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Abstract. In this paper, we revise the notion of Soft Constraint
Automata, where automata transitions are weighted and consequently
each action is associated with a preference value. We first relax the
underlying algebraic structure that models preferences, with the pur-
pose to use bipolar preferences (i.e., both positive and negative ones).
Then, we equip automata with memory cells, that is, with an internal
state to remember and update information from transition to transition.
Finally, we revise automata operators, as join and hiding.
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1 Introduction

In the history of Computer Science, many coordination languages have been
proposed for the specification and implementation of interaction protocols, in
order to let software components communicate. Such formalisms include process
calculi, concurrent objects, actors, agents, shared memory, message passing, and
more. A distinctive feature of these formalisms is that they are all primarily
action-based models that provide constructs for the direct specification of things
that interact, rather than a direct specification of interaction (i.e., protocols).

This is one of the main motivations behind the long-running success of the
Reo language [2], whose distinctive feature instead is to treat interaction as an
explicit first-class concept. Reo comes with its own composition operators, and it
allows for specifying more complex interaction protocols by combining simpler,
and possibly primitive, protocols. In practice, Reo connectors impose constraints
on the order in which the components can exchange data items with each other;
even though the basic primitive channels are simple, Reo connectors can actually
describe rather complex protocols.

The literature offers tens of different semantics formalisms to express the
behaviour of Reo connectors [17]: co-algebraic, colouring, and other models
based on, for instance, constraints and Petri nets. The operational models (i.e.,
automata) are probably the most popular approaches: Constraint Automata [8]
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(CA) and (several) related variants, and Context-sensitive Automata. Variants
of CA consists in Timed, Probabilistic, Continuous-time, Quantitative Resource-
sensitive timed, and Transactional extensions.

In the remainder of this paper, our aim is to both relax and extend one of
the chronologically latter variants of CA, hence not included in the survey in
[17]: Soft Constraint Automata [6], also called Soft Component Automata [19,
20] (SCA in both cases). SCA is a state-transition system where transitions
are labelled with actions and preferences. Higher-preference transitions typically
contribute more towards the goal of the component.

The aim of this paper consists of three sub-goals. First, we relax the definition
of the underlying structure that models preferences: instead of semirings as in
[6,19,20], we exploit partially ordered monoids (see Sect. 2) to naturally relax
soft constraints in order to represent bipolar preferences as labels for automata
transitions. In this way, we can express both positive and negative values, e.g.,
costs and retributions for firing a transition rule.

Second, we extend SCA with a notion of memory (SCAM), as Arbab and co-
authors have already accomplished for CA [18]. Each transition of a SCAM can
also put a condition on the current data assigned to a finite set of memory cells,
and update their respective values. Therefore, together with states, memory cells
determine the configuration of a connector, and thus can influence the observed
behaviour of the component.

The third and last intention is less scientific, but more significant from our
side: we feel the need to celebrate Farhad’s influential intuition behind Reo, and
his far-reaching contribution to many fields of Computer Science as, to name
only two of them, Concurrency Theory and Coordination Models and Languages.
Indeed, besides personal gratitude,1 our will is to continue playing with “Puff’s
gigantic tail” for a long time ahead [3].

The outline of the paper is as follows: in Sect. 2 we set the background notions
behind the algebraic structure we use for our soft constraints, that is partially
ordered monoids; then, in Sect. 3 we just define soft constraint functions. In
Sect. 4 we introduce and formally define SCAM, while Sect. 5 summarises the
related work. Finally, Sect. 6 wraps up the paper with conclusive thoughts and
hints about related future research.

2 Partially Ordered Monoids

The first step is to define an algebraic structure for modelling preferences. It
falls into the range of bipolar approaches: we refer to [14] for the missing proofs
as well as for an introduction and a comparison with other proposals.

1 Francesco would like to thank Farhad for his precious mentoring during his visit at
CWI as “Alain Bensoussan” Fellow during 2011–2012; Fabio for the many meetings
and collaborations along the years; and Kasper for his incredible supervision job and
the many interesting discussions.
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Definition 1 (Orders). A partial order (PO) is a pair 〈A,≤〉 such that A is a
set and ≤ ⊆ A × A is a reflexive, transitive, and anti-symmetric relation. A PO
is a complete lattice (CL) if any subset of A has a least upper bound (LUB).

The LUB of a subset X ⊆ A is denoted
∨

X, and it is unique. By definition
⊥ =

∨
∅ is the bottom of the PO and � =

∨
A is the top.

Definition 2 (PO monoids). A (commutative) monoid is a triple 〈A,⊕,0〉
such that ⊕ : A × A → A is a commutative and associative function satisfying

– ∀a ∈ A.a ⊕ 0 = a, where 0 ∈ A is the identity element.

