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Chapter 1

Introduction

1.1 Electrical breakdown

An electrical breakdown process is said to occur when a current flows through
an otherwise non-conducting medium (insulator) when subjected to a sufficiently
high voltage. This flow of current may be a transient flow or a continuous one
(such as an electrical arc). The ability of a medium to resist a current flow when
subjected to increasing voltages is characterized by its dielectric strength. For
instance, the dielectric strength of air at atmospheric pressure is 3×106 V/m. In
the picture below, one can observe filamentary structure around the Tesla coil.
The high electric field around the coil causes the air to ionize allowing current
to leak into the air in colorful filamentary features.

Figure 1.1: Tesla coil demonstrating electrical breakdown process.
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1.2 Lightning and other types of electrical discharges

To study the phenomenon of electrical breakdown is complex due to its multiscale
character. Natural atmospheric lightning provides the most popular form in
which the phenomenon may be observed. Lightning is a very large scale electric
discharge process where the cloud(s) and the ground together act as electrodes
and the atmospheric air in between as the insulating medium. Lightning stays a
subject of modern research [1, 2].

Apart from atmospheric lightning, electrical breakdown has been studied as
a fundamental physical process and due to its many applications. Depending on
the application and the experimental conditions, different types of electrical dis-
charges may be produced. A classification may be made based on characteristics
such type of voltage applied (pulsed, AC or DC voltage), whether the discharge
is stationary or transient, non-linear effects such as space charge, based on the
role of heating and complexity of the chemistry involved. Some forms include:

• Streamer discharge

It is a finger shaped, cold transient discharge characterized by a thin layer
of space charge around its head. It is capable of penetrating non-ionized
media due to the strong electric field enhancement at the tips. Streamers
are efficient at activating chemical pathways. As a result they have found
applications in cleaning polluted media [3, 4, 5] and sterilizing wounds [6,
7]. They have also been employed for airflow control around the wings of
an aircraft in the aerospace industry [8, 9].

• Dielectric barrier discharge (DBD)

It is an electric discharge that occurs between two electrodes which have
layers of insulating dielectric material (dielectric barrier) between them.
Frequently, the voltage source to operate DBD uses an alternating current
(AC). In industry they were first used in the process of ozone production
[10]. Other applications include polymer surface treatment , semiconductor
manufacturing, plasma display panels etc [11]. They have also been suc-
cessfully employed in the field of plasma medicine [12] and for treatment
of textiles [13].

• Spark and arc discharge

It is characterized by gas heating. When a strong electric current flows
through a medium, the electrical energy is converted to heat energy causing
the gas temperature to rise. The increased temperature results in increased
pressure which leads to gas expansion. Due to this the density of the gas
drops locally. This results in a reduction in the reduced electric field (E/N
where N is the neutral gas number density) which makes it favourable for
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the current to keep flowing along the heated path thereby further promoting
the electrical breakdown of the gas.

A spark/arc discharge can be detrimental to high-voltage equipment or it
can be the mode of operation. For example, in high power switching, effort
is being put to understand the properties of super-critical fluids [14] or high
pressure CO2 [15, 16] so as to use them as an eco-friendly power switching
medium in electrical circuit breakers.

Spark discharges are also used for ignition purposes in internal combustion
engines [9]. In the field of wireless communication, a spark-gap transmitter
is used which uses an electric spark to create radio frequency radiation [17].

In the current thesis, our goal is to understand the role of heating in an elec-
trical breakdown phenomenon, and to develop efficient computational models to
simulate it.

A key motivation for studying electrical breakdown phenomena comes from
high voltage technology. In particular, the transition to renewable energy sources
such as sun and wind requires efficient transmission of electrical energy. For
instance, energy harvested at a remote off-shore wind farm has to be transmitted
with minimal losses to areas of high consumption. This can be achieved by
transmitting electricity at lower frequencies than 50 Hz or even by setting up
direct current (DC) transmission lines over long distances. To effectively balance
supply and demand, a grid should be established. For control of current flow
in the grid, electrical switches/circuit breakers are used. Sulphur-hexa fluoride
SF6 has been the dominant switching medium used in these breakers/switches
due to its excellent interruption properties such as high dielectric strength and
short dielectric recovery time. However, SF6 is an extremely strong greenhouse
gas with toxic by-products. This creates a need for investigating new media that
are environment friendly and have excellent switching properties. Consequently,
experimental testing and simulations should be performed to study electrical
breakdown in these new media.

1.3 Research objectives addressed in the thesis

The current thesis deals with the development and application of efficient com-
putational models to simulate heat driven electrical breakdown in various media.
Coupling the electric discharge model to the gas dynamics model is essential to
building a successful model which can then be employed to simulate the process.
Such a coupling poses various challenges. These are briefly described below:

• The dynamics of an electric discharge is highly non-linear due to the cou-
pling of the electric field and the charge densities and the transport co-
efficients (function of reduced electric field). Furthermore, the discharge
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model should be able to resolve the relevant length scales, such as thin
space charge layers (if they occur) of few microns in atmospheric air and
the electrode gap, which differ by orders of magnitude.

• The gas dynamics model must be able to resolve spatial features such as
shocks waves (pressure, density) which determine the reduced electric field
and hence the transport coefficients.

• A major computational challenge arises when combining the widely varying
time scales between the model describing the electrical discharge dynamics
and the gas dynamics. On the one hand we have the electrons moving on
the nanosecond timescale. On the other hand we have the ions which move
relatively slower on the microsecond timescale. Lastly, we have the neutral
gas as well which moves on even longer timescales (the timescale of move-
ment of the gas depends on the gas temperature). Certainly, resolving
the fastest timescale provides the most accurate description but is com-
putationally too demanding for long timescales. This motivates the need
for different models resolving the different time scales, and for a hybrid
approach to switch between these models.

This thesis focuses on the objectives mentioned above and makes an effort to
develop a computational model that may be utilized for simulating electrical
discharge phenomena where heating plays a significant role. On a holistic level,
the model developed may possibly be integrated in the suite of tools available
for electric discharge simulation.

1.4 Structure of the thesis

Apart from the current chapter, this thesis has been divided into 5 Chapters.
Below is a short outline of the contents of each of the chapters.

• Chapter 2
This chapter focuses on the physical models employed for discharge mod-
elling and presents a few numerical test cases. These test cases are essential
for the accuracy of numerical results presented later.

• Chapter 3
This chapter has been adapted from the article Coupling of discharge and
gas dynamics in streamer-less spark formation in supercritical Nitrogen
published in the Japanese Journal of Applied Physics.

• Chapter 4
This chapter has been adapted from the article with the titleModelling heat
dominated electric breakdown in air, with adaptivity to electron or ion time
scales published in the journal Plasma Sources Science and Technology.
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• Chapter 5
This chapter discusses a new strategy for selecting sampling points for
uncertainty quantification. It has been adapted from the article published
with the above-mentioned title in the International Journal for Uncertainty
Quantification.

• Chapter 6
This chapter summarizes the results presented in the thesis and ends with
an outlook on the future challenges.





Chapter 2

Physical models and numerical
test cases

In this chapter we present an overview of the physical models employed
in this thesis. We also review the numerical discretization techniques
used for our simulations and present some numerical test results.
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2.1 Physical models

In the current work, we focused on modeling the dynamics resulting from coupling
of electric discharge and the surrounding gaseous medium. We chose a fluid
modeling approach to model the electric discharge as well as the surrounding
gas.

2.1.1 Drift-diffusion-reaction equations

In fluid modeling of an electric discharge we consider charge densities n(r, t); in
contrast to Particle-in-cell models that model individual particles in the system.
The time evolution of the charge density of a particular species i is given by an
equation of the form

∂ni
∂t

+∇ · ji = Si. (2.1)

In the above equation, ni, ji and Si are functions of position and time. ni and
ji are density and current density of species i and Si represents the sum total of
all the sources and sinks for species i.

The expressions for the terms ji and Si depend on the complexity of the model
and on the physical processes included in the model. For our current purposes,
we consider the first- order model for electric discharge where ji is given by

ji = µiniE−Di∇ni + vni, (2.2)

where µi denotes the mobility and Di denotes the diffusion coefficient of the
species i respectively. The first term in the above expression is the advective
(drift) part and the second term is the diffusive part. Also, v denotes the velocity
of the background medium. For a more accurate description, higher order fluid
models can be derived as velocity moments of Boltzmann equation [18, 19]. The
first-order model suffices for the work presented in this thesis.

The term Si contains the information about the reactions between different
charged/neutral species in the system. For instance, for the impact ionization
represented by reaction

e− + N2 −→ 2e− + N+
2 , (2.3)

the source term is modeled by

Simp = k(E/N)ne[N2], (2.4)

where k is the reaction coefficient whose value depends on the reduced electric
field E/N where N is the gas number density and ne and [N2] represent the
electron and nitrogen density, respectively.

An important sink process to consider in electric discharge simulations in air
is the process of attachment represented by the reactions

e− + O2 −→ O− + O, (2.5)
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e− + O2 + M −→ O−2 + M, (2.6)

where the former reaction is a two-body attachment process and the latter is a
three-body attachment process and M is another molecule.

Photo-ionization is yet another important non-local source of electrons. Due
to its non-local character, it cannot be modeled by reactions such as for impact
ionization and attachment processes. For the purpose of the work presented in
this thesis, we do not include photo-ionization in the source terms. A detailed
discussion about the role of photo-ionization in electric discharge simulations (in
particular streamer discharges) and its implementation can be found in the PhD
theses of Anna Dubinova [20] and Jannis Teunissen [21].

Depending on the questions to be addressed, the reaction set representing the
source and the sink can be made as complete as needed comprising numerous
neutral and charged species. This provides accurate description of the physics
but poses a computational challenge which at times may be prohibitive. As a
result, a careful choice has to be made about which species to include in the
model.

2.1.2 Electric field

The evolution of the electric discharge occurs under the influence of the electric
field which is a combination of the external electric field and the electric field
generated by the electric discharge itself. We compute this electric field self-
consistently with the Poisson equation

−∇2φ(r, t) =
q(r, t)
ε0

, (2.7)

where φ is the electric potential, q is the charge density and ε0 is the permittivity
of free space. The electric field E is computed from the electric potential via the
relation

E(r, t) = −∇φ(r, t). (2.8)

In this thesis, we chose a direct solver that uses LU factorization to solve the
resulting linear system.

2.1.3 Euler equations

To model the gas dynamics, we adopt the compressible Euler equations without
viscosity. The relevant equations for the conservation of mass, momentum and
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energy are in cylindrical coordinates

∂ρ

∂t
+∇ · (ρv) = 0, (2.9)

∂ (ρvr)

∂t
+∇ · (ρvrv) = −∂p

∂r
, (2.10)

∂ (ρvz)

∂t
+∇ · (ρvzv) = −∂p

∂z
, (2.11)

∂ξ

∂t
+∇ · (v(ξ + p)) = Sξ, (2.12)

with v = (vr, vz) and ∇ = (∂r, ∂z). Here ρ is the gas mass density, v the gas
velocity, p is gas pressure, and

ξ = ρε+
1

2
ρv2 (2.13)

is the total energy per unit volume. ε is the internal energy per unit mass; it is
related to pressure through the ideal gas law

p = ρε(Γ− 1), (2.14)

where Γ is the heat capacity ratio for the background gas whose value we assume
to be constant and equal to 1.4 for air. Furthermore, Sξ is the energy source
term that models gas heating. More details about the form of Sξ are discussed
later in Chapter 4 of this thesis.

2.2 Numerical method

In this section we describe the numerical methods employed to computationally
solve the physical model described above. We adopt a method-of-lines approach
where we first carry out spatial discretization of a PDE (or a system PDEs)
which then results in an ODE (or a system of ODEs). This ODE (or a system
of ODEs) is then numerically integrated in time.

2.2.1 Spatial discretization

For the spatial discretization of time-dependent advection-diffusion-reaction equa-
tions and the Euler equations we adopt a finite volume method on a uniform grid.
In a finite volume method, we use the integral form of the equations (conserva-
tion laws/continuity equations) and hence instead of talking of point values we
talk about cell-averaged quantities. Also, the conservative form is well suited to
problems where shocks/discontinuities are expected.

To explain the spatial discretization clearly, consider the general form of a
conservation law which is given by

∂n

∂t
+∇ · F = S, (2.15)
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where n is the physical quantity to be solved for, F denotes the flux function
and S denotes the source term. As explained before, in a finite volume method
the computational domain is divided into cells. For the computations carried out
in this thesis, we chose a uniform cylindrical domain with azimuthal symmetry.
This resulted effectively in a uniform Cartesian grid with the r and z directions
as the two axes. A grid cell can be annotated by

Ci,j = [(i− 1)∆r, i∆r]× [(j − 1)∆z, j∆z] (2.16)

where i and j are positive integers indexing the r and z directions respectively and
∆r and ∆z are the cell width (spatial resolution) in either direction. Integrating
the equation 2.15 over a cell Ci,j we get

dni,j
dt

=
1

ri∆r

(
ri− 1

2
Fi− 1

2
,j − ri+ 1

2
Fi+ 1

2
,j

)
+

1

∆z

(
Fi,j− 1

2
− Fi,j+ 1

2

)
+ Si,j (2.17)

For the sake of completeness (as our electric discharge model contains an ad-
vective component and a diffusive component in the flux function), we further
breakdown the flux function F into an advective component Fa and a diffusive
component Fd. For the advective component we use an upwind scheme [22] with
flux limiting which is defined as

F a
i+ 1

2
,j

= E+
r;i+ 1

2

(ni,j + ψ(Pi,j)(ni+1,j − ni,j)) (2.18)

+ E−
r;i+ 1

2

(
ni+1,j + ψ

(
1

Pi+1,j

)
(ni,j − ni+1,j)

)
, (2.19)

F a
i,j+ 1

2

= E+
z;j+ 1

2

(ni,j + ψ(Qi,j)(ni,j+1 − ni,j)) (2.20)

+ E−
z;j+ 1

2

(
ni,j+1 + ψ

(
1

Qi,j+1

)
(ni,j − ni,j+1)

)
, (2.21)

where E+ = max(µE, 0) and E− = min(µE, 0) differentiate the upwind direc-
tions for the two components Er and Ez of the electric field. Note that for
positive charge carriers µ carries a positive sign and a negative sign for the neg-
ative charge carriers. Furthermore, we have

Pi,j =
ni,j − ni−1,j

ni+1,j − ni,j
, (2.22)

Qi,j =
ni,j − ni,j−1

ni,j+1 − ni,j
. (2.23)

The function ψ is the Koren limiter function [23] whose form is given by the
expression

ψ(θ) = max
(

0,min
(

1,
1

3
+
θ

6
, θ

))
. (2.24)
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The diffusive component of the flux function Fd is computed using a second-order
central difference scheme as below

F d
i+ 1

2
,j

=
D

∆r
(ni,j − ni+1,j) , (2.25)

F d
i,j+ 1

2

=
D

∆z
(ni,j − ni,j+1) . (2.26)

Discretization of the Poisson’s equation

The electric potential is computed in the cell centers by using a second-order
central difference of the Poisson’s equation

φi+1,j − 2φi,j + φi−1,j

∆r2
+
φi+1,j − φi−1,j

2ri,j∆r
+
φi,j+1 − 2φi,j + φi,j−1

∆z2
= −qi,j

ε0
(2.27)

In this thesis, we chose a direct solver that uses LU factorization to solve the
resulting linear system.

