
A theory of executability : with a focus on the expressivity
of process calculi
Yang, F.

Accepted/In press: 11/06/2018

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Yang, F. (2018). A theory of executability : with a focus on the expressivity of process calculi Eindhoven:
Technische Universiteit Eindhoven

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Jun. 2018

https://research.tue.nl/en/publications/a-theory-of-executability--with-a-focus-on-the-expressivity-of-process-calculi(e8b6dd26-468e-4fe2-bee4-ad5025d362a8).html

A Theory of Executability
with a Focus on the Expressivity of Process Calculi

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Technische
Universiteit Eindhoven, op gezag van de rector magnificus
prof.dr.ir. F.P.T. Baaijens, voor een commissie aangewezen

door het College voor Promoties, in het openbaar te
verdedigen op maandag 11 juni 2018 om 11:00 uur

door

Fei Yang

geboren te Jiangsu, China

Dit proefschrift is goedgekeurd door de promotoren en de samenstelling van de pro-
motiecommissie is als volgt:

voorzitter: prof.dr. J.J. Lukkien
1e promotor: prof.dr. J.C.M. Baeten
2e promotor: prof.dr.ir. J.F. Groote
copromotor: dr. S.P. Luttik
leden: prof.dr. J.A. Bergstra (Universiteit van Amsterdam)

prof.dr.hab. M. Bojańczyk (Warsaw University)
prof.dr. W.J. Fokkink

Het onderzoek of ontwerp dat in dit proefschrift wordt beschreven is uitgevoerd in
overeenstemming met de TU/e Gedragscode Wetenschapsbeoefening.

A Theory of Executability
with a Focus on the Expressivity of Process Calculi

Fei Yang

Copyright c© 2018 by Fei Yang. All Rights Reserved.

A catalogue record is available from the Eindhoven University of Technology
Library.

ISBN 978-90-386-4532-2

IPA Dissertation Series 2018-11

Cover design by Fei Yang

Printed by Gildeprint

The work in this thesis has been carried out under the auspices of the re-
search school IPA (Institute for Programming research and Algorithmics).
The author was employed at the Eindhoven University of Technology and
sponsored by CSC (Chinese Scholarship Council).

Contents

Contents i

Figures v

Tables vii

Abstract ix

Preface xi

1 Introduction 1
1.1 Background . 1

1.1.1 Computability Theory . 1
1.1.2 Concurrency Theory . 3

1.2 A Theory of Executability . 4
1.3 Thesis Outline . 6

2 Preliminaries 9
2.1 A Characterisation of Discrete-event Behaviour 9

2.1.1 Labelled Transition Systems 9
2.1.2 Behavioural Equivalences 10
2.1.3 Congruence . 12
2.1.4 Bisimulation up to . 13

2.2 Reactive Turing Machines . 15
2.2.1 Definition and Semantics . 15
2.2.2 Parallel Composition . 17

2.3 Executable Behaviours . 20
2.4 Divergence . 22

i

ii CONTENTS

2.4.1 Enumeration with Divergence 22
2.4.2 Unbounded Branching . 24

2.5 A Framework of Expressivity . 26

3 Interactive Computation 29
3.1 Interactive Turing Machines and ω-Translation 30
3.2 Executability of Interactive Turing Machines 33
3.3 Executable ω-Translations . 35
3.4 Advice . 41
3.5 Remarks . 46

4 Sequential Composition and Intermediate Termination 49
4.1 TCP and Variations of TCP . 52

4.1.1 TSP . 52
4.1.2 TCP . 54
4.1.3 TCP with Non-regular Iterators 55

4.2 Transparency . 56
4.3 A Revised Semantics of the Sequential Composition Operator 60
4.4 Context-free Processes and Pushdown Process 68
4.5 Executability in the Context of Termination 76
4.6 Remarks . 87

5 RTM and the π-Calculus 89
5.1 The π-Calculus . 91

5.1.1 Syntax . 91
5.1.2 Structural Operational Semantics 92
5.1.3 Compatibility . 94

5.2 Reactively Turing Powerfulness of the π-Calculus 96
5.2.1 Tape . 97
5.2.2 Finite Control . 101

5.3 Executability of Finite π-Calculus 105
5.3.1 A Gap Between RTMs and the π-Calculus 105
5.3.2 Restricting the π-Calculus 106

5.4 Remarks . 110

6 Nominal Executability 113
6.1 Infinitary Reactive Turing Machines 114

6.1.1 Infinitely Many States and Data Symbols 115
6.1.2 Infinitary Reactive Turing Machines 116

CONTENTS iii

6.2 Sets with Atoms . 119
6.2.1 Equality Atoms . 119
6.2.2 Legality and Orbit-finiteness 120
6.2.3 Definability . 122

6.3 Reactive Turing Machines with Atoms 123
6.4 Nominal Executability of the π-Calculus 125
6.5 Negative Result on mCRL2 . 132

6.5.1 LTSs with Atoms . 133
6.5.2 mCRL2 . 133

6.6 Remarks . 134

7 Conclusion 139
7.1 Robustness . 139
7.2 Comparison . 140
7.3 Expressivity . 140
7.4 Future Work . 141

Bibliography 145

Index 153

Summary 157

Curriculum Vitae 161

IPA Dissertation Series 162

iv CONTENTS

Figures

2.1 The proof of Lemma 2.9 . 14
2.2 An example of RTM . 18
2.3 An RTM that enumerates and sends the string 1]11]111] 19
2.4 The transition system T1 . 23
2.5 A framework of expressivity . 28

3.1 A model of interactive computation 31
3.2 Interactivess is necessary for ω-translation 38

4.1 A transition system with unbounded branching behaviour 57
4.2 The transition system of a half counter 58
4.3 An implementation of the half counter in TCP] 59
4.4 The transition system of an always terminating half counter 59
4.5 A failed implementation of the always terminating half counter in TCP] 60
4.6 A transition system in the revised semantics 63
4.7 A PDA to simulate the process in Figure 4.6 71
4.8 An implementation of the always terminating half counter in TCP] . . 77

5.1 An example to illustrate the link mobility of the π-calculus 95
5.2 Specification of an RTM utilizing the linking structure of the π-calculus 97
5.3 Bisimulation relation between Ms,δL,ďδR

and (s, δL, ďδR) 104
5.4 A π-calculus process with unbounded branching 109

6.1 A transition system with infinitely many distinct labels 115
6.2 Bisimulation relation in the proof of Theorem 6.5 118
6.3 Enumerating odd numbers with an RTM∞ 124
6.4 A labelled transition system with infinitely many orbits 125

v

vi FIGURES

6.5 Simulation of the transitions from a π-term 131
6.6 A hierarchy of executability . 135

Tables

4.1 The operational semantics of TSP 53
4.2 The operational semantics of parallel composition in TCP 54
4.3 The operational semantics of nesting and iteration 56
4.4 The revised semantics of sequential composition 61
4.5 The revised semantics of iteration and nesting 69

5.1 Structural operational semantics of the π-calculus 93

vii

viii TABLES

Abstract

Computability and concurrency are two fundamental research areas in theoretical com-
puter science. Computability theory focuses on the aspect of computing algorithmi-
cally and concurrency theory focuses on modeling systems in a concurrent setting.
Classical computability theory lacks a facility to model a system with interaction,
whereas such a facility is presented in most process calculi from concurrency theory.
An integration of the two theories could provide a suitable solution to model and ana-
lyze systems with interaction. Executability theory is proposed to make such an inte-
gration on the basis of Reactive Turing Machines. However, many major differences
between the two theories lead to a lot of difficulties in the process of integration. This
thesis attempts to overcome some of the difficulties.

This thesis provides some evidence for the robustness of executability theory by
comparing Reactive Turing Machines to another interactive computation model. More-
over, this thesis also makes a comparison between a pushdown process, which is a
notion induced from computability theory, and a context-free process, which is a no-
tion from concurrency theory, by analysing and revising the operational semantics of
process calculi. In addition, this thesis applies executability theory to establish a frame-
work to evaluate the expressivity of process calculi. Several case studies are presented
on this issue, in which some variants of the process calculus TCP, the π-calculus and
mCRL2 are mentioned. Finally, this thesis proposes a nominal extension of executabil-
ity theory, which allows an application of the theory to a more general setting.

ix

x ABSTRACT

Preface

I started to study concurrency theory in 2010 at Shanghai Jiao Tong University, bene-
fiting from an application for the BASICS lab for my summer internship programme.
In that summer, I read the book “Communication and Concurrency” of Robin Milner.
I struggled a lot since I was reading it all by myself. Fortunately, after two months, I
was able to answer some of the basic questions in concurrency theory. After my un-
dergraduate programme, I decided to start my master programme in the same group. I
was supervised by Prof. Yuxi Fu on a project to study algorithms to check equivalences
for process calculi. During the same period, I worked as a teaching assistant on three
courses: computability, discrete mathematics and algorithm. Those experiences as a
teaching assistant helped me to gain some basic knowledge about computability.

In 2013, I received an email from Dr. Bas Luttik and Prof. Jos Baeten about the
project named “A Theory of Executability”, which aims at an integrated theory to
bring together concurrency and computability. This email eventually brought me to
the Netherlands to work on this project at Eindhoven University of Technology since I
felt that it perfectly fits my background. I started this PhD project in April, 2014, and
spent four years on it. During the initial phase, I was given a copy of the PhD thesis
of Paul van Tilburg on the integration of process theory and automata theory. I learned
most of the basic knowledge about process theory and Reactive Turing Machines from
that thesis, which strengthened my confidence in working on this project.

After I acquired some knowledge on the subject of executability, I started to develop
my own research questions with Bas. We looked for many different models on interac-
tive computation and process calculi. Some comparisons had been conducted between
those models and ours, but we were not yet satisfied since the π-calculus cannot be per-
fectly fitted into our theory. We worked on an extension of executability theory based
on a nominal variant of Reactive Turing Machines. This storyline of research brought
us to a so called theory of nominal executability.

Meanwhile, I also received some research questions from Jos Baeten. I assisted
him in a course about models of computation at University of Amsterdam. We dis-

xi

xii PREFACE

cussed several questions on the integration of process calculi and pushdown automata.
We could not reach desired results because of a phenomenon called transparency. We
resolved the dilemma by an idea of a revision of the semantics of the sequential com-
position operator. This work finally became a part of this thesis.

I wrote this thesis out of my research results in executability theory. Although there
are still many unanswered questions, unproved theorems and unestablished results left,
I hope this thesis provides an overview of our theory of executability and inspires us to
deliver further results on our theory of executability.

Acknowledgements
Every PhD candidate writes this part to thank people and organizations who helped
them to finish the thesis; so do I.

As a beginning of my list, I want to thank my home country, China. She gave me a
chance to receive my education and provided me a peaceful land to grow up. My PhD
project was supported by the Chinese Scholarship Council.

I want to thank my supervisor, my promotor, Jos Baeten for accepting me as PhD
student and allowing me to work on executability theory. He provided me a lot of useful
instructions throughout the past four years. The discussions with Jos were always very
pleasant. Jos also gave me a chance to assist his course in Amsterdam, which broader
my sights in concurrency theory. He is a wonderful director both in my research and in
my career.

I also want to thank my second promotor Jan Friso Groote, who is the group leader
of the FSA section. Jan Friso is very enthusiastic about solving difficult problems, and
such an enthusiasm encouraged me to make attempts on many difficult problems. As a
group leader, Jan Friso asked me to organize the FSA colloquium on every Thursday,
which provided me a lot of experience in organizing academic events. Finally, he gave
me a lot of comments and suggestions on my thesis.

I would like to give my special thanks to my copromotor, daily supervisor, Bas
Luttik. Bas started my PhD project. Many people told me that Bas is one of the best
supervisors for a PhD student, and I agree with that. Bas is always so nice to me. I
enjoy the discussions with him a lot. He is always interested in listening to every detail
of a proof. He encouraged me when I was laking motivation and helped me to organise
myself. He spent so much effort to improve my English. I appreciate every comment
he made. Moreover, he is also a very good friend in life. I shall never forget his help.

My thanks also goes to Paul van Tilburg, who worked with Jos and Bas previously.
His work became a foundation of mine, and eventually became the current version of
our theory of executability.

xiii

My thanks also goes to the reading committee: Jan Bergstra, Wan Fokkink and
Mikołaj Bojańczyk. I give sincere gratitude to them for their efforts in reading, check-
ing and responding on my thesis. Jan Bergstra is an expert in process algebra, his
comments are extremely useful in the part about the sequential composition opera-
tor. Wan Fokkink gave me a very detailed feedback which helped me to make a lot
of improvements. Moreover, he is a great audience member in our FSA colloquium.
Mikołaj Bojańczyk is an expert on nominal sets. He already gave me some suggestions
on this subject when we met at a conference in 2016. This time, he also checked the
correctness of my application on nominal sets.

I had a very pleasant time working in the MDSE group. I want to thank all my
colleagues for their supports, collaborations and joyful discussions. I have very nice
officemates during the past four years. I would like to thank Mohamoud Talebi for
sitting beside me for four years, Omar Alzuhaibi for the interesting discussions about
Dutch, Rodin Aarssen for having beer together with me, Sarmen Keshishzadeh for his
instructions during the initial period of my PhD, and Sjoerd Cranen for showing me
his website. As a Chinese student, it was fantastic to have some Chinese colleagues
in the group. Danna Zhang, Yaping Luo and Yuexu Chen are always very nice to
me. I really appreciate their instructions on my research, on how to live in Eindhoven
and on how to find a girlfriend. I also want to give my thanks especially to our sec-
retaries. I would like to thank Margje Mommers-Lenders for ordering a room and a
lunch for the colloquium every week, and Tineke van den Bosch-Zaat for initializing
me in the group. I also appreciate all the other previous and current colleagues: Mark
van den Brand, Erik de Vink, Julien Schmaltz, Hans Zantema, Tim Willemse, Anton
Wijs, Wieger Wesselink, Dragan Bosnacki, Herman Geuvers, Alexander Serebrenik,
Loek Cleophas, Thomas Neele, Sander de Putter, Alexandar Fedotov, Ana-Maria Şutı̂i,
Neda Noroozi, Yanja Dajsuren, Ulyana Tikhonova, Weslley Silva Torres, Felipe Ebert,
Önder Babur, Miguel Botto Tobar, Mauricio Verano Merino, Kousar Aslam, Priyanka
Karkhanis, Sangeeth Kochanthara, Raquel Alvarez Ramirez, Arash Khabbaz Saberi,
Josh Mengerink, Bogdan Vasilescu, Maciej Gazda, Sebastiaan Joosten, Gerard Zwaan,
Tom Verhoeff, Ruurd Kuiper, Kees Huizing and others.

During my PhD life, I also enjoyed a lot to discuss with people from other institutes.
I would like to thank Rob van Glabbeek for his instructions on operational semantics,
Petr Jancar for sharing his knowledge on algorithms on pushdown automata, Matias
David Lee for talking with me about his project and his life in Argentina, Joshua Mo-
erman for the discussion about nominal sets, Soichiro Hidaka and Tao Zan for the dis-
cussions on bidirectional transformations, Qiang Yin, Mingzhang Huang, Hao Huang
and Jianxin Xue for the discussion on my research articles.

I am also very grateful for the people in the BASICS lab at Shanghai Jiao Tong
University, who taught me a lot during my master programme, and gave me suggestions

xiv PREFACE

after I came to the Netherlands. Especially, I would like to thank Yuxi Fu for his
instructions on my research topic. My thanks also goes to Xiaoju Dong, Huan Long,
Yijia Chen, Yuxin Deng, Guoqiang Li and Xiaojuan Cai for their helpful suggestions
in my life and in my career.

I spent four years in the city of Eindhoven. I met a lot of friends here. I joined
the Association of Chinese Students and Scholars and worked in this association for
four years. I would like to express my appreciation to all the people in this association
who gave me a wonderful experience. My thanks goes to Yawen Wang, Mei Zhang,
Jiakun Gong, Bojia He, Cong Wang, Xiong Deng, Hesheng Bao, Wei Huang, Yixiao
Qiao, Yixiao Wang, Zhihao Wu and others. I lived in Pisanostraat for four years, and
I had a lot of amazing neighbors. I want to thank Huatian Wang, Bitao Pan, Baisong
Liu, Jiachun Chai, Qi Zhang, Zhong Li and Lihua Zhang for your help in my life. I
met many good friends in the mathematics and computer science department, I would
like to thank Guangming Li, Jianpeng Zhang, Cong Liu, Long Cheng, Qingzhi Liu,
Jingyue Cao and Yulong Pei for the discussions, lunches and other events. I would like
to give my special thanks to Liangliang Lin for watching movies with me, Bao Li and
Feng Hong for travelling together, Hefeng Zhou, Haiyu Wang, Qiang Pan for hot pots,
Wenjie Bai for haircuts, and Xiaotong Qu for basketball events.

I reserved the last paragraph for my beloved family members. I would like to thank
my parents, Guoxian Yang and Zhi Yin. I can never finish my PhD project without their
supports. I am also very gratitude for my girlfriend, Ying Huang, her encouragement
helped me to move on until the final period of my PhD life.

Fei Yang
Eindhoven, May 2018

Chapter 1

Introduction

The theory of executability that we shall discuss in this thesis is an integration of com-
putability theory and concurrency theory. Based on a reactive version of the Turing
Machine, our theory of executability aims to take advantage of both computability the-
ory and complexity theory and yields a method to evaluate the expressivity of process
calculi. This thesis addresses four aspects relevant for the theory of executability based
on Reactive Turing Machines: the robustness of the theory of executability based on
Reactive Turing Machines, a revision on the semantics of sequential composition, the
expressivity of the π-calculus, and an extension of a theory of executability.

1.1 Background
Our theory of executability is based on the research in two areas of theoretical com-
puter science, computability theory and concurrency theory. In this section, we briefly
introduce computability theory and concurrency theory in order to give an intuition
where our study stands in a bigger picture.

1.1.1 Computability Theory

The study of computability theory started in the 1930s and became the foundation of
theoretical computer science. The basic question in computability theory asks which
functions are computable. In classical computability theory, the notion of a computable
function on natural numbers characterizes the capability of a computing system. The
Turing Machine [80] was introduced by Turing and was accepted as one of the models

1

2 CHAPTER 1. INTRODUCTION

for computable functions. Many other models of computation, for instance, Church’s
λ-calculus [31], Kleene’s recursive functions [56], Shepherdson and Sturgis’ Random
Access Machines [78], etc., have turned out to be equivalent to Turing machines. The
above equivalences between models of computations give evidence for the famous
Church-Turing thesis, which rephrases the above equivalence as: every algorithmically
calculable function is a computable function.

A Turing machine mathematically models a machine that uses a tape to a compute
function. The machine has a finite set of control states. A finite set of tape symbols is
defined which the machine can read and write. The symbol on a tape cell is manipulated
using a tape head. The machine contains a program represented as a finite automaton,
formally defined by a transition. Informally, a Turing machine consists of:

1. A finite alphabet of tape symbols which contains a special symbol for the blank
tape cell.

2. A tape divided into consecutive cells. Each tape cell contains a tape symbol. The
tape is assumed to be extendable infinitely to the left and to the right.

3. A tape head that can read and write symbols in a certain tape cell, and can move
to the left or to the right.

4. A finite set of control states.

5. A finite set of instructions or transitions, which tell the machine in a certain state
and with a certain tape symbol under the tape head, which symbol it should write
in the tape cell, whether it should move the tape head one position to the left or
to the right, and what the next control state should be.

6. An initial state and a set of final states or accepting states.

A Turing machine can be used to model the procedure of computing a function on
natural numbers with a machine. We use the notion of a configuration, which consists
of a control state and a tape instance, to characterise the state of a Turing machine.
A computation of a Turing machine usually refers to a sequence of transitions made
by the Turing machine after its initial configuration in which a sequence of symbols
is written on the tape as the input in the initial state; and the sequence ends up in a
final state with a sequence of symbols written on the tape as the output. The Turing
machine divides functions into two classes, namely, computable functions and uncom-
putable functions. The above distinction inspires the study of computability theory, in
which many subjects were developed. For instance, in complexity theory, computable
functions are categorised into different classes of complexity; and in the arithmetical
hierarchy, uncomputable functions are categorised into different levels of hardness.

1.1. BACKGROUND 3

1.1.2 Concurrency Theory

The classical theory of computability lacks a facility to analyze systems in a concurrent
setting. For example, an aeroplane has an autopilot system consisting of computers,
sensors, radars, engines, cables, etc. It is difficult to analyze such a system by com-
putability theory, e.g., by modeling it as a Turing machine. The system not only uses
computers to compute, it also uses sensors and radars to gather information, and sends
commands to engines through cables to fly the aeroplane. Not only computation, but
also interaction happens during the execution of such a system.

Concurrency theory studies models for concurrency and communication that may
specify and analyze a system such as an aeroplane. The study of concurrency the-
ory started from Dijkstra’s paper about a mutual exclusion problem [33]. Then Petri
proposed his Petri Net [74] as a mathematical modeling language for discrete event sys-
tems. Later, some process calculi were invented to specify the behaviour of concurrent
systems, for example, Milner’s CCS [67] Bergstra and Klop’s ACP [19] and Hoare’s
CSP [53]. With the development of concurrency theory, many process calculi were
defined for various purposes, such as the π-calculus [69], TCP [4] and mCRL2 [50].

The behaviour of a process specified in a certain process calculus can be charac-
terised by a labelled transition system. Structural operational semantics was introduced
as an approach to associate with every process a labelled transition system [1]. Var-
ious types of behavioural equivalences were also introduced to analyse the systems
specified in labelled transition system semantics, for instance, Park’s strong bisimula-
tion [72], Milner’s weak bisimulation [67] and van Glabbeek and Weijland’s branching
bisimulation [43]. An inventory of behavioural equivalences is made in van Glabbeek’s
paper culminating in the so-called linear time - branching time spectrum II [40]. In this
thesis, we pay special attention to the finest one in van Glabbeek’s article, which is
referred to as divergence-preserving branching bisimulation.

There are some major differences between computability theory and concurrency
theory. Firstly, computability theory considers functions on natural numbers and uses
language equivalence to measure the equivalence between Turing machines and be-
tween automata, whereas concurrency theory considers labelled transition systems and
uses other behavioural equivalences such as bisimulation. Secondly, concurrency the-
ory involves interaction which is not modeled in computability theory. Thirdly, the
result of the computation of a function is deterministic with respect to an input, but
the behavior of a concurrent system could be non-deterministic. Finally, from the per-
spective of concurrency theory, there is a notion of termination in computability theory,
which is often absent in models of concurrency theory.

4 CHAPTER 1. INTRODUCTION

1.2 A Theory of Executability
Both computability theory and concurrency theory have limitations. Computability
theory lacks a facility to model interaction whereas interaction is a fundamental ele-
ment of almost every computing system. Concurrency theory would benefit from a
concurrent version of the Church-Turing thesis to evaluate the expressivity of process
calculi. The reason is that we could use the thesis to tell whether a process calculus is
expressive enough to specify every behaviour that could be executed by a computing
system or whether every behaviour specified in a process calculus could be executed
by a computing system. An integration of the two theories could be a good solution
to the questions above. Moreover, it would give evidence of a concurrent version of
the Church-Turing thesis. The thesis could be phrased as “every effectively executable
behaviour is an executable transition system”, where we use effective executable be-
haviour to refer to the behaviour that could be executed by some machine with a facility
to interact, and we use an executable transition system to refer to a mathematical char-
acterisation of transition systems that could be executed by an interactive variant of the
Turing machine.

The concurrent version of the Church-Turing thesis should be based on an interac-
tive model of computation. There are several interactive variants of Turing machines
in the literature.

1. In [45], Goldin, Smolka, Attie and Sonderegger presented their Persistent Turing
Machines (PTMs) and the associated notion of an interactive transition system.
The notion of PTMs aims to capture the intuitive notion of sequential interactive
computation by embedding a facility of interaction in every step of a computa-
tion.

2. In [60], van Leeuwen and Wiedermann modeled interactive computations as
stream translations, and they introduced Interactive Turing Machines (ITMs) to
characterise the class of interactively computable stream translations. Moreover,
they introduce a notion of interactive Turing machines with advice. ITMs with
advice use an advice function as an external computation resource and such a
utility enables the characterisation of an evolving system such as the Internet.