A partially ordered monoid (POM) is a 4-tuple 〈A,≤ ⊕,0〉 such that 〈A,≤〉 is
a PO and 〈A,⊕,0〉 a monoid. It is monotone if

– ∀a, b, c ∈ A. a ≤ b =⇒ a ⊕ c ≤ b ⊕ c

and it is distributive if

– ∀a ∈ A.∀X ⊆ A. a ⊕
∨

X =
∨

{a ⊕ x | x ∈ X}.

whenever X is finite. A complete lattice monoid (CLM) is a POM such that the
underlying order is a CL, it is monotone if the underlying POM is so and it is
distributive if the property holds for possibly infinite subsets.

Note that in a distributive POM the ⊕ operation is monotone. In the follow-
ing, we usually use an infix notation a ⊕ b for ⊕(a, b).

Remark 1. It is now easy to show that distributive POMs are tropical semirings,
i.e., semirings with a sum operator a ⊕ b =

∨
{a, b} that is idempotent. If 0 is also

the top of the PO we end up in what are called absorptive semirings [16] in the
algebra literature, which in turn are known as c-semirings in the soft constraint
jargon [10]. Combined with monotonicity, imposing 0 to be the top means that
preferences are negative, i.e., ∀a, b ∈ A.a ⊕ b ≤ a. Indeed, most better known
structures that are used in the soft constraints literature are absorptive semirings
whose underlying, distributive POM is actually a CLM: among them we recall
the Boolean (〈{false, true},→,∧, true〉), Fuzzy (〈[0, 1],≤, min, 1〉), Probabilistic
(〈[0, 1],≤,×, 1〉), and Tropical (〈R+ ∪ {+∞},≥,+, 0〉) semirings (where, in the
latter, ≥ the inverse of the standard order, thus +∞ is the bottom and 0 the
top of the CLM, respectively).

Remark 2. Note that CLMs feature an operator that carries the intuitive mean-
ing of subtraction, which can be defined as a�−b =

∨
{c | b ⊕ c ≤ a}. It satisfies

the usual property of residuation, namely b ⊕ c ≤ a ⇐⇒ c ≤ a�−b: see e.g. [11]
for a brief survey on residuation for absorptive semirings.
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2.1 Cylindric Algebras

We now introduce two families of operators that we use for modelling suitable
operators on automata. They are generalised notions of existential quantifiers
and diagonals [22]. For this section, we fix a POM M = 〈A,≤,⊕,0〉.

Definition 3 (Cylindrification). Let V a set of variables. A cylindric oper-
ator ∃ over M and V is a family of monotone, identity preserving functions
∃x : A → A indexed by elements in V such that for all a, b ∈ A and x, y ∈ V

1. a ≤ ∃xa
2. ∃x(a ⊕ ∃xb) = ∃xa ⊕ ∃xb
3. ∃x∃ya = ∃y∃xa

The support of a ∈ A is the set of variables supp(a) = {x ∈ V | ∃xa �= a}.

Preserving identities means that ∃x0 = 0. Combined with item 2, it implies
idempotency of ∃, i.e., ∃x∃xa = ∃xa, which implies x �∈ supp(∃xa). Since ∃ is
commutative, we denote ∃x1 · · · ∃xn

a as ∃Xa, for X = {x1, . . . , xn} ⊆ V .
We now fix a set of variables V and a cylindric operator ∃ over M and V .

Definition 4 (Diagonalisation). A diagonal operator δ for ∃ is a commutative
function δ : V × V → A such that for all a ∈ A and x, y, z ∈ V

1. δx,x = 0
2. δx,y = ∃z(δx,z ⊕ δz,y) for z �∈ {x, y}
3. δx,y ⊕ ∃x(a ⊕ δx,y) ≤ a for x �= y

We use a subscript notation, as δx,y for δ(x, y). Axioms 1 and 2 above plus
idempotency imply ∃xδx,y = 0, which implies (by axiom 2 and idempotency of
∃) that supp(δx,y) = {x, y} for x �= y. We lastly fix a diagonal operator δ for ∃.

Definition 5 (Substitution). Let x, y ∈ V and a ∈ A. The substitution a[y/x]
is defined as a if x = y and as ∃x(δx,y ⊕ a) otherwise.

Substitution behaves correctly with respect to ∃.

Lemma 1. For all x, y, w ∈ V and a ∈ A, we have

– (∃xa)[y/x] = ∃xa;
– ∃xa = ∃y(a[y/x]), if y �∈ supp(a);
– (∃wa)[y/x] = ∃w(a[y/x]), if w �∈ {x, y}.

Proof. The proofs are immediate. Consider for instance the most difficult item 3.
If x = y the proof is over. Now, since w �∈ {x, y} we have that w �∈ supp(δx,y), so
that ∃w(a[y/x]) = ∃w∃x(δx,y⊕a) = ∃x∃w(δx,y⊕a) = ∃x(δx,y⊕∃wa) = (∃wa)[y/x].

Finally, we can now rephrase some additional laws that hold for the crisp
case (see e.g. [7, p. 140]).
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Lemma 2. For all x, y ∈ V and a ∈ A, we have

1. (a[y/x])[x/y] = a, if y �∈ supp(a);
2. a[y/x] ⊕ b[y/x] = (a ⊕ b)[y/x];
3. x �∈ supp(a[y/x]), if x �= y.

