
Supporting End-User Understanding
of Classification Errors

Emma Beauxis-Aussalet
CWI - Utrecht University

emalb@cwi.nl

Joost van Doorn
CWI - UvA

joost.van.doorn@gmail.com

Lynda Hardman
CWI - Utrecht University
lynda.hardman@cwi.nl

Figure 1: Simplified barcharts showing classification errors for binary data (left) and multiclass data (right).

ABSTRACT
Classifiers are applied in many domains where classification
errors have significant implications. However, end-users may
not always understand the errors and their impact, as error
visualizations are typically designed for experts and for im-
proving classifiers. We discuss a visualization design that
addresses the specific needs of classifiers’ end-users. We eval-
uate this design with users from three levels of expertise,
and compare it with ROC curves and confusion matrices.
We identify key difficulties with understanding the classi-
fication errors, and how visualization designs addressed or
aggravated them. The main issues concerned confusions of
the actual and predicted classes (e.g., confusion of False Pos-
itives and False Negatives). The machine learning terminol-
ogy, complexity of ROC curves, and symmetry of confusion
matrices aggravated the confusions. The end-user-oriented
visualization reduced the difficulties by using several visual
features to clarify the actual and predicted classes, and more
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tangible metrics and representation. Our results contribute to
supporting end-users’ understanding of classification errors,
and informed decisions when choosing or tuning classifiers.

CCS CONCEPTS
• Visualization→ Empirical studies in visualization; •
Machine learning → Classification;
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1 INTRODUCTION
Classifiers are inherently imperfect but their errors are ac-
cepted in a wide range of applications. End-users may not
fully understand the errors and their implications [21] and
may mistrust or misuse classifiers [23]. Error assessment
is not self-evident for end-users with no machine learning
expertise. Yet they may need to understand the classification
errors, e.g., to make fully-informed decisions when choosing
between classifiers. End-users may also need to control the
tuning parameters that can adjust the errors, e.g., to limit
the errors for the most important classes. Although machine
learning experts better understand the complexity of the
algorithms and their parameters, end-users should take part
in the final tuning decisions because they better understand
the implications of errors for their application domain.
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We aim at enabling end-users to choose among classifiers
and tuning parameters, and to understand the errors to ex-
pect when applying classifiers (e.g., classes may be over- or
under-estimated [3, 7]). Choosing and tuning classifiers al-
low to adjust the errors to specific use cases, e.g., to balance
False Positives (FP) and False Negatives (FN, Table 1). For
example, when detecting medical conditions, FN are critical
(pathologies must not be missed) and FP to a lesser extent (al-
though further procedures may be risky). Pre-defined tuning
parameters may not fully address end-user needs. For exam-
ple, parameters may minimize both FP and FN while users
prefer to increase the FP if it reduces the FN. Cost functions
can handle user requirements [9] but they are complex and
weighing the cost of errors is not always straightforward
(e.g., what is the cost of missed pathologies?). The metrics
and visualizations of classification errors are also complex
and may be misinterpreted by non-experts [21] as their un-
derlying concepts are not common knowledge and do not
easily convey the implications in end-usage applications.

A simplified barchart visualization [2] has been designed
to address the needs of end-users with no expertise in ma-
chine learning (Fig. 1). We analyse the user needs it addresses
(Section 3) and discuss its design rationale (Section 4). We
then evaluate it compared to ROC curves and confusion ma-
trices (Section 5). The suitability for specific audiences was
assessed with users having three kinds of expertise: machine
learning; mathematics but not machine learning (as it may
impact the understanding of error rates and ROC curves);
none of machine learning, mathematics or computer science.
We identified key factors that facilitated user understanding
or added confusion (Section 6).

The main issues concerned confusions between the actual
class and the predicted class assigned by the classifier (e.g.,
confusing FN and FP), misinterpretations of error rates and
technical terms, and misunderstandings of the impacts of
errors on end-results. The simplified visualizations facilitated
user understanding by using simpler error metrics, and by
distinguishing the actual and predicted classes with several
visual features. Our findings contribute to understanding
"how (or whether) uncertainty visualization aids / hinders [...]
reasoning" about the implications of classification errors, and
"decisions" when choosing or tuning classifiers [20].