3. In [13], Baeten, Luttik and van Tilburg introduced a notion of executability based
on Reactive Turing Machines (RTMs) as an extension of the Turing machine in a
concurrent setting [13], see also [11, 12, 79].

In this thesis, we focus on the third variant. The purpose of Reactive Turing ma-
chines in executability theory is the same as that of Turing machines in computability

1.2. A THEORY OF EXECUTABILITY 5

theory. Every Turing machine computes a function whereas every Reactive Turing
Machine defines a transition system. A transition system associated with a Reactive
Turing Machine is called executable. Since the semantics of transition systems is pa-
rameterised by the choice of behavioural equivalences in concurrency theory, the notion
of executability is also parameterised by the choice of behavioural equivalences.

The idea to study a theory of executability was initialized in [7]. In [13], the notion
of executable transition systems was introduced, the existence of a universal Turing
machine was proved, the expressivity of a variant of TCP was studied with respect to
executable transition systems, and the relationship between Reactive Turing Machines
and persistent Turing machines was investigated. Following the work of Baeten, Luttik
and van Tilburg, we continue the research of a theory of executability on the basis of
Reactive Turing Machines.

In this thesis, we address four topics.

1. We study the robustness of Reactive Turing Machines as a means to define which
behaviour is executable. Robustness serves to validate the choice of a computa-
tional model. For instance, the robustness of the Turing Machines is based on the
equivalence between Turing Machines and other models such as λ-calculus and
recursive functions. We provide evidence to show that a Reactive Turing Ma-
chine is a proper model as a basis for the formalism of a theory of executability
by comparing it with other models that characterise interactive computation. In
the context of robustness, it was already shown in [13] that RTMs can simulate
PTMs. In this thesis, we consider van Leeuwen and Wiedermann’s theory of in-
teractive computation. They propose a notion of an Interactive Turing Machine
(ITM), and characterise interactive computation in terms of stream translations
that can be achieved by some ITMs. To establish the robustness of RTMs with
respect to ITMs, on the one hand, we show that ITMs naturally give rise to tran-
sition systems that can be executed by RTMs, and on the other hand, we need to
show that RTMs can be used to compute at least the same set of stream transla-
tions as ITMs.

2. We study the integration of computability theory and concurrency theory. Two
questions are considered for this topic. One is the comparison between the no-
tions in computability theory and the notions in concurrency theory. We are
interested in finding correspondences between the notions from each theory. For
instance, context-free grammars and pushdown automata are important notions
in computability theory or formal language theory [54]. In concurrency theory,
the corresponding concepts are usually referred to as context-free processes and
pushdown processes [79]. The study of the relationship between the above two
notions is then naturally a research question in a theory of executability. The

6 CHAPTER 1. INTRODUCTION

other one is to find a reactively Turing powerful process calculus. Normally,
a reactively Turing powerful process calculus uses recursive specifications, but
sometimes recursive specifications are too complicated. We seek for some alter-
native way. A nesting operator introduced in [18] is considered as a suitable re-
placement of the recursive specification. The current semantics of the sequential
composition operator has a phenomenon called transparency, which is a major
obstacle to solve the two questions above. This thesis gives a revision to the se-
mantics of the sequential composition operator which helps us to solve the two
questions above.

3. We study the evaluation of the expressivity of process calculi using Reactive Tur-
ing Machines. We say a calculus is executable iff every transition system associ-
ated with the expression of the calculus is executable, and we say it is reactively
Turing powerful iff every transition system associated with some Reactive Tur-
ing Machine is equivalent to a transition system specified by an expression in the
calculus. The π-calculus [68, 77] is a popular process calculus in concurrency
theory. Its expressivity with respect to RTMs is an interesting case study for the
theory of executability.

4. We study the extension of executability theory. Many process calculi, such as
the π-calculus and mCRL2 [50], use infinitely many labels in their transition
system specifications. Such infinite sets of labels are not facilitated in a theory
of executability. We extend the theory of executability to infinite alphabets.

1.3 Thesis Outline
The main contributions of this thesis are as follows:

1. Chapter 3 compares the notion of an interactive Turing machine of van Leeuwen
and Wiedermann with our notion of a Reactive Turing Machine. We give se-
mantics to associate with every interactive Turing machine a labelled transition
system, and we show that it is executable modulo divergence-preserving branch-
ing bisimilarity. We also characterize the class of stream translations that can be
done by Reactive Turing Machines, and show that it coincides with the class of
stream translations done by interactive Turing machines. By analogy to inter-
active Turing machines with advice, we also investigate the effect of adding an
advice process to Reactive Turing Machines.

This chapter provides some evidence for the robustness of our theory of exe-
cutability. This chapter is based on the following publication:

1.3. THESIS OUTLINE 7

[63] B. Luttik and F. Yang. On the Executability of Interactive Computation. In
Proceedings of 12th Conference on Computability in Europe (CiE 2016), LNCS
9709, 2016, pp.312-322, Springer, 2016.

2. Chapter 4 addresses some problems in a process calculus that combines sequen-
tial composition and successful termination. We discuss the phenomenon of
transparency, which is caused by the current operational semantics of the se-
quential composition operator in the presence of intermediate termination. We
revise the semantics and solve two problems. One is to show that every context-
free process is equivalent to a pushdown process modulo strong bisimilarity;
the other one is to show that a process calculus with the nesting operator is re-
actively Turing powerful modulo divergence-preserving branching bisimilarity
without using recursion.

This chapter compares the notions in computability theory and concurrency the-
ory; moreover, it gives an application of the a theory of executability in evalu-
ating the expressivity of process calculi. This chapter is based on the following
publication:

[14] J.C.M. Baeten, B. Luttik and F. Yang. Sequential composition in the pres-
ence of intermediate termination (extended abstract). Proceedings Combined
24th International Workshop on Expressiveness in Concurrency and 14th Work-
shop on Structural Operational Semantics, (EXPRESS/SOS 2017), EPTCS 255,
2017, pp. 1-17.

3. Chapter 5 extensively studies the π-calculus in the context of a theory of exe-
cutability. We show that the π-calculus is reactively Turing powerful modulo
divergence-preserving branching bisimilarity. We also prove that a restricted
version of the π-calculus is executable modulo divergence-insensitive variant of
branching bisimilarity.

This chapter addresses a case study of evaluating the expressivity using the a
theory of executability. This chapter is based on the following publication:

[62] B. Luttik and F. Yang. Executable behaviour and the π-calculus (extended
abstract). In Proceedings 8th Interaction and Concurrency Experience (ICE
2015), EPTCS 189, 2015, pp. 37-52.

4. Chapter 6 proposes a theory of nominal executability. The standard theory of
executability assumes a finite alphabet, but we also consider an extension that
allows an infinite alphabet. We introduce the notion of a Reactive Turing Ma-
chine with atoms. We establish a theory of nominal executability introducing the
notion of nominal executable transition systems using Reactive Turing Machines

8 CHAPTER 1. INTRODUCTION

with atoms. We give a property of the class of nominally executable transition
systems independent of Reactive Turing Machines with atoms. We show that
every π-calculus process is nominally executable modulo branching bisimilar-
ity, and we show that it is not the case for the calculus mCRL2. Together with
the more general notion of an infinitary Reactive Turing Machine, we establish
a part of the hierarchy of executability with respect to the sets we allow in the
definition of Reactive Turing Machines.

This chapter extends a theory of executability to fit the study of expressivity in a
more general setting. This chapter is based on the following report:

[64] B. Luttik and F. Yang. Reactive Turing Machines with Infinite Alphabets.
CoRR,abs/1610.06552, 2016.

The thesis is concluded with some remarks and open problems in the theory of
executability.

Chapter 2

Preliminaries

In this chapter, we first briefly recap the basic definitions of labelled transition systems
and behavioural equivalences. Then, we introduce the notion of Reactive Turing Ma-
chines and the induced notion of executable transition systems. Several basic results
and proof techniques regarding to the theory of executability are introduced. Moreover,
we propose a general framework to evaluate the absolute expressivity of process calculi
and other models of interactive computation.

2.1 A Characterisation of Discrete-event Behaviour

2.1.1 Labelled Transition Systems
We use transition systems to represent the behaviour of discrete-event systems. We
assume a countably infinite set of action symbols. A transition system is parameterised
by a subsetA of the set of action symbols, denoting the observable events of a system.
We shall later impose extra restrictions on A, e.g., requiring that it be finite or have a
particular structure, but for now we letA be just an arbitrary abstract set. We extendA
with a special symbol τ, which intuitively denotes the event that the system performs
an unobservable action. We shall abbreviate A ∪ {τ} by Aτ. We let a, b, c range over
Aτ.

Definition 2.1 (labelled transition systems). An Aτ-labelled transition system (LTS)
is a 4-tuple (S,−→, ↑, ↓), where

1. S is a set of states;

9

10 CHAPTER 2. PRELIMINARIES

2. −→ ⊆ S ×Aτ × S is anAτ-labelled transition relation;

3. ↑ ∈ S is the initial state; and

4. ↓ ⊆ S is the set of terminating (final) states.

We write s
a
−→ t for (s, a, t)∈−→, we write s ↓ if s ∈ ↓, and we write s 6

a
−→ if there

is no a-labelled transition at all from s and s 6−→ if there is no transition from s. Let

−→ be an Aτ-labelled transition relation on a set S, and let a ∈ Aτ; we write s
(a)
−→ t

for the formula “s
a
−→ t ∨ (a = τ ∧ s = t)”. Furthermore, we denote the transitive

closure of
τ
−→ by −→+ and the reflexive-transitive closure of

τ
−→ by −→∗.

In later chapters, we also use the version of transition systems that does not distin-
guish terminating states, that is, the ↓ component is omitted from the notion of labeled
transition system as defined in 2.1 (↓= ∅).

Definition 2.2 (reachability). Let T = (S,−→, ↑, ↓) be a labelled transition system and
let s, t ∈ S. We define a word w = a1 . . . an ∈ A

∗ as a sequence of actions. We write
s

w
−→

∗

t iff there exist states s0, . . . , sn ∈ S such that

s = s0−→
∗ a1
−→−→

∗s1 . . .−→
∗ an
−→−→

∗sn = t .

If s
w
−→

∗

t for some w ∈ A∗, then we say that t is reachable from s in T .
We denote the set of reachable states from a state s as follows:

Reach(s) = {s′ ∈ S | ∃w ∈ A∗. s
w
−→

∗

s′} .

2.1.2 Behavioural Equivalences
In concurrency theory, language equivalence is arguably too coarse as a behavioural
equivalence for reactive systems since it abstracts from all moments of choice [4]. A
bunch of behaviourial equivalences is used extensively in concurrency theory. We refer
to [40] for a spectrum of behavioural equivalences proposed in the literature.

We first introduce the notion of strong bisimulation, originally proposed by Park
in [72], extended with termination conditions. This equivalence relation does not dis-
tinguish τ-transitions from other labelled transitions.

Definition 2.3 (strong bisimilarity). Let T = (S,−→, ↑, ↓) be a transition system. A
strong bisimulation is a relation R ⊆ S×S such that for all states s, t ∈ S, sRt implies:

1. if s
a
−→ s′, then there exists t′∈S, such that t

a
−→ t′, and s′Rt′;

2.1. A CHARACTERISATION OF DISCRETE-EVENT BEHAVIOUR 11

2. if t
a
−→ t′, then there exists s′∈S, such that s

a
−→ s′, and s′Rt′;

3. if s ↓, then t ↓; and

4. if t ↓, then s ↓.

The states s and t are strongly bisimilar (notation: s ↔ t) iff there exists a strong
bisimulation R such that sRt.

Strong bisimilarity is the largest strong bisimulation on labeled transition systems,
and it is denoted by↔.

Strong bisimilarity does not take into account the intuition associated with the label
τ that it stands for an unobservable internal activity. Therefore, it is too strong for some
purposes. To this end, we proceed to introduce the notion of (divergence-preserving)
branching bisimilarity, proposed by van Glabbeek and Weijland in [43], which does
treat τ-transitions as unobservable events. Another reason for adopting (divergence-
preserving) branching bisimilarity is that it is the finest behavioural equivalence in van
Glabbeek’s linear time - branching time spectrum [40]. We now proceed to introduce
the definition of (the divergence-insensitive variant of) branching bisimilarity.

Definition 2.4 (branching bisimilarity). Let T = (S,−→, ↑, ↓) be a transition system.
A branching bisimulation is a relation R ⊆ S × S such that for all states s, t ∈ S, sRt
implies:

1. if s
a
−→ s′, then there exist t′, t′′ ∈ S, such that t −→∗ t′′

(a)
−→ t′, sRt′′ and s′Rt′;

2. if t
a
−→ t′, then there exist s′, s′′ ∈ S, such that s −→∗ s′′

(a)
−→ s′, s′′Rt and s′Rt′;

3. if s ↓, then there exists t′ such that t −→∗ t′, sRt′ and t′ ↓; and

4. if t ↓, then there exists s′ such that s −→∗ s′, s′Rt and s′ ↓.

The states s and t are branching bisimilar (notation: s ↔b t) iff there exists a branching
bisimulation R, s.t. sRt.

Note that branching bisimilarity is the largest branching bisimulation on labelled
transition systems, and it is denoted by ↔b. It is also referred to as the divergence-
insensitive variant of branching bisimilarity.

We shall consider both the divergence-insensitive and the divergence-preserving
variants of branching bisimilarity. The divergence-preserving variant is also referred
to as branching bisimilarity with explicit divergence in [40, 43]. In this thesis, we use
the term divergence-preserving branching bisimilarity. The divergence preservation
condition is defined as follows.

12 CHAPTER 2. PRELIMINARIES

Definition 2.5 (divergence preservation condition). Let T = (S,−→, ↑, ↓) be a tran-
sition system. A branching bisimulation R on T is divergence-preserving iff, for all
states s and t, sRt implies:

1. if there exists an infinite sequence (si)i∈N such that s = s0, si
τ
−→ si+1 and siRt

for all i ∈ N, then there exists a state t′ such that t −→+ t′ and s jRt′ for some
j ∈ N; and

2. if there exists an infinite sequence (ti)i∈N such that t = t0, ti
τ
−→ ti+1 and sRti for

all i ∈ N, then there exists a state s′ such that s −→+ s′ and s′Rt j for some j ∈ N.

The states s and t are divergence-preserving branching bisimilar (notation: s ↔∆
b t) iff

there exists a divergence-preserving branching bisimulation R such that sRt.

The largest divergence-preserving branching bisimulation relation on labelled tran-
sition systems is divergence-preserving branching bisimilarity, denoted by ↔∆

b . It has
been proved that branching bisimilarity is an equivalence relation on labelled transition
systems [15], and so is divergence-preserving branching bisimilarity [42].

Sometimes, we leave out the termination condition for some models that do not use
explicit termination, i.e., the condition is void for transition systems with ↓= ∅, as we
will do in Chapters 3, 5 and 6.

2.1.3 Congruence
Congruence is an important property for equivalence relations on process calculi. It
will be used to establish proofs of bisimilarity in Chapter 4 and Chapter 5. Moreover,
in equational theory [4], a behavioural equivalence can only be axiomatized if it is a
congruence.

Definition 2.6 (congruence). An equivalence relation R on a process calculus C is
called a congruence iff siRti for i = 1, ..., ar(f) implies f (s1, . . . , sar(f))R f (t1, . . . , tar(f)),
where f is an operator of C, ar(f) is the arity of f , and si, ti are processes defined in C.

(Divergence-preserving) branching bisimilarity is not a congruence with respect to
most process calculi. For instance, it is not a congruence for the process calculus TCP
since it is not compatible with the nondeterministic choice operator [4]. In order to
obtain a congruence relation, a rootedness condition needs to be introduced.

Definition 2.7 (rootedness condition). A (divergence-preserving) branching bisimu-
lation R on a transition system (S,−→, ↑, ↓) satisfies the rootedness condition for a pair
of states s, t ∈ S, if sRt and

2.1. A CHARACTERISATION OF DISCRETE-EVENT BEHAVIOUR 13

1. if s
a
−→ s′, then t

a
−→ t′ for some t′ such that s′Rt′;

2. if t
a
−→ t′, then s

a
−→ s′ for some t′ such that s′Rt′;

3. if s ↓, then t ↓; and

4. if t ↓, then s ↓.

States s and t are rooted (divergence-preserving) branching bisimilar (notation: s ↔(∆)
rb

t) iff there exists a divergence-preserving branching bisimulation R that satisfies the
rootedness condition for s and t.

We can extend the above relations (↔, ↔b, ↔
∆
b , and ↔∆

rb) to relations over two
transition systems by taking the disjoint union of the two transition systems, and two
transition systems are bisimilar iff their initial states are bisimilar in the union. Namely,
for two transition systems T1 = (S1,−→1, ↑1, ↓1) and T2 = (S2,−→2, ↑2, ↓2), whenever
the sets of states of T1 and T2 are disjoint, then one can just take the union of the two
transition systems. If the sets of states of T1 and T2 are not disjoint, then one should
first make them disjoint. We present the following pairing trick as a way to make them
disjoint. We pair every state s ∈ S1 with 1 and every state s ∈ S2 with 2. We have
T ′i = (S′i ,−→

′

i , ↑
′
i , ↓
′
i) for i = 1, 2 where S′i = {(s, i) | s ∈ Si}, −→

′

i= {((s, i), a, (t, i)) |
(s, a, t) ∈−→i}, ↑′i= (↑i, i), and ↓′i= {(s, i) | s ∈↓i}. We say T1 ≡ T2 iff there exists a
behavioural equivalence ≡ on T = (S′1 ∪ S

′
2,−→

′

1 ∪ −→
′

2, ↑
′
1, ↓
′
1 ∪ ↓

′
2) such that ↑′1≡↑

′
2.

2.1.4 Bisimulation up to
We also introduce the notion of bisimulation up to ↔b, which will be a useful tool
in Chapter 4 and Chapter 5. Note that we adopt a non-symmetric bisimulation up to
relation.

Definition 2.8 (bisimulation up to↔b). Let T = (S,−→, ↑, ↓) be a transition system.
A relation R ⊆ S × S is a bisimulation up to↔b iff, whenever sRt, then for all a ∈ Aτ:

1. if s −→∗ s′′
a
−→ s′, with s ↔b s′′ and a , τ∨ s′′ 6↔b s′, then there exists t′ such

that t
a
−→ t′, s′′ ↔b◦R t and s′ ↔b◦R t′;

2. if t
a
−→ t′, then there exist s′, s′′ such that s −→∗ s′′

a
−→ s′, s′′ ↔b s and

s′ ↔b◦R t′;

3. if s ↓, then there exists t′ such that t −→∗ t′, sRt′ and t′ ↓; and

4. if t ↓, then there exists s′ such that s −→∗ s′, s′Rt and s′ ↓.

14 CHAPTER 2. PRELIMINARIES

s1 s2 s3

s′1

τ↔b

↔b R

↔b

↔b◦R

(a) Case 1(a)

s1 s2 s3

s′1

s′′2

s′2

s′′4

s′4 s′3

a

τ∗

a

a

↔b R

↔b

↔b

↔b ↔b

R

R

↔b◦R

(b) Case 1(b)

s1 s2 s3

s′′1

s′1

s′′2

s′2 s′4 s′3

τ∗

a

τ∗

a

a

↔b R

↔b

↔b ↔b R

↔b

↔b◦R

↔b◦R

(c) Case 2

Figure 2.1: The proof of Lemma 2.9

2.2. REACTIVE TURING MACHINES 15

We prove that a bisimulation up to↔b is a branching bisimulation relation.

Lemma 2.9 (bisimulation up to↔b). If R is a bisimulation up to↔b, then R ⊆ ↔b.

Proof. It is sufficient to prove that ↔b◦R is a branching bisimulation, for ↔b is re-
flexive. Let s1, s2, s3 ∈ S and s1 ↔b s2 R s3. We establish the proof as illustrated in
Figure 2.1.

1. Suppose s1
a
−→ s′1. We distinguish two cases to show that condition 1 of Defini-

tion 2.4 is satisfied:

(a) If a = τ and s1 ↔b s′1, then s′1 ↔b s1 ↔b s2, so s′1 ↔b◦R s3. So condition
1 is satisfied.

(b) Otherwise, we have a , τ ∨ s1 6↔b s′1. Then, since s1 ↔b s2, according to

Definition 2.4, there exist s′′2 and s′2 such that s2 −→
∗ s′′2

a
−→ s′2, s1 ↔b s′′2

and s′1 ↔b s′2. Note that s2 ↔b s1 ↔b s′′2 , so we can apply condition 1 of

Definition 2.8. Then we have there exist s′′4 , s′4 and s′3 such that s3
a
−→ s′3

and s′′2 ↔b s′′4 R s3 and s′2 ↔b s′4 R s′3. Since s′1 ↔b s′2 ↔b s′4 and s′4 R s′3,
it follows that s′1 ↔b◦R s′3. So condition 1 is satisfied.

2. If s3
a
−→ s′3, we show that condition 2 of Definition 2.4 is satisfied. According

to Definition 2.8, there exist s′′2 , s′2 and s′4 such that s2 −→
∗ s′′2

a
−→ s′2, s′′2 ↔b s2,

s′2 ↔b s′4 and s′4Rs′3. Thus, we have s′2 ↔b◦R s′3. since s1 ↔b s2 ↔b s′′2 and

s′′2
a
−→ s′2, by Definition 2.4, there exist s′′1 and s′1 such that s1 −→

∗ s′′1
(a)
−→ s′1

with s′′1 ↔b s′′2 and s′1 ↔b s′2. Since s′′2 ↔b◦R s3 and s′2 ↔b◦R s′3, it follows
that s′′1 ↔b◦R s3 and s′1 ↔b◦R s′3. So condition 2 is satisfied.

Moreover, the termination conditions of Definition 2.4 are also satisfied by Defini-
tion 2.8.

Therefore, a branching bisimulation up to↔b is included in↔b. �

We can also modify the definition of bisimulation up to make it a relation on two
transition systems. Not surprisingly, the above lemma still holds.

2.2 Reactive Turing Machines

2.2.1 Definition and Semantics
The notion of Reactive Turing Machines (RTM) [13] was introduced as an extension
of Turing machines to define which behaviour is executable by a computing system

16 CHAPTER 2. PRELIMINARIES

in terms of labelled transition systems. The definition of RTMs is parameterised with
the set Aτ, which we now assume to be a finite set. Furthermore, the definition is
parameterised with another finite set D of data symbols. We extend D with a special
symbol � < D to denote a blank tape cell, and denote the set D ∪ {�} of tape symbols
byD�.

Definition 2.10 (Reactive Turing Machine). A Reactive Turing Machine (RTM) is a
quadruple (Q, 7→, Ini,Fin), where

1. Q is a finite set of states;

2. 7→ ⊆ Q ×D� ×Aτ ×D� × {L,R} × Q is a finite collection of (D� ×Aτ × D� ×

{L,R})-labelled transitions (we write s
a[d/e]M
7−−−−−−→t for (s, d, a, e,M, t) ∈ 7→);

3. Ini ∈ Q is a distinguished initial state; and

4. Fin ⊆ Q is a finite set of final states.

We shall use the symbolR to represent the set of all RTMs. Intuitively, the meaning

of a transition s
a[d/e]M
7−−−−−−→t is that whenever the RTM is in state s, and d is the symbol

currently read by the tape head, then it may execute the action a, write symbol e on the
tape (replacing d), move the read/write head one position to the left or the right on the
tape (depending on whether M = L or M = R), and then end up in state t.

To formalise the intuitive understanding of the operational behaviour of RTMs, we
associate with every RTM M an Aτ-labelled transition system T (M). The states of
T (M) are the configurations ofM, which consist of a state from S, its tape contents,
and the position of the read/write head. We denote by Ď� = {ď | d ∈ D�} the set of
marked symbols; a tape instance is a sequence δ ∈ (D� ∪ Ď�)∗ such that δ contains
exactly one element of the set of marked symbols Ď�, indicating the position of the
read/write head. We adopt a convention to concisely denote an update of the placement
of the tape head marker. Let δ be an element ofD∗�. Then by δ< we denote the element
of (D� ∪ Ď�)∗ obtained by placing the tape head marker on the right-most symbol of δ
(if it exists), and �̌ otherwise. Similarly >δ is obtained by placing the tape head marker
on the left-most symbol of δ (if it exists), and �̌ otherwise.