Proof. Consider the most difficult item 2. By definition a[y/x]⊕ b[y/x] =
∃x(δx,y ⊕ a)⊕ ∃x(δx,y ⊕ b), which in turn coincides with ∃x(δx,y ⊕ a⊕ ∃x

(δx,y ⊕ b)) by axiom 2 of ∃, and by axiom 3 of δ and its idempotency we have
that ∃x(δx,y ⊕ a⊕ ∃x(δx,y ⊕ b)) ≤ ∃x(δx,y ⊕ a⊕ b) = (a⊕ b)[y/x]. The vice versa
holds by the monotonicity of ∃, so that ∃x(δx,y ⊕ b) ≥ δx,y ⊕ b. Item 1 has a
similar proof, while 3 is immediate.

3 A Key Example: Soft Constraints

Previously, we mentioned as typical examples of distributive CLMs the Fuzzy
semiring 〈[0, 1],≤,min, 1〉 of the [0, 1] interval of real numbers with the usual
order and multiplication as the monoidal operator, and the Tropical semiring
〈R+ ∪ {+∞},≥,+, 0〉 of non-negative reals plus ∞ with the inverse order and
addition. In this section, we give a pivotal example of a CLM that is a cylindric
algebra, introducing the notion of soft constraint (following, yet generalising
[12]).

Definition 6 (Soft constraints). Let V be a set of variables, D a data domain
and M = 〈A,≤,⊕,0〉 a CLM. A (soft) constraint c : (V → D) → A is a function
associating a value in A to every variable assignment η : V → D.

We define C as the set of constraints that can be built starting from chosen
M, V , and D. The application of a constraint function c : (V → D) → A to a
variable assignment η : V → D is denoted cη.

Although a constraint involves all the variables in V , it may depend on the
assignment of a finite subset of them, called its support (cf. Definition 3). For
instance, a binary constraint c with supp(c) = {x, y} is a function c : (V →
D) → A which depends only on the assignment of variables {x, y} ⊆ V , meaning
that two assignments η1, η2 : V → D differing only for the image of variables
z �∈ {x, y} coincide (i.e., cη1 = cη2). The support generalises the classical notion
of scope of a constraint.2 We often refer to a constraint with support X as cX .

The set of constraints forms a CLM, with the structure lifted from M.

Lemma 3 (CLM of constraints). The set of constraints C (over M, V , and
D) is endowed with a relation ≤, operation ⊕, and constant 0, such that

– c1 ≤ c2 if c1η ≤ c2η for all η : V → D
– (c1 ⊕ c2)η = c1η ⊕ c2η
– 0η = 0

is a complete lattice monoid.

2 For a first-order constraint φ, the support supp(φ) is contained in the set of free
variables free(φ). For example, supp(x = x) = ∅ ⊆ {x} = free(x = x).
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We denote the CLM 〈C,≤,⊕,0〉 of constraints by C. Combining two con-
straints by the ⊕ operator means building a new constraint whose support con-
tains at most the variables of the original ones. Such constraint associates with
each tuple of domain values for such variables the value obtained by multiplying
those associated by the original constraints to the appropriate sub-tuples. The
identity is the constant function mapping all η to 0.

Example 1 (A simple CLM). Let us consider S as the CLM of non-negative
reals, and as D any subset of such reals. A linear polynomial with variables in
V and non-negative reals as coefficients such as ux + vy + z can be interpreted
as the soft constraint associating with a function η : V → D the real obtained
as (u × η(x)) + (v × η(y)) + z. Clearly, the composition of such constraints is
precisely the addition of polynomials. Instead, the ordering might not be the one
induced by the coefficients, due to the presence of constants. For example, let us
consider the polynomials 2x + 1 and x + 5 and let us assume D = {1, 2, 3}: it
holds that (2x + 1) ⊕ (x + 5) = (3x + 6) and 2x + 1 ≤ x + 5.

Similarly for residuation, which is just bounded subtraction of coefficients.
Since 2x + 1 ≤ x + 5, by construction (2x + 1)�−(x + 5) is the bottom constraint,
which can be represented by the polynomial 0. Instead, (x + 5)�−(2x + 1) could
be synthetically described as −x + 4, even if the latter falls outside of the
polynomials we considered since it has a negative coefficient. In general terms,
also such polynomials might be allowed: it would suffice to assume that if the
result of the evaluation of the polynomial is a negative real, then it is put to 0.

If D is not the singleton, then the support of a polynomial is precisely the
set of variables occurring in it.

The CLM of constraints enjoys the cylindric properties, as shown by the result
below (for cylindric operators and diagonals in the idempotent case, see [12]).

Lemma 4 (Cylindric algebra of constraints). The CLM of constraints C
endowed with cylindric operators ∃x and diagonal elements δx,y, such that

– (∃xc)η =
∨

d∈D cη[x := d], for all c ∈ C, x ∈ V

– δx,yη =
{

0 if η(x) = η(y)
⊥ otherwise , for all x, y ∈ V

is a cylindric algebra.

