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Preface 

Systems of implicit differential equations often arise when time-dependent processes 

are modeled. Since these equations are normally too difficult to be solved exactly, one 

often uses a computer code to find an approximation to the solution. Although for 
conventional computers there are many good codes of this type available, this is not 

the case for computers with more than one processor. Especially there is a lack of 

algorithms for which the way of dividing the work over the processors is independent of 

the differential equations to be solved. 
To fill this gap, the Centre for Mathematics and Computer Science in Amsterdam 

initiated in 1993 the project 'Parallel Codes for circuit analysis and control engineering', 
which was financed by the Dutch Technology Foundation STW over a period of four years. 

The underlying thesis is one of the results of this project. The other main deliverables 

are the PhD thesis by W.A. van der Veen [Vee97], a number of real-life test problems 

collected in [LSV96) and the code PSIDE (abbreviating the title of this thesis). 

Chapter 1 serves as an introduction for the non-expert reader and describes the 

scope of the subsequent chapters along rough lines. Chapter 2- 9 are copies of published 

journal papers, which are slightly adapted to achieve a uniform representation and to 

enable cross-referring within the thesis. Chapter 10 is based on a technical report that 

has been submitted for publication. It includes numerical results obtained with PSIDE, 

that were not available at the time the report was printed. 

The papers are mostly co-productions and listed below. 

Chapter 2 P .J . VAN DER HOUWEN , B.P. SOMMEIJER, AND J .J.B. DE SWART. Par­
allel predictor-corrector methods. Journal of Computational and Applied Mathe­

matics, 66:53- 71, 1996. 

Chapter 3 J .J .B. DE SWART. Efficient parallel predictor-corrector methods. Applied 

Numerical Mathematics, 18:387- 396, 1995. 

Chapter 4 P.J . VAN DER HOUWEN AND J .J.B. DE SWART. Triangularly implicit 

iteration methods for ODE-IVP solvers. SIAM Journal on Scientific and Statistical 

Computing, 18(1):41- 55, 1997. 

Chapter 5 W . HOFFMANN AND J.J .B. DE SWART. Approximating Runge- Kutta 

matrices by triangular matrices. BIT Numerical Mathematics, 37(2):346- 354, 1997. 

Chapter 6 J .J .B. DE SWART AND J .G. BLOM. Experiences with sparse matrix solvers 

in parallel ODE software. Computers & mathematics with applications, 31(9):43-
55, 1996. 
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Chapter 7 P.J. VAN DER HOUWEN AND J .J .B. DE SWART. Parallel linear sys-
tem solvers for Runge- Kutta methods. Advances in Computational Mathematics, 
7:157- 181, 1997. 

Chapter 8 E. MESSINA, J .J .B . DE SWART, AND W.A. VAN DER VEEN. Parallel iter­
ative linear solvers for multistep Runge- Kutta methods. Journal of Computational 
and Applied Mathematics , 85(1):145- 167, 1997. 

Chapter 9 J .J.B. DE SWART AND G. SODERLIND. On the construction of error esti­
mators for implicit Runge-Kutta methods. To appear in Journal of Computational 
and Applied Mathematics. 

Chapter 10 J.D. PINTER, W.J.H. STORTELDER, AND J.J.B . DE SWART. Compu­
tation of elliptic Fekete point sets. Report MAS-R9705, CWI, Amsterdam, 1997. 
Submitted for publication. 

Chapter 11 and 12 contain the specification and users' guide of PSIDE. W.M. Lioen and 
W.A. van der Veen are co-authors of these chapters. 

A collection of mutually related papers implies that there is some overlap in the first 
sections of each chapter. However, the advantage is that the reader who is interested 
in a particular chapter can read this chapter separately, and only has to go through the 
introductionary material that directly applies to the subject. 
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Chapter 1 

Introduction and outline 

1.1 General scope 

For many processes in industry the solution of differential equations is indispensable. 
For example, to test the design of a computer chip, its behavior is modeled by a set of 
differential equations. If the solution of these equations satisfies the requirements, then 
the chip is manufactured; if not, then the design is to be adjusted. Thus the production 
process becomes much cheaper than in the case where all designs- including the wrong 
ones- are first manufactured and then tested. Other examples that can be modeled by 
differential equations are the behavior of a train on a rail track, the steering of robots 
and chemical reactions. 

Normally the differential equations are far too complicated to solve analytically, and 
one has to resort to numerical integration techniques implemented on a computer to 
obtain an approximation to the solution. Both the increase of the complexity of the 
problems- chips are getting more and more complicated- as well the demand for a de­
crease in computer run time- it is not desirable to steer the motion of a robot by software 
that needs several seconds before a new move has been computed- have challenged the 
numerical analysts to come up with faster algorithms. Much can be gained by mak­
ing the algorithms suitable for implementation on modern computer architectures that 
contain more than one processor, so-called parallel computers. To increase the speed of 
the fastest state-of-the-art processor becomes more difficult and costly, whereas the price 
of simpler, but still reasonably fast processors has dropped considerably over the years. 
This development inspired many computer companies to start the production of parallel 
computers. 

The differential equations arising from the modeling process may have different forms. 
The most simple formulation of interest here is that of the Initial Value Problem (IVP) for 
Ordinary Differential Equations (ODEs), which reads: Given a function f : lRd -+ lRd, 
find the function y : lR -+ lRd that fulfills 

y'(t) = J(y(t)) ' y(to) =Yo, to :S t :S tend · (1.1) 

Almost every method to solve (1.1) numerically is a step-by-step method; one divides 
the interval [to, tend] in subintervals [to, t1J, (t1 , t2], ... , [tN-1, tN], where tN =tend, and 
computes approximations y1 , Y2 , .. . , YN to the solution at the end of each subinterval. 
The accuracy of the method will depend on the length of the subintervals, which we call 
the stepsize and denote by h. If YN - y(tend) is O(hP), then the order of the method is 
p. 
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The computation of Yn in a conventional step-by-step method depends on approxima­

tions in time points prior to tn; to proceed in time information from the past has to be 

available. This means that the numerical solution process is to a large extent sequential 

by its nature and offers little scope for parallelization. Nevertheless, several attempts 

have been made to exploit parallel computer architectures, which has been categorized 

by Gear in three classes: (i) parallelism across the problem, (ii) parallelism across the 

time and (iii) parallelism across the method. The first class consists of rather obvious 

ways to distribute the various components of the system of OD Es amongst the available 

processors. Since the project of which this thesis is one of the deliverables, is aiming at 

multi-purpose solvers, a problem dependent approach as (i) will be excluded. For meth­

ods based on parallelism across the time we refer to the other thesis written as a result 

of this project, [Vee97]. The present thesis deals with solution techniques belonging to 

the third category, which means that we want to employ parallelism inherently available 

within a method. For example, the method may be such that the computation of Yn 

requires several evaluations of f that can be done concurrently. Notice that this form 

of parallelism may even be effective for scalar problems (i.e. d = 1 in (1.1)), whereas 

approach (i) requires high d-values. 

In particular we investigate Runge-Kutta (RK) methods which are adapted such that 

the so-called stages are computed in parallel. First we briefly resume some terminology 

of RK methods. 

Runge-Kutta methods 

We write a Runge-Kutta method in the following form: 

Yn 1 ® Yn-1 + h(A ® I)F(Yn) , 

Yn = Yn-1 + h(bT ® I)F(Yn). 

(1.2) 

(1.3) 

Here, Yn is the so-called stage vector, which contains s approximations Yn ,i , i = 1, 2, ... , s, 

to the solution in the time points tn-1 + cih, i.e ., Yn = (YnT1 , ynT2 , .. . , ynTs)T , where 

Yn,i ~ y(tn-1 + cih). The scalars Ci determine where the solution is approximated and 

are called the abscissae. The length of the subinterval [tn- l , tn] is the stepsize and is 

denoted by h. The symbol ® denotes the direct product, which is defined by 

[ 

V11 

V~1 
V~1 l [ V11.W 
. ® W= . . . 

Vkt Vkl W 

where V = ( Vij) and W are matrices of arbitrary dimensions. Furthermore, 1 stands for 

the s-dimensional vector (1, .. . , l)T, the identity matrix of the problem dimension d is 
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denoted by I and F(Yn) means the componentwise /-evaluation, i.e. 

F(Yn) = ( J (~n,i) ) , 

J (Yn,s) 

so that F(Yn) is of dimension sd. The s x s matrix A and the s-dimensional vector b 

contain the parameters of the Runge- Kutta method. If the matrix A is full, then we 
call (1.2)- (1.3) an Implicit Runge-Kutta method (IRK). In most cases the function f 
in (1.1) is non-linear, which implies that for an IRK the sd-dimensional system (1.2) is 
non-linear. Once Yn is solved from this system, we can compute the approximation to 
the time point tn by formula (1.3). 

To select the type of RK method and the strategy to solve Yn from the non-linear 
system, the notion of stiffness is important. If the time scales of the various solution 
components greatly vary, then we call a problem stiff For example, if both high and low 
frequency signals play a role in an electrical circuit, then the modeling of such a circuit 
gives rise to a stiff system of differential equations. Such a problem imposes severe 
stability demands on the numerical method. We start with the treatment of non-stiff 
problems. 

1.2 Non-stiff problems 

An interesting generalization of an RK method is the family of methods of the f£._9m " 

(A 0 J)Yn-1 + h(B 0 I)F(Yn-d + h(C 0 I)F(Yn) , 

Yn-1 + h(bT 0 J)F(Yn) , 

(1.4) 

where A, Band Care matrices of dimensions x sand contain method parameters. This 
class of methods is similar to the RK method (1.2)- (1.3), but in the formula for Yn we 
now use information of the previous stage vector Yn-l and its /-evaluation as well. This 
raises the order of the method, at the price of reduced stability, which is not harmful for 
non-stiff problems. We may use so-called fixed-point iteration to find Yn. Given some 

initial guess Y~o), we define a sequence of iterates by 

y~j) = (A 0 J)Yn-1 + h(B 0 J)F(Yn-1) + h(C 0 J)F(Y~j-l )), (1.5) 

and accept y~m) as approximation for Yn if it fulfills (1.4) accurately enough. The method 

for determining Y~o) is called the predictor and (1.5) the corrector. In Chapter 2 and 3 
we will develop predictor- corrector methods, in which several stages can be computed in 
parallel. 

1.3 Stiff problems 

Since many applications treated in the aforementioned project yield stiff systems of 
differential equations, the other chapters of these thesis deal with numerical solution 
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techniques capable of handling stiffness. Formula (1.4) is not stable enough in this case 
and we stick to Formula (1.2), in which the matrix A is full . Furthermore, fixed-point 
iteration may cause severe stepsize restrictions for stiff problems and can not be used 
anymore. A well-known alternative is the modified Newton process, which takes the form 

(1.6) 

where, for any X E lR8 d, R(X) = X - 1 ® Yn-l - h(A ® I)F(X), and J stands for an 
approximation to the Jacobian off evaluated in y(tn-1) , i.e. , 

Again Y~o) is produced by a predictor formula and (1.6) is applied as many times as 

needed to make y~i) sufficiently close to the true solution of (1.2). 
The dimension of the linear system (1.6) is sd, which mp.kes IRKs relatively expensive 

to implement. For this reason they are not frequently used in practice. Most industrial 
codes for stiff problems are based an Backward Differentiation Formulas (BDFs), which 
require every Newton iteration the solution of linear systems only of dimension d. On the 
other hand, BDFs do not allow for parallelism across the method and from the famous 
Dahlquist order barrier it follows that having high order and being unconditionally stable 
are two properties that can not be combined by BDFs. Another disadvantage is that 
the BDF of order k is a k-step method; it bases the approximation Yn on information 
collected in the previous k subintervals. Evidently, this complicates the change of step­
sizes. Moreover, if for some reason the method has to be restarted frequently, e.g. due 
to discontinuities in the function f, then in every restart one has to apply the one-step 
BDF of first order and 'to build up' the order in the subsequent steps. 

For IRKs the situation is opposite. From (1.2)- (1.3) it is clear that these are one-step 
methods and, although expensive to implement on a sequential computer (a computer 
with only one processor) , IRKs can benefit from parallelism across the method and are 
unconditionally stable. The task we are now faced with is to make IRK methods suitable 
for implementation on parallel computers. We will present two approaches for parallelism 
across the IRK method. The first is based on the solution of non-linear systems, the 
second on the solution of linear systems. 

1.4 Parallel non-linear system solvers 

The first approach is based on a direct treatment of the non-linear equation (1.2). 
In the modified Newton process, J is not more than just an approximation to the true 
Jacobian U(Y(tn-1)). In practice, a code often works most efficiently if J is even 'frozen' 
for a number of time steps. This means that a Newton process with a 'not so accurate' 
matrix I - A ® hJ may still perform well. Based on this observation one can think of 
'approximating' the matrix A as well, where the approximated A is such that it reduces 
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the computational costs by the use of more processors. Along these lines we propose in 
Chapter 4 to solve (1.2) by the Newton-like iteration process 

(1. 7) 

where T is a lower triangular matrix, which approximates A in some sense. It will turn 

out that (1.7) can be diagonalized such that a stage in YJ1) can be solved from a linear 
system of dimension d, independently from the other stages, thereby making the process 
suitable for implementation on s processors. 

In Chapter 5 we prove that the procedure for selecting T is such that the diagonal 
entries of Tare positive, which is for most problems of interest a necessary and sufficient 
condition for the matrix I - T 0 hJ to be regular. 

1.5 Parallel linear solvers 

In our second approach we solve the sd-dimensional linear system (1.6) by a second 
iteration process, i.e., we compute a sequence of iterates 

Y (j ,O) y(j,1 ) 
n ' n ' · · · ' 

which converges to YJ1l. In Chapter 7 this iteration process is constructed such that the 
s components of dimension din yJj ,v) can be solved concurrently from linear systems of 
dimension d. We achieve this objective by first writing the matrix A as B +(A- B), then 
bringing the term containing A - B to the right-hand side of the equation, and finally 
applying fixed-point iteration, thus yielding 

(I-B 0 hJ)(YJj,v) _yJ1-l)) = ((A-B) 0 hJ) (YJj,v-l) _y~j-l)) - R(Y~j-l)), (1.8) 

This process can be seen as a splitting method as well. We select B in (1.8) such 
that there exists a transformation matrix Q with the property that Q-1 AQ is a block 
diagonal matrix and Q-1 BQ is a block diagonal matrix with diagonal blocks that are 
lower triangular. It will be shown that it is possible to transform the whole process (1.8) 
to a process that allows the desired decoupling of stages. 

Although this approach is more complicated than that presented in Chapter 4, the 
advantage is twofold; the resulting method is more efficient for many applications and 
we can derive strong theoretical results on the convergence of the iteration process. 

Chapter 8 discusses several variants of this construction applied to a y somewhat v 
broader class of methods, that of the Multistep Runge- Kutta methods. 

1.6 Linear algebra 

The parallel solvers for non-linear and linear systems of dimension sd presented in 
this thesis both evolve in linear systems of dimension d, and the performance of the 
overall method strongly depends on how efficient these systems are solved. Although for 
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reasons of simplicity we will often assume that Gaussian elimination is used as linear 
solver, it is possible to apply any linear system solver, such as QR-decomposition or 
a Krylov subspace method. In this work we do not focus on this aspect, except in 
Chapter 6, which treats the subject of linear solvers for systems with sparse matrices. 
For problems arising in practice it often occurs that the components of the function f only 
depend on a small number of variables. Consequently, for these problems the Jacobian 
J contains many zeros; we call J a sparse matrix. After reviewing a few off-the-shelf 
linear solvers that exploit sparsity, we come up with a new sparse matrix solver, that 
works very efficiently because it is tuned to the structure of the linear systems arising 
from numerical procedures for solving stiff differential equations. 

1. 7 Software development 

The goal of the underlying project was not only to construct parallel numerical meth­
ods, but also to develop a piece of software that incorporates these methods. It is a long 
road from method to software. First of all, one has to decide for which problem class 
the code should be written. Many applications in the project require a much broader 
formulation than (1.1). For example, to model the behavior of a train on a rail track, one 
has to add algebraic (meaning not containing differentials) side conditions, which state 
that the train and rail track can not intersect. The resulting system is called a set of 
Differential- Algebraic Equations (DAEs). We chose to make our software code suitable 
for the even broader class of Implicit Differential Equations (ID Es), which are of the form 

g(t,y,y') = 0, g: IRd x IRd x IR-* IRd, y: IR-* IRd, 
to ::; t ::; tend , Y (to) = Yo , y' (to) = Y~ , 

(1.9) 

where some components of g may contain differentials and some not. This choice explains 
the title of the code, which coincides with the title of this thesis: PSIDE, Parallel Software 
for Implicit Differential Equations. 

A complication of ID Es, which does not apply to OD Es, is that some components of 
the IDE solution may be more sensitive to perturbations. These components are said to 
be of higher index. Although PSIDE can not solve all higher-index IDEs, it works well 
for certain classes of higher-index problems that cover many applications of interest. 

The underlying method of PSIDE is the Radau IIA method with four stages, because 
this IRK combines high accuracy with excellent stability properties. We use the modified 
Newton process to solve the non-linear systems, which result in linear systems which are 
solved with the parallel linear system solver presented in Chapter 7. The number of four 
processors thus means that the code is suitable for implementation on four processors, 
which is a common number for many computer architectures. 

Many other questions have to be answered when implementing these techniques. E.g., 
how to form a prediction for the Newton process, when to evaluate the Jacobian, how 
many Newton iterations should be done, is the error conducted in one time step small 
enough, how to vary the stepsize? We took most answers to these questions from the 
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literature and describe them in Chapter 11, which gives a detailed description of PSIDE. 

For the estimation of the error, the literature did not provide a satisfactory method and 

in Chapter 9 we design our own error estimator. 
Chapter 12 is the user's guide of PSIDE, which gives a complete description of the 

user interface. It also lists the classes of higher-index problems that can be handled by 

PSIDE, and how the user should supply the index related information to the code. 
Of course, one would like to see the gain in practice of all the methods presented in this 

thesis; in other words, one wants to get insight in the performance of PSIDE compared 

to existing solvers when applied to a wide range of real-life problems. Proper testing of 

software is a whole field by itself and is not discussed in this thesis. We refer to another 

deliverable of the project, namely the Test set for IVP solvers [LSV96], in which a large 

number of problems from both industry and literature are brought together and solved 

by off-the-shelf solvers and PSIDE. However, we give some test results in Chapter 12, 

when we discuss the relation between PSIDE and this test set. 
Finally, Chapter 10 describes one application in detail, the computation of elliptic 

Fekete point sets. Although for the modeling process of many real-life problems we again 

refer to [LSV96], we think it is important to explain the modeling of this problem in this 

thesis because originally the elliptic Fekete point sets was a challenging problem in the 

field of global optimization. Surprisingly, it can be shown that modeling by a system of 

implicit differential equations is possible as well. Since the system is rather complicated 

and of high dimension, it is an outstanding example of an IDE to be solved by PSIDE. 

We compare the results of PSIDE with the outcome of a global optimization package, 

and it will turn out that , although PSIDE uses more memory, it is favorable in terms of 

accuracy and computer time. 
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Chapter 2 

Parallel predictor- corrector methods 

Abstract In this chapter, we construct predictor- corrector methods using block Runge-Kutta 
methods as correctors. Like conventional Runge-Kutta methods , these correctors compute stage 
values at non-uniformly distributed, intermediate points. The predictor-corrector nature of the 
methods makes these suitable for implementation on parallel computers. Comparisons of an gth_ 

order, 5-processor predictor- corrector method using Radau II points with the celebrated 8(7) 
Runge- Kutta method of Prince and Dormand show speed-up factors from 1.9 until 2.9. 

2.1 Introduction 

We shall consider predictor- corrector methods (PC methods) for solving the (non­
stiff) initial value problem (IVP) 

y'(t) = f (y(t)), y(to) =Yo , (2.1) 

on parallel computers. On one-processor computers, PC methods based on linear mul­
tistep (LM) methods of Adams-type are most widely used. However, the use of multi­
processor computers enables us to apply PC methods with a much more powerful cor­
rector than in the conventional one-processor PC methods. The general characteristic of 
these correctors is that they relate whole blocks of solution values with each other, rather 
than single solution values (as in classical LM methods). This has already been observed 
and tried out in a number of papers. For example, in (BAR87, CH87] correctors have 
been constructed where the solution values in each block are equidistant (like LM meth­
ods), and in (HS90, HS92, JN95, Lie87, NS89], blocks with nonequidistant solution values 
have been considered (like Runge-Kutta methods). The block structure of both fami­
lies of correctors makes it possible to implement the PC method efficiently on a parallel 
computer system. Moreover, parallel computers also allow us to use local Richardson 
extrapolation for automatic stepsize control without additional sequential costs, because 
the "reference" solution used in the error estimate can be computed in parallel. 

In applying PC methods, we may fix the number of iterations in advance (PE(CE)m 
mode with m usually 1 or 2), or we may iterate until the iterated values satisfy accuracy 
requirements. The first strategy was followed by Birta and Abou- Rabia (BAR87] and by 
Chu and Hamilton (CH87]. A disadvantage of this approach is that the stability regions 
usually are extremely small, unless the corrector is tuned to the particular PE(CE)m 
mode employed. For example, the real stability boundaries of the "best" PECE methods 
constructed by Birta and Abou- Rabia (methods using the "null-weight predictor") range 
from /3re = 0.576 for blocksize 2 until /3re = 0.078 for blocksize 10. By using a number 
of free parameters in the corrector for improving stability, Chu and Hamilton (CH87] 
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succeeded in increasing the real stability boundary substantially. However, for a given 

blocksize, the order is of course reduced. Both [BAR87] and [CH87] restrict the stability 

considerations to the real axis. 

In the second strategy, where the corrector is iterated until the iterated values satisfy 

our accuracy requirements, we are not only faced with the stability region of the corrector, 

but also with its convergence region. The cross-section of these regions may be interpreted 

as the stability region of the PC method. So far , the investigations have mainly been 

concerned with Runge-Kutta (RK) correctors. As it happens, the classical RK correctors 

of Gauss- Legendre or Radau type, have a high order of accuracy (superconvergence), 

they are unconditionally stable, and they possess very large convergence boundaries. 

Hence, RK-based PC methods are both highly accurate and highly stable. Moreover, by 

their one-step nature, RK correctors allow an easy and highly efficient stepsize strategy 

(provided that the predictor formula is also of one-step type) . In [HS90J experiments are 

reported showing that the sequential costs of one-step PC methods based on the Gauss­

Legendre corrector of order 10 are about half the sequential costs of the DOPRI8 code. 

The DOPRI8 code of Hairer- N0rsett- Wanner [HNW87] is based on the 13-stage, 3th_ 

order embedded RK method of Prince and Dormand (PD81J, and is generally considered 

as one of the most efficient sequential codes (cf. [HNW87, p. 378]) . We remark that by 

sacrificing the one-step nature of the predictor- corrector pair, the efficiency of parallel 

RK-based PC methods can be improved drastically, of course at the cost of a less easy 

implementation and stepsize strategy. A few first experiments were reported in [Lie87]. 

The LM-based and RK-based PC methods discussed above are very special examples 

of methods that fit into the large class of general linear methods introduced by Butcher 

in 1966. In this chapter, we shall try to find more efficient predictor- corrector pairs than 

constructed so far by looking in this class of general linear methods. In particular, we 

shall combine the multistep nature of the Birta and Abou- Rabia and Chu and Hamilton 

methods with the non-equidistant-solution-values property of RK methods. In fact, the 

methods of this chapter belong to the family of Block Runge- Kutta (BRK) correctors 

studied in [HS92], where a first few results for BRK-based PC methods can be found. 

Here, we shall pursue these investigations. In particular, we pay attention to the stability 

of the PC method, because the weak point of most block methods is their small stability 

region. 

In §2.2, we specify a family of two-stage BRK correctors and we discuss the order 

of accuracy and their stability. §2.3 analyzes PC iteration of these BRK correctors 

and defines the convergence factors associated with the iteration process. The main 

results of this chapter can be found in §2.4 where a number of BRK correctors are 

constructed that combine high order of accuracy, fast convergence and sufficiently large 

stability boundaries. Finally, in §2.5, PC methods based on BRK pairs are compared 

with DOPRl8, showing that speed-up factors derived from sequential function calls range 

from 1.9 until 2.9. When implemented on a parallel computer system, these speed-up 

factors will decrease. However, in earlier experiments with iterated RK methods on the 

Alliant FX4, we found that in this type of methods, the loss due to synchronization of 
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the processors is about 103 (this is confirmed by experiments of Lie (Lie87]) . Since the 
new methods are of the same type as iterated RK methods, we may expect that the 
speed-up factors based on sequential function calls will be reduced by only 103 when 
run on an Alliant. 

2.2 Block Runge-Kutta methods 

For the definition and analysis of the block Runge-Kutta (BRK) methods, it is con­
venient to introduce some notations. Firstly, we shall frequently use the componentwise 
notation for functions of vectors. For example, v2 is understood to be the vector whose 
entries are the squares of the entries of v. Furthermore, 1 denotes the vector with unit 
entries, ei the ith unit vector whose entries vanish except for the ith entry which equals 
1, Idd is the d x d identity matrix, and Emn is the m x n matrix whose entries are zero 
except for its nth column which equals 1. The dimension of 1 and e i may change, but 
will always be clear from the context. 

Our starting point is a method of the form 

y (A ® Idd)Yn- 1 + h(B ® Idd)F(Yn-1) + h(C ® Idd)F(Y) , 

(A* ® Idd)Yn - 1 + h(B* ® Idd)F(Yn-1) + h(C* ® Idd)F(Y)' 

Yn-1 + h(bT ® Idd)F(Yn_i) + h(cT ® Idd)F(Yn), n = 1, . . . , N. 

(2.2) 

(2.3) 

(2.4) 

Here, the s x s matrices A , B, C, A* , B*, C* and the s-dimensional vectors b and c 

contain the method parameters, h denotes the stepsize tn - tn_1, and ® denotes the 
Kronecker product. Furthermore, Y and Yn represent numerical approximations to the 
exact solution vectors y(tn- l + aih) , where a = (ai), i = 1, ... , s, denotes the abscissa 
vector, and where for any vector V = (lli), F(V) contains the derivative values f (l/i). It 
is assumed that the components of a are distinct . 

The formulas (2.2), (2.3) and (2.4) are respectively called the stage vector equation 
with s internal stages, the output formula with s external stages, and the step point 
formula. The external stages are all explicit, while the internal stages can be implicit or 
explicit. For example, if C has q zero rows and r := s - q rows with nonzero entries, 
then there are q explicit stages and r fully implicit stages. The quantities Y , Yn and Yn 
are respectively called the stage vector , the output vector and the step point value. 

With respect to parallel implementation, methods of this type have been studied 
in (HS92), and were called Block Runge- Kutta (BRK) methods, because they can be 
obtained from conventional RK methods by replacing the scalar RK parameters by ma­
trices and the stage values by blocks of stage values. Like RK methods, the stage values 
correspond to nonuniformly spaced points at the t-axis. In terms of the array notation 
used in (HS92), the method (2 .2)- (2.4) can be represented as a two-stage BRK method 
with one explicit and one implicit (block) stage: 

I 0 0 
A B C 
A* B* C* 

(2.5) 



12 Chapter 2 

In the determination of the parameter matrices in the stage vector equation (2.2), the 

order conditions (see §2.2.1) will play an important role, together with the requirement 

that the iteration method used for solving the stage vector equation is rapidly converging. 

In this chapter, we will solve the stage vector equation by predictor- corrector (PC) type 

iteration. The convergence of PC iteration is largely controlled by the "magnitude" of 

the matrix C, that is, convergence is better as C is smaller in some sense. For example, 

its spectral radius is often a first indicator of the potential convergence speed (see §2.3). 

In this connection, we should remark that strictly triangular matrices C lead to a zero 

spectral radius (in fact, the method is an explicit method, so that no iteration process 

is needed). However, such explicit methods approximate the components of Y by ex­

trapolation formulas which are considerably less accurate than the interpolation formulas 

associated with implicit methods. Fortunately, it turns out that high accuracy and fast 

convergence often go together. Hence, if the stage vector Y has sufficient accuracy and 

stability, then the output formula (2.3) can be dropped (i.e. A= A*, B = B*, C = C*, 

so that Yn = Y). 

In most of the BRK correctors constructed in this chapter, we do not use an output 

formula. However, we shall show in §2.4.3 that output formulas can be used for stabilizing 

the corrector. 

The step point formula can be used to increase the order at the step points (super­

convergence). This can be achieved by setting b = 0 and by identifying the components 

of c and the abscissa vector a with the quadrature weights and quadrature points of 

Gaussian quadrature formulas. The step point order is then one higher than the order 

of the output vector Yn. Since in the methods considered in this chapter, the order of 

the output vector will be at most s + 1 or s + 2, there is, as far as order of accuracy is 

concerned, no need for basing the abscissa vector on quadrature formulas of the highest 

possible order (Gauss- Legendre formulas). This leads us to use abscissa vectors with 

a1 =f. 0 and a 8 = 1 which often simplifies the implementation (e.g. the Radau II points 

fit into this group). 

Finally, we remark that (2.2)- (2.4) reduces to an RK method by setting A = A* = 

E 88 , B = B* = 0, C = C*, b = 0 and cT = e'"[C with C denoting the RK matrix of 

the collocation method defined by the abscissa vector a. We shall call this collocation 

method the RK method associated with the abscissa vector a. By identifying the BRK 

method (2.2)- (2.4) in the first step with such an RK method, we can avoid the problem 

of computing starting values, because we only need the initial value y0 , and not the whole 

starting vector Y0 . 

2.2.1 Accuracy 

Given the abscissa vector a, the conditions for pth_order consistency of the stage 

vector equation (2.2) are given by (see, e.g., (HS92]) 

Al= 1, A(a - t)i + jB(a - t)i - 1 + jCai -l = ai , j = 1, ... ,p. 
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We may write these order conditions in the form 

Al= 1, AXsp + BWsp + CVsp = Usp, 

13 

(2.6) 

Usp := (}·ai), Vsp := (ai- 1), Wsp := ((a-l)i-1 ), Xsp := (y(a-l)i), j = 1, ... ,p, 

where the lower indices again refer to the number of rows and columns of the matrix. If 
(2.6) is satisfied, then p will be called the internal stage order. The vector of principal 
error constants associated with the stage vector equation is given by 

Ev+l := (p~l)! ( aP+l - A(a - l)P+l - (p + 1) [ B C ] ( ~~ - l)P ) ) . (2.7) 

Note that for p = s, A= E 88 and B = 0, the stage vector equation reduces to the stage 
vector equation of the RK method with RK matrix C = Uss V8-;

1
. 

For the output formula (2.3) we proceed as follows. Imposing the localizing as­
sumption, i.e., assuming that the components Yn-l,i are on the locally exact solution 
through the point (tn- 1 , Yn-1), we may set Yn-1 = y(l tn-2 +ah) and, by virtue of (2.6), 
Y = y(l tn-l +ah) + O(hP+l ). Hence, 

Yn (A*® Idd)Yn-1 + h(B* ® Idd)F(Yn-1) + h(C* ® Idd)F(Y) 

(A*® ldd)y(ltn-2 +ah)+ h(B* ® ldd)y'(ltn-2 +ah) 

+h(C* ® ldd)y 1(1tn-1 +ah)+ O(hP+2). 

By Taylor expansion it can be shown that 

Yn = y(ltn-1 +ah)+ O(hP+2) + O(hP.+l)' 

provided that 

A*1=1, A* Xsp• + B*Wsp• + C*Vsp• = Usp•' (2.8) 

where the matrices Xsp•, Wsp•, Vsp•, and Usv• are defined as in (2.6) with p replaced by 
p*. Thus, the output vector Yn has order min{p + l,p*}. This order will be called the 
external stage order, or briefly the stage order. 

There are two error vectors associated with the output formula, viz. 

E;,v+2 := C* Ev+i • 

E* ·= - 1 -(av·+1 -A*(a-l)P•+1 -(p*+l)(B* C* J((a-l)P·)~ 
2,p•+l · (p•+l)! aP• ~ ' 

(2.9) 

where Ev+i is defined by (2.7). 
Finally, we consider the step point formula (2.4). It is possible to achieve order of 

consistency 2s for this formula, so that the order at the step points becomes min { 2s, p + 
2, p* + 1}. However, this may lead to rather large entries in b and c. Alternatively, we may 
use a zero b vector and identify cT with the last row vector of the RK matrix associated 
with a, that is, CT = e'f Uss vs-; 1

. If PRK denotes the order of the RK method, then we 
have order of accuracy min {PRK, p + 2, p* + 1} at the step points. This will be called the 
step point order. We summarize the preceding discussion in the following theorem: 
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THEOREM 2.1 If (2.6) and (2.8) are satisfied, then the ERK method (2.2) - (2.4) has 

stage order min{p+ l,p*} and output vector errors given by (2.g). If, in addition, b = 0, 
cT = e;u •• v.-;1, and if the abscissa vector a defines an RK method of order PRK, then 

the step point order is given by min {PRK, p + 2, p* + 1}. 

2.2.2 Stability 

In order to ensure stability for h = 0 (zero-stability), we shall require that A* has 

s -1 eigenvalues inside the unit circle (since (2.8) prescribes that A* 1 = 1, A• necessarily 

has one eigenvalue 1). Such matrices will be referred to as zero-stable matrices. 

For h > 0, stability also depends on the other parameter matrices and on the abscissa 

vector a. With respect to the scalar test equation y' = >..y, where >.. runs through the 

spectrum of the Jacobian matrix 8f /8y, we obtain the recursion 

Yn = M(z)Yn-l, M(z) :=A* +zB* +zC*(I-zC)-1(A+zB), z := .Xh.(2.10) 

If we assume that the stability matrix M(z) has s distinct eigenvalues, then we have that 

(cf. (Var62]) 

(2.11) 

where v(z) is bounded by the condition number of the eigensystem of M(z). This esti­

mate suggests defining the stability region, and the real and imaginary stability intervals 

according to 

S := {z: p(M(z)) < 1}, (2.12) 

(-/1re.O) := {z: z E S,z < O}, (-/1im,/1im) := {z: z E S,Re(z) = O,z =/. O}, 

where p( ·) denotes the spectral radius function. The quantities /1re and /1im are respec­

tively called the real and the imaginary stability boundary of the BRK method. By (2.12) 

stability conditions of the type h < /1/p(8 f / 8y) are implied, so that we should require 

the method to have sufficiently large stability boundaries, say not less than l. In addi­

tion, we should impose the condition that v(z) is of moderate size, particularly for z = 0, 

because zero-stability implies p(M(O)) = p(A*) = 1, so that 

(2.13) 

If A* is singular, then estimating an upper bound for v(O) by means of the condition 

number of A• is not possible. For example, this happens in the important case where 

A• = E •• (in (HS92] BRK methods of this form were called BRK methods of Adams type). 

However, for such methods, Mn(O) = [A*]n =E •• , hence l!Mn(O)ll2 = l!Essll2 = vs, so 

that for z = 0, Adams-type BRK methods satisfy (2.11) with v(O) = Vs· 
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2.3 The iteration scheme 

We approximate the solution Y of (2.2) by successive iterates y(j) satisfying the PC 
scheme (or fixed-point iteration scheme) 

y(j) = (A 0 Idd)Yn-1 + h(B 0 Idd)F(Yn-1) + h(C 0 Idd)F(Y(j-l))' 

j = 1, ... , m; n ~ 1. 
(2.14) 

Evidently, if the iterates y(j) satisfying (2.14) converge to a fixed vector Vas j -+ oo, then 
V = Y. In actual computation, the number of iterations m is dynamically determined by 
requiring that the corrector equation is solved within a given tolerance (cf. §2.5). This 
iteration scheme has a high degree of parallelism, because the sequential costs of each 
iteration on s processors are independent of the number of implicit stages r. 

For the predictor formula providing y(o), we may take the explicit BRK method 

y(o) = (Ao 0 Idd)Yn-1 + h(Bo 0 Idd)F(Yn_i). (2.15) 

One option defines Ao and Bo according to 

(Ao Bo] = [ Us,2s-l 1] [ XWs ,
2
s-l 

s,2s-l 

1 ]-l 
0 ' 

(2.16) 

where Xs ,2s-1, Ws,2s-l and Us,2s-l are defined as in (2.6). It is easily seen that (2.16) 
satisfies (2.6) for A = A0 , B = B0 , C = 0 and p = 2s - 1, so that (2 .15)- (2.16) generate 
predictor values of order 2s - 1 (provided that the stage order of the BRK method (2.2)­
(2.4) is at least 2s - 1). In fact , (2.16) is a Hermite integration formula generated by the 
abscissa vector a. In addition to the high orders of Hermite formulas, the error constants 
llEv+i 11 00 as defined in (2. 7) are extremely small. In Table 2.1, this is illustrated for 
the Radau II abscissae. However, in spite of their high orders and relatively small error 
constants, Hermite predictor formulas have the drawback of extremely large coefficients 
in the parameter matrices Ao and B0 , especially for larger values of s. This may cause 
considerable round-off errors unless sufficiently high arithmetic is used (we remark that to 
some extent, round-off can be suppressed by using shifted iterates xU> := yU) - l ©Yn-l 
in an actual implementation (cf. (HW91, p. 128])). 

An alternative to the Hermite predictor formula is offered by the Adams- Bashforth­
type formula defined by 

(2 .17) 

which satisfies (2.6) for A = E 88 , B =Bo, C = 0 and p = s. Its error constants associated 
with the Radau II abscissae can be found in Table 2.1. From these figures it is clear that 
if arithmetic allows, we should use the Hermite predictors. 

The method (2 .14)-(2.15) will be called a PIBRK method (Parallel Iterated BRK 
method). The sequential costs of PIBRK methods depend on the structure of the pa­
rameter matrices. Therefore, we postpone a discussion of computational costs until the 
special cases developed in this chapter have been specified. 
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For the convergence analysis of (2.14) we define the iteration error 

EU) := yU) - y . 

On substitution in (2.14), we obtain 

t:(j) = h(C 0 Idd)[F(Y(i- 1l) - F(Y)]. 

This relation immediately leads to the estimate 

Chapter 2 

where L denotes a Lipschitz constant on the right-hand side function f. Although this 
estimate has the advantage of being valid for the general IVP (2 .1), it does not provide 
much information for selecting efficient corrector methods. Therefore, we resort to the 
familiar approach of approximating the IVP by a linear model. In this way, we obtain 
detailed information on the iteration process for the class of linear IVPs. Like the linear 
stability theory, this linear convergence theory turns out to be highly reliable for a large 
class of non-linear problems. 

Assuming that the right-hand side function f is sufficiently smooth, we may write 

F(U + 8) - F(U) = J(U)o + 0(62
), 

where J(U) is an sd x sd block-diagonal matrix whose diagonal blocks consist of the Ja­
cobian matrices 8f(Ui)/8y, Ui being the components of U. On substitution, we straight­
forwardly derive the error recursion 

f(j) = ZE(j-l) + O(t:(j-l))2 , 

where the matrix 

Z = Z(hJ(Y)) := h(C 0 I)J(Y) (2 .18) 

controls the convergence of the iteration scheme. Assuming that higher-order terms can 
be neglected, the iteration error of the stage vector satisfies 

(2.19) 

Thus, the iteration matrix C plays a crucial role in the convergence of the PC iteration 
process. 
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We shall define the (averaged) convergence factor for the scalar test equation y' = >..y. 
For this test equation, (2.19) reduces to 

(2.20) 

Hence, 

so that, with respect to the maximum norm, the (averaged) convergence factor over m 
iterations is given by 

(2.21) 

The region of convergence in the complex z-plane is given by a(m, z) < 1, that is, 
the open disk 

Cm:= {z: lzl <Im}, 
1 

(2.22) 
Im:= \lllCmlloo' 

where Im may be considered as the convergence boundary. From (2.22) we deduce the 
stepsize condition h < Im/ p( f) f / ay). Thus, large convergence boundaries relax the 
convergence condition and improve convergence at the same time. 

In actual computation, one should satisfy both the convergence condition associated 
with (2.22) and the stability condition associated with (2.12), that is, the spectrum of 
the matrix ha f / fJy should be contained in the intersection of the stability region S and 
the convergence region Cm (here, we assume that the IVP is itself stable, so that the 
spectrum of f) f / f)y is located in the left half-plane). As a consequence, there is no 
point in trying to construct correctors whose stability region is much larger than their 
region of convergence. However, it may be feasible to have correctors whose convergence 
region is much larger than their region of stability, because, as we just saw, large regions 
of convergence also improve convergence speed. Notice that strictly lower (or upper) 
triangular matrices C have zero convergence factors for m 2: s + 2. However, as already 
remarked, then the generating BRK corrector (2.2)- (2.4) is explicit and therefore has 
reduced accuracy. 

2.4 Construction of BRK correctors 

In all BRK correctors considered in this chapter, the abscissa vector a is identified 
with the Radau II points. We do not claim that these points are optimal, but it is likely 
that results based on Radau II points are indicative for other sets of abscissae. 

In the construction of BRK correctors, we have to take into account: (i) the consis­
tency conditions (2.6) and (2.8), (ii) the zero-stability and condition of the matrix A*, 
(iii) the stability region, and (iv) the rate of convergence. These aspects will be charac­
terized by the step point order, by the condition number 11:00 (A*) of A* (provided A* is 
non-singular), the stability boundaries defined by (2.12), the condition number 11:00 (C) 
and the convergence boundaries defined in (2.22). 
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2.4.1 Adams-type correctors without output formulas 

We start with the class of methods without output formula, that is, the output formula 

coincides with the stage vector equation, so that A= A*, B = B* and C = C* (that is, 

there are no external stages). Within this class, zero-stability is automatically achieved 

by choosing the subclass of Adams methods, i.e. A = E... One option for choosing the 

remaining matrices B and C is such that a high order of consistency is obtained. In our 

preliminary analysis of this type of methods we found that in general the convergence 

factors associated with the matrix C improve as the order of consistency increases. In 

particular, we observed that the entries in the upper part and in the lower right-hand 

corner of C are relatively small. This observation led us to consider BRK correctors of 

which the matrix C is of the form 

C=[i i ], 
-1 -2 

where C 1 and C2 , respectively, are an r x q and an r x r matrix with q+r = s. Evidently, 

such correctors haver implicit stages and q explicit stages. In particular, the matrix C2 

determines the convergence of the PC iteration process. 

We shall define the first q rows of the matrix B completely by consistency conditions . 

From (2.6) it follows that the first q stages are consistent of order s if they coincide 

with the first q rows of the matrix u •• w.~ 1 . In fact, the resulting formulas are Adams­

Bashforth formulas ( cf. the Adams- Bashforth predictor formula (2.17)) . Although these 

formulas are based on pure extrapolation, the extrapolation errors are relatively small, 

because they correspond to the first (and therefore smaller) components of the abscissa 

vector a. 
The class of methods indicated above is defined by 

A= E •• ' B = (U •• - cv •• )W.~ 1 ' c = [ i i ] ' (2.23) 
-1 -2 

A*= A, B* =B, C* =C , (2.24) 

where the r x s matrix C := [ C 1 C 2 ] is still free. This method is zero-stable (because A 

is zero-stable). Since (2.23) and (2.24) satisfy (2.6) for p =sit follows from Theorem 2.1 

that the stage order equals s. In the following subsections, a few options for choosing 

the matrix C will be discussed. 

Adams-Bashforth- Moulton methods 

The most simple option defines the implicit stages by imposing consistency conditions 

of highest possible order, that is, C is defined by the r x s matrix occurring in the lower 

right-hand corner of the s x 2s matrix 

[ ]

-1 
u w. ,2. 

s ,2s 
Vs ,2s- l 

(2.25) 

The resulting BRK corrector defines the first q components of Yn = Y by (explicit) 

Adams- Bashforth-type formulas (of order s) and the last r components of Yn by implicit 
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Adams-type formulas of highest possible order of consistency (i.e. order 2s). In this 
respect, these implicit formulas resemble the conventional Adams-Moulton formulas. 
Therefore, we shall refer to these correctors as Adams-Bashforth-Moulton correctors 
(ABM correctors). The special methods arising for q = 0 and q = r will be called 
Adams-Moulton (AM) correctors and Adams-Bashforth (AB) correctors, respectively. 

We recall that the stage order of ABM correctors equals s. However, for AM cor­
rectors where no explicit stages occur (q = 0), the stage order becomes 2s. For q > 0, 
Theorem 2.1 shows that the step point order can be raised to s + 1 by choosing in 
the step point formula b = 0 and CT = e'"f Uss vs-; 1 . However, it turns out that for 
ABM correctors e'f B ~ 0 and e'f C ~ e'fUss V8-;

1
. Hence, in practical applications, we 

achieve superconvergence at the step points by defining the step point formula simply by 
Yn = (e'f © Idd)Yn. 

We computed the convergence and stability characteristics for a large number of ABM 
correctors. In the case of a zero imaginary stability boundary, we have also computed 
the value of f3tm defined by the length of the imaginary interval where the spectral radius 
of the amplification matrix M(z) is bounded by 1 + t:, t: > 0. For sufficiently small values 
oft:, these values can be used as the "effective" imaginary stability boundary in practical 
computations. For a given value of r, it turns out that the stability boundaries decrease 
and the convergence boundaries increase with q. For each r (2 :S r :S 5), Table 2.2 
presents the two cases where the stability boundaries f3re and f3tm (with f = 10-3) are 
both sufficiently large (say at least ~ 1) while the convergence boundaries are maximal. 
A more extensive list including cases with smaller convergence and stability boundaries 
can be found in the appendix to this chapter. Notice that a large condition number for 
C 2 implies relatively small convergence boundaries in the first few iterations. 