Definition 2.11 (LTSs associated with RTMs). LetM = (Q, 7→, Ini,Fin) be an RTM.
The transition system T (M) associated withM is defined as follows:

1. its set of states is the set Con fM = {(s, δ) | s ∈ Q, δ a tape instance} of all
configurations ofM;

2.2. REACTIVE TURING MACHINES 17

2. its transition relation −→ ⊆ Con fM ×Aτ ×Con fM is a relation satisfying, for
all a ∈ Aτ, d, e ∈ D� and δL, δR ∈ D

∗
�:

• (s, δLďδR)
a
−→ (t, δL

<eδR) iff s
a[d/e]L
7−−−−−→t,

• (s, δLďδR)
a
−→ (t, δLe >δR) iff s

a[d/e]R
7−−−−−→t;

3. its initial state is the configuration (Ini, �̌); and

4. its set of final states is the set {(s, δ) | δ a tape instance, s ∈ Fin}.

We use an example from Van Tilburg [79] to illustrate the semantics of Reactive
Turing Machines.

Example 2.12 (an example of RTM). Assume thatA = {c!d, c?d | c = {i, o}, d ∈ D�}.
We use i and o to represent the input and output channel of the RTM, respectively. The
label c!d denotes an output of symbol d at the channel c, and c?d denotes an input of
symbol d at the channel c. We define an RTMM = (S, 7→, Ini,Fin) as follows:

1. Q = {1, 2, 3, 4, 5, 6};

2. 7→ = {(1,�, i?1, 1,R, 1), (1,�, i?],], L, 2), (2, 1, τ, 1, L, 2), (2,�, τ,�,R, 3),
(3, 1, τ, 1,R, 4), (3,], τ,�, L, 5), (4, 1, τ, 1,R, 3), (4,], τ,�, L, 6),
(5, 1, o!1,�, L, 5), (5,�, o!],�,R, 1), (6, 1, τ,�, L, 6), (6,�, τ,�,R, 1)};

3. Ini = 1; and

4. Fin = {1}.

The transitions of M are represented in Figure 2.2. We use a double square to mark
a state as final. The RTM first inputs a string, consisting of an arbitrary number of 1s
followed by a symbol]. It stores the string and returns to the beginning of the string.
Then, it starts a loop to verify whether the number of 1s is odd or even. If it is odd,
then the RTM simply removes the string from the tape and returns to the initial state;
otherwise, it outputs the string, removes the string from the tape, and returns to the
initial state.

2.2.2 Parallel Composition
The RTM are used to model interaction. We equip RTMs with a simple form of com-
munication, and define parallel composition on RTMs. We let C be a finite set of
channels and we let RTMs communicate through the channels with a set of symbols

18 CHAPTER 2. PRELIMINARIES

1start 2 3 4

5 6

i?1[�/1]R

i?][�/]]L

τ[1/1]L

τ[�/�]R
τ[1/1]R

τ[]/�]L

τ[1/1]R

τ[]/�]L

o!1[1/�]L

o!][�/�]R

τ[1/�]L

τ[�/�]R

Figure 2.2: An example of RTM

A′ = {c!d, c?d | c ∈ C, d ∈ D�}, where A′ ⊆ A. We use c!d to denote an event
that outputs a symbol d through the channel c, and c?d to denote an event that inputs a
symbol d through the channel c, respectively.

We first define a notion of parallel composition on transition systems.

Definition 2.13 (parallel composition on LTSs). Let T1 = (S1,−→1, ↑1, ↓1) and T2 =

(S2,−→2, ↑2, ↓2) be transition systems, and let C′ ⊆ C. The parallel composition of T1
and T2 is the transition system [T1 ‖ T2]C′ = (S,−→, ↑, ↓), with:

1. S = S1 × S2;

2. (s1, s2)
a
−→ (s′1, s

′
2) iff a ∈ Aτ − {c!d, c?d | c ∈ C′, d ∈ D�} and either

(a) s
a
−→ s′1 and s2 = s′2, or s1 = s′1 and s2

a
−→ s′2,

(b) a = τ and either s1
c!d
−→ s′1 and s2

c?d
−→ s′2, or s1

c?d
−→ s′1 and s2

c!d
−→ s′2 for

some c ∈ C′ and d ∈ D�;

3. ↑ = (↑1, ↑2); and

2.2. REACTIVE TURING MACHINES 19

4. ↓ = {(s1, s2) | s1 ↓1 ∧ s2 ↓2}.

We define a similar notion of parallel composition on the transition systems asso-
ciated with RTMs.

Definition 2.14 (parallel composition on RTMs). Let M1 = (Q1, 7→1, Ini1,Fin1) and
M2 = (Q2, 7→2, Ini2,Fin2) be RTMs, and let C′ ⊆ C. The parallel composition ofM1
and M2 is denoted by M = [M1 ‖ M2]C′ . The transition system T ([M1 ‖ M2]C′)
associated withM is the parallel composition of the transition systems associated with
M1 andM2, i.e., T ([M1 ‖ M2]C′) = [T (M1) ‖ T (M2)]C′ .

Example 2.15 (an example of parallel composition). We let M denote the RTM in
Figure 2.2. LetA as in Example 2.12 and let E = (SE, 7→E, IniE,FinE) denote the RTM
with the transitions in Figure 2.3 that simulates an environment defined as follows:

1. SE = {1, 2, 3, 4};

2. 7→E = {(1,�, τ, 1,R, 2), (2,�, τ,�, L, 3), (3, 1, τ, 1, L, 3),
(3,�, τ,�,R, 4), (4, 1, i!1, 1,R, 4), (4,�, i!], 1,R, 2)};

3. IniE = 1; and

4. FinE = {1}.

Then, the parallel composition [M ‖ E]{i} has the behaviour of outputting the string
11]1111] . . .]1n] . . . (n ≥ 2 and n is an even natural number).

1start 2 3

4

τ[�/1]R τ[�/�]L
τ[1/1]L

τ[�/�]R

i!1[1/1]R

i!][�/1]R

Figure 2.3: An RTM that enumerates and sends the string 1]11]111] . . .

20 CHAPTER 2. PRELIMINARIES

2.3 Executable Behaviours
Turing machines were introduced to define the notion of an effectively computable func-
tion [80]. By analogy, the notion of RTMs can be used to define a notion of effectively
executable behaviour in terms of transition systems.

Definition 2.16 (executable LTSs). A transition system T is executable modulo a be-
havioural equivalence ≡ iff there exists an RTMM such that T ≡ T (M).

Remark 2.17. The notion of executable transition systems is parameterized by the
choice of behavioural equivalence. We refer to van Glabbeek’s linear time - branching
time spectrum [40] for a collection of known behavioural equivalences; we only use
a small fraction of the behavioural equivalences from the spectrum in this thesis. The
spectrum of behavioural equivalences gives rise to a spectrum of executability. For
instance, executability modulo the divergence-insensitive variant of branching bisimi-
larity is different from executability modulo divergence-preserving branching bisimi-
larity. We provide evidence (e.g., in Section 5.3) that the transition systems associated
with some process calculus (e.g., the finite π-calculus) are executable modulo a coarser
notion of behavioural equivalence (e.g., the divergence-insensitive variant of branch-
ing bisimilarity), but not modulo a finer notion (e.g., divergence-preserving branching
bisimilarity).

Next, we introduce a characterisation of executable labelled transition systems
modulo (divergence-preserving) branching bisimilarity that is independent of the no-
tion of RTM. In order to recapitulate some results from Baeten, Luttik and van Tilburg [13],
we need the following definitions, pertaining to the recursive complexity and branching
degree of transition systems.

Definition 2.18 (effective LTSs). Let T = (S,−→, ↑, ↓) be a transition system. We say
that T is effective iff S andAτ have a suitable encoding (Gödel numbering); −→ and ↓
are recursively enumerable sets with respect to that encoding .

The mapping out : S → 2Aτ×S associates with every state its set of outgoing
transitions, i.e., for all s ∈ S, out(s) = {(a, t) | s

a
−→ t}.

Definition 2.19 (computable LTSs). Let T = (S,−→, ↑, ↓) be a transition system. We
say that T is computable iff out is a recursive function and ↓ is a recursive set, again
with respect to some suitable encoding.

Definition 2.20 (branching degree). Let T = (S,−→, ↑, ↓) be a transition system, and
let B ∈ N be a natural number. We say that T has a branching degree bounded by B if
|out(s)| ≤ B for all s ∈ S. We call it finitely branching if |out(s)| is finite for every state

2.3. EXECUTABLE BEHAVIOURS 21

s ∈ S, and bounded branching if there exists a B ∈ N such that the branching degree of
T is bounded by B.

The following results were established in [13].

Proposition 2.21 (LTSs associated with RTMs). The transition system T (M) associ-
ated with an RTMM is computable and boundedly branching.

Theorem 2.22 (boundedly branching computable LTSs). For every finite set Aτ and
every boundedly branching computable Aτ-labelled transition system T, there exists
an RTMM such that T ↔∆

b T (M).

Theorem 2.23 (effective LTSs). For every finite setAτ and every effectiveAτ-labelled
transition system T there exists an RTMM such that T ↔b T (M).

Remark 2.24. Note that in the above two theorems, we require the set of labels Aτ to
be finite. This is not the case for some process calculi, such as the π-calculus [69],
mCRL2 [49], and the value-passing calculus [36], etc. The transition systems associ-
ated with the above process calculi sometimes use infinite sets of action labels, so they
are trivially not executable. We impose some infinite sets in the definition of Reac-
tive Turing Machines in Chapter 6 to adapt the notion of executable transition systems
to infinite alphabets. Furthermore, we establish variants of the above theorems with
infinite sets.

At this point, we focus on finite alphabets. We proceed to make a connection
between the two theorems above. In [75], Phillips associates with every effective tran-
sition system a branching bisimilar computable transition system of which, moreover,
every state has a branching degree of at most 2.

Proposition 2.25 (effective and boundedly branching LTSs). For every effective tran-
sition system T there exists a boundedly branching computable transition system T ′

such that T ↔b T ′.

However, we shall see in Section 2.4 that this result is no longer valid modulo
divergence-preserving branching bisimilarity. Introducing divergence is unavoidable.
In other words, effective transition systems and boundedly branching computable tran-
sition systems coincide modulo the divergence-insensitive variant of branching bisim-
ilarity; but the notion of boundedly branching computable transition system is strictly
included in the notion of effective transition system modulo divergence-preserving
branching bisimilarity.

22 CHAPTER 2. PRELIMINARIES

2.4 Divergence
In this section, we discuss some phenomena related to divergence in a transition sys-
tem. In particular, we shall notice the role played by divergence in enumeration and
simulation of unbounded branching behaviour. We first give the definition of diver-
gence.

Definition 2.26 (divergence). Let T = (S,−→, ↑, ↓) be a transition system, and let
s ∈ S. We say that T has a divergence if there exists an infinite sequence (si)i∈N in S
such that s = s0, and si

τ
−→ si+1 for all i ∈ N.

2.4.1 Enumeration with Divergence
Divergence can be introduced to enumerate the elements of a recursively enumerable
set. Concerning Proposition 2.25, every boundedly branching computable transition
system is effective, and there exist effective transition systems that are neither com-
putable nor boundedly branching. A crucial insight from Phillips’ proof is that a diver-
gence can be exploited to simulate a state with a recursively enumerable set of outgoing
transitions. We use an example from [13] which is inspired by [32] to show that diver-
gence is unavoidable.

Example 2.27 (divergence is unavoidable). Assume that A = {a, b} and consider a
transition system T1 = (S1,−→1, ↑1, ↓1) defined as follows:

1. S = {s1,x, t1,x | x ∈ N};

2. −→1 = {(s1,x, a, s1,x+1) | x ∈ N} ∪ {(s1,x, b, t1,x | x ∈ N};

3. ↑1 = s1,0; and

4. ↓1 = {t1,x | φx(x) converges}.

The transition system is depicted in Figure 2.4. Note that φx is the x-th partial com-
putable function under the standard enumeration of Gödel [44], see also [76].

We rephrase the analysis from [13] to show that there does not exist a computable
transition system to simulate T1 modulo divergence-preserving branching bisimilarity.

We suppose that T2 = (S2,−→2, ↑2, ↓2) is a transition system such that T1 ↔
∆
b T2,

witnessed by some divergence-preserving branching bisimulation relation R. Now we
argue that T2 is not computable by deriving a contradiction from the assumption that it
is.

2.4. DIVERGENCE 23

s1,0start s1,1 s1,2 s1,3

t1,0 t1,1 t1,2 t1,3

a

b

a

b

a

b

a

b

Figure 2.4: The transition system T1

Clearly, since T1 does not admit infinite sequences of τ-transitions, if R satisfies
the divergence preservation condition, then T2 does not admit infinite sequences of τ-
transitions either. It follows that if s1Rs2, then there exists a state s′2 in T2 such that
s2 −→

∗

2 s′2, s1Rs′2 and there does not exist any τ-transition from s′2. Moreover, since T2
is computable and does not admit infinite sequences of consecutive τ-transitions, a state
s′2 satisfying the aforementioned properties is produced by the algorithm that, given a
state of T2, selects an enabled τ-transition and recurses on the target of the transition
until it reaches a state in which no τ-transitions are enabled. But then we also have an
algorithm that determines if φx(x) converges:

1. it starts from ↑2;

2. it runs the algorithm to find a state without outgoing τ-transitions, and then it
repeats the following steps x times:

(a) it executes an a-transition to reach the resulting state;
(b) then it runs the algorithm to find a state without outgoing τ-transitions

again;

since ↑1 R ↑2, it is not hard to see that the above procedure yields a state s2,x in
T2 such that s1,xRs2,x;

3. it executes the b-transition from the state s2,x, and then again runs the algorithm
to find a state without outgoing τ-transitions; the resulting state is t2,x, without
any outgoing transitions such that t1,xRt2,x.

It follows from the definition of ↓1 and t1,xRt2,x that t2,x ↓ iff φx(x) converges.
Therefore, we have reduced the problem of deciding whether φx(x) converges to decid-
ing whether t2,x ↓. Since it is undecidable if φx(x) converges, it follows that ↓2 is not
recursive, which contradicts the assumption that T2 is computable.

24 CHAPTER 2. PRELIMINARIES

Hence, for executable transition systems, it is unavoidable to introduce a divergence
to simulate the procedure of enumeration. This also gives us some further insight in
the result of Theorem 2.23 that only the divergence-insensitive variant of branching
bisimilarity can be achieved.

2.4.2 Unbounded Branching
Divergence can be used to simulate the behaviour in a state with a high branching
degree using states with lower branching degrees; the idea stems from [5] and is gen-
eralised in [75] to prove the statement of Proposition 2.25. We proceed to discuss
a criterion to decide whether a transition system is not executable up to divergence-
preserving branching bisimilarity, which is based on the notion of branching degree up
to ↔∆

b . We will use this criterion in Section 5.3, where we are going to establish that
not every finite π-calculus process is executable up to divergence-preserving branching
bisimilarity.

Definition 2.28 (branching degree up to ↔∆
b). Let T = (S,−→, ↑, ↓) be a transition

system and let us denote by [s]↔∆

b
the equivalence class of s ∈ S modulo↔∆

b , i.e.,

[s]↔∆

b
= {s′ ∈ S | s ↔∆

b s′} .

The branching degree up to↔∆
b of s, denoted by deg↔∆

b
(s), is defined as the cardinality

of the set{
(a, [s′]↔∆

b
) | ∃s′′. s −→∗ s′′

a
−→ s′ & s ↔∆

b s′′ & (a = τ =⇒ s′′ 6↔∆
b s′)

}
.

The branching degree up to↔∆
b of T is the supremum of the branching degrees up

to↔∆
b of all reachable states, which is defined as

deg↔∆

b
(T) = sup({deg↔∆

b
(s) | s ∈ Reach(↑)}) .

We say that T is boundedly branching up to ↔∆
b if there exists B ∈ N, such that

deg↔∆

b
(T) ≤ B, otherwise it is unboundedly branching up to↔∆

b .

Lemma 2.29 (branching degree up to ↔∆
b). Let T1 = (S1,−→1, ↑1, ↓1) and T2 =

(S2,−→2, ↑2, ↓2) be Aτ-labelled transition systems, let s ∈ S1, and t ∈ S2. If s ↔∆
b t,

then deg↔∆

b
(s) = deg↔∆

b
(t).

Proof. Clearly, if there exist s′′, s′ ∈ S1 and a ∈ Aτ such that s −→∗1 s′′
a
−→1 s′, then

it is straightforward to derive from the definition of↔∆
b that there also exist t′′, t′ ∈ S2

2.4. DIVERGENCE 25

such that t −→∗2 t′′
a
−→2 t′, and s′ ↔∆

b t′. Conversely, if there exist t′′, t′ ∈ S2

and a ∈ Aτ such that t −→∗2 t′′
a
−→2 t′, then there also exist s′′, s′ ∈ S1 such that

s −→∗1 s′′
a
−→1 s′, and s′ ↔∆

b t′. In the first case, if a = τ, then it is required that
s′′ 6↔∆

b s′; and in the second case, if a = τ, then it is required that t′′ 6↔∆
b t′. Hence,

there is a bijective correspondence between the sets{
(a, [s′]↔∆

b
)
∣∣∣∣∣∃s′′. s −→∗1 s′′

a
−→1 s′ & s ↔∆

b s′′ & (a = τ =⇒ s′′ 6↔∆
b s′)

}
and {

(a, [t′]↔∆

b
)
∣∣∣∣∣∃t′′. t −→∗2 t′′

a
−→2 t′ & t ↔∆

b t′′ & (a = τ =⇒ t′′ 6↔∆
b t′)

}
.

It follows that deg↔∆

b
(s) = deg↔∆

b
(t). �

By analogy to Definition 2.26, we also introduce the notion of divergence up to
↔∆

b .

Definition 2.30 (divergence up to ↔∆
b). A divergence up to ↔∆

b in a transition system

is an infinite sequence of reachable states s1, s2, . . . such that s1
τ
−→ s2

τ
−→ · · · and

si ↔
∆
b s j for all i, j ∈ N.

The following lemma shows that, in the absence of a divergence up to↔∆
b , bound-

edly branching transition systems are boundedly branching up to↔∆
b .

Lemma 2.31 (boundedly branching up to ↔∆
b). If a transition system is boundedly

branching and does not have a divergence up to ↔∆
b , then it is boundedly branching

up to↔∆
b .

Proof. Let T be a boundedly branching transition system and suppose that T does not
have a divergence up to ↔∆

b . Then there exists B ∈ N such that |out(s)| ≤ B for all
states s of T . It suffices to prove that deg↔∆

b
(s) ≤ B for all states s of T . To this end,

let s be a state of T . Since T does not have a divergence up to ↔∆
b , there exists t such

that s −→∗ t, s ↔∆
b t and there does not exist t′ such that t

τ
−→ t′ and t ↔∆

b t′. Then{
{(a, [t′]↔∆

b
)
∣∣∣∣∣∃t′′. t −→∗ t′′

a
−→ t′ & t ↔∆

b t′′ & (a = τ =⇒ t′′ 6↔∆
b t′)

}
=

{
(a, [t′]↔∆

b
)
∣∣∣∣∣ t a
−→ t′

}
.

26 CHAPTER 2. PRELIMINARIES

From s ↔∆
b t it follows by Lemma 2.29 that deg↔∆

b
(s) = deg↔∆

b
(t), so

deg↔∆

b
(s) = deg↔∆

b
(t) = |{(a, [t′]↔∆

b
) | t

a
−→ t′}| ≤ |{(a, t′) | t

a
−→ t′}| = |out(t)| ≤ B .

We conclude that T is boundedly branching up to↔∆
b . �

Thus we conclude the following theorem from Proposition 2.21, Lemma 2.29 and
Lemma 2.31.

Theorem 2.32 (unboundedly branching up to ↔∆
b). If a transition system T has no

divergence up to↔∆
b and is unboundedly branching up to↔∆

b , then it is not executable
modulo↔∆

b .

Proof. We suppose that T is executable modulo ↔∆
b , then it follows that there exists

an RTMM such that T (M) ↔∆
b T . By Proposition 2.21, T (M) is boundedly branch-

ing. As T has no divergence up to ↔∆
b and T (M) ↔∆

b , it follows that T (M) has no
divergence up to↔∆

b . By Lemma 2.31, T (M) is boundedly branching up to↔∆
b . Then

from Lemma 2.29, we have that T is also boundedly branching, which contradicts our
assumption. �

2.5 A Framework of Expressivity
The expressivity of process calculi has been addressed extensively in the recent decades.
There are, roughly, two approaches studying the expressivity of a process calculus.
One is to provide an encoding of one process calculus into another, which implies
that the expressivity of the latter is at least as great as the former. Gorla presented a
unified approach on the encodability of process calculi in [47], which allows us to es-
tablish separation results for process calculi. Many results on relative expressivity have
been established by providing an encoding from a process calculus into another (see,
e.g., [71, 79, 55], etc.).

Another approach is to compare the expressivity of a model with a standard model,
i.e., a model that has a power that is equivalent to Turing machines. Milner established
in [68] that the π-calculus is Turing powerful, by exhibiting an encoding of the λ-
calculus [31] in the π-calculus by which every reduction in the λ-calculus is simulated
by a sequence of reductions in the π-calculus. Similarly, in [28] several expressivity
results for variants of CCS are obtained via an encoding of Random Access Machines,
and also those results only make claims about the computational expressivity of the cal-
culi. In [37], Fu studied the integration of computation and interaction and proposed a

2.5. A FRAMEWORK OF EXPRESSIVITY 27

minimal model of communication to evaluate the absolute expressivity of other mod-
els. Moreover, the relative expressivity of two models is compared using a notion of
subbisimilarity (see, e.g., [38]).

We exploit the theory of executability as a tool to measure the absolute expressiv-
ity of models in concurrency theory. We use M to denote a collection of models in
concurrency theory. M contains:

1. a miscellaneous collection of process calculus, e.g., CCS [67], CSP [53], ACP [19],
the Theory of Communicating Processes (TCP) [4], the π-calculus [69, 77],
mCRL2 [49] and the value-passing calculus [36], etc.;

2. variants of Turing machines, e.g., the persistent Turing machine [45] and the
interactive Turing machine [60], etc.;

3. other Turing complete models that include a facility to model interaction, e.g.
Abstract State Machines [51].

We use the notion of executable transition system to characterise the expressive
power of practical computing systems. It is naturally a criterion on the expressivity
of models from M. In the remainder of this thesis, we shall compare the expressivity
of the models from M and Reactive Turing Machines in terms of the transition sys-
tems associated with them. Moreover, we shall use behavioural equivalences. As we
have explained in Section 2.1, an ideal result on expressivity is established modulo
divergence-preserving branching bisimilarity, since it is the finest behavioural equiva-
lence we know that abstracts from τ-transitions, and captures the moment of choices,
divergence and termination. Moreover, we consider a result as a better one if it is mod-
ulo a finer notion of behavioural equivalence comparing to a result that is modulo a
coarser notion of behavioural equivalence.

Sometimes, a model in the literature (e.g., the interactive Turing machines, see
more details in Chapter 3) does not involve a semantics that allows us to associate
with it a transition system. Then, we shall give it a proper semantics to enable the
investigation of expressivity with respect to Reactive Turing Machines.

We exhibit our framework of absolute expressivity in Figure 2.5. Given a model
C ∈ M, we naturally raise two questions with respect to an arbitrary behavioural equiv-
alence ≡.