Table 1: Definition of FP, FN, TP, TN.
False Positives (FP): objects classified as Positive (e.g., as the primary class to detect) while actually
being Negative (e.g., the class to discard).
False Negatives (FN): objects classified as Negative while being Positive.
True Positives (TP): objects correctly classified as Positive.
True Negatives (TN): objects correctly classified as Negative.

Error rates w.r.t. actual class size (e.g., ROC curves):
nxy

nx .
(1)

Error rates w.r.t. predicted class size (e.g., Precision):
nxy

n.y
(2)

Accuracy:
∑
x nxx
n..

e.g., for binary data:
T P +T N

T P +T N + F P + FN
(3)

2 RELATEDWORK
Recent work developed visualizations to improve classifica-
tion models [10, 17, 19], e.g., using barcharts [1, 24]. They are
algorithm-specific (e.g., applicable only to probabilistic clas-
sifiers or decision trees) but end-users may need to compare
classifiers based on different algorithms. These comparisons
are easier with algorithm-agnostic visualizations using the
same representations for all algorithms, and limiting com-
plex and unneeded information on the algorithms. Confusion
matrices, ROC curves and Precision-Recall curves are well-
established algorithm-agnostic visualizations [11] but they
are intended formachine learning experts and simplifications
may be needed for non-experts (e.g., understanding ROC
curve’s error rates may be difficult, especially for multiclass
data). Cost curves [9] are algorithm-agnostic and investigate
specific end-usage conditions (e.g., class proportions, costs
of errors) but they are also complex, intended for experts,
and do not address multiclass data. The non-expert-oriented
visualizations in [16, 21] use simpler trees, grids, Sankey or
Euler diagrams, but are illegible with multiclass data due to
multiple overlapping areas or branches.
Different error metrics have been developed and their

properties address different requirements [14, 25, 26]. Error
metrics are usually derived from the same underlying data:
numbers of correct and incorrect classifications encoded in
confusion matrices, and measured with a test set (a data sam-
ple for which the actual class is known). These raw numbers
provide simple yet complete metrics. They are easy to inter-
pret (no formula involved) and addressmost requirements for
reliable and interpretable metrics, e.g., they do not conceal
the impact of class proportions on error balance, and have
known values for perfect, pervert (always wrong) and random
classifiers [25]. These values depend on the class sizes in the
test set, which is not recommended in [25]. However, raw
numbers convey the class sizes, omitted in rates, but needed
to assess the class imbalance and statistical significance of
error measurements. These are crucial for extrapolating the
errors to expect in end-usage applications [3, 7].

Using raw numbers of errors, we focus on conveying basic
error rates in equations (1)-(2) where nxy is the number of
objects actually belonging to class x and classified as class
y (i.e., errors if x , y), nx . is the number of objects actually
belonging to class x (actual class size), and n .y is the number
of objects classified as class y (predicted class size). Accuracy
is a widely used metric summarizing errors over all classes,
as shown in (3) where nxx is the number of objects correctly
classified as class x , and n .. is the total number of objects for
all classes. We also consider conveying accuracy, and focus
on overcoming its bias towards large classes and missing in-
formation on the error composition [14] (e.g., high accuracy
can conceal significant errors for specific classes).
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Table 2: Relationships between users, tasks, information needs, metrics and basic visualizations
Task Visualization

Improve Model & Algorithm Tune Classifier Extrapolate Errors in End-Results Confusion Matrix ROC/PR Curve Classee
Target End-Users X X X
Audience Software Providers X X X X X

Raw Numbers X X X X X
Low-Level Error Rates in Equation (1) X X X X X
Metric Error Rates in Equation (2) X X if class proportions are equal [3] X X

Accuracy X X X
AUC X X variant
Overall Error Magnitude X X X X X
Errors over Tuning Param. X X X X

High-Level Errors over Object Features X used in extrapolation method [6] if , x-axis
Information Error Composition X X X X X X

