B)− (βηn/2) ·η ≥
x(B)/2, so the optimal value of the SA+ relaxation on the graph G[B′] is at least as
high. Now we can apply the assumption on the integrality gap of the convex program
to G[B′] to infer the existence of an independent set in G[B′] (and hence in G) of size

Ω̃

(
b

log1+ε b
x(B′)

)
= Ω̃

(
δ

log1+ε/2 δ
x(B)

)
≥ Ω̃

(
δ

log1+ε/2 δ
sdp

)
.

To show this transformation cannot be improved substantially, consider a graph
G showing the integrality gap of the SDP in terms of the maximum degree d is
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Ω(d/(log d)1+ε). Specifically, let G be a graph on n vertices and maximum degree d
such that α(G) = O(nβ/d), but the value of the semidefinite program is sdp(G) =
Ω(nβ/(log d)1+ε) for some β ∈ [1, (log d)ε].3 From this we construct an instance H
with an integrality gap of Ω̃(δ/(log δ)1+ε/2), where δ is the average degree.

Define n′ = n (log d)ε/2 and δ′ = d/(log d)ε/2, so that nd = n′δ′. We construct
H by taking the union of G with n′/δ′ disjoint copies of Kδ′ , the complete graph on
δ′ vertices. The number of edges in H is at most nd + n′δ′ = 2nd and the number
of vertices is n′ + n ∈ [n′, 2n′]; the average degree of H is δ := O(δ′). Furthermore,
sdp(H) ≥ sdp(G) = Ω(nβ/(log d)1+ε) = Ω(n′β/(log δ)1+ε/2) and α(H) = nβ/d +
n′/δ′ ≤ 2n′/δ′ = O(n′/δ). Therefore, the integrality gap of the SDP on the instance

H is at least Ω̃(δ/(log δ)1+ε/2), where δ is its average degree.
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