1. Is C reactively Turing powerful modulo ≡?

2. Is C executable modulo ≡?

Let C ∈ M be an arbitrary model, and let ≡ be an arbitrary behavioural equivalence
relation. We associate with every process P ∈ C a transition systemT (P). We useT (R)

28 CHAPTER 2. PRELIMINARIES

C

T (C)

R

T (R)
Reactively Turing powerfulness: T (C) v≡ T (R)

Executability: T (C) w≡ T (R)

Figure 2.5: A framework of expressivity

to denote that the set of transition systems associated with all Reactive Turing Machines
and use T (C) to denote the set of transition systems associated with all processes in C.
We give formal definitions of the above two properties. We use T (C1) v≡ T (C2) to
denote the set of transition systems associated with the processes from C1 ∈ M is a
subset of the set of transition systems associated with the processes from C2 ∈ M

modulo ≡.

Definition 2.33 (reactively Turing powerfulness). If for every Reactive Turing Ma-
chine M, there exists a process P ∈ C such that T (P) ≡ T (M), then we say C is
reactively Turing powerful modulo ≡, i.e., T (R) v≡ T (C).

Definition 2.34 (executability). If for every process P ∈ C, there exists a Reactive
Turing MachineM such that T (M) ≡ T (P), then we say C is executable modulo ≡,
i.e., T (C) v≡ T (R).

Remark 2.35. Note that apart from labelled transition systems, we also consider other
semantics associated with a model C. For instance, in Section 3.3, we shall consider
ω-translations of associated interactive Turing machines. We compromise by finding a
subset of Reactive Turing Machines that is suitable for ω-translations. Therefore, we
can compare the expressivity of interactive Turing machines and Reactive Turing Ma-
chines in two ways, both with respect to labelled transition systems, and with respect
to ω-translations.

Chapter 3

Interactive Computation

According to the Church-Turing thesis, the classical Turing machine adequately for-
malises which functions from natural numbers to natural numbers are effectively com-
putable. There is, however, a considerable semantic gap between computing the result
of a function applied to a natural number and the way computing systems operate nowa-
days. Modern computing systems are reactive, they are in continuous interaction with
their environment, and their operation is not supposed to terminate. Quite a number
of extended models of computation have been proposed in recent decades to study the
combination of computation and interaction (see, e.g., the collection in [46]). In this
chapter we compare Interactive Turing Machines and Reactive Turing Machines.

Van Leeuwen and Wiedermann have developed a theory of interactive computa-
tion from the stance that an interactive computation can be viewed as a never-ending
exchange of symbols between a component and its unpredictable interactive environ-
ment [57]. Semantically, this amounts to studying the recognition, generation and
translation of infinite streams of symbols. In [58], the notion of interactive Turing ma-
chine (ITM) is put forward as a tool to formally characterise which stream translations
are interactively computable.

An ITM is subsequently extended with an (uncomputable) advice mechanism in
order to obtain a non-uniform machine model. An advice could be considered as an
oracle that tells the machine how to evolve as time goes by. Many systems evolve,
and a typical example is the Internet. The Internet changes every moment as a result
of the upgrading of the programmes, the replacement of hardware, the modification of
network structures, etc. Such an evolving mechanism cannot be predicted by a pre-
defined “function”, therefore, an advice that characterises the evolving of the system
was introduced as a compliment to an ITM. Van Leeuwen and Wiedermann argue that

29

30 CHAPTER 3. INTERACTIVE COMPUTATION

the resulting model of interactive Turing machines with advice is as powerful as their
model of evolving finite automata, and they conclude from this, on intuitive grounds,
that ITMs with advice are adequate to model evolving systems such as the Internet [82].
Moreover, in a recent article by Cabessa and Villa it is shown that ITMs with advice
are as powerful as the model of interactive evolving recurrent neural networks for com-
puting stream translations [29].

The model of interactive Turing machines focusses on capturing the computational
content of sequential interactive behaviour. The included mechanism of interaction is
therefore limited to achieving this goal, and does not easily generalise to more than
one distributed component, nor does it allow for more fine-grained considerations of
the behaviour of reactive systems. The behavioural theory of reactive systems, on the
other hand, has focussed on aspects of modelling, specification and verification (see,
e.g., [3]).

The aim of this chapter is to make a connection between the theory of interactive
computability and the theory of reactive systems, providing a comparison of the mod-
els of ITMs and RTMs in both their semantic domains. We shall first, in Section 3.1,
recapitulate the theory of interactive computability by introducing the notion of ITMs
and ω-translations. Then, in Section 3.2 we present a transition-system semantics for
ITMs; the transition system associated with an ITM is executable up to a fine notion
of behavioural equivalence. In Section 3.3 we shall identify a subclass of RTMs that
can be considered suitable for stream translation, and prove that the stream translation
associated with an RTM in this subclass is interactively computable. In Section 3.4
we consider an extension of RTMs with an advice mechanism adapted from the advice
mechanism considered for ITMs. RTMs with advice can execute every countable tran-
sition system, at the cost of introducing divergence in the computation. The chapter
concludes by some remarks and a discussion of future work in Section 3.5.

3.1 Interactive Turing Machines and ω-Translation
In this section, we briefly introduce the theory of interactive computation proposed by
van Leeuwen and Wiedermann.

In [60], van Leeuwen and Wiedermann present an analysis of interactive compu-
tation on the basis of a component C (thought to behave according to a deterministic
program) interacting with an unpredictable environment E. As exhibited in Figure 3.1,
they discuss the consequences of a few general postulates pertaining to the behaviour
and interaction of C and E for interactive recognition, interactive generation and in-
teractive translation. In their analysis, the component C acts as a stream transducer,
transforming an infinite input stream of data symbols from Σ = {0, 1} presented by E

3.1. INTERACTIVE TURING MACHINES AND ω-TRANSLATION 31

C E

i0, i1, i2, . . . , ik, . . .

o0, o1, o2, . . . , ok, . . .

Figure 3.1: A model of interactive computation

at its input port into an infinite output stream of symbols from Σ produced at its output
port. Henceforth, by an ω-translation we mean a mapping φ : Σω → Σω (with Σω

denoting the set of streams, i.e., infinite sequences, over Σ).
Interactive computation is a step-wise process. It is not required that the environ-

ment offers a symbol in every step, nor that the component produces a symbol in every
step. For the purpose of modelling components, however, it is convenient to record
that nothing is offered or produced. The symbol λ is used to indicate the situation
that no symbol is offered at the input port or produced at the output port, and we let
Σλ = Σ ∪ {λ}. It is assumed that when E offers a non-λ symbol in some step, then the
component C produces a non-λ symbol at its output port within finitely many steps,
and vice versa; this assumption is referred to as the interactiveness (or finite delay)
condition in the work of van Leeuwen and Wiedermann.

In order to formally define which ω-translations are interactively computable by a
computational device, van Leeuwen and Wiedermann proposed the notion of interac-
tive Turing machine [58, 59]. It extends the classical notion of Turing machine with
an input port and an output port, through which it exchanges an infinite, never ending
stream of data symbols with its environment. Interactive Turing machines use a two-
way infinite tape as memory on which they can write symbols from some presupposed
set D� of tape symbols, not necessarily disjoint from Σ and including the special �
symbol to denote an empty tape cell. Our formal definition below is adapted from [81]
(but we leave out the distinction between internal and external states). Here we safely
restrict the machines to work with a single tape, since multi-tape machines cannot cal-
culate any more functions than single-tape machines [52, 66], which is also valid for
interactive Turing machines.

Definition 3.1 (interactive Turing machines). A (deterministic) interactive Turing ma-
chine (ITM) with a single work tape is a triple I = (Q,−→I, qin), where

32 CHAPTER 3. INTERACTIVE COMPUTATION

1. Q is its set of states;

2. −→I: Q ×D� × Σλ → Q ×D� × {L,R} × Σλ is a transition function; and

3. qin ∈ Q is its initial state.

The contents of the tape of an ITM may be represented by an element of (D�)∗ (the
set of finite sequences of symbols in D�). We denote by Ď� = {ď | d ∈ D�} the set
of marked symbols; a tape instance is a sequence δ ∈ (D� ∪ Ď�)∗ such that δ contains
exactly one element of Ď�. The marker indicates the position of the tape head.

Intuitively, a transition (q, d)
i/o
−→I (q′, e) from the transition function means that

whenever the ITM is in state q, its tape head reads the symbol d, and input symbol i
is offered at its input port, then it replaces the symbol d by the symbol e on its tape,
moves the tape head one position in the direction of M, produces the output symbol o
at its output port and then continues in state q′.

A computation of an ITM I = (Q,−→I, qin) is an infinite sequence of transitions

(qin, �̌) = (q0, δ0)
i0/o0
−→I (q1, δ1)

i1/o1
−→I · · · (qk, δk)

ik/ok
−→I · · · . (3.1)

The input stream associated with the computation in (3.1) is obtained from i0, i1, . . . by
omitting all occurrences of λ, and the output stream associated with the computation in
(3.1) is obtained from o0, o1, . . . by omitting all occurrences of λ. A pair (~x, ~y) ∈ Σω×Σω

is an interaction pair associated with I if there exists a computation of Iwith ~x as input
stream and ~y as output stream. The set of all interaction pairs associated with an ITM
I is called its interactive behaviour. In Section 3.2 we present a more refined view on
its behaviour when we associate with every ITM a transition system. A computation of
the form in (3.1) is interactive iff, for all k ∈ N, if ik , λ, then there exists ` ≥ k such
that o` , λ. The computation in (3.1) is input-active iff ik , λ for all k ∈ N.

An ITM satisfies the interactiveness condition if all its computations are interac-
tive. Clearly, if a deterministic ITM I satisfies the interactiveness condition, then its
interactive behaviour is total, in the sense that for every ~x ∈ Σω there is at least one
~y ∈ Σω such that (~x, ~y) is an interaction pair of I. Note that we only consider the com-
putations with non-empty inputs, therefore, the input-active condition is necessary. By
confining our attention to the input-active computations—which, in the terminology of
[60], corresponds to adopting the full environmental activity postulate—, we may then
associate with every such ITM an ω-translation: we say that ITM I produces ~y on input
~x if (~x, ~y) is the interaction pair associated with an input-active computation of I.

Definition 3.2 (interactively computableω-translation). Anω-translation φ : Σω → Σω

is interactively computable iff there exists a deterministic ITM satisfying the interac-
tiveness condition that produces φ(~x) on input ~x for all ~x ∈ Σω.

3.2. EXECUTABILITY OF INTERACTIVE TURING MACHINES 33

Van Leeuwen and Wiedermann present in [60] a characterisation of the interac-
tively computable ω-translations by showing that they can be approximated by classi-
cally computable partial functions on finite sequences over Σ. For finite and infinite
sequences ~x and ~y, we write ~x ≺ ~y if ~x is a finite and strict prefix of ~y, and ~x � ~y if ~x ≺ ~y
or ~x = ~y. We use the following definition of monotonic functions and limit-continuous
functions.

Definition 3.3 (monotonic and limit-continuous functions). 1. A partial function

f : Σ∗ ⇀ Σ∗

is monotonic if for all ~x, ~y ∈ Σ∗ such that ~x ≺ ~y and f (~y) is defined, it holds that
f (~x) is defined as well and f (~x) � f (~y).

2. A partial function
φ : Σω ⇀ Σω

is called limit-continuous if there exists a classically computable monotonic par-
tial function f : Σ∗ ⇀ Σ∗ such that φ(limk→∞ ~xk) = limk→∞ f (~xk) for all strictly
increasing chains ~x1 ≺ ~x2 ≺ · · · ≺ ~xk ≺ · · · with ~xk ∈ Σ∗.

In [60] a criterion of the interactively computable ω-translations is presented by
using limit-continuous functions.

Theorem 3.4 (interactively computable vs limit-continuality). A total ω-translation is
interactively computable iff it is limit-continuous.

3.2 Executability of Interactive Turing Machines
In this section we associate a transition system with every ITM, and then prove that it
is executable modulo divergence-preserving branching bisimilarity. It is convenient to
consider input and output as separate actions in the transition system associated with
an ITM. We denote by ?i the action of inputting the symbol i ∈ Σ, and by !o the action
of outputting the symbol o ∈ Σ; we letAτ = {?i, !o | i, o ∈ Σ} ∪ {τ}.

Definition 3.5 (LTSs associated with ITMs). Let I = (Q,−→I, qin) be an ITM. The
transition system T (I) associated with I is defined as follows:

1. its set of states is the set {(s, δ) | s ∈ Q∪{so | o ∈ Σλ, s ∈ Q}, δ is a tape instance};

2. its transition relation −→ is the least relation satisfying, for all s, t ∈ Q, i, o ∈ Σλ,
d, e ∈ D�, and δ, δL, δR ∈ D

∗
�:

34 CHAPTER 3. INTERACTIVE COMPUTATION

• (s, δLďδR)
?i
−→ (to, δL

<eδR) iff (s, d, i) −→I (t, e, L, o) and i ∈ Σ,

• (s, δLďδR)
?i
−→ (to, δLe >δR) iff (s, d, i) −→I (t, e,R, o) and i ∈ Σ,

• (s, δLďδR)
τ
−→ (to, δL

<eδR) iff (s, d, i) −→I (t, e, L, o) and i = λ,

• (s, δLďδR)
τ
−→ (to, δLe >δR) iff (s, d, i) −→I (t, e,R, o) and i = λ,

• (so, δ)
!o
−→ (s, δ) iff o ∈ Σ, and (so, δ)

τ
−→ (s, δ) iff o = λ.

3. its initial state is the configuration (qin, �̌).

To show that every transition systems associated with an ITM can be simulated

by an RTM, it is convenient to allow RTMs to have transitions of the form s
a[d/e]S
7−−−−−→t,

where S is a stay transition with no movement of the tape head. We refer to such
machines as RTMs with stay transitions. The operational semantics of RTMs can be
extended to an operational semantics for RTMs with stay transitions by adding the

clause: (s, δLďδR)
a
−→ (t, δLěδR) iff s

a[d/e]S
7−−−−−→t. The transition system of an RTM with

stay transitions can be simulated by an RTM up to divergence-preserving branching
bisimilarity.

Lemma 3.6 (RTM with stay transitions). The transition system associated with an
RTM with stay transitions is executable up to divergence-preserving branching bisimi-
larity.

Proof. We suppose thatM = (Q, 7→ , Ini) is an RTM with stay transitions, and its tran-
sition system is T (M). We define a normal RTMM′ = (Q1, 7→ 1, Ini1) that simulates
T (M) as follows, for all s, t ∈ Q and d, e ∈ D�:

1. Q1 = Q ∪ {st | s, t ∈ Q};

2. s
a[d/e]L
7−−−−−→1t iff s

a[d/e]L
7−−−−−→t;

3. s
a[d/e]R
7−−−−−→1t iff s

a[d/e]R
7−−−−−→t;

4. s
a[d/e]L
7−−−−−→1st and st

τ[d/d]R
7−−−−−→1t iff s

a[d/e]S
7−−−−−→t; and

5. Ini1 = Ini.

Then it is straightforward to show that T (M′) ↔∆
b T (M). �

The following lemma shows that every transition system associated with an ITM
can be simulated by an RTM.

3.3. EXECUTABLE ω-TRANSLATIONS 35

Lemma 3.7 (Simulating transition systems associated with ITMs). For every ITM I
there exists an RTMM, such that T (I) ↔∆

b T (M).

We let I = (Q,−→I, qin) be an ITM. By Lemma 3.6, it is enough to show that
there exists an RTM with stay transitionsM satisfying T (M) ↔∆

b T (I). We construct
M = (Q, 7→ , Ini) as follows:

1. Q = I ∪ O, where I = Q and O = {so | o ∈ Σλ, s ∈ Q};

2. the transition relation −→ is defined by:

(a) s
?i[d/e]M
7−−−−−−→to if (s, d, i) −→I (t, e,M, o),

(b) so
!o[e/e]S
7−−−−−−→s for all s ∈ S, o ∈ Σλ; and

3. Ini = qin.

Then according to Definitions 2.11 and 3.5, the transition systems T (M) and T (I) are
identical, and therefore T (M) ↔∆

b T (I).
As a consequence we have the following theorem.

Theorem 3.8 (executability of ITM). The transition system associated with an ITM is
executable modulo divergence-preserving branching bisimilarity.

3.3 Executable ω-Translations

Recall that an ω-translation is defined to be interactively computable if, and only if, it
can be realised by an ITM. RTMs are designed for investigating the expressive power
of transition systems, rather than ω-translations, and not every RTM naturally has an
ω-translation associated with it. Imposing some restrictions on the formalism of RTMs,
however, we shall define a subclass of RTMs with which an ω-translation is naturally
associated. The ω-translation realised by such an RTM is then called executable, and
we shall establish that an ω-translation is interactively computable if, and only if, it is
executable.

By analogy to the systems described in the theory of interactive computation, we
let the RTMs for ω-translations execute in steps, in such a way that with every step a
pair of input and output actions can be associated. With every infinite computation of
the RTM we can then associate an interaction pair, and the RTM will thus give rise to
an ω-translation.

36 CHAPTER 3. INTERACTIVE COMPUTATION

Definition 3.9 (RTM for ω-translations). Let Aτ = {?i, !o | i, o ∈ {0, 1}} ∪ {τ}, and
letM = (Q, 7→ , Ini) be an RTM with Aτ as its set of labels. ThenM is an RTM for
ω-translations if it satisfies the following properties:

1. the set of states Q is partitioned into disjoint sets I of input states and E of exe-
cution states, i.e., Q = I ∪ E and I ∩ E = ∅;

2. the initial state Ini is an input state, i.e., Ini ∈ I;

3. for a transition s
a[d/e]M
7−−−−−−→t, if s ∈ I, then we have a ∈ {?0, ?1} and t ∈ E; if s ∈ E,

then we have a ∈ {!0, !1, τ} and t ∈ I;

4. for all (s, d) ∈ E ×D�, there is exactly one transition of the form s
a[d/e]M
7−−−−−−→t; and

5. for all (s, d) ∈ I × D�, there are exactly two transitions of the form s
a[d/e]M
7−−−−−−→t,

one with a =?0 and the other one with a =?1.

In the following lemma we establish some properties of the transition system asso-
ciated with an RTM for ω-translation.

Lemma 3.10 (I/O LTS). Let M be an RTM for ω-translation. Then the transition
system T (M) = (SM,−→M, ↑M) satisfies the following properties:

1. (Alternation) The set of states SM is partitioned into a set of input states IM and
a set of output states EM, i.e., SM = IM ∪ EM and IM ∩ EM = ∅. For every
transition s

a
−→ s′, if s ∈ IM, then a ∈ {?0, ?1} and s′ ∈ EM; if s ∈ EM, then

a ∈ {!0, !1, τ} and s′ ∈ IM.

2. (Unambiguity) For every s ∈ EM, there is exactly one outgoing transition s
a
−→

s′ with a ∈ {!0, !1, τ}.

3. (Totality) For every s ∈ IM, there are exactly two outgoing transitions, labelled
with ?0 and ?1, respectively.

Proof. Note that a state in SM is a configuration (s, δ) of M, and we can make a
partition of the set of all configurations according to the control states. If s ∈ I, then
we have (s, δ) ∈ IM; if s ∈ E, then we have (s, δ) ∈ EM, where I and E are defined in
Definition 3.9. We show the three properties in the lemma as follows.

1. (Alternation) By condition 1 in Definition 3.9, we have Q = I ∪E and I ∩E = ∅,
from which it follows that SM = IM ∪ EM and IM ∩ EM = ∅; moreover, by

condition 2, for a transition s
a[d/e]M
7−−−−−−→t, if s ∈ I, then we have a ∈ {?0, ?1} and

3.3. EXECUTABLE ω-TRANSLATIONS 37

t ∈ E; if s ∈ E, then we have a ∈ {!0, !1, τ} and t ∈ I, from which it follows that
for every transition s

a
−→ s′, if s ∈ IM, then a ∈ {?0, ?1} and s′ ∈ EM; if s ∈ EM,

then a ∈ {!0, !1, τ} and s′ ∈ IM.

2. (Unambiguity) By condition 3 in Definition 3.9, for all (s, d) where s ∈ E and d ∈

D�, there is exactly one transition s
a[d/e]M
7−−−−−−→t, from which it follows that for every

s ∈ EM, there is exactly one outgoing transition s
a
−→ s′ with a ∈ {!0, !1, τ}.

3. (Totality) By condition 4 in Definition 3.9, for all (s, d) where s ∈ I and d ∈

D�, there are exactly two transitions of the form s
a[d/e]M
7−−−−−−→t, with a =?0 or a =

?1, respectively, which infers that for every s ∈ IM, there are two outgoing
transitions labelled by ?0 and ?1, respectively.

�

We call a transition system that satisfies the conditions of Lemma 3.10 an i/o la-
belled transition system (I/O LTS). Moreover, by an analogy to the interactiveness con-
dition for ITMs, we impose an interactiveness condition on RTMs for ω-translation.

Definition 3.11 (interactive I/O LTS). An i/o transition system is interactive, if for

every s ∈ S and s
?i
−→ s0 with i ∈ {0, 1}, and for every sequence s0

a0
−→ s1

a1
−→ · · · ,

there exists a natural number k, such that sk
!o
−→ sk+1 with ak =!o and o ∈ {0, 1}.

An RTM for ω-translation is interactive if the associated i/o transition system is.

We define the ω-translation realized by an RTM by defining the ω-translation re-
alized by the i/o transition system associated with it. Let T = (S,−→, ↑) be an i/o
transition system, let s ∈ S, and let σ ∈ Aω, say σ = a0, a1, . . .; we write s

σ
−→ if

there exist s0, s′0, s1, s′1, . . . ∈ S such that s = s0, and si −→
∗ s′i

ai
−→ si+1 for all i ≥ 0.

(By −→∗ we denote the reflexive-transitive closure of the relation
τ
−→.) If σ ∈ Aω and

s
σ
−→, then σ is a weak infinite trace from s. We denote by Tr∞w (s) the set of weak

infinite traces from s, i.e.,

Tr∞w (s) = {σ ∈ Aω | s
σ
−→} .

Definition 3.12 (the ω-translation realized by an interactive I/O LTS). Let T be an i/o
transition system, and s0 be the initial state. For σ ∈ Tr∞w (s0), the input stream realised
by σ is the stream ~x ∈ Σω such that ~x = x1x2 . . ., where x j = i if ?i is the j-th input
action in σ, and similarly for the output stream realized by σ.

We define (~x, ~y) ∈ {0, 1}ω × {0, 1}ω as the pair of input and output streams realized
by σ as follows.

38 CHAPTER 3. INTERACTIVE COMPUTATION

1. Its input stream is ~x = x1x2 . . ., where x j = i, if ?i is the j-th input action in σ,
and

2. its output stream is ~y = y1y2 . . ., where y j = o, if !o is the j-th output action in σ.

We say that T realizes ω-translation φ : Σω → Σω iff, for every ~x ∈ Σω, there exists
a trace σ ∈ Tr∞w (s0) with ~x as its input stream, and for every such trace, its output
stream is ~y = φ(~x).

We can now define when an ω-translation is executable.

Definition 3.13 (executable ω-translation). An ω-translation is executable if it can be
realized by an executable i/o transition system.

Note that not every i/o transition system gives an ω-translation. The following
example shows that the interactiveness condition is necessary.

I0start E0 I1 E1 Ik Ek

?0

?1
τ

?0

?1

?0

?1

Figure 3.2: Interactivess is necessary for ω-translation

Example 3.14. Let T = (S,−→, ↑) be the i/o transition system in Figure 3.2 defined
as follows:

1. S = {Ik | k ∈ N} ∪ {Ek | k ∈ N};

2. S = {(Ik, ?0, Ek) | k ∈ N} ∪ {(Ik, ?1, Ek) | k ∈ N} ∪ (Ek, τ, Ik) | k ∈ N);

3. ↑= I0.

T satisfies all the conditions in Lemma 3.10, however, it is not interactive. It does not
realize any ω-translation, since no output stream is given from T .

The following lemma establishes that we can associate with every interactive i/o
transition system an ω-translation.

Lemma 3.15 (interactive I/O LTS). If an i/o transition system is interactive, then it
realises an ω-translation.

3.3. EXECUTABLE ω-TRANSLATIONS 39

Proof. Let T be an i/o interactive transition system, and let s0 be the initial state of T .
By Definition 3.12, we need to show that there exists an ω-translation φ such that for
every ~x ∈ Σω, there exists a trace σ ∈ Tr∞w (s0) with input stream ~x, and for every trace
with input stream ~x, its output stream is ~y = φ(~x).