Class Proportions X X X X
Class Sizes X X X X

3 USER INFORMATION NEEDS
We identified key information needs through interviews of
machine learning experts and end-users, conducted within
the Fish4Knowledge and Classee projects [5, 12]. We found
that the needs of software providers and end-users have key
differences and overlaps (Table 2). Software providers often
seek to optimise classifiers on all classes and all types of error
(e.g., FP and FN). For example, they measure the Area Under
the Curve (AUC) [11] to summarise all types of errors (FN
and FP) over all possible values of a tuning parameter. This
approach is irrelevant for end-users who apply classifiers
tuned with fixed parameter values. Metrics that summarize
all types of errors for all classes (e.g., AUC, Accuracy) fail to
convey "the circumstances under which one classifier outper-
forms another" [9], e.g., for which classes, class proportions
(e.g., rare or large classes), error composition (i.e., the break-
down of errors between all possible classes) and values of
the tuning parameters. These characteristics are crucial for
end-users: specific classes and types of errors can be more
important than others; class proportions may vary in end-
usage datasets; and optimal tuning parameters depend on
the classes and errors of interest, and on the potential class
proportions. End-users are also interested in extrapolating
the errors in their end-usage datasets (e.g., within the objects
classified as classY howmany truly belong to classX?). Such
extrapolation depends on class sizes, class proportions and
error composition [3, 7] and can be refined depending on the
features of classified objects [6].

4 CLASSEE VISUALIZATION
The Classee project simplified the visualization of classifica-
tion errors by using ordinary histograms and raw numbers
of errors (Fig. 1). The actual class and the error types are
differentiated with color codes: vivid colors if the actual class
is positive (blue for TP, red for FN), desaturated colors if the
actual class is negative (grey for TN, black for FP). The zero
line distinguishes the predicted class (TP and FP are above
the zero line, FN and TN are below).

For binary data (Fig. 1 left), objects from the same actual
class are stacked in distinct bars: TP on FN for the positive
class, and FP on TN for the negative class. Basic error rates

can easily be interpreted visually. ROC curve’s error rates in
equation (1) are visualized by comparing the blocks within
continuous bars: blue/red blocks for TP rate, black/grey
blocks for FP rate. Precision-like rates in equation (2) are
visualized by comparing adjacent blocks on each side of the
zero line: blue/black blocks for Precision, red/grey blocks
for False Omission Rate. Accuracy (3) can be interpreted by
comparing blue and grey blocks against red and black blocks,
which is more complex. However, it overcomes key issues
with accuracy [14] by showing the error balance between
FP and FN, and potential imbalance between large and small
classes. The visualization also renders information similar to
Area Under the Curve [11] as blue, red, black and grey areas
can be perceived.
Perceiving ROC-like rates (1) implies comparing divided

and adjacent blocks. It can lower perception accuracy [27]
compared to unadjacent blocks in [24] (TP rates rendered
with separated TP and FN blocks) or [1] (FP rates rendered
with separated TN and FP blocks). However, Classee shows
part-to-whole ratios while [27] researched part-to-part ratios,
and suggests that perceiving part-to-whole is more intuitive
and effective. Further, Classee lets users compare the posi-
tions of bar extremities to the zero line, and perceiving posi-
tions is more accurate than perceiving relative bar lengths
[8]. Precision-like rates (2) are perceived using aligned and
adjacent blocks. It supports more accurate perceptions [8, 27]
compared to divided unadjacent blocks in [1, 24].

For multiclass data (Fig. 1 right), errors are shown for
each class in a one-vs-all reduction, i.e., considering one class
as the positive class and all other classes as the negative
class, and so for all classes (e.g., for class x , FP=∑y,x nyx
and TN= ∑y,x

∑
z,x nyz ). TN are not displayed because

they are typically of far greater magnitude, especially with
large numbers of classes, which can reduce other bar sizes to
illegibility. TN are also misleading as they do not distinguish
correct and incorrect classifications (e.g., nzz and nyz,y,z ).
Without TN, FP are stacked on TP which shows the Precision
for each class.

Compared to [24] stacking TP-FP-FN in this order, Classee
stacking facilitates the interpretation of TP rates (1) and true
class sizes by showing continuous blocks for TP and FN.
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Compared to chord diagrams in [1] encoding error magni-
tudes with surface sizes, Classee uses bar length to support
more accurate perceptions of quantities [8].