The components of the electric field E are computed at the cell faces by using
the relation E = −∇φ as below

Er;i+ 1
2
,j = −φi+1,j − φi,j

∆r
, (2.28)

Ez;i,j+ 1
2

= −φi,j+1 − φi,j
∆z

. (2.29)

The modulus of the electric field is needed to compute the reduced electric field
E/N which is further used to calculate the mobility and diffusion coefficients.
The modulus of the electric field is computed at the cell centers as below

Ei,j =

√√√√(Er;i− 1
2
,j + Er;i+ 1

2
,j

2

)2

+

(
Ez;i,j− 1

2
+ Ez;i,j+ 1

2

2

)2

(2.30)

2.2.2 Temporal discretization

After we have carried out the spatial discretization, we end up with a system of
ODEs which then can be numerically integrated in time. For our purpose, we
employed the explicit trapezoidal rule, a second order Runge-Kutta method, for
time discretization with time step ∆t. Given a time instant tk = k∆t and values
of physical quantities nk at that time instant, the values at the next time instant
tk+1 are computed by first computing an intermediate result using a Forward
Euler method

ñk+1 = nk + ∆tF (nk), (2.31)
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and thereafter computing the final values as

nk+1 = nk +
∆t

2
F (nk) +

∆t

2
F (ñk+1) (2.32)

Explicit time-stepping methods, such as the one above, are simple to implement
but have to follow a time step restriction determined by the Courant-Friederichs-
Levy (CFL) condition for stability. There are other restrictions from the diffusion
and reaction components of the equations (the system describing the electric
discharge) [22] but they are dominated by the CFL criterion for the advective
component. We chose a value of 0.25 for the Courant number in our case which
is well below the maximum required for stability of the method.

We have applied the same numerical discretization procedure to Euler equa-
tions as well.
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2.3 Some numerical test cases

We present snapshots of test cases of the simulation with the code that was
developed to carry out the modeling work presented later on in this thesis.

2.3.1 2D Streamer simulation

The 2D streamer simulation result presented below was performed with the pa-
rameters described in [24]. The result accurately captures the space charge and
electric field strength.
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Figure 2.1: Streamer Simulation: The numerical solution of the drift-diffusion-
reaction model for pure N2 in a uniform background field. The background field
point in the negative z-direction and has a strength of 100 kV/cm. Initially,
a neutral Gaussian seed with peak density of 4.8 × 1010 cm−3 was placed at
z = 0.833 mm. Shown are the space charge and electric field strength at times
t = 0.225 ns, 0.375 ns, 0.525 ns and 0.675 ns (time increases from top to bottom).
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2.3.2 1D Euler simulation

To test the solver for the Euler equations in 1D we used the Sod shock tube test
[25]. It is commonly used to test the accuracy of CFD codes. The following
initial conditions were used,

• pressure left = 1.0, pressure right = 0.1,

• density left = 1.0, density right = 0.125,

• velocity left = 0.0, velocity right = 0.0,

• length = 1.0,

• duration = 0.125.
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Figure 2.2: 1D Euler Simulation: Plotted are the physical quantities versus the
position for the 1D Sod tube test at time t = 0.125 s. The analytical solution is
plotted with continuous line and the computed solution is plotted with circles.
The simulations were performed on a 1D grid of 600 cells with a CFL number of
0.25.
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2.3.3 2D Euler simulation

To test the gas dynamics solver in 2D, we used the 2D Riemann problems de-
scribed in [26] as test cases. To set the initial data for the 2D Riemann problem,
the computational domain was partitioned into four quadrants

(p, ρ, vx, vy)(x, y, 0) = (p1, ρ1, vx1 , vy1), if x > 0.5 and y > 0.5, (2.33)
= (p2, ρ2, vx2 , vy2) if x < 0.5 and y > 0.5, (2.34)
= (p3, ρ3, vx3 , vy3) if x < 0.5 and y < 0.5, (2.35)
= (p4, ρ4, vx4 , vy4) if x > 0.5 and y < 0.5. (2.36)

Below we plot results for two initial conditions. The figures in the left column are
from the reference article [26] and the figures in the right column are computed
from our code.

The initial data are

p2 ! 0.3 "2 ! 0.5323 p1 ! 1.5 "1 ! 1.5
u2 ! 1.206 v2 ! 0 u1 ! 0 v1 ! 0

p3 ! 0.029 "3 ! 0.138 p4 ! 0.3 "4 ! 0.5323
u3 ! 1.206 v3 ! 1.206 u4 ! 0 v4 ! 1.206

Comments. As before, oscillations because of the over-compressive limiter with # ! 2 in
Figure 3.3(a) are reduced in the third-order case, and even sharper results are obtained with a
more “mild” limiter parameter, # ! 1. The resolution of shocks is comparable to the upwind
results.

FIG. 3.3. (a) 2nd-order scheme, # ! 2, T ! 0.3; (b) 3rd-order scheme, T ! 0.3; (c) 2nd-order scheme, # !
1, T ! 0.3.
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Configuration 14.

J21
!

S 32
! S 41

!

J34
"

The initial data are

p 2 ! 8 "2 ! 1 p 1 ! 8 "1 ! 2
u 2 ! 0 v2 ! "1.2172 u1 ! 0 v1 ! "0.5606

p3 ! 2.6667 "3 ! 0.4736 p4 ! 2.6667 "4 ! 0.9474
u3 ! 0 v3 ! 1.2172 u4 ! 0 v4 ! 1.1606

FIG. 3.12. (a) 2nd-order scheme, # # 1.3, T # 0.25; (b) 3rd-order scheme, T # 0.25.

FIG. 3.13. (a) 2nd-order scheme, # # 1.3, T # 0.3; (b) 3rd-order scheme, T # 0.3.
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Figure 2.3: 2D Euler Simulation: Shown are the density contour plots at time
t = 0.25 (first row) and t = 0.3 (second row) for a set of two initial conditions.
The simulations were performed on a 600×600 grid with a CFL number of 0.25.

For the figure in the first row the initial condition is

p2 = 0.300 ρ2 = 0.5323 p1 = 1.500 ρ1 = 1.500

vx2 = 1.206 vy2 = 0.000 vx1 = 0.000 vy1 = 0.000

p3 = 0.029 ρ3 = 0.138 p4 = 0.300 ρ4 = 0.5323

vx3 = 1.206 vy3 = 1.206 vx4 = 0.000 vy4 = 1.206
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For the figure in the second row the initial condition is

p2 = 1.000 ρ2 = 1.000 p1 = 0.400 ρ1 = 0.5313

vx2 = 0.7276 vy2 = 0.000 vx1 = 0.000 vy1 = 0.000

p3 = 1.000 ρ3 = 0.800 p4 = 1.000 ρ4 = 1.000

vx3 = 0.000 vy3 = 0.000 vx4 = 0.000 vy4 = 0.7276.





Chapter 3

Coupling discharge and gas
dynamics in streamer-less spark
formation in supercritical N2

A two-dimensional cylindrically symmetric model is developed to study
the streamer-less spark formation in a short gap on the timescale of ion
motion. It incorporates the coupling between the electric discharge and
the gas through the heat generated by the discharge and the consecutive
gas expansion. The model is employed to study electrical breakdown in
supercritical N2. We present the simulation results of gas heating by
the electrical discharge and the effect of gas expansion on the electrical
discharge.

1

1This chapter is based on "Coupling discharge and gas dynamics in streamer-less spark
formation in supercritical N2." by A. Agnihotri, W. Hundsdorfer and U. Ebert. Japanese
Journal of Applied Physics 55, no. 7S2 (2016): 07LD06.
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3.1 Introduction

Electrical breakdown and dielectric recovery are important issues in high-voltage
switch gear. A common medium in gaseous insulation and high-voltage switch-
ing is SF6 which is known to have excellent switching properties [27, 28, 29,
30]. But the downside is that SF6 is an extreme green house gas with a global
warming potential of 23 900 times that of CO2. Supercritical liquids might be
a replacement due to their high density, dielectric strength etc. [31, 32]. The
electric breakdown in supercritical N2 — at 80 bar and 300 K — has recenty
been studied experimentally and theoretically by Zhang et al. [14]. However, in
their simulation studies of the breakdown of supercritical nitrogen between two
planar electrodes only the transversal structure of the breakdown channel was
resolved in an extremely simplified model for the electric discharge. We here
study the breakdown process assuming that the breakdown channel is cylindri-
cally symmetric, i.e., that we can treat the evolution in a radial and a longitudinal
coordinate (r, z).

Electric breakdown is typically assumed to evolve from initial electron avalanc-
hes through the space charge dominated streamer phase to a heat dominated
leader or arc phase, and many experimental and theoretical studies have been
performed [33, 34]. Space charge effects refer to the electric field enhancement at
streamer head which supports the ionization reaction and thereby results in the
subsequent breakdown of the medium [35, 24]. Here we demonstrate a different
breakdown mechanism in short gaps with secondary emission from the cathode
where a sequence of ionization waves and ion pulses heats the gas up until it
breaks down.

To study this dynamics, we here develop a simulational code to study elec-
trical breakdown where discharge and gas dynamics are coupled: the discharge
generates ohmic heat that heats the gas. Consecutively the gas expands which
changes the transport and reaction properties in the discharge.

Tholin et al. [36] studied the hydrodynamic expansion of the background gas
after the voltage pulse. They assumed the reduced electric field E/N to be not
affected by the changes in the background gas density, N, and hence do not solve
the gas flow equations along with the discharge equations. This assumption is
reasonable as the gas temperature does not rise rapidly during the short voltage
pulse and hence the gas density is not much changed.

Komuro et al., [37] solve the discharge equations and background gas flow
equations simultaneously during the voltage pulse, but only on the electron
timescale.

In this work, we solve the discharge equations and background gas flow equa-
tions simultaneously but now on the timescale of ion motion.

This paper is organized as follows: In Sect. 2 we introduce the notation and
describe our model for the coupled system. Sect. 3 contains initial and boundary
conditions and numerical algorithms. Sect. 4 is devoted to simulation results and



Chapter 3. Coupling discharge and gas dynamics in streamer-less
spark formation in supercritical N2 21

discussion. Finally, we summarize our finding and give an outlook in Sect. 5.

3.2 Description of the model

We develop a two-dimensional cylindrically symmetric code to carry out the
simulations. The code components include a model for the electric discharge
on the timescale of ion motion and a model for the background gas. The two
models are coupled to study the interplay between the electric discharge and the
background gas.

3.2.1 Model for the electric discharge

To describe the discharge dynamics, we adopt the first-order reaction-drift-diffusion
model [38] in local field approximation for electrons and ions, coupled to Pois-
son’s equation to calculate the electric field self-consistently. We focus on the
timescale of ion motion and assume that the electrons are moving infinitely fast
[39, 40]. This means that the electron density adapts to the ion density in-
finitely fast and the derivative ∂tne can be set to zero in an adiabatic decoupling
procedure. Hence, our reaction-drift-diffusion equations become:

−∇ · (neµeE +De∇ne) = Se, (3.1a)

∂tnp +∇ · (npµpE−Dp∇np) = Se, (3.1b)

−∇2φ =
e

ε0
(np − ne) , (3.1c)

E = −∇φ. (3.1d)

In the above equations, ne and np denote the number density of electrons and
positive ions, respectively, where we assume only one ion type N+

2 to be formed.
E represents the electric field, φ represents the electric potential and e is the
elementary charge. The mobilities (and diffusion coefficients) of electrons and
positive ions are denoted by µe (and De) and µp (and Dp), respectively; they are
assumed to be functions of the reduced electric field E/N , where N is the gas
number density. Se is the impact ionization term in local field approximation.

The transport and reaction coefficients were taken from the work of Montijn
et al. [24] and scaled to 80 bar.

At the cathode we implement secondary emission of electrons on ion impact,
i. e.

ne = γnp, (3.2)

where γ is the secondary emission coefficient whose value is taken to be 0.07 for
simplicity.
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3.2.2 Model for the background gas

To describe the gas dynamics, we adopt the compressible Euler equations [41]
without viscosity, as in the studies by Tholin et al [36, 42]. The source term for
energy transfer from the electric discharge to the gas is Joule heating [36, 43,
44, 45]. The system is closed with the ideal gas law. The relevant equations in
cylindrical coordinates are

∂ρ

∂t
+∇ · (ρv) = 0, (3.3a)

∂ (ρvz)

∂t
+∇ · (ρvzv) = −∂p

∂z
, (3.3b)

∂ (ρvr)

∂t
+∇ · (ρvrv) = −∂p

∂r
, (3.3c)

∂ξ

∂t
+∇ · (v(ξ + p)) = ηe (jc ·E) , (3.3d)

where jc is the conductive current density given by

jc = je + jp, (3.4)

where
je = µeneE +De∇ne, (3.5a)

jp = µpnpE−Dp∇np. (3.5b)

Here ρ is the gas mass density, v is the gas velocity, ξ = ρε + 1
2ρv

2 is the total
energy per unit volume, with ε being the internal energy per unit mass for the
gas, p is pressure, and η is the fraction of discharge energy that contributes to
gas heating. We have adopted the value of 0.3 for η as suggested by Tholin et
al. [36]based on physical arguments and fitting with experiments.