By the alternation condition in Lemma 3.10, every σ ∈ Tr∞w (s0) is of the form
i0o0i1o1 . . . where i j ∈ {?0, ?1} and o j ∈ {!0, !1, τ}. Let ~x be an arbitrary input stream,
by the totality condition in Lemma 3.10, we can find a trace σ ∈ Tr∞w (s0) with input
stream ~x.

Moreover, given a trace σ with an infinite input stream ~x, by interactiveness, it
always produces an infinite output stream ~y.

Finally, by unambiguity, there do not exist two traces sharing the same input stream.
It follows that for every trace with input stream ~x, its output stream is ~y. Hence, we
relate with every input stream a unique output stream, in a way, we get a ω-translation
from T . �

We mapped every interactive i/o transition system to an ω-translation. Then we
imposed an executability restriction on i/o transition systems, which maps every exe-
cutable and interactive i/o transition system to an executable ω-translation. Now we
proceed to establish a correspondence between the executable ω-translations and the
interactively computable ω-translations.

It is not hard to show the following lemmas.

Lemma 3.16 (I/O LTSs and ω-translations). Let T1 and T2 be two interactive i/o tran-
sition systems, and T1 ↔b T2. Then they realize the same ω-translation.

Proof. We let s1 and s2 be the initial states of T1 and T2, respectively. As T1 ↔b T2,
we have that for every σ ∈ Tr∞w (s1), there exists a trace σ′ ∈ Tr∞w (s2), and they share
the same input and output stream, and vice versa. It follows that T1 and T2 realize the
same ω-translation. �

Lemma 3.17 (limit of traces of I/O LTS). Let T be an executable interactive i/o tran-
sition system, let s0 be its initial state, and let g be a function defined as follows:

g : Σ∗ → Σ∗ ,

satisfying that if g(x) = y, then for every σ ∈ Tr∞w (s0) with input ~x and output stream ~y,
if x ≺ ~x, then y ≺ ~y. Then g is computable.

Proof. We consider a finite trace from s0, and associate with such a trace its input
and output sequences in a similar way as defined in Definition 3.12. By Lemma 3.15,
there is only one finite trace with x as its input sequence; let y be the associated output

40 CHAPTER 3. INTERACTIVE COMPUTATION

sequence. By totality, for every x ∈ Σ∗, there exists such a finite trace with y = g(x)
as the associated output sequence. Therefore, the function g is computable if the finite
traces associated with every input sequence x are computable.

As T is executable, the transition relation of i/o transition system is computable.
We can design a computable procedure to simulate the execution of T on every input
sequence x ∈ Σ∗. So g is computable. �

We have the following theorem.

Theorem 3.18 (executable ω-translation). An ω-translation is executable iff it is a
limit-continuous total function.

Proof. We let φ be an ω-translation.

1. For the “only if” part, we assume that φ is executable, and show that it is a limit-
continuous total function. It suffices to show that there exists a computable total
function g : Σ∗ → Σ∗, such that g is monotonic and for all strictly increasing
chains u1 ≺ u2 ≺ . . . ≺ ut ≺ . . . with ut ∈ Σ∗ (t ≥ 1), one has φ(limt→∞ ut) =

limt→∞ g(ut).

We assume that φ is realized by an executable interactive i/o transition system T ,
and we let s0 be the initial state of T . By Lemma 3.17 the following function is
computable: g : Σ∗ → Σ∗, satisfying that if g(x) = y, then for every σ ∈ Tr∞w (s0)
with input stream ~x and output stream ~y, if x ≺ ~x, then y ≺ ~y. By unambiguity
and totality, g is a monotonic and total computable function.

Moreover, for a strictly increasing chain u1 ≺ u2 ≺ . . . ≺ ut ≺ . . . with ut ∈ Σ∗

for t ≥ 1, the computation of limt→∞ g(ut) is the execution of a trace σ with the
input stream limt→∞ ut. Hence we have φ(limt→∞ ut) = limt→∞ g(ut).

Thus, g is the computable total function we need, and it follows that φ is a com-
putable limit-continuous total function.

2. For the “if” part, we assume that φ is a total limit-continuous function, and de-
sign an RTM M to realize this translation. By Theorem 3.4, φ is interactively
computable by some ITM M′. According to Definition 3.5 and Lemma 3.10,
the transition system associated withM′ is an i/o transition system. Moreover,
according to Theorem 3.8, it is an executable i/o transition system. Therefore,
we have shown that φ is an executable ω-translation by Lemma 3.16.

�

By Theorem 3.4 and Theorem 3.18, we have the following corollary.

3.4. ADVICE 41

Corollary 3.19 (executable ω-translation). An ω-translation is executable iff it is in-
teractively computable.

Therefore, the classes of computable limit-continuous functions, interactively com-
putable ω-translations and executable ω-translations coincide.

3.4 Advice
In [58], the computational power of evolving interactive systems is studied using ITMs.
Particularly, a mechanism called advice function is introduced to enhance the compu-
tational power of an ITM. In this way, the insertion of external information into the
course of a computation is allowed, which leads to a non-uniform operation, which
means the behaviour of a machine varies with different advice functions. In this sec-
tion, we introduce the notion of advice as a process in parallel composition with an
RTM, and show that advice processes indeed give the systems more expressive power.

In this section, we consider advices as functions over natural numbers. In order to
record a number on the tape, a natural number n is encoded by a sequence of n “1”s
ending with a “0”. In [58], the notion of ITM with advice is defined as follows.

Definition 3.20 (advice functions). An advice function is a function f : N → N. An
ITM with advice (ITM/A) is equipped with a separate advice tape and a distinguished
advice state. By writing the value of the argument x on the advice tape and by entering
the advice state, the value of f (x) will appear on the advice tape in a single step. By
this action, the original contents of the advice tape is completely overwritten.

Here we do not put a restriction on the length of the advice function as in [60],
since it does not make a difference in the issue of computability, and we are not yet
interested in the issue of complexity. Moreover, we do not restrict the advice functions
to computable functions. From [60] a computable advice only yields a speedup to the
computing procedure, it does not alter the computability of the machine. It is obvious
that ITMs with uncomputable advice functions cannot be simulated by any RTM, as
uncomputable advice functions cannot be computed by the mechanism of RTMs. As
an extension, we equip RTMs with advice processes which enable the simulation of
ITM/As.

An advice process A f is designed to compute the function f , and can interact with
an RTMM. As an advice function is not necessarily computable, we cannot associate
with every advice process an executable transition system. An RTMM communicates
with A f as follows. We presuppose an input channel in and an output channel out.
WhenM needs to get the result of f (i), it enters a special control state a f , and starts to

42 CHAPTER 3. INTERACTIVE COMPUTATION

send a sequence of i “1” s and a “0” , which is already written on the tape, to the channel
in, and then, it receives the result sequence f (i) “1”s and a “0” from out channel, and
writes them on the tape. This procedure ends in another control state. We can model
an advice process as follows.

Definition 3.21 (the advice process for f). Let f : N → N be a function. A f is the
advice process for f with transition system T (A f) = (S,→, ↑), where

1. S = {si | i = 0, 1, 2, . . .} ∪ {ti | i = 0, 1, 2, . . .}, and

2. si
in?1
−→ si+1, i = 0, 1, 2, . . . si

in?0
−→ t f (i), i = 1, 2, . . .

ti
out!1
−→ ti−1, i = 1, 2, . . . t0

out!0
−→ s0

3. ↑= s0.

The behaviour of A f is deterministic. It receives a sequence of i “1”s from the
channel in, followed by a “0” symbol, indicating the end of the sequence, and then, it
produces f (i) “1”s to the channel out, also followed by a “0” symbol. This procedure
is repeated indefinitely.

The parallel composition of an RTMM and an advice process A f for f is written
as [M ‖ A f]C. The parallel composition is defined in the same way as the parallel
composition of two RTMs in Definition 2.14, where C = {in, out} is the set of restricted
names for communication.

Definition 3.22 (RTMs with advice). LetM be an RTM and A f be an advice process
for f . We call [M ‖ A f]C a Reactive Turing Machine with advice (RTM/A), where
C = {in, out}.

Note that, since advice functions and advice processes both introduce the power of
computing functions on natural numbers, by analogy to Corollary 3.19, we have the
following Corollary.

Corollary 3.23. An ω-translation is realisable by an ITM/A iff it is realisable by an
RTM/A.

By analogy to normal RTMs, we also define a notion of executability with respect
to RTM/A.

Definition 3.24 (executability with respect to RTM/A). A transition system T is exe-
cutable with advice process A f modulo a behavioural equivalence ≡, if there exists an
RTM/A [M ‖ A f]C such that T ≡ T (M).

3.4. ADVICE 43

In the theory of executability, it is a natural question to figure out the expressive
power of the labelled transition systems associated with RTM/As. We now proceed
to show that every boundedly branching labelled transition system can be simulated
by some RTM/A up to divergence-preserving branching bisimilarity, provided that the
advice is not restricted to evaluate computable functions, that is, we expect advice
processes with the power of computing arbitrary functions.

Let T be any bounded branching transition system (not necessarily effective). Based
on a presupposed encoding of its sets of states and actions and its transition relation,
let the advice function fT be such that for the encoding of a state it yields the encoding
of the set of all outgoing transitions of that state. It is straightforward to define an RTM
that simulates T with the help of fT . Then we obtain the following result.

Theorem 3.25 (boundedly branching LTSs and RTM/A). If T is a countable boundedly
branching labelled transition system, then there exists an advice process A f and an
RTM/A [M ‖ A f]C such that

T ([M ‖ A f]C) ↔∆
b T .

Proof. We assume that T = (ST ,−→T , ↑T) is anAτ-labelled transition system, and we
assume that it has n distinct action labels and its branching degree is bounded by k. We
also assume an encoding d e that encodes Aτ and ST as natural numbers. We denote
by dae the encoding of an action a and denote by dse be the encoding of a state s , and
denote by dx1, x2, . . . , xne the encoding of an n-tuple (x1, x2, . . . , xn).

We declare an advice process A f that realizes the following function:

f (dse) = da1, . . . , am, s1, . . . , sme ,

where (a, s) ∈ {(a1, s1), . . . , (am, sm)} iff s
a
−→T s.

We characterise an outline of the execution ofM as follows. (We omit the position
of the tape head since it is not crucial.)

1. We need the following control states: initial, advice, decode, nextA≤k
τ

(A≤k
τ ranges

over allAτ words with length of at most k, i.e., there are 2k such states), choosei

(i ≤ k).

2. The execution ofM is as follows, its initial configuration is (initial,�).

(a) In the state initial, the machine writes the encoding of the initial state of
the transition system d↑T e on the tape, and reaches advice state.

(initial,�) −→∗ (advice, d↑T e) .

44 CHAPTER 3. INTERACTIVE COMPUTATION

(b) In the state advice, the machine sends the encoding of the current state
ds0e to the advice process, and gets the encoding of the list of all possible
transitions da1, . . . , am, s1, . . . , sme from the advice process.

(advice, ds0e) −→
∗ (decode, da1, . . . , am, s1, . . . , sme) .

(c) In the state decode, the machine decodes all the actions from the tape, and
enters one of the next state.

(decode, da1, . . . , am, s1, . . . , sme) −→
∗ (next{a1,...,am}, ds1, . . . , sme) .

(d) In the state next{a1,...,am}, the machine chooses one of the actions. For every
i = 1, . . . ,m, there is a transition

(next{a1,...,am}, ds1, . . . , sme)
ai
−→ (choosei, ds1, . . . , sme) .

(e) In the state choosei, the machine projects the encoding ds1, . . . , sme to the
encoding of the i-th state, and enters advice state again.

(choosei, ds1, . . . , sme) −→
∗ (advice, dsie) .

The above procedure describes the simulation of a step of transition s0
ai
−→T si in

T . Note that the choice of the transition happens in the state next{a1,...,am}; all the other
states have only one outgoing transition, respectively. Moreover, no infinite τ-transition
sequence is introduced for simulation.

In a way, one may verify that T ([M ‖ A f]C) ↔∆
b T . �

If we, instead, let the advice function fT be such that on the code of a pair of a
state s and a natural number i that yields the code of the ith outgoing transition of s,
then we can extend the simulation to transition systems with countably many states and
transitions.

Theorem 3.26 (countable LTSs and RTM/A). If T is a countable labelled transition
system, then there exists an RTM/A [M ‖ A f]C such that

T ([M ‖ A f]C) ↔b T .

Proof. We assume that T = (ST ,−→T , ↑T) is a countable Aτ-labelled transition sys-
tem, and we assume that it has n distinct action labels and it possibly has infinite
branching. We also assume an encoding d e that encodes Aτ and ST as natural num-
bers. We denote by dae the encoding of an action a and denote by dse the encoding of
a state s , and denote by dx1, x2, . . . , xne the encoding of an n-tuple (x1, x2, . . . , xn).

3.4. ADVICE 45

The transition relation −→T maps a state, for instance, s0, to a possibly infinite set
{(ai, si) | s0

ai
−→T si}, denoted by −→T (s0). We define an order <T over the elements

in the set s0 −→T such that (a, s) <T (a′, s′), if da, se <T da′, s′e.
We declare an advice function A f that realizes the following function:

f (ds0, ie) = dai, sie ,

where (ai, si) is the i-th element from −→T (s0) regarding to <T .
We characterise an outline of the execution ofM as follows. (We omit the position

of the tape head since it is not crucial.)

1. We need the following control states: initial, advice, decode, next{Aτ} ({Aτ}

ranges over all subsets ofAτ, so there are 2n such states), choosei (i = 1, 2).

2. The execution of M is as follows, we use a pair (s, δ) to denote the current
configuration of the machine.

(a) In the state initial, the machine writes the encoding of the initial state of
the transition system d↑T e on the tape, and reaches the state advice.

(initial,�) −→∗ (advice, d↑T , 1e) .

(b) In the state advice, the machine either increases the counter i by 1, or sends
ds0, ie to the advice, and gets d(ai, si)e from the advice.

(advice, ds0, ie) −→
∗ (advice, ds0, i + 1e), or

(advice, ds0, ie) −→
∗ (decode, ds0, si, aie)

(c) In the state decode, the machine decodes the action ai from the tape, and
enters the state nextai .

(decode, ds0, si, aie) −→
∗ (nextai , ds0, sie) .

(d) In the state nextai , the machine either performs the action, or changes its
current choice to another transition.

(nextai , ds0, sie)
τ
−→ (choose1, ds0, sie), or

(nextai , ds0, sie)
ai
−→ (choose2, ds0, sie) .

(e) In the state choosei (i=1,2), the machine projects the encoding ds1, s2e to
the encoding of the i-th state, and enters the state advice again.

(choosei, ds1, s2e) −→
∗ (advice, dsi, 1e) .

46 CHAPTER 3. INTERACTIVE COMPUTATION

One can verify that

R = {(s, s′) | s ∈ ST , s′ = (advice, ds, ie) or (decode, ds, ai, sie)
or (nextai , ds, sie) or (choose1, ds, sie) or (choose2, dsi, se)}

is a branching bisimulation relation. Hence, we have T ([M ‖ A f]C) ↔b T . �

Note that the transition system associated with an RTM/A is boundedly branching.
Hence, by Theorem 2.32, if a transition system has no divergence up to ↔∆

b and is
unboundedly branching up to ↔∆

b , then it is not executable modulo ↔∆
b . It follows

that there exist countable unboundedly branching transition systems that cannot be
simulated by an RTM/A modulo↔∆

b .

3.5 Remarks
We have discussed the relationship between two models of computation that both take
interaction into account. We have established that the model of RTMs subsumes and
is more expressive than the model of ITMs when it comes to specify behaviour, and
coincides with the model of ITMs when defining ω-translations.

Furthermore, we have shown that RTMs admit an extension with advice that facil-
itates modelling non-uniform behaviour. In [13] it was established that every effective
transition system can be simulated by an RTM. Our result that every countable tran-
sition system can be simulated by an RTM with advice further confirms the universal
expressivity of the notion of RTM.

Finally, I list a couple of points as directions for future work:

1. In [81], a complexity theory for interactive computation has been defined on the
basis of ITMs and ω-translations. Clearly, such a complexity theory could also
be based on the restricted class of RTMs for ω-translations. Such a complexity
theory could then be generalised further towards a complexity theory for general
executable behaviour.

2. In [65], I/O automata were introduced as a formal model for describing asyn-
chronous concurrent systems. The interaction between systems is described by
input or output actions through particular channels in an I/O automaton. We
could extract an input and an output sequence to describe the process of interac-
tion, and in a way, the capability of making interactive computation for an I/O
automaton could also be expressed in terms of interactive translations. In the
future we intend to make use our notion of interactive I/O LTS to investigate the
relationship between I/O automata and RTMs.

3.5. REMARKS 47

3. In computability theory, there is an arithmetical hierarchy for uncomputable
functions [76]. The arithmetical hierarchy naturally distinguishes different kinds
of functions, which could be advice functions in RTM/As. We can impose this
hierarchy on RTM/As, which allows RTMs to equip different classes of advice
functions. As a consequence, we get a bunch of variations of RTM/As, as well as
the classes of associated transition systems. It could be interesting future work to
establish a hierarchy on those transition systems. In a way, we expect a hierarchy
on unexecutable transition systems with respect to the advice functions allowed.

48 CHAPTER 3. INTERACTIVE COMPUTATION

Chapter 4

Sequential Composition and
Intermediate Termination

This chapter focuses on the executability theory on a process calculus called TCP,
which includes two problems, namely, the comparison between pushdown processes
context-free processes, and the expressivity regarding to RTMs of a process calcu-
lus using the iteration and nesting operators instead of a recursive definition. In the
first problem, the pushdown processes refers to the transition systems associated with
pushdown automata, and the context-free processes refers to the transition systems
associated with context-free grammars. In the second problem, iteration and nesting
operators are two alternative choices for a process calculus to specify a transition sys-
tem with infinite states. They appeared in [18, 22] as a suitable replacement for the
recursive definitions. Neither problem has an obvious solution in the current setting
of the operational semantics of the sequential composition operator in the presence of
intermediate termination. To overcome this difficulty, we propose a revised semantics,
and solve the two problems mentioned above.

Sequential composition is a standard operator in many process calculi. The func-
tionality of the sequential composition operator is to concatenate the behaviours of
two systems. It has been widely used in many process calculi with the notation “·”.
We illustrate its operational semantics by a TCP process P · Q [4]. If the process P
has a transition P

a
−→ P′ for some action label a, then the composition P · Q has the

transition P · Q
a
−→ P′ · Q. Termination is an important behaviour for models of com-

putation [4]. A semantic distinction between successful and unsuccessful termination
in concurrency theory (CT) is especially important for a smooth incorporation of the

49

50CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

classical theory of automata and formal languages (AFT): the distinction is used to ex-
press whether a state in an automaton is accepting or not. Automata may even have
states that are accepting and may still perform transitions; this phenomenon we call in-
termediate termination. From a concurrency-theoretic point of view, such behaviour is
perhaps somewhat unnatural. To be able to express it nevertheless, it starts with having
a constant 1 expressing successful termination, and we let an alternative composition
inherit the option to terminate from just one of its components. The expression a.(b+1)
then denotes the process that does an a-transition and subsequently enters a state that
is successfully terminated but can also do a b-transition.

To specify the operational semantics of sequential composition in a setting with an
explicit successful termination, usually the following three rules are added: the first one
states that the sequential composition P · Q terminates if both P and Q terminate; the
second one states that if P admits a transition P

a
−→ P′, then P · Q admits a transition

P · Q
a
−→ P′ · Q; and the third one states that if P terminates, and there is a transition

Q
a
−→ Q′, then we have the transition P · Q

a
−→ Q′.

In this chapter, we discuss a complication resulting from these operational seman-
tics of the sequential composition operator. The complication is that a process expres-
sion P with the option to terminate is transparent in a sequential context P ·Q: if P may
still perform observable behaviour other than termination, then this may be skipped by
doing a transition from Q. There are two complications associated with transparency in
our attempts to achieve a smooth integration of process theory and the classical theory
of automata and formal languages [8]:

The relationship between context-free processes (i.e., processes that can be speci-
fied with a guarded recursive specification over a language with action constants, con-
stants for deadlock (0) and successful termination (1), and binary operations for se-
quential and alternative composition) and pushdown automata has been discussed a
lot in the literature [9]. We observe that context-free processes may have unbounded
branching modulo branching bisimilarity by stacking unboundedly many transparent
terms with sequential composition. As far as we know, it is still an open problem
whether pushdown processes may have unbounded branching. The best known cor-
respondence between context-free processes and pushdown processes is that every
context-free process is equivalent to a pushdown process modulo contrasimulation. It
is not known whether unboundedly branching behaviour can or cannot be specified in
a pushdown process modulo rooted branching bisimulation or any behavioural equiva-
lence stronger than contrasimulation [9]. In order to improve the result to a finer notion
of behavioural equivalence, we need to eliminate the problem of unbounded branch-
ing. The culprit for not having a better correspondence between context-free processes
and pushdown processes turns out to be the semantics of intermediate termination: this

51

chapter shows that with just a minor adaptation of the semantics a decent correspon-
dence, even modulo strong bisimilarity, is obtained

Transparency also complicates matters if one wants to specify some form of mem-
ory (e.g., a counter, a stack, or a tape) that always has the option to terminate, but at
the same time does not lose data. If the standard process algebraic specifications of
such memory processes are generalised to a setting with intermediate termination, then
either they are not always terminating, or they are ‘forgetful’ and may nondeterministi-
cally lose data. This is a concern when one tries to specify the behaviour of a pushdown
automaton or a Reactive Turing Machine in a process calculus [13, 62, 63]. The pro-
cess calculus TCP with iteration and nesting is Turing complete [18, 21]. Moreover, it
follows from the result in [21] that it is reactively Turing powerful if intermediate ter-
mination is not considered. However, it is not clear to us how to reconstruct the proof
of reactive Turing powerfulness if termination is considered. Due to the forgetfulness
on the stacking of transparent process expressions, it is not clear to us how to define a
stack or even a counter that is always terminating, which is crucial for establishing the
reactive Turing powerfulness.

In order to avoid the (in some cases) undesirable features of unbounded branch-
ing and forgetfulness, we propose a revised operational semantics for the sequential
composition operator. The modification consists of disallowing a transition from the
second component of a sequential composition if the first component is still able to
perform a transition. Thus, with the revised operator we avoid the problems mentioned
above. We shall prove that every context-free process is bisimilar to a pushdown pro-
cess, and that TCP with iteration and nesting is reactively Turing powerful modulo
divergence-preserving branching bisimilarity (without resorting to recursion) in the re-
vised semantics.

The research presented in this chapter is part of an attempt to achieve a smoother
integration of the classical theory of automata and formal languages within concur-
rency theory . The idea is to recognise that a finite automaton is just a special type of
labelled transition system, that more complicate automata (pushdown automata, Turing
machines) naturally generate transition systems, and that there is a natural correspon-
dence between regular expressions and grammars on the one hand and certain process
calculi on the other hand. In [8, 11, 12] various notions of automata from automata and
formal languages modulo branching bisimilarity have been studied. In [10] the cor-
respondence between finite automata and regular expressions extended with parallel
composition modulo strong bisimilarity was explored.

The chapter is structured as follows. We first introduce TCP and its variants with
the standard version of sequential composition in Section 4.1. Next, we discuss the
complications caused by transparency in Section 4.2. Then, in Section 4.3, we propose
the revised operational semantics of the sequential composition operator, and show that

52CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

rooted divergence-preserving branching bisimulation is a congruence. In Section 4.4,
we revisit the relationship between context-free processes and pushdown automata, and
show that every context-free process is bisimilar to a pushdown process in our revised
semantics. In Section 4.5, we prove that TCP with iteration and nesting is reactively
Turing powerful in the revised semantics. In Section 4.6, we draw some conclusions
and propose some future work.

4.1 TCP and Variations of TCP

4.1.1 TSP
We start this section by introducing the process calculus Theory of Sequential Processes
(TSP) that allows us to describe transition systems with behaviours that are sequentially
compositional [4].