Accuracy can be interpreted by comparing all blue blocks
against either all red blocks, or all black blocks (the sum of
errors for all red blocks is the same for all black blocks, as
each misclassified object is a FP for its predicted class and
a FN for its actual class). Users can visualize the relative
proportions of correct and incorrect classifications, but the
exact equation of accuracy (3) is harder to interpret. Instead
Classee focuses on conveying the error composition for each
class while accuracy involves TN that do not distinguish
errors from correct classifications [14].

Inspecting the error composition is crucial for understand-
ing the impact of errors in end-results. Users need to assess
the errors between specific classes and their directionality
(i.e., errors from an actual class are misclassified into a pre-
dicted class). If errors between two classes are of significant
magnitudes, it creates biases in the end-results [3, 7]. For
example, errors from large classes can result in FP of signifi-
cant magnitude for small classes that are thus over-estimated.
Such biases can be critical for end-users’ applications.

Hence Classee visualization details the error composition
between actual and predicted classes. The FP blocks are split
in sub-blocks representing objects from the same actual class.
The FN blocks are also split in sub-blocks representing ob-
jects classified into the same predicted class. To avoid show-
ing too many unreadable sub-blocks, Classee shows the 2
main sources of errors in distinct sub-blocks and merges the
remaining errors in the same sub-block. The FP sub-blocks
show the 2 classes from which most FP actually belong, and
the remaining FP as a 3rd sub-block. The FN sub-blocks
show the 2 classes into which most FN are classified, and the
remaining FN as a 3rd sub-block. Future implementations
could let users control the number of sub-blocks to display,
and the boxes in [24] may improve their rendering.

Figure 2: Rollover detailing the errors for a specific class.

Users can select a class to inspect its errors (Fig. 2). It
shows which classes receive the FN and generate the FP. The
FN sub-blocks of the selected class are highlighted within
the FP sub-blocks of their predicted class. The FP sub-blocks
are highlighted within the FN sub-blocks of their predicted

class. Users can identify the error directionality, i.e., they
can differentiate Class X objects misclassified into Class Y and
Class Y objects misclassified into Class X (e.g., in Fig. 2, objects
from class C6 are misclassified into C34, but not from C34
into C6). Future implementations could also highlight the
remaining FN and FP merged in the 3rd sub-blocks.
Large classes (with long bars) can hinder the perception

of smaller classes (with small bars). Thus we propose a nor-
malised view that balances the visual space of each class
(Fig. 3). Errors are normalised on the TP of their actual class
as nxy /nxx (i.e., dividing FN/T P and reconstructing the FP
blocks using the normalised errors FN/T P). Although unusual,
this approach aligns all FP and FN blocks to support easy
and accurate visual perception [8, 27]. It also reminds users
of the impact of varying class proportions: the magnitude of
errors change between normalised and regular views, as they
would change if class proportions differ between test datasets
(from which errors were measured) and end-usage datasets
(to which classifiers are applied). It is also the basis of the
Ratio-to-TP method that extrapolates errors in end-usage
applications [3].

Figure 3: Normalized view with errors proportional to TP

Color choices - Classee uses blue rather than green as in
[1] to address colorblindness [28] while maintaining a high
contrast opposing warm and cold colors. Compared to class-
specific colors in [24] which can clutters the visualization
to illegibility (e.g., with more than 7 classes [22]), Classee
colors can handle large numbers of classes. Following the
Few Hues, Many Values design pattern [28], sub-blocks of FN
and FP use the same shades of red and black. The shades of
grey for FP may conflict with the grey used for TN in binary
classification. The multiclass barchart does not display TN
and its shades of grey remain darker. Thus color consistency
issues are limited, and we deemed that Classee colors are a
better tradeoff than adding a color for FP (e.g., yellow in [1]).
As a result, the identification of actual and predicted classes is
reinforced by the interplay of three visual features: position
(below or above the zero line for the predicted class, left
or right bar for the actual class), color hues (blue/red if the
actual class is positive), and color (de)saturation (black/grey
if the actual class is negative).
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5 USER EXPERIMENT
We evaluated Classee and investigated the factors supporting
or impeding the understanding of classification errors. We
conducted in-situ semi-structured interviews with a think-
aloud protocol to observe users’ "activity patterns" and "iso-
late important factors in the analysis process" [18]. We focused
on evaluating the Visual Data Analysis and Reasoning rather
than User Performance [18] as our primary goal is to ensure
a correct understanding of classification errors and their im-
plications. We conducted a qualitative study that informs the
design of end-user-oriented visualization, and is preparatory
to potential quantitative studies. We included a user group of
mathematicians to investigate how mathematical thinking
impacts the understanding of ROC curves and error metrics.
Such prior knowledge is a component of the Demographic
Complexity interacting with the Data Complexity, and thus
impacting user cognitive load [15]. This section sumarizes
the study setup. The exact tasks, tutorials, datasets and visu-
alizations are specified in [4].