Next, we discuss the sequential costs of the PIBRK method based on ABM correctors. 
Let us consider the following implementation of the PIBRK method: 

y(O) (.A.a© Jdd)Yn-1 + h(Il..o © ldd)F~-1 , 
yUl (A© Idd)Yn-1 + h(B © Idd)F~-1 , 
yU) (A.© Idd)Yn-1 + h(B © Idd)F~_ 1 

+h(C1 © Idd)F(Y(j-l)) + h(C2 © Idd)F(YU-1l), (2.26) 

( ~~:; ) , Yn = (e'f © Idd)Yn, F~ = F(Y<m-1)), 

where j = 1, ... , m. Here, upper and lower bars refer to the first q and last r rows of a 
matrix, and the underlying matrices A, Band Care defined by (2.23), (2.24) and (2.25). 
Notice that the first q components of the iterates yUl do not depend on j. 

It is easily verified that (2.26) does yield the a solution to the corrector method as 
m-+ oo (provided that it converges). Assuming that 1 :Sq :Sr, the sequential costs on 

r processors are m + 1 right-hand side evaluations, that is, the evaluation of F(Y(m)) 
plus the evaluation of the m right-hand side functions F(Y(j-lJ). The evaluation of 

F(Y(m)) can be done in parallel with that of F(Y<0l), but this would require q additional 
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6.17 
9.06 
s:.23 

10.35 
10.68 
12:28 
10 .. 80 
13;05 

processors. However, if we apply local Richardson extrapolation for stepsize control and if 

we use additional processors for computing the "reference" solution, then these processors 

can also be used for evaluating F(Y(m)) . Since the "reference" solution is computed with 

a double step, it is likely that there is some idle time, in spite of the fact that larger steps 

will require more iterations to solve the stage vector equation. Hence, in such a case, the 

total sequential costs per step are just m right-hand side evaluations. 

Adams- Bashforth- Radau methods 

A second option identifies the matrix [ C 1 C 2 ] in (2.23) with the last r rows of the 

Radau IIA matrix Uss V8
-;

1 . Then the matrix B vanishes, so that the r implicit stages 

are determined by Radau formulas. The stage order and the step point order are the 

same as for ABM correctors, i.e. s and s + 1, respectively. We shall call this corrector an 

Adams- Bashforth- Radau corrector (ABR corrector) because the first q components of 

Yn are defined by Adams-Bashforth formulas and the last r components by Radau IIA 

formulas. For r = 0 the corrector reduces to the AB corrector and r = s leads to the 

Radau IIA corrector. The PIBRK method generated by ABR correctors can be defined 

according to (2.26) , so that the sequential costs are equal. 

The analogue of Table 2.2 is given in Table 2.3 where we included the case q = 0 

defining the pure Radau IIA corrector. A comparison of these selected methods with the 

corresponding ABM correctors reveals that ABR correctors have smaller convergence 

boundaries (particularly for larger m), but possess considerably larger stability bound­

aries. One may argue that the stability boundaries of the selected ABM correctors are 

sufficiently large for integrating non-stiff problems, so that the ABM correctors seem to 

be the more attractive ones. However, if the stage vector equation is not solved to conver­

gence (for example, if the tolerance parameter in the stopping criterion is not sufficiently 

small) , then we are faced with the fact that the stability region of the ABM method is 

much smaller than that of the ABR method. §2.5 will show that ABR is more efficient 

than ABM because of its better stability characteristics for small numbers of iterations. 
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TABLE 2.3: (Jharocteristics for selected ABR cof"rectors. 

5'=2+3 
4=0+4 
5 £1+4 
6;:i2+4 
5=0+5 
6= 1.+s 
7=2+5 

5 
6 
7 OQ 00 

6 30.16 0,04 
7 3 .. 35 / 0 

· 9 00 00 . 00 

7 47.80 ••. 0 24.92 
8 5.23 Oc07 4.57 

1.41 
1.65 
2.04 
1.41 
1.57 

79 1.84 2.36 

2.4.2 Adams-type correctors with Radau output formula 

2.~36 · 
3.66 
5.93 
3;03 
4.08 
5.80 
4.28 
4.84 
5.80 
4.44 

·····4·;·70··· 
5.40 
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:Ms · 
/4 ~31 

7,11 
3.64 
4.94 
7.03 
5.04 
5:99 
7.74 
6 .. 29 

·······6 ~·sr ·· 

8.39 

By adding an output formula (that is, introducing external stages), it is possible to 
improve the stability of the corrector method. We shall illustrate this by using output 
formulas of Radau-type: 

A*= Ess' B* = 0, C* = UssVs~ 1 . (2.27) 

If the stage order of Y is p, then Yn has stage order min {p + 1, s} and step point order 
s + l. 

The stability matrix M(z) associated with (2.23) and (2.27) is given by 

(2.28) 

where MAdams(z) is the stability matrix of (2 .23)- (2.24). The large entries in MAdams(z) 
are responsible for the possibly poor stability of (2.23)- (2.24). Since the entries of the 
Radau matrix Uss vs~l are rather small , it is likely that the large entries in MAdams(z) 
are neutralized, so that the stability region of M(z) is improved. This is confirmed by 
the Tables 2.4- 2.5. 

In comparison with the Adams methods without output formula, the higher stability 
has to be paid for by the additional evaluation of F(Yn- 1 ). This can be concluded from 
the following implementation of the generated PIBRK method (cf. (2.26)): 

y(O) 

yUl 

y(i) 

Yn 
Yn 

(Ao 0 Idd)Yn-1 + h(J;k 0 Idd)F(Yn-d' 

(A 0 Idd)Yn-1 + h(B 0 Idd)F(Yn- d' 
(A 0 Idd)Yn-1 + h(B 0 Idd)F(Yn-d + h(C 0 Jdd)F(Y(j-l))' 
(Ess 0 ldd)Yn-1 + h(Uss V.~ 1 0 Jdd)F(YCm-1l), 
(e'J 0 Idd)Yn , 

(2.29) 
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ABM 
ABM·+ R 
i\'B'M ···· .. 
ABM +It 
ABM \ 
ABM+R 
ABM · .. 
J\:6M:+ ·· it> 
ABM \ 
ASM•+R 

6= .4+2 
. 6f::4+2 
6~3+3 · 
6 2 3+3 .. z•·~ ... 4+3······· 
7¥4+3< 
1?3+4 
i# 3.f4; 
1h2+s 
7-;;:.2.+5 

··· A13R .... ·>>··•· 6#4+2·· 
.. A:aR+ R 6E4+2t 
4!3~ ·) . 6 ~\l.+\l 
A~R+R 6S!3'.ft 
ABR . 7='4+3 
ABR+a ··· 7-;;:.4+a> 
ABR 7::'::, 3 +4 
AJm + .B, 7 ::;:. 3+.4 
ABR. 8 b 3-j-~ \ 
ABR + .R 8 = 3 + $ 

TABLE 2.:4: ABM ( + .Radau) correctors. 

7 
1 

7 

8 
8 
8 
8 
8 
8 

/3re 
0;01 
1.52 

.0.18 
L70 
0.01 
0.98 
0.27 
1.90 
0.40 
2.27 

Ihm 
0.02 
0.02 
0'.03 
1.79 
0 ,.0.1 
O.Ql 
0~22 
1.83 
0.36 
0.03 

im 

0.01 
0.01 
0.04 

0 
0.01 

0 
0.06 
0.01 
0;01 
0.01 
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0.02 
1.40 
OHS 
1.79 
0.01 
0.95 
0:22 
1..83 
0.36 
2.78 

0,02 
1.41 
0 .19 
1.81 
0.01 
0.97 
0.28 
2.08 
0.43 
2.54 

where j = 1, ... , m. Note that the evaluation of F(Yn-d cannot be replaced by F~_ 1 as in 

(2.26), because then the effect of the stabilizing output formula is not taken into account. 

However, in the ABR case (where the mth iteration is identical with the output formula), 

we may replace the last r components of F(Yn-l) by those of F~_ 1 , without changing 

the corrector solution. Thus, with respect to the method (2.26), the additional costs are 

one right-hand side evaluation in the ABR case and two right-hand side evaluations in 

the ABM case. As before, if we have q additional processors at our disposal, then the 

total sequential costs per step can be reduced by one right-hand side evaluation ( cf. the 

discussion of the method (2.26)). 

The Tables 2.4- 2.5 illustrate the stabilizing effect of adding a Radau output formula . 

2.4.3 More general correctors 

In the ABM and ABR correctors of §2.4.1, the first q (explicit) stages have orders, so 

that the resulting stage order can never exceeds. The stage order can easily be increased 



Parallel predictor- corrector methods 23 

by using a number of the zero entries occurring in the matrices A, B and C defined in 
(2.23). For example, adding to the ABR corrector, the (s - l)st column of A and the 
last column of B for satisfying additional consistency conditions, we obtain a corrector 
of order s + 1. This corrector may be considered as a "minimal" modification of the ABR 
corrector and will be referred to as the modified ABR corrector. A drawback of these 
modified correctors is the rather large magnitude of the entries in the matrix A, even in 
the case of this minimal modification. Using more zero entries for a further increase of 
the stage order leads to dramatically large entries, so that it does not seem feasible to 
use this approach for constructing correctors with stage order 2: s + 2. 

Since the matrix C of the modified ABR correctors is no longer defined by the 
Radau IIA formulas, the step point formula Yn = (e'I © Idd)Yn does not have super­
convergence at the step points. Nevertheless, in practical applications we do observe 
step point order s + 2, because again it turns out that ei B ~ 0 and ei C ~ e:f Uss V

8
-;

1 

(cf. the discussion in §2.4.1) . Hence, the modified ABR method can be implemented 
according to (2.26), so that the sequential costs per step are the same as for the ABM 
and ABR methods. 

The characteristics of a few modified ABR correctors are summarized in Table 2.6. 
A comparison with the corresponding ABR correctors of Table 2.3 reveals that the mod­
ification leads to comparable convergence boundaries and smaller stability boundaries. 
However, the stage order and (effective) step point order is raised by one. A detailed 
investigation of this promising family of methods will be subject of the next chapter. 
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2.5 Numerical experiments 

Our numerical tests were performed using 15-digits arithmetic. The accuracies ob­
tained are given by the number of correct digits ~ ' defined by writing the maximum 

norm of the absolute error at the endpoint in the form 10-~. The PIBRK method is 

implemented according to (2.26) with the PC pairs (AB, ABM) and (AB, ABR), where 

the correctors have orders 7 and 8, and are selected from the Tables 2.2- 2.3. In view of 

the relatively high corrector orders and the 15-digits arithmetic, we did not use Hermite 
predictors. 

First, we will make a mutual comparison between ABM and ABR correctors, using 

a constant number of iterations per step. For that purpose, we select the following 

well-known test problems (cf. (HNW87]), viz. the Fehlberg problem 

Yi = 2tyI log(max{y2, 10-3}), YI (0) = 1 , 
y~ -2ty2log(max{yI,10-3}), Y2(0)=e , 

and the Euler problem 

Y2Y3 ' YI (0) = 0' 
-YIY3, Y2(0) = 1, 0 ~ t ~ 20 . 
-0.51YIY2' y3(0) = 1, 

O~t~5, (2.30) 

(2.31) 

Secondly, in §2.5.2, we add a dynamic iteration strategy to the 8th_order (AB, ABR) 

and we compare this code with three existing codes from the literature. The chapter is 
concluded with a performance evaluation of these four codes on the Brusselator prob­

lem (HW91, p. 381] which was transformed into an IVP for ODEs of dimension d = 882. 

2.5.1 Comparison of ABM and ABR correctors 

We applied the PC pairs (AB, ABM) and (AB, ABR) with s = 2+4. These correctors 
are both of order 7, require four processors, and are equally expensive. The Tables 2.7-

2.8 present ~-values for a few values of hand m (overflow is indicated by*). From these 

figures, we may conclude that the efficiency of the two methods is comparable in the 

case of convergence, but for larger stepsizes (AB, ABR) is more robust than (AB, ABM) . 

This can be explained by the larger stability regions of the (AB, ABR) method. 

2.5.2 Comparisons with DOPRI8, PIRK8 and PIRKIO 

Since (AB, ABR) pairs are more stable and therefore more robust, we restrict our 

considerations to this family of PC methods. In particular, we tested the s = 2 + 5 
method. This parallel, 8th_order (AB, ABR) method was compared with the 8(7) RK 

pair of Prince and Dormand (PD81) and the parallel PC methods based on Gauss­

Legendre correctors of order 8 and 10. For the Dormand- Prince method we took the 

DOPRI8 implementation of Hairer , N0rsett and Wanner (HNW87), and for the Gauss­

Legendre methods we used the four and five-processor one-step codes PIRK8 and PIRKlO 
developed in (HS90) . 
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.A.J?i. A.B¥ •• 
(AJ;3i ABil;)< 
(A;J? .. , ABM) 
(AB\ ABR) 

~~\~~~) 
(A~'.ABM) 
(AB; ABR) 
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The (AB, ABR) method was equipped with a dynamic iteration strategy based on 

the requirement that the step point component of the residue left on substitution of the 

/h iterate into the stage vector equation should be less than a tolerance parameter TOL, 
i.e. 

where 

According to (2.26) we may write 

RU) = yU) - yU+i) - h(B © Idd)(F(Yn-1) - F~_ 1 ). 

Clearly, the error caused by the iteration process should be smaller than the local trunca­
tion error. This is achieved by requiring TOL to be a factor 8 less than the local error. In 

our experiments, we shall estimate the local error at tn-1 by ll(e; © Idd)(Yn -1 - Y~~1 )11, 

where Y~~1 denotes the prediction in the preceding step. Using the maximum norm and 

observing that (e; © Idd)(F(Yn-d - F~_ 1 ) vanishes in the case of ABR correctors, we 
are led to the stopping criterion 

(2.32) 

Below, the resulting implementation will be referred to as the ABR8 code (we did not yet 

implement a stepsize strategy, so that the results produced by this code may be improved 
when this facility is included). 

As a third test problem, we take the Brusselator problem (see [HNW87, p. 381]), 
defined by 

au 
8t 
8v 
8t 

0 :::; t :::; 23.5' (2.33) 
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supplemented with homogeneous Neumann boundary conditions and the initial condi­
tions 

u(t = O,x,y) 
v(t=O,x,y) 

0.5+y, 
1+5x. 

(2.34) 

Furthermore, a= 2 · 10-3 and N (the number of equidistant points in the spatial direc­
tion) is set to 21, resulting in an ODE-system of dimension 882. 

The Tables 2.9- 2.11 show results for the various methods (for the first two test prob­
lems, the results for DOPRI8, PIRK8, and PIRKlO were taken from [HS90]). In the 
ABR8 code, 8 is set to 10-4

. To facilitate a comparison, the listed numbers of sequen­
tial right-hand side evaluations have been obtained by interpolation to arrive at integer 
values of~ - Furthermore, we list the (averaged) factor by which the existing codes are 
more expensive than ABR8 (this factor is denoted by m). These tables clearly show that 
ABRB is the most efficient solver. We see that the speed-up factor of ABR8 with respect 
to the 8th_order code DOPRI8 (to be considered as one of the most efficient sequential 
codes) ranges from 1.9 until 2.9. For the four-processor PIRK8 code of order 8, and the 
five-processor 10th_order code PIRKlO this factor is in the range 1.3-2.3 and 1.1- 1.5. 

2.6 Concluding remarks 

The search for efficient parallel PC methods reported in this chapter has resulted 
in several fastly converging and sufficiently stable PC pairs. With respect to the fully 
automatic code DOPRI8, the averaged speed-up factor of the fixed stepsize, five-processor 
ABR8 code ranges from 1.9- 2.9. The efficiency of this code can be improved by including 
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TABLE 2.11: Number of s~~uentialri;~t-hand ;i&e eualudttb~s for me n1"Us11eia:ior 71n:10,e:mr~.JJJ 
(2.3.f). 

Method 
DOJ.>RI8 
PIRK8 
PIRKlO 
Al3R8 

1.594 
f161 
901 
591 

.2376 
i579 
1.362 
ll69 

/{2908 
1950 
1824 
1747 

a stepsize strategy. If the local error estimate is based on local Richardson extrapolation 

where the "reference" solution is computed in parallel on an additional set of processors, 

then these processors can also be used for saving one function call per step (see the 

discussion of the scheme (2 .26)). In the numerical examples of this chapter, this would 

increase the speed-up factor by about 203. 
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Appendix 

6.36 
8.23 

10.36 
13.28 
16.83 
20.92 

4.61 8.38 
5.45 10.68 
6.60 12.28 
8.01 14.71 
9.67 17.67 

1.33 1.93 2.26 4.50 10.80 
1.56 2.05 2.47 5.12 13.05 
1.85 2.39 2.90 6.03 14.32 
2.20 2.84 3.46 7.12 16.35 

1.12 1.70 2.23 4.50 13.07 
1.45 1.94 2.41 4.92 15.17 
1.73 2.22 2.72 5.61 16.60 

0.79 1.87 2.12 4.55 15.17 
1.33 1.96 2.32 4.82 17.33 

0.5(} 1.66 2.21 4.55 17.32 
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Extension of Table 2.3 

order f3re it(')o(Q:;\) 'Y4 'YlO 'Yoo 

2 = .2 + 0 3 0.91 * 0.29 00 00 00 00. 00 

3=3+0 4 0.59 0.60 0.61 00 00 00 00 00 

4=4+0 5 0.48 * 0.44 00 00 00 00 00 

5=5+0 6 0.44 * 0.44 00 00 00 00 00 

6=6+0 7 0.41 * 0.42 00 00 00 00 00 

7=7+0 8 0.40 * 0.40 00 .. oo 00 00 00 

8=8+0 9 0.39 0.39 00 • 00 00 00 00 

2=1+1 3 3.00 1.51 1.00 4 ~00 ,too · 4.00 4.00 ... · .. ·4.:oo ····· 

3=2+1 4 0.54 0.65 1.00 9.00 9.oo ?.90 9 .. oo · 9:00 

4==:r+1 5 0.11 O.l2 1.00 lMO i6'.66 l.6,00 16.QO 16'.oo ···· 

5 ;;::! f+l 6 * * 1.00 .25.00 25;00 2s:oo 25:90 25.!)6 
6::::: 5+1 7 * * 1.00 36.00 36.00 36'.po 36.00 36;oo 

7=6+1 8 * * * 1.00 49.00 49;00 49.00 49.00 49.00 

8=7+1 9 * * * 1.00 64.00 64.00 6uo 64.00 64:00 

2=0+2 3 00 00 00 7.00 1.41 L59 1.86 2.36 2.45 

3=1+2 4 8.30 4.32 4.32 9.34 2.15 2.48 2.87 3.66 4.31 

4=2+2 5 1.05 * 0.93 10.25 3.39 3.92 4.49 5.93 7.11 

5=3+2 6 0.13 * 0.13 10.70 5.03 5.81 6.63 8.98 10.15 

6=4+2 7 * * * 10.94 7.04 8.14 9.26 12.78 15.21 

7=5+2 8 * * * 11.09 9.42 10.89 12.38 17.31 20.48 

8 = 6 +2 9 * * * 11.19 12.16 14.06 15.98 22.56 26.57 

3=0+3 4 00 00 00 18.06 1.41 L82 2.21 3.03 3.64 

4=1+3 5 11:.18 *..:: 9.02 23.82 1.81 2.3.2 2 .. 62 4,08 4.94 
5:::2+3 6 1.97 * 1.89 26.93 2.45 3.08 3.47 5.80 7;03 

6=3+3 7 0.18 * 0.19 28.75 3.28 4.05 4'.60 8.00 9.68 

7=4+3 8 * * * 29.89 4.26 5.24 5.95 10.62 12.87 
8=5+3 9 * * * 30.65 5.41 6;62 7.52 13.63 16.56 

4=0+4 5 00 00 00 34.19 1.41 1.82 2.21 4.28 5.04 
5=1 +4 6 30.16 * 15.74 43.75 1.65 2.11 2.55 4.84 5.99 
6=2+4 7 3.35 * 2.86 49.85 2.04 2.61 3.15 5.80 7.74 
7=3+4 8 0.27 * 0.28 53.85 2.54 3.24 3.91 7.11 9.96 
8=4+4 9 * * * 56.59 3.14 4.00 4.77 8.69 12.59 

5=0+5 6 00 00 00 55.38 1.41 l.82 2.21 4.44 6.29 
6=1 +5 7 47.80 * 24.92 68.93 1.57 2.02 2.44 4.70 6.87 
7=2+5 8 5.23 * 4.57 78.48 1.84 2;36 .2.85 5.40 8.39 
8=3+5 9 0.40 * 0.43 85.26 2.19 2.80 3.38 6.35 10.33 

6=0+6 7 00 00 00 81.63 1.41 1.82 2.21 4.50 7.66 
7=1 +6 8 70.66 * 37.01 99.26 1.53 1.96 2.39 4.73 7.96 
8=2+6 9 7.61 * 7.29 112.56 1.73 2.22 2.69 5.22 9.32 

7=0+7 8 00 00 00 112.94 1.41 1.82 2 .. 21 4.52 8.94 

8= 1 +7 9 99.27 * 52.43 134.71 1.50 1.93 2.34 4.71 8.89 

8=0+8 9 00 00 00 149.32 1.41 1.82 2.21 4.53 10.30 
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Abstract The so-called Adams- Bashforth- Radau (ABR) methods were proposed in Chap­

ter 2. An ABR method is a high-order parallel predictor- corrector method for solving non-stiff 

initial value problems, based on a combination of Adams-Bashforth and Radau formulas . Com­

parison of ABR with the famous sequential 8(7) Runge-Kutta method of Dormand and Prince 

showed speed-up factors of about 2.7. In this chapter, we improve the ABR methods by making 

them more accurate without any additional costs. This improved version increases the speed-up 

factor on the average to 3.1. 

3.1 Introduction 

We shall consider predictor- corrector methods (PC methods) for solving on parallel 

computers the (non-stiff) initial value problem 

y'(t) = J(y(t)) , y(to) =Yo, (3.1) 

In Chapter 2 a class of parallel PC methods has been proposed, including the Adams­
Bashforth-Radau (ABR) methods. These methods showed a speed-up factor of about 

2.7 compared to DOPRl8. The DOPRI8 code by Hairer-N0rsett-Wanner [HNW93] is an 
implementation of the 13-stage, 3th_order embedded Runge-Kutta method of Dormand 

and Prince, and is generally accepted as one of the best sequential codes. In this chapter, 
we improve the ABR methods by increasing the order by 1. The convergence and stability 

characteristics turn out to be even slightly better than those of ABR, while the sequential 

costs and the number of processors are (almost) the same. 
The outline of the chapter is as follows. In §3.2 we specify a subclass of the large class 

of General Linear Methods, introduced by Butcher in 1966, and describe how methods 

that fall into this class can be compared by means of accuracy, stability and convergence. 

§3.3 briefly describes the ABR methods proposed in Chapter 2. In §3.4 we propose a more 

accurate variant of ABR. How this variant can be implemented without any additional 

costs compared to ABR is presented in §3.5. Finally, in §3.6, numerical experiments will 
show that this new variant indeed performs better than ABR. 

3.2 A subclass of the class of general linear methods 

In the following, the vector with unit entries is denoted by 1, the ith canonical basis 

vector by ei , and the d x d identity matrix by Idd· Furthermore, Omn is the m x n zero 
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matrix and Emn is the m x n matrix whose entries are zero, except for its nth column 
which equals 1. If v is a vector, vJ stands for the vector whose entries are the jth powers 
of the entries of v. 

To solve (3.1) we use methods of the form 

(A 0 Idd)Yn-1 + h(B 0 Idd)F(Yn-1) + h(C 0 Idd)F(Yn), 

Yn-1 + h(cT 0 ldd)F(Yn)· 

(3.2) 

(3.3) 

This type of methods falls into the class of General Linear Methods introduced by Butcher 
(see [But87]). Here the s x s matrices A, B, C and the s-dimensional vector cT contain 
the method parameters, h denotes the stepsize tn - tn-l and 0 denotes the Kronecker 
product. Yn is the so called stage vector which represents numerical approximations to 
the exact solution vectors y(tn-l +aih), where the s-dimensional vector a= (ai) denotes 
the abscissa vector. Hence Yn is an sd-dimensional vector. In this chapter, we restrict 
ourselves to the case where the components of a are the Radau IIA collocation points. 
For any vector V = (V;), F(V) contains the derivative. values f(V;). Formulas (3.2) 
and (3.3) are respectively called the stage vector equation and the step point formula. 
Considering (3.2) as the correction equation we solve this equation by applying the PC 
scheme 

y(o) 
n 

yU) 
n 

(Ao 0 Idd)Yn-1 + h(Bo 0 ldd)F(Yn_i), 

(A 0 Idd)Yn-1 + h(B 0 Idd)F(Yn- d 

+h(C 0 ldd)F(Y~J- ll) , j = 1, ... , m, 
y~m)_ 

(3.4) 

(3.5) 

Next we describe how accuracy, stability and convergence of the PC scheme can be 
defined in terms of A, B, C and c. 

3.2.1 Accuracy 

The conditions for pth_order consistency of the stage vector equation (3.2) are given 
by (see, e.g. [HS92]) 

Al = 1) AXsp + BWsp + CVsp = Usp i (3.6) 

where the s x p matrices Uspi Vsp, Wsp and Vsp are defined by 

·- (aJ - 1), . 
·- (}·(a-t)i), forJ=l, .. . ,p. 

If (3.6) is satisfied, then p will be called the stage order. 
Note that, for A = E88 , B = Ossi and C fulfilling (3.6) with p = s , (3.2) reduces to 

the s-stage Radau IIA method. 
In this chapter, we use a step point formula that coincides with the formula for the 

sth stage of the Radau IIA method: c'!' = e'!'Uss V
8
.,;

1 . We will refer to this formula as 
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the Radau IIA step point formula. It can be shown (see Chapter 2) that for this case, 
the order of Yn (the so called step point order) equals min { 2s - 1, p + 1}, where p again 
denotes the stage order. 

3.2.2 Stability 

With respect to the scalar test equation y' = >.y, where>.. runs through the spectrum 
of the Jacobian 8~~), we obtain for (3.2) the recursion 

Yn = M(z)Yn-i , M(z) :=(I - zC)- 1 (A + zB), z :=>.h. 

We define the stability region and the real and imaginary stability intervals according to 

{z EC I p(M(z)) < 1}, 

{z E C I z ES/\ z < O}, 

{z E C I z ES/\ Re(z) = 0 /\ z # O}, 

respectively, where p ( ·) denotes the spectral radius function. f3re and f3im are called the 
real and imaginary stability boundary, respectively. 

For many methods that we consider in the next sections, it turns out that f3im = 0. To 
circumvent the numerical uncertainty we also computed the practical imaginary stability 
interval defined by (-f3tm,!3tm) := {z EC I p(M(z)) < 1+10-3 

/\ Re(z) = 0 /\ z # O}. 
In practical computations, f3tm can be safely used as the imaginary stability boundary. 

3.2.3 Convergence 

For the convergence analysis of (3.5) we define the iteration error 

Ail ·= yU> _ Y. \... · n n · 

Application to the scalar test equation y' = >.y and substitution in (3.5) yield 

and consequently 

This leads us to defining the region of convergence by 

where 'Ym may be considered as the convergence boundary. 



3.3 Adams-Bashforth-Radau methods 

Let us write the matrix C in the form 

where C 1 and C 2 are square matrices of size q x q and r x r respectively ( q + r = s). 
From now on, upper and under bars refer to the first q and last r rows of an array. 

Our first examination of methods of type (3.2) led to the observation that the conver­
gence factors 'Ym become larger as the order of consistency increases. In particular, we 
observed that the entries of C2 are relatively small. So ideally we would like to iterate 
solely with C 2 and therefore we considered methods with C 1 = Oqq and C2 = Oqr· Thus 
the first q stages become explicit while the remaining r stages are solved by an iteration 
process that is determined by a 'small ' matrix C 2 . The method can now be viewed as 
an r-processor method, since the iteration process is only invoked on r implicit stages, 
which can be evaluated in parallel. 

If we choose B = Ors and define the matrices B, C 1 and C 2 by order conditions, 
while A is identified with the matrix Ess, we see that both the q explicit and the r implicit 
stages are given order s. This method was called Adams- Bashforth- Radau (ABR) in 
Chapter 2. 

In order to get reasonably large stability intervals, the number of implicit stages has to 
exceed the number of explicit stages (r > q) . The characteristics of a few ABR methods 
are listed in Table 3.1. 

For the predictor matrices A 0 and Bo we can take Ao = Ess and Bo = Uss w.-:; 1
, 

i.e. Bo is defined by order conditions. In Chapter 2 we referred to this predictor as the 
Adams- Bashforth (AB) predictor. Note that the first q rows of B0 now coincide with B . 
Hence for the first q stages we do not apply a corrector anymore after the prediction. 

Here and in the following we assume that the costs of an algorithm are mainly deter­
mined by the number of right-hand side evaluations (denoted shortly by ! -evaluations) . 

Since !-evaluations of different stage vector components can be done in parallel , 
the costs of ABR on r processors per time step are m sequential !-evaluations for the 
corrector and, provided that q :S r , 2 sequential !-evaluations for the predictor. If we 
apply an economization by replacing F(Yn-d in (3 .4) and (3 .5) by 

then the sequential costs are reduced to m + 1 !-evaluations per time step . 

3.4 Improved Adams- Bashforth- Radau methods 

For ABR methods in every row s + 1 elements in the matrices A , B and C are 
determined by order conditions. Consequently, these methods have stage order s. In 
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order to increase the stage order by 1 we have to impose an additional condition on each 
row of the parameter matrices. For the r implicit and q explicit stages this could be done 
by filling the sth column in Band the (s - l)th column in A, respectively. The drawback 
of this approach is that it leads to large elements in A (for instance, if q = 2, s = 6 and 
A = (aij), then a26 ~ 105). However, it turns out that this problem does not arise in 
the first row. Therefore we only use this strategy for the first stage. The order of the 
remaining q-1 explicit stages will be raised by 1 by using the first column of C. Remark 
that, strictly spoken, the last q - 1 explicit stages become implicit in this way. In the 
next paragraph we will see how to handle this aspect. This approach does not lead to 
large coefficients and, provided that some constraints are put on the size of q and r, the 
sequential costs of the resulting scheme will be the same as for the ABR methods. Since 
these methods are much alike ABR and have a higher stage order, we will refer to them 
as improved ABR. 

As a consequence of the higher order of improved ABR, we expect the convergence 
characteristics to improve. Furthermore, the stability regions should become larger than 
those of ABR, since improved ABR is 'somewhat more implicit' by the q - 1 additional 
elements in C 1 . Comparing the Tables 3.1 and 3.2 confirm these expectations. 

If we add the Radau IIA step point formula, the step point order equals min{2s -
1,p + 1} = s + 2, provided that s ~ 3. For ABR this step point formula can be applied 
without any additional work, since the sth stage already coincides with the last stage 
of the Radau IIA method. For improved ABR this is no longer true, since the last row 
of B contains a non-zero element. However, this element turns out to be very small 
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(for example, ifs = 7 and B = (bi1), then b77 ~ -1.3 · 10-12 ). Therefore in practical 
applications, where s 2: 3, we observe step point order s+2 without a step point formula 
(see §3.6). 

3.5 The computation scheme 

In this section we show how improved ABR methods can be implemented on r proces­
sors without any additional costs compared to ABR. The idea is to take advantage from 
the observation that the number of implicit stages has to exceed the number of explicit 
stages in order to get reasonably large stability regions. 

If the number of fixed-point iterations is again denoted by m, the economized version 
of the ABR algorithm requires m sequential !-evaluations for the r implicit stages, plus 
1 sequential !-evaluation for the q explicit stages per step. Since r > q, r - q processors 
are idle during the evaluation of the explicit stages. In improved ABR we use these 
r - q processors to improve the last q - 1 explicit stages. To see in more detail how this 
can be done we present the computation scheme in Table 3.3. The scheme shows which 
computations have to be done, categorized by matrix-vector computations (column 1) 
and !-evaluations (column 2). The third column denotes the number of processors that 
are involved in the corresponding !-evaluation. 

The symbols have the following meaning: 

• A0 and Bo are q x s matrices defining a slightly modified AB predictor for the first 
q stages: the last q-1 rows are the same as in AB, but the first stage is given order 
s + 1 by filling the (s - l)th element in the first row of Ao by order conditions as 
well. 

• Ao and !lo (both r x s matrices) are the lower parts of the AB predictor. 

• A, B (q x s matrices) and C 1 (a q x q matrix) define a correction formula of order 
s + 1 for the first q stages: A = A0 , B and the last q - 1 components of the first 
column of C1 are determined by order conditions. The remaining components in 
C1 are 0. 

• A, B ( r x s matrices) , C 1 and C 2 (an r x q and r x r matrix, respectively) correspond 
to a correction formula of order s + 1 by defining the last column of A and B and 
the whole Ci (i E {l, 2}) by order conditions. The remaining parts of A and Bare 
0. 

-(1) {O) h -(1) (0) 
• Yi and Yi denote the it components of Y and Y respectively. 

During the evaluation of the q components of Y(o) we already evaluate the first r - q 

components of the prediction y(o). Then we improve the last q - 1 components of y<o) by 

means of the first column of C 1 , which results in Y{l). Next we evaluate the remaining 

part of y{O). Now r - q processors are available for the evaluation of Y{l). Since we only 
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benefit from the improvements in Y(l) if we are able to evaluate all q-1 improved stages 

in Y(l), we need to put a constraint on the size of q and r: q - 1 :S: r - q. Remembering 
the first restriction for q and r (that is, q < r) , we conclude that for improved ABR q 
and r have to satisfy 

q :S: min{r - 1, ~(r + 1)}. (3.7) 

Note that (3. 7) holds for all the correctors in Table 3.2. The rest of the scheme is 
analogous to the ABR case. 

From the scheme it can be seen that the first q stages are solved in PEC-mode. 
Numerical experiments show that just one single correction is indeed enough to solve 
these implicit equations. 

3.6 Numerical experiments 

The numerical experiments were performed using 15-digits arithmetic. The accuracies 
obtained are given by the number of correct digits D., defined by writing the maximum 
norm of the absolute error at the endpoint in the form 10-tl. 
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TABLE 3.4: c;~jmrison o/J.evaluations of im~foved ABR ~Ith ABR and Dt)pj~J6i};~····~~@~i~ iif&i;2 
lem. 

A•values 
DOPRl8 
ABR(s=2+5) . 
Improved ABR s=2+5) 

TABLE 3.5; Comparison 
problem; 

A-values 
DOPRI8 
AB!l(s=2+.?) ... 
lmphnied ABR(s;;;,2+5) < 

snnr 
192 
169 

963 
430 
361 

.. 12~/ 
223 
221\ .. 

1227 
532 
466>· 

&98 w 
293 ·· 
273 

We took for s = 7 and r = 5, the 5-processor methods ABR (of order 8) and improved 

ABR (of order 9). We equipped both methods with the same dynamic iteration strategy 

(with a slightly more stringent stopping criterion) as in Chapter 2. 
Two well-known test problems were taken from [HNW93), namely the the Euler prob­

lem and the Fehlberg problem which are described in (2.30)- (2.31). First we investigate 

to what extent the omission of the step point formula and the PEC-mode for solving the 

first q stages affect the observed order of improved ABR. Therefore we plot the ~-values 

against the 10log(number of steps). These points should lie on a straight line whose slope 

equals the step point order. Figure 3.1 shows that the expected value 9 is fairly well 

approximated. 
Next we compare the performance of improved ABR with that of ABR. For com­

pleteness, we also listed the performance of the DOPRI8 code with automatic stepsize 

control by Hairer , N0rsett & Wanner [HNW93) . Table 3.4 and 3.5 show that improved 

ABR works about 20 3 more efficiently than ABR, while the averaged speed-up factor 

of improved ABR compared to DOPRI8 (to be considered as one of the best sequential 

codes) is about 3.1. 

3. 7 Concluding remarks 

The attempt to improve the parallel Adams- Bashforth- Radau (ABR) methods pro­

posed in Chapter 2 has resulted in a more efficient code. More particularly, on 5 proces­

sors, the speed-up of the improved version compared to the fully automatic code DOPRI8 

is about 3.1. This speed-up could be further improved by including a stepsize strategy. 



40 



Chapter 4 

Triangularly implicit iteration 
methods 

41 

Abstract It often happens that iteration processes used for solving the implicit relations 

arising in ODE-IVP methods only start to converge rapidly after a certain number of iterations. 

Fast convergence right from the beginning is particularly important if we want to use so-called 

step-parallel iteration in which the iteration method is concurrently applied at a number of step 

points. In this chapter, we construct highly parallel iteration methods that do converge fast from 

the first iteration on. Our starting point is the PDIRK method (Parallel, Diagonally-implicit, 

Iterated Runge- Kutta method), designed for solving implicit Runge-Kutta equations on parallel 

computers. The PDIRK method may be considered as a Newton-type iteration in which the 

Newton Jacobian is 'simplified' to block-diagonal form. However, when applied in a step-parallel 

mode, it turns out that its relatively slow convergence, or even divergent behavior, reduces the 

effectiveness of the step-parallel scheme. By replacing the block-diagonal Newton Jacobian 

approximation in PDIRK by a block-triangular approximation, we do achieve convergence right 

from the beginning at a modest increase of the computational costs. Our convergence analysis 

of the block-triangular approach will be given for the wide class of general linear methods, but 

the derivation of iteration schemes is limited to Runge-Kutta based methods. A number of 

experiments show that the new parallel, triangularly implicit, iterated Runge-Kutta method 

(PTIRK method) is a considerable improvement over the PDIRK method. 

4.1 Introduction 

Suppose that we integrate the IVP 

y'(t) = f(y(t)), y(to) =Yo, 

by an implicit step-by-step method. For the class of general linear methods (cf. (But87, 
p. 367]), this requires in each step the solution of a nonlinear system of the form 

R(Y) = 0, R(Y) := Y - h(A © I)F(Y) - W, ( 4.1) 

where A denotes a nonsingular s x s matrix, W is an sd-dimensional vector containing 
information computed in preceding integration steps, I is the d x d identity matrix, h is 
the stepsize tn - tn-1, and © denotes the Kronecker product. The s components Yi of the 
sd-dimensional solution vector Y represent s numerical approximations to the s exact 
solution vectors y(tn-l + c;h); here, the c; denote the abscissas. Furthermore, for any 
vector V = (V;), F(V) contains the derivative values f(V;) . It is assumed that the c; are 
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distinct. In the following, we shall use the notation I for any identity matrix. However, 
its order will always be clear from the context. 

The solution Y of (4.1) will be called the stage vector and swill be referred to as the 
number of stages. The most well-known examples of step-by-step methods that leads to 
implicit relations of the form (4.1), are provided by the class of implicit Runge- Kutta 
(RK) methods. In that case, s equals the number of implicit stages of the RK method . 
(Note that for RK methods having explicit stages, s is less than the total number of 
stages of the RK method, e.g. this happens for Lo bat to methods.) 

We want to solve the system (4.1), to be referred to as the corrector, by a parallel 
iteration process. Our starting point is the PDIRK method (Parallel, Diagonally-implicit 
Iterated Runge-Kutta method) developed in [HS91]. The PDIRK method may be con­
sidered as a Newton-type iteration in which the Newton Jacobian is 'simplified' to block­
diagonal form, so that we have parallelism across the stages. Earlier comparisons on a 
four-processor ALLIANT FX/4 of the codes LSODE and RADAU5 (considered as belong­
ing to the best sequential codes for stiff problems) with the PDIRK-based code PSODE 
(Parallel Software for OD Es) of Sommeijer [Som93], showed that in general PSODE is the 
most efficient one. In the average, it produces the same accuracy in half the CPU time as 
required by LSODE and RADAU5. In [HSV94] the PDIRK method was applied in a step­
parallel setting, where the iteration procedure is concurrently applied at a number of step 
points, that is, iteration at the point tn+l is already started without waiting until the iter­
ates yU) at tn have converged. (For details and analysis of various step-parallel methods 
we refer to e.g. [Bel87, BJZ90, Bur93a, Bur93b, Cha93, GX93, HSV94, HSV95, ML67].) 
This approach requires that the predictor formula needed to start iteration at tn+I is 
based on a sufficiently 'safe' iterate yU). In order to have an efficient step-parallel it­
eration process, the value of j for which yU) is sufficiently 'safe' should be small, that 
is, substantially smaller than the order of the method (4.1). Thus, in the step-parallel 
approach it is particularly important that we are near convergence right from the be­
ginning. Although the PDIRK iteration method is quite efficient when iterating until 
convergence, it does have the drawback of a rather slow initial convergence, and hence it 
is less suitable for combining it with a step-parallel approach. 

The aim of the this chapter is to improve the initial convergence of the PD IRK method 
by replacing the Newton Jacobian I - A l8l hJ with a matrix I - B l8l hJ, where B is 
block-triangular instead of block-diagonal as is in the PDIRK method. (Here, J is an 
approximation to the Jacobian of the righthand side function f at tn-d The intrinsic 
parallelism of these 'triangularly' iterated methods is hardly less than in the PDIRK 
methods. The approach for determining the triangular matrix B is the same as for the 
PDIRK methods and is based on minimizing the spectral radius of the amplification 
matrix for the stiff iteration errors. However, instead of a numerical search as used for 
PDIRK [HS91], B can now be computed by means of the Crout decomposition of A. 
Although the asymptotic speed of convergence of PD IRK and the new method are often 
comparable, it happens that the departure from normality of the amplification matrix 
is considerably less than for the new methods. Hence, we may expect faster initial 
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convergence. 
We tested the triangular iteration strategy on a few nonlinear problems from the 

literature. These experiments do show a considerable improvement of the initial speed 
of convergence for the new methods. Furthermore, we applied both methods to a rather 
difficult problem from circuit analysis and estimated CPU times on a four-processor Cray 
C98/4256 showing that the CPU time increases by less than 10%. A comparison with 
the RADAU5 code reveals that for this problem the new method is at least twice as fast. 

4.2 The iteration scheme 

Our starting point for solving the corrector equation ( 4.1) is the simplified (or modi­
fied) Newton iteration scheme 

(I - A® hJ)~yU+iJ 
y(j+i) 

-R(YUl), 

y(j) + ~y(j+i) ' j = 0, 1, ... ' 

(4.2) 

where J is an approximation to the Jacobian of the righthand side function fat tn-l, and 
y(o) is the initial iterate to be provided by some predictor formula. Each iteration with 
( 4.2) requires the solution of an sd-dimensional linear system for the Newton correction 
~y(j+i). In actual computation, the costs for solving this system can be reduced by 
first performing a similarity transformation of the iterates (cf. Butcher [But76]) y(j) = 
(Q ® I)X(j), where Q is a nonsingular matrix. Q should be such that the system 

(I - Q- 1 AQ ® hJ)~xU+1 J 
y(j+i) 

is easier to solve than (4.2). 

-(Q- 1 ® I)R(YUl), (4.3) 

yUl + (Q ® J)~xu+1 l, i = o, 1, ... , 

For example, if A has positive eigenvalues, then the Schur decomposition of A has the 
form A = QTQ- 1

, where Q is orthogonal and T is lower triangular with the eigenvalues 
of A on its diagonal. Hence, the linear system (4.3) is 'triangularly implicit ' and consists 
of s subsystems of dimension d that can be solved sequentially. On sequential computers, 
this is most effective if A has a one-point spectrum, so that only one LU-decomposition 
is required (see e.g. Burrage [Bur78]). On parallel computers, the condition on the 
spectrum of A can be relaxed to requiring that A is non-defective and has arbitrary 
positive eigenvalues. Since the s LU-decompositions can be computed in parallel, only 
one decomposition per processor is required. Similarly, in each iteration, the s forward­
backward substitutions for the diagonal blocks and the s components of R(YU)) can also 
be computed in parallel. RK methods whose RK matrices have positive eigenvalues can 
be found in Ore! [Ore93]. 

Unfortunately, the most powerful implicit methods (with respect to order of accuracy 
and stability) have matrices A with complex eigenvalues. One option to deal with the 
complex eigenvalue case is to decompose A into a real block-triangular matrix of which 
the diagonal blocks are either diagonal or 2 x 2 matrices. This leads to an sd-dimensional 
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system that can be split into a sequence of subsystems either of dimension d or of di­
mension 2d. (This approach was followed in the implementation of the RADAU5 code 
of Hairer and Wanner [HW91].) A block-diagonal structure of Q-1 AQ implies that (4.3) 
is suitable for implementation on a parallel system. 

Another option for reducing computational costs, which will be the subject of this 
chapter, replaces the matrix A in (4.2) by a 'more convenient' matrix B. Here, we 
consider the case where Bis lower triangular, i.e. B = L + D , where Lis strictly lower 
triangular and Dis diagonal with positive diagonal entries dii· This leads to the iteration 
scheme 

(I - D ® hJ)~y(j+l) 
y(j+l) 

= (L ® hJ)~y(j+l) - R(Y(j)) , 

= y(j) + ~y(j+l)' j = 0, 1, .... 