Let N be a countably infinite set of names. The set of TSP process expressions P
is generated by the following grammar (a ∈ Aτ, N ∈ N , P ∈ P):

P := 0 | 1 | a.P | P · P | P + P | N .

We briefly comment on the operators in this syntax. The constant 0 denotes dead-
lock, the unsuccessfully terminated process. The constant 1 denotes termination, the
successfully terminated process. For each action a ∈ Aτ there is a unary operator a.
denoting action prefix; the process denoted by a.P can do an a-labelled transition to
the process P. The binary operator + denotes alternative composition or choice. The
binary operator · represents the sequential composition of two processes.

Let P be an arbitrary process expression; we use an abbreviation inductively defined
by:

1. P0 = 1; and

2. Pn+1 = P · Pn for all n ∈ N.

A recursive specification E is a set of equations E = {N def
= P | N ∈ N , P ∈ P},

satisfying:

1. for every N ∈ N it includes at most one equation with N as left-hand side, which
is referred to as the defining equation for N; and

2. if some name N′ occurs in the right-hand side P′ of some equation N′ = P′ in E,
then E must include a defining equation for N′.

4.1. TCP AND VARIATIONS OF TCP 53

An occurrence of a name N in a process expression is guarded if the occurrence
is within the scope of an action prefix a. for some a ∈ A (τ cannot be a guard). A
recursive specification E is guarded if all occurrences of names in right-hand sides of
equations in E are guarded.

We use structural operational semantics to associate a transition relation with TSP
process expressions. In many process calculi, process terms are assumed to contain
some variables. A term is closed iff it does not contain any free variables. Structural
operational semantics induces a transition relation on closed terms. We let −→ be the
Aτ-labelled transition relation induced on the set of process expressions by operational
rules in Table 4.1. Note that we presuppose a recursive specification E.

1 ↓ a.P
a
−→ P

P1
a
−→ P′1

P1 + P2
a
−→ P′1

P2
a
−→ P′2

P1 + P2
a
−→ P′2

P1 ↓

P1 + P2 ↓

P2 ↓

P1 + P2 ↓

P1 ↓ P2 ↓

P1 · P2 ↓

P1
a
−→ P′1

P1 · P2
a
−→ P′1 · P2

P1 ↓ P2
a
−→ P′2

P1 · P2
a
−→ P′2

P
a
−→ P′ (N def

= P) ∈ E

N
a
−→ P′

P ↓ (N def
= P) ∈ E

N ↓

Table 4.1: The operational semantics of TSP

Here we use P
a
−→ P′ to denote an a-labelled transition (P, a, P′) ∈ −→. We say a

process expression P′ is reachable from P is there exist process expressions P0, . . . , Pn

and labels a1, . . . , an such that P = P0
a1
−→ · · ·

an
−→ Pn = P′.

Given a TSP process expression P, the transition system T (P) = (SP,−→P, ↑P, ↓P)
associated with P is defined as follows:

1. the set of states SP consists of all process expressions reachable from P;

2. the transition relation −→P is the restriction to SP of the transition relation de-
fined on all process expressions by the structural operational semantics, i.e.,
−→P = −→ ∩ (SP ×Aτ × SP);

54CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

3. ↑P = P; and

4. the set of final states ↓P consists of all process expressions Q ∈ SP such that Q ↓,
i.e., ↓P = ↓∩SP.

4.1.2 TCP

We also use (a restricted variant of) the process calculus TCP in later sections. It is
derived from the Theory of Communicating Processes (TCP) introduced in [4] which
uses silent steps as the abstraction of encapsulated communication. It is obtained by
adding a parallel composition operator to TSP. Let C be a set of channels and D� be
a set of data symbols. For every subset C′ ⊆ C, we presuppose a special set of actions
IC′ ⊆ Aτ defined by: IC′ = {c?d, c!d | d ∈ D�, c ∈ C′}.

The actions c?d and c!d denote the events that a datum d is received or sent along
channel c, respectively. We include binary parallel composition operators [‖]C′
(C ⊆ C). Communication along the channels in C′ is enforced and communication
results in τ.

Let N be a countably infinite set of names. The set of TCP process expressions P
is generated by the following grammar (a ∈ Aτ, N ∈ N , P ∈ P):

P := 0 | 1 | a.P | P · P | P + P | [P ‖ P]C′ | N .

The operational semantics of the parallel composition operators is presented in Ta-
ble 4.2.

P1 ↓ P2 ↓

[P1 ‖ P2]C′ ↓

P1
a
−→ P′1 a < IC′

[P1 ‖ P2]C′
a
−→ [P′1 ‖ P2]C′

P2
a
−→ P′2 a < IC′

[P1 ‖ P2]C′
a
−→ [P1 ‖ P′2]C′

P1
c?d
−→ P′1 P2

c!d
−→ P′2 c ∈ C′

[P1 ‖ P2]C′
τ
−→ [P′1 ‖ P′2]C′

P1
c!d
−→ P′1 P2

c?d
−→ P′2 c ∈ C′

[P1 ‖ P2]C′
τ
−→ [P′1 ‖ P′2]C′

Table 4.2: The operational semantics of parallel composition in TCP

4.1. TCP AND VARIATIONS OF TCP 55

By analogy to TSP, we also associate with every TCP process a labelled transition
system according to the operational semantics given in Table 4.1 and Table 4.2.

In [13], the expressivity of TCP is studied, TCP it is proved to be equivalent to
RTM by excluding the sequential composition operator.

Theorem 4.1 (expressivity of TCP). TCP excluding the sequential composition oper-
ator is reactively Turing powerful and executable modulo↔∆

b .

Remark 4.2. The reactively Turing powerfulness result still holds for TCP with the
sequential composition operator, but the executability result does not.

As a consequence, we also have the reactive Turing powerfulness of TCP. How-
ever, it is not executable modulo divergence-preserving branching bisimilarity by The-
orem 2.32, since we may define processes with unboundedly branching degree in
TCP. (There is an example in Section 4.2.) We only have its executability modulo
the divergence-insensitive variant of branching bisimilarity.

Corollary 4.3 (reactive Turing powerfulness and executability of TCP). TCP is

1. reactively Turing powerful modulo↔∆
b , and

2. executable modulo↔b, but not modulo↔∆
b .

4.1.3 TCP with Non-regular Iterators
In this chapter, we aim to find some reactively Turing powerful variants of TCP without
recursive specification. Inspired by the work by Bergstra, Bethke and Ponse [18, 21],
there are some non-regular iterators that might produce behaviours similar to recursive
specification of TCP processes. In particular, we consider TCP without recursion but
with iteration and nesting [18, 21] in which a binary nesting operator] and a Kleene
star operator ∗ are added. Different from them, we use a unary Kleene star operator.
We define TCP with iteration and nesting (TCP]) with process expressions generated
by the following grammar:

P := 0 | 1 | a.P | P · P | P + P | [P ‖ P]C′ | P]P | P∗ .

We give the operational semantics of these two operators in Table 4.3.
To get some intuition for the operational interpretation of these operators, note that

the processes P∗ and P1
]P2 respectively satisfy the following equations modulo strong

bisimilarity:

P∗ = P · P∗ + 1
P1

]P2 = P1 · (P1
]P2) · P1 + P2 .

56CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

P∗ ↓
P

a
−→ P′

P∗
a
−→ P′ · P∗

P1
a
−→ P′1

P1
]P2

a
−→ P′1 · (P1

]P2) · P1

P2
a
−→ P′2

P1
]P2

a
−→ P′2

P2 ↓

P1
]P2 ↓

.

Table 4.3: The operational semantics of nesting and iteration

Note that for these operators, having P ↓ or P1 ↓ does not give rise to additional
behaviour.

4.2 Transparency
Process expressions that have the option to terminate are said to be transparent in a
sequential context: if P has the option to terminate and Q

a
−→ Q′, then P · Q

a
−→ Q′

even if P can still do transitions. In this section we shall explain how transparency
gives rise to two phenomena that are undesirable in certain circumstances. First, it
facilitates the specification of unbounded branching behaviour with a guarded recursive
specification over TSP. Second, it gives rise to forgetful stacking of variables, and as a
consequence it is not clear how to specify an always terminating half-counter in TCP].

We first discuss process expressions with unbounded branching. It is well-known
from formal language theory that the context-free languages are exactly the languages
accepted by pushdown automata. The process-theoretic formulation of this result is
that every transition system specified by a TSP specification is language equivalent
to the transition system associated with a pushdown automaton and, vice versa, every
transition system associated with a pushdown automaton is language equivalent to the
transition system associated with some TSP specification. The correspondence fails,
however, when language equivalence is replaced by (strong) bisimilarity. The tightest
result currently known is that for every context-free process there is a pushdown pro-
cess to simulate it modulo contrasimulation [9] (the notion of context-free processes
and pushdown processes are defined in Section 4.4); but we do not know whether there
are stronger behavioural equivalences in the spectrum of [40] for which a simulation
exists. Hence, we conjecture that not every context-free process is simulated by a
pushdown process modulo branching bisimilarity. An observation is that context-free

4.2. TRANSPARENCY 57

Xstart X · Y X · Y2 X · Yn−1 X · Yn

YnYn−1Y2Y1

a

b

a

b b

a

b b

c

c
c

c
c

c
c

c

c

c

c

Figure 4.1: A transition system with unbounded branching behaviour

processes may have an unbounded branching degree.

Example 4.4 (unbounded branching). Consider the following process:

X = a.X · Y + b.1
Y = c.1 + 1 .

The transition system associated with X is illustrated in Figure 4.1. Note that every
state in the second row is a terminating state. The state Yn has n c-labelled transitions
to 1,Y,Y2, . . . ,Yn−1, respectively. Therefore, every state in this transition system has
finitely many transitions leading to distinct states, but there is no upper bound on the
number of transitions from each state. Therefore, we say that this transition system has
an unbounded branching degree.

Note that the process defined by the TSP specification above is not strongly bisimi-
lar to a pushdown process since it has an unbounded branching degree, whereas a push-
down process is always boundedly branching. The correspondence does hold modulo
contrasimulation [9], and it is an open problem as to whether the correspondence holds
modulo branching bisimilarity. In Section 4.4, we show that with a revised operational
semantics for sequential composition, we eliminate such unbounded branching and in-
deed obtain a correspondence between pushdown processes and context-free processes
modulo strong bisimilarity.

Next, we discuss the phenomenon of forgetfulness. Bergstra et al. show how one
can specify a half counter using iteration and nesting, which then allows them to con-
clude that the behaviour of a Turing machine can be simulated in the calculus with
iteration and nesting (not including recursion) [18, 21].

58CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

CC0start CC1 CC2 CCn−1 CCn

BBnBBn−1BB2BB1BB0

a

b

a

b b

a

b b

aaa

c

Figure 4.2: The transition system of a half counter

The half counter is specified as follows:

CCn = a.CCn+1 + b.BBn (n ∈ N)
BBn = a.BBn−1 (n ≥ 1)
BB0 = c.CC0 .

The behaviour of a half counter is shown in Figure 4.2. The initial state is CC0.
From CC0 an arbitrary number of a transitions is possible. After a b-labelled transition,
the process performs the same number of a-labelled transitions as before the b-labelled
transition, to the state BB0. In state BB0, a zero testing transition labelled by c is
enabled, leading back to the state CC0.

An implementation in a calculus with iteration and nesting is provided in [21] as
follows.

Example 4.5 (An implementation of the half counter). Consider the following TCP]

process HCC defined by:
HCC = ((a]b) · c)∗ .

We briefly explain the behaviour of the process HCC. We let:

HCCn = (a]b · an · c) · HCC,

HBBn = an · c · HCC .

Then its transition system is shown in Figure 4.3. It is straightforward to establish
that ((a]b) · an · c) · HCC is equivalent to CCn for all n ≥ 1 modulo strong bisimilarity,
and (an · c) · HCC is equivalent to BBn for all n ∈ N modulo strong bisimilarity.

In a context with intermediate termination, one may wonder if it is possible to
generalize their result. It is, however, not clear how to specify an always terminating
half counter. At least, a naive generalisation of the specification of Bergstra et al. does
not do the job. The culprit is forgetfulness.

4.2. TRANSPARENCY 59

HCCstart HCC1 HCC2 HCCn−1 HCCn

HBBnHBBn−1HBB2HBB1HBB0

a

b

a

b b

a

b b

aaa

c

Figure 4.3: An implementation of the half counter in TCP]

C0start C1 C2 Cn−1 Cn

BnBn−1B2B1B0

a

b

a

b b

a

b b

aaa

c

Figure 4.4: The transition system of an always terminating half counter

We define a half counter that terminates in every state as follows:

Cn = a.Cn+1 + b.Bn + 1 (n ∈ N)
Bn = a.Bn−1 + 1 (n ≥ 1)
B0 = c.C0 + 1 .

Its behaviour is illustrated in Figure 4.4. In the following example, we show that
due to the phenomenon of forgetfulness, a naive generalization of the implementation
from Example 4.5 fails.

Example 4.6 (forgetfulness). Now consider the process HC defined by:

HC = ((a + 1).](b + 1). · (c + 1))∗ .

We let

HCn = ((a + 1)](b + 1) · (a + 1)n · (c + 1)) · HC,

HBn = (a + 1)n · (c + 1) · HCC .

60CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

HCstart HC1 HC2 HCn−1 HCn

HBnHBn−1HB2HB1HB0

a

b

a

b b

a

b b

a

a
a

a

a
a

a

a

a

a

c

Figure 4.5: A failed implementation of the always terminating half counter in TCP]

Its transition system is illustrated in Figure 4.5. Note that due to transparency, ((a+

1)n ·(c+1)) ·HC is not equivalent to Bn modulo any reasonable behavioural equivalence
for n > 1 since Bn only has an a-labelled transition to Bn−1 whereas the other process
has at least n + 1 transitions leading to HC, (c + 1) ·HC, (a + 1) · (c + 1) ·HC, . . . , (a +

1)n−1 · (c + 1) · HC, respectively. This process may choose to “forget” the transparent
process expressions that have been stacked using the sequential composition operator.
We conjecture that, due to forgetfulness, the always terminating half counter cannot be
specified in TCP].

In Section 4.5, we show that with the revised semantics, it is possible to specify
an always terminating half counter and we shall prove that TCP extended with ∗ and]
(but without recursion) is reactively Turing powerful.

4.3 A Revised Semantics of the Sequential Composition
Operator

In this section, we revise the operational semantics for sequential composition and pro-
pose a calculus TCP;. The revised operational semantics resembles similar operators
for sequencing discussed in [2] and [23]. We obtain the calculus by replacing the se-
quential composition operator · by ; in the syntax of TCP. Note that we also use the
abbreviation of Pn; as we did for the standard version of the sequential composition
operator.

The operational rules for ; are given in Table 4.4.
Note that the third rule has a negative premise P1 6−→. Intuitively, this rule is only

applicable if there does not exist a closed term P′1 and an action a ∈ Aτ such that

4.3. A REVISED SEMANTICS OF THE SEQUENTIAL COMPOSITION OPERATOR61

P1 ↓ P2 ↓

P1;P2 ↓

P1
a
−→ P′1

P1;P2
a
−→ P′1;P2

P1 ↓ P2
a
−→ P′2 P1 6−→

P1;P2
a
−→ P′2

.

Table 4.4: The revised semantics of sequential composition

the transition P1
a
−→ P′1 is derivable. In the operational semantics, we use negative

premises, which has been discussed in [48, 27]. In order to obtain a sound semantics,
we need to establish a stratification for the transitions [27]. For this purpose, we have
to restrict the calculus to guarded recursive specifications. In this section, we provide
a stratification for the calculus TSP;. We reformulate the idea in [27] by giving a
stratification to the process terms.

Definition 4.7 (Stratification). LetP be the set of process terms, A function S : P → α
where α is an ordinal, is called a stratification of P, if for every rule r in the operational
semantics, and every substitution σ : V → P where V is the set of variables, it holds
that:

for all P1 ∈ pprem(σ(r)) : S (P1) ≤ S (conc(σ(r))) and
for all P1 ∈ nprem(σ(r)) : S (P1) < S (conc(σ(r)))

We use pprem to denote the set of terms appears on the left-hand side in a positive
premises of a rule, nprem to denote the set of terms appears on the left-hand-side in
a negative premises of a rule, and conc to denote the set of terms appears on the left-
hand-side in a conclusion a rule. We apply the above notation to arbitrary substitutions
of a rule.

Lemma 4.8 (Stratification for TSP;). There exists a stratification for guarded recursive
specifications in TSP;.

62CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

Proof. We hereby give a stratification to the terms in TSP;.

S (0) = 0
S (1) = 0

S (a.P) = 0
S (P1 + P2) = S (P1) + S (P2) + 1

S (P1;P2) = S (P1) + S (P2) + 1

S (X) = S (P), (X def
= P ∈ N)

It is straightforward from Definition 4.7 that S is a valid stratification for guarded
recursive specifications in TSP;. Note that for all terms X with X def

= P ∈ N), we have
S (X) = 0. We do not have this property for unguarded recursive specifications. �

We can easily convert the above stratification on process terms to adapt the defini-
tion of the stratification on transitions in [27] by giving the stratification of a transition
by the process term on its left-hand-side. Hence, we may conclude that the revised
semantics is well-founded for guarded recursive specifications by Theorem 6.1 in [27].
Moreover, there is also a sound formalisation of this intuition, using the notions of
irredundant and well-supported proof, see Section 5 of [41].

As a consequence of the revised semantics, the branching degree of a context-free
process is bounded and sequential compositions may have the option to terminate,
without being forgetful. We illustrate this idea by the following example.

Example 4.9 (a transition system in the revised semantics). Let us revisit Example ??.
We rewrite it with the revised sequential composition operator:

X = a.X;Y + b.1
Y = c.1 + 1 .

Its transition system is illustrated in Figure 4.6. Every state in the transition system now
has a bounded branching degree. For instance, compared with Figure 4.1, a transition
from Y5; to Y2; is abandoned because Y has a transition and only the transition from the
first Y in the sequential composition is allowed.

Congruence is an important property to fit a behavioural equivalence into an ax-
iomatic framework. We start from investigating the congruence property of ↔ with
respect to TCP;.

Theorem 4.10 (↔ is a congruence). ↔ is a congruence with respect to TCP;.

4.3. A REVISED SEMANTICS OF THE SEQUENTIAL COMPOSITION OPERATOR63

Xstart X;Y X;Y2; X;Yn−1; X;Yn;

Yn;Yn−1;Y2;Y1

a

b

a

b b

a

b b

ccc

Figure 4.6: A transition system in the revised semantics

Proof. We show that ↔ is compatible for each operator a.,+, ;, ‖. For simplicity, we
omit the symmetrical cases and the verification of termination condition.

1. Suppose that P ↔ Q; we show that a.P ↔ a.Q. To this end, we verify that
R = {(a.P, a.Q) | P ↔ Q} ∪ ↔ is a strong bisimulation.

We let a.PRa.Q, then P ↔ Q; the transition a.P
a
−→ P is simulated by a.Q

a
−→

Q with PRQ. Therefore, R is a strong bisimulation.

2. Suppose that P1 ↔ Q1 and P2 ↔ Q2; we show that P1 + P2 ↔ Q1 + Q2. To
this end, we verify that R = {(P1 + P2,Q1 + Q2) | P1 ↔ Q1, P2 ↔ Q2} ∪ ↔ is a
strong bisimulation.

We let P1+P2RQ1+Q2, then we only consider P1 ↔ Q1 and P2 ↔ Q2 (since the
other case is trivial). A transition P1 + P2

a
−→ P′ is simulated by Q1 + Q2

a
−→ Q′

in one of the following cases:

(a) if P1
a
−→ P′, then Q1

a
−→ Q′ with P′ ↔ Q′; or

(b) if P2
a
−→ Q′, then Q2

a
−→ Q′ with P′ ↔ Q′.

In both cases, we have P′RQ′; so R is a strong bisimulation.

3. Suppose that P1 ↔ Q1 and P2 ↔ Q2; we show that [P1 ‖ P2]C′ ↔ [Q1 ‖ Q2]C′ .
To this end, we verify that R = {([P1 ‖ P2]C′ , [Q1 ‖ Q2]C′) | P1 ↔ Q1, P2 ↔

Q2} ∪ ↔ is a strong bisimulation.

We let [P1 ‖ P2]C′R[Q1 ‖ Q2]C′ , then we only consider P1 ↔ P2 and Q1 ↔ Q2

(since the other case is trivial). A transition [P1 ‖ P2]C′
a
−→ P′ is simulated by

[Q1 ‖ Q2]C′
a
−→ Q′ in one of the following cases:

(a) if P1
a
−→ P′1, a < IC′ , then we have Q1

a
−→ Q′1 with P′1 ↔ Q′1, and

Q′ = [Q′1 ‖ Q2]C′ ; or

64CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

(b) if P2
a
−→ P′2, a < IC′ , then we have Q2

a
−→ Q′2 with P′2 ↔ Q′2, and

Q′ = [Q1 ‖ Q′2]C′ ; or

(c) if P1
c?d
−→ P′1 and P2

c!d
−→ P′2, then we have Q1

c?d
−→ Q′1 and Q2

c!d
−→ Q′2 with

P′1 ↔ Q′1 and P′2 ↔ Q′2, moreover, a = τ, and Q′ = [Q′1 ‖ Q′2]C′ ; or

(d) if P1
c!d
−→ P′1 and P2

c?d
−→ P′2, then we have Q1

c!d
−→ Q′1 and Q2

c?d
−→ Q′2 with

P′1 ↔ Q′1 and P′2 ↔ Q′2, moreover, a = τ, and Q′ = [Q′1 ‖ Q′2]C′ .

In all cases, we have P′RQ′, so R is a strong bisimulation.

4. Suppose that P1 ↔ Q1 and P2 ↔ Q2; we show that P1;P2 ↔ Q1;Q2. To this
end, we verify that R = {(P1;P2,Q1;Q2) | P1 ↔ Q1, P2 ↔ Q2} ∪ ↔ is a strong
bisimulation.

We let P1;P2RQ1;Q2) then we only consider P1 ↔ Q1 and P2 ↔ Q2 (since the
other case is trivial). A transition P1;P2

a
−→ P′ is simulated by Q1;Q2

a
−→ Q′ in

one of the following cases:

(a) if P1
a
−→ P′1, then we have Q1

a
−→ Q′1 with P′1 ↔ Q′1, and Q′ = Q′1;Q2; or

(b) if P1 6−→, P1 ↓ and P2
a
−→ P′2, then we have Q1 6−→, Q1 ↓ and Q2

a
−→ Q′2

with P′2 ↔ Q′2, and Q′ = Q′2.

In both cases, we have P′RQ′, so R is a strong bisimulation.

To conclude,↔ is a congruence for TCP;. �

Strong bisimulation is considered to be too strong for many cases in concurrency
theory. In this thesis, we are more interested in the congruence property for branch-
ing bisimulation. However, we observe that the congruence property does not hold
in the absence of either the rootedness condition or the divergence-preserving condi-
tion. Rootedness condition is required for the nondeterministic choice operator, and
divergence-preserving condition is required for the revised sequential composition op-
erator. We have that in the revised semantics, ↔∆

rb is a congruence. Note that the con-
gruence property can also be inferred from a recent result of Fokkink, van Glabbeek
and Luttik [35].

Theorem 4.11 (↔∆
rb is a congruence). ↔∆

rb is a congruence with respect to TCP;.

Proof. We use the following facts:

4.3. A REVISED SEMANTICS OF THE SEQUENTIAL COMPOSITION OPERATOR65

1. Rooted divergence-preserving branching bisimilarity is also a rooted divergence-
preserving branching bisimulation relation since rooted divergence-preserving
branching bisimilarity is defined to be the largest rooted divergence-preserving
branching bisimulation.

2. Rooted divergence-preserving branching bisimilarity is a subset of divergence-
preserving branching bisimilarity since rooted divergence-preserving branching
bisimilarity is a rooted divergence-preserving branching bisimulation and there-
fore it is a divergence-preserving branching bisimulation.

We show that↔∆
rb is compatible for each operator a.,+, ;, ‖.