The 3 user groups represented three types of exper-
tise: 1) practitioners of machine learning (4 developers, 2
researchers), 2) practitioners of mathematics but not machine
learning (5 researchers, 1 medical doctor), and 3) practition-
ers of neither machine learning, mathematics nor computer
science (including 1 researcher). A total of 18 users and 2
users per condition (3 groups x 3 visualizations x 2 users) was
sufficient to yield significant observations, as we repeatedly
identified key factors impacting user understanding.

The 3 experimental visualizations compared Classee
to ROC curves and confusion matrices, applied to the same
datasets. ROC curves are preferred to Precision-Recall curves
which exclude TN thus do not convey the same information
as Classee. Users interacted with only one kind of visualiza-
tion, to account for their learning curve. After interacting
with a first visualization, users gain expertise that would bias
the results with a second visualization.

The 15 user tasks were in two parts, for binary and mul-
ticlass data. Each part started with a tutorial explaining the
visualization and the technical concepts. This could be dis-
played anytime during the tasks. The explanations of the
technical concepts were the same for all users and visualiza-
tions. Only the explanations of the visualization differed.

6 QUALITATIVE ANALYSIS
To identify the factors influencing user understanding of clas-
sification errors, we analysed user comments and behaviours
by transcribing written notes of the interviews. To let the fac-
tors emerge from our observations, we first proceeded with
grounded coding (no predefined codes). We then organized
our insights into themes and proceeded to a priori coding
(predefined codes). We identified 3 key difficulties that are

independent of the visualizations: 1) The terminology (e.g.,
TP, FN, FP, TN are confusing terms); 2) The error direction-
ality (e.g., considering both FN and FP); 3) The extrapolation
of error impact on end-usage application (e.g., a class may
be over-estimated). We report these difficulties and how the
visualizations aggravated or addressed them.

Terminology - The basic terms TP, FN, FP, TN were dif-
ficult to understand and remember ("In 30 minutes I’ll have
completely forgotten"). Twelve users (66%) mentioned diffi-
culties with these terms, including machine learning experts.
The terms Positive/Negative were often misunderstood as
the actual class (instead of the predicted class) especially
when not matching their applied meaning ("Cancer is the
positive class, that’s difficult semantically"). Users were also
confused by the unusual syntax ("Positive and Negative are
usually adjectives but here they are nouns, it’s confusing") and
the association of antonyms (e.g., False and Positive in FP,
"False is for something negative") and synonyms (e.g., "The
words are so close" with True and Positive in TP, "I under-
stand that FN are not errors" because Negative and False is a
logical association). Users misinterpreted the terms True and
False as representing the actual or predicted class, and both
are incorrect. Some users suggested adverbs to avoid such
confusion ("Falsely", "Wrongly"). To cope with the semantic
issues, users translated the technical terms intomore tangible
terms, using concrete examples ("Falsely Discarded", "False
face"). A machine learning expert requested short acronyms
(e.g., TP for True Positive). A non-expert suggested icons as
another form of abbreviation ("like a smiley" Fig. 4). This
user preferred labels mentioning the actual class first (using
Negative/Positive) then the errors (using True/False).

Figure 4: User-suggested icons for TP, FN, FP, TN. Drawn by the
interviewer following user’s instructions in post-experiment discussions. User-
suggested labels are below the icons. Usual labels were later added above.