Differently from the tradition in soft constraint literature, we allow the data
domain D to be infinite. Hence, ∃x may need to compute the least upper bound
of an infinite set of soft constraints. However, Lemma 3 shows that C is a CLM,
which guarantees the existence of such an upper bound. These observations
motivate why we view the set of constraints as a CLM rather than just a POM.

Hiding means removing variables from supports: supp(∃xc) ⊆ supp(c)\{x}.3

Finally, the diagonal element δx,y has support {x, y} for x �= y, and ∅ for δx,x.

3 The operator is called projection in the soft framework, and ∃xc is denoted c ⇓V −{x}.
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Example 2 (Continued. . . ). Let us consider again the situation of Example 1.
Polynomials can also be equipped with a cylindric operator, so that e.g. ∃x(2x +
1) =

∨
d∈D 2d + 1 = 3, i.e., the supremum obtained for the evaluation of the

polynomial with respect to the elements in D. The diagonal operator δx,y is a
kind of matching [x = y], since [x = y]η is either 0 or ∞ depending if η(x) = η(y)
or η(x) �= η(y), respectively. A proper treatment would anyhow require to extend
the syntax of polynomials by including suitable constants.

4 Soft Constraint Automata

Constraint Automata (CA) have bee introduced in [8] as a formalism to describe
the behaviour and possible data flow in coordination models (such as Reo lan-
guage [8]); they can be considered as acceptors of Timed Data Streams [1,8]. The
proposal has been recently enriched by adding an explicit notion of memory [18].
In this section we rephrase most definitions presented in the weighted extension
of CAs, namely Soft Constraint Automata (SCA) [6], and we further extend the
framework by relying on CLMs instead of c-semirings as in [6] and by including
memory, thus obtaining Soft Constraint Automata with Memory (SCAM).

4.1 Weighted Data Streams

As a first step, we recall and rephrase the definition of Weighted Data Streams
(WDS), which is also given in [6].4

In this section we fix a data domain D as well as a CLM M = 〈A,≤,⊕,0〉.

Definition 7 (Weighted data streams). A weighted data stream (WDS) over
D and M is a partial function φ : R+ ⇀ (A \ {⊥}) × D whose domain dom(φ)
is closed and discrete. We write WDS for the set of all weighted data streams.

Intuitively, a WDS φ : R+ ⇀ (A\{⊥})×D records the time stamps dom(φ) =
{φ0, φ1, . . .}, such that i < j implies φi < φj , at which data is exchanged. Indeed,
discreteness (each element is isolated) ensures that dom(φ) is countable (hence,
it has the cardinality of a subset of natural numbers). Since it is also closed,
the domain contains no unrealistic situations like {1/n | n ∈ N}, since its limit
would not be discrete. The values φ(φi) = (ai, di), for i ≥ 0 and φi ∈ dom(φ),
consists of the observed data di and its preference ai �= ⊥.

Our current definition of WDSs slightly differs from the original definition
in [6]. The main distinction is that we allow finite WDSs, i.e., the domain dom(φ)
may be finite. In case of an empty domain dom(φ) = ∅, WDS φ admits no
observable behaviour at all. This generalisation is especially useful for the hiding
operator on SCAM, as proposed in Sect. 4.6.

The second difference with the original definition in [6] is that our WDSs are
partial functions, rather than triples of streams. However, our assumptions on
the domain imply that these representations are similar.
4 As noted in [6], these streams do not imply time constraints, and thus our (soft) CA

are not “timed” [8], so that we dropped the adjective altogether.
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The behaviour of a system is often described in terms of tuples of WDSs, each
one corresponding to a data passing through a given port; put simply, given a
finite set of port names N , the behaviour is described by a function N → WDS.

4.2 Soft Constraint Automata with Memory

In a CA, a transition label is a pair 〈N, g〉 consisting of a synchronisation con-
straint N and a data constraint g. The synchronisation constraint is a finite set
of names that consists exactly of those input/output ports through which data
is exchanged during the current transition. The data constraint is a boolean
formula that guards the data exchanged at the ports in N . In the soft frame-
work, the overall structure is similar, even if the guard is now a soft constraint
that evaluates to an element in M, instead of a boolean value. Furthermore,
we extend our data constraints with memory variables. Using these variables, a
guard can require a property about the current and next state of the data in
memory.

Besides a data domain D and a finite set of port names N , we fix a finite
set X of memory cells and a CLM M = 〈A,≤,⊕,0〉. Furthermore, we consider
the set X v = •X ∪ X • of memory variables: they are obtained by tagging the
memory cells. To avoid conflicting names, we assume that N ∩ X v = ∅.

Definition 8 (Soft constraints with memory). A soft constraint with mem-
ory over N , X , D, and M is a soft constraint c : (N ∪ X v → D) → A.