3.2.3 Coupling between discharge and gas dynamics

The electric discharge generates the Joule heat ηe (jc ·E) in the model for the
gas. When the temperature rises, the gas expands, the gas number density N
decreases and hence the transport coefficients of the charged species and the
reduced electric fields E/N increase.There is a feedback in both directions (from
discharge to gas and back) at every time step of the evolution.
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3.3 Simulation conditions

In this work we adopt 3D-cylindrical geometry with azimuthal symmetry around
the discharge axis (r = 0). The electrode configuration is plane-to-plane. The
background gas is taken to be supercritical N2 at a temperature of 300 K and
a pressure of 80 bar [14]. The applied electric field E = −Eêz (where E is the
magnitude of the electric field and êz is the unit vector in the z-direction) drives
the system. The electrons therefore move in the positive z-direction and the
positive ions in the negative z direction under the action of the field. The system
length is L = 0.3 mm in z-direction and 3L in r-direction.

z
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Figure 3.1: Simulation setup: In the above figure, the gas medium is supercritical
N2 at temperature of 300 K and pressure of 80 bar. The boundary conditions
for charge densities (electronic/ionic) and for the electric potential are indicated.
The gap length, L, is 0.3 mm and a dc-voltage, φ0 of 54 kV is applied.

3.3.1 Boundary conditions

We have cylindrical symmetry around the discharge axis (r = 0).
We set a homogeneous Neumann boundary condition for electron/ion densi-

ties onto the boundary in the radial direction. On the top boundary, the anode,
we set positive ion density equal to zero, as ions are only produced within the
gap and drift downward. Also, we set the perpendicular component of diffusive
flux of electrons on the top boundary to zero.

At the bottom electrode, the cathode, the perpendicular component of the
ion-diffusive flux is set to zero. Also, since we include secondary electrode emis-
sion, the Dirichlet boundary condition (3.2) is imposed on the electron density
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at the cathode. Figure 1 shows the implemented boundary conditions.
The electric potential is fixed as φ = 0 or 54 kV on the lower (z = 0) or

upper (z = L) electrode. The electric potential varies linearly with z on the
right lateral boundary. In mathematical terms, the b.c. are

∂ne
∂z

(r, Lz, t) = 0, ne(r, 0, t) = γnp(r, 0, t),
∂ne
∂r

(Lr, z, t) = 0, (3.6)

np(r, Lz, t) = 0,
∂np
∂z

(r, 0, t) = 0,
∂np
∂r

(Lr, z, t) = 0, (3.7)

φ(r, 0, t) = 0, φ(r, Lz, t) = φ0, φ(Lr, z, t) =
φ0z

Lz
, (3.8)

where Lr = 3L, Lz = L and φ0 = 54 kV.
For the Euler equations, extrapolated boundary conditions[46, 47] were as-

sumed on all boundaries.

3.3.2 Initial conditions

We start the simulation with a Gaussian distribution of ions and electrons

n(r, z)|t=0 = n0 exp

[
− r

2

σ2
r

− (z − z0)2

σ2
z

]
, (3.9)

where we choose n0 = 5 × 1011 cm−3, z0 = 0.09 mm, σr = 6.9 µm and σz =
27.6 µm. This seed amounts to about 3700 electrons and ions. The initial gas
temperature and pressure are chosen to be 300 K and 80 bar, respectively. Also,
the gas velocity is chosen to be zero at the begining of the simulation.

3.3.3 Numerical method

The continuity equations of the discharge model are discretized with the MUSCL
scheme [26, 48] using the Koren limiter function [22]. Since we expect large gas
density gradients in the system, we implemented a high-resolution scheme which
although being computationally expensive is good at handling large gradients.
For time-integration, explicit second- order Runge-Kutta (midpoint rule) [49] is
used. To solve Poisson’s equation we used the FISHPACK solver [50]. Also, the
Euler equations are discretized with the same numerical scheme as the discharge
equations. A grid of 500 cells was taken along the z-axis and of 3 × 500 in the
r-direction.

3.4 Results and discussion

We simulated the evolution of a discharge in nitrogen at 80 bar in a 0.3 mm gap
with 54 kV applied, and with the initial seed (3.9) of about 3700 electrons and



Chapter 3. Coupling discharge and gas dynamics in streamer-less
spark formation in supercritical N2 25

ions. This seed might have been created by cosmic radiation or radioactivity [51],
but the possible formation process is beyond the scope of the current simulations.

Figure 2 shows the evolution of electron density ne, ion density np, reduced
electric field E/N , ratio of gas density over initial gas density ρ/ρ0 and gas
temperature T . We now discuss the rows of the figures sequentially.
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Figure 3.2: Evolution of electron number density ne, ion number density np,
reduced electric field E/N , gas density ρ/ρ0 normalized to the density ρ0 at
T = 300 K and 80 bar, and gas temperature T . The initial seed of electrons and
positive ions (3.9) is placed on the discharge axis (r = 0) at z = 0.09mm. The
gas is nitrogen at 80 bar, and 54 kV are applied to a gap of 0.3 mm.

ne: The electrons move much faster than the ions, and they are created by
secondary emission at the cathode below and by impact ionization when they
move upwards; therefore the electron density near the cathode is proportional
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to the local ion density and the growth of electron density in the z direction is
determined by the impact ionization rate.

np: An ion is generated together with every electron, but the ions move down
more slowly. The time for the ions to cross the gap in the initial gas density and
electric field is 172 ns. When an ion wave reaches the cathode, new electrons are
emitted and new ions and electrons are created in the gap. This refreshes the
ion density and starts a new ion wave propagating downward.

E/N : An important observation is that the electric field never changes much,
i.e., the charge densities of electrons and ions are not sufficient to seriously modify
the background electric field. The changes in the reduced electric field E/N are
due to the change of the gas density. In the last time step plotted at t =
424 ns, the reduced electric field reaches a maximum of about 200 Td, while the
breakdown reduced electric field in air is 120 Td [52]. We expect that the electric
breakdown will continue after such high reduced fields have been reached.

In air, the breakdown field is defined as the value of the electric field at which
the generation rate of electrons equals the attachment rate. In our case we have
considered pure nitrogen in which attachment is absent. As air consists of 80%
nitrogen, in practice the breakdown field in air provides a reasonable scale.

ρ/ρ0 and T : The temperature increases from 300 up to 12000 K mainly in
the lower part of the system. Since the initial seed was located in the lower half,
after the first time step the ions have drifted a little from their position but the
electron density in the channel has been calculated all along the channel from
(3.1a), starting from cathode. Electron density is essentially very small since
the ions have not bombarded the cathode yet. Hence we see a concentration of
heating at the position of the ions. This high temperature increases the pressure
and creates an expansion shock front that can be seen in the density plot. At
t = 159 ns, the gas temperature has dropped on the lower part of the axis. In
other words, the gas has cooled down. This happens due to the radial movement
of shock wave.

3.5 Summary and outlook

We have simulated the evolution of a coupled system on electric discharge and
background gas in a short plane-to-plane electrode configuration in 2D-cylindrical
symmetry. We have shown that with a simple model consisting of electron impact
ionization and secondary electrode emission, simple relationships between the
transport coefficients and gas density and heat transfer from the electric discharge
to the gas, one can understand the formation of a spark. More specifically one can
see how heat induced changes in the background gas density can trigger ionization
in the discharge channel leading to breakdown. We see a pulsating behavior in
the ion number density: the ions reach the cathode, liberate electrons from it and
hence generate more electrons and ions in the gap. These ions propagate down to
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the cathode. This pulsating cycle continues until either the temperature induced
density changes drive the reduced electric field to values above breakdown, or
until the discharge activity stops.

We emphasize that this slow heat driven breakdown mechanism of short gaps
is basically different from the fast streamer breakdown mechanism that is driven
by space charge effects at the streamer head.

The current model was developed with the motivation to understand electrical
breakdown with a simple physical model. Of course, one can broaden the model
by further improvements, particularly by incorporating the complex relationship
between transport coefficients and the gas density, and by further investigating
the effects of temperature on the electron-ion source terms. These improvements
will be part of future work.





Chapter 4

Modeling heat dominated
electric breakdown in air, with
adaptivity to electron or ion
time scales

We model heat dominated electrical breakdown in air in a short planar
gap. We couple the discharge dynamics in fluid approximation with the
hydrodynamic motion of the air heated by the discharge. To be com-
putationally efficient, we derive a reduced model on the ion time scale,
and we switch between the full model on the electron time scale and the
reduced model. We observe an ion pulse reaching the cathode, releas-
ing electrons by secondary emission, and these electrons create another
ion pulse. These cycles of ion pulses might lead to electrical breakdown.
This breakdown is driven by Ohmic heating, thermal shocks and induced
pressure waves, rather than by the streamer mechanism of local field en-
hancement at the streamer tip.

1

1This chapter is based on "Modeling heat dominated electric breakdown in air, with adap-
tivity to electron or ion time scales." by A. Agnihotri, W. Hundsdorfer and U. Ebert. Plasma
Sources Science and Technology 26, no. 9 (2017): 095003.
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4.1 Introduction

Gas heating in electrical discharges has a long research history. It has been
studied in the context of fast gas heating [53, 54, 55, 56, 57], plasma-assisted
combustion [58], atmospheric lightning [45] etc. On the one hand, increased
temperature can change the chemical reaction rates in the discharge plasma. On
the other hand, the thermal expansion of the gas can change the gas density
and hence the reduced electric field in the inter-electrode gap. Both mechanisms
can sustain spark formation [59, 60], and gas heating can also create turbulent
flows [61]. In the present work, we concentrate on the effect of gas heating and
expansion.

So far the majority of simulation studies pertaining to gas heating in atmo-
spheric pressure discharges have been performed in a 0D or 1D spatial configu-
ration in which the structure of discharge is rather homogeneous. Due to large
difference in timescales of gas movement and electron dynamics, solving the two
systems simultaneously becomes computationally very expensive. Recently, there
has been progress in extending models to 2D (which is meant to mean 3D with
cylindrical symmetry) which brings them closer to experiments and observations
as the structure of a spark discharge is usually filamentary. Komuro and Ono
[37] studied the mechanism of fast gas heating and the effects of humidity in
atmospheric pressure streamer discharges. They solved the coupled system of
electric discharge and gas simultaneously up to time t = 3 µs. Tholin and Bour-
don [36] simulated the hydrodynamic expansion following a nanosecond pulsed
discharge in air at STP. During the short pulse they approximated the gas den-
sity as constant, hence they did not need to solve the coupled system of electric
discharge and gas simultaneously. Kacem et al. [62] simulated the expansion of
thermal shock and pressure waves induced by streamer dynamics in positive DC
corona discharges. They as well do not solve the full coupled system of electric
discharge and gas dynamics. However, they do remark that direct coupling of
the gas dynamics with the streamer simulation should be undertaken in order to
better understand the effect of temperature increase and of the gas expansion on
the development of successive discharges and on the electrical relaxation.

In the current paper, we simulate electrical breakdown in a short planar gap
in 2D (r-z coordinates) with secondary electron emission where Ohmic heating
promotes ionization growth, rather than the space charge dominated streamer
breakdown mechanism. Initially only an avalanche without (streamer-type) space
charge effects might have developed in a short undervolted gap, but the deposited
Ohmic heat might eventually lead to electric breakdown. This is challenging to
simulate as in the initial stage the electron dynamics has to be followed, and later
on the much slower ion dynamics has to be resolved, and both have to be coupled
to the hydrodynamics of the medium. We present a model on the time scale of
ion motion, that is a reduced version of the full discharge dynamics, and with
adaptivity in time, i.e., we switch between dynamical calculations on electron
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and ion time scale as needed. In the present work, this is done manually, but we
also discuss possible numerical switching criteria. The reduced model on the ion
time scale was introduced in earlier work of Sijacic [40, 39] where it was applied
to study the transition from Townsend to glow discharge.

We initiate the discharge closely below breakdown conditions, i.e., when the
effective Townsend ionization coefficient αeff is negative. As αeff is a function
of the reduced electric field, i.e., of electric field over gas density E/N , gas
heating and subsequent expansion causes αeff to grow, and might make it positive
eventually. But that is not sufficient on time scales considerably longer than the
time the ions need to cross the gap. On that time scale secondary emission from
the cathode needs to sustain the discharge, and in a planar configuration with
constant field and gas density, the discharge will grow further if

γ(eαeffd − 1) > 1. (4.1)

Here d is the distance between the electrodes and γ is the secondary electron
emission coefficient which is the ratio of the number of emitted electrons over
the number of ions impacting the cathode.

In our previous work [63], we developed and employed a similar 2D cylindri-
cally symmetric model to study streamer-less spark formation in supercritical N2.
A limitation of that model was that it computed the relevant physical quantities
on the ion timescale only, not resolving the time scale of the electron motion.
Therefore we missed some initial heating effects, as we discuss here in Section 3.

The paper is organized as follows. In Section 2 we introduce the mathematical
model and notation for our coupled system of the electric discharge and the gas.
In Section 3 we discuss the reduction of the full discharge model to a model on the
ion time scale. We also compare results of the full model of the electrical discharge
and of the reduced model in 1D, and we point out when the reduced model can
be used to speed up simulations. In Section 4 we present and discuss the results
of the 2D simulation of the electric discharge in plane-to-plane geometry in air
at standard temperature and pressure. Finally, in Section 5 we summarize our
findings and present an outlook.

4.2 Model formulation

We study how a pulsed electric discharge is coupled to the dynamics of the back-
ground gas due to the deposited Ohmic heat and thermal expansion. Therefore
the model is composed of two components, one for the dynamics of electrons and
ions in the electric discharge and one for the dynamics of the background gas.

4.2.1 Model for the electric discharge dynamics

To describe the discharge dynamics, we adopt the classical first-order drift-
diffusion-reaction model [38] in local field approximation for electrons and posi-
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tive and negative ions, coupled with Poisson’s equation to self-consistently com-
pute the electric field:

∂tne +∇ · je = Se, je = −µeE ne −De∇ne + v ne (4.2)
∂tni +∇ · ji = Si, ji = σiµiE ni −Di∇ni + v ni

for ion species i = 1, . . . (4.3)

∇2φ = − e

ε0

(
−ne +

∑
i

σini

)
, E = −∇φ. (4.4)

Here the lower index e labels the electrons and i = 1, . . . the different types of
positive and negative ions. Further, ne,i is the number density of the charged
species, je,i their particle current density, µe,i andDe,i their mobility and diffusion
coefficients, and σi = ±1 their polarity. (Note that the electric current density
carried by particle type i is eσiji.) φ denotes the electric potential, E denotes
the electric field. e is the elementary charge and ε0 denotes the permitivitty of
vacuum. Finally, v is the velocity of the neutral gas through which the charged
particles are moving; as the degree of ionization of the gas molecules stays below
10−8 in the presented simulations until the final stages, the neutral gas molecules
provide the rest frame for the motion of the charged particles.