The terminology of legends and explanations can yield
difficulties ("You could make the text more clear"). The terms
Select and Discard in our tutorials and legends can be at odds
with their application ("Discarding objects may be confusing
if both classes are equally important"). The term true in its
common meaning ("true class", "truly belong to [class x]")
conflicts with its meaning in TP, TN and must be avoided.
Math experts were often familiar with TP, FN, FP, TN

as these are involved in statistical hypothesis testing. Ma-
chine learning experts knew the technical terms well, except
a self-taught practitioner who was only familiar to terms
used in daily tasks, e.g., Accuracy but not ROC Curve or
Confusion Matrix. This user mentioned "Clients only ask for
accuracy" but did not recall its formula. Two other machine
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learning experts were unfamiliar with either Precision-Recall
or ROC curves, as their daily tasks involved only one of
these. Hence machine learning practitioners may not recall
the meaning and formula of unused metrics, or even metrics
used regularly. Some metrics are not part of their routines,
but may be relevant for specific use cases or end-users. Hence
experts too can benefit from Classee since i) remembering
error rate formulae is not needed as rates are visually re-
constructed; ii) both ROC-like or Precision-like rates can be
visualized (1)-(2); and iii) accuracy can also be interpreted.

Error Directionality - Users need to distinguish the ac-
tual and predicted classes of errors, and the direction of
errors from an actual class classified into a predicted class.
Ten users (56%) from all profiles had difficulties with error di-
rections, e.g., confusing FP and FN ("Oh my FP were FN, why
did I switch!"). With binary data, users may not understand
how the tuning parameter influence errors in both directions,
e.g., decreasing FN but increasing FP ("I put a high threshold
so that there’s no error [FP, FN] in the results", "High threshold
means high TP and TN"). With multiclass data, users may not
understand that FN for one class are FP for another, and that
errors for class x concern both errors with predicted class x
and actual class x (e.g., not considering both FN and FP).
Terminology issues complicated user understanding of

error directionality, e.g., the terms Positive/Negative could
mean both the actual or predicted class. Some users intu-
itively interpreted these terms as the predicted class, others
as the actual class. Users often used metaphors and more tan-
gible terms to clarify the error directionality ("The destination
class", "We steal [the FP] from another class"). The terms Se-
lected andDiscarded, although using a tangible metaphor, can
be misunderstood as the actual class ("The class that must be
selected") yielding misinterpretations of error directionality.

Extrapolation of Errors in End-Usage Applications -
Users needed additional information to extrapolate the clas-
sification errors in end-usage applications ("It’s impossible to
deduce a generality", "How can I say anything about the rest of
the data?"). More information on the consequences of error
was needed to decide which errors are tolerable ("There can
be risks in allowing FP, additional tests have further health
risks", "No guidance on how to make the tradeoff"). Users ques-
tioned whether the error measurements are representative
of end-usage conditions, regarding potential changes in class
sizes and error magnitudes ("Assuming class proportions are
equal", "This is a sample data, another sample could have some
variations"). They also wondered about additional sources
of uncertainty, such as changes in object features or the
presence of other classes ("Will it contain only paintings and
photographs?") and their impact on the algorithm ("How does
the classifier compute the problem"). The lack of context in-
formation decreased user confidence, e.g., when assessing if
a class is likely to be over- or under-estimated.

ROC Curve - It is unusual to visualize line charts where
both x- and y-axes represent a rate, and where thresholds
are a third variable encoded on the line. It is more intuitive
to represent thresholds on the x-axis and rates on the y-axis,
with distinct lines for each rate (as a user suggested). Non-
experts primarily relied on text explanations to perform the
tasks (e.g., reading that low thresholds reduce FP, then check-
ing each dot’s threshold to find the lowest). Only machine
learning and math experts were comfortable with interpret-
ing the data visually ("My background makes me fluent in
reading ROC curves visually", "I don’t use formulas, I compare
the dots with each other without reading the values").
Error rate formulae were difficult to understand and re-

member, even for experts ("Formulas are still confusing, and
still require a lot of thinking"). All users but one needed to
reexamine the equations and their meaning many times dur-
ing the tasks. It increased their response time and impacted
their confidence ("To be sure I’ll need to read it again"). Some
users interpreted the rates as numbers of errors, for a sim-
pler surrogate metric. Otherwise, without the numbers of
errors, class sizes and potential imbalance are unknown, and
it aggravates the difficulties with extrapolating the errors
in end-results, e.g., it is impossible to assess the balance of
errors between large and small classes ("Unknown ratio of Pos-
itive/Negative","Assuming class proportions are equal"). The
error composition (how many objects from class X are con-
fused with class Y) is unavailable for multiclass data. Some
users noticed the lack of information ("There’s not enough
information, errors can come from one class or another", "As-
suming the destination class is random") but others failed
to notice, even for one task that was impossible to answer
without knowing the error composition.