(4.4) 

In the case where L vanishes and (4.1) represents a Runge- Kutta (RK) method, the 
resulting iteration scheme is the PDIRK method mentioned in §4.1. The method ( 4.4) 
requires LU-decompositions of the d x d matrices I - hdiiJ, i = 1, ... , s, and, in each 
iteration, the evaluation of the residue R(YU>), s forward-backward substitutions, and 
the matrix-vector multiplication (L ® hJ)~y(j+i). By expressing this multiplication in 
terms of F, the scheme ( 4.4) can be replaced by 

(I - D ® hJ)~y(j+i) = h(L ® I)(F(YU+1>) - F(Y(j ))) - R(YU>). (4.5) 

This version may yield better convergence if the righthand side Jacobian is a less accurate 
approximation to the true Jacobian. Just like the scheme (4.3), the LU-decompositions 
and the components of the residue R(YU)) occurring in ( 4.4) and ( 4.5) can be evaluated 
in parallel. The schemes ( 4.4) and ( 4.5) will be called parallel, triangularly implicit, 

iterated methods. 
In the case where (4.1) is an RK method, we shall refer to such methods as a PTIRK 

method and to distinguish them, we shall speak of the LJ and LF version. In the case of 
(4.4), a further degree of parallelism is obtained by using the Butcher similarity trans­
formation. This enables us to eliminate the triangularly implicit term (L ® hJ)~y(j+l ) 
and leads to 

(I - D ® hJ)~xU+i) 
y(j+l} 

-(Q-1 ® I)R(YU>), 

yU) + (Q ® I)~xU+il, BQ = QD. 

(4.6) 

In addition to the parallelism already present in (4.4) and (4.5), the scheme (4.6) also 
allows that in each iteration the s forward-backward substitutions can be done in paral­
lel. Since the schemes ( 4.4) and ( 4.6) are algebraically identical, we shall call ( 4.6) the 
transformed LJ version. 

Finally, we compare the computational costs of the various iteration schemes. These 
costs consist of two contributions, respectively due to Jacobian updates and due to the 
successive iterations. In all schemes, the number of flops per step originating from the 
Jacobian updates is given by 

C1 = s~
2

(~CJ+~d+l), 
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TABLE. 4 .1 : c6mputatiohaicosts 

Method op one prOCe$SOr on s . pro~ors 

(4;1) 'Nith4§P 
( 4Af with t ¥ o: LJ versibn 
(4.5) with Li= 0: LF version 
(4:6) transformed LJ verSion 

~~4(91 +24± ~~) 
m~q((?J + 4d ± 38) 
msd(<Yj + 2d + 3s) 
msd(CJ +2d+4s) 

where 11 denotes the averaged number of steps during which the Jacobian and the LU­

decomposition is kept constant, and CJ denotes the average numbers of flops for com­

puting one entry of J. The contribution C1 is perfectly parallelizable and can be reduced 

effectively by a factor s on s processors. The contribution due to m (say) iterations are 

summarized in Table 4.1. In this table, C1 denotes the average numbers of flops for 

computing one component of f . Evidently, on a parallel computer, the methods (4.4) 

with L = 0 and ( 4.6) are the less expensive ones. 

4.3 Convergence of the iteration process 

In order to analyze convergence, we define the iteration error i:U) = yU) - Y, and we 

write the LJ and LF versions (4.4) and (4.5) in the respective forms 

(I - B ® hJ)(i:U+I) - i:Ul) -i:Ul + h(A ® I)(F(Y + i:Ul) - F(Y)), (4.7) 

(I - D ® hJ)(i:U+l) - i:Ul) -i:(j) + h((A - L) ® I)(F(Y + i:Ul) - F(Y)) 

+h(L ® I)(F(Y + i:U+Il) - F(Y)). 

The components of F(Y + i:) - F(Y) can be expanded according to JiEi + O(i:~), where 

Ji is the Jacobian matrix of the righthand side function at }i. Assuming that J is 

nonsingular, we may define the block-diagonal matrix !:iJ of which the diagonal blocks 
are given by J-1 !:iJi = J-1 (Ji - J) to obtain 

F(Y + i:Ul) - F(Y) = (I ® J)i:Ul +(I ® J)tiJi:Ul + O((i:Ul)2 ). 

Ignoring the second-order terms (first-order convergence analysis), the error recursions 

for the LJ and LF versions can be represented in the forms 

i:U+i) M(I + PtiJ)i:U), 

i:U+l) (I - N tiJ)- 1 M(I + Q!:iJ)i:U), 

where 

M 

N 
p 

·-
·-
·-

(I - B ® hJ) - 1 ((A - B) ® hJ), 

(I - B ® hJ)-1 (L ® hJ), 

(A-B)- 1 A ® I, Q := (A-B)- 1(A-L) ® I. 

(4.8) 

(4.9) 
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If we ignore tl.J (linear convergence analysis), then the error recursions of both versions 
are characterized by the matrix M. However, if tl.J cannot be neglected, then the error 
recursions may behave quite differently. For example, as h -+ 0, then we have 

E(j+i) ~ h((A - B) 0 J +(A 0 J)tl.J)E(j), 

E(j+i) ~ h((A - B) 0 J +((A - L) 0 J)tl.J)E(j). 

(4.10) 

( 4.11) 

Since the strictly lower triangular blocks of the amplification matrices in (4.10) and (4.11) 
differ by the matrices hLij t1 J1, the convergence behavior may differ considerably and is 
highly problem dependent. In the remainder of this chapter, we shall focus on the matrix 
M. 

4.3.1 Rate of convergence 

In order to select a suitable matrix B, we consider the convergence of the individual 
error components corresponding to the eigenvalues >. of J. From ( 4. 7) it follows that 
these error components are amplified by the matrix Z defined by 

Z = Z(z) = z(I - zB)-1(A - B), z := h>.. 

Z will be called the amplification matrix associated with M. A measure for the rate of 
convergence of the individual error components is defined by the (averaged) amplification 
factors 

(4.12) 

where II· 11 00 denotes the maximum norm. Note that p00 (z) = p(Z(z)), p(·) being the 
spectral radius function. For the test equation y' = >.y, the value of P1(z) may be 
interpreted as the averaged factor by which the iteration error corresponding to z = h>. 
is reduced in each iteration, until the corrector solution is reached. For more general 
problems, we have to deal with PJ(z) where z runs through the spectrum of hJ. 

The amplification factor at z = oo will be called the stiff amplification factor. In the 
neighborhood of the origin we may write 

(4.13) 

The quantity PJ(z) will be called the non-stiff amplification factor. Furthermore, we 
denote the maximal amplification factor in the left-hand plane by pj. Of course, pj 
refers to the worst case situation, but it serves as an indicator for the robustness of the 
method. 

4.3.2 Iteration strategies 

In this section, we discuss the choice of the free matrix B = L + D in the iteration 
schemes ( 4.4) and ( 4.5). We first briefly review the diagonal iteration strategy of [HS91], 
i.e. L = 0, and then we focus on the triangular iteration strategy where L is allowed to 
be an arbitrary strictly (lower) triangular matrix. A nonvanishing matrix L enables us 
to reduce the norm of zi considerably. 
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The reason for restricting B to the class of triangular matrices is that we have di­
rect control over the eigenvalues of B. As a consequence, suitable matrices B can be 
constructed without performing a many-parameter search as was carried out in [HS91]. 
Since our main source of correctors is the class of RK methods which usually possess a 
dominant lower triangular part, B is also assumed to be lower triangular. (Recall that 
ideally B should equal A.) Both for the diagonal iteration and the triangular iteration 
approach, the matrices B , Z0 :=A - Band Z00 :=I - B-1 A associated with a number 
of classical RK methods are specified in the appendix to this chapter. 

Diagonal iteration 
The diagonal iteration strategy is characterized by a diagonal matrix B with positive 

diagonal entries. In this strategy, it was found for a large number of classical RK cor­
rectors that small iteration error amplification factors for the stiff error components are 
crucial for a satisfactory overall convergence [HS91). This is due to an order reduction 
effect common in stiff situations and can be explained by considering the error recursions 
(4.8) and (4.9) . Due to the 'Jacobian-defect' matrix D.J, the stiff error components are 
not damped as strongly as the non-stiff error components. Therefore, we determined 
in [HS91] the diagonal matrix B = D such that Z00 has a minimal spectral radius; that 
is, the asymptotic value p00 (00) = p(Z00 ) of the stiff amplification factor is minimized. 
In [HS91] this was achieved by a multi-parameter search over the diagonal entries of D. 
For a large number of collocation based RK correctors, it turned out that the spectral 
radius p(Z00 ) of Z00 = I - B-1 A is extremely small. In fact, we conjecture that for 
collocation based RK correctors, there exist matrices D with positive diagonal entries for 
which p(Z00 ) actually vanishes. This suggests an alternative construction of the matrix 
B = D. Writing down the characteristic equation for Z00 and imposing the condition 
that this equation has only zero roots, we arrive at a (nonlinear) system for the entries 
dii of D. If this system can be solved for positive dii, i = 1, . . . , s, then we have found 
an optimal matrix D. It has been verified for the Radau IIA correctors with s ::; 8 
that such optimal matrices D do exist (see [Lio96]). Notice that a zero spectral radius 
p(Z00 ) implies that Z/xo vanishes for j 2: s. (This can be seen by considering the Schur 
decomposition Z00 = QTQ- 1 with Q orthogonal and T strictly lower triangular.) 

If the matrices D are obtained by a numerical search as in [HS91), then they will 
always give rise to a small but yet nonzero p(Z00 ). Nevertheless, both for the non-stiff 

and the highly stiff error components, the generated PDIRK methods show a satisfactory 
convergence rate for larger values of j. On the other hand, it also turns out that for the 
higher-order methods, there may be regions in the z-plane where p1(z) exceeds one for 
small j, so that initially error components corresponding to points lying in such regions 
will diverge [HSV94, Tables 3.2b). The reason for this behavior is the 'abnormality' of 
the matrix Z. In particular, for larger values of lzl, i.e. for the stiff error components, 
the matrix Z(z) may differ considerably from a normal matrix. To be more precise, let 
the departure from normality of the matrix Z be defined by D.2 (Z) := llZll} - ll((Z)ll~, 

where ((Z) denotes the vector of eigenvalues of Zand 11 · llF and II· 11 2 , respectively, denote 
the Frobenius matrix norm and the Euclidean vector norm (see e.g. [GL89, p. 336]) . By 
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considering plots of 6.2 (Z) as a function of lzl with arg(z) constant, we found that in 
the left-hand half-plane 6.2 (Z) monotonically increases from 0 to values greater than 20. 
This situation is particularly unfortunate if we want to apply the step-parallel iteration 
approach mentioned in §4.1. In such an approach, it is crucial that in the whole left-hand 
half-plane the amplification factor is less than one right from the beginning. 

Triangular iteration 
In the triangular iteration strategy we choose B lower triangular with positive diag­

onal entries such that Z00 is strictly upper triangular. As a consequence, we have a zero 
stiff amplification factor for j 2: s. For the construction of such a matrix B we use the 
LU-decomposition of A. Let A = TLTu with TL lower triangular and Tu unit upper 
triangular (Crout decomposition), and define B = TL . Since Zoo =I - s-1 A, we imme­
diately obtain the strictly upper triangular matrix Z00 = I - Tu. The following lemma 
provides an explicit criterion for the positiveness of the diagonal entries of B = TL . 

LEMMA 4.1 Let A, L, D, and Ube s x s matrices such that A= LDU with L unit lower 
triangular, D diagonal and U unit upper triangular, and let Ak denote the k x k principal 
submatrix of A . Then D has diagonal entries given by 

dk _ det(Ak) 
- det(Ak_i)' k = l, ... ' 8

' 
(4.14) 

where det(Ao) := 1 and det(A1) := an . 

PROOF Let Ai be decomposed according to Ak = LkDkUk with Lk unit lower triangular, 
Dk diagonal and Uk unit upper triangular. Then 

Since the first k - 1 pivots in the Gaussian elimination process do not depend on the 
entries aii with i 2: k and j 2: k, it follows that the diagonal entries dik of Dk are defined 
by dik =di . Hence, det(Dk) = det(Dk_ 1 )dk, which is equivalent with (4.14) . D 

From this lemma it follows that the diagonal entries of the matrix B defined above 
are given by (4.14), so that they are all positive, if all values det(Ak) , k = 1, . .. , s, 
are positive. In the following, we restrict our considerations to collocation methods 
with distinct abscissas ci. Such methods are generated by matrices A of the form (see, 
e.g., [HW91, p. 82]) 

A= CVRv- 1 , 

c = (ci), 
C = diag{c}, R = diag{r}, 
r=(i-1), V= [tcc2 ··· c8

-
1J, 

where i = 1, ... , s and 1 is the vector with unit entries. 

(4.15) 

THEOREM 4.1 If A results from a collocation method with positive, distinct abscissas 
ordered according to 0 < c1 < c2 < · · · < c8 , then the following results hold: 
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l. The values of det(Ai) and det(As) are positive for alls . 

2. Let V and R be partitioned according to (4.16), where Vk and Rk denote the k x k 
principal submatrices of the matrices V and R defined in (4 .15). Then, for 1 < k < s, 
det(Ak) is positive if 

V = [ Vk P ] R _ [ Rk 
Q w ' - 0 ~]. (4.16) 

PROOF 

1. For collocation methods we have that 

1c i C2 - t C3 - t Cs - t 
au= 

0 
------···---dt. 
C2 - C1 C3 - C1 Cs - C1 

From the condition on the collocation points it is immediate that det(A1) =au > 0 and 
from (4.15) it follows that det(A) = det(C)det(VRV- 1) = det(C)det(R) > 0. 

2. By means of (4.15) it is easily verified that Ak can be presented in the form 

(4.17) 

where Ck is the k x k principal submatrix of C and Vi, Rk, P, S, Wand Qare specified in 
(4.16). We now prove that det(Vi-PW-1Q) is positive by considering the factorizations 

~] 
~] ~]. 

From these two relations it follows that det(V) = det(Vi - PW- 1Q)det(W). Since V is 
a VanderMonde matrix and W is a row-scaled VanderMonde matrix, we conclude that 
both V and W have a positive determinant. Thus, det(Vi - PW-1Q) > 0, and by virtue 
of ( 4.17) , it follows that det ( Ak) is positive whenever the quantity Qk defined in ( 4.16) is 
positive. o 

Theorem 4.1 directly implies the positiveness of the diagonal entries of B = TL for 
all two-stage collocation methods. For higher-stage methods, it provides the relatively 
simple criterion Qk > 0, 1 < k < s, for verifying the condition det(Ak) > 0. We conjecture 
that the condition det(Ak) > 0, 1 :S k :S s , is true for all s , but so far we are not able to 
prove it. Instead, we verified the correctness of this conjecture for s :S 6. An easy way of 
verifying the conditions Qk > 0, replaces the abscissas Ci in Qk by ci = p; +Pi-I+ · · ·+ p1 
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and expresses Qk as a rational function of the s parameters Pi· For s :::; 6, it turns out 
that all coefficients in this rational expression are positive. Since the parameters Pi are 
all positive (because Pi := ci - Ci-l with eo := 0) , this implies that Qk is positive. 

EXAMPLE For s = 3, we have to prove that q2 > 0. A straightforward calculation yields 

3pzp~ + 4p~p3 + 2p1pzp3 + PIP~ + p~ 
~= ' 6(p1 + pz + p3) 2 

which is obviously positive. 0 

Summarizing we conclude that, unlike the diagonal approach, the triangular approach 
provides an extremely simple construction of the matrix B and an explicit criterion for 
checking the positiveness of its diagonal entries. Moreover, it turns out that for larger 
values of lzl the departure from normality ~2 (Z) := llZll} - l!((Z)JI~ is considerably 
reduced. This can be explained by the fact that the magnitude of the entries of the 
matrix Z (and hence llZll}) can be made much smaller by a triangular matrix B than by 
a diagonal matrix B. (Recall that Z contains the factor A - B.) Plots show that ~2 (Z) 

monotonically increases from zero at the origin to values less than than 0.4 at infinity, 
resulting in amplification factors that are less than one in the whole left-hand half-plane 
for all j . This will be quantified in the following subsection. 
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Method 

I\QU9S • ... 
P'l'IRK(LJ) 
PTIRK(LF) 
PDIRK 
P1,".IRK(LJ) 
PTUU<(LF) 

4.3.3 Comparison of amplification factors 
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For a number of well-known RK correctors, we compare the amplification factors 
defined by ( 4.12) associated with the diagonal approach (PDIRK method) and the tri­
angular approach (PTIRK method). For j = 1, 2, 3, Table 4.2 presents the non-stiff 
amplification factor pj(z) as defined in (4.13), the stiff amplification factor pj(oo), and 
the maximal amplification factor pj . These figures indicate that initially, the PTIRK 
strategy converges considerably faster than the PDIRK strategy. Hence, it should be a 
sound starting point for step-parallel applications. This will be subject of future research. 

4.4 Numerical illustration 

In this section, we compare the diagonally-implicit iteration (PDIRK) strategy with 
the triangularly implicit iteration (PTIRK) strategy. In all experiments, we used the 
four-stage Radau IIA corrector with constant stepsizes and a Jacobian update in each 
step. If necessary, the initial condition in the problems below is adapted such that the 
integration starts outside the transient phase enabling us to use constant steps. Two 
predictors were tested, the simple last step value (LSV) predictor y(o) = (e'I ® I)Y 
and the extrapolation (EPL) predictor y(o) = (E ® I)Y. Here, Y denotes the stage 
vector from the preceding step, e8 is the sth unit vector, and E is the extrapolation 
matrix. In the following two subsections we compare the accuracy and the CPU time on 
a four-processor Cray C98/4256 of the PDIRK and PTIRK methods. 
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4.4.1 Accuracy tests 

predictor; Chemical reactio~ problem of Gear. 

m=4 
2.9 
4.3 
3,0 
3.6 
5.3 
4.6 

predictor: CMmical reactionproblem of Gear. 

m=2 m=3 m=4 
2.8 3:2 3.6 
3.7 4.3 5.() 

Chapter 4 

m=lO 
5.2 
7.7 
3;3 
7'.3 
9;8 
6.4 

m=lO 
7.4 
9.8 

In the tables of results, the LF and LJ versions ( 4.4) and ( 4.5) of the PTIRK method 
are indicated by PTIRK(LJ) and PTIRK(LF). For a given number of iterations m, the 
tables of results below present the minimal number of correct digits cd of the components 
of the numerical solution at the end point t = tend of the integration interval, that is, 
at the end point the absolute errors are written as 10-cd. Our first example (Tables 4.3 
and 4.4) is provided by a problem of Schafer, called the HIRES problem in [HW91, 
p. 157]. It was proposed in Gottwald [Got77] as a test problem and consists of eight 
mildly stiff equations on the interval 5 ~ t ~ 305. (It is included into the CWI test 
set [LSV96].) The second test problem (Tables 4.5 and 4.6) is a set of three chemical 
reaction equations originating from Gear [Gea69] on the interval [1,51] and is included in 
the test set of Enright et al. [EHL75]. The ATMOS20 problem is our third test problem 
(Tables 4.7 and 4.8). It is a system of 20 stiff nonlinear ODEs originating from an air 
pollution model used by Verwer [Ver94] and included in the CWI test set [LSV96]. We 
solved this system in the integration interval [5,60]. The tables of results clearly show 
for both predictors the superiority of the PTIRK strategy in the first few iterations. For 
large numbers of iterations, PDIRK and PTIRK(LJ) are better than PTIRK(LF). 

4.4.2 Cray C98/4256 tests 

We applied the PDIRK and PTIRK(LJ) methods on a four-processor Cray C98/4256 
to the Ring modulator of Horneber. This problem consists of 15 highly stiff differential 
equations on the interval [0,0.001]. (For details, see the CWI test set [LSV96].) PDIRK 
and PTIRK(LJ) were applied with the EPL predictor and stepsize h = 1.25 · 10-7 . 

We compiled the codes with cf77 using the flags -dp, -Zp, -Wu-p , and -Wd-dj. The 
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TABLE 4.7; LSV predictor: ATMOS20 problem o/Verwer .. 

Method h m=l m=2 m=3 m=4 

PD IRK 11 2,7 2.1 2.8 5.4 
PTIRK(LJ) 11 3;3 5.0 6.1 6.7 

PTIRK(LF) 11 3.4 4.9 7.0 6.8 

PDIJ'lK · ... 5.5 l.3 * * 6.5 

PTIIll<(LJ) 5.5 3:7 5.6 ···· 7.0 717 
PTIR.K(LF) 5.5 3.7 5.5 7.6 8.3 
PDI}t.K 2.2.5 * * * 7.5 

PTIRK{LJ) 2.25 4cO 6;2\ 7~8 8:6 
PTIRK(LF) 2.25 4.0 6.2 8.2 io.o 

T~B~E 4 .. 8: EPL predictor: ATMOS2Qpro/i.lern ofVerwer . .. 
i 

Method h m=l ..... m=2 m=3 m=4 

PPIRK 11 ...• < 1.8 2.6 2.1 5A 
PTlft.K(LJ) 11 2.0 3.7 6.3 7:0 

PDlRK 5.5 * * * 6.4 
PTiig<;(LJ) 5,5 * 4.2 7.4 8.2 

PDIRK 2.25 ( * * * 8.2 

PTIRK(LJ) 2.25 * * 8.6 9.4 
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m=lO 
9.8 

lLO 
8.7 

1L2 
12.2 
its 
12 .. 2 
i2;6 
12.J 

m=lO 
10;0 
10.9 
11.8 
12.2 
12:7 
12.7 

environmental variable NCPUS had the value 4. For the meaning of these settings, we 

refer to Cray Research Inc., CF77 Commands and Directives, SR-3771, 6.0 edition, 1994. 

Table 4.9 lists the cd-values and the CPU(l) and CPU(4) timings (in sec.) required 

on one and four processors, respectively. For the CPU(l) timings we used the internal 

function ETIME and the CPU(4)-values were obtained by using the Cray tool ATExpert . 

These figures again show that PTIRK(LJ) is much more accurate than PDIRK, while it is 

hardly more expensive than PDIRK (less than 103). Since earlier experiments on a four­

processor ALLIANT FX/4 indicated that the PDIRK-based code PSODE is in general 

twice as efficient as LSODE and RADAU5 [Som93, p. 12], we expect that a PTIRK-based 

code should be at least twice as efficient as LSODE and RADAU5. The present version 

of the PTIRK code does not yet contain a sufficiently tested stepsize and iteration­

stopping strategy. Therefore it is not yet possible to compare it with codes like LSODE 

and RADAU5. Nevertheless, in order to have some indication how PTIRK performs 

in a parallel environment, we applied RADAU5 with the same integration strategy as 

our present PTIRK code, that is, with constant stepsizes (without step rejections) and 

with a Jacobian update in each step. In order to generate a range of cd-values, we run 

RADAU5 with a few different stepsizes. The cd-values and CPU(l) timings obtained are 

also listed in Table 4.9. 
We conclude this chapter with the following: 
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cd 
... 9PV(~) 

I/ Vi .II i / CPU(4) ····· 
cd .·. · 

CPP't\h 
CPU(4) •.·.·. 
cd 
CPU(l) 
107h 

TABLE 4.9: 

M=2 

1.25 

Chapter 4 

Ring modulator of Homeber. 

m=3 m=4 m=lO 

* 4.6 8.5 

* 26;2 51.9 
... 8;2 16.7 

7.7 8.3 8:5 
23.l 28.1 56.6. 
7.0 8:8 18.3 
6.5 7.2 

17.5 21:9 
1.0 0.8 

1. For a relatively difficult problem as provided by the Ring modulator, the PTIRK 
code on a Cray in four-processor mode shows a speed-up ranging from > 2.4 to > 3.1 
with respect to RADAU5 on a Cray in one-processor mode. 

2. It is not expected that a parallel implementation of RADAU5 is as efficient as PTIRK, 
because the intrinsic parallelism of PTIRK is much larger than that of RADAU5. For 
example, the effective LU-costs and forward-backward substitutions are four times as 
expensive. This is due to the fact that the eigenvalues of the Radau IIA matrix are 
not all real, so that the Butcher transformation used in RADAU5 decouples the 3d­
dimensional system into one real and one complex system of dimension d. The LU­
decompositions and the forward-backward substitutions associated with these systems 
can be done concurrently. However, complex arithmetic is about four times as expensive 
as real arithmetic, which explains the factor 4 mentioned above. 
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Appendix 

For a number of RK methods, we have computed the matrices B = L + D according 

to the procedure outlined in §4.3.2, together with the amplification matrices Z0 and Z00 • 

PDIRK strategy: Z(z) = z(I - zD)- 1 (A - D), Zo = A-D, Z00 =I - D- 1 A. 

Radau IIA 
s = 2: 

D=[ 
0 .2584 0 ] ' Zo 0.1582 -0 .0833 ] ' 0 0 .6449 = 

0 .7500 - 0. 3949 

Zoo= -0.6124 0 .3225 ] . -1.1629 0 .6124 

s = 3 : 

D = [ 

0 .3204 0 0 ] ' [ -0.1236 -0.0655 0.0238 ] ' 0 0.1400 0 Zo 0 .3944 0.1521 -0.0415 

0 0 0 .3717 0.3764 0.5125 -0.2606 

[ 0 .3857 0 .2045 -0.0742 ] . Zoo = - 2.8179 - 1.0867 0 .2968 
- 1.0127 - 1.3789 0.7011 

s = 4: 

D=[ 

0 .3205 0 0 0 l · [ 
- 0.2075 -0.0403 0 .0258 -0.0099 l · 0 0.0892 0 0 

Zo 
0.2344 0 .1177 -0.0479 0 .0160 

0 0 0.1817 0 0 .2167 0.4061 0.0073 -0.0242 
0 0 0 0 .2334 0 .2205 0 .3882 0.3288 -0.1709 

[ 
0.6474 0.1258 -0.0805 0 .0309 

] · Z oo = 
- 2 .6290 -1.3206 0 .5368 - 0 .1800 
-1.1923 - 2.2346 -0 .0402 0 .1331 
-0.9447 -1.6635 - 1.4092 0 .7322 

Lobatto IIIA 
s = 2 : 

D=[ 
0 .211 3 0 ] ' Zo 0 .1220 - 0 .0417 ] ' 0 0 .3943 = 

0 .6667 -0.2277 

Zoo = -0.5774 0.1972 ] . -1.6906 0.5774 

s = 3 : 

D = [ 

0.4802 0 0 ] ' [ -0.2905 - 0.0339 0 .0103 ] ' 0 0 .1094 0 Zo 0.4506 0 .1175 - 0.0270 
0 0 0 .1604 0.4167 0.4167 -0.0770 

[ 0 .6049 0 .0706 -0 .0215 ] . Zoo = - 4 .1179 -1.0743 0.2465 
-2 .5981 - 2.5981 0.4804 

Gauss 
s = 2 : 

D = [ 
0 .1667 0 ] ' Zo 0 .0833 - 0 .0387 ] ' 0 0.5000 = 0.5387 -0 .2500 

Zoo = -0.5000 0.2321 ] . - 1.0774 0.5000 



56 Chapter 4 

PTIRK strategy: Z(z) = z(I - zB) - 1(A- B) , Zo = A-B, Z00 =I - B - 1 A. 

Radau IIA 
s = 2: 

B _ [ 0.4167 0 ] , Zo = 
0 -0.0833 l · - 0.7500 0.4000 0 -0.1500 

Zoo= 0 0.2000 l · 0 0 

s = 3: 

B=[ 

0.1968 0 0 ] , [ 0 -0.0655 0.0238 ] , 0 .3944 0.4234 0 Zo 0 -0.1313 -0 .0415 
0 .3764 0.6378 0.2000 0 -0.1253 -0.0889 

[ 0 0.3330 -0.1208 ] . Zoo= 0 0 0 .2106 
0 0 0 

s = 4: 

B=[ 

0.1130 0 0 0 l · [ 
0 -0 .0403 0.0258 -0.0099 l · 0.2344 0 .2905 0 0 

Zo 0 -0.0836 -0.0479 0.0160 
0 .2167 0.4834 0 .3083 0 0 -0.0773 -0 .1192 -0.0242 
0 .2205 0.4668 0.4414 0.1176 0 -0.0786 -0.1126 -0.0551 

[ 
0 0.3567 -0.2283 0.0877 l Zoo= 0 0 0 .3490 -0.1260 
0 0 0 0.2144 
0 0 0 0 

Lobatto IIIA 
s = 2: 

B _ [ 0.3333 0 ] , Zo = 0 -0.0417 l · - 0.6667 0.2500 0 -0.0833 

Zoo= 0 0.1250 l · 0 0 

s = 3 : 

B=[ 

0.1897 0 0 ] ' [ 0 -0.0339 0 .0103 ] ' 0.4506 0.3075 0 Zo 0 -0.0805 -0.0270 
0.4167 0.4911 0 .1429 0 -0.0745 -0.0595 

[ 0 0 .1787 -0.0543 ] . Zoo= 0 0 0.1673 
0 0 0 

Gauss 
s = 2: 

B = [ 0.2500 0 ] . Zo = 
0 0.0387 ] . 0.5387 0.3333 0 0.0833 

Zoo= 0 0.1547 l · 0 0 
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Approximating Runge- Kutta 
matrices by triangular matrices 
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Abstract The implementation of implicit Runge-Kutta methods requires the solution of large 

systems of non-linear equations. Normally these equations are solved by a modified Newton 

process, which can be very expensive for problems of high dimension. The in Chapter 4 proposed 

triangularly implicit iteration methods for ODE-IVP solvers substitute the Runge-Kutta matrix 

A in the Newton process for a triangular matrix T that approximates A, hereby making the 

method suitable for parallel implementation. The matrix T is constructed according to a simple 

procedure, such that the stiff error components in the numerical solution are strongly damped. 

In this chapter we prove for a large class of Runge-Kutta methods that this procedure can be 

carried out and that the diagonal entries of T are positive. This means that the linear systems 

that are to be solved have a non-singular matrix. 

5.1 Introduction and motivation 

For solving the stiff initial value problem 

y'(t) = J(y(t)), y(to) =Yo, 

one of the most powerful methods is an implicit Runge-Kutta (RK) method. In such a 
method we have to solve every time step a system of non-linear equations of the form 

R(Yn) = O; R(Yn) := Yn - (1 0 l)Yn-1 - hn(A 0 I)F(Yn), (5.1) 

where A denotes the s x s matrix containing the parameters of the s-stage RK method, 
Yn-l the approximation to y(tn-1), 1 is the s-dimensional vector with unit entries, I 

is the d x d identity matrix, hn is the stepsize tn - tn-l and 0 denotes the Kronecker 
product. The s components Yn,i of the sd-dimensional solution vector Yn represent s 

numerical approximations to the s exact solution vectors y(l tn-l +c;hn); here, c denotes 
the abscissa vector and i ranges from 1 to s. Furthermore, for any vector X = (X;), 
F(X) contains the derivative values f(X;). It is assumed that the components of c are 
distinct and positive. 

Once we have solved (5.1), we obtain the step point value Yn ~ y(tn) by the formula 

where b is a vector of dimension s containing method parameters. 
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To solve (5.1), in general one uses a Newton-type iteration scheme of the form 

yU+il = yU) + 6Y(j+i) 
n n n ' 

(5.2) 

where Jn is an approximation to the Jacobian of the right-hand side function f at tn-1 , 

yJ0l is the initial iterate to be provided by some predictor formula and B is an s x s 

matrix that defines the type of Newton iteration. To get insight in the convergence 
behavior of (5.2), we apply the scheme to the scalar test equation y' = >..y . Defining 

the iteration error dfl by yJJl - Yn, we see from (5.1) and (5.2) that these errors are 
amplified by the matrix Z defined by 

Z(z) = z(I - zB)- 1 (A - B); z := >..hn. 

We introduce the stiff and non-stiff amplification matrices of scheme (5.2), notation 

Z00 (B) and Z0 (B), respectively, by: 

Z 00 (B) := lim Z(z) =I - B-1 A and Zo(B) := lim Z(z)/lzl =A - B. 
lzl-too lzl-tO 

Choosing B =A would lead to the modified Newton process, for which Z(z) = 0 for 

all z. However, the computation of yJJl now requires the solution of a linear system of 
dimension sd. For high-dimensional problems this requires a lot of computational effort. 
Several attempts have been made to reduce these costs by selecting matrices B different 

from A. 
In [CB83], Cooper & Butcher propose the choice B = P, where P is a matrix that 

has a one-point spectrum. By performing a similarity transformation to (5.2) they arrive 

at the scheme 

PQ 

(I - L ® hnJn)6X;/+l) 
y(j+l) 

n = 

QL, 

-(Q-1 ® I)R(YJJl), 

YJj) + (Q ® I)6X~J+i), 

(5.3) 

where L and Q are lower triangular and orthogonal matrices, respectively, that define 
the Schur decomposition of P. Since the diagonal entries of L are equal, implementing 
(5.3) requires only one LU-decomposition of dimension d. 

In [HS91], the authors select B = D, where D is a diagonal matrix. Scheme (5.2) is 
now suitable for implementation on an s processor machine, since the s components of 

yJj) can be computed independently. The matrix Dis constructed such that p(Z00 (D)) = 

0, where p(·) denotes the spectral radius function. This method was called PDIRK, 
Parallel Diagonal-implicit Iterated Runge-Kutta. 

In Chapter 4, a mixture of the two strategies described above was presented and 
given the name PTIRK, Parallel Triangularly-implicit Iterated Runge- Kutta. Here, the 
matrix B was identified with a lower triangular matrix T such that A = TU is the Crout 
decomposition of A, i.e. U is unit upper triangular. One easily verifies that for this T the 
stiff amplification matrix Z00 (T) is strictly upper triangular. Throughout this chapter, T 
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will always denote this special lower triangular matrix. This choice of B yields, just like 

in PD IRK, a stiff amplification matrix that has a zero spectral radius. However, the new 

strategy leads to an amplification matrix Z(z) that has a much smaller departure from 

normality than the amplification matrix in PD IRK. Consequently, the amplification after 

several iterations, i.e. the norm of the powers of Z(z) is now considerably smaller (see 

Table 4.2). Suppose that all diagonal entries of T are distinct and that the eigenvalue 

decomposition of T is given by T Q = Q D, where D is diagonal and Q non-singular. 

Applying a similarity transformation in an analogous way as in [CB83], we arrive at the 

scheme 

TQ 
(I - D 0 hnJn)t>.X!,J+l) 

y(i+l) 
n 

QD, 

-(Q-1 0 I)R(YJil), 

YJi) + (Q 0 l)t>.X!,J+l). 

(5.4) 

It is clear that the s components of yJil can be computed in parallel. The only additional 

costs of (5.4) with respect to PDIRK are the appliance of the transformations (Q 0 I) 

and (Q-1 0 I) . 
In order to ensure the non-singularity of the matrix (I - D 0 hnJn) in (5.4), the 

positiveness of the diagonal entries of D is required. In Chapter 4 the positiveness of D 

was proved for s :::; 5 and conjectured for s > 5. The main scope of this chapter is to 

prove this conjecture. This will be done in §5.3, using operator theory. 

The outline of the rest of the chapter is as follows. §5.2 gives some preliminaries to 

the conjecture. In §5.4 we prove for s = 2, that the choice B = T made in PTIRK is in 

some sense optimal. 

5.2 Preliminaries 

The s x s matrix A belonging to the RK collocation method with abscissa vector c 

has the form [HW91, p. 82] 

A= CVRv-1 , 

where C = diag{c1,c2, . .. ,c8 } , R = diag{l,1/2, ... ,1/s} and Vis the Vandermonde 

matrix generated by c, i.e. 

V = [ 1 C1 . . . C~~l ] · 

1 Cs . . . c~-l 

Here, the abscissae Ci have to be distinct. In the sequel the abscissae are also supposed 

to be positive. Without loss of generality, we assume that the RK method is written 

such that c1 < c2 < ... < Cs . Let A = TU denote the Crout decomposition of A. The 

diagonal entries tkk of T satisfy the formula (cf. Chapter 4) 

I Aki 
tkk = IAk - 1 I ' (5.5) 
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where IA31 denotes the determinant of the jlh principal sub-matrix of A and IAol := 1. 
From (5.5) we see that the existence of the Crout decomposition immediately follows 
from the positiveness of tkk. 

In Chapter 4 the positiveness of tkk, k E { 1, 2, ... , s}, for s :S 5 was proved in the 
following way: first it was shown that IA1 1 and IAsl are positive (for general s); then 
the positiveness of the remaining IA2 I, ... , IAs-1 I was demonstrated by computing them 
explicitly; this approach does not lead to a proof for general s . 

Another idea is to investigate whether the matrix V R v-1 is positive definite. By 
using the result that every positive definite matrix has an LU-decomposition with positive 
diagonal entries (GL89, p. 140), the proof of the conjecture would then easily follow, 
realizing that T =CL, where Lis the lower triangular matrix in the Crout decomposition 
of VRv- 1 . However, the following example shows that VRv- 1 is not always positive 
definite: Ifs= 3, c= (1/3,1/2,2/3)T and x = (1,-3,-7)T, then xTVRv- 1x = -11. 

In the following section the proof of the conjecture will be given by considering 
V R v- 1 as the matrix of an operator on the space of polynomials of degree less than s 
with respect to a basis of Lagrange polynomials. 

5.3 Proof of the conjecture 

THEO REM 5 .1 Let V be the s x s Vandermonde matrix generated by c1, c2, ... , Cs, where 
0 < c1 < c2 < .. . <Cs, let R be the diagonal matrix diag (1, 1/2, ... , 1/s) . There exist a 
lower triangular matrix L, and unit upper triangular matrix U, such that L U = V R v- 1 . 

The diagonal entries of L are positive. 

Notice that from this theorem it immediately follows that for any s x s RK collocation 
matrix A with positive distinct abscissae, there exists a lower triangular matrix T with 
positive diagonal entries such that Z00 (T) is strictly upper triangular, by setting T =CL. 

PROOF Let IP 8 be the s-dimensional linear space of polynomials of degree less than s 
with real coefficients, and C the canonical basis for IP s, i.e. 

C = {1, x, . .. , xs-l }. 

Define the operator H : IP s -t IP s by H(p) = q where q is defined by 

11"' q(x) = - p(t) dt. 
x 0 

We use the notation mat(H)c for the matrix of the operator H with respect to the 
basis C. It can be easily verified that 

mat(H)c = R. 

We denote the kth Lagrange polynomial with respect to c1, c2, ... , Cs by lk: 

lk(x) =II x-c; kE {1 , 2, ... ,s}. 
i#k Ck - Ci 
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Notice that lk is of degree s-1 and thus element of IP 8 • The Lagrange polynomials define 

also a basis for IP s , which will be denoted by £: 

.C = {l1, l2, .. . , ls} · 

We write Cc for the matrix that expresses the canonical basis in the Lagrange basis. 

Since for every m E { 0, 1, ... , s -1} the equality 

should hold, it can be seen that Cc = V . Consequently, the matrix of the operator H 

with respect to the basis .C is given by 

mat(H)c =Cc · mat(H)c · C£1 = V R v-1 =: B . 

If (H(lk))c denotes the image under Hof lk with respect to the basis .C, then 

(H(lk))c =Bek= ( f3lk) , 
f3nk 

where ek is the kth canonical basis vector of IRs and (/3ii) =B. 

We claim that {311 > 0. To see this, notice that H(l1 ) is a polynomial with coefficient 

/311 in the direction of l1. Since lk(c1 ) = 0 fork> 1, it is clear that 

With respect to the value of li in zero, we observe that li(c1) = 1, and that all its roots 

are to the right of c1; therefore l1 is positive on [O, c1], which implies 

1 1C1 
(H(l1)) (ci) = - l1 (t) dt > 0. 

C1 0 

Consequently, /311 > 0. 
It is now possible to define 

f3lk vlk := -- k E {2, ... ,s}. 
/311 

From this definition it follows that, for k > 1, 

Vlk 
0 

0 
1 
0 

0 

( Pr~ ) . 
/3

(1) 
nk 
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Assuming ,ag> -::/; 0, we are able to define 

k E {3, ... ,s}, 

such that 

(H(lk+V2kl2+vlkl1)).c=B 0 
1 
0 

0 

Continuing this procedure, we finally arrive at 

where 

/3
(i-l) 
ik ---13<•-1) .. 
1 

for i < k, 

for i = k, 

0 
0 

,8(2) 
3k 

,8(2} 
nk 

(defining ,B~) = ,Bij) and Uk and rk are vectors defined by 

Vlk 
0 

Vk-1,k 0 
Uk= 1 and rk = ,13Ck-1} 

0 
kk 

0 
,13Ck-1} 

nk 

Chapter 5 

If we can show that ,Bk~ - l) > 0 for k E { 2, 3, ... , s}, we have demonstrated that the 
procedure outlined above can be carried out. By observing that Uk and rk are columns 
of matrices fJ and L, respectively, for which the relation B fJ = L holds, we then have 
proved Theorem 5.1 using U for fJ- 1 . 
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The vectors Uk and rk can be considered as polynomials in IP s with respect to the 

basis £ . Moreover, rk is the image of Uk under the operator H: 

H(uk) = rk . 

Since rk(ck) = .Bk~- l) , we have to prove that rk(ck) > 0. We define the polynomial Uk 

of degree s + 1 by 

Uk(x) =fox Uk(t) dt . 

Notice that Uk(O) = 0 and, for x > 0, the sign of rk equals the sign of Uk (the latter 

holds since Uk = xrk)· Since lk(ci) = 0 for i < k and rk has only components in the 

direction of lj with j ~ k, we see that rk(ci) = 0 for i < k and consequently 

Uk(ci) = 0 for i < k . 

This means that Uk (being the derivative of Uk) has k-1 zeros in the interval (O,ck_i). 

All components of Uk in the direction of the last s - k Lagrange polynomials are zero. 

Consequently, uk(ci) = 0 for i > k, so that Uk has s-k zeros in the interval [ck+l,ck]· 

We now consider 2 cases (see also Figure 5.1) : 

Uk(Ck-1) > 0, 

Uk(Ck- 1) < 0 . 

(5.6) 

(5 .7) 
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Remark that, since all Ci are distinct, Uk has a single zero in ck-l, so that the situation 
uk(ck_i) = 0 does not arise. Suppose that (5.7) holds. Since uk(ck) = 1, the polynomial 
Uk should have a zero in the interval (ck-l, ck)· In that case, Uk has (k-1) + (s-k) + 1 = s 
zeros. However, the degree of Uk is only s-1, proving that only situation (5.6) can occur, 
and uk > 0 on (ck-1,ck). 

From Uk(ck_i) = 0, it now follows that Uk(ck) > 0. Since rk has the same sign as 
Uk, we have proved the theorem. D 

5.4 Is PTIRK optimal? 

In this section we investigate the optimality of the matrix T in PTIRK. Since the 
number of parameters becomes too large to handle conveniently for s > 2, we restrict 
ourselves here to methods with 2 implicit stages, i.e. s = 2. 

In the class of lower triangular matrices, T is optimal in the sense that it leads to the 
smallest stiff amplification matrix measured in the infinity norm: 

THEOREM 5.2 If L is a 2 x 2 lower triangular matrix, then 

JIZoo(L)Jloo ~ JIZoo(T)lloo. 

PROOF Write L -l = (lij) with [i 2 = 0. Then 

Define for x > 0: 

( ) 11 
C1 ( - 2 C2 + C1 ) I er gx = + x + x. 

2 ( C2 - C1 ) 2 ( C2 - C1 ) 

Then g(x) ~ g(Xmin) = ci/(2 c2 - c1), where Xmin = 2 (c2 - c1)/(c1 (2 c2 - c1)) . Since 
JJZoo(T)JJoo = g(Xmin), it follows that JJZ00 (L)JJ 00 ~ JJZ00 (T)JJ 00 . D 

For two well-known stiffly accurate RK methods with 2 implicit stages, it is possible to 
show that in the class of lower triangular matrices that lead to a 'small' stiff amplification 
matrix, T is optimal in the sense that it has the smallest non-stiff amplification matrix, 
again measured in the infinity norm: 

THEOREM 5.3 If L is a 2 x 2 lower triangular matrix with the property that p(Z00 (L)) = 
0, then, for the 2-stage RadauIIA, and the 3-stage Lobatto II/A method, 

JJZo(L)JJoo ~ JJZo(T)JJoo. 
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PROOF Write A= (aij) and L = (lij) with l12 = 0. Then llZo(L)lloo = max{m1, m2}, 

where m1 and m2 are given by 

m1 = lau - lul + la12I and m2 = la21 - l21I + la12 - l22I · 

Let J be the interval such that if lu ~ J, then m1 > llZo(T)lloo· Notice that J only 

depends on c. From <7(Z00 (L)) = 0 it follows that trace(Z00 (L)) = det(Z00 (L)) = 0. 

Using these two equations, it is possible to express l21 and l22, and thus m2, in lu. We 

have to proof that for lu E J, m2 2: llZo(T)lloo · We treat the two methods separately. 

RadauIIA: c = (1/3, l)T, llZo(T)lloo = 3/20, J = (7/20, 29/60], and 

m2 lu) = - + + - - -- . ( 3 -24li .1+5+18lf,1l ll 1 I 
4 6l1 ,1 4 6l1,1 

It can be verified that min {m2(lu)}) = m2(tu) = 3/20. 
l11EJ 

LobattoIIIA: c = (0, 1/2, l)T, llZo(T)lloo = 1/12, J = (7 /24, 3/8], and 

m - I~ -12l1.1+2 + 12zr.i I 1 ~ __ 1_

1 
2(lu) - 3 + 3l + 6 12l · 1,1 1,1 

The reader is invited to check that min {m2(lu)} = m2(tu) = 1/12. 
l11EJ 

D 
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Chapter 6 

Sparse matrix solvers 

Abstract The use of implicit methods for numerically solving stiff systems of differential 

equations requires the solution of systems of non-linear equations. Normally these are solved by 

a Newton-type process, in which we have to solve systems of linear equations. The Jacobian of 

the derivative function determines the structure of the matrices of these linear systems. Since 

it often occurs that the components of the derivative function only depend on a small number 

of variables, the system can be considerably sparse. Hence, it can be worth the effort to use a 

sparse matrix solver instead of a dense LU-decomposition. This chapter reports on experiences 

with the direct sparse matrix solvers MA28 by Duff (Duf77], Y12M by Zlatev et al. [ZWS81] 

and one special-purpose matrix solver, all embedded in the parallel ODE solver PSODE by 

Sommeijer [Som93] . 