Si is the source term for the ion species with label i. For electrons in attaching
gases like air at standard temperature and pressure we have

Se = (α− η)µeEne = αeffµeEne, (4.5)

where α accounts for electron impact ionization and η for attachment, and αeff =
α − η is the effective Townsend ionization coefficient. Here recombination or
dissociative attachment or detachment are neglected to keep the notation simple,
but they can easily be introduced for different gases. Similarly the method of
time adaptivity introduced in the next section is not limited to the local field
approximation or to the drift-diffusion-reaction model.

Finally, the discharge couples to the gas dynamics through the gas velocity v,
and because transport and reaction coefficients µi, Di and α depend on the re-
duced electric field E/N . Here N is the number density of neutral gas molecules;
it is related to the mass density ρ as ρ = mw N , where mw is the mass of the
gas molecule.

4.2.2 Boundary conditions for the discharge

We assume a short discharge gap between planar electrodes. To sustain the
discharge, we include secondary emission of electrons from the cathode on impact
of positive ions. This is implemented as a Dirichlet boundary condition for the
electron density ne

µene = γ
∑
j

µjnj on the cathode. (4.6)
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Here nj is the number density of the positive ion species j reaching the cathode.
Furthermore, we assume that the density of positive ions vanishes on the anode
and has a homogeneous Neumann boundary condition on the cathode

nj = 0 on the anode, (4.7)
∂nnj = 0 on the cathode, (4.8)

where ∂n denotes the spatial derivative normal to the electrode surface. For
negative ions, the role of anode and cathode are exchanged.

We remark that when the full model of electric discharge is used for com-
putation of electron density, two boundary conditions are required. For that we
implement a homogeneous Neumann boundary condition on electron density on
the anode

∂nne = 0 on the anode. (4.9)

At the lateral boundaries, we implement homogenous Neumann boundary
condition for the charge densities,

∂rne,i|r=0 = ∂rne,i|r=Lr = 0. (4.10)

The lateral boundary (r = Lr) of the computational domain extends far from
the discharge axis (r = 0) so that the boundary effects do not interfere with the
dynamics and give rise to unphysical solutions.

4.2.3 Model for the gas dynamics

To model the gas dynamics, we adopt the compressible Euler equations without
viscosity. The relevant equations for the conservation of mass, momentum and
energy are in cylindrical coordinates

∂ρ

∂t
+∇ · (ρv) = 0, (4.11)

∂ (ρvr)

∂t
+∇ · (ρvrv) = −∂p

∂r
, (4.12)

∂ (ρvz)

∂t
+∇ · (ρvzv) = −∂p

∂z
, (4.13)

∂ξ

∂t
+∇ · (v(ξ + p)) = Sξ, (4.14)

with v = (vr, vz) and ∇ = (∂r, ∂z). Here ρ is the gas mass density, v the gas
velocity, p is gas pressure, and

ξ = ρε+
1

2
ρv2 (4.15)

is the total energy per unit volume. ε is the internal energy per unit mass; it is
related to pressure through the ideal gas law

p = ρε(Γ− 1), (4.16)
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where Γ is the heat capacity ratio for the background gas whose value we assume
to be constant and equal to 1.4 for air. We remark that the heat capacity will
increase at the high temperatures reached at the final stages of the presented
simulations, but this effect is here not taken into account.

We note that in principle the electron and ion drag force would need to be
included in the momentum balance of equations (4.12) and (4.13), but we neglect
it as ionization density in the present simulations is too low.

Sξ is the energy source term that models gas heating. It is modeled as follows:
The electrical power density deposited by the discharge is

P = e E ·

(
−je +

∑
i

σiji

)
, (4.17)

where ji,e is the particle current density of the charged species with label i or of
the electrons e. We assume that a fraction η of the power density P is converted
immediately (on a nanosecond time scale) into heat ξ [55, 36], and the remaining
(1 − η) of P is first stored in vibrational states of the molecules in an energy
density reservoir εv and released as heat with a relaxation time τ . This process
is modeled as

∂εv
∂t

= (1− η) P − εv
τ
, (4.18)

Sξ = η P +
εv
τ
. (4.19)

Equation (4.18) for εv can be integrated which leads to the final expression for
Sξ

Sξ(r, t) = η P (r, t) + (1− η)

∫ t

−∞
P (r, t′) e−(t−t′)/τ dt

′

τ
. (4.20)

Throughout the simulations presented here, we use η = 0.15 and τ = 20 µs. The
values of these parameters are discussed in Section 4.2.1.

4.2.4 Boundary conditions for the fluid equations

For the fluid equations describing gas flow, we implement the following boundary
conditions on the electrodes (z = 0 and z = Lz)

vz = 0, (4.21)

∂zp = 0. (4.22)

On the outer radial boundary (r = Lr) of the computational domain, we imple-
ment an outflow boundary condition. These are not physical boundary condi-
tions, but they are implemented for computation. The details of the implemen-
tation are discussed in Appendix A. 4. We remark that for the time simulated
in this work, the shockwaves travelling in the radially outward direction do not
reach the outer boundary.
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4.3 The reduced model on the ion time scale and time
adaptivity to electron or ion dynamics

4.3.1 Motivation and problem statement

At the beginning of a pulsed discharge in a short gap, free electrons might de-
posit energy in the gas while drifting through the system. This is the avalanche
and possibly the streamer phase, dominated by electron dynamics while the ions
hardly move. At later stages, the dynamics might be dominated by the ions that
move much more slowly due to their higher mass; also the heat driven expansion
of the carrier gas evolves on a much longer time scale than the electron dynam-
ics. During this stage, the electrons might form an approximately stationary
distribution determined by the local electric field and gas density. But it is also
possible — as we will see below —, that one needs to switch back to the time
scale of electron motion.

Solving the long time evolution completely on the electron time scale requires
very long computation times. Therefore we here develop a method that is adap-
tive in time, switching between the time scales of electron or ion dynamics. In
subsection 4.3.2 we extend the method of adiabatic decoupling [40, 39] to dis-
charges with multiple ion species, thus deriving a reduced model on the time
scale of ion motion. Then we test numerically in subsection 4.3.3 when the re-
duced model on the ion time scale is an appropriate approximation of the full
dynamics. Finally in subsection 4.3.4, we briefly discuss criteria for switching
between the full and the reduced model.

4.3.2 Derivation of the reduced model on the ion time scale

The discharge model introduced in the last section accounts for the electron time
scale. However, eventually the discharge dynamics might be dominated by the
ion dynamics while the much faster electrons can approach an approximately
stationary distribution around the ions. And when the same number of electrons
and ions are created locally, but the electrons move much faster, the space charge
density is dominated by the ions. This is even more true when electron loss by
attachment is included.

The derivation of an appropriate model can be formalized by methods for
differential equations such as rescaling and singular perturbation theory. These
methods identify which terms in an equation balance each other to form the
solution, and which terms can be neglected. This balance of terms can change
depending on conditions, both in space and in time. We introduced the method
in [40, 39] under the name “adiabatic decoupling" as it was called in early quan-
tum mechanics to study electron dynamics in atoms and molecules where the
nuclei are much heavier and slower than the electrons. In [40, 39] the discharge
model on the ion time scale was derived for only one ion species, and assuming
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that mobilities and diffusion coefficients are constant. Here we generalize the
derivation to several ion species and to transport coefficients depending on the
local reduced field E/N or other local variables.

As the basic parameter for the rescaling, we choose mobilities µ0
e and µ0

1 of
the electrons and of the dominant positive ion species for some characteristic,
but arbitrary value of the reduced electric field E/N . Their ratio determines the
small parameter

µ =
µ0

1

µ0
e

� 1. (4.23)

Mobilities and diffusion coefficients of the ions are now rewritten as

µi(E/N)

µ0
e

= µ fi(E/N),
Di(E/N)

D0
e

= µ gi(E/N), (4.24)

where the functions fi and gi are of order unity, and where D0
e is the electron

diffusion coefficient at the same characteristic electric field as µ0
e. This notation

makes explicit which terms in the equations are of order µ� 1 or of order unity.
Furthermore, we assume the gas velocity v to be of the order of a typical ion
drift velocity or smaller, i.e.,

v = µ ṽ, |ṽ| ≤ O (µ1|E|) . (4.25)

Now when these relations are inserted into the discharge model (4.2)–(4.4)
and when the limit µ→ 0 is taken, all ion currents and the gas velocity vanish,
and one recovers the well known avalanche and streamer discharge model that
traces the electron motion and neglects the ion motion:

∂tne +∇ · (−µeE ne −De∇ne) = Se, (4.26)
∂tni = Si for ion species i = 1, . . . (4.27)

∇2φ = − e

ε0

(
−ne +

∑
i

σini

)
, E = −∇φ. (4.28)

But in a singularly perturbed set of differential equations it happens typically,
that also another scaling can be chosen. When we focus on the situation where
electrons and ions are created in equal rates in time, but move with different
velocities, their current densities should be similar: µene = O(µ1n1). This
suggests to scale the electron density as

ñe =
ne
µ

; (4.29)

as ñe and ni are of the same order of magnitude.
Furthermore the time is rescaled to focus on the ion motion:

t̃ = µ t. (4.30)
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Substituting these identities into the discharge model and using (4.25), we find

µ
∂ñe

∂t̃
+∇ · (−µeE ñe −De∇ñe + µṽ ñe) = (α− η)µeE ñe, (4.31)

∂n1

∂t̃
+∇ ·

(
µ0
ef1E n1 −D0

eg1∇n1 + ṽ n1

)
= αµeE ñe, (4.32)

∂ni

∂t̃
+∇ ·

(
σiµ

0
efiE ni −D0

egi∇ni + ṽ ni
)

= S̃i, S̃i = Si/µ,

for ions i = 2, . . . , (4.33)

∇2φ = − e

ε0

(
−µ ñe +

∑
ions i

σini

)
, E = −∇φ. (4.34)

Now the small parameter µ again appears explicitly as a linear coefficient of ∂t̃ñe,
of ṽ ñe and of ñe in the Poisson equation. Here µ acts as a singular perturbation
as it multiplies the time derivative ∂t̃ñe. Letting µ → 0 defines the model on
the ion time scale. After the rescaling is undone, the discharge model on the ion
time scale is finally

∇ · (−µeE ne −De∇ne) = (α− η)µeE ne, (4.35)
∂tn1 +∇ · (µ1E n1 −D1∇n1 + v n1) = αµeE ne, (4.36)
∂tni +∇ · (σiµiE ni −Di∇ni + v ni) = Si for ions i = 2, . . . , (4.37)

∇2φ = − e

ε0

∑
ions i

σini, E = −∇φ. (4.38)

In contrast to the original model, the time derivative of the electron density and
its coupling to the gas motion has disappeared, and the electron density is also
eliminated from the Poisson equation. While this is the mathematical derivation
of this limit, we discussed the physical justification for the approximation at the
beginning of this section.

4.3.3 Numerical test of the reduced model on the ion time scale

We now have derived 2 different limits of µ→ 0 for the discharge model, one in
equations (4.26)–(4.28) on the electron time scale, and one in equations (4.35)–
(4.38) on the ion time scale. In analytical approaches, such equations can be
linked through asymptotic matching. In section 4 we will use these different
models to perform numerical time integration that is adaptive to the state of the
dynamics.

But here we will first test whether and when the reduced model on the ion
time scale (4.35)–(4.38) approximates the full reaction drift diffusion model (4.2)–
(4.4) well.
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Simulation conditions.

In order to run simulations of the full model on the electron time scale up to
2 µs within reasonable computing times, we perform simulations in one spatial
dimension. We model N2 at standard temperature and pressure with two charged
species, namely electrons and N+

2 ions. The values of transport and reaction
coefficients are taken from Montijn et al. [24]. We neglect electron diffusion in
the reduced model. The gas gap between two planar electrodes has a length of
L = 0.46 mm, and we assume secondary emission from the cathode (4.6) with
γ = 0.07. The electric potential difference between the electrodes is fixed in
such a manner that the average electric field is 17 kV/cm, i.e., well below the
breakdown value. The initial condition is a rectangular neutral seed with

ne = n+ = 4.8× 108 cm−3 for 0.5 L ≤ x ≤ 0.7 L. (4.39)

The full model and the model on the ion time scale are spatially discretized
using the schemes described in the Appendix A. For the spatial grid we choose 800
points which corresponds to a spatial resolution of 0.57 µm. For time-stepping
we use the explicit trapezoidal rule for both models. We verified that further
refinement of the grid did not alter the results. Therefore numerical errors are
insignificant in the presented results.

Comparison of results.

Figure 4.1 shows the spatial profiles of the electron number density ne(x, t), of the
ion number density n+(x, t), and of the deposited energy density

∫ t
0 P (x, τ) dτ

(with the power density P of equation (4.17)) for different time steps. The blue
lines indicate results of the full drift-diffusion-reaction model, and the red dotted
line of the reduced model.

As the hydrodynamics of the gas is not followed here, the deposited energy
density is determined by the discharge evolution, but does not couple back onto
the discharge dynamics. The energy is included in our plots, because it shows
characteristic differences between the models, that will be important for the
solution of the full problem.

Let us start with discussing the full model indicated in blue.
• Initially at time t = 0 electron and ion density are identical and no energy is
deposited yet. Up to time t ≈ 7 ns, the electrons drift out of the system while the
ions do not move much. The electrons deposit energy along their drift trajectory
as indicated in the right column. They also create additional electrons and ions
by impact ionization along their path, but at such a low density that they are
not visible on the plotted scale (except at the very last time step of 2 µs).
• During the next larger time steps from 100 to 500 ns, the ions drift to the
right while the electron density is negligible. After time t = 500 ns the ions hit
the cathode and generate electrons by secondary emission. Therefore at time
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t = 750 ns while the ions keep arriving at the cathode, the electron density has
increased to a value of the order of 105 cm−3. It decreases again after t = 1 µs
when the ions have left the system. Note that the total energy density deposited
after the primary electron and ion packages have left the system, is constant in
space. This is correct and can serve as a consistency check, as the same number
of electrons and ions have moved over each point in space, and as the electric
field is constant.
• At the last time step t = 2 µs, two plateaus of ion density can be seen when the
plot scale is changed from 5 · 108/cm3 to 2 · 105/cm3. As the ions move through
the whole length of the system in about 2 µs, the higher plateau of ion density
near the right boundary must have been created while the initial electron pulse
moved out of the system up to time t = 10 ns. The second lower plateau that
extends until about the middle of the system, must have been created when the
initial ion pulse hit the cathode, during the time interval of 600 ns to 1 µs. The
cycle of arriving ion packages of decreasing amplitude continues until the gap is
devoid of ions and the discharge decays.