1. Suppose that P ↔∆
rb Q; we show that a.P ↔∆

rb a.Q. To this end, we verify that
R = {(a.P, a.Q) | P ↔∆

rb Q} ∪ ↔∆
rb is a rooted divergence-preserving branching

bisimulation.

To prove that the pair (a.P, a.Q) with P rooted divergence-preserving branching

bisimilar to Q satisfies condition 1 of Definition 2.7, suppose that a.P
b
−→ P′.

Then, according to the operational semantics, b = a and P′ = P. By the opera-
tional semantics, we also have that a.Q

a
−→ Q and, by assumption, P and Q are

divergence-preserving branching bisimilar.

For the termination condition, it is trivially satisfied since both processes do not
terminate. The divergence-preserving condition of R is also trivially satisfied
since only an a-labelled transition is allowed from both processes.

2. Suppose that P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2; we show that P1 + P2 ↔

∆
rb Q1 + Q2. To

this end, we verify that R = {(P1 + P2,Q1 + Q2) | P1 ↔
∆
rb Q1, P2 ↔

∆
rb Q2} ∪↔

∆
rb

is a rooted divergence-preserving branching bisimulation relation.

Suppose that P1 + P2
a
−→ P′; then we have P1

a
−→ P′ or P2

a
−→ P′. We only

consider the first case. Since P1 ↔
∆
rb Q1, we have Q1

a
−→ Q′ with P′ ↔∆

b Q′.

Then we have Q1 + Q2
a
−→ Q′ with P′ ↔∆

b Q′. The same argument holds for the
symmetrical case.

If P1 + P2 ↓ , then we have either P1 ↓ or P2 ↓. Without loss of generality, we
suppose that P1 ↓. Since P1 ↔

∆
rb Q1, we have Q1 ↓. Therefore, Q1 + Q2 ↓.

Moreover, the divergence preservation condition is trivially satisfied.

Hence, R is a rooted divergence-preserving branching bisimulation relation.

3. Suppose that P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2; we show that [P1 ‖ P2]C′ ↔∆

rb [Q1 ‖

Q2]C′ . To this end, we verify that R = {([P1 ‖ P2]C′ , [Q1 ‖ Q2]C′) | P1 ↔
∆
rb

66CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

Q1, P2 ↔
∆
rb Q2}∪↔

∆
rb is a rooted divergence-preserving branching bisimulation

relation.

We first show that R′ = {([P1 ‖ P2]C′ , [Q1 ‖ Q2]C′) | P1 ↔
∆
b Q1, P2 ↔

∆
b

Q2} ∪ ↔
∆
b is a divergence-preserving branching bisimulation.

Suppose that [P1 ‖ P2]C′
a
−→ P′; then we distinguish several cases.

(a) If P1
a
−→ P′1, a < IC′ and P′ = [P′1 ‖ P2]C′ , then, since P1 ↔

∆
b Q1, we

have Q1 −→
∗ Q′′1

a
−→ Q′1 with P′1 ↔

∆
b Q′1 and P1 ↔

∆
b Q′′1 . Then we

have [Q1 ‖ Q2]C′ −→
∗ [Q′′1 ‖ Q2]C′

a
−→ [Q′1 ‖ Q2]C′ with P1 ↔

∆
b Q′′1 ,

P′1 ↔
∆
b Q′1 and P2 ↔

∆
b Q2. Thus we have ([P′1 ‖ P2]C′ , [Q′1 ‖ Q2]C′) ∈ R′

and ([P1 ‖ P2]C′ , [Q′′1 ‖ Q2]C′) ∈ R′.

(b) If P1
c?d
−→ P′1, P2

c!d
−→ P′2 and c ∈ C′, then [P1 ‖ P2]C′

τ
−→ [P′1 ‖ P′2]C′ .

Since P1 ↔
∆
b Q1 and P2 ↔

∆
b Q2, we have Q1 −→

∗ Q′′1
c?d
−→ Q′1, Q2 −→

∗

Q′′2
c!d
−→ Q′2 with P′1 ↔

∆
b Q′1 , P ↔∆

b Q′′1 , P′2 ↔
∆
b Q′2, and P2 ↔

∆
b Q′′2 .

Then we have [Q1 ‖ Q2]C′ −→
∗ [Q′′1 ‖ Q′′2]C′

τ
−→ [Q′1 ‖ Q′2]C′ with

P1 ↔
∆
b Q′′1 , P2 ↔

∆
b Q′′2 , P′1 ↔

∆
b Q′1 and P′2 ↔

∆
b Q′2. Thus we have

([P1 ‖ P2]C′ , [Q′′1 ‖ Q′′2]C′) ∈ R′ and ([P′1 ‖ P′2]C′ , [Q′1 ‖ Q′2]C′) ∈ R′.

If [P1 ‖ P2]C′ ↓, then we have P1 ↓ and P2 ↓. Since P1 ↔
∆
b Q1 and P2 ↔

∆
b Q2,

we have Q1 −→
∗ Q′1 ↓ and Q2 −→

∗ Q′2 ↓ for some Q′1 and Q′2. Therefore,
[Q1 ‖ Q2]C′ −→

∗ [Q′1 ‖ Q′2]C′ ↓.

Moreover, the divergence-preserving condition is trivially satisfied. Hence, we
have R′ is a divergence-preserving branching bisimulation relation.

Now we show that R is a rooted divergence-preserving branching bisimulation.
Suppose that [P1 ‖ P2]C′

a
−→ P′; then we distinguish several cases.

(a) If P1
a
−→ P′1 a < IC′ and P′ = [P′1 ‖ P2]C′ , then, since P1 ↔

∆
rb Q1, we have

Q1
a
−→ Q′1 with P′1 ↔

∆
b Q′1. Then we have [Q1 ‖ Q2]C′

a
−→ [Q′1 ‖ Q2]C′

with P′1 ↔
∆
b Q′1 and P2 ↔

∆
b Q2. Thus we have [P′1 ‖ P2]C′ ↔∆

b [Q′1 ‖
Q2]C′ .

(b) If the transition is derived from a communication between the parallel com-

ponents, i.e., P1
c?d
−→ P′1, P2

c!d
−→ P′2 and c ∈ C′, then [P1 ‖ P2]C′

τ
−→ [P′1 ‖

P′2]C′ . Since P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2, we have Q1

c?d
−→ Q′1, Q2

c!d
−→ Q′2

with P′1 ↔
∆
b Q′1 and P′2 ↔

∆
b Q′2. Then we have [Q1 ‖ Q2]C′

τ
−→ [Q′1 ‖

4.3. A REVISED SEMANTICS OF THE SEQUENTIAL COMPOSITION OPERATOR67

Q′2]C′ with P′1 ↔
∆
b Q′1 and P′2 ↔

∆
b Q′2. Thus we have [P′1 ‖ P′2]C′ ↔∆

b [Q′1 ‖
Q′2]C′ .

If [P1 ‖ P2]C′ ↓, then we have P1 ↓ and P2 ↓. Since P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2,

we have Q1 ↓ and Q2 ↓. Therefore, [Q1 ‖ Q2]C′ ↓.

Moreover, the divergence-preserving condition is trivially satisfied.

Hence, we have R is a rooted divergence-preserving branching bisimulation re-
lation.

4. Suppose that P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2; we show that P1;P2 ↔

∆
rb Q1;Q2. To

this end, we verify that R = {(P1;P2,Q1;Q2) | P1 ↔
∆
rb Q1, P2 ↔

∆
rb Q2} ∪ ↔

∆
rb is

a rooted divergence-preserving branching bisimulation relation.

We first show that R′ = {(P1;P2,Q1;Q2) | P1 ↔
∆
b Q1, P2 ↔

∆
rb Q2} ∪ ↔

∆
b is a

divergence-preserving branching bisimulation relation.

Suppose that P1;P2
a
−→ P′; then we distinguish several cases.

(a) If P1
a
−→ P′1, then P′ = P′1;P2. Since P1 ↔

∆
b Q1, we have Q1 −→

∗ Q′′1
a
−→

Q′1 with P′1 ↔
∆
b Q′1 and P1 ↔

∆
b Q′′1 . Then we have Q1;Q2 −→

∗ Q′′1 ;Q2
a
−→

Q′1;Q2 with P1 ↔
∆
b Q′′1 , P′1 ↔

∆
b Q′1, and P2 ↔

∆
rb Q2. Thus, we have

(P′1;P2,Q′1;Q2) ∈ R′ and (P1;P2,Q′′1 ;Q2) ∈ R′.

(b) If P1 ↓, P2
a
−→ P′2 and P1 6−→. Since P1 ↔

∆
b Q1 and P2 ↔

∆
rb Q2, we have

Q1 −→
∗ Q′1 ↓, Q′1 6−→ for some Q′1 with P1 ↔

∆
b Q′1, and Q2

a
−→ Q′2, with

P′2 ↔
∆
b Q′2. Then, we have Q1;Q2 −→

∗ Q′1;Q2
a
−→ Q′2 with P′2 ↔

∆
b Q′2 and

P1 ↔
∆
b Q′1. Thus we have (P′2,Q

′
2) ∈ R′ and (P1;P2,Q′1;Q2) ∈ R.

If P1;P2 ↓, then we have P1 ↓ and P2 ↓. Since P1 ↔
∆
b Q1 and P2 ↔

∆
rb Q2, we

have Q1 −→
∗ Q′1 ↓ for some Q′1 and Q2 ↓. Therefore, Q1;Q2 −→

∗ Q′1;Q2 ↓.

Moreover, the divergence preservation condition trivially is satisfied since no
infinite τ-transition sequence is introduced in the simulation.

Hence, R is a divergence-preserving branching bisimulation relation.

Now we show that R is a rooted divergence-preserving branching bisimulation
relation.

We suppose that P1;P2
a
−→ P′, and we distinguish several cases:

(a) If P1
a
−→ P′1, then P′ = P′1;P2. Since P1 ↔

∆
rb Q1, we have Q1

a
−→ Q′1

with P′1 ↔
∆
b Q′1. Then we have Q1;Q2

a
−→ Q′1;Q2 with P′1 ↔

∆
b Q′1 and

P2 ↔
∆
rb Q2. Thus, we have P′1;P2 ↔

∆
b Q′1;Q2.

68CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

(b) If P1 ↓, P2
a
−→ P′2 and P1 6−→. Since P1 ↔

∆
rb Q1 and P2 ↔

∆
rb Q2, we

have Q1 ↓, Q2
a
−→ Q′2, with P′2 ↔

∆
b Q′2, and Q1 6−→. Then, we have

Q1;Q2
a
−→ Q′2 with P′2 ↔

∆
b Q′2.

If P1;P2 ↓, then we have P1 ↓ and P2 ↓. Since P1 ↔
∆
rb Q1 and P2 ↔

∆
rb Q2, we

have Q1 ↓ and Q2 ↓. Therefore, Q1;Q2 ↓.

Moreover, we verify that the divergence preservation condition is satisfied.

Hence, we have R is a rooted divergence-preserving branching bisimulation re-
lation.

�

Unlike the divergence-preserving variant of rooted branching bisimilarity, the more
standard variant that does not require divergence-preservation (↔rb) is not a congru-
ence for TCP;. We give a counterexample as follows.

Example 4.12 (↔rb is not a congruence for TCP;.). Consider the following TCP; pro-
cess:

P1 = τ.1
P2 = τ.P2

Q = a.1 .

We have P1 ↔rb P2 but not P1;Q ↔rb P2;Q, for P1;Q can do an a-transition after the
τ-transitions, whereas P2;Q can only do τ transitions.

We also define a version of TCP with iteration and nesting (TCP]) in the revised
semantics. By removing the facility of recursive specification and adding the operations
∗ and], we get TCP]. The operational rules for ∗ and] are obtained by replacing, in
the rules in Figure 4.3, all occurrences of · by ;, see Table 4.5.

4.4 Context-free Processes and Pushdown Process
The relationship between context-free processes and pushdown processes has been
studied in the literature [30, 9]. We consider the process calculus Theory of Sequential
Processes (TSP;). We define context-free processes as follows:

Definition 4.13 (context-free processes). A context-free process is the strong bisimu-
lation equivalence class of the transition system generated by a finite guarded recursive
specification over TSP;.

4.4. CONTEXT-FREE PROCESSES AND PUSHDOWN PROCESS 69

P∗ ↓
P

a
−→ P′

P∗
a
−→ P′;P∗

P1
a
−→ P′1

P1
]P2

a
−→ P′1;(P1

]P2);P1

P2
a
−→ P′2

P1
]P2

a
−→ P′2

P2 ↓

P1
]P2 ↓

Table 4.5: The revised semantics of iteration and nesting

Note that there is a method to rewrite every context-free process into Greibach
normal form [6], which is also valid in the revised semantics. In this paper, we only
consider context-free processes in Greibach normal form , i.e., defined by guarded
recursive specifications of the form

X =
∑
i∈IX

αi.ξi(+1) .

In this form, every right-hand side of every equation consists of a number of sum-
mands, indexed by a finite set IX (the empty sum denotes 0), each of which is 1, or of
the form αi.ξi, where ξi is the sequential composition of names (the empty sequence
denotes 1).

It is well-known that context-free grammars and pushdown automata generate the
same class of languages [54]. In concurrency theory, we focus on correspondence mod-
ulo other behavioural equivalence relations like bisimulation. We shall show that every
context-free process is equivalent to a pushdown process modulo strong bisimilarity.
The notion of pushdown automaton is defined as follows:

Definition 4.14 (pushdown automata). A pushdown automaton (PDA) is a 7-tuple
(Q,Σ,D, 7→, Ini,Z,Fin), where

1. Q is a finite set of states,

2. Σ is a finite set of input symbols,

3. D is a finite set of stack symbols,

4. 7→ ⊆ S × D × Σ × D∗ × S is a finite transition relation, (we write s
a[d/δ]
7−−−−→t for

(s, d, a, δ, t) ∈ 7→),

70CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

5. Ini ∈ S is the initial state,

6. Z ∈ D is the initial stack symbol, and

7. Fin ⊆ S is the set of accepting states.

We use a sequence of stack symbols δ ∈ D∗ to represent the contents of a stack.
We associate with every pushdown automaton a labelled transition system. The bisim-
ulation equivalence classes of transition systems associated with pushdown automata
are referred to as pushdown processes.

Definition 4.15 (pushdown processes). Let M = (Q,Σ,D, 7→, Ini,Z,Fin) be a PDA.
The transition system T (M) = (ST ,−→T , ↑T , ↓T) associated with M is defined as
follows:

1. its set of states is the set ST = {(s, δ) | s ∈ Q, δ ∈ D∗} of all configurations ofM,

2. its transition relation −→T ⊆ ST × Aτ × ST is the relation satisfying, for all

a ∈ Σ, d ∈ D, δ, δ′ ∈ D∗: (s, dδ)
a
−→T (t, δ′δ) iff s

a[d/δ′]
7−−−−−→t,

3. its initial state is the configuration ↑T= (Ini,Z), and

4. its set of terminating states is the set ↓T= {(s, δ) | s ∈ Q, s ∈ Fin, δ ∈ D∗}.

In order to simulate a context-free process using a pushdown process modulo strong
bisimilarity, we need to design a pushdown process such that the associated states and
the transitions have a correspondence with the ones associated with the context-free
process. Moreover, in a context-free process, we should distinguish terminating states
and non-terminating ones, but we are not able to obtain this information without check-
ing every name that appears in a sequential composition. To decide the correct states to
terminate in a pushdown process, we introduce a mechanism to check the appearance
of names by using marked names. Recall that a context-free process is defined by a
recursive specification in Greibach normal form; all states of the context-free process
are denoted by sequences of names defined in this recursive specification. Note that
a sequence of names denotes a terminating state only if all names have the option to
terminate. Hence, to be able to determine whether a configuration of the pushdown
automaton should have the option to terminate, we need to know whether all names
currently on the stack have the option to terminate. We annotate the states of the push-
down automaton with the subset of names currently on the stack. We shall use the
stack to record the sequence of names corresponding to the current state. The deepest
occurrence of a name on the stack is marked and we shall include special transitions in
the automaton for the treatment of marked names. If a marked name is removed from

4.4. CONTEXT-FREE PROCESSES AND PUSHDOWN PROCESS 71

{X}start {X,Y} {Y} ∅
a[X†/X†Y†]

b[X†/ε]

a[X†/X†Y]

b[X†/ε]

c[Y/ε]

c[Y†/ε]

Figure 4.7: A PDA to simulate the process in Figure 4.6

the stack, then, intuitively, it should be removed from the set annotating the state from
the set. On the other hand, if a name not in the set is added to the stack, then we shall
mark that name and add that name to the set annotating the state. As an example, we
introduce a PDA as in Example 4.16 to simulate the process in Figure 4.6 modulo ↔
as follows.

Example 4.16 (simulating CFP by PDP). Consider a PDA (Q,Σ,D, 7→, Ini,Z,Fin) with

1. Q = {∅, {X}, {Y}, {X,Y}};

2. Σ = {a, b, c};

3. D = {X,Y, X†,Y†}

4. 7→= {({X}, X†, a, X†Y†, {X,Y}), ({X}, X†, b, ε, ∅), ({X,Y}, X†, a, X†Y, {X,Y}),
({X,Y}, X†, b, ε, {Y}), ({Y},Y, c, ε, {Y}), ({Y},Y†, c, ε, ∅), };

5. Ini = {X};

6. Z = X†; and

7. Fin = {∅, {Y}}.

Its behaviour is shown in Figure 4.7. In the state {X}, the PDA may choose to stack
a Y symbol by an a-labelled transition, or to make a b-labelled transition to enter a
terminating state. In the state {X,Y}, the symbols X and Y are included in its stack, and
it may choose to make an a-labelled transition to stack more Y’s or choose to make a
b-labelled transition to pop the symbol X, and enters the state {Y}. Finally, in the state
{Y}, the PDA has the option to terminate; moreover, the PDA only has Y as its stack
symbol, and it can only make a c-labelled transition to reduce the number of Y’s by 1
until it reaches the last one where it could make a c-labelled action and terminate.

72CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

To obtain a general result, we consider a context-free process given by a set of
namesV = {X0, X1, . . . , Xm} with X0 as the initial state, where

X j =
∑
i∈IX j

αi j.ξi j(+1) .

We briefly explain how every process expression ξ is simulated by a configuration
ofM such that the sequence of names in ξ is stored in the stack. The first appearance
of every name from the bottom of the stack is marked with †. The state is marked by a
set that contains all the names in ξ. A state is terminating if and only if all the names
in the set from the subscript of the state are terminating.

We introduce the following auxiliary functions:

1. length : V∗ → N, length(ξ) is the length of ξ;

2. get : V∗ × N→V, get(ξ, i) is the i-th name of ξ;

3. suffset : V∗ × N → 2|V|, suffset(ξ, i) = {get(ξ, j) | j = i + 1, . . . , length(ξ)}
computes the set that contains all the names in the suffix which starts from the
i-th name of ξ.

We define a PDAM = (Q,Σ,D, 7→, Ini,Z,Fin) to simulate the transition system asso-
ciated with X0 as follows:

1. Q = {D | D ⊆ V};

2. Σ = Aτ;

3. D = V ∪ {X† | X ∈ V};

4. the set of transitions 7→ is defined as follows:

7→ = {(D, X†j , αi j, δ(D, X
†

j , ξi j),merge(D, X†j , ξi j)) | i ∈ IX j , j = 1, . . . , n, D ⊆ V}

∪ {(D, X j, αi j, δ(D, X j, ξi j),merge(D, X j, ξi j)) | i ∈ IX j , j = 1, . . . , n, D ⊆ V} ;

δ(D, X, ξ) denotes the string of symbols from ξ to push into the stack in the state
D with X as the top symbol; and ‖ (D, X, ξ) denotes the resulting state obtained
from a transition that make the above pushing operation; δ(D, X†j , ξi j) is a string
defined as follows: for k = 1, . . . , length(ξi j), we let Xk = get(ξi j, k),

(a) if Xk < (D\{X j})∪ suffset(ξi j, k), then the k-th symbol of δ(D, X†j , ξi j) is X†k ,

(b) otherwise, the k-th symbol of δ(D, X†j , ξi j) is Xk,

4.4. CONTEXT-FREE PROCESSES AND PUSHDOWN PROCESS 73

δ(D, X j, ξi j) is a string of length length(ξi j) defined as follows: for k = 1, . . . , length(ξi j),
we let Xk = get(ξi j, k),

(a) if Xk < D ∪ suffset(ξi j, k), then the k-th symbol of δ(D, X j, ξi j) is X†k ,

(b) otherwise, the k-th symbol of δ(D, X j, ξi j) is Xk, and

we also define merge(D, X†j , ξi j) = (D\{X j})∪suffset(ξi j, 0) and merge(D, X j, ξi j) =

D ∪ suffset(ξi j, 0);

5. Ini = {X0}; Z = X†0 ;

6. Fin = {D | for all X ∈ D, X ↓}.

We have the following result:

Lemma 4.17. T (X0) ↔ T (M).

Proof. We first define an auxiliary function stack : V∗ → D∗. We let ξ ∈ V∗ and for
k = 1, . . . , length(ξ), we let Xk = get(ξ, k). stack(ξ) is given by:

1. if Xk < suffset(ξ, k), then the k-th element of stack(ξ) is X†k ;

2. otherwise, the k-th element of stack(ξ) is Xk,

Note that stack(Xξ) and stack(ξ) share the same suffix of length length(ξ), and we use
this fact to show that the relation

R = {(ξ, (suffset(ξ, 0), stack(ξ))) | ξ ∈ V∗} ,

is a strong bisimulation. We assume that ξ is not an empty sequence, since it is trivial
if ξ is an empty sequence.

If ξ = X jξ for some 0 ≤ j ≤ m, then it has the following transitions:

X jξ
′

αi j
−→ ξi jξ

′, i ∈ IX j .

We need to show that they are simulated by the transitions:

(suffset(ξ, 0), stack(ξ))
αi j
−→ (suffset(ξi jξ

′, 0), stack(ξi jξ
′)), i ∈ IX j ,

in a way, we have (xi j, (suffset(ξi jξ
′, 0), stack(ξi jξ

′))) ∈ R.
We consider the configuration (suffset(ξ, 0), stack(ξ)), we distinguish two cases ac-

cording to whether the symbol on top of the stack is the deepest occurrence of that
symbol on the stack, or not.

74CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

1. If get(stack(ξ), 1) = X†j , thenM has the transition

(suffset(ξ, 0), X†j , αi j, δ(suffset(ξ, 0), X†j , ξi j),merge(suffset(ξ, 0), X†j , ξi j)) .

In the new configuration, the stack is S = δ(suffset(ξ, 0), X†j , ξi j)stack(ξ′). We
verify that S = stack(ξi jξ

′). Note that they share the same suffix stack(ξ′). We
only need to verify the first length(ξi j) elements. For the l-th element, we let
Xl = get(ξi j, l), and we distinguish with two cases.

(a) If Xl < (suffset(ξ, 0)\{X j}) ∪ suffset(ξi j, l), then the l-th element of S is X†l .
Since get(stack(ξ), 1) = X†j , from the definition of stack, we have X j <
suffset(ξ, 1) = suffset(ξ′, 0). Therefore, suffset(ξ, 0)\{X j} = suffset(ξ′, 0).
In this case, Xl < suffset(ξ′, 0) ∪ suffset(ξi j, l). Moreover, we have Xl <

suffset(ξi jξ
′, l), therefore, the l-th element of stack(ξi jξ

′) is also X†l .

(b) Otherwise, then the l-th element of S is Xl. By the definition of stack, we
get that the l-th element of stack(ξi jξ

′) is also Xl.

Moreover, we verify that the new state merge(suffset(ξ, 0), X†j , ξi j) = suffset(ξi jξ
′, 0).

Note that we have

merge(suffset(ξ, 0), X†j , ξi j) = (suffset(ξ, 0)\{X j}) ∪ suffset(ξi j, 0)

= suffset(ξ′, 0) ∪ suffset(ξi j, 0) = suffset(ξi jξ
′, 0) .

Hence, we have (suffset(ξ, 0), stack(ξ))
αi j
−→ (suffset(ξi jξ

′, 0), stack(ξi jξ
′)).