6.1 Introduction 

For solving the stiff initial value problem (IVP) 

y'(t) = J(y(t)) , y(to) =Yo , (6.1) 

one of the most powerful methods is an implicit Runge-Kutta (RK) scheme. However, in 
such a method we have to solve a system of non-linear equations of dimension sd in every 
time step. Here, s is the number of stages. This may require a lot of computational effort 
and for this reason implicit RKs have not been very popular on sequential computers. 
On parallel computer architectures the costs can be reduced significantly. Several ways 
of doing this are described in [Bel87, BVZ90, Bur93a, Cha93, Ore93] . In this chapter we 
will focus on PSODE (Parallel Software for ODEs), described in [Som93]. PSODE is 
an implementation of a Radau IIA method with a Newton-type iteration process, which 
reduces the non-linear systems to sequences of linear systems of dimension d. Most 
time in PSODE is spent on the solution of these linear systems, using a dense LU­

decomposition, followed by forward-back substitutions. For problems arising in practice 
it often occurs that the components of the derivative function only depend on a small 
number of variables. Such problems lead to linear systems of which the matrix is sparse. 
The goal of this chapter is to reduce the linear algebra costs for such problems by using 
a sparse matrix solver. 

We remark that the underlying method of PSODE is in terms of linear systems so 
similar to the methods derived in Chapter 4 and 7, that the results on sparse matrix 
solvers presented here can be directly applied to codes based on these methods. This 
holds in particular for the code PSIDE, which is based on the method in Chapter 7 and 
is the subject of Chapters 11- 12. 
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The outline of this chapter is as follows. §6.2 briefly describes PSODE. §6.3 presents 
the off-the-shelf sparse matrix solvers MA28 [Duf77] and Y12M [ZWS81] and a sparse 
matrix solver that is designed especially for ODE solvers. An analysis of the influence of 
the errors made in the numerical solution of the linear systems is given in §6.4. Finally, 
in §6.5, numerical experiments give insight in the behavior of these matrix solvers. 

6.2 The parallel ODE solver PSODE 

In the following the mth canonical basis vector of 1R8 will be denoted by em, and the 
m x m identity matrix by Im. 

PSODE is a code based on a parallel method for numerically solving problems of 
type (6.1). It is based on the implicit RK method Radau IIA, for which the number of 
stages s equals 4. Denoting the Radau IIA matrix by A, we have to solve in every time 

step the sd-dimensional system of non-linear equations 

(6.2) 

Here, Yn is the sd-dimensional stage vector (Yn,i) containing approximations to y(tn-l + 
cihn), i = 1, . .. , s, in which c = (c1 , . . . , c8 )T is the abscissa vector, 1 is the s-dimensional 
unit vector (1, ... , l)T, Yn-l is the approximation to the step point value y(tn_ 1 ), hn is 
the stepsize tn - tn-l and F(Yn) contains the derivative values f(Yn,i)· Since c8 = 1 for 
Radau IIA methods, Yn contains Yn: 

Yn = (e'I 0 ld)Yn. 

Solving (6.2) by a modified Newton process would yield a sequence of iterates Y~o), 
yJ1l, yJ2l, ... defined by 

y(O) 
n 

(Isd - hn(A 0 Jn))~YJi+l) 

given by some predictor formula, 

-R(YJil), j=0,1,2,. .. , 

(6.3) 

(6.4) 

where Jn is an approximation to the Jacobian off in Un-l , Yn- 1), ~yJi+I) = yJi+I) -

yJil and R(Y~i)) denotes the residual of yJil with respect to (6 .2), i.e. 

R(Y~i)) = yJil - (10 Id)Yn-1 - hn(A 0 Id)F(YJ1l). 

The process (6.3), (6.4) requires the solution of linear systems of dimension sd. Since 
the approximation Jn does not vary during a time step, we are dealing in every time 
step with a sequence of linear systems with the same matrix. In practice we often keep 
the approximation of the Jacobian and the stepsize hn constant over a number of time 
steps. Hence, the number of linear systems with the same matrix is frequently a multiple 
of the number of Newton iterations per time step. This explains our bias to use a direct 
matrix solver instead of e.g. an iterative Krylov subspace method; in the latter case we 
would have to rebuild the Krylov subspace for every new right-hand side, whereas with 
an LU-decomposition, for every new right-hand side, only the forward-back substitutions 
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have to be performed. However, in an iterative approach, it may be possible to exploit 
the fact that the linear systems are related; this will be subject of future research. 

The costs of an LU-decomposition of the matrix in (6.4) are O(s3 d3 ). These costs 
can be reduced by replacing A by a matrix D = diag{ d1 , ... , d8 }. The linear system of 
dimension sd is now decoupled into s systems of dimension d: 

These systems can be solved in parallel if s processors are available: Every processor 
makes an LU-decomposition of Id - hndiJn and performs the forward-back substitutions 

on the right-hand side -(e{ ® Id)R(YJil) . The sequential costs ons processors are thus 

O(d3 ) . Notice that it is possible to compute the components of R(YJil) in parallel too: 

Every processor computes f(Y~!J), broadcasts the result to the other s - 1 processors 

and receives the remaining part of F(YJil) from the other processors. 

In PSODE the matrix D is chosen such that the stiff components of the iteration 
errors are strongly damped (see (HS91 , HS93]) . We shall refer to (6.3), (6.5) as a simplified 
Newton process. PSODE uses this simplified Newton process to solve (6.2) together with 
strategies for determining when the Jacobian should be re-evaluated, when a new LU­
decomposition should be made and how many iterations should be performed in (6.5). 
A stepsize control is also included. For details on implementation, we refer the reader 
to (Som93] . 

6.3 Sparse matrix solvers 

A general direct solver for non-symmetric, sparse linear systems is in most cases based 
on the Gaussian Elimination process (GE) . The main feature that characterizes a direct 
sparse matrix solver is the pivoting strategy. A balance has to be found between stability 
pivoting and sparsity pivoting. Stability pivoting means reordering the matrix to obtain 
pivots that are relatively large, so that GE becomes numerically stable. The aim of 
sparsity pivoting is to find a reordering of the matrix such that the number of operations 
and the fill-in of the reordered matrix are kept small. Here, the fill-in of a matrix M 
after reordering is defined as follows. Suppose P1 and P2 are permutation matrices such 
that P1M P2 denotes the reordered matrix. If 

where Lis lower triangular with diag{L} = (1, 1, . .. , 1) and U is upper triangular, then 
the fill-in of P1 M P2 is the number of nonzeros in the strictly lower triangular part of L 
+ the number of nonzeros in U - the number of nonzeros in M. A well-known strategy 
to keep the fill-in small is to use the Markowitz criterion (Mar57]. Suppose that the first 

k steps of GE have been performed. Let r~k) and cjk) be the number of nonzero entries 
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in the ith row and /h column of the remaining (n - k) x (n - k) sub-matrix, respectively. 
Then the Markowitz criterion selects as pivot the nonzero element 

m~;) with i,j such that (rik) - I)(cjk) - I) is minimal. 

Notice that by this definition a row or column with only one nonzero entry automatically 
delivers this entry as pivot. Unfortunately, the Markowitz ordering does not always 
produce the best ordering. On the other hand, the problem of finding the reordering 
that really minimizes the fill-in is NP-complete [DER86]. In the sequel we will refer to 

(rik) - l)(cjk) - 1) as the Markowitz number of m~;), where M(k) = (m~;)) denotes the 
matrix M after k - I steps of GE. 

Another categorization of pivoting strategies distinguishes between regions of the 
matrix in which the pivot is to be found. The case where the pivot of the kth step in 
GE is determined in the last n - k +I entries of the kth column is referred to as partial 
pivoting. If the pivot is chosen on the main diagonal, we speak of diagonal pivoting. 
Complete pivoting means scanning the whole sub-matrix M(k : n, k : n) to select the 
pivot. In a straightforward way one derives combinations of several pivoting strategies. 
For example, diagonal Markowitz pivoting means selecting in the kth step of GE the 

nonzero element m~7), of which the Markowitz number is minimal. 

6.3.1 MA28 
MA28 is a set of Fortran subroutines for sparse unsymmetric linear equations. This 

code by Duff [Duf77] is part of the Harwell Subroutine Library, which is licensed. How­
ever, one may use this code for research purposes. The user can set a parameter u to 
control bias towards stability pivoting or sparsity pivoting: u = 1.0 gives partial stabil­
ity pivoting, while u = 0.0 minimizes the fill-in without checking the magnitude of the 
pivots at all. The sparsity pivoting is performed by means of the Markowitz criterion. 
For values of u E (0, I) a stability control is added. The user supplies the sparse ma­
trix in a I-dimensional array containing the nonzeros. The row and column indices in 
the sparse matrix are stored in two I-dimensional integer arrays. Since MA28 performs 
the LU-decomposition and the forward-back substitutions in separate subroutines, it is 
easy to solve sequences of linear systems with the same matrix by performing only I 
decomposition. 

In the version of MA28 dated I January I984, which we used, common blocks that 
communicate data between the I 7 internal subroutines of the package, complicate parallel 
implementation of the code. One may get around this problem by using more up-to-date 
versions. 

6.3.2 Y12M 

Y12M is a package of Fortran subroutines for the same purpose as MA28. It was 
developed at the Regional Computing Centre at the University of Copenhagen (RECKU) 
by Zlatev et al. One can obtain the code from Netlib [DG87). The complete documen­
tation is in [ZWS8I]. Although YI2M is similar to MA28, the influence of the user on 
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the choice of the pivoting strategy is different. Although the code selects by itself the 

mixture between sparsity and stability pivoting, the user can decide where the pivot is to 

be selected. He can restrict the pivots to the diagonal and it is also possible to choose in 

how many rows that have least number of non-zero elements the pivotal search is carried 
out. Again the underlying sparsity pivoting strategy is based on the Markowitz criterion. 

6.3.3 Special purpose solver 

Our first experiments with Y12M and MA28 suggested that for our test problems 

the use of stability pivoting had hardly any influence. The experience that stability 

pivoting is seldom required for solving stiff ODEs was also reported by others; see [JT94, 

Hin83, VBLS95, DER86]. In the next section we give a heuristic explanation of this 

phenomenon. Therefore, we also implemented a special purpose matrix solver without 

stability pivoting. In this solver, we use the following strategy: 

1. Use only diagonal sparsity pivoting in order to reduce the fill-in of the matrix 

Id - hnddn· 

2. Compute the fill-in of the reordered matrix and add the elements that will be made 

nonzero to the sparse data structure. 

3. Perform an Incomplete LU-decomposition (ILU) on the augmented reordered ma­
trix of step 2. 

4. Perform the forward-back substitutions with the reordered right-hand sides. 

We reorder the matrix with the diagonal Markowitz strategy. Remember that the 

sparsity structure of Id - hndiJn remains constant over the integration interval, so that 

step 1 and 2 have to be done only once. Since the magnitude of the entries is not involved, 

this is a symbolic operation. We programmed step 1 and 2 in Maple [CGG+91]. 

Step 3 and 4 are performed by modified versions of subroutines of the Sparse Lin­

ear Algebra Package (SLAP) that perform IL U as preconditioner. SLAP is written 

by Greenbaum and Seager (with contributions of several other authors) and is avail­

able from Netlib [DG87] . It uses the compressed row/column format . Notice that the 

input for these subroutines does not only contain the nonzero elements of the matrix 

Id - hnddn , but also the zero elements that will be made nonzero by the GE process. 

Consequently, the IL U performed in step 3 is algebraically equivalent with a complete 

LU-decomposition. In the sequel, we will refer to this sparse matrix solver as Special 

Purpose Solver (SPS). Remark that both MA28 and Y12M do not allow the pivoting 

strategy followed in SPS. 

6.4 Error analysis 

In this section we investigate how the omission of stability pivoting in solving linear 

systems arising from ODEs, that are solved numerically with the use of a Newton-type 

process, influences the numerical solution to the ODE. 
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In the sequel we use the short hand notations M for Id - hndiJn , the short form Xj 

for Y~~t and r(xj) for -(et © Id)R(Y~i)). Denoting the update x;+I - Xj by Uj+i, the 
linear system (6.5) takes the form 

(6.6) 

Other implicit ODE solvers, like e.g. codes based on Backward Differentiation Formulas, 
lead to linear systems for which the remainder of this section holds as well. 

First note that neither the matrix M (if non-singular) nor its decomposition have in­
fluence on the solution of the Newton process; they can only affect the rate of convergence 
to this solution. 

Assume that (6.6) can be solved using GE with some pivoting strategy. Hence, the 
inverse matrix M-1 exists. The omission of stability pivoting may lead to an accidental 
breakdown, if a diagonal element of M becomes zero. However, a change of stepsize 
will cure this breakdown. If the convergence of the Newton process stagnates because 
of too small pivots, then the integrator would detect this and restrict the stepsize. The 
matrix M becomes more diagonal dominant and the pivots using no pivoting or diagonal 
pivoting would now be relatively larger. Hence, GE becomes more stable. On the other 
hand, for efficiency reasons, we want the stiff solver to use large steps. Experiments 
suggest that the increase of step rejections due to the omission of stability pivoting is 
very modest. 

Let us now look in more detail to the error propagation in the Newton process. 
Assuming that x is such that r(x) = 0, that no error is made when solving the linear 
systems and defining the Newton error by 8j := Xj - x, we arrive at 

8J+1 8j + M- 1(r(xj) - r(x)) 

(I+ M- 1Q(x))8j + higher order terms 

pi+I80 + higher order terms. (6.7) 

Here, Q(x) is the Jacobian of r(x) and P := I+ M- 1Q(x) . However, due to the 
omission of stability pivoting, we compute instead of x1 , x2 , ... the sequence x1 , x2 , .. . , 

that satisfies 

(6.8) 

where Uj+i := Xj+i - Xj. Notice that we neglected here other rounding errors than those 
arising in the LU-factorization of M . Defining the linear system error in the ph Newton 
update by t; := u; - Uj, where ui is the solution of Mui = r(xj_i), we arrive at 

M - IE-
f.j = - Uj· (6.9) 

Combining the formulas (6.8), (6.9), (6.7) and J0 = 80 , yields a formula for the Newton 

errors in which the linear system errors are taken into account too, described by lj ·­
Xj -x: 

j 

lj = 8j + L pi-kf.k + higher order terms. 
k=l 

(6.10) 
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In the sequel, we denote the spectrum and spectral radius of any matrix X by a(X) and 
p(X) . 

The formulas above lead us to several indications why omitting the stability pivoting 
works well . First of all, for dissipative systems, it holds that 

a(Jn) E {z EC I Re(z) :SO}, 

and consequently, since the diagonal entries di > 0, 

a(M) E {z EC I Re(z) :'.:'. 1} and p(M-1 )::; 1. 

This is a necessary (although not sufficient) condition for M to damp the error matrix 

E in (6.9). 
Secondly, for h -+ 0, the matrix M becomes increasingly diagonal dominant. This 

means llEll -+ 0. On the other hand, the situation h -+ oo is usually initiated by an 
ODE-solution that tends to a steady state. Here we expect that Vj, u1 -+ 0. In both 

situations, Vk, €.k -+ 0, so 81 -+ 61. 
Our last argument is based on formulas (6.9) and (6.10). Normally, Newton iterates 

are monotonically decreasing: 

Together with formula (6.9) this tells us that it is likely that the error matrix E has less 

influence on €.k ask increases. However, the contribution of €.k in 81 is by means of (6.10) 
multiplicated by p1-k and thus more damped for small k, since P is a contracting 
operator if the Newton process converges. 

Although we did not give a rigorous proof that the omission of stability pivoting in 

the solution process of the non-linear systems arising from OD Es is harmless, we showed 
in the above that at least a number of necessary conditions is fulfilled . 

6.5 Numerical experiments 

6.5.1 Test problems 

To test how the sparse matrix solvers perform in PSODE we consider 3 stiff test 
problems. The first one comes from circuit analysis and describes a ring modulator. It is 
of dimension 15. Our second test problem has dimension 20 and is the chemical part of 

an air pollution model. The last problem is the EMEP MSC-W ozone chemistry model 
of dimension 66. For a more detailed description of these problems we refer the reader 
to (LSV96] . 

In order to see the effect of an increasing problem size on the performance of the 
sparse matrix solvers we 'cascade' the problems m times as follows. If the original test 
problems are of the form 

Y1 

(t) = f(y), y(O) =Yo, 
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EMEP problem 
496/(662m) · ·• 

21~6m 
87i l 7l, 26Q t ~~1 ··. 

no 

then the resulting 'cascaded' problems are of form (6.1), where f is defined by 

and d = md. 
Information on the sparsity of the matrix Id - hnd;Jn is listed in Table 6.1. As usual , 

we define the nonzero ratio of a matrix to be the number of nonzero entries divided by 
the total number of entries. In the table, the fill-in before and after reordering with 
the diagonal Markowitz strategy is specified for m E {1, 2, 3, 10} . For the pollution and 
EMEP problem we see that the fill-in after reordering does not depend linearly on m. 
The reason for this is that from the elements with the same Markowitz number the last 
one is chosen as pivot. Consequently, the diagonal blocks of the Jacobian of the 'm times 
cascaded' problem are not necessarily treated identically by the reordering algorithm. 

6.5.2 Numerical results 

Firstly, we experimented with PSODE using Y12M, MA28 and SPS on a one­
processor machine in order to compare the matrix solvers mutually and to see the influ­
ence of an increasing nonzero ratio of the Jacobian on the performance. We also listed the 
results of the dense matrix solver of LINPACK (the routines dgefa and dgesl , for com­
puting the LU-factors and forward-back substitutions, respectively) . The Tables 6.2, 6.3 
and 6.4 show the results of solving the three test problems. A few remarks with respect 
to these tables should be made. 

• The numerical experiments were done on a Silicon Graphics Indy workstation (100 
MHz R4000SC), using 64-bit arithmetic. 'CPU' refers to the CPU time in seconds 
to solve a test problem on this machine. 

• m denotes the number of times that the problem is cascaded. 

• For MA28, the pivoting parameter u was set equal to 0.5. Other settings of u did 
not yield significantly better results. 
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• For Y12M most parameters were set to their default values. Only the drop toler­

ance was valued 10-14 (using the default value 10- 12 , a breakdown occurred in the 

pollution problem). Other choices for the parameters that determine the pivoting 

strategy, did not improve the results considerably. 

• The integration statistics of PSODE are given by 

scd denoting the minimum number of significant correct digits in the numerical 

solution in the end point, that is: 

d . { l 'Yi(tend) -yi(tend) I} sc := m1n - 0910 , 
i E {l,. . .,d} Yi(tend) 

where y;(tend) and y;(tend) denote the ith component of the numerical and true 

solution in the end point, respectively, and d is the dimension of the problem. 

Since the exact solution to the problems is not known, the numerical solution 

was compared with the output of a very accurate run. 

steps refers to the number of time steps (including rejected steps). 

J-eval is the number of evaluations of the analytical Jacobian of the function f. 

LU-dee denotes the number of 'sequential' LU-decompositions of matrices of the 

form Id - hnddn-

f-eval is the number of 'sequential' evaluations of the function f. 

Here, 'sequential' means that operations on the four stages at the same time step, 

which can be done in parallel, are counted as one. 
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6.3; &suits on pollution problem. 

steps LU-dee 
46 44 

46 10 44 

46 10 44 299 

44 

• The user of PSODE has to supply the error tolerance, a safe upperbound for 
lly(t)lloo on the whole integration interval, and the initial stepsize. For the ring 
modulator and the pollution problem we set them equal to 10-4 , 1 and 10-7 , 

respectively, for the EMEP problem to 10-2 , 1016 and l. 

• Blank entries in the tables are identical to corresponding entries in the adjacent 
upper row. 

We nicely see that the CPU-timings for the sparse matrix solvers are O(m), whereas 
for the dense solver of LINPACK they are superlinear. For these 3 test problems it 
begins to pay off to use MA28 or Y12M instead of LINPACK for nonzero ratios of 
less than about 20- 25%. For SPS this maximum nonzero ratio is even somewhat larger. 
SPS performs about l. 75 times more efficiently than Y12M and is about twice as fast 
as MA28. For the ring modulator and EMEP problem, the four solvers show roughly 
the same statistics. They slightly depend on m, since the order in which pivots are 
selected within diagonal blocks of Id - hndiJn may differ. For the pollution problem all 
integration statistics were identical to the LINPACK statistics. 

Secondly, we investigate how the parallel performance of PSODE depends on the 
solver and on m. We implemented the codes on the Cray C98/4256 at SARA. Since 
the integration statistics were roughly the same as in the Tables 6.2, 6.3 and 6.4, we 
only listed the speed-up factors of the runs on 4 processors compared to the runs in one­
processor mode. The Cray C98/4256 is a shared memory computer with 4 processors. 
Since we did not have the machine in dedicated mode during our experiments (on the 
average we used 2.5 processors concurrently), we used a tool called ATExpert [Cra94b] 
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to predict the speed-up factors on 4 processors. Table 6.5 gives these results. Denoting 
the fraction of the code that can be done in parallel by f p, the optimal speed-up on 
N processors according to Amdahl's law is given by the formula 1/(1 - fp + fp/N). 
ATExpert produces these optimal speed-up values, based on estimates of the parallel 
fraction f p. These values are also listed in Table 6.5. 

We compiled the codes using the flags -dp, -ZP and -Wu"-p". The environment 
variables NCPUS and HP _DEDICATED were valued 4 and 1, respectively. We refer to the 
Cray C90 documentation [Cra94a] for the specification of these settings. We did not 
include results for MA28, since for a parallel implementation of this code, one would 
have to get rid of the common blocks. Table 6.5 confirms the expectation that the speed­
up factors grow for increasing problem sizes. The predicted speed-up factors do not 
always increase monotonically with m. This can be explained by the fact that the results 
of ATExpert are based on a varying number of processors. For PSODE with LINPACK 
the optimized routines sgefa and sgesl of the Cray library were used. The relatively 
fast performance of the resulting code leads to smaller speed-up factors. The speed-up 
of SPS is somewhat withdrawn with respect to Y12M for large m. We explain this by 
the smaller amount of computations that have to be done in SPS before communicating. 

6.6 Conclusions 

In this chapter we tested the direct sparse matrix solvers MA28, Y12M and one 
special purpose solver in the parallel ODE solver PSODE. If the number of nonzeros in 
the Jacobian of the derivative function is less than about 20- 25% of the total number of 
entries, then it begins to pay off to use a sparse matrix solver. The costs can be further 
reduced by a factor varying from 1. 75 to 2 by using a special purpose solver based on 
Gaussian Elimination and diagonal Markowitz pivoting without stability check. Up to 
a certain extent we can explain theoretically why numerically solving stiff ODEs with 
the use of a Newton-type process for the solution of the systems of non-linear equations, 
leads to linear systems that can be solved without stability pivoting. 

Experiments on a Cray C98/4256 show speed-up factors of PSODE on 4 processors 
in the region 2.2- 3.8, depending on the problem size, but not much on the (sparse) matrix 
solver. 
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Chapter 7 

Parallel Linear System Solvers 

Abstract If the nonlinear systems arising in implicit Runge-Kutta methods like the Radau IIA 

methods are iterated by (modified) Newton, then we have to solve linear systems whose matrix 

of coefficients is of the form I -A®hJ with A the Runge-Kutta matrix and Jan approximation 

to the Jacobian of the right-hand side function of the system of differential equations. For larger 

systems of differential equations, the solution of these linear systems by a direct linear solver is 

very costly, mainly because of the LU-decompositions. We try to reduce these costs by solving 

the linear systems by a second (inner) iteration process. This inner iteration process is such 

that each inner iteration again requires the solution of a linear system. However , the matrix of 

coefficients in these new linear systems is of the form I - B ® hJ where B is similar to a diagonal 

matrix with positive diagonal entries. Hence, after performing a similarity transformation, the 

linear systems are decoupled into s subsystems, so that the costs of the LU-decomposition are 

reduced to the costs of s LU-decompositions of dimension d. Since these LU-decompositions can 

be computed in parallel, the effective LU-costs on a parallel computer system are reduced by a 

factor s3 . It will be shown that matrices B can be constructed such that the inner iterations 

converge whenever A and J have their eigenvalues in the positive and nonpositive half-plane, 

respectively. The theoretical results will be illustrated by a few numerical examples. A parallel 

implementation on the four-processor Cray-C98/4256 shows a speed-up ranging from at least 

2.4 until at least 3.1 with respect to RADAU5 applied in one-processor mode. 

7.1 Introduct ion 

Suppose that we integrate the IVP 

y'(t) = f(y(t)), y(to) =Yo, (7.1) 

by an implicit step-by-step method. In general, this requires in each step the solution of 

a nonlinear system of the form 

R(Yn) = 0, R(Y) := y - h(A 18) I)F(Y) - Wn-1, (7.2) 

where A denotes an s x s matrix (assumed to be nondefective), I is the d x d identity 

matrix, Wn-1 contains information from preceding steps, his the stepsize tn - tn-l, and 

® denotes the Kronecker product. It will always be assumed that A is nondefective and 

has its eigenvalues in the positive half-plane. The s components Yn; of the sd-dimensional 

solution vector Yn represent s numerical approximations to the s exact solution vectors 

y(tn-l +c;h); here, c = (c;) denotes the abscissa vector whose components c; are assumed 

distinct. Furthermore, for any vector Yn = (Yn;), F(Yn) contains the derivative values 
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f (Yni) · In the following, we shall use the notation I for any identity matrix. However, 
its order will always be clear from the context . The solution Yn of (7.2) will be called the 
stage vector, Yn the step point value, 8 the number of stages, and A the Runge- Kutta 
matrix. 

Usually, the nonlinear system (7.2) is solved by modified Newton iteration. This 
leads to linear systems whose matrix of coefficients is of the form I - A 0 hJ with J an 
approximation to the Jacobian of the right-hand side function f . The solution of these 
systems may be extremely costly. For example, if a direct solver is used, then in general 
the LU-decomposition requires (2/3)83d3 arithmetic operations which is considerable, 
even for moderate values of d (say d ~ 10) . Moreover, there is only a limited intrinsic 
parallelism in building the LU-decomposition of the matrix I - A 0 hJ. 

7.1.1 Reduction of computational costs 

We briefly survey various approaches to reduce the computational costs associated 
with the solution of the Newton systems using parallel computer systems. Firstly, one 
may look for special methods in which A is a triangular matrix with positive diagonal 
entries like the DIRK type methods. Then, confining our considerations to the costs of the 
LU-decomposition, we see that the effective LU-costs on 8 processors reduce to (2/3)d3 

operations, a factor 83 less than those needed for the Newton process. However, these 
DIRK type methods also have disadvantages. In the case of one-step DIRKs available in 
the literature, the step point order is at most 4 and they have a relatively low stage order 
which may be a disadvantage in certain classes of stiff IVPs. Higher step point orders 
and stage orders can be obtained in the class of multistep RK methods ( cf. Burrage 
and Chipman [BC89]), but they have the disadvantage of quite large abscissae values c i 

(much larger than 1) . 

More sophisticated than the DIRK methods are methods characterized by matrices 
A with only positive eigenvalues such as the one-step RK methods of N0rsett [N0r76], 
Burrage [Bur78] and Orel [Ore93]. By performing a similarity transformation (or Butcher 
transformation [But76]) , the linear systems can be decoupled into 8 subsystems of di­
mension d. Again, the effective LU-costs reduce by a factor 83 , and moreover, the stage 
order and step point order are much higher than for DIRK methods. However, a possible 
disadvantage of these methods is the lack of superconvergence at the step points. 

Finally, one may choose the classical RK methods possessing both a high stage order 
and a high step point order, but also one or more complex eigenvalues. Again, applying a 
similarity transformation, the Newton system is transformed to block-diagonal form with 
(real) diagonal blocks, each block corresponding to an eigenvalue of A. If an eigenvalue is 
real, then the associated diagonal block is of order d, otherwise it has order 2d. The LU­
costs of these blocks are reduced to (2/3)d3 and (16/3)d3 operations, so that effectively 
the LU-costs are (16/3)d3 operations, irrespective the value of 8 (the code RADAU5 of 
Hairer and Wanner [HW91] uses such a transformation) . 
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7.1.2 Iterative solution of the linear systems 

Instead of using direct solution methods, one may also look for iterative linear solvers, 

such as GMRES or preconditioned GMRES (see e.g. Burrage [Bur95] where further 

references are given). 
In this chapter, we shall follow an approach that is a mixture of an iterative and a 

direct approach. It allows A to have complex eigenvalues (in the positive half-plane), so 

that the superconvergent RK methods like the Radau IIA methods are included. The 

linear systems arising in the modified Newton method are solved by an iterative method 

(the inner iteration process), which needs itself LU-decompositions of matrices, but these 

matrices are only of dimension d. In fact, the linear systems to be solved have a matrix of 

coefficients of the form I - B 18> hJ where B is similar to a diagonal matrix with positive 

diagonal entries. Hence, after performing a similarity transformation, the effective LU­

costs are (2/3)d3 operations like the methods of Burrage and Orel. We shall refer to 

this inner iteration process by PILSRK (Parallel Iterative Linear System solver for RK 

methods). The combination of the modified Newton and the PILSRK method will be 

called the Newton- PILSRK method. 
There are several options for choosing the matrix B. The most simple approach 

chooses B = D where D is a diagonal matrix (with positive entries), so that the sd­

dimensional system can directly be split into s uncoupled subsystems of dimension d 

which can be solved concurrently. In fact, we can employ the same matrices D as used 

in the Parallel Diagonal-implicitly Iterated RK methods (PDIRK methods) analyzed 

in (HS91]. The PDIRK method is also an iterative method, but unlike the PILSRK 

method it is a nonlinear system solver and directly iterates on the nonlinear system 

(7.2). Using results derived by Lioen [Lio96] for PDIRK matrices, it can be shown that 

for the first eight Radau IIA correctors, the PILSRK methods are A-convergent, that 

is, it converges if J has its eigenvalues in the nonpositive half-plane. Furthermore, these 

PDIRK matrices have the property that the stiff components are removed from the it­

eration error within s iterations. However, a disadvantage of the PDIRK matrices is the 

poor convergence (or even divergence) of the PILSRK method in the first few iterations 

which is worse as the number of stages of the underlying RK corrector increases. Such 

a convergence behavior is highly undesirable if we want to apply step-parallel iteration, 

where the iteration process is already started at the next step point tn+l before the iter­

ates at tn have converged. A poor initial convergence implies that no accurate predictor 

value is available for starting the iteration process at tn+l · 

A substantial improvement in the initial phase of the convergence of the PILSRK 

method is obtained by employing the matrices L used in the Parallel Triangular-implicitly 

Iterated RK methods (PT IRK methods) constructed in Chapter 4 (like the PDIRK 

methods, the PTIRK methods are nonlinear system solvers). The PTIRK matrices L 

are defined by the lower triangular factor of the Crout decomposition LU of the RK 

matrix A. By virtue of results obtained in Chapter 5 it can be shown that for all RK 

correctors that are based on collocation with positive, distinct abscissae, the matrix L has 

positive diagonal entries and that the PILSRK method is A-convergent. Furthermore, like 
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the PDIRK matrices, the PTIRK matrices have the property that the stiff components 
are removed from the iteration error within s iterations. After performing a similarity 
transformation, the effective LU-costs are reduced by a factor s3 . A preliminary parallel 
implementation of the Newton- PILSRK method based on the one-step 4-stage Radau IIA 
formula and using the PTIRK matrix showed on the four-processor Cray-C98/ 4256 speed­
up factors ranging from at least 2.4 until at least 3.1 with respect to RADAUS in one­
processor mode (cf. Chapter 4). 

7.1.3 Outline of the chapter 

The aim of this chapter is to find matrices B that are still more effective than the 
PTIRK matrices L. Our starting point is the representation B = QTQ- 1 with Ta lower 
triangular matrix with positive diagonal entries and with Q a nonsingular transformation 
matrix such that Q-1 AQ is lower block- triangular. It will be shown that matrices T 
and Q exist such that: 

1. B is nondefective and has positive eigenvalues, 

2. the PILSRK method is A-convergent whenever A has its eigenvalues in the positive 
half-plane, 

3. the stiff components are removed from the iteration error in the second iteration, 

4. the spectral radius of the iteration-error-amplification matrix is minimized in the 
left-hand half-plane. 

The difficult part is the construction of matrices Q such that the iteration-error­
amplification matrix has a sufficiently small norm. In this chapter, we construct transfor­
mation matrices so that Q-1 AQ is block-diagonal. For the 4-stage and 8-stage Radau IIA 
correctors, matrices Q will be constructed such that the Euclidean norm of powers of the 
iteration-error-amplification matrix are satisfactorily small. 

As soon as T and Q, and hence B, are obtained, we can compute the diagonalizing 
similarity transformation, to obtain a highly parallel linear system solver. 

In this chapter, we have restricted our analysis of the Newton- PILSRK method to 
the case where (7.2) represents the class of one-step Radau IIA methods, that is , A is 
the Radau IIA matrix and Wn- 1 := (E @ I)Yn-1 with E = (0, . . . , 0, 1), 1 being an 
s-dimensional vector with unit entries. These methods are of particular interest because 
of their high step point order p = 2s - 1 and high stage order q = s , their stiff accuracy 
and their excellent stability properties. The Newton- PILSRK methods were applied to a 
few problems taken from the literature. The results show a considerable improvement of 
the convergence in the first few outer iterations. Recalling that a parallel implementation 
of the Newton- PILSRK method using the PTIRK matrices already shows a speed-up 
factor of at least 2.4 with respect to RADAUS , we expect that using the new matrices 
B = QTQ- 1 will yield a further speed-up. The parallel implementation of the new 
methods will be subject of future research. 
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Finally, we remark that it may well be that the class of multistep RK methods of 
Radau type (cf. Hairer and Wanner [HW91, p . 293]) is a better choice for the corrector 
equation (7.2) than the one-step Radau methods. For non-stiff IVPs, Burrage and Suhar­
tanto [BS97] have investigated the use of parallel iteration methods for such correctors 
and they report promising results. This indicates that applying the PILSRK approach 
of this chapter to the Newton systems arising in multistep Radau methods may lead to 
quite effective parallel IVP methods. Chapter 8 will deal with this class of methods. 

7 .2 The parallel iterative linear system solver 

Consider the modified Newton iteration scheme for solving the corrector equation 
(7.2) : 

(I - A ® hJ)(YU> - yU-1>) = -R(YU- 1>), j = 1,2, ... ,m, (7.3) 

where J = a J / ay is evaluated at tn-1, y(o) is the initial iterate to be provided by 
some predictor formula, and where y(m) is adopted as the solution Yn of the corrector 
equation (7.2). Each iteration with (7.3) requires the solution of an sd-dimensional linear 
system for the Newton correction y(i) - y(i-l) . As already observed, direct solution of 
this Newton system can be extremely costly and transformation to block-diagonal form 
reduces computational costs considerably. In order to achieve a still greater reduction of 
the computational complexity we follow an alternative approach by applying an iterative 
linear solver to the Newton systems in (7.3). This solver again requires the solution of 
linear systems, but these systems are only of dimension d. It is tuned to the RK structure 
of the systems in (7.3) and possesses a lot of intrinsic parallelism. This Parallel Iterative 
Linear System solver for RK methods (PILSRK method) is defined by 

(I - B ® hJ)(Y(i,11) - y(i,11-1)) = -(I - A ® hJ)YU,11-1) + cU-1)' 

(7.4) 
cU-1> := (I - A ® hJ)YU-1> - R(YU-1>), v = 1, 2, ... ,r, 

where y(i,o) = y(i-l,r) and where y(m,r) is accepted as the solution Yn of the correc­
tor equation (7.2). The matrix B is assumed to be nondefective and to have positive 
eigenvalues. Note that cU- 1> does not depend on v, so that the application of the inner 
iteration process requires only one evaluation of the function R. The processes (7.3) and 
(7.4) may be considered as the outer and inner iteration processes. 

In order to construct a suitable matrix B, we observe that the condition on the 
spectrum of B implies that we can write B = QTQ- 1 with Q an arbitrary real, nonsin­
gular matrix and T a lower triangular matrix with positive diagonal entries. Hence, by 
performing the transformation 

yu.11> = (Q ® J)fU ,11>, 

we obtain 

(I -T ® hJ)(Y(j,11) - y(i,11-1)) =-(I - A® hJ)f(i,11-1) + (Q-1 ® I)C(j-1) ,(7.5) 
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where 11 = 1, 2, . . . , r, A= Q-1 AQ and y(i ,o) = (Q- 1 © J)yU-1). If for a given j, the 

transformed inner iterates y(j,v) converge to a vector fU, oo), then the Newton iterate 
defined by (7.3) can be obtained from yU) = (Q © J)f(j,oo). Given the matrix A, the 

PILSRK method (7.5) is completely defined by the matrix pair (T,Q) and will be denoted 
by PILSRK(T,Q). The representation (7.5) will be the starting point for the construction 
of the matrix B . 

Before discussing the computational costs of the implementation of the Newton­
PILSRK method {(7.3) ,(7.5)} , we should specify the matrix B. This will be subject of 
§7.3. Details on the computational complexity can be found in §7.4.2. 

REMARK In the first Newton iterations, it seems a waste to perform many inner 
iterations with the PILSRK method, because there is no point in computing a very 
accurate approximation to y(i) , as long as y{i) is itself a poor approximation to Yn . 
Likewise, in later outer iterations, we expect that only a few inner iterations suffice to 

solve yU) from (7.3) . In the extreme case, only one inner iteration is performed in each 
outer iteration. In such an iteration strategy, the Newton- PILSRK iteration method 

{(7.3),(7.4)} simplifies to 

(I - B © hJ)(YU) - yU- 1l) = -R(YU- 1l ) , j = 1, 2, ... , m. (7.6) 

However, this process may converge very slowly in the first few outer iterations, and it is 
recommended either to use highly accurate predictor formulas for y(o), or to introduce 
a dynamic iteration strategy so that when necessary, sufficiently many inner iterations 
in the first few outer iterations are performed. Notice also that the iterative method 
obtained from (7.3) by using a splitting of A into B and A - B is identical with the 
iteration method (7.6). 0 

7 .3 Construction of the matrix B 

Given the matrix A, the PILSRK method (7.4) is completely determined by the 
matrix B = QTQ-1

. In the construction of B , the region of convergence and the 
averaged amplification factors for the iteration errors play a central role . 

7.3.1 Convergence region of the PILSRK method 

In order to analyze the region of convergence for the PILSRK method, we consider 
the error recursion 

y(j ,v) - y(j) = M(Y(j,v-l) - yUl), M :=(I - B © hJ)-1 ((A- B) © hJ) . (7.7) 

We have convergence if the powers Mv of the amplification mat rix M tend to zero as 

11 ~ oo, that is, if the spectral radius p(M) of M is less than 1. The eigenvalues of M 
are given by the eigenvalues of the matrix 

Z(z ) := z(I - z B)- 1(A - B ), z := h>.., (7.8) 
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where A runs through the eigenvalues of J. We call r := {z : p(Z(z)) < 1} the region 
of convergence of the PILSRK method. Thus, the method converges if the eigenvalues 
of hJ lie in r. If r contains the whole nonpositive half-plane, then the method will be 
called A-convergent. 

We shall call Z(z) the amplification matrix at the point z and p(Z(z)) the (asymp­
totic) amplification factor at z. The maximum of p(Z(z)) in the left-hand half-plane 
Re(z) ~ 0 will be denoted by p. 

In [HS91] and Chapter 4 where the PDIRK and PTIRK methods are analyzed, it 
turned out that strong damping of the stiff error components, that is, small amplification 
factors for error components corresponding to eigenvectors of J with eigenvalues A of large 
magnitude, is crucial for a fast overall convergence. This leads us to require the matrix 
B to be such that p(Z(oo)) = p(l - s-1 A) vanishes. If we succeed in finding such 
matrices B, then zs ( oo) = 0, so that within s iterations, the components corresponding 
to !Al = oo are removed from the iteration error (this can be verified by considering the 
Schur decomposition of ZS ( oo)). 

As an example, let Q = I and let T be a diagonal matrix D, so that B = D. 
Lioen [Lio96] showed that for the s-stage Radau IIA correctors with s ~ 8, it is possible 
to construct diagonal matrices D satisfying p(l - D- 1 A) = 0 such that the generated 
PILSRK(D,I) method is A-convergent. These matrices are also used in the PDIRK 
methods studied in [HS91], and will therefore be called PDIRK matrices. 

The next theorem defines a family of PILSRK(T,Q) methods automatically satisfying 
the condition p(I - B - 1 A) = 0. 

THEOREM 7.1 Let Q be an arbitrary, nonsingular matrix and let B = QTQ- 1 , where 
T is the lower triangular factor in the Crout-decomposition of A:= Q-1 AQ. Then, the 
asymptotic amplification factor vanishes at infinity. 

PROOF Let TU represent the Crout-decomposition of A. Then 

Q-1 Z(oo)Q =I - Q-1 s-1 AQ =I - r-1 A= I - u 
is strictly upper triangular. Hence, p(Q-1 Z(oo)Q) = p(Z(oo)) = 0. 0 

The matrix B in the PILSRK methods characterized by this theorem does not neces­
sarily have positive eigenvalues and hence, does not automatically generate A-convergent 
methods. This requires special transformation matrices Q. Let us again consider the case 
where Q =I. Then, B equals the lower triangular factor in the Crout-decomposition of 
A, that is, B equals the PTIRK matrix L derived in Chapter 4. In Chapter 5 it is proved 
that the PTIRK matrix L possesses positive diagonal entries for all collocation-based RK 
correctors with positive, distinct abscissas, so that B has positive eigenvalues as required. 
Furthermore, numerical computations in Chapter 4 show the A-convergence for a large 
number of RK correctors based on Gaussian quadrature formulas . 

The aim of this chapter is to derive A-convergent methods with p(I - B-1 A) = O for 
more general pairs (T,Q) than the PTIRK pair (L,I), and to find pairs (T,Q) such that 
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we can a priori prove both the positiveness of the eigenvalues of B and the A-convergence 

of the generated iteration method. 
Let us choose Q such that A:= Q- 1 AQ = (Aki) is a (real) a x a lower block-triangular 

matrix, of which the diagonal block~ Akk are either one-by-one or two-by-two matrices. 

If ~k is a real eigenvalue of A, then Akk = ~k, and if 6 ± iTJk is a complex eigenvalue pair 

of A, then 

(7.9) 

where ak and Ck are free parameters. In the following, K will denote the set of integers 

with the property that T/k =/; 0 whenever k E K . 
A natural choice for T now is 

T ·-
[ ~n 

0 0 0 

l A21 T22 0 0 

A31 A32 T33 0 ::: ' 

{ [ ~: 0 ] ' if kEK, 
Wk (7.10) 

6 otherwise, 

where Uk, Vk and Wk are free parameters with Uk and wk assumed to be positive. 

THEOREM 7.2 Let A have its eigenvalues in the positive half-plane, let A:= Q-1 AQ = 

(Aki) be lower block-triangular, let the diagonal blocks be defined by (7.9) and let T = T( 1) 
be defined by (7.10} with 

(7.11) 

where r is a positive parameter. Then, for all ak and ck the following assertions hold: 

1. The asymptotic amplification factor vanishes at infinity. 

2. B has positive eigenvalues and if r =/; 1 it is nondefective. 

3. The PILSRK(I'(1),Q) method is A -convergent with 
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PROOF Let 

Z(z) := Q-1 Z(z)Q = z(I - zT)- 1(A - T), z := h>.. (7.12) 

If T is of the form (7.10), then the value of p(Z(z)) = p(Z(z)) equals the maximum of 

the spectral radius p(Zkk(z)) of the diagonal blocks 

(7.13) 

of Z. Here, Zkk vanishes if the underlying eigenvalue of A is real. Hence, in order to 

achieve p( Z ( oo)) = 0, we choose the Tkk with k E K such that the spectral radius of the 

corresponding diagonal blocks Zkk(z) vanishes at infinity. 