The reduced model on the ion time scale is indicated in red. The first obser-
vation is that the ion motion of the reduced model agrees with the one of the full
model for almost all times. But there are important differences in the electron
density and the deposited energy:
1. Initially up to time t = 10 ns, the electron density does not move out of the
system, but disappears instantaneously in the first numerical time step. This is
because the electron dynamics is not followed, but the electron density is deter-
mined by the electron density on the cathode together with the instantaneous
equation (4.35). An immediate consequence is that these electrons do not de-
posite energy in the system during the initial stage, and this lack of energy is
seen very clearly until the last time step of the simulation. This difference has
an impact on the solution, if the gas dynamics due to heating couples back onto
the discharge model.
2. At later times, the electron density is approximated very well by the reduced
model, as zooming into a narrow range of values of the electron density at times
t = 750 ns and t = 2 µs shows. However, there is a major discrepancy at time
t = 1 µs. This is because at this time the ion density on the cathode and there-
fore the rate of electron injection into the system changes so rapidly, that the
adiabatic elimination of the electron dynamics is not valid anymore.
3. At time t = 2 µs, the ion density approximated by the reduced and the full
model differ significantly close to the cathode. The staircase structure predicted
by the full model in the region x ∈ (0.4 mm, 0.48 mm) represents the ions that
were created by the initial seed of electrons via impact ionization while drifting
out of the system. However, in the reduced model the initial seed of electrons
did not create any ions in the gap (see point 1 above).
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Figure 4.1: From left to right: Spatial profiles of electron number density ne,
ion number density n+ and deposited electrical energy density for the 1D test
case in nitrogen at standard temperature and pressure. The rows from top to
bottom show the times 0, 3, 6, 10, 100, 500, 750, 1000, and 2000 ns. The results
of the complete drift-diffusion-reaction model are drawn in blue, and those of the
reduced model in red.



Chapter 4. Modeling heat dominated electric breakdown in air, with
adaptivity to electron or ion time scales 41

4.3.4 Computational adaptivity to electron or ion time scale

The observations above show that most of the time, the reduced model on the
ion time scale approximates the full dynamics very well. Only during the time
interval of the initial 8 ns, and during a short time interval around 1 µs, the full
dynamics differs from the reduced one. With an appropriate criterion the calcu-
lations can switch between the full and the reduced model and save substantial
computing time.

We recall that in the reduced model the temporal derivative of the electron
density ∂tne in (4.2) and the space charge effects of the electron density in (4.4)
are neglected. In the present paper, the models are switched by hand, but we
here briefly discuss possible programmed criteria that would allow the model to
be adaptive in time.

For switching from the full to the reduced model, the size of ∂tne and ne
relative to the other terms in equations (4.2) and (4.4) can be taken as a criterion.
For switching from the reduced to the full model, ∂tne is not available, but the
effective change of ne (due to changing distributions of ions, fields or gas density)
within a numerical time step can be taken as a criterion. We will test the concept
and develop a numerical algorithm for adaptivity in time in future work.
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4.4 Simulation and results

4.4.1 Set-up of the model

We now present simulations of the evolution of an electric discharge in air at a
pressure of 1 bar and a temperature of 300 K. The gap size of 1.38 mm, and the
applied voltage 3.7 kV, which amounts to an electric field of 27 kV/cm as long
as space charge effects of the discharge can be neglected. In such as field below
breakdown, an electrical discharge can develop only due to field enhancement at
the tip of a streamer discharge [35] or due to a (local) decrease of air density.
In the simulations presented here, the decreasing air density drives the discharge
evolution.

On the cathode, secondary emission (4.6) is included with a factor of γ = 0.3
which means that 10 positive ions impacting on the cathode liberate 3 electrons
on average from the surface into the discharge. A self-sustained Townsend dis-
charge can develop and grow in a homogeneous field E in a gas density N , if
αeff(E/N) ≥ 1060/m, according to (4.1).

To start the simulation, we place a seed of positive ions and electrons with a
gaussian distribution given by

n(r, z)|t=0 = n0 exp

[
− r

2

σ2
r

− (z − z0)2

σ2
z

]
, (4.40)

where we assign n0 = 14.4 × 1011 cm−3, z0 = 0.69 mm and σr = σz = 23 µm.
This amounts to approximately 4.6× 104 electrons and ions. Since we carry out
our simulations in air, the ratio of the initial number density of positive nitrogen
ions to the initial number density of positive oxygen ions is taken as 4:1. The
initial velocity v of the background gas is set equal to zero.

We perform the simulation in 3D with cylindrical symmetry around the z-axis
(effectively 2D in r, z coordinates). In the radial direction the domain extends
from r = 0 mm to r = 4.14 mm. The ionic species included are N+

2 , O+
2 and O−2 .

As in section 3, we neglect electron diffusion in the reduced model. However,
ion diffusion is taken into account in both the full model and the reduced model.
The transport and reaction coefficients were read from a data file which was
generated from online calculation tool BOLSIG+ (dated 27-06-2016) with the
Phelps database [64, 65] from the LXCat website. The applied field is slightly
below the breakdown value of 27.5 kV/cm at standard temperature and pressure,
and therefore the effective ionization coefficient αeff is negative. In the current
work, we have not considered detachment processes. It will be included in our
future work where chemical pathways will be treated more comprehensively.

For details regarding the numerical implementation of the schemes used in
the computation of physical quantities related to electrical discharge and gas, we
refer the reader to Appendix A.

We switch from the full model to the reduced model at time t = 10 ns to ac-
celerate the computation. At this moment of time the primary electrons have left
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the system and the system comprises of heavier ionic species. Furthermore, the
contribution to the space charge is dominated by the ionic species and therefore
the electric field profile is well approximated by the ionic distribution.

4.4.2 Simulation results

Figures 4.2 and 4.3 show the time evolution of electron density ne, density np of
positive oxygen and nitrogen ions, density nO−2

of negative oxygen ions, effective
Townsend coefficient αeff(E/N), air temperature T and ratio ρ/ρ0 of air density
ρ over air density ρ0 at standard temperature and pressure. In Figure 4.4 we plot
temporal evolution of charge densities, gas temperature, gas pressure and rela-
tive gas density at the points z = 0.3Lz (lower-half) and z = 0.7Lz (upper-half)
at time steps t = 0 µs, 0.29 µs, 0.58 µs, 0.86 µs, 1.15 µs, 1.44 µs, 1.72 µs, 2.01 µs,-
2.29 µs, 2.58 µs, 2.86 µs, 3.15 µs, 4.29 µs, 11.4 µs and 25 µs. As the system
evolves, we first observe activity in the upper-half due to the relatively fast
movement of electrons. On the longer timescale activity in the lower half is ob-
served when the ions move. The figures 4.2 and 4.3 show the full gap between the
electrodes, but they zoom in into the structures near the center and don’t show
the full radial extension of the simulation. The temporal evolution is organized
in three groups, where each group uses the same color scheme for densities and
fields.

The figures show the following distinct stages of evolution:

Drift of the initial electrons to the anode up to time ≈ 7 ns:

The simulation starts with a concentrated ionization seed with an equal number
of electrons and positive ions, while there are no negative ions in the system.
Electric field, temperature and air density are constant in space. The Townsend
coefficient αeff is constant and negative.

Up to approximately 7 ns, the electrons drift upwards towards the anode and
leave the system, while the positive ions are essentially immobile. While the
electrons are drifting, their number decreases due to attachment and increases
due to impact ionization; whether this relates to a net loss or a net gain, depends
on the sign of αeff . The electron attachment can directly be seen in the form of
negative ions left behind along the electron trail. Due to the high value of the
reduced electric field E/N , the attachment is quite strong and hence the number
of negative oxygen ions quite large.

The electrons also generate Ohmic heat along their trail. This causes the
local temperature T to rise up to a maximum of 500 K after 10 ns. As we
assume that only 15% of the Ohmic heat is released directly, while 85% is stored
in vibrational states and released as heat on a time scale of 20 µs, the local
temperature increases further up to a maximum of 720 K at time 293 ns. On
the other hand, the time is too short for thermal expansion of the air, so the air
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densityN or ρ changes by approximately 1 %. The assumption of η(E/N) = 15%
is based on previous work [55, 66]. Furthermore, in this work the ultrafast VT-
relaxation timescale of the vibrationally excited N2(ν) is treated as a parameter.
We chose its value to be 20 µs. It was a choice based on work by Komuro et al.
[67]

The effective Townsend coefficient αeff depends on the reduced electric field
E/N ; it is mostly negative, but reaches positive values above the electron package
and below the ion package. As air density N has hardly changed, this indicates
a local enhancement of the field E due to the local space charges.

Switching from full to reduced model at time 10 ns:

The numerical test of the last section has shown that the electrons have to be
traced with the full dynamics during the initial stage. Otherwise no heat would be
deposited during this stage, and also the trail of negative ions would be missing.
After the initial electrons have left the system, we switch to the reduced model
at time t = 10 ns for the rest of the simulation.

We mention that in previous work [63] we have started right away with the
reduced model in a study of electric breakdown in supercritical nitrogen and
therefore missed the heat deposited during the initial stage and its effects on the
further dynamics.

Drift of the initial ions to the cathode up to time 1.7 µs:

The positive ions are initially inserted in the middle of the gap. In the initial
air density and electric field they would reach the electrode after approximately
1.7 µs. And this is what they do, despite some field enhancement and decrease of
air density. The trail of negative ions moves upwards towards the anode within
the same time. As there is no source of electrons, the electron density vanishes
after the initial electrons have reached the anode.

While the ions move, they deposit Ohmic heat. In the time frame t = 0 −
293 ns the heat deposited in the upper part of the system is significantly greater
than in the lower part of the system. This occurs because in that time frame the
ions have not drifted much and hence have not deposited substantial heat. In
comparison, the electrons move rapidly and deposit electrical energy as heat while
creating more electrons (and ions) on their way out. On the longer timescale
the ions start drifting and deposit heat in the lower part of the system. This
can be observed in the gas temperature profile on longer timescale where the
temperature rises as the ions drift downward. Furthermore, the density of the
postive ions also decreases due to radial diffusion as they drift downward.

The increased air temperature drives an expansion wave; hence the air density
ρ decreases by up to 3 % in the center and increases by up to 2 % in the expansion
shock wave. The change of N or ρ = mw N also leads to a change of the effective
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Townsend coefficient αeff .

Second and third ionization wave and electric breakdown due to heat-
ing:

At time t = 1.72 µs, the positive ions reach the cathode and liberate electrons
through secondary emission. These electrons on their way up to the anode create
ionization along their trail. In the plot at time 1.72 µs, this can only be seen in the
electron density. But at time 2.01 µs, when the primary ions have left the system,
the color coding of the ion density in the figure is changed, and two structures of
positive ion columns are visible. The "blue" column (corresponding to a density
of ≈ 5 109/cm3) over almost the whole height of the system is the positive ion
density created at that instance by the electrons. The negative ion density shows
a corresponding column due to electron attachment along their trail. The "red"
column (corresponding to a density of positive ions of ≈ 2.5 1010/cm3) in the
lower half of the plot is the ion density created while the primary electrons drifted
out of the system. This column in the mean time has drifted down by half the
gap length.

Each column of positive ions will create another ionization wave when reach-
ing the cathode, so the cycle repeats, but the amplitude decreases because the
field is below breakdown, similarly to the 1D case discussed in the previous
section. The difference lies in the fact that now air heating and expansion is
included. The temperature keeps increasing in the channel and drives an expan-
sion shock wave where the air density increases by 30 %, while it decreases in
the channel by 50 % at time 25 µs. This leads to a large increase of the reduced
electric field E/N and of the ionization rate and paves the way to full electric
breakdown. In fact, already at time t = 11.4 µs, the minimum value of αeff along
the discharge axis is larger than 1060 m−1 which suffices to support a Townsend
discharge according to (4.1).

The simulation can be continued until time t = 35 µs when temperature
reaches a maximum of about 20 000 K, but then our physical model with a
majority of non-ionized air molecules is certainly no longer applicable.

We also carried out simulation (not included in this work) with η = 0.3,
τ = 100 ns and reduced initial seed size. We found the results to be qualitatively
similar to the results obtained above. Since the VT relaxation timescale of 100 ns
is much smaller as compared to 20 µs, the heating takes place at a faster rate
resulting is an earlier breakdown.
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Figure 4.2: Evolution of electron number density ne, positive ion number density
np, negative ion number density nO−2

, effective Townsend coefficient αeff , gas
temperature T and normalized gas density ρ/ρ0. The initial seed of electrons
and positive ions is placed on the discharge axis (r = 0) at z = 0.69 mm. The
gas is air at 1 bar and a voltage of 3.7 kV is applied to a gap of 1.38 mm. The
temporal sequence for t = 0, 3, 6, 10 and 293 ns in the left panel are plotted
with one color scheme for densities and fields, and the sequence for t = 580 and
867 ns, and 1.15, 1.44, 1.72 µs in the right panel with another color scheme.
The full height of the system is shown, but the plots are truncated in the radial
direction.
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Figure 4.3: Continuation of the previous figure with plots for t = 2.01, 2.29,
2.58, 2.86, 3.15, 4.29,11.4 and 25 µs, again with a different color scheme for the
densities and fields.
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Figure 4.4: Temporal evolution for the charged particle densities, gas
temperature, gas pressure and relative gas density at z = 0.3Lz =
0.414 mm and z = 0.7Lz = 0.966 mm. Plotted are time steps t =
0 µs, 0.29 µs, 0.58 µs, 0.86 µs, 1.15 µs, 1.44 µs, 1.72 µs, 2.01 µs, 2.29 µs, 2.58 µs,-
2.86 µs, 3.15 µs, 4.29 µs, 11.4 µs and 25 µs.
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4.5 Summary and Outlook

We have simulated the dynamics of a coupled system of electric discharge and
background gas in air at standard temperature and pressure in a short gap
in plane-to-plane electrode configuration, assuming cylindrical symmetry. Our
discharge model includes electron impact ionization, attachment and secondary
emission in fluid approximation with coefficients depending on electric field and
gas density, and the hydrodynamic model for the carrier gas accounts for Ohmic
heating and the associated gas expansion.

To treat the widely varying time scales of electron and ion dynamics, gas
heating and expansion, we have derived a reduced model on the (slow) time
scale of ion motion. In previous work [63], we had used the reduced model only.
In the present paper, we show that this approach leads to missing some heat
deposition during the initial stage, and to errors at well defined later stages. We
therefore now switch between the full model on the (fast) electron timescale and
the reduced model on the (slow) ion timescale. This adaptivity in time largely
enhances computational efficiency.