Error rates’ ambiguous labels aggravated the terminology
issues. The rates have actual class sizes as denominators (1)
but the term Positive in TP and FP rate refers to the predicted
class. It misled users in considering that both rates have the
predicted class size as denominator, e.g., misinterpreting TP
rate (1) as Precision (2). This is consistent with [16] where
misinterpretations were more frequent with denominators
than numerators, and with [13] where a terminology specify-
ing the denominator of probabilistic metrics improved user
understanding. A user suggested to replace TP rate by the
opposite FN rate (1 - TP rate). It is more intuitive that both
rates focus on errors (rather than on correct TP), and by men-
tioning both Positive and Negative labels, it may indicate that
the denominators differ. Yet the terminology remains con-
fusing as it fails to indicate the rate’s denominator. Longer
labels could clear ambiguities but may be tedious to read.

Thus ROC curves aggravated the difficulties with the ter-
minology and error directionality, because error rate labels
are ambiguous and fail to clarify the denominator. They
also aggravated the difficulties with extrapolating errors in
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end-results because their rates fail to provide the required
information, and end-users may fail to notice this limitation.

Confusion Matrix - It is unusual to interpret rows and
columns as in confusion matrices, e.g., tables are usually read
row per row. Users needed to reexamine the meaning of rows
and columns many times during the tasks. It was difficult
to remember if they represent the actual or predicted class,
which aggravated the difficulties with error directionality. By
confusing themeaning of rows and columns, all users but one
confused FN and FP. By reading the table either row by row,
or column by column, users did not consider both FN and FP
(including 2 machine learning experts). The experimental vi-
sualization included large labels Actual Class and Automatic
Classification to specify the meaning of rows and columns,
but further clarification was needed. Row and column labels
showed only the class names (e.g., Class A, Class B). It was
confusing because the list of labels was identical for rows
and columns. Labels could explicitly refer to the actual or
predicted class, e.g., Actual Class A, Classified as Class B. One
user suggested icons to provide concise indications of the
meaning of rows and columns. Another suggested anima-
tions to show the relationships of rows or columns and the
error directionality, e.g., a rollover on a cell shows an arrow
connecting it from its actual class to its predicted class.
Thus confusion matrices aggravated the difficulties with

error directionality because the visual features do not differ-
entiate actual and predicted class. Users must rely on row
and column labels, and terminology issues can arise (e.g., if
the labels only mention the class names). Color codes and
heatmaps can help differentiating FP from FN, but only when
a class is selected (errors are FP or FN from the perspective
of a specific class) and heatmaps support less accurate per-
ceptions of magnitudes [8]. Difficulties with extrapolating
the errors in end-results were also aggravated because errors
are not easy to compare, i.e., users need to relate cells at
different positions in the matrix.

Classee - The histograms were intuitive and quickly un-
derstood, especially for binary problems ("This you could
explain to a 5-year-old"). For multiclass problems, it was
unusual to interpret histograms where two blocks can repre-
sent the same objects. Indeed errors are represented twice:
in red FN blocks for their actual class, and in black FP blocks
for their predicted class. When a class is selected (Fig. 2),
highlighting the related FP and FN blocks helped users to
understand the error directionality ("Highlight with rollover
helps understanding how the classifier works") but clarifica-

Figure 5: User
suggestion

tions were requested ("You could use an
arrow to show the correspondence between
FP and FN", Fig. 5). Animations may bet-
ter show the related FN and FP (e.g., FN
blocks moving to the position of their
corresponding FP blocks).