We derive from (7.9) and (7.13) that the eigenvalues (k of Zkk satisfy the characteristic 

equation 

(7.14) 

It is easily verified that (k = (k (z) vanishes at infinity if Uk , vk and Wk are defined 

according to (7.11). Hence, p(Zkk(z)) vanishes at infinity which proves the first part of 

the theorem. 
Since the eigenvalues of Bare given by {uk,wk} fork EK and by ~k fork~ K, 

and because we assumed 'Y > 0, (7.11) also implies that B has positive eigenvalues and 

if 'Y ::j:. 1 it is nondefective, proving the second part. 
The characteristic equation (7.14) is solved by 

(k = 0, 
( _ (2~k - Uk - Wk)z 
k - (1 - ZUk)(l - ZWk)' 

(7.15) 

so that p(Z(z)) equals the maximum of the values J(k(z)J . Since (k(z) is regular in left­

hand half-plane (provided that Uk and Wk are positive), its maximum in the left-hand 

half-plane Re(z) ~ 0, to be denoted by Pk, is assumed on the imaginary axis. It is easily 

verified that 

(Z (i )) _I (i )I_ l2~k - Uk - wkllYI 
p kk y - (k y - y'(l + uh2)(1 + wh2) 

(7.16) 

assumes an absolute maximum at y = y0 := (ukwk)- 1!2 and that the maximum value 

Pk of p(Zkk(iy)) is given by 

Pk= 11- 2~k(uk + wk) - 11=11- 2"( ("(2 + 1)- 1 ~ka;; 1 1 , 

which is less than 1 whenever 'Y~k > 0. This proves the last part of the theorem. D 

The asymptotic amplification factor p is minimized for 'Y = 1 and assumes the 

minimal value p = max{l-~ka/; 1 
: k EK}. However, then the matrices Tkk are defective 
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(because Uk = wk)· Hence, T cannot be diagonalized, and although the effective LU­
costs are still reduced by a factor s, the Newton-PILSRK(T(l),Q) method should be 
considered as a a-processor method, rather than an s-processor method. Fortunately, 
the asymptotic amplification factor varies slowly with /, so that we can remove the 
defectness of T at the cost of a slight increase of p. For example, for the method defined 
by { (7.10),(7.11)} we find for / = 7 /8, 

- {1 u2, -1 . k K} p - max - ill'>kak . E , (7.17) 

which is only slightly larger than the minimal value. For a detailed discussion of the com­
putational complexity of an implementation of the Newton- PILSRK(T(T),Q) method, 
we refer to §7.4.2. 

REMARK 1 When faced with the problem of choosing a matrix T such that the eigenval­
ues of the matrix Z(z) are of small magnitude, it is tempting to minimize the magnitude 
of the matrix factor A - T occurring in the matrix Z(z) defined by (7.12). Since 

A-T diag{An -Tn, ... ,A,,.,,. -T,,.,,.} , 

bk ] 
2~k - ak - Wk 

and because for given ak, the magnitude of the entry bk = -cJ;
1

(a% - 2~kC:.,k +a%) can 
be made as small as we want, we are led to zero the other three entries of Akk - Tkk by 
setting Uk = ak, Vk = Ck and Wk = 2~k - ak. This still leaves ak as a free parameter which 
can be used to minimize bk for given Ck, to obtain ak = ~k and bk = -'TJ~cJ; 1 . However, 
substitution of the parameters Uk, vki Wk, ak and bk into the characteristic equation 
(7.14) reveals that the nonzero eigenvalue is given by (k = (~~ - a%}z2 (1- z~k)- 2 , which 
assumes the extreme value -('T/k~J; 1 ) 2 at infinity. Thus, we have no A-convergence when 
A has eigenvalues whose imaginary part exceeds its real part. Since many RK methods 
based on Gaussian quadrature do have imaginary parts that exceed the real parts, the 
approach of minimizing the magnitude of A - T is the wrong way to go. <> 

REMARK 2 The family of matrices T defined by {(7.10),(7.11)} contains the spe­
cial case where T is defined by the lower triangular factor in the Crout-decomposition of 
A:= Q- 1 AQ (see Theorem 7.1): 

if k EK, 
(7.18) 

otherwise. 

This expression is also obtained from {(7.10),(7.11)} by setting I= akaJ;1. <> 
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We conclude this section with listing values of Pk for a few Radau IIA correctors and for 
the iteration strategy PILSRK(T(7 /8),Q) defined by Theorem 7.2. In addition, we list 
the values of p for PILSRK(D,J) with the PDIRK matrix D and for PILSRK(L,J) with 
the PTIRK matrix L . The figures in Table 7.1 show that on the basis of the asymptotic 
amplification factors , the PILSRK(T(7 /8) ,Q) approach is superior to PILSRK(D,J) and 
PILSRK(L,J) . 

PILSftK(D,l) ···· ·········· -
PILSRJ((L,I) 0.18 ... 
PIJ:~RK(T(7 /8) ,Q) 1 Q.19 

2 . 
·.··· 3 

•4 

7.3.2 Averaged amplification factors 

Because the matrix Min (7.7) is not expected to be a normal matrix, the asymptotic 
amplification factor p discussed in the preceding section only gives an indication of the 
speed of convergence after a quite large number of iterations and does not give insight into 
the convergence behavior in the initial phase of the iteration process. In fact, for large 
v we have the estimate llM"ll ~ K(S)(p(M)) 11

, where S represents the eigensystem of 
M , K(S) := llSll llS- 1 11 is the condition number of S, and where we assumed that M has 
eigenvalues of multiplicity 1 (cf. Varga (Var62)). In order to analyze the convergence rate 
in the first few iterations, one may resort to the pseudo-eigenvalue analysis of Trefethen 
(see e.g. (RT92)). Alternatively, we may resort to a well-known theorem of Von Neumann. 
We shall follow the latter approach. 

Let the logarithmic matrix norm µ[S] associated with the Euclidean norm be defined 
by µ[S] = (1/2).Amax(S + SH), where 5H is the complex transposed of S and Amax( ·) 
denotes the algebraically largest eigenvalue. Then, we have: 

THEOREM 7.3 If µ[J] ~ 0, then llM"ll ~ max{llZ"(z)ll : Re(z) ~ 0} . 

PROOF The proof is based on a generalization of a theorem of Von Neumann. Von 
Neumann's theorem states that, given a matrix Janda rational function R of z which 
has a bounded maximum norm llRll oo in the left-hand half-plane, then llR(J)ll ~ JIRIJ 00 , 

provided that µ[J] ~ 0 (see e.g. (HW91, p. 179)). A matrix-valued version of Von 
Neumann's theorem, applying to the case where R(z) is a matrix with entries that are 
rational functions of z, was proved by Nevanlinna (Nev85] (see also [HW91, p. 356)). 
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Since Mv can be considered as a matrix-valued function of J (see (7.7)), we apply the 
matrix-valued version of Von Neumann's theorem with R(z) := Mv(z), where 

(7.19) 

This leads to the assertion of the theorem. D 

This theorem motivates us to define the local averaged amplification factor at the 
point z = h>. and the global averaged amplification factor by 

p(v) := max{p(v)(z): Re(z)::; O}. (7.20) 

Note that p(v)(z) approximates the asymptotic amplification factor p(Z(z)) as v---+ oo. 
Since in the left-hand half-plane, p(v) (z) assumes its maximum on the imaginary axis, 
we may restrict our considerations to the imaginary axis, so that p(v) := max{p(vl(iy) : 
y ~ O}. 

Theorem 7.3 indicates that we may expect faster convergence as p(v) is smaller. How­
ever, for small numbers of iterations (say v ::; 5), p(v) will give a rather conservative 
estimate of the speed of convergence, because in some sense it is a 'worst case' estimate. 
In order to get insight into the amplification of individual error components, one may 
use the local amplification factor p(v)(z). Let us consider error components of the form 
a® v, where a is an s-dimensional vector and v is an eigenvector of J with eigenvalue 1. 
By observing that Mv(a®v) = (zv(h>.) ®I)(a®v), it follows that p(v) (h>.) characterizes 
the averaged convergence of the error component corresponding with h>. and that only 
for larger values of v, when the error component with maximal p(v) (h>.) has become 
dominant, p(v) yields a quantitative estimate of the averaged convergence rate. In the 
first few iterations, when all error components play their part, the L2 norm of the local 
amplification factor p(v) (z) provides more realistic estimates than the L00 norm. This 
suggests to define a second global amplification factor: 

(7.21) 

We did not succeed in finding an approach which really minimizes p(v). However, by 
considering the estimate 

(7.22) 

we see that p(v)(z) ::; (K(Q)llZv(z)ll) 1fv, which suggests the separate minimization of 
the factors K(Q) and 11zv(z)ll. We distinguish two approaches. In the first approach, we 
choose Q orthogonal, so that K(Q) = 1. This can be achieved by defining A:= Q- 1 AQ 
by the real Schur decomposition of A, leading to ak = ~k and ck = -11k (see e.g. [GL89]). 
In Chapter 8 this case is elaborated. Here, we analyze a second approach where first 
11zv(z)ll is minimized and then K(Q). We shall do this for the case where A is block­
diagonal. 
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7.3.3 The block-diagonal case 

In the remainder of this section, we shall analyze the case where A := Q-1 AQ is 
block-diagonal and we shall use the still free parameters ak and Ck for reducing the 
magnitude of 11zv(z)ll· However, we first justify our choice of a block-diagonal matrix A 
by considering the damping of the stiff error components. The following theorem presents 
a result on the amplification of the stiff iteration errors. 

THEOREM 7.4 Let the conditions of Theorem 7.2 be satisfied and let A := Q-1 AQ be 
block-diagonal. Then, the averaged amplification factor p<v>(z) = O(z(l-v)/v) as z---+ oo 
and the averaged global amplification factor u(v) is finite if v > 2. 

PROOF For z ---+ oo, it follows from (7.8) that 

Z(z) 

Z(oo) 

(I - z-1 B-1 )-1(! - B-1 A) 

I -B-1A. 

(B may be assumed to be nonsingular because it is required to have positive eigenvalues). 
More generally, we have that 

00 

zv(z) = L(Z(oo))rv/ilO(zl-i), 
i=l 

where for any real x, f x l denotes the first integer greater than or equal to x. We first show 
that all integer powers of Z(oo) greater than 1 vanish. Since zv = QzvQ- 1

, we have to 
show that all integer powers of Z(oo) greater than 1 vanish. Because Q- 1AQ is block­
diagonal, it follows from {(7.10),(7.11)} that T is block-diagonal and from (7.12) that 
Z(z) is block-diagonal. Hence, Z(oo) is block-diagonal with diagonal blocks zkk(oo). 

Since by virtue of Theorem 7.2, these blocks have a zero spectral radius, (Zkk(oo)Y 
vanishes for v 2 2 (this can easily be verified by considering their Schur decompositions). 
Consequently, zv ( oo) itself, and hence zv ( oo), vanishes for v 2 2. From the expansion 
of zv(z) we now immediately obtain zv(z) = O(z1-v) as z ---+ oo. Substitution into 
{(7.20,(7.21)} yields the result of the theorem. D 

From this theorem it follows that the stiff error components may be considered as 
being removed from the iteration error within two (inner) iterations. 

If we only know that Z(oo) has a zero spectral radius, as in the case of the PDIRK 
and PTIRK matrices D and L, then zv(oo) vanishes for v 2 s. Hence, by virtue of 
(7.22) it is seen that for v 2 s we have zv(z) = O(z1-rv/(s-l)l) as z ---+ oo , so that 
p<v>(z) = O(z< 1-rv/(s-l)l)/v) as z---+ oo and u<v) is finite only if 2(1- f v/(s -1)1)/v is 
less than -1, i.e. if s ~ 2. Thus, by virtue of the block-diagonality of the matrix A, the 
PILSRK(T,Q) has a much better stiff initial convergence than the PILSRK(D,J) and 
PILSRK(L,J) methods. 
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Reduction of 11zv(z)ll in the left-hand half-plane 

We derive an estimate for the maximum norm of 11zv(z)ll in the left-hand half-plane 

by using the inequality (7.22). Since A:= Q-1 AQ is block-diagonal, zv(z) is also block­

diagonal with diagonal blocks z;:k(z) given by 

zkk(z) = (1-ukz)h-wkz). 

[ 
(ak - Uk)(l - WkZ) bk(l - WkZ) ] (

7
.
23

) 
(ak - Uk)VkZ +(ck - Vk)(l - UkZ) bkVkZ + (2~k - ak - Wk)(l - Ukz) . 

Here, the parameters Uk, Vk and Wk satisfy (7.11). We first minimize the magnitude 

of llZfk(z)ll. Note that this can be done independently of Q. Having found Zkk, we 
determine Q by minimizing K.(Q) . The representation (7.23) suggests setting ak = Uk 
and ck = vk, to obtain for k E K 

(7.24) 

Note that setting ak = Uk in (7.11) implies ck = vk. 

THEOREM 7.5 Let the conditions of Theorem 7.4 be satisfied, let ak = /Gk , hi :::: 
,-1 (1 + 1 2)ak. Then, with respect to the maximum norm, the averaged amplification 
factor satisfies p(v) ~ [K.(Q)]1fvp, where p = max{ll - 21(12 +1)-1faai; 1 I: k EK} . 

PROOF Let for any matrix M(z) depending on the complex variable z, lllMlll denote the 
maximum norm of the function llM(z)ll in the left-hand half-plane, where II ·II denotes 
the maximum matrix norm. It is easily seen that 

111z111 = max { 12/~k - /2Qk - Qk I· 12/~k - /2Qk - Qk I : k EK}. (7.25) 
(1 + 1 2 )ak /Ck 

By choosing !ck I :::: ,-1 (1+12)ak, we find that 111 Zll I equals the asymptotic amplification 

factor pas given in Theorem 7.2. Hence, lllZvlll ~ lllZIW = pv. Obviously, we can never 

have strict inequality, so that we conclude that II I zv II I = pv. Finally, it follows from 

(7.22) that lllZvlll ~ K.(Q)lllZvlll = K(Q)pv. Thus, the averaged amplification factor p(v) 
is bounded by [K.(Q)]1fv p. This completes the proof of the theorem. D 

We remark that for v --+ oo, we have the estimate p(v) ~ pmax{[K.(S(z))]1 fv : 
Re(z) ~ O}, where S(z) represents the eigensystem of Z(z) and where we assumed that 
Z(z) has distinct eigenvalues. The advantage of the estimate in Theorem 7.5 is that it 
holds for all v. 
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The transformation matrix Q 
In this subsection, we assume that the PILSRK method satisfies the conditions of 

Theorem 7.5. In order to obtain small amplification factors {p(v), a(v)} as defined by 
{(7.20,(7.21)}, we shall use the freedom left in choosing the transformation matrix Q. 
We specify our approach for the case where all eigenvalues ~k ± iTJk of A are complex 
(1/k "# 0), so that a= s/2. Then, the column vectors Qj of Q are defined by 

(Q2k-1, Q2k) = (/3kXk + 6kyk, -6kXk + f3kYk)Qk, k = 1, ... , s/2, (7.26) 

where f3k and 6k are free parameters and Xk ± iyk represent the normalized eigenvectors 
of A corresponding with ~k ± i1Jk such that the first component of Yk vanishes. Here, Qk 
is a transformation matrix satisfying (cf. (7.9)) 

Akk = Q-1 [ ~k 1/k ] Qk, 
k -T}k ~k 

[ 

"'(O: "l'b
2
<>k-2"l'o€k+°'k) l 

Akk ·- k 1+'1'2 
1+ 2 • 

- !II. 2~k - "'(O:k 
"Y°'k 

(7.27) 

It can be verified that the matrix 

Q - 1 [ (1 + "'(2)1/k 
k - "'(("Y2ak - 2"'f~k + ak) (1 + "Y2)("Yak - ~k) 

(7.28) 

satisfies (7.27). By means of (7.26)-(7.28) it is easily verified that we do obtain the 
matrix A= Q-1 AQ. The advantage of this approach is that the resulting matrix Q has 
real entries. For a given value of"'(, the equations (7.27)-(7.29) determine a family of 
transformation matrices Q with free parameters vectors /3 = (f3k), 6 = (6k) and c = (ck), 
where lckl?: "'(- 1 (1 + "'(2 )ak. 

By a numerical search, we found in the case of the 4-stage and 8-stage Radau IIA 
correctors for "'( = 7 /8 the values (7.29) yielding a sequence of satisfactory small ampli­
fication factors p(v) (see Table 7.2) : 

s=4, /3=(5,-4), 6 = (-1, -5), 

a= ~(a1,a2), c = - 1
5
1
6
3 a, 

s = 8, /3=(-0.9,-2,-2,1.1), 6 = (1.1,0.3,0.3,-1.9), 

C =_ilia 
56 . 

(7.29) 

Table 7.2 also lists amplification factors p(v) for the PILSRK(L,J) and PILSRK(D,I) 
methods. This table clearly shows that in terms of p(v)_values, the PILSRK(T,Q) meth­
ods are superior to the PILSRK(D,I) method. With respect to PILSRK(L,I), the p(v)_ 

values of PILSRK(T,Q) are smaller only for large numbers of inner iterations. In fact, 
they become less than those associated with PILSRK(L,I) only if vis greater than about 
10. However, in terms of the a<vLvalues, the PILSRK(T,Q) methods are also superior 
to the PILSRK(L,I) method for small numbers of inner iterations, because in the case 
of PILSRK(T,Q), a<v) becomes finite for v > 2, whereas PILSRK(L,I) has infinite a<v)_ 

values for all v. 
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TABLE .Z-.2: Global~mpliftcation factors pM for,PILSRK( ·, · )methods. 

1.19 
1.09 

0.53 1.86 0.88 0.87 
0.52 1.72 0.88 0.85 
0.51 1.61 0.88 0.83 

0.45 0.90 0.86 0.64 

7.4 The Newton-PILSRK iteration process 

In actual application of the Newton- PILSRK iteration process {(7.3) ,(7.4)}, the inner 
iteration process will not always be iterated to convergence, so that the Newton iterates 
are only approximately computed. This will affect the convergence and stability behavior 
and the computational costs of the integration method. 

7.4.1 Overall convergence and stability 

The overall convergence of the Newton- PILSRK process is determined by the total 
number of inner iterations summed over all outer iterations in one step, that is, the 
effective amplification factors associated with the total iteration error y(j,v) - Yn are 
approximately given by p(i) and a {i), where i denotes the total number of inner iterations 
needed to compute y(j,v), i.e. i = (j - l)r + v , and where r denotes the number of inner 
iterations per outer iteration. In order to see this, we define 

y(j,O) := y(j-1,r), G(~) := F(Y + ~) - F(Y) - (I ® J)~, 
(7.30) 

N :=(I - A ® hJ) - 1 (A ® I). 

By a simple manipulation we find that 

yU.v) _ Yn = M 11 (Y(j-l ,r) _ Yn) + h(I - Mr)NG(Y(j-l,r) _ Yn), j = 1, ... , m, (7.31) 

where Mis defined in (7.7). Ignoring second-order terms, we may set G(Y(j-l ,r) -Yn) = 
0, to obtain 

i := (j - l)r + v. (7.32) 



Parallel Linear System Solvers 95 

From this relation, we see that in a first approximation, the convergence behavior of the 
Newton- PILSRK iteration process is approximately characterized by the amplification 
factors. As a consequence, Table 7.2 applies if we replace v by i. 

A second feature of the overall performance of the integration method is its stability if 
the Newton iterates are not exactly computed. This aspect has been discussed in [HS96], 
where the number of iterations needed to achieve sufficient stability was computed. The 
values of mr for which the method becomes and remains L-stable depends on the predic­
tor used. For the extrapolation (EPL) predictor defined by y(o) = (P ® I)Yn-l, where 
P is such that y(o) has maximal order q = s - 1, and the four-stage and eight-stage 
Radau IIA corrector, these stable mr-values are listed in Table 7.3. In the case of the 
four-stage corrector, the stable mr-values are acceptable for all three iteration strategies, 
but for the eight-stage corrector, only the Newton- PILSRK(T,Q) method possesses an 
acceptable stable mr-value. 

Summarizing, we conclude that with respect to the Newton- PILSRK(D,I)-based 
integration method, the Newton- PILSRK(T,Q) method always generates an integra­
tion method that has a superior convergence and stability behavior. With respect to 
the Newton- PILSRK(L,I)-based integration method, we conclude that the Newton­
PILSRK(T,Q) method: 

1. damps the stiff error components much stronger for i < s (Theorem 7.4), 

2. has a better overall convergence for larger values of i (Table 7.2, with v replaced 
by i), 

3. is much more stable for the 8-stage corrector (Table 7.3). 

7.4.2 Computational costs 

In an actual implementation of the linear solver (7.4), we diagonalize (7.4) by a 
transformation yU. 11

) = (S ® I)XU.11
) to obtain 

(I - s- 1 BS ® hJ)(X(j,ll) - x(j,ll-l)) -(I - s-1 AS ® hJ)X{j,ll-l) 

+(s-1 ® ncu-1J, (7.33) 

where the matrix s-1 BS is diagonal. For the PILSRK(L,I) and PILSRK(T(r ¥= 1),Q) 
methods, the matrices s- 1 BS and S corresponding to the 4-stage and 8-stage Radau IIA 



96 

Method ··· 

PILSrtK(.t;i) 
& r··· 

PILSRK(T('Y ;ti),Q) 

TABLE 7.4: Total computational costs per step. 

!processor s /2 processors 

~d( jtq £~C!+d+2s) ./~~(~d~ + ~CJ +d+ 2s) 

+',lrrtff }!2(i + ;d ) 
+msd(s.+ q - 2d) 

+Smrd2 (1+ fJ) 
+2md(2s +CJ - 2d) 

~lLSRK(TOJ;Q) +smrs{i~.(l.+ ;~) +10mrd2(1 .+ . ·~· ) 

+2md(2s + c/- 2d) ·. +msd(2s + q - 2d) 

Chapter 7 

s processors 

d(jd2 +~CJ +d+ 2sJ 

+4mrd2 (1 + fJ.) 
+md(s + q -2d) 

+8mrd2(1 +;fa) 

+md(2s + q - 2d) 

correctors are given in Appendix B of this chapter. In Appendix A we give a computer 
program type description of the Newton- PILSRK iteration process {(7.3), (7.4), (7.33)} 
and a specification of the computational costs of the most important steps of the algo­
rithm. Here, we present in Table 7.4 the total costs per step for s-stage correctors where 

s is even. In this table, Ct and CJ denote the average costs of one component of f and 
its Jacobian J, respectively. The following conclusions can be drawn: 

1. Newton- PILSRK(L,J) and Newton- PILSRK(T('Y11),Q) are equally expensive, 

2. If mr is fixed and d > s + 1/2Ct , then the costs are minimized for r = 1, 

3. Newton- PILSRK(L,J) and Newton- PILSRK(T('y 11),Q) are to be preferred on s 

processors, whereas Newton- PILSRK(T('y = 1),Q) is to be preferred on one or on a 
processors. 

7 .5 Numerical illustration 

In this section, we compare the new Newton- PILSRK(T(7 /8),Q) method with the 
Newton- PILSRK(L,J) method. In our experiments, we use the EPL predictor defined in 
the preceding section and either the 4-stage or the 8-stage Radau IIA corrector with con­

stant stepsizes. We integrated three test problems taken from the CWI test set [LSV96]. 
In these problems, the initial condition was adapted such that the integration starts 
outside the transient phase. The first test problem is provided by a problem of Schafer 

(called the HIRES problem in [HW91, p. 157]). It consists of 8 mildly stiff nonlinear 
equations on the interval [5, 305] . The second test example is the Pollution problem of 
Verwer [Ver94]. The ODE system consists of 20 highly stiff nonlinear ODEs on the in­

terval [5,60], originating from an air pollution model. Our third test problem, the Ring 
Modulator originating from circuit analysis, is a highly stiff system of 15 equations on 
the interval [O, 10-3], and is due to Horneber [Hor76]. 
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Newton-PftSRK applied to HJRES iJiith h = 15. 

The tables of results present the minimal number of correct digits cd of the compo­

nents of y at the end point of the integration interval (i.e. at the end point, the absolute 

errors are written as 10-cd). Negative cd-values are indicated with*· Tables 7.5- 7.7 lead 

us to the following conclusions: 

1. For fixed values of m ~ 3, the Newton- PILSRK methods always converge and usually 

find the Newton iterate with high accuracy within two inner iterations (in the case of 

the 4-stage corrector, we even have convergence for m ~ 1). 

2. Comparing results for fixed values of mr reveals that r = 1 is usually preferable 

(however, in an actual implementation, m and r should both be determined dynamically, 

see also the remark in §7.2) . 

3. Particularly for the 8-stage corrector, the Newton- PILSRK(T,Q) method is more 

robust than Newton- PILSRK(L,J) for r ~ 2, and approximates the Newton iterate 

usually much better (the better cd-values produced by Newton- PILSRK(L,J) in the 

Pollution problem for r = 2 and m E {3, 4} is due to 'overshoot' and does not mean that 

Newton- PILSRK(L,J) produces a better approximation to the corrector solution). The 

divergent behavior is due to the development of instabilities for small values of mr (see 

Table 7.3). 

Finally, we remark that for the relatively difficult Ring Modulator problem, a par­

allel implementation of the Newton- PILSRK(L,J) method on the four-processor Cray­

C98/4256 shows a speed-up ranging from at least 2.4 until at least 3.1 with respect to 

RADAU5 in one-processor mode (cf. Chapter 4). Since Newton- PILSRK(T(1 =f. l),Q) 

is equally expensive as Newton- PILSRK(L,J), the same speed-ups are expected for 

Newton- PILSRK(T(r =j:. l) ,Q). 
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Appendix A. Costs of PILSRK 

In this appendix we specify the costs of the implementations of PILSRK(L,J) and 
PILSRK(T('y) ,Q). In both methods the iterates satisfy the recursion 

(I - s-1 BS 0 hJ)(X(j,v) _X(j,v-1>) = -(I - s-1 AS 0 hJ)(X(j,v-1>-xU-1>) 

-x(j-l) + h(s-1 A 0 J)F(Y(j-l)) 

+(E 0 I)Xn-1· 

Here, Xn-1 = (S-1 0 I)Yn-1 , X(j ,o) = xU-l), X(o) = (S-1 0 I)P(Yn_i), XU) = XU,r>, 
Yn = (S 0 I)X(m) , P( ·) denotes the predictor operator, m the number of outer iterations 
and r the number of inner iterations. For PILSRK(L,J) and PILSRK(T('Y# 1),Q), the 
matrix s-1 BS is diagonal, for PILSRK(T(l),Q) , it is block diagonal, with 2 x 2 lower 
triangular blocks containing identical diagonal entries. We implemented this recursion 
as in the following diagram. Here, N is the number of integration steps. The Jacobian 
is assumed to be updated every time step. 

Notice that for PILSRK(L,J) and PILSRK(T('y # 1),Q) the matrix s-1 BS is diagonal, 
so that one can omit (o3) and (i3) for this case, if one performs (o2) and (i2) for all i. 
For PILSRK(T(l),Q) we only need a processors to perform the LU-decompositions in 
parallel, where a is the number of complex conjugated eigenvalue pairs. Here we assume 
that s is even, so a = s /2. 
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The following two diagrams list the costs of the most important steps of this algo­
rithm. As before, d is the dimension of the problem. The average costs of one component 
of the right-hand-side function f and one entry of its Jacobian J are denoted by Ct and 
CJ, respectively. The Jacobian is assumed to be full. In the first column the computation 
that has to be performed is listed. The second column gives the number of floating point 
operations required for this computation if only one processor is available. The sequen­
tial costs of the compuation on a and s processors can be found in the third and fourth 
column, respectively. For reasons of simplicity, we did not exploit the lower triangular 
form of the matrix Sin PILSRK(L,I), nor the block diagonal form of the matrix s- 1 AS 
in PILSRK(T('Y),Q). 
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Appendix B. Method parameters 

In this appendix we specify the method parameters of the PILSRK(L,I) and 
PILSRK(T(7 /8),Q) methods for s = 4 and s = 8. We list the matrices s-1 BS and S, 
which are needed for the implementation of formula (7.33). As additional information 
we provide B, the matrix that approximates A. 

PILSRK(L,J) 
s = 4: 
diag{s- 1 BS} 0.1130 0.2905 0.3083 0.1176 l 

[ 
1.0000 0 0 0 

l s -1.3205 1.0000 0 0 
2.1594 -27.2263 1.0000 0 

-119.8988 -66.8265 2 .3158 1.0000 

[ 
0.1130 0 0 0 

l B 
0.2344 0.2905 0 0 
0.2167 0.4834 0.3083 0 
0.2205 0.4668 0.4414 0.1176 

s = 8: 
diag{s- 1 BS} = 

0.0288 0.0865 0.1345 0 .1624 0.1654 0.1427 0.0976 0 .0308 

1.0000 0 0 0 0 0 0 0 
-1.0694 1.0000 0 0 0 0 0 0 

1.0486 -3 .2354 1.0000 0 0 0 0 0 

S= 
-1.0718 7.7636 -8.1101 1.0000 0 0 0 0 

1.1852 -19.0240 62.0182 -88.1175 1.0000 0 0 0 
-1.4887 62.7656 -O.l 720e4 -0.1141e4 11.3694 1.0000 0 0 

2.4708 -908.4889 -0.9526e4 -0.4070e4 39.2573 4.7028 1.0000 0 
-88.2154 -2.0073e3 -l.5590e4 -0.6097e4 58 .3751 7.4699 2.0027 1.0000 

0.0288 0 0 0 0 0 0 0 
0.0617 0.0865 0 0 0 0 0 0 
0.0553 0.1553 0.1345 0 0 0 0 0 

B= 
0.0583 0.1424 0.2261 0.1624 0 0 0 0 
0.0567 0.1483 0.2106 0.2619 0.1654 0 0 0 
0.0575 0 .1454 0.2171 0.2471 0.2572 0.1427 0 0 
0.0571 0 .1467 0 .2144 0.2522 0.2460 0.2124 0.0976 0 
0.0573 0 .1463 0 .2151 0.2510 0.2483 0.2073 0.1338 0.0308 
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PILSRK(T(7 /8),Q) 
s = 4: 

diag{s- 1 BS} 0.1521 0.1986 0.1737 0.2269 l 

[ 
2.9526 0.3159 1.5325 0.0276 l s -7.2663 -0.8756 -1.0553 -0.3113 
3.4202 0.9493 -10.7997 -2 .1 349 

34.8970 4.3753 -42.9039 -5.8960 

[ 
0.1096 -0.0430 0.0268 -0.0080 l B 0.2085 0.3064 -0.0671 0.0211 
0.2484 0.0823 0.2573 -0.0142 
0.2596 -0.0515 0.4219 0.0780 

s = 8: 
diag{s- 1 BS} = 

0.0679 0.0886 0.0768 0.1003 0.0823 0.1074 0.0849 0.1109 

0.1430 0.0149 0.0051 -0.0013 -0.0208 -0.0029 0.0180 -0.0001 
-0.2667 -0.0284 -0.0306 -0.0006 0.0195 0.0034 -0.0182 -0.0002 

0.4848 0.0540 0.0915 0.0083 -0.0050 -0.0010 0.0205 -0.0008 

S= -0.8881 -0.1065 -0.0372 -0.0099 0.0975 0.0101 -0.0112 -0.0072 
1.1326 0.1628 -0.9048 -0.0996 0.2347 -0.0050 -0.1102 -0.0522 
1.6603 0.1105 -0.2681 0.0933 -1.0125 -0.2481 -1.3834 -0.2826 

-5.9025 -0.7539 7.6108 1.0254 -7.3467 -1.0128 -6.3367 -0.8981 
-8.9828 -0.9978 14.1609 1.6360 -14.1886 -1.6730 -12.2810 -1.4897 

0 .0507 -0.0264 -0.0147 -0.0077 0.0061 -0.0034 0.0022 -0 .0008 
0.0295 0.0856 0.0153 0.0162 -0.0104 0.0059 -0.0037 0.0014 
0.0513 0 .1372 0.0952 -0.0314 0.0170 -0.0096 0.0059 -0.0022 

B= 0.1601 0.0455 0.0662 0.1458 -0.0342 0.0201 -0.0127 0.0048 
0.2072 0.0253 0.0569 0.0462 0.1460 -0.0312 0.0131 -0.0034 
0.2495 -0.0151 0 .0590 0.0185 0.1461 0.0202 0.0634 -0.0262 
0.2568 -0.0281 0.0923 -0.0159 0.0405 0.0418 0.2095 -0.0688 
0.2653 -0.0325 0.0873 -0.0924 0.1092 0.0499 0.2190 -0 .0340 
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Chapter 8 

Multistep Runge-Kutta methods 

Abstract This chapter deals with solving stiff systems of differential equations by implicit 
Multistep Runge-Kutta (MRK) methods . For this type of methods, nonlinear systems of dimen­
sion sd arise, where sis the number of Runge-Kutta stages and d the dimension of the problem. 
Applying a Newton process leads to linear systems of the same dimension, which can be very 
expensive to solve in practice. With a parallel iterative linear system solver, especially designed 

for MRK methods, we approximate these linear systems by s systems of dimension d, which 
can be solved in parallel on a computer with s processors. In terms of Jacobian evaluations 
and LU-decompositions, the k-step s-stage MRK applied with this technique is on s processors 
equally expensive as the widely used k-step Backward Differentiation Formula on 1 processor, 
whereas the stability properties are better than that of BDF. A simple implementation of both 
methods shows that , for the same number of Newton iterations , the accuracy delivered by the 
new method is higher than that of BDF. 

8.1 Introduction 

For solving the stiff initial value problem (IVP) 

y'(t) = f(y(t)) , y(to) =Yo, to :S t :S tend , (8.1) 

a widely used class of methods is that of the Backward Differentiation Formulae (BDFs) 

Yn =(KT ® I)y (n- l ) + hn/3 f(Yn) · 

Here, ® denotes the Kronecker product, the vector y(n-l} is defined by (yJ_k, . . . , yJ_1)T, 
where Yi approximates the solution at t = tj and k is the number of previous step points 
that are used for the computation of the approximation in the current time interval. The 
stepsize tn+l - tn is denoted by hn. The scalar /3 and the k-dimensional vector K contain 
the method parameters. They depend on h(n), which is the vector with k subsequent 
stepsizes defined by h(n) := (hn- k+ 1 , . . . , hn)T. In the sequel , I stands for the identity 
matrix and e; for unit vector in the i t h direction. The dimensions of I and e; may vary, 
but will always be clear from the context. For example, the popular codes DASSL [Pet91] 
and VODE [BHB92] are based on BDFs. A drawback of BDFs is the loss of stability if 
the number of step points k increases. As a consequence of Dahlquist's order barrier, no 
A-stable BDF can exceed order 2. Moreover, BDFs are not zero-stable fork> 6. 

A promising class of methods that can overcome these drawbacks of BDFs are the 
Multistep Runge- Kutta (MRK) methods, which are of the form 

Yn = (XT ® I)y(n- l ) + hn(etT ® I)F(Yn) , (8.2) 
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where Yn is the solution of the equation 

R(Yn) = 0, R(Yn) := Yn - (G 0 I)y(n-l) - hn(A 0 I)F(Yn). (8.3) 

Here, Yn is the so-called stage vector of dimension sd, whose components Yni represent 
approximations to the solution at t = tn-l + cihn, where c := (c1, ... , c8 )T is the vector 
of abscissae and s is the number of Runge- Kutta stages. The vector F(Yn) contains 
the derivative values f (Yni) · The vectors a and x, and the matrices A and G contain 
method parameters and are of dimensions x 1, k x 1, s x sands x k, respectively. These 
parameters and the abscissae ci depend on k(n) . We remark that a way of circumvent­
ing this dependence on h(n) is interpolating the previous step points, so that they are 
equally spaced. However, this strategy adds local errors and does not allow good stepsize 
flexibility, see [Sch94, p. 68]. 

Stability of MRKs has been investigated for fixed stepsizes in the literature. Even 
for large values of k, these methods have 'surprisingly' good stability properties [HW91 , 
p. 296]. For example, MRKs of Radau type with s = 3 remain stiffly stable for k ~ 28 
and have modest error constants [Sch94, p. 13]. 

A drawback of using MRKs is the high cost of solving the non-linear system (8.3) of 
dimension sd every time step. Normally, one uses a (modified) Newton process to solve 

this non-linear system. This leads to a sequence of iterates Y~o), Y2l, . . . , Y~m) which 
are obtained as solutions of the sd-dimensional linear systems 

(8.4) 

where Jn is the Jacobian of the function f in (8.1) evaluated in tn, the starting vector 

Y~o) is defined by some predictor formula, and y~m) is accepted as approximation to Yn . 
If we use Gaussian elimination to solve these linear systems, then this would cost ~s3d3 

arithmetic operations for the LU-decompositions. 
In order to reduce these costs, one can bring the Newton matrix I - A 0 hnJn to 

block diagonal form by means of similarity transformations [But76] resulting in 

(I - T - 1 AT 0 hnln)(X~) - x~- 1 l ) 
y(j ) 

n = 

-(T-1 0 J)R(Y~i- 1 l ) , 

(T 0 I)X~) , j = 1, 2, . . . , m. (8.5) 

Here, T-1 AT is of (real) block diagonal form. Every block of T - 1 AT corresponds with 
an eigenvalue pair of A. If the eigenvalue of A is complex, then the block size of the 
associated block in T-1 AT is 2, if the eigenvalue is real, then the block size is l. The 
LU-costs are now reduced to ~d3 and 1

3
6 d3 for the blocks of size 1 and 2, respectively. 

Hairer & Wanner used this approach in their code RADAU5 [HW96a]. The blocks of 
the linear system (8.5) are now decoupled, so that the use of a processors reduces the 
effective costs to 1

3
6 d3 , where a is the number of blocks in T-1 AT. Notice that pairs of 

stage values can be computed concurrently, i.e. it is possible to do function evaluations, 
transformations and vector updates for pairs of stages in parallel if a processors are 
available. 
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By exploiting the special structure of the 2d-dimensional linear systems in (8.5) , it is 
possible to reduce the costs of solving these systems (see, e.g., [Bin85]). Let ~i ± i1Ji be 
an eigenvalue pair and assume that the matrix of the corresponding linear system is of 
the form 

(8.6) 

One easily checks that the inverse of (8.6) is 

(8.7) 

Using 17 processors, the O(d3 ) costs of this approach are id3 (2d3 for the computation 
of J'!, and id3 for the LU-decomposition of r). On 17 processors, an MRK using this 
implementation strategy is 4 times more expensive in terms of O(d3 ) costs than a BDF, 
for which we only have to solve linear systems with a matrix of the form I - hnf3Jn. 

In this chapter, we reduce the implementational costs of MRKs further by following 
the approach of Chapter 7. Here, the matrix A is approximated by a matrix B with 

positive distinct eigenvalues and the iterates y~i) in (8.4) are computed by means of the 
inner iteration process 

(I - B ® hnJn)(Y~j, v) - Y~j , v-l ) ) 

c;;-1) ·-
-(I - A ® hnJn)Y~j , v-l) + c;,!-1l, 

(I - A ® hnJn)Y~j-l) - R(Y~j-l)). 
(8.8) 

The index 11 runs from 1 to r and Y~j , r) is accepted as the solution Y~j) of the Newton 

process (8.4) . Furthermore, y~i,O) = Y~j - l). Since the matrix B in (8.8) has distinct 

eigenvalues, applying a similarity transformation Q that diagonalizes B, i.e. BQ = QD 
where D is a diagonal matrix, leads to: 

(I - D ® hnJn)(X~j , v) - x;/·"'-1
)) = -(I - Q- 1 AQ ® hnJn)X;/·"'-1

) 

+(Q-l @ J)c;,!-l), II= 1, ... , r · 
(8.9) 

The system (8.9) consists of s decoupled systems of dimension d which can be solved in 
parallel. Every processor computes a stage value. The costs for the LU-decompositions 
are now reduced to id3 ons processors. Notice that in order to ensure the non-singularity 
of the matrix (I - D ® hnJn) the positiveness of the eigenvalues of B is required. In 
analogy with Chapter 7 we will refer to (8.8) as PILSMRK, Parallel Linear System 
solver for Multistep Runge- Kutta methods. The combination of modified Newton and 
PILSMRK will be called the Newton-PILSMRK method. 

We will discuss several strategies to choose B such that the inner iterates in (8.8) 
converge quickly to the Newton iterates in (8.4). Experiments show that, if we apply 
more than 2 Newton iterations, then only 1 inner iteration suffices to find the Newton 
iterate. This means that in terms of LU-decompositions and Jacobian evaluations a 
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k-step, s-stage Newton-PILSMRK on s processors is as expensive as a k-step BDF on 
1 processor, whereas the stability properties of Newton-PILSMRK are better. If both 
methods perform the same number of function evaluations, then the accuracies delivered 
by Newton-PILSMRK are also higher than that of BDF. It turns out that the convergence 
behavior of the inner iteration process becomes better if k increases. In particular, the 
inner iteration process for MRKs converges faster than that for the one-step RK methods 
proposed in Chapter 7. 

The outline of the chapter is as follows. §8.2 briefly describes how to determine the 
MRK parameters. In §8.3 we investigate the convergence of the inner iteration process 
for several choices of the matrix B, and we consider the stability of the overall method 
in §8.4. Numerical experiments in §8.5 show the performance of the proposed methods 
on a number of test problems. Finally, we draw some conclusions in §8.6. 

8.2 Construction of MRKs 

A large class of multistep Runge-Kutta methods consists of multistep collocation 
methods, which were first investigated by Guillou and Soule (GS69]. Later, Lie and 
N0rsett considered the MRKs of Gauss type in (LN89] and Hairer and Wanner (HW91] 
those of Radau type. In the useful thesis of Schneider (Sch94] on MRKs for stiff ODEs 
and DAEs a lot of properties of MRKs and further references can be found . 

For convenience of the reader we briefly describe here how one can compute c, G and 
A. Alternative ways of deriving these parameters can be found in (HW91] and (Sch94] . 
In a multistep collocation method, the solution is approximated by a so-called collocation 
polynomial. Given y(n), h(n) and c, we define the collocation polynomial u(t) of degree 
s + k - 1 by 

u(tj) 
u'(tn + Cihn) 

Yi, 
J(u(tn + Cihn)), 

j = n - k + 1, ... , n, 
i = 1, ... ,s. 

The stage vector Yn is then given by (u(tn + c1hn)T, ... , u(tn + c8 hn)T)T. In order to 
compute u(t), we expand it in terms of polynomials </>i and 1/Ji of degree s + k - 1, given 
by 

</>i ( 7j) oii, j = 1, . . . ,k, i = 1, . . . 'k' 
<t>;(cj) 0, j = 1, ... ,s, i = 1, ... 'k' 
1/Jih) 0, j = 1, .. . ,k, i = 1, ... 's' 
1/JHcj) oii, j = 1, ... ,s, i = 1, ... 's. 

Here, Oij denotes the Kronecker tensor and Tj = tn-•;;:-tn, j = 1, . .. , k. In terms of 
these polynomials the expansion of u(t) is given by 

k s 

u(tn +Th) = L </>j(T)Yn-k+j + hn L 1/Jj(T)u'(tn + Cjhn) 
j=l j=l 
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k s 

L </>j(7)Yn-k+j + hn L 1/;j(7)f(u(tn + Cjhn)), 
j=l j=l 

where 7 is the dimensionless coordinate (t - tn)/hn. Clearly, the MRK parameters read 
Gij = </Ji(ci), Aij = 1/;j(ci), aj = </>j(l) and x = 1/;j(l). Notice that the order of the 
approximations u(tn + Cihn), the so-called stage order of the MRK, is s + k - 1. 

To construct the polynomials </Ji ( 7) and 1/Ji ( 7), we expand them as 

s+k-1 s+k-1 
</Ji(7) = L: d</> .7m m,t and 1/Ji(7) = L: d1/J m m,{T . 

m=O m=O 

Substituting the first expression into the defining conditions yields 

1 71 72 1 73 1 7s+k-l 
1 

1 72 73 7s+k-l ( 4.. ) 7k k k k = ei. (8.10) 
0 1 2c1 3ci (s + k - l)cr+k- 2 

d:+k-1,i 

0 1 2c8 3c; (s + k - l)c;+k-2 

The matrix of orders+ kin (8.10) will be denoted by W. For the polynomials 1/Ji(7) we 
derive analogously 

( 

dt,i ) w : 
d:+k-1,i 

To compute A and G, we evaluate </Ji(7) and 1/Ji(7) in 7 = Cj for j = 1, ... , s, yielding 

</Ji ( Cj) 
1/Ji ( Cj) 

Introducing 

[ 1 Cj 
[ 1 Cj 

c;+k-l ] w-lei, 
c;+k-1 ] w-lei+k. 

the matrices G and A are respectively given by 

G = vw-1 [ e1 · · · ek ] and A = vw-1 [ ek+i · · · ek+s ] . 

We now construct the abscissae vector c such that we have superconvergence in the 
step points. Only stiffly accurate Multistep Runge-Kutta methods will be considered, 
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i.e. c. = l. This means that we can omit step point formula (8.2) and obtain Yn+l 

from Yn+l = (e'f ® l)Yn. A well known subclass of stiffly accurate MRK methods are 
the multistep Radau methods, which are A(a:)-stable. Their set of collocation points 
c1 , ... , c8 _ 1 is given (see [HW91, p. 294]) as the roots in the interval [0,1] of 

k 1 8 2 
"'"""' - + "'"""' - - 0 L., c· - T · L., c· - c · - ' 
·=1 • J j = 1 • J 

J j =ft i 

i = 1, ... 's - 1. 

We call the order of approximation Yn+I to y(tn+i) the step point order or, more loosely, 
the order of the MRK. This choice of c leads to step point order 2s + k - 2. 

The appendix to this chapter lists the MRK parameters for s E {2, 4} and k E {2, 3}. 

8.3 Convergence of the inner iteration process 

We now discuss the choice of the matrix B in (8.8) · such that the inner iteration 

process converges rapidly. If we define the inner iteration error by i:W·") := y~i,v) - y~i) , 
then (8.4) and (8.8) yield the recursion 

E(j,v) = Z(h J )E(j,v-1) 
n n n n ' 

Applying the method to Dahlquist's test equation 

y' = >..y, >..EC, (8.11) 

this recursion reduces to 

E(j,v) = Z(z )i:(j,v-1) 
n n n ' (8.12) 

Let µ(·) be the logarithmic norm associated with the Euclidean norm, which can be 
expressed as µ(S) := ~>..max(S +ST) , where Amax(·) denotes the algebraically largest 
eigenvalue of a matrix (see e.g. [HNW93, p. 61]). For dissipative problems µ(Jn) ~ 0. 
The following lemma states that the inner iteration process converges for dissipative 
problems at least as fast as for the 'most unfavorable' linear test equation. For the proof 
of this lemma we refer to [Nev85] . 