Our simulations show how the air gap eventually breaks down due to gas
heating, rather than due to the streamer mechanism which is driven by space
charge effects. We observe a cyclic process: positive ions hit the cathode, liberate
electrons via secondary emission, and these electrons feed the discharge channel
by producing more electrons and ions via impact ionization. The newly created
ions again drift toward the cathode. The moving electrons and ions heat the
gas, the gas expands, and eventually electric breakdown occurs in an unchanged
electric field due to the decreased gas density near the discharge axis.

While in the present work we switched by hand from the full to the reduced
model, we will study the switching criteria in more detail in future work to
provide automatic time adaptivity of the computational code. We also intend to
include more chemical and ion species in future 2D modeling to better understand
the combined contributions of gas expansion and changing gas composition.

4.6 Numerical Implementation

In this appendix we discuss the numerical methods we employed to disctretize our
equations. We recall that in this work we have used a strategy where we first carry
out the simulation of the full model (drift-diffusion-reaction model for elefctric
discharge) coupled to the Euler equations on the timescale of electron motion.
After the primary electrons have left the system we switch to the reduced model
for electric discharge coupled to the Euler equations and carry out the simulation
on the timescale of ion motion. Below we briefly describe the discretization
schemes we employed to carry out the simulation in both these situations.

We adopt a finite volume approach for computation whereby we employ a
conservative flux limited scheme [68, 48] with Koren flux limiter for discretization
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in space. These discretizations are similar to those by Montijn et al. [22]. The
model after discretization in space is a differential algebraic system. Formally,
the system can be written as

dtP = F (P, Q), (4.41)
0 = G(P, Q), (4.42)

where in the full model (4.41) represents the system of coupled ODEs describ-
ing the electrons, ions and gas variables and (4.42) describes the electric field. In
the reduced model (4.41) represents the system of coupled ODEs describing the
ions and gas variables and (4.42) describes the electrons and the electric field.
Now the equation (4.42) can be solved in terms of variable P such that

Q = H(P ). (4.43)

The details of actual implementation will be described below (App.A.1). The
resulting system of ODEs then is given by

dtP = Ψ(P ), where Ψ(P ) = F (P, H(P )). (4.44)

This is evolved in time using a second-order Runge-Kutta method (explicit
trapezoidal rule) [49]. In terms of the original system (1.1), this can be described
in two stages, the first of which reads

P ∗n+1 = Pn + ∆tF (Pn, Qn), (4.45)
Q∗n+1 = H(P ∗n+1), (4.46)

where Pn and Qn represent the value of the variables P and Q at time t = tn.
Finally, the value of the variables at time t = tn+1 are

Pn+1 = Pn +
1

2
∆tF (Pn, Qn) +

1

2
∆tF (P ∗n+1, Q

∗
n+1), (4.47)

Qn+1 = H(Pn+1). (4.48)

The time-step is chosen such that the CFL condition for numerical stability
is satisfied.

4.6.1 Computation of electron density in reduced model

In the reduced model we compute the electron density that now is of the form
(4.42), as follows. For simplicity, we first discuss the strategy in 1D case and later
give the generalized form in 2D. The equation describing the electron dynamics
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in the reduced model of electric discharge that we adopt (after comparison with
the drift-diffusion-reaction model) is:

∂

∂x
je = Se, (4.49)

where the total current density je = −neµeE and source term Se = α|je|. We
have set electron diffusion coefficient De to zero in the total electron current den-
sity. For a given time t, the above equation is an ODE with x as the independent
variable. The initial condition is given by jbe = γjbp, where jbp is the ion current
density evaluated at the cathode and γ denotes the secondary emission coeffi-
cient. We can then adopt an ODE method (with x serving as the independent
variable) to compute the electron current density (and hence the electron number
density ne = |je|/(µeE)) at the next step given the value at the previous step.
Note that in the reduced model the contritbution of electrons to the space charge
is negligible and the electric field in completely determined by the distribution of
the ions. For discretization we use the extrapolated second-order BDF2 method
applied to (4.49) in backward direction:

3

2
jme − 2jm+1

e +
1

2
jm+2
e = −2∆xSm+1

e + ∆xSm+2
e , (4.50)

where ∆x is the width of a grid cell and m is the position index such that
m = M − 2,M − 3, ..., 3, 2, 1, where M is the number of grid cells in 1D. This
two-step method needs jMe and jM−1

e as starting values. To compute jMe we use
the Euler method,

jMe = jbe −
∆x

2
Sbe, (4.51)

where jbe and Sbe denote the electron current density and the source term for
electrons evaluated at the cathode respectively. Furthermore, jM−1

e is computed
by integrating eq. (4.49) using a second-order Runge Kutta method (explicit
trapezoidal rule) with jMe as initial value and time-step equal to ∆x as in App.
A.1

The strategy described above can be generalized to 2D-cylindrically symmet-
ric geometry. The equation describing the electron dynamics is:

∂

∂z
jez +

1

r

∂

∂r
jer = Se, (4.52)

where jez = −neµeEz, jer = −neµeEr and Se = αµe|E|ne. The above equation
can be written as:

∂

∂z
jez = S̄e, (4.53)

where S̄e is the modified source term given by:

S̄e = Se −
1

r

∂

∂r
jer . (4.54)

The eq.(4.53) can now be integrated in exactly the same way as in the 1D-case
with z serving as the independent variable.
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4.6.2 Implementation of heating term in Euler system

The source term describing Joule heating of the gas is according to equation
(4.20)

Sξ(r, t) = η P (r, t) + (1− η)

∫ t

−∞
P (r, t′) e−(t−t′)/τ dt

′

τ
, (4.55)

where τ denotes the relaxation time constant of the excited vibrational energy
states of the gas. The calculation of the temporal integral can be simplified by
noting that

I(r, t+ ∆t) :=

∫ t+∆t

−∞
P (r, t′) e−(t+∆t−t′)/τ dt

′

τ

= e−∆t/τ I(r, t) +

∫ t+∆t

t
P (r, t′) e(t+∆t−t′)/τ dt

′

τ
, (4.56)

so we only have to perform the integral from time t to t + ∆t to update the
integral I. The source term can be computed to desired accuracy by computing
the integral terms via quadrature rules; we have used the simple Trapezoidal rule.

4.6.3 Implementation of outflow boundary condition in the Eu-
ler system

To implement the outflow boundary condition in the Euler system on the outer
radial boundary (r = Lr) we extrapolate ρ, vr and p. For that we fit a second-
order polynomial for the variables ρ, vr and p through the points (rM−2, zn),
(rM−1, zn) and (rM, zn), where the index M refers to the outermost cell-centers
in the radial direction and n refers to index in the z -direction. Thereafter, we
compute the value of the variable (ρ, vr and p) by evaluating the respective
polynomial on the outer radial boundary.



Chapter 5

Adaptive selection of sampling
points for uncertainty
quantification

We present a simple and robust strategy for the selection of sampling
points in Uncertainty Quantification. The goal is to achieve the fastest
possible convergence in the cumulative distribution function of a stochas-
tic output of interest. We assume that the output of interest is the
outcome of a computationally expensive nonlinear mapping of an input
random variable, whose probability density function is known. We use
a radial function basis to construct an accurate interpolant of the map-
ping. This strategy enables adding new sampling points one at a time,
adaptively. This takes into full account the previous evaluations of the
target nonlinear function. We present comparisons with a stochastic col-
location method based on the Clenshaw-Curtis quadrature rule, and with
an adaptive method based on hierarchical surplus, showing that the new
method often results in a large computational saving.

1

1This chapter is based on "Adaptive selection of sampling points for Uncertainty Quantifi-
cation." by E. Camporeale, A. Agnihotri and C. Rutjes. International Journal for Uncertainty
Quantification 7, no. 4 (2017).



54 5.1. Introduction

5.1 Introduction

We address one of the fundamental problems in Uncertainty Quantification (UQ):
the mapping of the probability distribution of a random variable through a non-
linear function. Let us assume that we are concerned with a specific physical or
engineering model which is computationally expensive. The model is defined by
the map g : R → R. It takes a parameter X as input, and produces an output
Y , Y = g(X). In this paper we restrict ourselves to a proof-of-principle one-
dimensional case. Let us assume that X is a random variable distributed with
probability density function (pdf) PX . The Uncertainty Quantification problem
is the estimation of the pdf PY of the output variable Y , given PX . Formally,
the problem can be simply cast as a coordinate transformation and one easily
obtains

PY (y) =
∑

x∈{x|g(x)=y}

PX(x)

| det J(x)|
, (5.1)

where J(x) is the Jacobian of g(x). The sum over all x such that g(x) = y takes
in account the possibility that g may not be injective. If the function g is known
exactly and invertible, Eq.(5.1) can be used straightforwardly to construct the
pdf PY (y), but this is of course not the case when the mapping g is computed
via numerical simulations.

Several techniques have been studied in the last couple of decades to tackle
this problem. Generally, the techniques can be divided in two categories: in-
trusive and non-intrusive [69, 70, 71]. Intrusive methods modify the original,
deterministic, set of equations to account for the stochastic nature of the input
(random) variables, hence eventually dealing with stochastic differential equa-
tions, and employing specific numerical techniques to solve them. Classical ex-
amples of intrusive methods are represented by Polynomial Chaos expansion [72,
73, 74, 75], and stochastic Galerkin methods [76, 77, 78, 79].

On the other hand, the philosophy behind non-intrusive methods is to make
use of the deterministic version of the model (and the computer code that solves
it) as a black-box, which returns one deterministic output for any given input. An
arbitrary large number of solutions, obtained by sampling the input parameter
space, can then be collected and analyzed in order to reconstruct the pdf PY (y).

The paradigm of non-intrusive methods is perhaps best represented by Monte
Carlo (MC) methods [80, 81]: one can construct an ensemble of input parameters
{Xn |n = 1, . . . , N} (N typically large) distributed according to the pdf PX(x),
run the corresponding ensemble of simulations g : X → Y , and process the
outputs {Yn |n = 1, . . . , N}. MC methods are probably the most robust of all
the non-intrusive methods. Their main shortcoming is the slow convergence of
the method, with a typical convergence rate proportional to

√
N . For many

applications quasi-Monte Carlo (QMC) methods [80, 82] are now preferred to
MC methods, for their faster convergence rate. In QMC the pseudo-random
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generator of samples is replaced by more uniform distributions, obtained through
so-called quasi-random generators [83, 84].

It is often said that MC and QMC do not suffer the ‘curse of dimensional-
ity’[85, 86, 87], in the sense that the convergence rate (but not the actual error!)
is not affected by the dimension D of the input parameter space. Therefore,
they represent the standard choice for large dimensional problems. On the other
hand, when the dimension D is not very large, collocation methods [88, 89, 90]
are usually more efficient.

Yet a different method that focuses on deriving a deterministic differential
equation for cumulative distribution functions has been presented, e.g., in [91,
92]. This method is however not completely black-box.

Collocation methods recast an UQ problem as an interpolation problem. In
collocation methods, the function g(x) is sampled in a small (compared to the
MC approach) number of points (‘collocation points’), and an interpolant is
constructed to obtain an approximation of g over the whole input parameter
space, from which the pdf PY (y) can be estimated.

The question then arises on how to effectively choose the collocation points.
Recalling that every evaluation of the function g amounts to performing an ex-
pensive simulation, the challenge resides in obtaining an accurate approximation
of PY with the least number of collocation points. Indeed, a very active area of
research is represented by collocation methods that use sparse grids, so to avoid
the computation of a full-rank tensorial product, particularly for model order
reduction (see, e.g., [93, 94, 95, 96, 97, 98, 99]
As the name suggests, collocation methods are usually derived from classical
quadrature rules [100, 101, 102].

The type of pdf PX can guide the choice of the optimal quadrature rule to
be used (i.e., Gauss-Hermite for a Gaussian probability, Gauss-Legendre for a
uniform probability, etc. [88]). Furthermore, because quadratures are associated
with polynomial interpolation, it becomes natural to define a global interpolant
in terms of a Lagrange polynomial [103]. Also, choosing the collocation points
as the abscissas of a given quadrature rule makes sense particularly if one is only
interested in the evaluation of the statistical moments of the pdf (i.e., mean,
variance, etc.) [104].

On the other hand, there are several applications where one is interested in
the approximation of the full pdf PY . For instance, when g is narrowly peaked
around two or more distinct values, its mean does not have any statistical mean-
ing. In such cases one can wonder whether a standard collocation method based
on quadrature rules still represents the optimal choice, in the sense of the com-
putational cost to obtain a given accuracy.

From this perspective, a downside of collocation methods is that the collo-
cation points are chosen a priori, without making use of the knowledge of g(x)
acquired at previous interpolation levels. For instance, the Clenshaw-Curtis (CC)
method uses a set of points that contains ’nested’ subset, in order to re-use all
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the previous computations, when the number of collocation points is increased.
However, since the abscissas are unevenly spaced and concentrated towards the
edge of the domain (this is typical of all quadrature rules, in order to overcome
the Runge phenomenon [103, 105]), it is likely that the majority of the performed
simulations will not contribute significantly in achieving a better approximation
of PY . Stated differently, one would like to employ a method where each new
sampling point is chosen in such a way to result in the fastest convergence rate
for the approximated PY , in contrast to a set of points defined a priori.

As a matter of fact, because the function g is unknown, a certain number of
simulations will always be redundant, in the sense that they will contribute very
little to the convergence of PY . The rationale for this work is to devise a method
to minimize such a redundancy in the choice of sampling points while achieving
fastest possible convergence of PY .

Clearly, this suggests to devise a strategy that chooses collocation points
adaptively, making use of the knowledge of the interpolant of g(x), which becomes
more and more accurate as more points are added.

A well known adaptive sampling algorithm is based on the calculation of
the so-called hierarchical surplus [96, 106, 98, 107, see e.g]. This is defined
as the difference, between two levels of refinement, in the solution obtained by
the interpolant. Although this algorithm is quite robust, and it is especially
efficient in detecting discontinuities, it has the obvious drawback that it can
be prematurely terminated, whenever the interpolant happens to exactly pass
through the true solution on a point where the hierarchical surplus is calculated,
no matter how inaccurate the interpolant is in close-by regions (see Figure 5.1
for an example).