We denote by CX the CML of soft constraints with memory. Informally, a
soft constraint with memory is a function that returns a preference value a ∈ A
given an assignment for a subset N of names in N and a subset X of variables
in X v that occur in its support.

Note that, by using the Boolean semiring we model the “crisp” data-
constraints presented in the definition of CA [8]. Therefore, CA are subsumed by
Definition 9. Note also that weighted automata have already been defined in the
literature [13]; in SCA, weights are determined by a constraint function instead.

Definition 9 (Soft constraint automata with memory). A Soft Constraint
Automaton with Memory (SCAM) over D and M is a tuple 〈Q,X ,N ,−→,Q0〉
such that Q is a finite set of states, X a finite set of memory cells, N a finite set
of port names, −→ ⊆ Q × 2N × CX × Q a finite set of transitions, and Q0 ⊆ Q
a set of initial states, such that (q,N, c, p) ∈ −→ implies supp(c) ⊆ N ∪ X v.

We usually write q
N,c−−→ p instead of (q,N, c, p) ∈ −→ and we call N the

synchronisation constraint and c the guard of the transition, respectively. We
say a transition is invisible whenever N = ∅.

The intuitive meaning of a SCAM T as an operational model for service
queries is similar to the interpretation of labelled transition systems as mod-
els for reactive systems. The states represent the configurations of a service.
The transitions represent the possible one-step behaviour, where the meaning
of q

N,c−−→ p is that, in configuration q, the ports in n ∈ N have the possibility of
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performing I/O operations that satisfy the soft guard c, which now also includes
requirements on memory cells, and that leads from configuration q to p, while
the other ports in N\N perform no I/O operation. Each assignment to port
names in N represents the data exchanged by the I/O operations through these
ports, while the assignments to variables in •X and X• represent the data in
memory cells before and after the transition.

Example 3 (Buying and selling). In Fig. 1, we show a (deterministic) SCAM,
where the set of names N is {b, s}, the set of variables X v is {•a, a•, •l, l•}, and
the data domain consists of all integers. The constraints cb and cs describe the
preferences on the operation of buying and selling: if the cost b of buying an
item is below a threshold with respect to the value in the account •a (for the
sake of simplicity, the account remains positive, i.e., •a − b > 0), then the item
is bought and the account is decreased (a• = •a − b and l• = b). Likewise, if
the price s received in selling an item is above the paid price (•l < s), then it is
accepted and the account is incremented (a• = •a + s).

q0start q1

〈{b}, cb〉

〈{s}, cs〉

Fig. 1. An automaton with memory.

The formal definition of constraints cb and cs is given in Eqs. 1 and 2.

c{b}η =

{−η(b) if 0 < η(l•) = η(b) = η(•a) − η(a•) < η(•a)
⊥ otherwise

(1)

c{s}η =

{
η(s) if η(•l) < η(s) = η(a•) − η(•a)

⊥ otherwise
(2)

For example, let us assume that for the first two transitions (from q0 to q1
and from q1 to q0, respectively) we have η(b) = 2 and then η(s) = 3. Also, let us
assume that we have as initial account a = 6 (i.e., •a = 6). Now, the constraint
c{b}η associated to the first transition has value −2, since the money is spent,
and the values associated to the memory cells l and a after the transition (i.e., to
the variables l• and a•) are 2 and 4, respectively. The constraint c{s}η associated
to the second transition has value 3, since the money is earned (and it is more
than what the item was paid), and the value associated to the memory cell a
after the transition (i.e., to the variable a•) is 7, while the value associated to
the memory cell l (i.e., to the variable l•) is irrelevant, hence it can be any
value.
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4.3 The Language of SCAM

Let T be a SCAM and ΩX : X → D the set of assignments over its memory cells.
The configurations of T are pairs 〈q, ω〉 ∈ Q × ΩX , which are initial whenever
q ∈ Q0. In other words, we initialise each memory cell to a random datum.

The accepted language of a SCAM T at a given configuration s is a relation
L(T , s) ⊆ WDSN over weighted data streams on ports from N . An accepted
word consists of a N -tuple of weighted data streams (i.e., a map N → WDS ).
As usual, the language of an automaton is given by the union of all the languages
accepted by its initial states, i.e., L(T ) =

⋃
s∈Q0×ΩX L(T , s).

Consider the automaton T from Example 3, with ports N = {b, s} and start-
ing state q0. The accepted language of T is formed by the runs of alternate
assignments for {b} and {s}, which guarantees that a balance a is always posi-
tive.

Recall that φ0 ∈ R+ is the minimum of the domain dom(φ), for every WDS
φ : R+ ⇀ A × D with non-empty domain.