In §8.3.1 and §8.3.2 we treat two choices for the matrix B that make Z(zn) 'small ' in 
some sense. To measure Z(zn) we use the following quantities: 

• pUl ( Zn), the (averaged) rate of convergence after j iterations in Zn, defined by 
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• p<j}, the stiff convergence rate after j iterations, defined by 

p<j} := j 11zi,112, Z00 := lim Z(zn) = (I - B-1 A). 
Zn --400 

Z00 will be referred to as the stiff amplification matrix. 

• p(j), the maximal convergence rate after j iterations, defined by 

Since all eigenvalues of the matrix Bare positive, all the poles of the function Z(z) are in 
the right-half complex plane. Consequently, z(j) (z) is analytic in the left-half complex 
plane and on the imaginary axis . Therefore, we can invoke the maximum principle: 

(It suffices to confine ourselves to the positive imaginary axis, because llZ(z)ll is sym­
metric with respect to the real axis.) Taking the lh square root on both sides, it follows 
that 

Since A depends on h(n), B also depends on k(n) . Consequently, the procedure for 
constructing B has to be carried out every time h(n) changes and should not be too 
expensive. 

8.3.1 Constructing B: Crout decomposition 

Let L be the lower triangular matrix of the Crout decomposition of A , i.e. Lis lower 
triangular such that L-1 A is upper triangular with ones on the diagonal. As proposed 
in Chapter 4, we choose B = L . The stiff amplification matrix takes the form I - L - 1 A, 
which is strictly upper triangular. Consequently, p<j} = 0 for j 2: s. For reasons that will 
become clear in §8.3.2, we will refer to this inner iteration process as PILSMRK(L,I) . 

Table 8.1 lists the values of pU) for a few PILSMRK(L,I) methods for the case with 
constant stepsizes. As a reference we included the one-step Radau IIA methods. From 
this table we see that, for the worst-case situation, the convergence of the MRKs is better 
than that of the one-step Runge- Kutta methods. 

In practice, the rate of convergence in other points of the complex plane is also of 
interest. Figure 8.1 shows p(j) (zn) along the imaginary axis Zn = ixn, Xn E IR, for the 
PILSMRK(L,I) method with k = 3, s = 4 and constant stepsizes for j = 1, 2, 3, 4 and 
j = oo . From this figure we clearly see that p<j} = 0 for j 2: s. 

In order to see the effect of variable stepsizes on the convergence rate, we define 

Wi=hi/hi-1 for i =n-k+2, . .. , n 
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meihods with constant stepsizes. 

··''' j = 00 

0.18 
0.15 
0!14 
0.51 
0.47 . 
0.44 
0.811 
0.84 
0.82 

and plotted pU) as function of wi for several PILSMRK methods. Here, wi E [0.2, 2], 

since in an actual implementation, a reasonable factor by which subsequent stepsizes are 

multiplicated lies in this interval. We do not show these plots here, but they can be 

summarized by saying that the influence of variable stepsizes on the rate of convergence 

is modest. E.g., for k = 2, s = 4, pU) E [0.45, 0.58], V j, and for k = 3, s = 4, 

pU) E [0.495, 0.525], V j. 

8.3.2 Constructing B: Schur-Crout decomposition 

Before approximating the matrix A by the lower factor of the Crout decomposition, 

we first transform A to 'a more triangular form', the real Schur form . The next theorem 

shows that this leads to a damping of the stiff error components that is optimal in some 

sense. Since most MRKs of interest have matrices A with at most one real eigenvalue, 

we restrict ourselves to this class. The theorem makes use of the following definition. 

D EFINITION 8.1 For any s x s matrix A with at most one real eigenvalue the matrix class 

MA consists of matrices M with the property that there exists an orthogonal matrix U 

such that 

i = 1, ... ,s /2, for s =even, 

i = 1,. . ., (s - 1)/2, for s =odd. 

THEOREM 8.1 Let A have at most one real eigenvalue. There can be constructed a matrix 

BE MA for which 

1. p';f} = 0 for j > 1, 

2. v ME MA : /d:,l:::; III - M - 1All2 -
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-2 0 4 
iolog(x~i)/ -c-t 

8.1; pq}(l$~) for fJ[!SMJj~(J.,1I) with 
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a 

PROOF Since there is freedom in the real Schur form of the matrix A, we first specify 
how we construct it. Let 'Y be the vector with eigenvalues of A, and ~ and 'T/ be the real 
and imaginary part of "(, respectively, i.e. 'Y = ~ + i'T/. Order the components of 'Y as 
follows (we will motivate this choice later): 

(8.13) 

In addition, if l'T/U~il = l"l[+i/~i+il, then 'T/i > 0. This sequence is such that, if there is 
a real eigenvalue, then it has the lowest index in 'Y and complex eigenvalues are ordered 
in conjugated pairs by increasing value of 'T/J / ~i; the eigenvalue with positive imaginary 
part comes first within a pair. 

Let ej + ie~ be the eigenvector belonging to 'Yi, such that llej + ie~ 112 = 1 and e~ 1 = 0. 
Define 

E = [ e~ e~-1 e~- 1 ] , 

if A has only complex eigenvalues, and 

E = [ er e~ ek e~ e~ e~-1 e~-1 ] ' 
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if A has one real eigenvalue with eigenvector er. One easily verifies that the matrix 

E-1 AE is block diagonal with 2 x 2 blocks 

[ 
~j 'T/j ] 

-T}j ~j ' 

and one block equal to 6 if 'T/l = 0. We orthonormalize the columns of E by a Gram­

Schmidt process, i.e. we construct a lower block triangular matrix K such that EK is 

orthogonal. This matrix EK transforms A to a matrix H : 

H := (EK)- 1 A(EK) = K - 1(E- 1 AE)K . (8.14) 

Since K is lower triangular and E-1 AE is block diagonal, H is lower block triangular. 

We now rotate the diagonal blocks of H by means of a matrix e given by 

e = diag(8j), e - [ cos ()j sin ()j ] 
3 - - sin () i cos () i ' 

81 = 1 if 'T/l = 0 . 

Here, j E {2, 4, ... , s - 1} if 'T/l = 0, and j E {1 , 3, . .. , s - 1} if 'T/l =J 0. We will select 

the angles 01 such that the second assertion of the theorem will be fulfilled . If we define 

S := e-1 He = UT AU, with U := EK8, then Sis the desired Schur form of A. We 

denote the lower factor of the Crout decomposition of S by L . Setting B := U LUT yields 

a stiff amplification matrix that is similar to I - L - l S . Consequently, B E MA and Z /x, 

vanishes for j > 1, thereby proving the first part of the theorem. 

We choose the parameters 01 such that /'1:) = max{ll91 I} is minimized. A straight­

forward analysis shows that 

19 · = -S · ·+1/S · · J J,J } ,} ' 

where 

S ·. J,J t(Hj,j - Hj+I ,j+i) cos(2B1) + t(-Hj,j+I - H1+I ,j) sin(2B1) 

+t(Hj,j + H1+1 ,J+1) , 

t(HJ+1 ,j + H1,1+i) cos(Wi) + t(Hj,j - HJ+l,j+I) sin(20i) 

+t(H1,J+1 + H1+i,i), 

and the diagonal blocks of H and S are of the form 

[ 
H ·. J ,J 

H ·+1 · J ,J 
and [ 

S·. J ,J 

S ·+1 · J ,J 

Using Maple [CGG+91] we established that 11911 is minimized for 

(8.15) 

() t 
H1 ,1H1+i ,1 + Hj,J+1HJ+1 ,J+1 + yf det(H)(llHll} - 2 det(H)) d 

j = arc an 2 2 
mo 7r , 

HJ+l ,j + Hi+I,i+I - det(H) 
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where II · !IF denotes the Frobenius norm. Using these values for B1 in the construction 

of B leads to the second assertion of the theorem. D 

Several remarks should be made with respect to this proof. 

• Unlike for the usual eigenvalue problem, where the eigenvalues and eigenvectors are 

unknown, here we are faced with the problem of computing a real Schur form, given 

the eigenvalues and eigenvectors of A. The proof serves as a recipe how to construct 

B. We remark that the construction of the real Schur form is not developed to be 

cheap, but such that we are able to exploit the freedom in the real Schur form. 

• Applying a similarity transformation Q such that BQ = QD, we again arrive at 

scheme (8.9). There is freedom in the choice of the transformation matrix Q that 

diagonalizes B. If X is a matrix with eigenvectors of B, and ~ and P are diagonal 

and permutation matrices, respectively, then for every matrix Q of the form 

Q =X~P, (8.16) 

we have that BQ = QD. Starting with a fixed matrix X, we determine~ and P 

in (8.16) such that the elements of Q and Q-1 are not too large. 

• Another approach for finding a suitable matrix B, based on rotations that minimize 

p(l), can be found in (HM96]. 

• The linear system solver resulting from this Schur- Crout approach will be referred 

to as PILSMRK(L,U), where the U indicates that we have transformed A before 

approximating it by L . 

We now illustrate the idea that moved us to sort the eigenvalues as in (8.13). For 

simplicity of notation, we assume here that s = 4. If the first order expansion of Z(zn) 

for small Zn is given by 

then Zo = A - B. It can be verified that for the Schur- Crout approach Z 0 is of the form 

where 

0 0 UT 0 01 
0 (34 ' 

0 (44 

), _ 1 TJr 
V----. 

S21 6 
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In order to keep the lower triangular part of Z0 as small as possible, the best we can do 
is sorting the eigenvalues such that those with the smallest value of TJU~k come first. 

Table 8.2 and Figure 8.2 are the analogues for PILSMRK(L,U) of Table 8.1 and 
Figure 8.1. In Figure 8.2 we clearly see that pljj vanishes for j > 1. The worst-case 
pULvalues in Table 8.2 are smaller than those in Table 8.1. The difference between 
PILSMRK(L,I) and PILSMRK(L,U) becomes larger in favor of PILSMRK(L,U) as s 
increases. This can be understood by realizing that for the Crout option, we approximate 
the matrix A with s2 parameters by a matrix B with s(s + 1)/2 entries, whereas for the 
Schur-Crout case, the matrix UT AU with s(s + 1)/2 + l nonzero entries, where l is 
the number of complex conjugated eigenvalue pairs, is approximated by UT BU with 
s(s + 1)/2 parameters. The extra price that we have to pay is the construction of the 
real Schur decomposition of A every time Wj changes for some j . Since in practice s « d, 
we do not consider this as a serious drawback. 

The matrices D and Q that result from the Crout and Schur- Crout approaches are 
given in the appendix to this chapter for several values of k and s. 

8.4 Stability 

We now investigate the stability of the corrector formula (8.3) and the PILSMRK 
method given by (8.8) for test equation (8.11) solved with constant stepsizes h. We only 
consider stiffly accurate methods, i.e. Yn = (e'J 0 I)Y~m , r )_ 

Following [Sch94], we write (8.3) in the form 

Y(n) = M(z)y(n-1), 
M(z) = [ e'J (I - ~A) -1G] ' z := h>.., 
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where the (k - 1) x k matrix N is given by 

0 1 0 .. . 

~I N= 
1 

0 0 

The stability region is defined by 

S := {z E C I p(M(z)) < 1}, 
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(8.17) 

where p( ·) denotes the spectral radius function. We use the quantity .fj(mr) to measure 
the stability region (see [HW91, p. 268]), where 

D := -inf {Re(z) I z ~ S}. 

In practice, the PILSMRK method will be used to solve the corrector only approx­
imately. Therefore we do not attain the stability of the corrector. For conducting a 
stability analysis for the PILSMRK methods we assume that in each step m outer and r 
inner iterations are carried out. In addition we assume that the predictor is only based 
on the stage vector in the previous step point, 

YJO ,r) = (P © I)Y~:'(), (8.18) 
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where P is an s x s matrix. From (8.12) and (8.3) we derive a recursion in v: 

yJi,11) = Z(z)YJi,11-1) +(I_ zB)-1Gy(n-1). 

Chapter 8 

An simple manipulation, in which we use yJi,O) = yJi-l,r), leads to a recursion in j: 

yJi,r) = zr(z)YJi-1,r) +(I - zr(z))(I - zA)-1Gy(n-1). 

Substituting (8.18) yields the following recursion in time: 

which we write in the form 

From (8.19) we see that 

MJ~r)(z) =(I - zmr(z))(I - zA)-1G, 

Since we restrict ourselves here to stiffly accurate methods, 

M(mr) [ N ] 
11 = TM(mr) ' 

es 21 

M(mr) _ [ Ok-1 ,s ] 
12 - TM(mr) ' 

es 22 

(8.19) 

where O;; denotes an i x j zero matrix. Notice that this linear stability analysis does 

not distinguish between outer and inner iterations. In analogy with (8.17) we define the 
stability region after mr iterations by 

5(mr) := {z E C I p(M(mr)(z)) < 1} 
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and the stability measure 

fj(mr) := -inf {Re(z) I z ~ s<mr)} . 

It is clear that 

lim fj(mr) = D. 
mr~oo 

Table 8.3 and 8.4 list fj(mr)_values for the k-step s-stage MRK of Radau type for 

k E {1, 2, 3, 4} and s E {2, 4, 8} with PILSMRK(L,I) and PILSMRK(L,U), respectively. 

For s ~ 4, we used the predictor that extrapolates the previous stage values, i.e. we 

determined Pin (8.18) such that Y~o , r) has maximal order. Since extrapolating 8 stages 

leads to very large entries in P, the predictor for the 8-stage methods was chosen to be 

the last step value predictor. If fj(mr) > 4, then this is indicated by *· 
The fj(mr)_values for BDF are independent of mr, because for the linear test problem 

the corrector equation is solved within 1 iteration. For k = 1, 2, 3 and 4 these values are 

0, 0, 0.0833 and 0.6665, respectively. 
From these tables we see that for s ~ 4 the stability of PILSMRK(L,I) is better than 

that of PILSMRK(L,U). Fors = 8 the D-values are comparable. Relatively to its order, 

the stability of PILSMRK is much better than that of BDF. As expected, we see that 

increasing s and decreasing k improves the stability of MRK. If we solve the corrector 

equation only approximately, then sometimes the stability of the resulting method is 

even better than that of MRK. For s = 4 and mr ~ 2, the method is not stable, due to 

the extrapolation predictor, which is very unstable as stand-alone method. Notice that 

the f5< 00Lvalues are the values for the underlying MRK corrector. 

To get an idea of the shape of S(mr), Figure 8.3 shows S(mr) for PILSMRK(L,U) 

with 3 steps and 4 stages, where mr E {3, 5, oo }. 
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FIGURE 8.3 ; 5(mr) for PILSMRK(L,U} with k = 3, s = 4. 

8.5 Numerical experiments 

In this paragraph we study the performance of Newton-PILSMRK numerically for 
more difficult problems then the linear test problem. We conduct three types of exper­
iments. Firstly, we investigate how many inner iterations PILSMRK needs to find the 
Newton iterate. For this objective, we implement Newton-PILSMRK with fixed step­
sizes, a fixed number of Newton and PILSMRK iterations per step and fixed values of s 
and k. 

Secondly, we compare the Newton-PILSMRK method with a BDF formula using 
modified Newton. Since we expect that both methods will benefit to the same extent from 
control strategies (i.e. dynamic Newton iteration strategy, stepsize control, etc.), we again 
perform this experiment using fixed values of h, s, k, rand m. For a comparison of MRK 
codes with one-step Runge- Kutta codes and BDF codes, we refer to Schneider [Sch94], 
who gives an excellent overview of this subject. 

Finally, the parallel performance of Newton-PILSMRK will be investigated. 
Two problems from the 'Test Set for IVP Solvers' [LSV96] are integrated. Our first 

test example is a problem of Schafer (called the HIRES problem in [HW91, p. 157]) 
and consists of 8 mildly-stiff non-linear equations on the interval [5, 305]. (We adapted 
the initial condition here such that the integration starts outside the transient phase.) 
We used stepsize h = 15. The second test problem originates form circuit analysis and 
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TABLE.8 .5: Results of PILSMRK(L,l) on test problems. 

3.8 
3 .. 8 
4.2 
4.3 
4 . .3 
6.5 
6.5 
6.4 . 

.. .... ·6;5 
6.5 
6.4 •·. 
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describes a ring modulator. We integrate this highly stiff system of 15 equations on the 
interval (0, 10-3] with stepsize h = 2.5 · 10-1 . Horneber [Hor76] provided this problem. 

For s > 1 we implemented the extrapolation predictor as defined before, i.e. based 
on the previous stage vector. For BDF we used the last step point value as predictor. 
We tried extrapolation of more step points, but this did not give satisfactory results for 
both test problems. The starting values Y1, Y2, ... , Yk-l were obtained using the 8-stage 
Radau IIA method, in order to be sure that the integration is not influenced by some 
starting procedure. In the implementation of BDF we solved the non-linear equation of 
dimension d with modified Newton, using m iterations per time step. 

In the tables we list the minimal number of correct digits cd of the components of the 
numerical solution in the endpoint, i.e. at the endpoint, the absolute errors are written 
as 10-cd. Negative cd-values are indicated with *· The numbers of stages, steps, inner 
and outer iterations are given by s, k, r and m, respectively. 

Tables 8.5 and 8.6 show that the PILSMRK iterates for r = 1 are (almost) of the 
same quality as the Newton iterates, provided that we perform more than 2 Newton 
iterations. 

We also see that the performance of PILSMRK(L,U) is comparable to that of the 
(L,I) variant. Although PILSMRK(L,U) converges faster than PILSMRK(L,I), the 
latter has better stability properties for s ~ 4. Apparently, these effects neutralize each 
other for these test problems. However, Tables 8.1- 8.4 indicate that PILSMRK(L,U) 
can become better than PILSMRK(L,J) for s > 4. 

For the 4-stage Newton-PILSMRK, the k = 3 results are not better than the k = 2 
results. Performing not more then 10 Newton iterations, which is not sufficient to solve 
the corrector equation, is responsible for this . Experiments confirmed that using more 
than 10 iterations for the 3-step 4-stage MRK yields higher accuracies than for the 2-step 
4-stage method. 
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From comparing Table 8.7 with Tables 8.5 and 8.6 we learn that Newton-PILSMRK 
reaches higher accuracies than BDF for the same number of Newton iterations. However, 
if we want to solve the corrector equation entirely, one would have to perform more 
Newton iterations for Newton-PILSMRK than for BDF, since the latter is of lower order. 
Solving the ring modulator, BDF suffers from stability problems for k = 6, whereas the 
methods with k :S 4 give cd-values that might be too low in practice. 

For a fair comparison of BDF with the new method one should take into account the 
costs of the Butcher transformations as well. Experiments in Chapter 4 (cf. Table 4.9) 
show that for the ring modulator problem, these costs are less than 103. Since the 
sequential costs on s processors are O(sd) for the transformation costs, O(d2 ) for the 
forward-back substitutions and O(d3 ) for the LU-decompositions, we expect that the 
contribution of the transformation costs will rapidly decrease for larger problem dimen­
sions. For tests of the behavior of the linear algebra part on OD Es of higher dimension, 
we refer to Chapter 6, which studies the linear algebra costs as function of the problem 
dimension (up to dimension 660) for a method that is comparable to PILSMRK in terms 
of the solution of linear systems. 

TABLE 8.6:}'Results of P/LSMRK(L,U} on test problems. 

Ring Modulator 
.:: s li\#3 m='4 m=3 m=4 m=lO 

.. 27 4;2 4.8 3.9 3.8 3.8 
4;3 5.0 3.8 3.8 3.8 
4,3 5.0 * 3 .. 8 3.8 3.8 

3~3 ~'.2 4.7 * 4.1 4.3 4.3 
3,2 4'.3 4.8 .. 4.2 4.3 4.3 
lt2 4:3 4.8 .. 4.2 4.3 4.:t 

*' 4;9 5.1 .. * 5.8 6;3 8.2 
2.9 4.4 4.9 .. * 5.8 6.4 8.2 
3:7 4.4 4.9 * * 5.8 6.4 8.2 

·*·· ... 4.9 * * 5.8 6.3 8.1 
4.4 4.9 * * 5.8 6.4 8.1 
4.'4 4;9 * 5.8 6.4 8.1 

In order to show how the Newton-PILSMRK method performs on ans-processor com­
puter, we implemented the 3-step 4-stage Newton-PILSMRK(L,I) on the Cray C98/4256 
and integrated the ring modulator, using again 4000 constant integration steps. The 
Cray C98/4256 is a shared memory computer with four processors. Table 8.8 lists the 
speed-up factors of the runs on four processors with respect to the runs in one-processor 
mode. Since we did not have the machine in dedicated mode during our experiments (on 
the average we used 2.5 processors concurrently), we used a tool called ATExpert [Cra94b] 
to predict the actual speed-up factors on four processors. In practice these values turn 
out to be very reliable. Denoting the fraction of the code that can be done in parallel 
by f p, the optimal speed-up on N processors according to Amdahl's law is given by the 
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formula 1/(1 - f P + f p/N). ATExpert produces these optimal speed-up values, based 

on estimates of the parallel fraction f p. These values are also listed in Table 8.8. 

We compiled the codes using the flags -dp, -ZP and -Wu"-p". The environment 

variables NCPUS and HP _DEDICATED were valued 4 and 1, respectively. We refer to the 

Cray C90 documentation [Cra94a] for the specification of these settings. 

From Table 8.8 we conclude that the Newton-PILSMRK methods have a satisfactory 

parallel performance. With respect to the scalability of the method, we remark that the 

number of processors involved equals the number of stages s. Since the step point order 

is given by 2s + k - 2, using more than four processors leads to an order that might be 

too high for most practical applications. Therefore, we aim at two or four processors, 

which are natural numbers for many computer architectures. 

·-- . - -- . 

TA a LE 8 ;S: · Speed-upfactdr <Jf 3-step .~ -st~~~ NewtOniPiLSMRK(IJ)I) for rin,g Wit@1Ul~l~q!)i } \ 

Actual speed~tlp 
Optimal speed"UP 

m=3 
3,3 
3,9 

8.6 Summary and conclusions 

In this chapter, we proposed the Newton-PILSMRK method, which is a combination 

of a Newton process applied to a Multistep Runge-Kutta method with a Parallel Iterative 

Linear System solver. The non-linear equations that arise in an MRK are usually solved 

by a modified Newton process, in which we have to solve linear systems of dimension sd, 

where s is the number of Runge-Kutta stages of the MRK and d the dimension of the 

problem. PILSMRK computes the solutions of these linear systems by means of an inner 

iteration process, in which we solve s decoupled systems of dimension d. To achieve this 

decoupling, we have to approximate a matrix A with complex eigenvalues by a matrix B 
with positive distinct eigenvalues. It turns out that: 
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• The most efficient parallel implementation of an MRK with a Newton process is 4 
times more expensive than Newton-PILSMRK on s processors in terms of O(d3 ) 

costs. 

• If we apply more than 2 Newton iterations, then in practice PILSMRK with only 
1 inner iteration often suffices to find the Newton iterate. 

• In terms of Jacobian evaluations and LU-decompositions, the Newton-PILSMRK 
method with k-steps and s-stages is equally expensive on s processors as the k-step 
BDF on 1 processor, whereas the order is higher and the stability properties are 
better than that of BDF. 

• Tests with implementations of Newton-PILSMRK and BDF without control strate­
gies on two problems from the CWI test set show that for the same number of 
sequential function evaluations, Newton-PILSMRK delivers higher accuracies than 
BDF, although Newton-PILSMRK did not solve the corrector equation entirely. 

• Increasing the number of previous step points k, leads to a better convergence 
behavior of PILSMRK, but worse stability properties of the MRK. 

• In a linear stability analysis, performing more than 3 iterations (inner or outer) 
suffices to attain at least the stability of the MRK corrector, ifs ~ 4. 

• Of the two options proposed here for choosing the matrix B, Crout and Schur­
Crout, the latter has a better convergence behavior, but its stability properties are 
worse for s ~ 4. 
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Appendix 

In this appendix we list the parameters c, G and A in (8.3) for the k-step s-stage MRK 

method of Radau type fork E {2, 3} and s E {2, 4}. Moreover, we provide the PILSMRK 

parameters 8 and Q, where 8 =diag(D) and D, Qare the matrices in (8.9), for both the 

Crout approach PILSMRK(L,I) and the Schur- Crout approach PILSMRK(L,U). 

s = 2, k = 2: 

cT= 0.39038820320221 1.00000000000000 l 

G= 
-0.04671554852736 1.04671554852736 ] 

-0.02010509586877 1.02010509586877 

A 
0.40044075113659 -0.05676809646175 ] 
0. 7707238584 7003 0.20917104566120 

Crout: 

OT= 0.40044075113659 0.31843196932797 l 

Q= 
1. 00000000000000 1.0000000000000~ ] 9.39806495685529 

Schur- Crout: 

OT= 0.36028586267747 0.35392212182843 l 

Q= 
0.06418485435680 0.05604152383747 ] 
0.99793802636797 0.99842843890084 

s = 2, k = 3: 

cT= 0.42408624230810 1.00000000000000 

G= 
0.01290709720739 - 0.10843463813621 1.09552754092881 

0 .0035458804 7065 - 0. 0462338603965 7 1.04268797992593 

A 
0.38745055226697 - 0.04598475368028 ] 
0. 77239469511979 0.18846320542493 

Crout: 

OT= 0. 38 7 45055226697 0.28013523838816 l 

Q= 
1.00000000000000 1.0000000000000~ ] 7.19743219492460 

Schur- Crout: 

aT= 0.33129449207677 0.32761955124138 l 

Q = 
0.08083975113162 0.07616492879483 ] 
0.99672711141866 0.99709523297510 
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s = 4, k = 2 : 

cT= 0.09878664634426 0.43388702543882 0.80169299888049 1.00000000000000 l 

[ 
-0.00087353889029 1.00087353889029 

l G= 0.00062121019919 0. 9993 78 78980081 
-0.00032939714868 1.00032939714868 
-0.00003663563426 1.00003663563426 

[ 
0.11996670457577 -0.03384322082318 0.01835753398261 -0.00656791028123 

l A 0.26010642038045 0.20159324902943 - 0.03956525951247 0.01237382574059 
0.23561500946812 0.41088455735437 0.17597260265111 -0.02110856774179 
0.24141835002666 0.38984924120599 0.31101721961059 0.05767855352250 

Crout : 

5T= 0.10617138884400 0.27770096849016 0 .27 497060030028 0.11996670457577 l 

[ 
0 0 0 0.01481904140434 l 

Q= 0 0 0.00220678551539 - 0.02486729636785 
0 0 .388968613 70956 -0.38581432071631 0. 05312025222596 

1.00000000000000 0.92125100681023 - 0. 9225 7381278026 0.99816844890362 

Schur-Crout : 

OT= 0.17879165196884 0.15567835604316 0.18725864804630 0.18660124038403 l 

[ 
-0.05047735457027 -0.05698986733483 0.04780729735701 0.04801402184956 l 

Q= 0.17096598389037 0.17933373843615 -0.16592112501907 - 0.16634392504346 
-0.15139062605533 -0.08731023751861 0.17251778528806 0.17091936180350 
-0.97226722014607 -0.97824766174222 0.96975370911955 0.96995408348419 
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s = 4, k = 3: 

CT= 0.10504182884419 0 .44825417107884 0.80977028814179 1.00000000000000 l 

[ 
0.00007 487 445528 -0.00195646912651 1.00188159467123 

l G 
-0.00007345206497 0.00148038414152 0.99859306792346 

0.00003966973124 -0.00083011136249 1. 00079044163125 
0.00000077039880 -0.00008665832447 1.00008588792568 

[ 
0.12388725564952 -0.030527207 46880 0.01502960651127 -0.00515454606376 

l A 
0.27600575210564 0.19832624728391 -0.03534802573852 0.01060367743938 
0.24659262259186 0.41336961213203 0.16850574024079 -0.01944845872291 

0.25397302181219 0.39037260118042 0.30064393200968 0.05492532747083 

Crout: 

oT= 0.09980104557325 0.26112476902731 0.26633715617793 0.12388725564952 l 

[ 
0 0 0 0.01885332656568 l 

Q= 
0 0 0.00429974732457 -0.03652952061848 
0 0.38485479574542 0.39111661588660 0.09232717942550 

1.00000000000000 0.92297713199827 0.92033108442036 0.99487981090186 

Schur- Crout: 

OT= 0.17281106755693 0.15348751145786 0.18030166423062 0.17980311756297 l 

[ 
-0.037 4 7602767829 -0.04253832729434 0.03538720965186 0.03552524964325 l 

Q= 
0.15438230915055 0.16281308949598 -0.14969201305536 -0 .1500248 7334226 

-0 .169079286 73314 -0.11582715575719 0 .18786 790085145 0.18664 755906307 
-0. 97271467798559 -0. 97891085323893 0.97007509938672 0.97025418458887 
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Chapter 9 

Estimating the error 

Abstract For implicit Runge-Kutta methods intended for stiff ODEs or DAEs, it is of­

ten difficult to embed a local error estimating method which gives realistic error estimates 

for stiff/algebraic components. If the embedded method's stability function is unbounded at 

z = oo, stiff error components are grossly overestimated. In practice some codes 'improve' such 

inadequate error estimates by premultiplying the estimate by a 'filter ' matrix which damps or 

removes the large, stiff error components. Although improving computational performance, this 

technique is somewhat arbitrary and lacks a sound theoretical backing. In this chapter, we 

resolve this problem by introducing an implicit error estimator. It has the desired properties 

for stiff/algebraic components without invoking artificial improvements. The error estimator 

contains a free parameter which determines the magnitude of the error, and we show how this 

parameter is to be selected on the basis of method properties . The construction principles for 

the error estimator can be adapted to all implicit Runge-Kutta methods, and a better agreement 

between actual and estimated errors is achieved, resulting in better performance. 

9.1 Introduction 

We shall consider the problem of estimating the local error in a single step when an 

implicit Runge-Kutta method (IRK) is applied to a stiff system of ordinary differential 
equations 

y'(t) = J(y(t)), y(to) =Yo, 

Using standard notation, [HW96b], we write ans- stage IRK (A, b) in the form 

y 

Yn+I 

1 © Yn + h(A 0 I)F(Y) , 

Yn + h(bT 0 I)F(Y) , 

(9.1) 

(9.2) 

(9.3) 

where Yn approximates y(tn) . Furthermore, h is the stepsize, Y is the sd- dimensional 
stage vector whose s component stage vectors Yi approximate y(tn + cih). The abscissae 

are defined by c =Al, with 1 = (1, 1, ... , l)T . Finally, F stands for the component- wise 
evaluation of f , i.e. 

By solving the nonlinear system (9.2) we obtain Y and compute Yn+I from (9.3). (Here 

we leave aside the option of solving for the stage derivatives F(Y) .) 
The primary means to control the accuracy of the computational process is to vary the 

stepsize. In order to do this we need estimates of the error committed in each individual 
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step, the local error. Let y(t; r, 11) denote a solution to the differential equation with 
initial value y(r) = 11· Then the local error in Yn+I is t: = Yn+I -y(tn+1;tn,Yn)· The 
quantity t: is estimated by computing a second approximation, Yn+I, to y(tn+I; tn, Yn) . 
In embedded IRK methods, this is obtained by taking another linear combination b of 
the stage derivatives. In the sequel we will use the following definition. If t: = O(hP) , 
then Yn+I is said to be of local order p. 

9.2 Error estimation in RADAU5 

Because of difficulties in finding b such that the order of the error estimate is suitable, 
one may have to introduce extra parameters. Let us consider the widely used Radau IIA 
methods, [HW96b, p. 123], where the following formula for Yn+I is used: 

Yn+i = Yn + h ( bof (Yn) + (f>T ® I)F(Y)) . (9.4) 

Here b0 is a free parameter and b is an s- dimensional vector, which is determined such 
that Yn+I is of local order s + 1, i.e., b must satisfy the order conditions 

C b = (1- bo, 1/2, 1/3, . .. , l/s)T. 

The s x s matrix C has entries c,1 = c;-1 Note that putting b0 = 0 in (9.4) would by 

the order conditions lead to the same formula as (9.3). Consequently, b0 =f. O; at least 
one extra parameter is necessary to obtain a nonzero error estimate. 

The estimate t: is now computed as 

f = Yn+l - Yn+l , (9.5) 

and Yn+i is accepted as an approximation to y(tn+i) if llt:ll is less than the specified 
tolerance. As t: is dependent on the stepsize, its ratio to the tolerance is also used to 
compute the next stepsize. 

Most IRKs are constructed in such a way that they are at least A- stable. However, 
the reference formula (9.4) is normally not A- stable. Consequently, llt:ll can be very 
large due to large stiff error components. In practice this is typically the case, since IRK 
methods are indeed intended to solve stiff problems or DAEs. 

In RADA US, [HW96a], which is an implementation of the 3- stage Radau IIA method, 
Hairer and Wanner use the following remedy, [HW96b, p. 123], which is attributed to 
Shampine [SB84]. A modified error estimate f. is constructed from 

f.= (I - 1hJ)-1 t:, (9.6) 

in which Yn+I is computed from (9.4) with b0 = /, the single real eigenvalue of A. The 
matrix (I - 1hJ)-1 is then available and factorized from the Newton iteration used to 
solve (9.2). To see the effect of this transformation, consider the test equation y' = >..y; we 
now have f.-+ 1 as h>.. -+ oo, as opposed tot:-+ oo. The purpose of the premultiplication 
by (I - 1hJ)-1 is thus to keep the error estimate bounded also for large values of h by 
filtering out stiff error components. 
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9.3 Case study: The implicit Euler method 

The filtering technique has also been used in other contexts where it has a theoretical 
foundation in terms of the map from a residual to the corresponding error. In the context 
above, however, it is a trick- albeit a necessary one- in order to restore the full potential 
of the Radau IIA method. 

In order to see where and how the filtering is justified, we consider the simplest 
Radau IIA method, i.e. the implicit Euler method 

Yn+i = Yn + hf(Yn+i) · (9.7) 

If we insert the local solution fj(t; tn, Yn) into this discretization, there results a defect, 
or local residual o: 

(9.8) 

We find the local error f = Yn+i - y(tn+l;tn,Yn) by subtracting (9.8) from (9.7) and 
obtain an algebraic relation between the residual and the error: 

(9.9) 

Linearizing and solving for f we obtain the error/residual relation, 

(9.10) 

This equation is the mathematical justification of 'filtering'. As is well- known, there 
is an important conceptual as well as numerical difference between a residual and its 
corresponding error-the defect and error are elements of different spaces. Although this 
equation is well established, [HNW93, p. 369], it is frequently overlooked. The reason 
seems to be an overemphasis on asymptotics; as hJ ---+ 0 we have f ~ 8, i.e. in the non­
stiff case it does not matter if one estimates f or 8, but in the stiff case the difference is 
known to be very significant. This observation has led to the view that a 'poor' error 
estimate can be improved by the premultiplication of a filtering matrix. Even if this 
works in practice, such arbitrariness in error estimation ought to be replaced by a search 
for qualitatively correct error estimates. Note that in embedded IRK methods, filtering 
is in principle never justified since one normally estimates a local error, never a local 
residual. The situation may, however, be different for defect estimation. 

In the next section we suggest an error estimate which has an inherent damping of 
stiff error components as a design criterion. No extra filtering is required or permitted (as 
it cannot be justified). As a starting point we note that the poor asymptotic behavior of 
fas defined by (9.4) is caused by (9.4) being essentially an explicit formula. Thus, Yn+l is 
computed from old data, the stage derivatives and the explicitly calculated hf (Yn)· This 
turns the error estimator formula effectively into an explicit method, and consequently 
all hopes for a proper behavior for large values of h are in vain. 
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9.4 An implicit error estimate 

Instead of (9.4) we propose to use an implicit reference formula of the structure 

Yn+i = Yn + h (bof(Yn) + (bT 0 I)F(Y) + "'(f(Yn+d) , (9.11) 

where "Y is such that (I - "fhJ)- 1 is available from the (transformed) Newton process 
used to solve for Y from (9.2). Solving Yn+i from (9.11) by a modified Newton process 
leads to the recursion 

rU> 

. (j+i) 
Yn+i 

The natural starting value is y~~ 1 = Yn+i · Since we are computing an error estimate 

we do not need high accuracy and may consider the first Newton iterate y~~ 1 as the 
reference formula itself. This yields 

. (1) -1 (( ' T T ) A ) Yn+i = Yn+i + h(I - "'(hJ) (b -b ) 0 I F(Y) + bof(Yn) + "Yf(Yn+1 . 

In this formula, we determine b such that y~~ 1 is of local order s + 1, which means that 
we require 

C b = (1 - bo, 1/2, 1/3, ... , 1/s)T - "'fl. (9.12) 

The parameter b0 is free but required to be nonzero in the case Cs = 1, as taking bo = 0 
then yields Yn+i = Yn+l · 

For methods with Cs = 1 we have c-1 1 = es and 

y~~ 1 = Yn+i + h(I - "'(hJ)- 1 ( (-boeTc- T 0 I)F(Y) + bof(Yn)) 

Consequently, the error estimator formula 

. (1) 
Yn+i -Yn+i 

boh(I - "'fhJ)-1 ((eTc-T 0 I)F(Y) - f(Yn)) 

(9.13) 

(9.14) 

becomes a homogeneous function of b0 . In other words, the choice of b0 determines the 
magnitude of the error estimate. 

In general, we define the error estimator formula by 

. (1) 
Yn+l - Yn+l 

h(I-"'(hJ)-1 (((bT-bT) @I)F(Y)-bof(Yn)-"Yf(Yn+d) · (9.15) 
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Now consider the test equation y' = >.y, for which 

Y. (1) - R. (1) (z)y 
n+l - n' z := h>.. 

The value of ..k(ll(oo) of the reference formula is known to be of relevance to the size of 
the estimated error in the stiff components. Although this is not a matter of stability, it 
is desirable that ..k(l) ( oo) is fairly small. A straightforward derivation yields 

.R(ll(z) = R(z) + _z_ ((fiT - bT)(I - z A)-11 + b0 + "(R(z)), 
1 - "(Z 

(9.16) 

where R(z) is the stability function of the implicit Runge-Kutta method. If A is non­
singular, we thus obtain 

' ( ) bo lim R 1 
( z) = - - . 

z-+oo "( 
(9.17) 

Thus the stiff error components are damped if lbohl < l. This damping is desirable as 
the error estimator will 'see' a stiff error component from the previous step's iteration 
error multiplied by lbohl-

For an s- stage Radau IIA method one can easily give an explicit formula for our new 
error estimator. If we write R(z) = PR(z)/QR(z) and normalize PR and QR such that 
QR(z) is manic (e.g. for s = 3 we have QR(z) = z 3 - 9z2 + 36z - 60) , then by (9.16), 
R(z) - .R(ll(z) is a rational function with denominator (1 - v)QR(z) . Thus the degree 
of the denominator is s + l. By (9.17) the numerator then has degree at most s + l. As 
the local order of the error estimator is s + 1, however, the numerator only contains a 
single power of z, viz. zs+1 . It follows that 

b• s+l 

R ( ) - R. ( 1) ( ) - - ...,.----o_z.,...----,--,-
z Z - (1 - "(Z)QR(z) 

(9.18) 

For the 3- stage Radau IIA, R(z ) - R(l )(z) thus has a four- fold zero at z = 0 and the 
same poles as R(z ) with the exception that z = lh is a double pole. 

REMARKS Note that if bT = eJ A, where e8 is the sth canonical basis vector of lR8
, then 

(9.15) and (9.6) differ only by a factor boh- The condition bT = eJ A ('stiff accuracy') , 
holds for all Radau IIA methods as well as for the Lobatto IIIA and IIIC methods. For 
these methods our implicit error estimator justifies filtering by providing an estimate 
with the same effect. For other methods, however , one must be more careful. Thus e.g., 
it is incorrect to use filtering for the implicit midpoint method, which is a Gauss method, 
but harmless to use it for the trapezoidal rule, which falls into the Lobatto IIIA cate­
gory. In order to avoid mistakes, we suggest that the construction of implicit estimators 
is considered to be the normal route instead of filtering. Finally we remark that even 
in cases when the error estimator formula is not a homogeneous function of b0 , we may 
select the magnitude of the error estimator with a multiplicative factor; we may consider 



132 Chapter 9 

E(z) = O(R(z) - R(l) (z)) as the error estimator, where the parameter 0 is to be carefully 
determined so that the estimator gives a proper approximation to the actual error. This 
technique may be of particular importance for DAEs. 0 

9.5 Choosing b0 

We shall finally discuss the choice of the free parameter b0 , and limit ourselves to 
methods with c8 = 1 such as Radau IIA methods. Specifically, we will motivate a 
suitable choice of b0 for the 3-stage, 5th order Radau IIA method. For such methods the 
new error estimator is a homogeneous function of b0 , i.e. b0 determines the magnitude of 
the error estimate. 

Today it is common to use 'local extrapolation', i.e. the embedded reference formula 
has a lower order than the method itself. Therefore it is not possible to choose b0 such 
that the estimator fits the actual error, but it is still important that the estimator has 
the right order of magnitude. 

We argue that the most important design goal is that the error estimator does not 
significantly underestimate the error. On the other hand, a too large value of b0 will 
degrade performance. A small value is also desirable to reduce fl< 1) ( oo ). To find a 
suitable value, we model the error of the Radau IIA method by first considering the 
linear test equation with z = h>... The relative local error, defined by 

is investigated on two domains: A, where the method operates in its asymptotic regime, 
and 13, where the method is able to yield accurate results. 13 is considerably larger than 
A. 

Obviously A and l3 must contain a neighborhood of the origin. We take A to be a 
disk of radius p, 

A(p) = {z EC : lzl ~ p}. 

The selection of the radius is based on several criteria. First, A(p) must exclude the poles 
of R(z) which for the 3- stage Radau IIA are located at 1/r ~ 3.6378 and 2.6811±3.0504i, 
respectively. By (9.18), the poles of the reference formula fl(ll (z) are then also excluded. 
Furthermore, A(p) should cover the central portion of the order star of the method, [IN91, 
p. 7], as this corresponds to the region of the complex plane where the Pade approximation 
R(z) is close to ez. Last, the intersection with the imaginary axis is an important criterion 
of relevance for oscillatory systems. To resolve an angular frequency of w, the stepsize 
must satisfy hw < 7r by the sampling theorem. In practice, however, the numerical 
method is unable to accurately resolve this frequency with stepsizes exceeding hw = 7r /2. 
Based on these considerations, we have taken p = 7r /2. The selected asymptotic domain 
A(tr/2) meets all the criteria above. 
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B(p) should contain most of A(p) as well as a large portion of the negative half-plane. 

Again, high frequencies cannot be resolved, but B(p) should cover the negative real axis 

if the method- like the Radau IIA- is able to produce accurate solutions there. We have 

chosen to consider the parabolic domain 

B(p)={z=x+iw: x~(p-w)(p+w)/p}, 

and A(7r/2), B(7r/2) and the order star of R(z) are plotted in Figure 9.1. The Radau IIA 

method is able to provide reasonable accuracy inside B(?r/2). The method is still of 

use in large portions of the complex plane outside B( 7r /2), e.g. in all of c-; A-stability 

implies that IR(z)I ~ 1 on c- just like lezl ~ 1, even if the relative local error IR(z) -ezl 

cannot be considered to be 'small' on all of c-. 
As R(z)-ez is an analytic function in the domain of accuracy 8(7r /2), max IR(z)-ezl 

is attained on 88(7r/2) by virtue of the maximum modulus theorem. Thus we find that 

max IR(z) - ezl = 0.067 in 8(7r/2), and we may choose b0 (i.e. the magnitude of the 

error estimator) so that max IR(z) - ..k{l>(z)I comes close to the maximum of the actual 

error. This suggests choosing boh = 0.067, or bo ~ 0.018, and in Figure 9.2 (left), we plot 

IR(z)-el and the error estimator IR(z)-..k{ll(z)I on 88(7r/2) for b0 = 0.02. Because the 

maxima may not occur at the same points, we verify in Figure 9.2 (right) that the error 

estimator with its chosen magnitude does not exhibit any significant underestimation of 

the error on the negative real axis. 
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To investi~ate the new estimator in the asymptotic regime, we have plotted IR(z)-ez I 
and IR(z) - R(ll(z)I on 8A(7r/2) in Figure 9.3 (left), showing that their magnitudes are 
similar there. Note that because the error estimator has lower order than the method, 
it is still likely to significantly overestimate the error at sharp tolerances. This is seen in 
Figure 9.3 (right), where we study the ratio 

K(z) = R(z)-::-- ez 
R(z) - R(l)(z) 

and have plotted 

k(p) = max IK(z)I 
lzl~P 

(9.19) 

(9.20) 

for 0 < p ::; 7r /2. The plot suggests that the error estimator underestimates the error 
outside A(l.3) . This underestimation is benign, however, as verified by Figure 9.4, which 
shows the level curves IK(z) I ="'for "'= 0.2(0.2)1.2. Thus, the underestimation occurs 
only in the right half-plane for lzl > 1.3, where, in the absence of dissipativity, the 
method is less likely to proceed with large steps. 
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FJG~!lE 9 . ~: . Error l,R(z)-e" I (solid} and erro..r en11m.~~~or 
on upper pa~t of&A.(7r/2) =:;; {z ::::: 7rei'i>/2;0 $ 
max l(R(z) ...- e')/(R(z) - k(~)(z))l for lzl $ p and 

Let us now consider linear constant coefficient systems 

y' = Jy 

135 

solved with the method pair (R, RPl). Because the error estimator is a rational func­

tion analytic in A(p), it follows from the spectral theorem, and the maximum modulus 

theorem, that the estimated relative error in the system is bounded by 

llR(hJ) - R(ll(hJ)ll2 < max IR(z) - R(ll(z)I =: .6.(p) 
- 8A(p) 

for all matrices J with IJhJll2 :S p. Since the error estimator has local order 4, we have 

.6.(p) = O(p4
). From Figure 9.4 we see that the estimated error exceeds the actual 

error on A(l.3), and in the following we may therefore take 0 < p < 1.3. By formally 

approximating the matrix exponential ehJ by a polynomial Pexp(hJ) such that IJehJ -

Pexp(hJ)IJ2 :S 6 on A(p), it follows that the actual relative error in the system is bounded 

by 

llR(hJ) - ehJll2 < JIR(hJ) - Pexp(hJ)ll2 + 6 

< max IR(z) - Pexp(z)I + 6 
lzl:SP 
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ftClJ(z)I =it for it= 0;2(0.2)1.2. The shaded area 

< max IR(z) - ezl + 26 
lzl~P 

< max IR(z) - fl(ll(z)I + 26 
lzl~P 

6.(p) + 26 

for all J with llhJll2 ::; p. Note that 6 can be made arbitrarily small. Thus we have 
a bound on the actual error in linear systems, in terms of the error estimator, uniform 
with respect to the conditioning of J. 