The goal of this paper is to describe an alternative strategy for the adaptive
selection of sampling points. The objective in devising such strategy is to have
a simple and robust set of rules for choosing the next sampling point. The
paper is concerned with a proof-of-principle demonstration of our new strategy,
and we will focus here on one dimensional cases and on the case of uniform PX
only, postponing the generalization to multiple dimensions to future work. It is
important to appreciate that the stated goal of this work is different from the
traditional approach followed in the overwhelming majority of works that have
presented sampling methods for UQ in the literature. Indeed, it is standard
to focus on the convergence of the nonlinear unknown function g(x), trying to
minimize the interpolation error on g(x), for a given number of sampling points.
On the other hand, we will show that the convergence rates of g(x) and of
its cumulative distribution function can be quite different. Our new strategy
is designed to achieve the fastest convergence on the latter quantity, which is
ultimately the observable quantity of an experiment.

The paper is organized as follows. In Section 2 we define the mathematical
methods used for the construction of the interpolant and show our adaptive strat-
egy to choose a new collocation points. In Section 3 we present some numerical
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2 , 1) points would result in a null hierarchical surplus on these

points.

examples and comparisons with the Clenshaw-Curtis collocation method, and the
adaptive method based on hierarchical surplus. Finally, we draw our conclusions
in Section 4.

5.2 Mathematical methods

5.2.1 Clenshaw-Curtis (CC) quadrature rule

In Section 3, we compare our method with the CC method, which is the standard
appropriate collocation method for a uniform PX . Here, we recall the basic
properties of CC, for completeness. The Clenshaw-Curtis (CC) quadrature rule
uses the extrema of a Chebyshev polynomial (the so-called ‘extrema plus end-
points’ collocation points in [108]) as abscissas. They are particularly appealing
to be used as collocation points in UQ, because a certain subset of them are
nested. Specifically, they are defined, in the interval [−1, 1] as:

xi = − cos

(
π(i− 1)

N − 1

)
i = 1, . . . , N. (5.2)

One can notice that the the set of N = 2w + 1 points is fully contained in the
set of N = 2w+1 + 1 points (with w an arbitrary integer, referred to as the level
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of the set). In practice this means that one can construct a nested sequence of
collocation points with N = 3, 5, 9, 17, 33, 65, 129, . . . , re-using all the previous
evaluations of g.

Collocation points based on quadratures are optimal to calculate moments 2:

µpY =

∫
ypPY (y)dy =

∫
g(x)pPX(x)dx, (5.3)

where we used the identity relation,

PY (y)dy = PX(x)dx. (5.4)

It is known that integration by quadrature is very accurate (for smooth enough
integrand), and the moments can be readily evaluated, without the need to
construct an interpolant:

µpY '
∑
i

wi(g(xi))
p, (5.5)

where the weights wi can be computed with standard techniques (see, e.g. [104]).
The interpolant for the CC method is the Lagrange polynomial.

5.2.2 Selection of collocation points based on hierarchical sur-
plus

The hierarchical surplus algorithm is widely used for interpolation on sparse
grids. It is generally defined as the difference between the value of an interpolant
at the current and previous interpolation levels [96]:

∆n = g̃n − g̃n−1 (5.6)

The simplest algorithm prescribes a certain tolerance and looks for all the
point at the new level where the hierarchical surplus is larger than the toler-
ance. The new sampling points (at the next level, n + 1) will be the neigh-
bors (defined with a certain rule) of the points where this condition is met.
In one-dimension, the algorithm is extremely simple because the neighbors are
defined by only two points, that one can define in such a way that cells are
always halved. In this work, we compare our new method with a slightly im-
proved version of the hierarchical surplus algorithm. The reason is because we
do not want our comparisons to be dependent on the choice of an arbitrary
tolerance level, and we want to be able to add new points two at the time.
Hence, we define a new interpolation level by adding only the two neighbors
of the point with the largest hierarchical surplus. All the previous hierarchical

2Here p on the left-hand side is a label, such that µ1 is the mean, µ2 is the variance, and so
on. On the right-hand side it is an exponent.
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surpluses that have been calculated, but for which new points have not been
added yet are kept. The pseudo-code of the algorithm follows. The interpolant
is understood to be piece-wise linear interpolation, and the grid is x ∈ [−1, 1].
Algorithm 1: Hierarchical surplus algorithm
1 Calculate the interpolant on the grid x = {−1, 0, 1}.
2 Define xh = {−1/2, 1/2} and add them on the grid
3 while Not converged do
4 Calculate the interpolant on the new grid
5 Calculate the hierarchical surplus on the last two entries of xh and

store them in the vector hs
6 Find the largest hierarchical surplus in hs, remove it from hs and

remove the corresponding x from xh
7 Append the two neighbors to xh and add them to the grid
8 end

5.2.3 Multiquadric biharmonic radial basis

We use a multiquadric biharmonic radial basis function (RBF) with respect to a
set of points {xi}, with i = 1, . . . , N , defined as:

Φi(x, c) =
√

(x− xi)2 + c2
i , (5.7)

where ci are free parameters (referred to as shape parameters). The function
g(x) is approximated by the interpolant g̃(x) defined as

g̃(x) =
N∑
i=1

λiΦi(x, c). (5.8)

The weights λi are obtained by imposing that g(xi) = g̃(xi) for each sampling
point in the set, namely the interpolation error is null at the sampling points.
This results in solving a linear system for λ = (λ1, . . . , λN ) of the form AλT =
g(x)T , with A a real symmetricN×N matrix. We note that, by construction, the
linear system will become more and more ill-conditioned with increasing N , for
fixed values of c. This can be easily understood because when two points become
closer and closer the corresponding two rows in the matrix A become less and
less linearly independent. To overcome this problem one needs to decrease the
corresponding values of c. In turns, this means that the interpolant g̃(x) will
tend to a piece-wise linear interpolant for increasingly large N .
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5.2.4 New adaptive selection of collocation points

We focus, as the main diagnostic of our method, on the cumulative distribution
function (cdf) C(y), which is defined as

C(y) =

∫ y

ymin

PY (y)dy, (5.9)

where ymin = min g(x). As it is well known, the interpretation of the cumula-
tive distribution function is that, for a given value y∗, C(y∗) is the probability
that g(x) ≤ y∗. Of course, the cdf C(y) contains all the statistical information
needed to calculate any moment of the distribution, and can return the probabil-
ity density function PY (y), upon differentiation. Moreover, the cdf is always well
defined between 0 and 1. The following two straightforward considerations will
guide the design of our adaptive selection strategy. A first crucial point, already
evident from Eq. (5.1), is whether or not g(x) is bijective. When g(x) is bijective
this translates to the cdf C(y) being continuous, while a non-bijective function
g(x) produces a cdf C(y) which is discontinuous. It follows that intervals in x
where g(x) is constant (or nearly constant) will map into a single value y = g(x)
(or a very small interval in y) where the cdf will be discontinuous (or ‘nearly’
discontinuous). Secondly, an interval in x with a large first derivative of g(x) will
produce a nearly flat cdf C(y). This is again clear by noticing that the Jacobian
J in Eq. (5.1) (dg(x)/dx in one dimension) is in the denominator, and therefore
the corresponding PY (y) will be very small, resulting in a flat cdf C(y).
Loosely speaking one can then state that regions where g(x) is flat will produce
large jumps in the cdf C(y) and, conversely, regions where the g(x) has large
jumps will map in to a nearly flat cdf C(y). From this simple considerations
one can appreciate how important it is to have an interpolant that accurately
capture both regions with very large and very small first derivative of g(x). More-
over, since the cdf C(y) is an integrated quantity, interpolation errors committed
around a given y will propagate in the cdf for all larger y values. For this reason,
it is important to achieve a global convergence with interpolation errors that are
of the same order of magnitude along the whole domain.
The adaptive section algorithm works as follows. We work in the interval x ∈
[−1, 1] (every other interval where the support of g(x) is defined can be rescaled
to this interval). We denote with {xi} the sampling set which we assume is always
sorted, such that xi < xi+1. We start with 3 points: x1 = −1, x2 = 0, x3 = 1.
For the robustness and the simplicity of the implementation we choose to select
a new sampling point always at equal distance between two existing points. One
can decide to limit the ratio between the largest and smallest distance between
adjacent points: r = max{di}/min{di} (with i = 1, . . . , N − 1), where di is
the distance between the points xi+1 and xi. This avoids to keep refining small
intervals when large intervals might still be under-resolved, thus aiming for the
above mentioned global convergence over the whole support. At each iteration
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we create a list of possible new points, by halving every interval, excluding the
points that would increase the value of r above the maximum desired (note that
r will always be a power of 2). We calculate the first derivative of g̃(x) at these
points, and alternatively choose the point with largest/smallest derivative as the
next sampling point. Notice that, by the definition of the interpolant, Eq. (5.8),
its first derivative can be calculated exactly as:

dg̃(x)

dx
=

N∑
i=1

λi
dΦi(x, c)

dx
(5.10)

without having to recompute the weights λi. At each iteration the shape parame-
ters ci are defined at each points, as ci = 0.85 ·min(di−1, di), i.e. they are linearly
rescaled with the smallest distance between the point xi and its neighbors. The
pseudo-code of the algorithm follows.

Algorithm 2: Adaptive selection of sampling points
9 while Not converged do

10 xguess ← 0.5 · (xi + xi+1)
11 Exclude points in xguess such that r = max{di}/min{di} > R
12 Calculate g̃n(x)′ through (5.10) at {xguess}
13 Alternatively choose xguess with largest/smallest values of |g̃n(x)′| as

new collocation point
14 Calculate new weights λi

5.3 Numerical examples

In this section we present and discuss four numerical examples where we apply
our adaptive selection strategy. In this work we focus on a single input parameter
and the case of constant probability PX = 1/2 in the interval x ∈ [−1, 1], and we
compare our results against the Clenshaw-Curtis, and the hierarchical surplus
methods. We denote with g̃n(x) the interpolant obtained with a set of n points
(hence the iterative procedure starts with g̃3(x)). A possible way to construct the
cdf C(y) from a given interpolant g̃n(x) would be to generate a sample of points in
the domain [−1, 1], randomly distributed according to the pdf PX(x), collecting
the corresponding values calculated through Eq. (5.8), and constructing their cdf.
Because here we work with a constant PX(x), it is more efficient to simply define
a uniform grid in the domain [−1, 1] where to compute g̃n(x). In the following
we will use, in the evaluation of the cdf C(y), a grid in y with Ny = 10001
points equally spaced in the interval [min g̃n(x),max g̃n(x)], and a grid in x with
Nx = 1001 points equally spaced in the interval [−1, 1]. We define the following
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errors:

εC =
||C(g̃n(x))− C(g(x))||2√

Ny

(5.11)

εg =
||g̃n(x)− g(x)||2√

Nx
(5.12)

where || · ||2 denotes the L2 norm. It is important to realize that the accuracy of
the numerically evaluated cdf C(y) will always depend on the binning of y, i.e.
the points at which the cdf is evaluated. As we will see in the following examples,
the error εC saturates for large N , which thus is an artifact of the finite bin size.
We emphasize that, differently from most of the previous literature, our strategy
focuses on converging rapidly in εC , rather than in εg. Of course, a more accurate
interpolant will always result in a more accurate cdf, however the relationship
between a reduction in εg and a corresponding reduction in εC is not at all
trivial. This is because the relation between PX(x) and PY (y) is mediated by
the Jacobian of g(x), and it also involves the bijectivity of g.
Finally, we study the convergence of the mean µY , see equation 5.3, and the
variance σ2

Y , which is defined as

σ2
Y =

∫ 1

−1
(g̃(x)− µY )2PX(x)dx. (5.13)

These will be calculated by quadrature for the CC methods, and with an inte-
gration via trapezoidal method for the adaptive methods.
We study two analytical test cases:

• Case 1: g(x) = arctan(103x3);

• Case 2: g(x) = 1
(2+sin(3πx))2 ;

and two test cases where an analytical solution is not available, and the reference
g(x) will be calculated as an accurate numerical solution of a set of ordinary
differential equations:

• Case 3: Lotka-Volterra model (predator-prey);

• Case 4: Van der Pol oscillator.

While Case 1 and 2 are more favorable to the CC method, because the func-
tions are smooth and analytical, hence a polynomial interpolation is expected to
produce accurate results, the latter two cases mimic applications of real interest,
where the model does not produce analytical results, although g(x) might still
be smooth (at least piece-wise, in Case 4).
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Figure 5.2: Case 1: g(x) = arctan(103x3). Top panel: g(x); bottom panel: cdf
C(y).

5.3.1 Case 1: g(x) = arctan(103x3)

In this case g(x) is a bijective function, with one point (x = 0) where the first
derivative vanishes. Figure 5.2 shows the function g(x) (top panel) and the
corresponding cdf C(y) (bottom panel), which in this case can be derived an-
alytically. Hence, we use the analytical expression of cdf C(y) to evaluate the
error εC . The convergence of εC and εg is shown in Figure 5.3 (top and bottom
panels, respectively). Here and in all the following figures blue squares denote
the new adaptive selection method, red dots are for the CC methods, and black
line is for the hierarchical surplus method. We have run the CC method only
for N = 3, 5, 9, 17, 33, 65, 129 (i.e. the points at which the collocation points
are nested), but for a better graphical visualization the red dots are connected
with straight lines. One can notice that the error for the new adaptive method
is consistently smaller than for the CC method. From the top panel, one can
appreciate the saving in computer power that can be achieved with our new
method. Although the difference with CC is not very large until N = 17, at
N = 33 there is an order of magnitude difference between the two. It effectively
means that in order to achieve the same error εC ∼ 10−5, the CC method would
run at least twice the number of simulations. The importance of focusing on the
convergence of the cdf, rather than on the interpolant, is clear in comparing our
method with the hierarchical surplus method. For instance, for N = 80, the two
methods have a comparable error εg, but our method has achieved almost an
order of magnitude more accurate solution in C(y). Effectively, this means that
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Figure 5.3: Case 1. Error εC (top) εg (bottom) as function of number of sampling
points N . Blue squares: new adaptive selection method. Red dots: Clenshaw-
Curtis. Black curve: adaptive method based on hierarchical surplus.

our method has sampled the new points less redundantly. In this case g(x) is an
anti-symmetric function with zero mean. Hence, any method that chooses sam-
pling points symmetrically distributed around zero would produce the correct
first moment µY . We show in figure 5.4 the convergence of σ2

Y , as the absolute
value of the different with the exact value σan, in logarithmic scale. Blue, red,
and black lines represent the new adaptive method, the CC, and the hierarchi-
cal surplus methods, respectively (where again for the CC, simulations are only
performed where the red dots are shown). The exact value is σ2

an = 2.102. As
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Figure 5.4: Case 1. Absolute error in the variance σ2
Y versus number of sampling

points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.

we mentioned, the CC method is optimal to calculate moments, since it uses
quadrature. Although in our method the error does not decrease monotonically,
it is comparable with the result for CC.