Definition 10 (Accepted runs). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM.
The accepted language of T is the largest map L(T ,−) : Q × ΩX → 2(WDS)N

,
such that if (φx)x∈N ∈ L(T , 〈q, ω0〉) and t0 = min{φx

0 | x ∈ N ,dom(φx) �= ∅}
exist, there exist a transition q

N,c−−→ p and an assignment η : N ∪ X v → D with

– cη �= ⊥,
– N = ∅ or N = {x ∈ N | φx

0 = t0},
– φx(t0) = 〈cη, η(x)〉, for all x ∈ N ,
– η(•x) = ω0(x), for all x ∈ X ,
– (φx|R+\{t0})x∈N ∈ L(T , 〈p, ω1〉), with ω1(x) = η(x•), for all x ∈ X ,

where φx|R+\{t0} is the restriction of φx to R+ without t0. The set L(T ) of
accepted runs is the union of the acceptable runs from Q0 × ΩX .

Observe that the expression φx(t0) is well-defined, because x ∈ N implies
N �= ∅ and t0 = φx

0 ∈ dom(φx). Also note that, since supp(c) ⊆ N × X v, the
value of η(x), for x ∈ N \ N , is irrelevant.

If we never observe any data at any port (i.e., dom(φx) = ∅, for all x ∈ N ),
then the minimum t0 = min{φx

0 | x ∈ N ,dom(φx) �= ∅} does not exist, and the
condition in Definition 10 is vacuously true.

Example 4 (The language of business). Going back to Example 3, the language
recognised by state q0 with respect to the memory cell assignment [a = p, l = 0]
is the possibly infinite sequence of weights and port name assignments 〈−b1, b =
b1〉; 〈s1 − b1, s = s1〉; . . . such that 0 < bi ≤ si and additionally in any (even)
prefix of such a sequence the sum of all the costs and all the sales is always
positive. Indeed, it is given by the sum of all constraints! The timing of these
operations is instead irrelevant and it is omitted.
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4.4 Stateless SCAM

States and memory cells of SCAM essentially serve the same purpose. The fol-
lowing theorem shows that we can eliminate all states from any SCAM, at the
cost of new memory cells.

Theorem 1. Let T be a SCAM over a domain D that is not a singleton. Then,
it is language equivalent to a SCAM with only a single state.

Proof. Let T = (Q,X ,N ,−→,Q0) be a SCAM over a data domain D and a CLM
M such that D is not a singleton. We find an injective encoding e : Q → Dn, for
some integer n ≥ log|D|(|Q|). Write e(q) = (ei(q))n

i=1, for all q ∈ Q. For every
variable x ∈ X v and datum d ∈ D, define the (soft) constraint x = d by (x =
d)η = 0, if η(x) = ei(q), and (x = d)η = ⊥, otherwise. Let z1, . . . , zn /∈ N ∪ X
be fresh names. For every τ = (q,N, c, p) ∈ −→, define Nτ = N and

cτ = c ⊕
n⊕

i=1

•zi = ei(q) ⊕ z•
i = ei(p).

Consider T ′ = ({q0},X ∪ {z1, . . . , zn},N , {(q0, Nτ , cτ , q0) | τ ∈ −→}, {q0}). We
show that T ′ is language equivalent to T . Suppose that (φx)x∈N ∈ L(T ). Then,
we find some transition (q,N, c, p) ∈ −→ and assignment η : N ∪ X v → D
that satisfy the conditions in Definition 10. Since the zi’s are fresh, we find an
extension η′ of η to

⋃n
i=1{•zi, z

•
i } that satisfies cτη′ �= ⊥. Hence, transition

(q0, Nτ , cτ , q0) and assignment η′ witness that (φx)x∈N ∈ L(T ′).
On the other hand, suppose that (φx)x∈N ∈ L(T ′). Then, we find some

transition (q0, Nτ , cτ , q0), with τ ∈ −→, and an assignment η′ : N ∪(X ∪{z})v →
D that satisfy the conditions in Definition 10. Then, τ and the restriction η of
η′ to N ∪ X v witness that (φx)x∈N ∈ L(T ). We conclude that L(T ) = L(T ′). ��

The result of Theorem 1 can be used as a first step towards an equivalence
between SCAM and soft constraints with memory (over a data domain that
includes a special datum ∗ that denotes absence of data). Moreover, by using ∗,
it seems possible to encode the synchronisation constraint N of each transition
in the soft constraint by adding x �= ∗, for x ∈ N , and x = ∗, otherwise. In
combination with Theorem 1, such construction would show a correspondence
between SCAM and soft constraints with memory. Since the representation of
SCAM as soft constraints with memory is much more flexible, this alternative
representation can help us to prevent relentless state space explosions. We leave
the details of such correspondence as future work.

4.5 SCAM Composition

We now introduce the product of automata, extending [6, Definition 5].