It is also of interest to bound the actual error directly in terms of the estimated error, 
i.e. we would like to find a constant C(p) < 1 such that for all vectors y, 

This can be obtained in a similar manner. By (9.18) and (9.19), 

K(z) = R(z)-::- ez (rz - l)(Pn(z) - Qn(z)e) 
R(z) - R(l)(z) b0 z4 

Note that Pn(z) - Qn(z)e = Qn(z)O(z6 ), hence 

K(z) = ("Yz - ~)Qn(z) O(z2) 
bo 

(9.21) 
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because of the pole- zero cancellation at the origin. Thus K(z) is regular in A(p) with a 
double zero at the origin; this is also clearly seen in Figure 9.3 (right). It follows from 
(9.21) by the pole- zero cancellation that 

C(p) = sup llK(hJ)ll2-
llhJll2:<:'.:P 

Now, in order to apply the spectral theorem, we again approximate ehJ by Pexp(hJ) and 
consider instead 

K(z) = (/Z - l)(PR(z~ - QR(z)Pexp(z)) . 
boz4 

By taking the degree of Pexp(z) suitably high, we have llK(hJ) - K(hJ)ll2 :<:::; 8, therefore 

llK(hJ)ll2 < llK(hJ)ll2 + 8 
< max IK(z)I + 8 

izi:<:'.:P 
< max IK(z)I + 28 

izi:<:'.:P 
k(p) + 28 

for all J with llhJll2 :<:::; p. Thus, the actual error is never underestimated on A(l.3) for 
linear constant coefficient systems. 

We finally remark that the latter result depends on the pole- zero cancellation at the 
origin. This implies that the result is not valid for more general classes of problems. 
This comes as no surprise, however, as the error estimator does not contain the same 
elementary differentials as the actual error; it is therefore not possible to prove that the 
error estimator is an upper bound for the error in general nonlinear problems. 

9.6 Concluding remarks 

Since the RADAU5 code uses bo = /, [HW96a], our new estimator with b0 = 0.02 has 
approximately 14 times smaller magnitude without significant underestimation of the er­
ror. This leads to approximately 70% larger steps, a better agreement between requested 
and achieved accuracy, and, for a given tolerance, improved performance. There are in 
principle two different ways of testing a method's performance: either one investigates 
achieved precision vs. work or one investigates achieved precision vs. requested precision. 
The new value of b0 affects only the latter. As the method's achieved precision for a given 
amount of work is the same, it might be argued that changing bo is equivalent to rescaling 
the tolerance. However, a code which for a given tolerance consistently overestimates the 
error will from a user's perspective appear to be 'slow'; there is no indication of what a 
proper rescaling of the tolerance might be. We argue that the tolerance parameter ought 
to have some 'absolute' meaning in different codes that aim for controlling local errors. 
This requires and motivates the analysis presented in this paper and is in agreement 
with the ultimate goal of developing high- order methods: to achieve high accuracy using 
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large steps. It is always preferable- from a practical as well as theoretical perspective­

that the estimated errors are of the right order of magnitude without invoking tolerance 

rescaling. 
The design process above has also been used in PSIDE (see Chapter 11). This code 

is based on the 4- stage Radau IIA method, for which we obtained b0 = 0.01. Practical 

experience with these error estimators is affirmative; see §12.6 or [LSV96] for numerical 

experiments with PSIDE. 
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Chapter 10 

Application: Computation of elliptic 
Fekete point sets 

Abstract The objective of this chapter is threefold. Firstly, we want to compute elliptic Fekete 

point sets. This problem is of obvious interst in many areas of scientific modeling and is normally 

viewed as a global optimization problem. Secondly, a methodology will be presented to model 

the problem by a set of Differential- Algebraic equations (DAEs) and finally, we wish to compare 

the performance of PSIDE on the set of DAEs with that of an Lipschitz Global Optimatization 
(LGO) package applied to the original formulation of the problem. As a reference, we include 

the results of the DAE code RADAU5 by Hairer & Wanner as well. Fekete point configurations 
with up to 150 points are considered, which give rise to large computational efforts. 

10.1 Introduction 

We shall consider the following classical problem: given the unit sphere (ball) B in 
the Euclidean real space IR3

, and a positive integer n, find the n-tuple of points (unit 
length vectors) 

x(n)={x;, i=l, ... ,n}, 

on the surface 52 of B, which maximizes the product of distances between all possible 
pairs { x;, Xj}, 1 ~ i < j ~ n. In other words, we are interested in finding the global 
maximum of the function 

fn(x(n)) = IJ llx; - XJll , X; E 5 2 
, (10.1) 

1:5i<j:5n 

where II· II indicates the Euclidean norm. A set of vectors x*(n) = {x; , i = l , . .. ,n}, 
where xi E 5 2

, which satisfies the relations 

f~ = fn(x*(n)) = maxfn(x(n)) , 
x(n) 

X; E 5 2
, (i = 1, ... , n) , (10.2) 

is called the set of elliptic Fekete points of order n [Fek23] . We shall name (10.2) the 
Fekete (global optimization) problem. 

Let us note first of all that- by the classical theorem of Weierstrass- the optimization 
problem (10.2) has globally optimal solution(s). Second, although- for obvious reasons of 
symmetry- there are infinitely many vector sets x*(n) which satisfy (10.2), the solution 
can easily be made unambiguous (as will be seen in §10.3). Consequently, we shall analyze 
the problem of finding x*(n), and the corresponding function value/~:= fn(x*(n)) . 



140 Chapter 10 

The analysis and determination of elliptic Fekete point sets has been of great theoreti­

cal interest for several decades: consult, e.g., [Fek23, SS93]. Apparently, it also represents 

a longstanding numerical challenge: Pardalos [Par95] states it as an open problem. Ad­

ditionally, because of the direct relation of the formulation (10.2) to models in potential 

theory [Tsu59], the solution of the Fekete problem (and its possible modifications) has 

also important practical aspects; we shall return to this point later. 

We will start with a short overview of some analytical results concerning Fekete 

points and related topics, followed by a description of the chosen parameterization of 

Fekete point sets. In §10.4 and §10.5 the Lipschitzian Global Optimization (LGO) ap­

proach and the formulation in terms of Differential-Algebraic Equations (DAEs) will be 

discussed, respectively. We give a summary of the numerical results and the correspond­

ing performances of both approaches in §10.6. The last section presents some concluding 

remarks and future perspectives. 

10.2 A brief review of some analytical background 

The following notes are largely based on the works of Tsuji, Shub and Smale men­

tioned above. 
Let D be a bounded closed set in lR3 which contains infinitely many points. Taking 

n vectors z1 , ... ,Zn from D, define (cf. (10.1)) z(n) = {z1 , ... ,zn}, 

and 

Vn(z(n)) := IJ llzi - Zjll , 
l~i<j~n 

v; := Vn(z*(n)) := max:Vn(z(n)). 
z(n) 

Define now the normalized value of v; by 

(;) 
:= ~ > O; 

then the following general result- due to Fekete (1923)- is valid. 

THEOREM 10.1 dn+l :'.S dn; therefore T(D) = lim dn exists. 
n-+oo 

PROOF See Tsuji (1959), p. 71. 

(10.3) 

(10.4) 

(10.5) 

D 

DEFINITION 10.1 The quantity T(D) is called the transfinite diameter of the set D . 
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The apparent connection of Fekete's transfinite diameter with certain problems of 
packing- i.e., 'find a set of points in D which are located so that no two are very close 
together'- is discussed, e.g., by Lubotzky, Phillips, and Sarnak (LPS86). In this con­
text, they also refer briefly to the connection of the transfinite diameter and the so­
called elliptic capacity. In problems of finding electrostatic equilibria, the resulting point 
configurations- modeling repellent bodies- are located on a corresponding equipotential 
surface. Obviously, physically stable, minimal energy configurations are of great impor­
tance also in other areas of natural sciences, most notably, in physics and chemistry. 
Although both the topology of the potential surface in question and the functional form 
(the underlying analytical description) of characterizing the 'goodness' of point config­
urations may vary, the result described by Theorem 10.1 bears direct relevance to such 
problems, under very general conditions. 

Shub and Smale (SS93, p. 9) remark that the transfinite diameter of the sphere of 
radius ! equals e-!. This directly leads to the estimate (recall (10.2)) 

(10.6) 

the approximation is valid for sufficiently large n. Theorem 10.1 immediately provides 
also a lower bound for the solution of the maximization problem in (10.2): 

(10.7) 

This estimate shows the rate of increase of the global optimum value, as a function of 
the number of Fekete points in the optimal configuration. One can also use the estimate 
dn+l ::=:; dn, which directly leads to 

~ 
!~+l ::; (!~) n-1 . (10.8) 

The pair of relations (10.7)- (10.8) provides valid lower and upper bounds; (10.8) also 
bounds the rate of increase of subsequent optimal function values in the Fekete problem. 

Concluding this brief review of some essential analytical background, let us note finally 
that Shub and Smale also refer to the apparently significant numerical difficulty of finding 
the globally optimal configuration x*(n), for a given-not too small- n. Difficulties arise 
due to several reasons: viz., the above mentioned various symmetries of the function f n, 

and- more essentially- its inherent multiextremality. Obviously, fn(x(n)) equals zero, 
whenever (at least) two points Xi coincide. Furthermore, see (10.7), its maximal value 
very rapidly increases as a function of n. These properties together lead to functions f n 

which tend to change in an extremely 'abrupt' manner, making any perceivable numerical 
solution procedure inherently tedious. 

In the following two sections, first we shall introduce a suitable problem represen­
tation, and then consider a global optimization approach to solving Fekete problems 
(approximately), in a robust and numerically viable sense. 
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10.3 Unique parametric representation of n-tuple point configu­
rations on S2 

It is a natural approach to represent arbitrary point configurations on the surface, 
8 2 , by introducing spherical coordinates. Let us denote the three unit vectors in the 
usual Cartesian coordinate setting by e1, e2, and e3. Furthermore, for Xi E 8 2 , let /3i 

denote the angle between Xi and its projection onto the plane defined by ei and e2; and 
O:i denote the angle between this projection and e1 . Then the n-tuple x( n) - consisting 
of corresponding unit length vectors xi, i = 1, .. . , n- is described by 

Xil cos(o:i) cos(/3i) , 

sin(o:i) cos(/3i) , ( o::; O:i < 27r ) Xi2 = -?r /2 :::; /3i :::; 7r /2 

Xi3 sin(/3i) . 

We shall also use the equivalent parametrization, with the auxiliary variables ~i 

0 :::; O:i 

-1 < ~i 

< 27r' 
< 1 . 
- ' (-n/2 :=:; /3i := arcsin(~i):::; n/2). 

(10.9) 

(10.10) 

This results in replacing the calculation of Xi3 in (10.9) simply by Xi3 = ~i · The repa­
rameterization has the advantage that if o:; and ~i are taken from a uniform distribution 
from their domains, then the corresponding points x ; have a uniform distribution on the 
sphere. This is important for a random search as it is used throughout the global search 
phase of LGO. 

In order to eliminate rotational symmetries, one can select and fix three angles in the 
spherical representation (10.9) of x(n). We choose 

(i.e. , 0:1 = 6 = 6 = 0) . (10.11) 

Geometrically, this means that the unit vector e1 = (1 , 0, 0) is always a component of the 
optimized Fekete point configuration. Additionally, at least another (the second) vector 
in the Fekete set sought belongs to the { e1 , e2 }-plane. This convention effectively reduces 
the number of unknown parameters in x(n) to 2n - 3. 

10.4 Applying LGO approach 

Since 8 2 is bounded and closed, and the objective function fn(x(n)) in (10.2) is 
continuously differentiable, it is also Lipschitz-continuous on 8 2 x 8 2 x · · · x 8 2 = ( 8 2) n. 

In other words, for any given n and corresponding f n , there exists a Lipschitz-constant 
L = L(n) such that for all possible pairs x(n), x(n) from (82t we have 

lfn(x(n)) - fn(x(n))I:::; Lllx(n) - x(n)lli: . (10.12) 

The norm llx(n) - x(n)llE , defined on (82t, is a sum of Euclidean norms. 
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As mentioned earlier, the function f n is expected to become very 'steep' in certain 
neighborhoods in ( s2r, especially when n becomes large. The complicated structure of 
function f n can also be simply visualized, observing that the derivative off n has a non­
polynomially increasing number of zeros- as a function of n- indicating local minima, 
maxima and saddle points. Consequently, we shall consider the Fekete problem (10.2) as 
an instance from the broad category of Lipschitz global optimization problems, without 
further- more narrow, and algorithmically exploitable- specification. Note additionally 
that only simple lower and upper bound ('box') constraints are explicitly stated by the 
parametrization (10.9)- (10.10) . 

The underlying global convergence theory of Lipschitz optimization algorithms is 
discussed in detail by Pinter [Pin96], with numerous references therein. This monograph 
also presents details on implementing algorithms for continuous and Lipschitz global 
optimization, and reviews a number of prospective applications and case studies. 

The numerical results obtained on the basis of a program system called LGO­
abbreviating Lipschitz Global Optimization- are given in §10.6 and compared with the 
results obtained via an alternative approach which will be described in the next section. 
For more details on LGO, consult [Pin97]. 

10.5 Formulation for DAE approach 

As already mentioned, we have used two approaches to approximate Fekete point 
sets numerically. The previous section dealt briefly with a global optimization approach. 
Another way to approximate Fekete point sets is based upon the numerical solution of 
an index 2 system of differential-algebraic equations (DAEs). For more details on DAEs 
see [BCP89, HW96b]. This section starts with a derivation of the DAE formulation . We 
will show that the stable steady states of these DAEs coincide with the optima of the 
function f n in (10.1). Some practical remarks concerning the numerical implementation 
of this approach are also highlighted. 

Let us consider a set of n repellent particles on the unit sphere. The coordinates of 
the ith particle are denoted by xi . Due to the dynamic behavior of the particles, these 
coordinates will be parametrized by a time variable, t . The particles are restricted in 
such a way that they will stay on surface of the the unit sphere in IR 3 ; Xi ( t) E 8 2 . We 
define the repulsive force on particle i caused by particle j by 

Xi - Xj 
Fii=---~ 

llxi - Xjll 1 
(10.13) 

Note that the choice 'Y = 3 can be interpreted as an electrical force affecting particles with 
unit charge. Furthermore, we imply an adhesion force on the particles, due to which the 
particles will stop moving after some time. Denoting the configuration of the particles 
at time t by x(t) = {x1 (t), . .. ,xn(t)}, Lagrangian mechanics tells us that x(t) satisfies 
the following system of differential-algebraic equations: 

x' q, (10.14) 
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q' 

0 

g(x,q) + GT(x).\, 

</>(x), 

Chapter 10 

(10.15) 

(10.16) 

where q is the velocity vector, G = 8</>/8x and,\ E IRn. The function</> : IR3n-+ IRn is 

the constraint, which states that the particles cannot leave the unit sphere: 

</>i(x) = x;,1 + x;,2 + x;,3 - 1. 

The function g: IR6n -+ IR3n is given by g = (gi), i = 1, ... , n, where 

9i(x, q) = L Fij (x) + Ai(q), 
#i 

where Fij is given by (10.13). The function Ai is the adhesion force affecting particle i 

and is given by the formula 

Here, ,.,, is set to 0.5. Without this adhesion force, the particles would not stop moving, 

because the system would preserve its energy. The term GT(x),\ in (10.15) represents 

the normal force which keeps the particles on S2 . 

Let us denote the final configuration by x = {xi, i = 1, ... , n}. Since we know that the 

speed of this final configuration is 0, we can substitute q = 0 and x = x in formula (10.15), 

thus arriving at 

o = L:Fij(x) + cT(x)-X, 
#i 

which is equal to 

(10.17) 

If we, on the other hand, take the logarithm (which is a monotonous function) of 

fn(x(n)) in (10.1) and differentiate log(fn(x(n))) with respect to Xi, then, by applying 

the method of Lagrange multipliers, we know that fn has a (local) maximum at x, where 

x satisfies 

(10.18) 

Here, (i is the Lagrange multiplier. Comparing (10.18) and (10.17) tells us that com­

puting x for / = 2 gives the (local) optima of the function f n· In principle by solving 

the system (10.14) - (10.16) it is possible to arrive at the global maximum by varying 

the initial values and the adhesion parameter K. However, numerical experiments show 

that for n :::; 150, even with a constant ,.,, and a fixed strategy for choosing the initial 
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values, one obtains values for fn that satisfy the conditions (10.7)- (10.8) and are at least 
as large as those obtained by the LGO implementation. (This will be shown in §10.6.) 

Now we describe how the DAE system given by the equations (10.14) - (10.16) and 
r = 2 can be solved numerically. Since (10.16) is a position constraint, the system is of 
index 3. To arrive at a more stable formulation of the problem, we stabilize the constraint 
(see Brenan et al. (1989) , p . 153) by replacing (10.14) by 

x' = q +GT (p)µ , (10.19) 

where µ E IR n, and appending the differentiated constraint 

O = G(x)q. (10.20) 

The system (10.19), (10.15), (10.16), (10.20) is now of index 2; the variables x and q are 
of index 1, the variables >. and µ of index 2. 

We choose the initial positions Xi(O) on the intersection of S2 and the {e1 ,e2 }-plane, 
except the first particle, which is initially in (0, 0, 1). Choosing q(O) = 0 yields µ(O) = 0 
and </>HO) = (2xi(O), Qi(O)) = 0. Consequently, 

<t>:'(O) = (2xi (O) , q~(O)) 

= (2xi (0), g;(x(O) , q(O)) + 2>.;(0)x; (0)). 

Requiring <1>:' (0) = 0 gives 

>.(O) = _ (x;(O),g;(x(O),q(O))) = -~( ·(O) ·( (O) (O))) 
' 2(x;(O),x;(O)) 2 x, ,g, P ,q · 

The problem is now of the form 

dy 
M dt = w(y), y(O) =Yo , (10.21) 

with 

M = ( hn 0) 0 0 , 

where hn is the identity matrix of dimension 6n, 

Here, tend is chosen such that 

Vi E {1,2, . . . ,n}. (10.22) 

Numerical experiments show that if tend = 1000, then (10.22) holds for n ::; 150. 



146 Chapter 10 

Solving the problem numerically leads to a phenomenon that one might call numerical 

bifurcation. Assume that two particles Xi and x1 are close to each other at time t 1 with 

Xi,I ( ti) > x j,I ( t 1 ). It may happen that the numerical integration method applied with 

finite error tolerance r computes a new stepsize hr such that Xi ,I (t + hr) > x1,i(t + hr ), 

whereas the same method applied with error tolerance f results in a stepsize h:;- for 

which Xi,l (t + h:;-) < x1,1 (t + h:;- ). This means that for different error tolerances, the 
numerical integration method may compute paths of particles that differ significantly. 

The occurrence of this phenomenon is irrespective of the scale of the error tolerance and 
can happen for every value of n. Although it is more probable for larger values of n. 

However, the quantity of interest here is (10.1) which is independent of the path that the 

particles followed to arrive at the final configuration. 
To solve the DAE we use the parallel code PSIDE, specified in Chapter 11. As a refer­

ence we include the results of the DAE solver RADAU5 by Hairer and Wanner (HW96a], 

which is an implementation of the 3-stage implicit Runge-Kutta method of Radau IIA 

type. For more information related to this code, we refer to (HW96b]. RADAU5 can 

integrate problems of the form (10.21) up to index 3. 
As an example, Figure 10.l depicts the solution obtained by PSIDE for n = 20. 

The same solution in the {a,,B}-plane (cf. (10.9))- after a rotation such that (10.11) is 

fulfilled- is shown in Figure 10.2. 

REMARK For n = 20 the DAE formulation of the Fekete problem is included in the 

Test Set for IVP Solvers (LSV96]. 0 

10.6 Numerical results and discussion 

From the previous exposition it should be clear that the numerical determination 

of Fekete point sets leads to rapidly growing computational demands which can eas­
ily become prohibitive. Therefore- although 'precise' globally optimal solutions have 

been sought- the results reported in this section should be considered as numerical ap­

proximations obtained with a reasonable computational effort, for the purposes of this 

exploratory study. The individual solution times on a SGI workstation, Indy with a 194 
Mhz RlOOlOSC processor, start with a few seconds for both approaches for small number 

of points and lead to CPU times between 2 and 17 hours for n in the range of 100 to 150 

Fekete points. Even a powerful personal computer is too slow for such a task and memory 

limitations will become a serious drawback for the DAE approach in case of increasing n. 

To give an impression: The highest order term of the storage required by RADAU5 and 

PSIDE is 4(8n)2 and 6(8n)2 real numbers, respectively. This means that using double 

precision, these codes need about 2 · 103n2 and 3 · 103n 2 bytes of memory. For n = 150 

this is about 45 MByte for RADAU5 and 60 MByte for PSIDE, which can be a severe 

restriction on small computer systems. For the same number of Fekete points, the LGO 

approach needs only 0.1 MByte. Concerning this comparison of the sizes- especially for 
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F IGURE 10.1: Final configuration obtained with PS/DE- for n = 20. The large ball is centered at the 
origin and only added to facilitate the 3-D perception. 
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n ~ 50-the LGO approach is favorite. Later on in this section we show a more thorough 
comparison of the two approaches. Numerical tests can be performed for smaller num­
ber of points on a personal computer or a workstation, but in order to give an overall 
comparison we did all the computations on the above mentioned workstation. Faster 
machines are useful-and are even available right now-of course, but the essential com­
putational complexity of the Fekete problem remains exponential. Applying a similar 
global (exhaustive) search methodology to that of LGO, even on a (say) ten thousand 
times faster machine, the hardware limitations could be easily reached. For this reason, 
different heuristic solution strategies need to play a role in solving Fekete problems for 
large values of n. 

Table 10.1 serves to summarize the results obtained on a workstation using the LGO 
version described in Pinter (1995) and the DAE approach. 

Concerning the two tables several additional points should be mentioned; see also the 
notes provided in the table. 

1. The CPU timings for PSIDE are done on 1 processor, although it is meant for 
implementation on a computer with four processors. Using such a machine, we computed 
that for n = 20, the CPU time for PSIDE would be reduced by a factor 3.8. An 
explanation of how we obtained this speed-up factor is given in (LSV96] or §6.5. For 
configurations with more than 20 points it is expected that the speed-up will be at 
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least 3.8, whereas for less Fekete points, one might argue that the CPU times are too 
small to justify the use of a parallel computer. Of course LGO and RADAU5 could 
benefit as well from the use of more processors by developing a special purpose strategy 
for dividing the work. However, in Chapter 1 we argued that such a form of parallelism 
over the problem lies outside the scope of this thesis . 

2. For the values n = 2, 3, 4 and 6, the exact analytical solution is trivial, or can be 
easily verified; with the exception of n = 2, however, all values in the tables resulted from 
numerical calculations. Consequently, all entries are approximate values, except when 
stated otherwise. 

3. Concerning the LGO approach: since the function value /~ grows very rapidly as 
n increases, the resulting (overall) Lipschitzian problem characteristics are also rapidly 
becoming less favorable. Therefore the value of fn(x(n)) has been directly optimized 
only up ton = 6. Starting from n = 7, optimization using the original objective function 
form has been replaced, by applying a logarithmic transformation. 

4. Concerning the LGO approach: 'exact' (exhaustive) search has been attempted for 
the 'small ' values n = 3, . . . , 15. That is, up to n = 15, all entries have been calculated 
by fully automatic LGO execution in which the stated global and local limits imposed 
on the allowed search effort did not seem to be restrictive. (In particular, the bound 
on the number of allowable local search steps has never been attained, indicating that 
the LGO search was completed by finding a solution 'as precise as possible' under the 
given LGO parametrization.) In order to avoid very excessive runtimes, in the cases 
n = 50, 60, ... , 125, 150 the number of global search function evaluations was- based on 
the analysis of detailed LGO output listings, but still somewhat arbitrarily- restricted 
by 250 OOO to 750 OOO. In light of the computational effort in smaller dimensional Fekete 
problems, such limitations could be a bit 'optimistic', and may have stopped the global 
search phase somewhat prematurely. FUrthermore, the local search effort (limited by 
100 OOO to 300 OOO) has also been attained, in several higher dimensional cases. Notwith­
standing these numerical limitations, all LGO runs provided 'plausible' results , conform­
ing with the theoretical bounds and asymptotics reviewed in §10.2. The global and local 
search efforts were also chosen in such a way that their sum was comparable to the CPU 
time for the DAE approach for n 2: 50. 

5. Concerning the DAE approach: the input parameters for RADAU5 are, indepen­
dently from n, hO=atol=rtol=ld-4, and for PSIDE atol=rtol=ld-3. These settings 
are such that the accuracies delivered by both codes are more or less the same. 

6. For both approaches the machine used: SGI workstation, Indy with a 194 Mhz 
RlOOlOSC processor and 512 MByte memory. 

7. Compiler: FORTRAN 77 of SGI with optimization: f77 -0. 

8. Timing function: ETIME 
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From the table we see that for small problem sizes, PSIDE is on one processor about 

twice as expensive as RADAU5. This factor reduces to ~ 1.2 when n grows to 150. 

For almost all cases the results of PSIDE and RADAU5 are more accurate than that of 

LGO. Except for the above mentioned computer memory limitations, the DAE approach 

performs better than the LGO approach (according to their given implementations) in 

terms of CPU time. It should be mentioned here that this optimization problem is special 

because it can be rewritten as a set of DAEs, for more general optimization problems 

the solution can not be obtained with a DAE solver and a more general, e.g. LGO style, 

solver is indispensable. 

10. 7 Generalizations and application perspectives 

An obvious generalization of the Fekete problem-which immediately falls within 

the scope of the numerical solution strategy suggested- is its extension to arbitrary 

dimensionality, and for general compact sets. Let D be a bounded closed set in IRd 
d ~ 2, which contains infinitely many points. Then (recalling the discussion in §10.2) 

the generalized Fekete configuration problem consists of finding an n-tuple of points 

z(n) = (z1 , ... ,zn) such that Zi belongs to D, and the product 

Vn(z(n)) := IT llzi - Zjll 
l:'.Si<j:'.Sn 

(10.23) 

is maximal. As noted earlier, problems of this general class have relevance in diverse 

areas of scientific modeling. 
The higher dimensional case is also of interest in the area of nonlinear regression. 

From linear regression one obtains an ellipsoidal level set, which can be used as an ap­

proximation for the level set of the regression variables in the nonlinear case. Evaluation 

of the regression criterion at points which are distributed in a regular and uniform way 

on such an ellipse gives good insight into the nonlinearity of the regression problem; the 

ellipsoid turns into a 'cashew nut', for example. The uniformly distributed sample points 

on such an ellipsoidal level set can be obtained by solving the Fekete problem (10.23), 

where D is the ellipsoidal level set and n the number of sample points. Again, the numeri­

cal solution approach- Lipschitzian global optimization or DAE formulation- is directly 

relevant to analyze and solve such problems. This statement remains true, of course, if 

the 'simple' objective function type (10.23) is replaced by other suitable (Lipschitzian 

function) models/formulae expressing the 'quality' of the configurations. 
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Chapter 11 

Specification of PSIDE 

Abstract PSIDE is a code for solving implicit differential equations on parallel computers. 
It is an implementation of the four-stage Radau IIA method. The nonlinear systems are solved 
by a modified Newton process, in which every Newton iterate itself is computed by an iteration 
process . This process is constructed such that the four stage values can be computed simultane­
ously. In this chapter, we describe how PSIDE is set up as a modular system and what control 
strategies have been chosen. 

11.1 Introduction 

A powerful method for the numerical solution o.f the system of implicit differential 
equations 

g(t , y, iJ) = 0, 
to :S t :S t end, 

g,yElR.d , 
y(to) =Yo , y(to) .= iJo , 

(11.1) 

is an implicit Runge-Kutta method (IRK). In the class of IRKs, the Radau IIA methods 
combine high order, 2s - 1, where s is the number of stages, with the nice property of L­
stability. However, implementing this method requires high computational costs. PSIDE 
(abbreviating Parallel Software for Implicit Differential Equations) is an implementation 
of the four-stage Radau IIA method, where the stages can be computed in parallel. 
Section 11.2 describes how this is done. 

When implementing an IRK, a lot of decisions have to be made. How to form a 
prediction for the Newton process, when to refactorize the iteration matrix, when to 
evaluate the Jacobian, how many Newton iterations should be done, what should be 
the new stepsize, when to reject a step? The answers to these questions for PSIDE are 
mainly based on Chapter 9 and [GS97, OS96, Ben96, HW96b, Gus92] . 

In order to have a clear overview of these control strategies, PSIDE is set up modu­
larly. Section 11.3 shows how several modules build up PSIDE. Section 11.4-11.12 each 
describe one of these modules in detail. 

11.2 Parallelism in PSIDE 

For solving (11.1) numerically with the four-stage Radau IIA method, we have to 
solve Y from the nonlinear system 

G(l © Yn + h(A 0 I)Y , Y) = O. (11.2) 
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Here, Y = (Y?, Yl, Yl, Yl)T is the so-called stage derivative vector of dimension 4d, 

where the Yi contain approximations to the derivative values y(tn + c;h), the abscissa 

are in c = (c1 ,c2 ,c3 ,c4 )T, the stepsize is denoted by h, the 4 x 4 Radau IIA matrix by 

A, the approximation to y(tn) by Yn, the Kronecker product by 0 , the vector (1, 1, 1, l)T 

by 1, and G stands for the stacked values of g, i.e. 

. . ( g(tn+c1h,yn~hL;ja1j}J,Yi)) 
G(l 0 Yn + h(A 0 I)Y, Y) := : . 

g(tn + c4h, Yn + h L:j a4j}}, }4) 

Here and in the sequel, I is an identity matrix of dimension either 4 or d, but its dimension 

will always be clear from the context. For Radau IIA, c8 = 1. Once we obtained Y, we 

compute the stage vector Y and Yn+I from 

Y = 1 0 Yn + h(A 0 I)Y, Yn+I = (e'I 0 I)Y, 

where e8 = (0, 0, 0, l)T. To solve (11.2) we apply a modified Newton process and apply 

the Butcher transformation AT = TA, where A is a block diagonal matrix containing 2 

blocks of dimension 2 x 2, thus arriving at 

Scheme: Y is given by predictor 
repeat until convergence 

Y~1 0 yn+h(A 0 I)Y 
solve (I 0 M + hA 0 J)~W = -(T-1 0 I)G(Y, Y) 

Y ~ Y + (T 0 I)~W 
end 

where M = 8g/8y and J = 8g/8y, both evaluated at some previous approximations. By 

P ~ Q we mean that Q is assigned to P. 

REMARK It would also have been possible to define Z = Y - 1 0 Yn, apply a modified 

Newton process to 

G(l 0 Yn + Z, ((hA)- 1 0 I)Z) = 0, 

and iterate on Z. Applying Butcher transformations A-1 T = TA - 1 would then lead to 

Scheme: Z is given by predictor 
repeat until convergence 

Y ~ ((hA)- 1 0 I)Z 
solve ((hA)- 1 0 M +I 0 J)~W = -(T- 1 0 I)G(1 0 Yn + Z, Y) 

Z ~ Z + (T 0 I)~W 
end 
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which is equally expensive as iterating on Y. We prefer not to use additional quanti­

ties Z . However, for the problem class My = f (y), iterating on Z is somewhat cheaper. 0 

To compute D. W we would need to solve two linear systems of dimension 2d. Instead 

of doing this, we solve D. W by the Parallel Iterative Linear system Solver for Runge­

Kutta methods (PILSRK) proposed in Chapter 7. In PILSRK we split the matrix A in 

L +(A - L), where L has distinct positive eigenvalues, and rewrite the equation as 

(I © M + hL © J)D.W = (h(L - A) © J)D.W - (r- 1 © J)G(Y, Y) . 

Now we perform an iteration process according to 

(I © M + hL © J)D.W1 = (h(L - A) © J)D.w1- 1 
- (r- 1 © I)G(Y, Y) . (11.3) 

If J is a full matrix, then the computation of h(L - A) © J can be expensive. Since for 

most applications M is sparser than J (e.g., for ordinary differential equations, M = ±I), 
we rewrite (11.3) as 

(I © M + hL © J) ( D.W1 - ((I - L-1 A) © I) D.W1- 1 ) = 

- ((I - L - 1A) 0 M) D.wj- l - (r- 1 0 J)G(Y, Y). 
(11.4) 

Applying again Butcher transformations LS = SD, where D is a diagonal matrix, 

and m iterations of type (11.4) , leads to 

Scheme: Y is given by predictor 
repeat until convergence 

Y +- 1 © Yn + h(A © I)Y 
D.v0 +- o 
do j = 1, ... ,m 

solve (I 0 M + hD 0 J)(D. VJ - (B 0 I)D. v1- 1 ) = 
-(B © M)D.v1- 1 - (Q-1 © I)G(Y, Y) 

end 
Y+-Y+(Q 0 J)D.vm 

end 

where B = I - (LS)- 1 AS and Q = T S. We now see that the 4 components of dimension 
din D. Vk, each corresponding to one stage, can be computed in parallel. 

How to form the matrices T, L and S such that PILSRK converges rapidly, can be 
found in Chapter 7. However, the appendix of this chapter lists all the matrices that 
play a role in the derivation above. 

11.3 PSIDE as modular scheme 

Figure 11.1 shows the modules of PSIDE. If a line connects two modules, then the 

upper module 'calls' the lower one. Table 11.1 describes what the modules basically do. 
The next sections describe them in more detail. 
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Since in an actual implementation, we do not store the sequences to, ti, ... ; Yo, Y1, ... 
and y0 , y1 , ... , in the sequel the values t, y and y denote the current timepoint , and the 
approximations to the solution and its derivative at t, respectively. 

11.4 Module TSTEPS 

This module performs the iteration in time. It uses COMPHO, JACFAC, NEWTON, CTRL. 

Scheme: compute h by COMPHO 

hLu +- h 
t +-to 
'iJ +- 'ilo 
Yp+-1 ® y 
first +- true 
j acnew +- true 
f acnew +- true 
while ( t < t end ) do 

depending on jacnew,facnew compute A1,J,LU by JACFAC 

compute Y,Y,a,growth,diver,conver by NEWTON 

compute y , y,Yp , t,hp , h,hLu , first , jacnew, facnew by CTRL 
end 

Depending on the boolean variables j acnew and facnew, module JACFAC evaluates the 
Jacobian matrices A1 and J and factorizes the iteration matrix I l8l A1 + hLuD l8l J. 
These booleans jacnew and facnew and the stepsize used for this factorization, hLu, are 
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PREDI.C 
COl'U'HO 
cnu. 

PI.LSRK 
VERGEN 
ERROR 

determined in the control module CTRL. 
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Apart from the vectors Y and Y , module NEWTON gives as output the estimated rate 
of convergence a, and the boolean variables growth, diver and solved. If the growth 
of the current iterate has a too large increment with respect to y, then growth is true, 
whereas diver and solved tell that the Newton process is diverging or has converged. 
Based on a, growth, diver and solved, module CTRL decides whether the current Y 
and Y can be accepted. If so, then it assigns t +-- t + h, y +-- Ys, iJ +-- Ys and proposes 
a new stepsize. The old stepsize and old stage derivative vector are stored in hp and 

Yp, respectively. If the step is not accepted, then t, y and iJ are not changed and h is 
recomputed. 

11.5 Module JACFAC 

Depending on j acnew and facnew, this module evaluates the Jacobians and factorizes 
the iteration matrix. If the Jacobians are re-evaluated, the boolean jacu2d (Jacobians 
up to date) is set true. 

Variables: input 
output 

jacnew, facnew,hLu 
j acu2d, M, J, LU 

Scheme: if (jacnew) then 
form the Jacobian matrices M,J 
j acu2d +-- true 

end 
if (facnew) then 

factorize the iteration matrix I © M + hLuD © J 
end 
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11.6 Module NEWTON 

Module NEWTON, which uses the modules PREDIC, PILSRK and VERGEN, performs the 
Newton iteration. 

Variables: input 
output 
local 

y, y, Yp, LU, M, t, hp, h 
Y, Y, a, growth, diver, slow, solved, exact 
D.Y, D.Y, k, ready 

Scheme: ready +- false 
k +- 0 
compute Y by PREDIC 
Y +- 1 ® y + h(A ® I)Y 
compute ready,growth by VERGEN 
while (not(ready)) do 

k+-k+l 
compute D.Y by PILSRK 
D.Y +- h(A ® I)D.Y 
y +- y + D.Y 
Y +- Y + D.Y 
compute a,growth,diver,slow,solved,exact by VERGEN 

end 

The estimated rate of convergence a and the booleans growth, diver, slow, solved and 
exact are computed for use in module CTRL. 

11.7 Module PREDIC 

As starting value for the Newton process we use fourth order extrapolation of the 
previous stage derivative vector, i.e. 

where the s x s matrix E is determined by the order conditions 

k = 0, 1, ... 's - 1 . 

(Here, for any vector a = (ai), the kth power ak, is understood to be the vector with 
entries a:.) This means that 

E = vu-1
, U := [1 c-1 ··· (c- l)s-1], V := [1 h~c . . . (;Js-l] . 
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Variables: input 
output 

Scheme: Y +--- EYp 

We experimented with a lot of other predictors than fourth order extrapolation: Extra­

polation of order 3 (using only 3 of the 4 stages in Yp), a polynomial of degree 2 that fitted 

the four stages in Yp in an- in least squares sense-optimal way, a last step point value 

predictor (i.e. Y = ( 1 e; 0 I)Yp) , and a starting value that is one of these predictors, 

depending on which predictor yields the smallest residual. We also tried several rational 

approximations. However, numerous experiments showed that fourth-order extrapolation 

yields the best overall performance. 

11.8 Module COMPHO 

This module computes the initial stepsize ho. It is similar to the strategy used in 

DASSL [Pet91]. 

Variables: input 
output 
local 

Yo, to , tend 
ho 
(, hdef, fh 

Scheme: ho +--- min{ hdef, fhltend - tol} 
if ( lliJollscal >(/ho ) then 

ho +--- (/lliJollscal 
end 
ho +--- sign( ho, tend - to) 

Parameters: value source 
( 0.5 [Pet91] 
hdef 10-5 [HW96a] 

fh 10-5 experience 

11.9 Module CTRL 

This module is a modified version of the one presented in [GS97, Figure 4]. 

Variables: input 

output 
local 

y, Y, iJ, Y, LU, t, tend, h, hLu, a, first, 
growth,diver,slow,solved,jacu2d,jacnew,exact 

y,y,Yp,t,hp,h,hLu,first,jacnew,facnew 

hr, hnew, hex, Ctref, Ctjac, Cl.LU, f min, f max, frig , ~' w, nrem 
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Scheme: h°' +--- ho:rer/max{ o:, O:rer/ fmax} 
if (solved) then 

compute y,y,Yp,t,hp,hr,first by ERROR 
if ( !tend - tJ > lOUroundltl ) then 

if j acu2d /\ o: > O:ref ) then 
hnew +--- min{fmaxh, max{fminh, min{hr , h°'}}} 

else 
hnew +--- min{fmaxh, max{f minh, hr}} 

end 
if (not(exact) /\o: - lh - hLul/hLu > O:jac ) then 

if (jacu2d) then 

hnew +--- h/ frig 
else 

j acnew +--- true 
end 

end 
end 

elseif (growth) then 
hnew +--- h/ frig 

elseif (diver) then 
hnew f- min{fmaxh,maX{fminh, hOI}} 
jacnew +--- not(jacu2d) 

elseif (slow) then 
if (jacu2d) then 

if ( O: > ~O:ref ) then 
hnew +--- min{fmaxh,max{fminh, h°'}} 

else 
hnew +--- h/ frig 

end 
else 

hnew +--- h; j acnew +--- true 
end 

end 
nrem +--- (tend - t)/hnew 
if ( nrem - lnremJ > W V lnremJ = 0 ) then 

nrem +--- l nremJ + 1 
else 

nrem +--- l nremJ 
end 
h +--- (tend - t)/nrem 
facnew +--- jacnew V (lhnew - hLu l/hLu > O:LU) 
if (facnew) hLu +--- h 
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Parameters: value source 
Oref 0.25 see below 
Ojac 0.2 [GS97] 
0LU 0.3 see below 
fmin 0.2 [Ben96, p.52] 
fmax 2 experience 
frig 2 [Gus92, p.154] 
~ 1.2 experience 
w 0.05 [SSV97] 

In this scheme, Oref is the desired rate of convergence. In [GS97] it is shown that, under 
reasonable assumptions, ha is the stepsize for which the rate of convergence will be 
Oref. If the current rate of convergence a is larger than aref, then ha will be used for 
the next Newton process, unless it is greater than hr, the stepsize proposed by module 
ERROR. [GS97] also derives that, if a - lh - hLul/hLu > Ojac, then the convergence of 
the Newton process is likely to fail due to an old Jacobian. Such failures are prevented 
by the strategy above. If nevertheless the Jacobian is fresh, then the assumptions of the 
theory are not fulfilled and the stepsize is reduced by a rigid factor frig· The case where 
exact is true, refers to the situation that that (11.2) was solved exactly. This happens 
e.g. if the function g in (11.1) equals y. 

If growth is true (see §11.11), then the stepsize is reduced by a factor frig, but we do 
not compute new Jacobians. 

For a diverging Newton process, ha will be the new stepsize. If slow is true, then the 
Newton process is converging too slowly (see §11.11). In this case, the new stepsize is 
again identified with ha, if a > ~aref· The factor~' which has to be > 1, is built in for 
the case that a is only slightly larger than Oref . Without this factor, the new stepsize for 
this case would be set equal to ha, which is only a little bit smaller than the old stepsize, 
thus leading again to a Newton process that converges too slowly. If a:::; ~arer, then the 
assumptions of the analysis have failed to hold, and the stepsize is rigidly reduced by a 
factor frig· For both the diverging and the slowly converging case, the iteration matrix 
will be factorized, with or without a new Jacobian, depending on jacnew. 

The formulas of the form hnew = min{fmaxh, max{fminh, ·}}prevent the new stepsize 
to vary from the old stepsize by a factor outside the range [fmin, fmax]· 

This strategy for updating the Jacobian and refactorizing the iteration matrix is dif­
ferent from most strategies in ODE/DAE software, in the sense that it attempts to adjust 
the stepsize such that an optimal convergence rate of the Newton process is obtained. 
Another difference is the strategy for the case that the Jacobian is not updated. Many 
codes do not change the stepsize in this situation if the relative change of stepsize is in 
a 'dead-zone' (e.g. RADAU5 uses the dead-zone [1; 1.2]). However, in [Gus92, p.135] it 
is argued that, in order to arrive at a smooth numerical solution, it is better to remove 
this strategy 'since a smooth stepsize sequence leads to smoother error control' . 

The role of nrem is to adjust the stepsize such that the remaining integration interval 
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is a multiple of the stepsize. This strategy was taken from [SSV97]. 
If a new Jacobian is not required, then the iteration matrix will only be factor­

ized in case that the proposed stepsize hnew differs significantly from hLu , i.e. (lhnew -

hLul/hLu > aLu) . 
The papers [GS97] and (Gus92] advocate values of Ctref, Ctjac and aLu around 0.2. 

However, they also suggest to use larger values if the costs of factorizing the iteration 
matrix are high with respect to the costs of one iteration. Since PSIDE is a parallel 
code aiming at problems of large dimension, we choose 0.25 for Ctref and 0.3 for a Lu. 
Numerous experiments confirmed that these choices yield an efficient code. 

11.10 Module PILSRK 

This module is the same as presented in §11.2, although an economization is made by 
computing the first iterate separately. Numerous experiments showed that for index 0 and 
index 1 problems, performing only 1 inner iteration suffices. On the other hand, [HV97] 
reveals that for higher-index problems, 2 inner iterations lead to a more robust and 
efficient behavior. 