5.3.2 Case 2: g(x) = 1
(2+sin(3πx))2

In this case the function g(x) is periodic, and it presents, in the domain x ∈
[−1, 1] three local minima (y = 1/9) and three local maxima (y = 1). The
function and the cdf C(y) are shown in Figure 5.5 (top and bottom panel, re-
spectively). Figure 5.6 shows the error for this case (from now on the same format
of Figure 5.3 will be used). The first consideration is that the hierarchical surplus
method is the less accurate of the three. Second, εg is essentially the same for the
CC and the new method, up to N = 65. For N = 129 the CC methods achieve
a much accurate solution as compared to the new adaptive method, whose error
has a much slower convergence. However, looking at the error in the cdf in top
panel of Figure 5.6, the two methods are essentially equivalent. This example
demonstrates that, in an UQ framework, the primary goal in constructing a good
interpolant should not be to minimize the error of the interpolant with respect
to the ’true’ g(x), but rather to achieve the fastest possible convergence on the
cdf CY . Although, the two effects are intuitively correlated, they are not into a
linear relationship. In other words, not all sample points in x count equally in
minimizing εC . The convergence of µY (exact value µan = 0.385) and σ2

Y (exact
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value σan = 0.087) is shown in Figures 5.7 and 5.8, respectively. It is interesting
to notice that our method presents errors that are always smaller than the CC
method, although the errors degrade considerably in the regions between two CC
points, where the two adaptive methods yield comparable results.

Figure 5.5: Case 2: g(x) = 1
(2+sin(3πx))2 . Top panel: g(x); bottom panel: C(y).

5.3.3 Case 3: Lotka-Volterra model (predator-prey)

The Lotka-Volterra model [109, 110, 111] is a well-studied model that exemplifies
the interaction between two populations (predators and preys). This case is more
realistic than Cases 1 and 2, as the solution of the model cannot be written in
analytical form. As such, both the g(x) and the cdf C(y) used to compute the
errors are calculated numerically. We use the following simple model:

dh(t)

dt
= h(t)− (5x+ 6)h(t)l(t) (5.14)

dl(t)

dt
= h(t)l(t)− l(t) (5.15)

where h(t) and l(t) denote the population size for each species (say, horses and
lions) as function of time. The ODE is easily solved in MATLAB, with the
ode45 routine, with an absolute tolerance set equal to 10−8. We use, as initial
conditions, h(t = 0) = l(t = 0) = 1, and we solve the equations for t ∈ [0, 10].
Clearly, the solution of the model depends on the input parameter x. We define
our test function g(x) to be the result of the model for the l population at time
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Figure 5.6: Case 2. Error εC (top) εg (bottom) as function of number of sampling
points N . Blue squares: new adaptive selection method. Red dots: Clenshaw-
Curtis. Black curve: adaptive method based on hierarchical surplus.

t = 10:
g(x) = l(t = 10, x). (5.16)

The resulting function g(x), and the computed cdf C(y) are shown in Figure 5.9
(top and bottom panel, respectively). We note that, although g(x) cannot be ex-
pressed as an analytical function, it is still smooth, and hence it does not present
particular difficulties in being approximated through a polynomial interpolant.
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Figure 5.7: Case 2. Absolute error in the mean µY versus number of sampling
points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.
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Figure 5.8: Case 2. Absolute error in the variance σ2
Y versus number of sampling

points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.

Indeed the error εg undergoes a fast convergence both for the adaptive methods
and for the CC method (Figure 5.10). Once again, the new adaptive method is
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much more powerful than the CC method in achieving a better convergence rate,
and thus saving computational power, while the hierarchical surplus method is
the worst of the three. Convergence of µY and σ2

Y are shown in Figures 5.11 and
5.12, respectively. Similar to previous cases, the CC presents a monotonic con-
vergence, while this is not the case for the adaptive methods. Only for N = 129,
the CC method yields much better results than the new method.

Figure 5.9: Case 3: Lotka-Volterra model. Top panel: g(x); bottom panel: C(y).

5.3.4 Case 4: Van der Pol oscillator

Our last example is the celebrated Van der Pol oscillator[112, 75, 113, 114], which
has been extensively studied as a textbook case of a nonlinear dynamical system.
In this respect this test case is very relevant to Uncertainty Quantification, since
real systems often exhibit a high degree of nonlinearity. Similar to Case 3, we
define our test function g(x) as the output of a set of two ODEs, which we solve
numerically with MATLAB. The model for the Van der Pol oscillator is:

dQ(t)

dt
= V (t) (5.17)

dV (t)

dt
= (−50 + 100(x+ 2))(1−Q(t)2)V (t)−Q(t). (5.18)

The initial conditions are Q(t = 0) = 2, V (t = 0) = 0. The model is solved for
time t ∈ [0, 300], and the function g(x) is defined as

g(x) = V (t = 300, x). (5.19)
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Figure 5.10: Case 3. Error εC (top) εg (bottom) as function of number of
sampling points N . Blue squares: new adaptive selection method. Red dots:
Clenshaw-Curtis. Black curve: adaptive method based on hierarchical surplus.

The so-called nonlinear damping parameter is rescaled such that for x ∈ [−1, 1],
it ranges between 50 and 250. The function g(x) and the corresponding cdf
C(y) are shown in Figure 5.13. This function is clearly much more challenging
than the previous ones. It is divided in two branches, where it takes values
−2 ≤ y ≤ −1 and 1 ≤ y ≤ 2, and it presents discontinuities where it jumps
from one branch to the other. Correspondingly, cdf C(y) presents a flat plateau
for −1 ≤ y ≤ 1, which is the major challenge for both methods. In figure 5.14
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Figure 5.11: Case 3. Absolute error in the mean µY versus number of sampling
points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.

N
0 20 40 60 80 100 120 140

|σ
2 Y
−

σ
2 a
n
|

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Our method
Clenshaw-Curtis
Hierarchical surplus

Figure 5.12: Case 3. Absolute error in the variance σ2
Y versus number of sampling

points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.

we show the errors εg and εC . The overall convergence rate of the CC and the
new method is similar. For this case, the hierarchical surplus method yields a
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better convergence, but only for N > 80. As we commented before, the mean
µY has no statistical meaning in this case, because the output is divided into
two separate regions. The convergence for σ2

Y is presented in Figure 5.15.

Figure 5.13: Case 4: Van der Pol oscillator. Top panel: g(x); bottom panel:
C(y).

5.4 Conclusions and future work

We have presented a new adaptive algorithm for the selection of sampling points
for non-intrusive stochastic collocation in Uncertainty Quantification (UQ). The
main idea is to use a radial basis function as interpolant, and to refine the grid
on points where the interpolant presents large and small first derivative.
In this work we have focused on 1D and uniform probability PX(x), and we
have shown four test cases, encompassing analytical and non-analytical smooth
functions, which are prototype of a very wide class of functions. In all cases
the new adaptive method improved the efficiency of both the (non-adaptive)
Clenshaw-Curtis collocation method, and of the adaptive algorithm based on the
calculation of the hierarchical surplus (note that the method used in this paper
is a slight improvement of the classical algorithm). The strength of our method
is the ability to select a new sampling point making full use of the interpolant
resulting from all the previous evaluation of the function g(x), thus seeking the
most optimal convergence rate for the cdf C(y). We have shown that there is no
one-to-one correspondence between a reduction in the interpolation error εg and
a reduction in the cdf error εC . For this reason, collocation methods that choose
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Figure 5.14: Case 4. Error εC (top) εg (bottom) as function of number of
sampling points N . Blue squares: new adaptive selection method. Red dots:
Clenshaw-Curtis. Black curve: adaptive method based on hierarchical surplus.

the distribution of sampling points a priori can perform poorly in attaining a
fast convergence rate in εC , which is the main goal of UQ. Moreover, in order to
maintain the nestedness of the collocation points the CC method requires larger
and larger number of simulations (2w moving from level w to level w+ 1), which
is in contrast with our new method where one can add one point at the time.
We envision many possible research directions to further investigate our method.
The most obvious is to study multi-dimensional problems. We emphasize that
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Figure 5.15: Case 4. Absolute error in the variance σ2
Y versus number of sampling

points N . Blue: new adaptive selection method. Red: Clenshaw-Curtis. Black:
adaptive method based on hierarchical surplus.

the radial basis function is a mesh-free method and as such we anticipate that
this will largely alleviate the curse of dimensionality that afflicts other collocation
methods based on quadrature points (however, see [94] for methods related to
the construction of sparse grids, which have the same aim). Moreover, it will be
interesting to explore the versatility of RBF in what concerns the possibility of
choosing an optimal shape parameter c [115]. Recent work [116, 117] investigated
the role of the shape parameter c in interpolating discontinuous functions, which
might be very relevant in the context of UQ, when the continuity of g(x) cannot
be assumed a priori. Finally, a very appealing research direction, would be to
simultaneously exploit quasi-Monte Carlo and adaptive selection methods for
extremely large dimension problems.



Chapter 6

Conclusions & Outlook

Here we summarize the conclusions of this thesis. We also present an
outlook about how the work could be utilized to build models for elec-
tric discharge simulations comprising more scales in a computationally
efficient manner.
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6.1 Conclusions

Broadly speaking, the work presented in this thesis can be summarized under 3
categories. They are

• Physical/mathematical model development (Chapter 2, 3, 4)

• Code development and testing (Chapter 2, 5)

• Usage of the code for simulations (Chapter 3, 4, 5)

Here are the conclusions of the different chapters:

• Chapter 2
Some numerical test results are presented for the numerical discretization
techniques used in later chapters. The test results accurately captured
the essential features of the reference solutions thereby establishing the
correctness of the results generated from software developed.

• Chapter 3
The evolution of a coupled system of electric discharge and background
gas in a short plane-to-plane electrode configuration in 2D-cylindrical sym-
metry was simulated. It was shown that with a simple model consisting
of electron impact ionization and secondary electrode emission, simple re-
lationships between the transport coefficients and gas density and heat
transfer from the electric discharge to the gas, one can understand the for-
mation of a spark. Particularly one can see how heat induced changes in
the background gas density can trigger ionization in the discharge channel
leading to breakdown even though initially the electric field is everywhere
below the breakdown value. The dynamics was evaluated in high pressure
nitrogen.

• Chapter 4
In the previous chapter, the discharge dynamics was evaluated only on the
ion time scale while the electron dynamics was adiabatically eliminated.
In the present chapter the process is reconsidered, now starting from the
full electron time scale. The reduced model on the ion time scale (as
used in Chapter 3) is derived, and it is tested in a 1D model when the
reduced model can be used to speed up the simulations. Then results on
the thermally driven break-down process of air at standard temperature
and pressure in a short gap in 2D cylindrical symmetry are presented where
the simulation was switched manually between full and reduced discharge
model, as appropriate.

• Chapter 5
A new strategy for the selection of sampling points in Uncertainty Quan-
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tification was presented. The goal was to achieve the fastest possible con-
vergence in the cumulative distribution function of a stochastic output of
interest. This strategy enabled adaptively adding new sampling points one
at a time. It took the previous evaluations of the target nonlinear function
into account. Comparisons with a stochastic collocation method based on
the Clenshaw-Curtis quadrature rule, and with an adaptive method based
on hierarchical surplus were presented showing that the new method often
results in a large computational saving.

6.2 Outlook

The role of gas heating in electric discharges continues to be investigated with
better models due to the availability of increased computational power, good
quality cross-sectional data and industrial interest where modern applications
demand better understanding of the underlying physics. In the current work
we have tackled some of the challenges which one faces while modeling the role
of heating. In particular, the coupling of the electric discharge model with the
gas dynamics model in 3D assuming cylindrical symmetry and switching between
the full and the reduced model of electrical discharge for computational efficiency
are two key elements of this work. We applied the developed models to simu-
late heat driven electrical breakdown in two different gas media. A significant
challenge will be to extend the models to full 3D and to incorporate plasma chem-
istry models. We also proposed an adaptive sampling strategy for uncertainty
quantification. Since a lot of the simulation work depends on the quality of the
cross-sectional data and the transport data, it will is beneficial to do uncertainty
quantification studies on the results obtained to establish their robustness. Here,
the proposed strategy might be employed. All the tools and models developed
here can be used to build better quantitative understanding of electrical discharge
processes. On a holistic level, the models developed may possibly be integrated
in the suite of tools available for electric discharge simulation.
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Summary

Modeling heat dominated electrical breakdown

Gas heating by an electrical discharge and the subsequent gas expansion is an
important mechanism in plasma-assisted combustion, atmospheric lightning lead-
ers, circuit breakers etc. Simulating the interaction between discharge dynamics
and gas dynamics is challenging due to the multiscale and nonlinear character of
the phenomena. The present thesis deals with the development and application
of efficient computational models to simulate heat driven electrical breakdown
in various media.

The thesis has been setup as follows. In chapter 2 we present the physical
models for the electric discharge and the gas as well as the numerical techniques
used to perform the simulations. To study the effect of gas heating on the devel-
opment of the electric discharge and vice versa, the models describing discharge
and gas dynamics are coupled. Performing simulations using the coupled model
is computationally expensive due to the multiple timescales involved in the sys-
tem. To alleviate this, a reduced model for electric discharge dynamics on the
timescale of ion motion is derived which is then coupled to the gas dynamics
model. In chapter 3, the simulation results of this model for high pressure pure
nitrogen are presented and discussed. In chapter 4, a similar methodology is ap-
plied to study the role of heating in air at atmospheric pressure. In this chapter,
during the initial phase the electron dynamics dominates the dynamics and it is
crucial to perform the simulations using the full coupled model on the timescale
of electron dynamics. As the system evolves in time, the initial seed electrons
leave the system and the discharge dynamics is driven by the relatively slowly
moving ions. For computational efficiency, we then switch from the full coupled
model to the reduced coupled model. The simulation results show how over long
timescales (tens of microseconds) electrical breakdown occurs in the gap due to
gas heating. We chose a simple heating model where the gas is heated in two
stages. In the first stage, a fraction of the electrical energy heats up the gas
instantaneously and the remainder is stored in the vibrationally excited states
and relaxes over longer timescales. In chapter 5, a different topic pertaining to
the field of uncertainty quantification is studied where a new strategy for the
selection of sampling points is presented. The goal was to achieve the fastest
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possible convergence in the cumulative distribution function of a stochastic out-
put of interest. The method allows to adaptively add new sampling points one
at a time, while taking the previous evaluations of the target nonlinear function
into account. The performance of the method is compared with some established
approaches, showing that the new method often results in a large computational
saving. Chapter 6 presents the major conclusions of the research and ends with
an outlook.
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