Definition 11 (Soft join). Let Ti = (Qi,Xi,Ni,→i,Q0i), for i ∈ {0, 1}, be
two SCAM over D and M, with (N0 ∪ N1) ∩ (X v

0 ∪ X v
1 ) = ∅. Then, their soft
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product T0 	
 T1 is the tuple 〈Q0 × Q1,X0 ∪ X1,N0 ∪ N1,−→,Q00 × Q01〉 where
−→ is the smallest relation that satisfies the rule

q0
N0,c0−−−−→0 p0, q1

N1,c1−−−−→1 p1, N0 ∩ N1 = N1 ∩ N0

〈q0, q1〉 N1∪N2,c1⊕c2−−−−−−−−−−→ 〈p0, p1〉

The rule applies when there is a transition in each automaton such that they
can fire together. This happens only if the two local transitions agree on the
subset of shared ports that fire. The transition in the resulting automaton is
labelled with the union of the name sets on both transitions, and the constraint
is the conjunction of the constraints of the two transitions.

Note that the product automaton can include asynchronous executions: it
suffices that the SCAM are reflexive, i.e., for any state q there is a transition

q
∅,0−−→ q.
We can express the composition of SCAM in Definition 11 in terms of a simple

composition operator on languages. Let L0 and L1 be two languages over the
sets of ports N0 and N1, respectively. The product language L0 	
 L1 consists of
those tuples (φx)x∈N0∪N1 of WDSs, such that (φx)x∈Ni

∈ Li, for all i ∈ {0, 1}.
In particular, N0 = N1 implies L0 	
 L1 = L0 ∩ L1.

Lemma 5 (Correctness of soft join). Let T0 and T1 be two SCAM that do
not share memory cells. Then, L(T0 	
 T1) = L(T0) 	
 L(T1).

Proof. Suppose that (φx)x∈N0∪N1 ∈ L(T0 	
 T1). We show that (φx)x∈Ni
∈

L(Ti), for all i ∈ {0, 1}. Let i ∈ {0, 1} be arbitrary. By Definition 10, we find some
transition q

N,c−−→ p and an assignment η : N0 ∪N1 ∪X v
0 ∪X v

1 → A that satisfy the
conditions in Definition 10. By Definition 11, we find a local transition qi

Ni,ci−−−→ pi

in Ti, and by restriction of η, we find a local assignment ηi : Ni ∪ X v
i → A. By

construction, this transition and assignment witness the inclusion (φx)x∈Ni
∈

L(Ti) according to the conditions in Definition 10. By definition of join, we have
L(T0 	
 T1) ⊆ L(T0) 	
 L(T1).

Suppose that (φx)x∈N0∪N1 ∈ L(T0) 	
 L(T1). We show that (φx)x∈N0∪N1 ∈
L(T0 	
 T1). By definition, we have (φx)x∈Ni

∈ L(Ti), for all i ∈ {0, 1}. By
Definition 11, we find, for i ∈ {0, 1}, a transition qi

Ni,ci−−−→ pi and an assignment
ηi : Ni ∪ X v

i → A that satisfy the conditions in Definition 10. By construction,
we have N0 ∩ N1 = N1 ∩ N0, and we find with Definition 11 a global transition
q

N,c−−→ p in T0 	
 T1. Since T0 and T1 do not share memory, we have X v
0 ∩ X v

1 =
∅. Therefore, η0 ∪ η1 is a well-defined assignment that, together with q

N,c−−→ p,
witnesses that (φx)x∈N0∪N1 ∈ L(T0 	
 T1). We conclude that L(T0 	
 T1) =
L(T0) 	
 L(T1). ��

4.6 SCAM Hiding

The hiding operator [8] abstracts the details of the internal communication in
a CA. In SCA [6, Definition 6], the hiding operator ∃OT removes from the
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transitions all the information about the names in O ⊆ N , including those in
the (support of the) constraints. The definition smoothly extends over SCAM:
in fact, since we allow invisible transitions, our definition is much more compact.

Definition 12 (Soft hiding). Let T = 〈Q,X ,N ,−→,Q0〉 be a SCAM and
O ⊆ N a set of port names. Then, ∃OT is the SCAM 〈Q,X ,N \ O −→∗,Q0〉
where −→∗ is defined by q

N\O,∃Oc−−−−−−→∗ p if q
N,c−−→ p.

Similarly to the correctness of join, we express the hiding operator for SCAM
in terms of a simple operation on languages. Let L be a language over a set of
ports N , and let O ⊆ N be a set of ports. Then, ∃OL consists exactly of the
restriction (φx)x∈N\O of a given tuple (φx)x∈N ∈ L.

If we require that the domain dom(φ) of a WDS φ is infinite, then we can
only hide ports that necessarily fire infinitely often in every (infinite) run of the
SCAM. This condition is part of the correctness of hiding for SCA [6, Defini-
tion 6]. Since we allow finite WDS, correctness of SCAM amounts to the following
result.

Lemma 6 (Correctness of soft hiding). Let T be a SCAM and O a set of
its ports. Then, L(∃OT ) = ∃OL(T ).