Variables: input Y,Y,LU, M , t,h 
output 
local 

6Y 
6V,G,j,m 

Scheme: G t-- (Q- 1 ® I)G(Y, Y) 
6V t-- -(Lu)-18 

Parameters: 

if (higher index) then 
do j = 2, ... ,m 

6V t-- (B ® I)6V - (LU)- 1((B ® M)6V + G) 
end 

end 
6Y t-- (Q ® I)6V 

m 
value 
2 

source 
experience 

11.11 Module VERGEN 

This module checks the convergence behavior of the Newton process. Most of it is 
based on (Gus92, §5 .2]. 

Variables: input 
output 
local 

y, Y, 6Y, h, k, a, etref 

a,ready,growth,diver,solved 
Up , U, T, K , kmax, / 
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Scheme: growth +-- false 
diver +-- false 
slow +-- false 
solved +-- false 
exact +-- false 

Parameters: 

if ( 3 i IYi,sl/max{IYil, atoli} > 9fac /\ indi ~ 1 ) then 
growth +-- true 

else 
if ( k = 1 ) then 

U +-- ll~Yllscal 
a= llref 

exact +-- u = 0 
solved +-- exact 

elseif ( k > 1 ) then 
Up f- U 

U +-- ll~Yllscal 
if ( k = 2 ) then 

a+-- u/up 
else 

a+-- a 8 (u/up) 1- 9 

end 
if ( a ~ / ) then 

diver +-- true 
elseif ( u a/(1 - a) < T vu< K, Uroun<ll!Yllscal ) then 

solved +-- true 
elseif ( k = kmax V U akmax-k /(1 - a) > T ) then 

slow +-- true 
end 

end 
end 
ready +-- growth V diver V slow V solved V exact 

value source 
T 0.01 see below 
K, 100 (Ben96, p.51] 
kmax 14 see below 

I 1 [Gus92, p.132] 
() 0.5 experience 
9fac 100 experience 
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The boolean variable growth monitors whether the current iterate is too large with 
respect toy . This is necessary to prevent overflow. We use max{ly;I, atoli} instead of 
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IYd for the case Yi = 0. Experience has shown that it is not efficient to put a limit on 
the growth of higher-index variables. The variable u is saved for use in the next call of 
VERGEN. The case where slow is true, refers to a Newton process that is converging too 
slowly. 

Here and in the sequel, the norm II · llscal is defined by 

1 3 d ( hind;-lXid+J )2 

llXllscal = 4d '°' '°' I I ' ~~ atol· +rtol · y · 
i=O J=l 1 1 1 

if X E JR4d , 

and by 

1 d ( hind; - 1 X . ) 2 

llxllscal = -d '°' 1 I I ' ~ atol · + rtol · y · 
J=l J 3 3 

if 

In these formulas, atolj and rtolj are the user-supplied absolute and relative error 
tolerance vectors, respectively, and indj contains the user-supplied index of component 
j. For both index 0 and index 1 variables, indj = 1. 

The value of T is rather small compared to termination criteria in other codes. E .g., 
in RADAU5 values around 10-1 or 10- 2 were found to be efficient [HW96b, p.121], and 
DASSL uses 0.33 (BCP89, p.123] . The reason for this is that T can be seen as the factor 
by which the iteration error has to be smaller than the error estimate f. In PSIDE, E is 
of local order 5 (see §11.12) , and the steppoint value of local order 8. Consequently, in 
order not to let the iteration error spoil the accuracy of the steppoint value, T has to be 
smaller than 1, and how much smaller than 1 should depend on the difference between 
the order of the error estimate and that of the method. This may in part explain why 
RADAU5, where this difference is 2, and DASSL, where it is 1, use larger values for T. 

The reason for the rather large value of kmax ([HW96b, p.121] advocates values of 7 
or 10 for RADAU5) is twofold. Firstly, the order of PSIDE is seven, which is higher than 
that of e.g. the fifth order RADAU5, so that we need more iterations to find the solution 
of the non-linear system. Secondly, if PILSRK does not find the exact Newton iterate, a 
few additional iterations might help. 

11.12 Module ERROR 

11.12.1 The error estimate in PSIDE 

The construction of the error estimate is based on Chapter 9. In order not to have 
confusion between the previous values of y and y and the current ones, we use the time 
index n in the derivation of the error estimate. 

To estimate the error, we use an implicit embedded formula of the form 

Yn+l = Yn + h(bo'fln + (bT 0 I)Y + dsYn+i) , (11 .5) 
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where d8 is the lower right element in D . We eliminate Yn+l by substituting (11.5) 
in (11.1) yielding 

Solving Yn+i from (11.6) by a modified Newton process, leads to the recursion 

Y~t~ = Y~+i - hds(M + hwdsJ)- 1 g(tn+i,Y~+l' 
(hd8 )- 1 (Y~+l -yn - h(boiJn + (bT ® I)Y))). 

(11.6) 

Now we set y~~ 1 = Yn+i, and consider the first Newton iterate Y~+i as a reference 
formula by itself, which is 

Y~+i Yn+l - hds(M + hLudsJ)-1g(tn+1,Yn+l, 

(hd8 )-
1(Yn+l -yn - h(boiJn + (bT ® I)Y))). 

In this formula, we determine b such that y~+l is of local order s + 1, i.e., it satisfies 

C b = (1 - bo , 1/2, 1/3, .. . , 1/s)T - d8 1, (11. 7) 

where C = (cij ); Ci j = c~- 1 . Notice that implying order conditions directly on (11.5) 
would also lead to (11.7). Chapter 9 describes how to select the parameter b0 such that 
the amplitude of the error estimate approximates the true error in Yn+i · Carrying out 
this procedure for the four-stage Radau IIA method yields the value 0.01 for bo. 

We now define the error estimate r by 

r " 1 Yn+l - Yn+l 

-hds(M + hLu dsJ)- 1 g( tn+l , Yn+l , d-; 1 ((vT ® l)Y - boiJn)) , (11.8) 

where v = (vi) , with Vi = asi - bi. 
We notice that the error estimate (11.8) reduces for ODE problems to the same for­

mula as in RADAU5 (HW96b, p.123, Formula (8.19)] . However, by choosing the refer­
ence method as being of the form (11.5) , the 'filtering' with the matrix (M + hLud8 J)- 1, 
needed to 'remove' the stiff error components in the error estimate, arises on purely 
mathematical grounds. 

11.12.2 Stepsize selection 

The following module contains the predictive stepsize controller of Gustafsson (Gus92, 
Listing 5.1] to propose a new stepsize hr. 

Variables: input 
output 
local 

y, Y, iJ , Y , LU, t, hp, h, /max, first 

y , iJ , Yp , t , hp , hr , first , jacu2d 
r, hrej, f.p , frej , f. ,Pest,Pmin , sucrej 
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Scheme: compute r from (11.8) 
f. +--- llrllscal 

Parameters: 

if ( f. < 1 ) then 
if ( f. = 0 ) then 

hnew +--- fmaxh 
elseif (first V sucrej) then 

first +--- false 
hr +--- (hc 1!5 

else 
hr +--- (h2 /hp (f.p/f.2)1/5 

end 
y +--- Ys 
ii+--- Ys 
Yv +-Y 
t+-t+h 
if ( I tend - tl < lOUround) ltl) then t +--- tend 
hp +--- h 
f.p +---f. 
sucrej +--- false 
jacu2d +--- false 

else 
if (not(first) A sucrej) then 

. { 5 { log(i/e,. · ) }} Pest+--- min ,max Pmin, log(h/h .. ;) 

hr +--- (hcl/p •• , 

else 
hr +--- (hcl/5 

end 
hrej +--- h 
f.rej +--- f. 
sucrej +--- true 

end 

value 
( 0.8 
Pm in 0.1 

source 
[Gus92, p.156] 
(Gus92, p .121] 

The variables hrej, f.p, f.rej and sucrej are saved for use in the next call of ERROR. Notice 
that this module is only called if the Newton process has converged. If llf.llscal < 1, it 
steps forward in time, i.e. it updates t, y, y and shifts Yp, hv and f.pi the Jacobians are 
per definition not up to date anymore. 
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Appendix 

In this appendix we provide the method parameters in PSIDE, i.e. the abscissa vector 
c and the RK matrix A, that define the four-stage Radau IIA method, the matrices D, 
B, Q and Q-1 , defining the Parallel Linear system Solver for Runge-Kutta methods 
(PILSRK), and the scalar b0 and the vector v, needed for the embedded reference formula. 
As additional information, we list the matrices A, L, S and T that arose in the derivation 
of PILSRK. 

CT = 0.08858795951268 0.40946686444074 o. 78765946176085 1.00000000000000 ) 

[ 
0.11299947932312 -0.04030922072350 0.025802377 42032 -0.00990467650726 l 

A 0.23438399574737 0.20689257393542 -0.04785712804857 0.01604 7 42280653 
0.21668178462322 0.40612326386742 0.18903651817002 -0.02418210489982 
0.22046221117674 0.38819346884323 0.32884431998002 0.06250000000001 

diag(D) = 

0.15207736897658 0.19863166560206 0.17370482124555 0.22687976652481 l 

[ 
-3.363987 45680207 -0.44654 700754010 0 

-0 0580576031184~ l B 25.34203884124225 3.36398745680207 0 
0 0 -0.43736727682531 
0 0 3.29483348541735 0.43736727682531 

[ 
2.95257334306175 0.31594239005361 1.53250361857179 0.02760017730665 l 

Q 
- 7 .26634 778465530 -0.87557678542461 -1.05525925554832 -0.31127768044595 

3.42024269744602 0.94929336342678 -10. 79971906268609 -2.13491394363799 
34.89702510456449 4.37526650476817 -42.90392657810952 -5.89600020104167 

{ 
0.49403714522764 0.26941265525930 -0.20775393051682 0.06331582713183 

l Q-1= -3.53352093058280 -2.98586378845007 1.75646110158256 -0.49490947213933 
0.48764145508107 0.12393820514650 0.04237703393234 -0.01960507515011 

-3.24650638474176 -1.52301305545687 -0.23459121597752 -0.01945253030841 

bo 0.01 

VT 0.01577537639774 -0.00973676595201 0.00646138955427 0.22437976652485 ) 

[ 
0.15207736897658 0.06790969403105 0 

0.0100848855716g l A -0.35070903457864 0.04202359569373 0 
0 0 0.17370482124555 
0 0 -0.40058458777036 0.20362278551270 

[ 
0.15207736897658 0 0 

0.22687976652.J l L -0.35070903457864 0.19863166560206 0 
0 0 0.17370482124555 
0 0 -0.40058458777036 
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[ 
1 0 0 n s 7 .53333333333333 1 0 
0 0 1 
0 0 7 .53333333333333 

[ 
0.57247400465791 0.31594239005361 1.32458228286171 0.02760017730665 

l T 
-0.67033600112323 -0.87557678542461 1. 2896992704 7784 -0.31127768044595 
-3. 73110064036903 0.94929336342678 5.28329931272012 -2.13491394363799 

1. 93668410197760 4.375266504 76817 1. 51260826973 776 -5.89600020104167 
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Chapter 12 

PSIDE users' guide 

Abstract PSIDE - Parallel Software for Implicit Differential Equations - is a code for solving 

implicit differential equations on shared memory parallel computers. In this paper we describe 

the user interface. 

12.1 Introduction 

PSIDE solves Implicit Differential Equations (IDEs) of the form 

g(t,y,y') = 0, g,y E lRd, 

to ~ t ~tend, y(to) =Yo, y'(to) =yo, 
(12.1) 

were y0 and y0 are such that g(to, Yo , y0) = 0 (for higher-index problems the initial values 
have to satisfy more conditions; see §12.4). It uses the four-stage Radau IIA method. 
The nonlinear systems are solved by a modified Newton process, in which every Newton 
iterate itself is computed by means of the Parallel Iterative Linear system Solver for 
Runge-Kutta (PILSRK) proposed in Chapter 7. This process is constructed such that 
the four stage values can be computed simultaneously, thereby making PSIDE suitable 
for execution on four processors. Full details about the algorithmic choices and the 
implementation of PSIDE can be found in Chapter 11 . 

12.2 Subroutine heading of PSIDE 

PSIDE is a Fortran 77 routine, whose heading reads 

c 

SUBROUTINE PSIDE(NEQN,Y,DY,GEVAL, 
+ 
+ 

JNUM,NLJ,NUJ,JEVAL, 
MNUM,NLM,NUM,MEVAL, 

+ T,TEND,RTOL,ATOL,IND, 
+ LRWORK,RWORK,LIWORK,IWORK, 
+ RPAR,IPAR,IDID) 

INTEGER NEQN,NLJ,NUJ,NLM,NUM,IND(*),LRWORK,LIWORK, 
+ IWORK(LIWORK),IPAR(*),IDID 

DOUBLE PRECISION Y(NEQN),DY(NEQN),T,TEND,RTOL(*),ATOL(*), 
+ RWORK(LRWORK),RPAR(*) 

LOGICAL JNUM,MNUM 
EXTERNAL GEVAL,JEVAL,MEVAL 
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C INTENT(IN) NEQN,JNUM,NLJ,NUJ,MNUM,NLM,NUM,TEND,RTOL,ATDL,IND 
C + LRWORK,LIWORK 
C INTENT(INOUT) Y,DY,T,RWORK,IWORK,RPAR,IPAR 
C INTENT(OUT) !DID 

The variables listed under INTENT(IN) , INTENT(INOUT), and INTENT(OUT) are input, 
update and output variables, respectively. 

12.3 Parameters 

NEQN 
On entry, this is the dimension d of the IDE (12.1), the number of equations to be 
solved. 

Y(NEQN) 
On entry, this array contains the initial value Yo· 
On exit, Y contains y(T), the computed solution approximation at T. 
(After successful return, T = TEND.) 

DY(NEQN) 
On entry, this array contains the initial value Yb. 
On exit, DY contains y'(T), the computed derivative approximation at T. 
(After successful return, T = TEND.) 

GEVAL 
This is the subroutine which you provide to define the IDE 

SUBROUTINE GEVAL(NEQN,T,Y,DY,G,IERR,RPAR,IPAR) 
INTEGER NEQN,IERR,IPAR(*) 
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),G(NEQN),RPAR(*) 

C INTENT(IN) NEQN,T,Y,DY 
C INTENT(INOUT) IERR,RPAR,IPAR 
C INTENT(OUT) G 

For the given values of T, Y, and DY the subroutine should return the residual of 
the IDE 

G = g(T, Y, DY) . 

You must declare the name GEVAL in an external statement in your program that 
calls PSIDE. 

!ERR is an integer flag which is always equal to zero on input. Subroutine GEVAL 
should set !ERR = -1 if GEVAL can not be evaluated for the current values of Y and 
DY. PSIDE will then try to prevent !ERR = -1 by using a smaller stepsize. 

All other parameters have the same meaning as within subroutine PSIDE. 
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JNUM 
To solve the IDE it is necessary to use the partial derivatives J = 8g/8y. The 

solution will be more reliable if you provide J via the subroutine JEVAL, in this case 

set JNUM = . FALSE. . If you do not provide a subroutine to evaluate J, provide a 
dummy JEVAL, set JNUM = . TRUE. and PSIDE will approximate J by numerical 

differencing. 

NLJ and NUJ 
If J is a full matrix, set NLJ = NEQN, otherwise set NLJ and NUJ equal to the lower 

bandwidth and upper bandwidth of J, respectively. 

JEVAL 

MNUM 

This is the subroutine which you provide to define J (if JNUM . EQ. . FALSE.) 

SUBROUTINE JEVAL(LDJ,NEQN,NLJ,NUJ,T,Y,DY,DGDY,RPAR,IPAR) 
INTEGER LDJ,NEQN,NLJ,NUJ,IPAR(•) 
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDY(LDJ,NEQN),RPAR(•) 

C INTENT(IN) LDJ,NEQN,NLJ,NUJ,T,Y,DY, 
C INTENT(INOUT) RPAR,IPAR 
C INTENT(OUT) DGDY 

For the given values of T, Y, and DY the subroutine should return the partial deriva­

tives , such that 

• DGDY(I ,J) contains 8g1 (T, Y, DY)/8yJ if J is a full matrix (NLJ = NEQN); 

• DGDY(I-J+NUJ+l,J) contains 8g1 (T, Y,DY)/8yJ if J is a band matrix (0 < 
NLJ < NEQN) (LAPACK / LINPACK /BLAS storage). 

You must declare the name JEVAL in an external statement in your program that 

calls PSIDE. 

LDJ denotes the leading dimension of J. 

All other parameters have the same meaning as within subroutine PSIDE. 

To solve the IDE it is necessary to use the partial derivatives M = 8g/8y'. 
The solution will be more reliable if you provide M via MEVAL, in this case set 

MNUM = . FALSE.. If you do not provide a subroutine to evaluate M, provide a 
dummy MEVAL, set MNUM = . TRUE. and PSIDE will approximate M by numerical 
differencing. 

NLM and NUM 
If M is a full matrix, set NLM = NEQN, otherwise set NLM and NUM equal to the 

lower bandwidth and upper bandwidth of M, respectively. It is supposed that 
NLM .LE. NLJ and NUM .LE. NUJ. 
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MEVAL 

T 

TEND 

This is the subroutine which you provide to define M (if MNUM . EQ. . FALSE.) 

SUBROUTINE MEVAL(LDM,NEQN,NLM,NUM,T,Y,DY,DGDDY,RPAR,IPAR) 
INTEGER LDM,NEQN,NLM,NUM,IPAR(•) 
DOUBLE PRECISION T,Y(NEQN),DY(NEQN),DGDDY(LDM,NEQN),RPAR(•) 

C INTENT(IN) LDM,NEQN,NLM,NUM,T,Y,DY, 
C INTENT(INOUT) RPAR,IPAR 
C INTENT(OUT) DGDDY 

For the given values of T, Y, and DY the subroutine should return the partial deriva­
tives, such that 

• DGDDY (I, J) contains 8g1 (T, Y, DY)/ 8y~ if M is a full matrix (NLM = NEQN); 

• DGDDY(I-J+NUM+1,J) contains 8g1 (T, Y , DY)/8y~ if Mis a band matrix (0 :S 
NLM < NEQN) (LAPACK / LINPACK /BLAS storage). 

You must declare the name MEVAL in an external statement in your program that 
calls PSIDE. 

LDM denotes the leading dimension of M. 

All other parameters have the same meaning as within subroutine PSIDE. 

On entry, T must specify t0 , the initial value of the independent variable. 
On successful exit (!DID . EQ. 1), T contains TEND. 
On an error return, T is the point reached. 

On entry, TEND must specify the value of the independent variable at which the 
solution is desired. 

RTOL and ATOL 
You must assign relative RTOL and absolute ATOL error tolerances to tell the code 
how small you want the local errors to be. You have two choices 

• both RTDL and ATDL are scalars (set IWORK(1) = 0): the code keeps, roughly, 
the local error of Y(I) below RTOL•ABS(Y(I) )+ATDL; 

• both RTDL and ATOL are vectors (set IWORK(1) = 1): the code keeps the local 
error ofY(I) below RTDL(I)•ABS(Y(I))+ATOL(I) . 

In either case all components must be non-negative. 
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IND 
If !WORK ( 2) . EQ . 1 , then IND should be declared of length NEQN and IND (I) must 

specify the index of variable I. If !WORK ( 2) . EQ . 0 , then IND is not referenced 

and the problem is assumed to be of index 1. 

See § 12.4 for information how to determine the index of variables of certain problem 

classes. 

LRWORK 
On entry LRWORK must specify the length of the RWORK array. You must have for 

the full partial derivatives case (when NLJ = NEQN) 

LRWORK .GE. 20+26*NEQN + 6*NEQN**2 , 

for the case where M is banded and J is full (when NLJ = NEQN and NLM < NEQN) 

LRWORK .GE. 20+(26 + NLM+NUM+1 + 5*NEQN)*NEQN, 

and for the case where both partial derivatives are banded (when NLJ < NEQN) 

LRWORK .GE. 20+(26 + NLJ+NUJ+MLM+NUM+2 + 4*(2*NLJ+NUJ+1))*NEQN. 

RWORK 
Real work array of length LRWORK. RWORK(1), ... ,RWORK(20) serve as parameters 

for the code. For standard use, set RWORK(1) , ... ,RWORK(20) to zero before calling. 

On entry: 

- if RWORK(1) .GT. ODO then PSIDE will use RWORK(1) as initial stepsize in­

stead of determining it internally. 

On exit: 

- RWORK(1) contains the stepsize used on the last successful step. 

LIWORK 
On entry LIWORK must specify the length of the !WORK array. You must have 

LRWORK .GE. 20 + 4*NEQN. 

!WORK 
Integer work array of length LIWORK. !WORK (1) , ... ,IWORK(20) serve as parameters 

for the code. For standard use, set IWORK(1) , ... ,IWORK(20) to zero before calling. 

On entry: 

- if IWORK(1) .EQ. 1 then RTOL and ATOL are vectors instead of scalars, 

- if IWORK(2) .EQ. 1 then IND is a vector, 
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- set IWORK(lO) = 0 if PSIDE is called for the first time; for subsequent calls of 
PSIDE do not reinitialize the parameters IWORK(lO) , ... ,IWORK(19) to zero. 

On exit: 

- IWORK(lO) contains the number of successive PSIDE calls, 

- IWORK(ll) contains the number of g evaluations, 

- IWORK(12) contains the number of J and M evaluations (J and M are com-
puted in tandem and count as 1), 

- IWORK(13) contains the number of LU-decompositions. 

- IWORK(14) contains the number of forward/backward solves, 

- IWORK(15) contains the total number of steps (including rejected steps), 

- IWORK(16) contains the number of rejected steps due to error control, 

- !WORK (17) contains the number of rejected steps due to Newton failure, 

- IWORK(18) contains the number of rejected steps due to excessive growth of 
the solution, 

- IWORK(19) contains the number ofrejected steps due to !ERR .EQ. -1 return 
of GEVAL. 

The integration characteristics in !WORK ( 11) , . . . ,!WORK ( 14) refer to an implemen­
tation on a one-processor computer. When implemented on a parallel computer 
with four processors, one may divide these numbers by four to obtain the number 
of sequential evaluations, decompositions and solves. 

RPAR and !PAR 

!DID 

RPAR and !PAR are real and integer arrays which you can use for communication 
between your calling program and the subroutines GEVAL, and/or JEVAL, MEVAL. 
They are not altered by PSIDE. If you do not need RPAR and !PAR, ignore these 
parameters by treating them as dummy arguments. If you choose to use them, 
dimension them in GEVAL and/or JEVAL, MEVAL as arrays of appropriate length. 
Because of the parallel implementation of PSIDE, GEVAL must not alter RPAR and 
!PAR to prevent concurrent updating. JEVAL and MEVAL may alter them. 

On exit: 

- if !DID . EQ. 1 then the integration was successful, 

- if !DID . EQ. -1 then PSIDE could not reach TEND because the stepsize be-
came too small, 

- if !DID . EQ. -2 then something else went wrong. For example this happens 
when the input was invalid. A description message will be printed. 
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12.4 Index determination 

As mentioned before, it is important for higher-index problems to set the index of the 

variables in the vector IND. In this section we specify for certain problem classes, which 

can easily be written in the form (12.1), how this should be done. The results were taken 

from (HLR89]. For higher-index problems in these classes we also list the additional 

conditions that have to be fulfilled by the initial values. We refer to Chapter 11 for 

information on how PSIDE uses IND. If </> is a function of q, then we will denote the 

(partial) derivative of</> with respect to q by </>q· 

12.4.1 ODEs 

First of all, Ordinary Differential Equations (ODEs), which are of the form 

y'=f(t,y), y,fEIRd, 
to :::; t :::; tend, y(to) =Yo, 

are of index 1, i.e. we can set IWORK(2) = 0. 

12.4.2 DAEs of index 1 

The class of Differential- Algebraic Equations (DAEs) takes the form 

y' = f(t ,y,z), 
0 = g(t,y,z), 
to :::; t :::; tend, 

y,f E 1Rd1, 

z,gE IRd2 , 

y(to) = Yo, z(to) = zo, 

(12.2) 

where Yo and zo are such that g(to, yo, zo) = 0. If 9z is invertible in the neighborhood of 

the solution, then (12.2) is of index 1 and IWORK(2) = 0 is the right setting. 

12.4.3 IDEs with invertible mass matrix 

Also of index 1 are problems of the form 

M(y)y' = f(t , y), y, f E IRd, 

to :::; t :::; tend, y(to) =Yo, 

where M (y) (often called the mass matrix) is invertible in the neighborhood of the 

solution. Again, set IWDRK(2) = 0. 

12.4.4 DAEs of index 2 

An often arising subclass of (12.2) where gy is not invertible is 

y' = f(t ,y,z), 
0 = g(t,y), 
to :::; t :::; tend, 

y,f E 1Rd1 , 

z,g E 1Rd2' 

y(to) =Yo, z(to) = zo, 
(12.3) 

where Yo and zo are such that g(to, Yo) = 0 and gy(to, Yo)f(to, yo, zo) = 0. If gyfz is 

invertible in the neighborhood of the solution, then (12.3) is of index 2. The variables 

y and z are of index 1 and 2, respectively, so set IND(I) = 1 if I corresponds to a 

y-component, and IND(!) = 2 if I corresponds to a z-component. 
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12.4.5 IOEs of index 3 
If the problem is of the form 

y' f ( t, y, z) , 
z' = k(t, y, z, u), 
0 = g(t,y), 
to ~ t ~tend, 

y,f E 1Rd', 
z, k E 1Rd2 , 

u,g E 1Rd3, 
y(to) =Yo, 

(12.4) 

z(to) = zo, u(to) = uo, 

where gyfzku is invertible in the neighborhood of the solution and yo, zo and uo satisfy 
the conditions 

g(to, Yo) = 0, 

9y(to,Yo)f(to,Yo,zo) = 0, 

9yy(to, Yo)(f (to, Yo, zo), f (to, Yo, zo) )+ 
9y(to, Yo)(fy(to, Yo, zo)f(to, Yo, zo) + f z(to, Yo, zo)k(to, Yo, zo)) = 0, 

then (12.4) is an IDE of index 3. The variables y, z and u are of index 1, 2 and 3, 
respectively, so set IND(!) = 1 if I corresponds to a y-component, IND(!) = 2 if I 
corresponds to a z-component, and IND(!) = 3 if I corresponds to au-component. 

12.4.6 Multibody systems of index 3 
In mechanics one often encounters the problem 

q' u, 
M(q)u' = f(t, q, u) + GT(q)>., 
0 = g(t,q), 
to ~ t ~tend, 

q,u E 1Rd', 
f E 1Rd2, 
>.,9E1Rd3, 
q(to) = qo, u(to) = uo, >.(to)= >.o, 

(12.5) 

where G(q) = gq, the matrix M(q) non-singular in the neighborhood of the solution and 
qo, u0 and >.o are such that they satisfy 

g(to, qo) = 0, 

G(to, qo)uo = 0, 

9qq(to, qo)(uo, uo) + G(to, qo)M- 1 (qo)(f (to, qo, uo) +GT (qo)>.o) = 0. 

We could rewrite the system to the form (12.4) by premultiplying both sides of the u'­
equation by M-1 (q). Consequently, (12.5) is of index 3 and the variables q, u and>. are 
of index 1, 2 and 3, respectively, so set IND(!) = 1 if I corresponds to a q-component, 
IND(!) = 2 if I corresponds to a u-component, and IND(!) = 3 if I corresponds to a 
>.-component. 

12.5 Example 

Here we give a simple example, solving the Van der Pol problem, an ODE of dimen­
sion 2. 



PSIDE users' guide 

12.5.1 Driver for Van der Pol problem 

program psidex 
c 
c PSIDE example: Van der Pol problem 
c 
c - ODE of dimension 2 
c - formulated as general IDE 
c - analytical partial derivative J (full 2x2 matrix) 
c - analytical partial derivative M (band matrix) 
c 

integer neqn,nlj,nuj,nlm,num 
logical jnum,mnum 
parameter (neqn=2,nlj=neqn,nuj=neqn,nlm=O,num=O) 
parameter (jnum=.false., mnum=.false.) 
integer lrwork, liwork 

y' = f 

g = f - y' = 0 
dg/dy = df /dy 
dg/dy' = -I 

parameter (lrwork = 20+26*neqn+6*neqn**2, liwork 20+4*neqn) 

integer ind,iwork(liwork),ipar,idid 
double precision y(neqn),dy(neqn),t,tend,rtol,atol, 

+ rwork(lrwork),rpar 

external vdpolg,vdpolj,vdpolm 

integer i 

c initialize PSIDE 

do 10 i=l,20 
iwork(i) 0 
rwork(i) OdO 

10 continue 

c consistent initial values 

t OdO 
y(l) 2d0 
y(2) OdO 
dy(l) OdO 
dy(2) -2d0 

tend 41. 5d0 

177 
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c set scalar tolerances 

rtol 1d-4 
atol 1d-4 

write(*,'(1x,a,/)') 'PSIDE example solving Van der Pol problem' 

+ 
+ 
+ 
+ 
+ 

call pside(neqn,y,dy,vdpolg, 
jnum,nlj,nuj,vdpolj, 
mnum,nlm,num,vdpolm, 
t,tend,rtol,atol,ind, 
lrwork,rwork,liwork,iwork, 
rpar, ipar, idid) 

if (idid.eq.1) then 
write(*,'(1x,a,f5.1,/)') 'solution at t =',tend 
write(*,'(1x,a,e11.3)') y(1) =', y(1) 
write(*,'(1x,a,e11.3,/)') ' y(2) =', y(2) 
write(*,'(1x,a,i4)') 'number of 
write(*,'(1x,a,i4)') 
write(*,'(1x,a,i4)') 
write(*,'(1x,a,i4)') 

else 

'number of 
'number of 
'number of 

steps 
f-s 
J-s 
LU-s 

=' iwork(15) 
=' iwork(11) 
=' iwork(12) 
=' iwork(13) 

write(*,'(1x,a,i4)') 'PSIDE failed: !DID=', idid 
endif 

end 

subroutine vdpolg(neqn,t,y,dy,g,ierr,rpar,ipar) 
integer neqn,ierr,ipar(*) 
double precision t,y(neqn),dy(neqn),g(neqn),rpar(*) 
g(1) = y(2)-dy(1) 
g(2) = 500d0*(1d0-y(1)*y(1))*y(2)-y(1)-dy(2) 
return 
end 

subroutine vdpolj(ldj,neqn,nlj,nuj,t,y,dy,dgdy,ierr,rpar,ipar) 
integer ldj,neqn,nlj,nuj,ierr,ipar(*) 
double precision t,y(neqn),dy(neqn),dgdy(ldj,neqn),rpar(*) 
dgdy(1, 1) OdO 
dgdy (1, 2) 1d0 
dgdy(2,1) -1000dO*y(1)*y(2)-1dO 
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dgdy(2,2) 500d0•(1d0-y(l)•y(l)) 
return 
end 

subroutine vdpolm(ldm,neqn,nlm,num,t,y,dy,dgddy,ierr,rpar,ipar) 
integer ldm,neqn,nlm,num,ierr,ipar(•) 
double precision t,y(neqn),dy(neqn),dgddy(ldm,neqn),rpar(•) 
dgddy(l,1) -ldO 
dgddy(l,2) = -ldO 
return 
end 

12.5.2 Output for Van der Pol problem 

This is the output of the example given in the previous subsection. 

PSIDE example solving Van der Pol problem 

solution at t 41.5 

y(l) 0.194E+Ol 
y(2) -0.140E-02 

number of steps 22 
number of f-s 218 
number of J-s 9 
number of LU-s 88 

12.6 PSIDE and the 'Test set for IVP solvers' 

A user-friendly interface for PSIDE is supplied by the 'Test set for IVP solvers', which 
is available via the World Wide Web [LSV96]. This test platform contains not only the 
Fortran 77 routines for many test problems in a uniform format, but also drivers that 
link this format to the solvers RADAU5 [HW96a], VODE [BHB92], DASSL [Pet91] and 
PSIDE. This means that if one wants to solve a particular set of differential equations 
with PSIDE, it suffices to write the code that defines the problem in the test set format 
and link it to the solver and the test set driver. Without using the test set, one would 
have to write a driver oneself and bother about the right input parameters, the dimension 
of the work arrays, the output format, etc. 

Another advantage is that it is easy to compare solvers mutually. To give an im­
pression of the performance of PSIDE in relation to that of the other solvers, we give in 
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Figure 12.1- 12.2 work-precision diagrams for two problems from [LSV96]. They corre­
spond to the Medical Akzo Nobel problem, a set of semi-discretized partial differential 
equations of dimension 400 which describe the injection of a medicine in a tumorous 
tissue, and the NAND gate, a set of 14 implicit differential equations of index 1 which 
model a electrical circuit performing the logical NOT(AND) operation. To produce these 
diagrams, we used for every solver a range of input tolerances, measured the accuracy 
delivered by the solver in number of correct digits and plotted these numbers against the 
CPU times needed for the runs on a logarithmic scale. The PSIDE-1 curves correspond 
to timings on a one-processor machine, the PSIDE-4 curves were obtained by dividing 
the one-processor timings by the speed-up factors on four processors. For an explanation 
how these factors were obtained, we refer to [LSV96] or §6.5. Results of VODE and 
RADAU5 are not included in Figure 12.2, because these solvers can not handle implicit 
differential equations directly. From Figure 12.1 we see that for the Medical Akzo No­
bel problem PSIDE is on one processor about as efficient as VODE and DASSL and 
less efficient than RADAU5, whereas PSIDE using four processors is the most efficient 
solver. Figure 12.2 reveals that for the NAND gate DASSL performs better than PSIDE 
in one-processor mode, but worse if four processors are used. These figures are quite 
representative for the numerous comparisons in [LSV96], which show that the speed-up 
factor of PSIDE with respect tot the other solvers is between 1.5 and 3.8, depending on 
problem and solver. 

Integration characteristics, complete descriptions of the test problems and the test set 
format, full details about the work-precision diagrams, as well as comparisons for other 
test problems, can be found in (LSV96]. 
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Samenvatting (Summary in Dutch) 

Stelsels impliciete differentiaalvergelijkingen komt men tegen bij het modelleren van 
vele tijdsafhankelijke industriele processen, zoals het gedrag van electrische circuits, de 
bewegingen van robots en chemische reacties. Omdat de stelsels vrijwel altijd te moeilijk 
zijn om exact op te lossen, gebruikt men meestal een numeriek schema om met behulp 
van een computer een benadering voor de oplossing te vinden. 

Vandaag de dag neemt de omvang en complexiteit van de problemen sneller toe dan 

de snelheid van de rekenprocessoren. Orn de rekentijd toch terug te brengen biedt de 
komst van parallelle computers, die meerdere processoren bevatten, een uitkomst. Dit 
proefschrift gaat over het ontwerp van numerieke schema's voor dit type computer, waar­
bij de verdeling van het werk over de verschillende processoren onafhankelijk is van het 
probleem. Dit is geen eenvoudige taak omdat het oplosproces zeer sequentieel van aard is; 
veel conventionele methoden hebben om de benadering van de oplossing in een tijdspunt 
te kunnen berekenen alle informatie van het vorige tijdspunt nodig. 

Een interessante klasse van methoden met potentie om toch uiteen te vallen in 
deeltaken die tegelijkertijd kunnen worden uitgevoerd, is die van de Runge-Kutta-me­
thoden. Deze methoden berekenen meerdere benaderingen per tijdspunt, die men ook 
wel stagewaarden noemt. In dit proefschrift hebben we ons gericht op het dusdanig ont­
werpen en/of aanpassen van Runge-Kutta-methoden dat de stagewaarden onafhankelijk 
van elkaar berekend kunnen worden. Daarbij is onderscheid gemaakt op grond van de 
stijfheid van een probleem. 

Stijve problemen worden gekarakteriseerd door sterk varierende tijdschalen van de 
verschillende oplossingscomponenten. Voor niet-stijve problemen hebben we een code 
ontwikkeld gebaseerd op een gegeneraliseerde Runge-Kutta-methode, toegepast met een 
vastpunts iteratieproces. Deze code is op vijf processoren tot ruim drie keer sneller dan 
de code DOPRI8, die over het algemeen beschouwd wordt als de beste sequentiele solver 
voor niet-stijve problemen. 

Voor stijve problemen geeft het bovengenoemde schema aanleiding tot numerieke 
instabiliteit. Dat wil zeggen dat de fout in de numerieke benadering al snel overvleugeld 
wordt door een opeenstapeling van allerlei fouten. De familie van impliciete Runge­
Kutta-methoden kent dit probleem niet, maar deze methoden zijn veel duurder omdat 
ze de oplossing vereisen van niet-lineaire stelsels, waarvan de dimensie gelijk is aan het 
aantal stagewaarden maal de probleemdimensie. We hebben twee technieken ontworpen 
om deze stelsels goedkoop op te lossen met behulp van parallelle computers. 

In de eerste aanpak lossen we de niet-lineaire vergelijkingen op met een iteratief proces 
dat zo gemaakt is dat een stagewaarde onafhankelijk van de andere opgelost kan wor­
den uit lineaire stelsels, waarvan de dimensie gelijk is aan de probleemdimensie. Door 
nu voor elke stagewaarde een processor beschikbaar te stellen hebben we een parallel 
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proces verkregen. De basis voor deze techniek is de benadering van de matrix die de 
Runge-Kutta-methode vastlegt door een benedendriehoeksmatrix met positieve diago­
naalelementen. Voor een groat aantal Runge-Kutta-methoden hebben we bewezen dat 
zo'n driehoeksmatrix eenvoudig te construeren is . 

De tweede aanpak gebruikt een gemodificeerd Newton proces om de grate stelsels 
niet-lineaire vergelijkingen terug te brengen tot lineaire stelsels van dezelfde dimensie. 
Vervolgens benaderen we de oplossing van deze lineaire stelsels met behulp van een 
nieuw iteratieproces dat voor elke stagewaarde de oplossing van lineaire stelsels van de 
probleemdimensie vereist . Wederom is het mogelijk om deze stelsels tegelijkertijd op 
te lossen. We hebben verschillende varianten uitgewerkt , alsmede enkele generalisaties 
geconstrueerd naar de klasse van meerstaps Runge-Kutta-methoden. Hoewel deze tech­
niek ingewikkelder is clan de eerste, werkt hij uiteindelijk efficienter. Bovendien kunnen 
we, afhankelijk van de variant, sterke resultaten afieiden over de convergentie van het 
nieuwe iteratieproces. 

Beide technieken leiden tot een groat aantal lineaire stelsels van de probleemdimensie 
en de efficientie van het uiteindelijke proces hangt in belangrijke mate af van hoe deze 
opgelost warden. De matrices van de stelsels bezitten een speciale structuur met vaak 
veel nullen. Met een oplosmethode die speciaal is ontwikkeld voor deze vorm is het gelukt 
om de stelsels aanzienlijk sneller op te lossen. 

Gebaseerd op de tweede aanpak hebben we de code PSIDE (de afkorting van de 
titel van dit proefschrift) ontwikkeld. PSIDE is een robuuste code van zevende orde 
en geschikt voor computers met vier processoren. De klasse van problemen waarvoor 
PSIDE gebruikt kan warden is ruimer dan die voor de meeste bestaande codes. Voor 
sommige problemen speelt het begrip index een rol. Een probleem dat van een hogere 
index is, heeft oplossingscomponenten die extra gevoelig zijn voor verstoringen. PSIDE 
kan enkele veel voorkomende klassen van hogere index problemen oplossen. Tevens is 
bijzondere aandacht besteed aan het ontwerpen van een foutschatter die ook voor zeer 
stijve problemen robuust werkt. 

We hebben PSIDE getest op een uitgebreide verzameling problemen en vergeleken met 
enkele veelgebruikte codes. Op een processor is PSIDE meestal langzamer clan de andere 
codes en soms ongeveer even snel. Voor de implementatie van PSIDE op vier processoren 
warden speed-up factoren gehaald ten opzichte van de andere codes varierend van 1,5 tot 
3,8, afhankelijk van probleem en code. 

Verder komt een toepassing uit de globale optimalisatie aan bod. Het gaat om het 
Fekete probleem, waarin een aantal punten dusdanig over een bol verspreid moet war­
den dat hun onderlinge afstanden zo groat mogelijk zijn. Het blijkt dat dit probleem 
geschreven kan warden als een stelsel impliciete differentiaalvergelijkingen. Omdat de 
complexiteit van het probleem snel groeit bij een toenemend aantal punten, is dit bij 
uitstek een geschikte toepassing voor PSIDE, dat aanzienlijk betere resultaten laat zien 
dan een globale optimalisator. 
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Stellingen 

behorende bij het proefschrift 

"Parallelle Software voor lmpliciete Differentiaalvergelijkingen" 

door Jacques J .B. de Swart 

1. Stel dat het stelsel gewone differentiaalvergelijkingen y' = f(y(t)) , y(to) = yo, met 

y , f E IRd , numeriek wordt opgelost met een Runge- Kutta methode van de vorm 

Yn =(I e; ® I)Yn-1 + h(A ® I)F(Yn) , n = 1, 2,. (1) 

waarin Yn een vector voorstelt met d-dimensionale benaderingen Yn,i voor de oplossing 

in tn-l + c;h, i = 1, ... , s, en h de stapgrootte. Van de vector c nemen we aan dat 

c, = 1. Verder staat ® voor het Kronecker product , l voor de s-dimensionale vector 

(1 , ... , l)T , de vector e5 , die van dezelfde dimensie is , voor (0, ... , 0, l )T, de matrix 

I voor de d-dimensionale eenheidsmatrix , A voor de s x s matrix met Runge-Kutta 

parameters en F(Yn) voor de vector (f (Yn,I )T, ... , f(Yn ,s)T)T, en is Yo gelijk aan 

(1 ® I)yo . 

Beschouw het volgende iteratieproces om Yn uit (1) op te lossen: 

yJ'> 
YJ1> - h(D ® I)F(YJ1>) 

yJ1> 

gedefinieerd door een of andere predictor ' 

l e;r' ® Y~'_-l/- 1 > + h((A - D) ® I)F(YJj-11), 
= y~m), 

met j* een geheel getal groter dan nu!. 

Voor <lit proces zijn de volgende twee uitspraken waar: 

j = 2, ... ,m, 
j > m, 

(i) De iteranden y~i), Y~~-l/l ,Y~~~2n, ... , Y/i+nr -n kunnen tegelijkertijd wor­

den uitgerekend . 

(ii) Voor de lineaire testvergelijking y' = >.y convergeert het proces naar de echte 

oplossing van (1) als p(h>.(J - h>.D) - 1 (A - D)) < 1, waarin p(-) de spectrale­

radius-functie voorstelt. 

W.A. VAN DER VEEN, J.J. B . DE SWART , AND P.J. VAN DER HOUWEN. Convergence aspects of step­

parallel iteration of Runge-Kutta methods. Applied Num erical Mathematics, 18:397- 41 l, 1995. 

2. Door in het PILSRK proces gepresenteerd in Hoofdstuk 7 van dit proefschrift de 

parameters s, "f, /3 en o respectievelijk 2, 1, 0 en 0 te kiezen, met Radau IIA als on­

derliggende Runge-Kutta methode, ontstaat een transformatievrij numeriek schema 



van derde orde dat geschikt is voor implementatie op een sequentiele computer om­
dat de twee lineaire stelsels die per iteratie opgelost moeten worden dezelfde matrix 
hebben . 

J .J .B . DE SWART. A simple ODE solver based on 2-stage Radau !IA. Journal of Computational and 

Applied Mathematics, 84(2):277-280, 1997. 

3. Van de twee iteratieve methoden voor het oplossen van lineaire systemen met een 
niet-symmetrische matrix, de 'Quasi-Minimal Residual ' methode (QMR) en de 'Bi­
Conjugate Gradient' methode (BiCG), kan QMR weliswaar gladder convergeren dan 
BiCG , maar niet essentieel sneller. 

J .J.B . DE SWART. The Quasi-Minimal Residual method. Master's thesis , University of Utrecht, 

1993. 

4. Een bestaand computerprogramma voor het numeriek oplossen van differentiaalver­
gelijkingen is redelijk robuust als het alle problemen in [1] op kan lossen , maar pas 
echt robuust als het ook de problemen op kan lossen die in de toekomst aan deze 
verzameling toegevoegd zullen worden, omdat het programma niet afgestemd is op 
deze nieuwe problemen. 

[l] W .M. LIOEN , J.J.B . DE SWART, AND W .A. VAN DER VEEN. Test set for !VP solvers. Report 

NM-R9615, CWI, Amsterdam, 1996. Available at http://wvv.cvi.nl/cwi/projects/IVPtestset/. 

5. De hoeveelheid toeters en bellen bepalen de populariteit van numerieke software in 
grotere mate dan de kwaliteit van de onderliggende methode. 

6. De kwaliteit van het referee-proces van tijdschriftartikelen kan vergroot worden door 
de namen van de referees op te nemen in het artikel , maar dan zou in veel gevallen de 
acceptatiedatum van een artikel geantidateerd moeten worden, teneinde de schande 
voor de referees te beperken. 

7. Uit het feit dat een gebroken beschuit minder lekker is dan een hele, blijkt we] dat 
smaak psychisch is. 

8. Idealen moeten zo groot gekozen worden , dat ze nog te zien zijn als men in een dal 
zit. 

" If 9. Aan alles wat met onderneemt kleven vele nadelen, die echter niet opwegen tegen het 
nadeel van niets ondernemen. 

10. In plaats van te denken aan luchtvervuiling, is het ook mogelijk om de strepen die 
vliegtuigen in de lucht achterlaten te associeren met de vrijheid die het reizen per 
vliegtuig teweegbrengt. 
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