Once users familiarizedwith the duplicated blocks, Classee
supported a correct understanding of error directionality, and
answers were rarely wrong ("It’s something to get trained on",
"Once you get used to it, it’s obvious"). Difficulties remained
with confusion matrices and ROC curves, as misunderstand-
ings of FP and FN remained frequent. Classee better clarified
the error directionality with visual features that clearly dis-
tinguish actual and predicted classes ("I like the zero line, it
makes it more visual"). These also reduced the difficulties with
the technical terminology and its explanation ("Explanations
are more difficult to understand than the graph", "We usually
say it’s easier said than done, but here it’s the opposite: when
you look at the graph it’s obvious") even though multiclass
legends were unclear ("What do you mean with 1st class and
2nd class?"). Classee was more tangible and self-explanatory
("I see an object that contains things") and non-experts were
more confident than they expected ("I am absolutely sure but
I should be wrong somewhere, I’m not meant for this kind of
exercise", "It sounds so logical that I’m sure it’s wrong").
Extrapolating the errors in end-results was also easier

with Classee. Using numbers of errors provides complete
information while ROC curves conceal the class sizes ("You
get more insights from the barchart"). Confusion matrices
also use numbers of errors, but are more difficult to interpret
(cell values are difficult to compare, rows or columns can
be omitted or misinterpreted). Class sizes and error balance
were easier to visualize with Classee ("Here the grey part is
more important than here", "Histograms are more intuitive").
Thus Classee limited the difficulties with extrapolating

errors in end-results because its metrics and visual features
are more tangible and intuitive, and they provide complete
information (including class sizes and error balance). Classee
also limited the difficulties with the terminology and error
directionality by using visual features that clearly distinguish
actual and predicted classes. Yet error directionality can be
further clarified for multiclass data by adding interactive
features to reinforce the correspondence of FP and FN (e.g.,
animations) and choose the details to display (e.g., error
composition for more than 2 classes, or for specific classes).

After the experiment, we introduced the alternative visual-
izations. Most users preferred Classee, especially after using
the other graphs ("It’s easier, I can see what I was trying to do",
"This is what I did in my mind to understand the threshold").
Two machine learning experts preferred Classee, others pre-
ferred the familiar confusion matrix or ROC curve ("You get
more insights from the barchart, but ROC curve I read it in a
glimpse") or would use both confusion matrix and Classee
as they complement each other with overview and details.

7 CONCLUSION
We identified issues with the terminology, the error direc-
tionality (objects from an actual class are misclassified into a
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predicted class) and the extrapolation of error impacts in end-
usage applications. To address these issues, labels and visual
features must reinforce the identification of actual and pre-
dicted classes, e.g., using domain terminology and tangible
representations (animations, icons). The third issue requires
information on the error composition, and additional infor-
mation to assess the validity of the error measurements w.r.t.
the end-usage conditions (e.g., if test sets are representative
of end-usage datasets). End-users need to investigate the
statistical validity of error measurements (e.g., with variance
visualization [4] that consider the class sizes of end-usage
datasets [3]), and additional factors to take into account (e.g.,
changes in object features, class number or class sizes).

Error metrics have crucial impacts on user cognitive load.
With error rates, users may overlook missing information
(e.g., class sizes) and misinterpret the denominators, which
is worsened by terminology issues. Raw numbers of errors
are simpler to understand, but are difficult to analyse with
confusion matrices.

Classee successfully addressed these issues. Its use of num-
bers of errors encoded in histograms is more tangible and
self-explanatory, and supports accurate perceptions of error
magnitudes and class sizes. The combination of 3 visual fea-
tures that distinguish the actual and predicted class (position,
color hue, color saturation) clarified the error directionality.
It helped overcome the terminology issues while providing
complete information for choosing and tuning classifiers,
and for extrapolating errors in end-usage applications.
Multiclass problems remain particularly difficult to visu-

alize. All three experimental visualizations involve unusual
representations in otherwise common graphs. ROC curves
have rates on both axes, confusion matrices are read both
column- and row-wise, and Classee has duplicated blocks
representing the same errors (as FN or FP). In our evaluation,
Classee was the easiest to learn and familiarize with, but
its legends and interactions should be improved (e.g., with
animations highlighting the error directionality).
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