Proof. Suppose that (φx)x∈N\O ∈ L(∃OT ). We will show by coinduction that

(φx)x∈N\O ∈ ∃OL(T ). By Definition 10, we find some transition q
N ′,c′
−−−→ p in

∃OT . By Definition 12, we find some transition q
N,c−−→ p, with N ′ = N \ O and

c′ = ∃Oc. We construct a WDS φx, for x ∈ O, such that (φx)x∈N satisfies the
conditions of Definition 10, for T . If x ∈ N ∩O, we define φx = [t0 �→ 〈cη, η(d)〉],
with t0 := min{φp

0 | p ∈ N \ O,dom(φp) �= ∅} and η : N ∪ X v → D is any
assignment that satisfies c. If x ∈ (N \ N) ∩ O and we define φx = [ ] as the
empty map. By the coinduction hypothesis, (φx)x∈N ∈ L(T ), and (φx)x∈N\O ∈
∃OL(T ).

On the other hand, suppose that (φx)x∈N\O ∈ ∃OL(T ). By definition, we find
some extension (φx)x∈N ∈ L(T ). By coinduction hypothesis and Definition 10
we find (φx)x∈N\O ∈ L(∃OT ). We conclude that L(∃OT ) = ∃OL(T ). ��

5 Related Works on Constraint Automata

The closest related work to what discussed in this paper concerns other exten-
sions of CA, previously advanced in the ample and mature literature about Reo.

In [5,21], Arbab et al. introduce Quantitative CA (QCA) with the aim of
describing the behaviour of connectors tied to their Quality of Service (QoS),
e.g., a reliability measure or the shortest transmission time. Similarly to CA, the
states of a QCA correspond to the internal states of the connector it models.
The label on a transition consists instead of a firing set, a data constraint,
and a cost that represents a QoS metric. Hence, QCA differ from Timed [4]
and Probabilistic [9] CA, because these latter two classes of models describe
functional aspects of connectors, while QoS represents non-functional properties.
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As applications, SCA have been already used in [6,23] and [19,20,24]. Differ-
ently from previous related work, the main motivation behind SCA is to associate
an action with a preference. In [6,23] the authors present a formal framework
that is able to discover stateful Web Services, and to rank the results according
to a similarity score expressing the affinities between the query, asked by a user,
and the services in a database. Preference for the similarity between the query
and each service is modelled through SCA. In the second bunch of works instead,
the authors advance a framework that facilitates the construction of autonomous
agents in a compositional fashion; these agents are “soft”, in that their actions
are associated with a preference value, and agents may or may not execute an
action depending on a threshold preference. Hence, at design-time SCA can be
used to reason about the behaviour of the components in an uncertain physical
world, i.e., to model and verify the behaviour of cyber-physical systems.

6 Conclusions

We have reworked Soft Constraint Automata as originally proposed in [6,19],
with the dual purpose of (i) extending the underlying algebraic structure in order
to model both positive and negative preferences, and (ii) adding memory cells
as originally provided for “standard” CA [18]. Therefore, the main objective has
been to further generalise the notion of SCA, which could already accommodate
different preference systems parametrically.

As future work, we have many interesting directions in mind. As a start,
we would like to exploit the properties of soft constraints to give additional
operators on SCAM, first of all an operator for port renaming, or for considering
deterministic accepted runs, i.e., where memory cells that are not in the support
of a constraint labelling a transition are not modified by that transition. We will
consider a more flexible notion of accepted run by taking into account weak

transitions, i.e., by considering the relation q
∅,c
=⇒ p obtained as the sequence

q
∅,c1−−→ q1 . . . qn−1

∅,cn−−−→ p such that c = c1 ⊕ . . . ⊕ cn and the relation q
N,c
=⇒ p

obtained as q
∅,c1=⇒ q1

N,c2−−−→ p1
∅,c3=⇒ p such that c = c1 ⊕ c2 ⊕ c3. This would be

pivotal in defining a proper notion of weak bisimulation for automata.
Finally, thinking about our result on single state automata, we would like

to encode the behaviour of SCA into a concurrent constraint programming lan-
guage [15]. Such languages provide agents with actions to tell (i.e., add) and
ask (i.e., query) constraints to a centralised store of information; this store
represents a Constraint Satisfaction Problem, and standard heuristics-based
technique might be applied to find a solution to complex conditions on filter
channels [3].
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20. Kappé, T., Arbab, F., Talcott, C.: A component-oriented framework for
autonomous agents. In: Proença, J., Lumpe, M. (eds.) FACS 2017. LNCS, vol.
10487, pp. 20–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68034-7 2

21. Meng, S., Arbab, F.: QoS-driven service selection and composition using quantita-
tive constraint automata. Fundamenta Informaticae 95(1), 103–128 (2009)

22. Saraswat, V.A., Rinard, M.C., Panangaden, P.: Semantic foundations of concurrent
constraint programming. In: Wise, D.S. (ed.) POPL 1991, pp. 333–352. ACM Press
(1991)

23. Sargolzaei, M., Santini, F., Arbab, F., Afsarmanesh, H.: A tool for behaviour-
based discovery of approximately matching web services. In: Hierons, R.M., Mer-
ayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS, vol. 8137, pp. 152–166. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40561-7 11

24. Talcott, C., Nigam, V., Arbab, F., Kappé, T.: Formal specification and analysis of
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