2. if get(stack(ξ), 1) = X j, thenM has the transition

(suffset(ξ, 0), X j, αi j, δ(suffset(ξ, 0), X j, ξi j),merge(suffset(ξ, 0), X j, ξi j)) ,

In the new configuration, the new stack is S = δ(suffset(ξ, 0), X j, ξi j)stack(ξ′).
We verify that S = stack(ξi jξ

′). Note that they share the same suffix stack(ξ′).
We only need to verify the first length(ξi j) elements. For the l-th element, we let
Xl = get(ξi j, l), and we distinguish with two cases.

(a) If Xl < (suffset(ξ, 0)) ∪ suffset(ξi j, l), then the l-th element of S is X†l .
Since get(stack(ξ), 1) = X j, from the definition of stack, we have X j ∈

suffset(ξ, 1) = suffset(ξ′, 0). Therefore, suffset(ξ, 0) = suffset(ξ′, 0). In
this case, Xl < suffset(ξ′, 0) ∪ suffset(ξi j, l). Moreover, we have Xl <

suffset(ξi jξ
′, l), therefore, the l-th element of stack(ξi jξ

′) is also X†l .

4.4. CONTEXT-FREE PROCESSES AND PUSHDOWN PROCESS 75

(b) Otherwise, then the l-th element of S is Xl. By the definition of stack, we
get that the l-th element of stack(ξi jξ

′) is also Xl.

Moreover, we verify that the new state merge(suffset(ξ, 0), X j, ξi j) = suffset(ξi jξ
′, 0).

Note that we have

merge(suffset(ξ, 0), X j, ξi j) = suffset(ξ, 0) ∪ suffset(ξi j, 0)
= suffset(ξ′, 0) ∪ suffset(ξi j, 0) = suffset(ξi jξ

′, 0) .

Hence, we have (suffset(ξ, 0), stack(ξ))
αi j
−→ (suffset(ξi jξ

′, 0), stack(ξi jξ
′)).

We conclude from the above two cases that the transitions are indeed simulated.
Using a similar analysis, we also have all the transitions from (suffset(ξ, 0), stack(ξ))

are simulated by X jξ
′.

Now we consider the termination condition. ξ ↓ iff for all X ∈ suffset(ξ, 0), X ↓.
Note that (suffset(ξ, 0), stack(ξ)) ↓ iff for all X ∈ suffset(ξ, 0), X ↓. Therefore, termina-
tion condition is also verified.

Hence, we have T (X0) ↔ T (M). �

We have the following theorem.

Theorem 4.18 (simulating CFP by PDP). For every name X defined in a guarded
recursive specification in Greibach normal form there exists a PDA M, such that
T (X) ↔ T (M).

Note that the converse of this theorem does not hold in general, that is, not every
pushdown process can be simulated by a context-free process modulo↔. A counterex-
ample was established by F. Moller in [70]. We rephrase the example as follows:

Example 4.19. Consider a PDA (Q,Σ,D, 7→, Ini,Z,Fin) with

1. Q = {p, q};

2. Σ = {a, b, c};

3. D = {X}

4. 7→= {(p, X, a, XX, p), (p, X, b, ε, X), (p, X, c, ε, q), (q, X, b, ε, q)};

5. Ini = p;

6. Z = X; and

76CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

7. Fin = q.

The transition system associated with the above PDA cannot be specified by any context-
free process. The language given by the above PDA is {anbmcbn−m | m, n ∈ N, m ≤ n}
which is not context-free. Therefore, there is no context-free process which is language
equivalent to the above PDA. Hence, there is no context-free process which is strongly
bisimilar to the above PDA either. Moreover, this counterexample is also valid modulo
↔b.

4.5 Executability in the Context of Termination

In this section, we shall discuss the theory of executability. We shall prove that TCP]

is reactively Turing powerful in the context of termination. Our aim in this section
is to prove that all executable processes can be specified, up to divergence-preserving
branching bisimilarity in TCP]. TCP] is obtained from TCP by removing recursive
definitions and adding the iteration and nesting operators.

To see that TCP] is executable modulo branching bisimilarity, it suffices to observe
that the transition systems associated with TCP] processes are effective. Thus we can
apply the result from [13] and conclude that they are executable modulo↔b.

Next we show that TCP] is reactively Turing powerful by specifying the transi-
tion system associated with a reactive Turing machine in TCP] modulo ↔∆

b . Inspired
from [18], the proof proceeds in five steps:

1. We first specify an always terminating half counter.

2. Then we show that every regular process can be specified in TCP].

3. Next we use two half counters and a regular process to encode an always termi-
nating stack.

4. With two stacks and a regular process we can specify a tape.

5. Finally we use a tape and a regular control process to specify an RTM.

We first recall the infinite specification in TSP; of an always terminating half counter
from Figure 4.4.

We provide a specification of a half counter in TCP] as follows:

HC = ((a + 1)](b + 1);(c + 1))∗

4.5. EXECUTABILITY IN THE CONTEXT OF TERMINATION 77

HCstart HC1 HC2 HCn−1 HCn

HBnHBn−1HB2HB1HB0

a

b

a

b b

a

b b

aaa

c

Figure 4.8: An implementation of the always terminating half counter in TCP]

To illustrate its behaviour, we let

HCn = ((a + 1)](b + 1);(a + 1)n;;(c + 1));HC,

HBn = (a + 1)n;;(c + 1);HC .

We exhibit its transition system in Figure 4.8.
We have the following lemma:

Lemma 4.20 (the always terminating half-counter). C0 ↔
∆
b HC.

Proof. We verify that HC ↔∆
b C0. Consider the following relation:

R1 = {(C0,HC)} ∪ {(Cn, (a + 1)](b + 1);(a + 1)n;;(c + 1);HC) | n ≥ 1}
∪ {(Bn, (a + 1)n;;(c + 1);HC) | n ∈ N} .

We let R2 be the inverse of R1. We show that R = R1∪R2 (the symmetrical closure
of R1) is a divergence-preserving branching bisimulation as follows:

Note that R satisfies the divergence-preserving condition since there is no infinite
sequence of τ transitions. In this proof, we only treat the pairs in R1, since we can use
the symmetrical argument for the pairs in R2. We first consider the pair (C0,HC). Note
that C0 has the following transitions:

C0
a
−→ C1, and

C0
b
−→ B0 ,

which are simulated by:

HC
a
−→ (a + 1)](b + 1);(a + 1);(c + 1);HC, and

HC
b
−→ (c + 1);HC ,

78CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

with (C1, (a + 1)](b + 1);(a + 1);(c + 1);HC) ∈ R and (B0, (c + 1);HC) ∈ R. Moreover,
we have C0 ↓ and HC ↓.

Now we consider the pair (Cn, (a + 1)](b + 1);(a + 1)n;;(c + 1);HC), with n ≥ 1.
Note that Cn has the following transitions:

Cn
a
−→ Cn+1, and

Cn
b
−→ Bn ,

which are simulated by:

(a + 1)](b + 1);(a + 1)n;;(c + 1);HC
a
−→ (a + 1)](b + 1);(a + 1)n+1;;(c + 1);HC, and

(a + 1)](b + 1);(a + 1)n;;(c + 1);HC
b
−→ (a + 1)n;;(c + 1);HC ,

with (Cn+1, (a + 1)](b + 1);(a+1)n+1;;(c+1);HC) ∈ R and (Bn, (a+1)n;;(c+1);HC) ∈ R.
Moreover, we have Cn ↓ and (a + 1)](b + 1);(a + 1)n;;(c + 1);HC ↓.

Now we proceed to consider the pair (B0, (c + 1);HC). Note that B0 has the follow-
ing transition:

B0
c
−→ C0 ,

which is simulated by:

(c + 1);HC
c
−→ HC ,

with (C0,HC) ∈ R. Moreover, we have B0 ↓ and (c + 1);HC ↓.
Next we consider the pair (Bn, (a + 1)n;;(c + 1);HC), with n ≥ 1. Note that Bn has

the following transition:

Bn
a
−→ Bn−1 ,

which is simulated by:

(a + 1)n;;(c + 1);HC
a
−→ (a + 1)n−1;;(c + 1);HC ,

with (Bn−1, (a + 1)n−1;;(c + 1);HC) ∈ R. Moreover, we have Bn ↓ and (a + 1)n;;(c +

1);HC ↓.
Hence, we have C0 ↔

∆
b HC. �

Next we show that every regular process can be specified in TCP] modulo ↔∆
b . A

regular process is given by Pi =
∑n

j=1 αi j;P j + βi (i = 1, . . . , n) where αi j and βi are
finite sums of actions fromAτ and possibly with a 1-summand. We have the following
lemma.

4.5. EXECUTABILITY IN THE CONTEXT OF TERMINATION 79

Lemma 4.21 (regular processes). Every regular process can be specified in TCP] mod-
ulo↔∆

b .

Proof. We consider a regular process with a finite set of action labelsAτ which is given
by Pi =

∑n
j=1 αi j;P j + βi (i = 1, . . . , n) where αi j and βi are finite sums of actions from

Aτ. We let c!0, c!1, . . . , c!(n + 1), c?0, c?1, . . . , c?(n + 1) be labels that are not inAτ.
Consider the following process:

Gi =

n∑
j=1

αi j;(c! j + 1) + βi;(c!0 + 1)

M =

 n∑
j=1

(c? j + 1);G j + (c!(n + 1) + 1);(c?(n + 1) + 1)

](c?0 + 1)

N =

n+1∑
j=1

(c? j + 1);(c! j + 1)


]

((c?0 + 1);(c!0 + 1))

Note that ; is associative modulo ↔∆
b and we suppose that ; binds stronger than +.

We verify that Pi ↔
∆
b [Gi;M ‖ N]{c}. We let

Q =

 n∑
j=1

(c? j + 1);G j + (c!(n + 1) + 1);(c?(n + 1) + 1)


and

O =

n+1∑
j=1

(c? j + 1);(c! j + 1)

 .

We let

R1 = {(Pi, [Gi;M;Qk; ‖ N;Ok;]{c}) | k ∈ N, i = 1, . . . , n}
∪ {(Pi, [(c!i + 1);M;Qk; ‖ N;Ok;]{c}) | k ∈ N, i = 1, . . . , n}
∪ {(Pi, [M;Qk; ‖ (c!i + 1);N;Ok+1;]{c}) | k ∈ N, i = 1, . . . , n}
∪ {(1, [(c!0 + 1);M;Qk; ‖ N;Ok;]{c}) | k ∈ N}
∪ {(1, [M;Qk; ‖ (c!0 + 1);Ok;]{c}) | k ∈ N}
∪ {(1, [Qk; ‖ Ok;]{c}) | k ∈ N}
∪ {(1, [(c?(n + 1) + 1);Qk; ‖ (c!(n + 1) + 1);Ok;]{c}) | k ∈ N} ;

80CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

and we letR2 be the inverse ofR1. We show thatR = R1∪R2 is a divergence-preserving
branching bisimulation. We shall only verify the pairs in R1 in this proof since R is
symmetrical.

For the set of pairs {(Pi, [Gi;M;Qk; ‖ N;Ok;]{c}) | k ∈ N, i = 1, . . . , n}, note that Pi

has the following transitions: Pi
a
−→ P j if a is a summand of αi j, or Pi

a
−→ 1 if a is a

summand of β j.
The first transition is simulated by the following transitions:

[Gi;M;Qk; ‖ N;Ok;]{c}
a
−→ [(c! j + 1);M;Qk; ‖ N;Ok;]{c}

τ
−→ [M;Qk; ‖ (c! j + 1);N;Ok+1;]{c}
τ
−→ [G j;M;Qk+1; ‖ N;Ok+1;]{c} .

If k ≥ 1, then the second transition is simulated by the following transitions:

[Gi;M;Qk; ‖ N;Ok;]{c}
a
−→ [(c!0 + 1);M;Qk; ‖ N;Ok;]{c}

τ
−→ [M;Qk; ‖ (c!0 + 1);Ok;]{c}

τ
−→ [Qk; ‖ Ok;]{c}

τ
−→ [(c?(n + 1) + 1);Qk−1; ‖ (c!(n + 1) + 1);Ok−1;]{c}

τ
−→ [Qk−1; ‖ Ok−1;]{c}

−→
∗ 1 ;

otherwise, if k = 0, then the second transition is simulated by:

[Gi;M ‖ N]{c}
a
−→ [(c!0 + 1);M ‖ N]{c}

τ
−→ [M ‖ (c!0 + 1)]{c}

τ
−→ 1 .

We have that (P j, [(c! j+1);M;Qk; ‖ N;Ok;]{c}) ∈ R, (P j, [M;Qk; ‖ (c! j+1);N;Ok+1;]{c}) ∈
R, (P j, [G j;M;Qk+1; ‖ N;Ok+1;]{c}) ∈ R, (1, [(c!0+1);M;Qk; ‖ N;Ok;]{c}) ∈ R, (1, [M;Qk; ‖

(c!0+1);Ok;]{c}) ∈ R, (1, [Qk; ‖ Ok;]{c}), (1, [(c?(n+1)+1);Qk; ‖ (c!(n+1)+1);Ok;]{c}) ∈ R
and (1, 1) ∈ R for all k ∈ N and i, j = 1, . . . , n.

One can easily verify that all the other pairs satisfy the condition of branching
bisimulation. The relation R also satisfies the divergence-preserving condition since
no infinite τ-transition sequence is allowed from any process defined in R.

Therefore, we get a finite specification of every regular process in TCP] modulo
↔∆

b . �

Now we show that a stack can be specified by a regular process and two half coun-
ters. We first give an infinite specification in TSP; of a stack as follows:

S ε = Σd∈D�push?d.S d + pop!�.S ε + 1
S dδ = pop!d.S δ + Σe∈D�push?e.S edδ + 1 .

4.5. EXECUTABILITY IN THE CONTEXT OF TERMINATION 81

Recall that D� is a finite set of symbols. We suppose that D� contains N symbols
(including �). We use ε to denote the empty sequence. We inductively define an
encoding from a sequence of symbols to a natural number d e : D�∗ → N as follows:

dεe = 0 ddke = k (k = 1, 2, . . . ,N) ddkσe = k + N × dσe .

Thus we are able to encode the contents of a stack in terms of natural numbers recorded
by half counters. We define a stack in TCP] as follows:

S = [X∅ ‖ P1 ‖ P2]{a1,a2,b1,b2,c1,c2}

P j = ((a j!a + 1)](b j!b + 1);(c j!c + 1))∗ (j = 1, 2)
X∅ = (ΣN

j=1((push?d j + 1);(a1?a + 1) j;;(b1 + 1);X j) + pop!�)∗

Xk = ΣN
j=1((push?d j + 1);Pushj) + (pop!dk + 1);Popk (k = 1, 2, . . . ,N)

Pushk = Shift1to2;(a1?a + 1)k;;NShift2to1;Xk (k = 1, 2, . . . ,N)
Popk = (a1?a + 1)k;;1/NShift1to2;Test∅

Shift1to2 = ((a1?a + 1);(a2?a + 1))∗;(c1?c + 1);(b2?b + 1)
NShift2to1 = ((a2?a + 1);(a1?a + 1)N;)∗;(c2?c + 1);(b1?b + 1)

1/NShift1to2 = ((a1?a + 1)N;;(a2?a + 1))∗;(c1?c + 1);(b2?b + 1)
Test∅ = (a2?a + 1);(a1?a + 1);Test1 + (c2?c + 1);X∅
Test1 = (a2?a + 1);(a1?a + 1);Test2 + (c2?c + 1);X1

Test2 = (a2?a + 1);(a1?a + 1);Test3 + (c2?c + 1);X2

...

TestN = (a2?a + 1);(a1?a + 1);Test1 + (c2?c + 1);XN .

We have the following result.

Lemma 4.22 (the always terminating stack). S ε ↔
∆
b S .

Proof. We define some auxiliary process:

P j(0) = ((a j!a + 1)](b j!b + 1);(c j!c + 1))∗ (j = 1, 2)

P j(n) = (a j!a + 1)](b j!b + 1);(a j!a + 1)n;;(c j!c + 1));P j, (j = 1, 2; n = 1, 2, . . .)
Q j(n) = (a j!a + 1)n;;(c j!c + 1));P j, (j = 1, 2; n ∈ N) .

P0 and P1 behave as two half counters.
We letR1 = {(S ε , S)}∪{(S d jδ, [X j;Xε ‖ Q1(m) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}) | j = dd je,m =

dd jδe, d ∈ D�, δ ∈ D∗�}. We let R2 be inverse of R1. We verify that R = R1 ∪ R2∪ ↔
∆
b

82CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

is a divergence-preserving branching bisimulation relation. For simplicity, we only
verify the simulation of the transitions from one direction and the other direction is
then trivial.

Note that S ε has the following transitions:

S ε

push?d j
−→ S d j for all j = 1, 2, . . . ,N, and

S ε

pop!�
−→ S ε .

They are simulated by the following transitions:

S
push?d j
−→ [(a1?a + 1) j;;(b1 + 1);X j;Xε ‖ P1(0) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

−→
∗ [(b1 + 1);X j;Xε ‖ P1(j) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

−→
∗ [X j;Xε ‖ Q1(j) ‖ P2(0)]{a1,a2,b1,b2,c1,c2} for all j = 1, 2, . . . ,N, and

S
pop!�
−→ S .

We only consider the first case, since the second transition is trivial. We have

(S d j , [X j;Xε ‖ Q1(j) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}) ∈ R .

We denote the sequence of transitions

[(a1?a + 1) j;;(b1 + 1);X j;Xε ‖ P1(0) ‖ P2(0)]{a1,a2,b1,b2,c1,c2} −→
∗

[X j;Xε ‖ Q1(j) ‖ P2(0)]{a1,a2,b1,b2,c1,c2} ∈ R

by s0 −→
∗ sm. It is obvious that s0 ↔

∆
b sm. Therefore, S

push?d j
−→ s0, and s0 ↔

∆
b sm with

(S d j , sm) ∈ R.

Note that S d jδ has the following transitions:

S d jδ

push?dk
−→ S dkd jδ for all k = 1, 2, . . . ,N, and

S d jδ

pop!d j
−→ S dkδ′ , where dkδ

′ = δ .

4.5. EXECUTABILITY IN THE CONTEXT OF TERMINATION 83

They are simulated by the following transitions:

[X j;Xε ‖ Q1(dd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

push?dk
−→ [Pushk;Xε ‖ Q1(dd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

−→
∗ [(a1?a + 1)k;;NShift2to1;Xk;Xε ‖ P1(0) ‖ Q2(dd jδe)]{a1,a2,b1,b2,c1,c2}

−→
∗ [NShift2to1;Xk;Xε ‖ P1(ddke) ‖ Q2(dd jδe)]{a1,a2,b1,b2,c1,c2}

−→
∗ [Xk;Xε ‖ Q1(ddkd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2} for all d j, dk ∈ D�, δ ∈ D

∗
� and

[X j;Xε ‖ Q1(dd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

pop!d j
−→ [Popj;Xε ‖ Q1(dd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

−→
∗ [1/NShift1to2;Test∅;Xε ‖ Q1(dd jδe − k) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

−→
∗ [Test∅;Xε ‖ P1(0) ‖ Q2(dδe)]{a1,a2,b1,b2,c1,c2}

−→
∗ [Xk;Xε ‖ Q1(ddkδ

′e ‖ P2(0)]{a1,a2,b1,b2,c1,c2} for all d j ∈ D�, δ ∈ D
∗
� and δ = dkδ

′ .

We have

(S dkd jδ, [Xk;Xε ‖ Q1(ddkd jδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}) ∈ R
(S dkδ′ , [Xk;Xε ‖ Q1(ddkδ

′e ‖ P2(0)]{a1,a2,b1,b2,c1,c2}) ∈ R .

By using a similar analysis with the previous case, we have that R is a bisimulation up
to ↔b. By Lemma 2.9, we have R ⊆↔b. Moreover, there is no infinite τ-transition
sequence from any process defined above. Therefore, R ⊆↔∆

b .
Hence, we have S ε ↔

∆
b S . �

Next we proceed to define a tape process by means of two stacks. We consider the
following infinite specification in TSP; of a tape:

TδLďδR
= r!d.TδLďδR

+ Σe∈D�w?e.TδL ěδR + L?m.TδL
<dδR + R?m.TδLd >δR + 1 .

We define the tape process in TCP] as follows:

T = [T� ‖ S 1 ‖ S 2]{push1,pop1,push2,pop2}

Td = r!d.Td + Σe∈D�w?e.Te + L?m.Leftd + R?m.Rightd + 1 (d ∈ D�)
Leftd = Σe∈D� ((pop1?e + 1);(push2!d + 1);Te)

Rightd = Σe∈D� ((pop2?e + 1);(push1!d + 1);Te) ,

where S 1 and S 2 are two stacks obtained by renaming push and pop in S to push1,
pop1, push2 and pop2, respectively. We establish the following result.

84CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

Lemma 4.23 (the always terminating tape). T�̌ ↔∆
b T.

Proof. We define the following auxiliary processes:

S 1(δ) = [X1,k ‖ Q1(dδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}

S 2(δ) = [X2,k ‖ Q1(dδe) ‖ P2(0)]{a1,a2,b1,b2,c1,c2}, where δ = dkδ
′ .

X1,k and X2,k are obtained by renaming push and pop in Xk to push1, pop1, push2 and
pop2 respectively. We use δ to denote the reverse sequence of δ.

We verify that

R = {(TδLďδR
, [Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}) | d ∈ D�, δL, δR ∈ D

∗
�} ⊆↔

∆
b .

For simplicity, we only verify the simulation of the transitions from TδLďδR
and the

other direction is then trivial. TδLďδR
has the following transitions:

TδLďδR

r!d
−→ TδLďδR

TδLďδR

w?e
−→ TδL ěδR

for all e ∈ D�

TδLďδR

L?m
−→ TδL

<dδR if δL , ε

TδLďδR

R?m
−→ TδLd >δR if δR , ε

TδLďδR

L?m
−→ Tε�̌dδR if δL = ε and

TδLďδR

R?m
−→ TδLd�̌ε if δR = ε .

4.5. EXECUTABILITY IN THE CONTEXT OF TERMINATION 85

They are simulated by the following transitions:

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

r!d
−→ [Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

e?d
−→ [Te ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

for all e ∈ D�

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

L?m
−→ [Leftd ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

−→
∗ [Te ‖ S 1(δ′L) ‖ S 2(dδR)]{push1,pop1,push2,pop2}, δL = δ′Le, if δL , ε

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

R?m
−→ [Rightd ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

−→
∗ [Te ‖ S 1(δLd) ‖ S 2(δ′R)]{push1,pop1,push2,pop2}, δR = eδR, if δR , ε

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

L?m
−→ [Leftd ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

−→
∗ [T� ‖ S 1(ε) ‖ S 2(dδR)]{push1,pop1,push2,pop2}, if δL = ε

[Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

R?m
−→ [Rightd ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}

−→
∗ [T� ‖ S 1(δLd) ‖ S 2(ε)]{push1,pop1,push2,pop2}, if δR = ε .

We have

(TδLďδR
, [Td ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}) ∈ R,

(TδL ěδR , [Te ‖ S 1(δL) ‖ S 2(δR)]{push1,pop1,push2,pop2}) ∈ R,

(TδL
<dδR , [Te ‖ S 1(δ′L) ‖ S 2(dδR)]{push1,pop1,push2,pop2}) ∈ R,

(TδLd >δR , [Te ‖ S 1(δLd) ‖ S 2(δ′R)]{push1,pop1,push2,pop2}) ∈ R,
(Tε�̌dδR , [T� ‖ S 1(ε) ‖ S 2(dδR)]{push1,pop1,push2,pop2}) ∈ R, and

(TδLd�̌ε , [T� ‖ S 1(δLd) ‖ S 2(ε)]{push1,pop1,push2,pop2}) ∈ R .

By an analysis similar from Lemma 4.22, we have R is a bisimulation up to ↔b.
Therefore, R ⊂↔b. Moreover, there is no infinite τ-transition sequence from the pro-
cesses defined above. Therefore, R ⊆↔∆

b .
Hence, we have T�̌ ↔∆

b T . �

Finally, we construct a finite control process for an RTMM = (SM,−→M, ↑M, ↓M)
as follows:

Cs,d = Σ(s,d,a,e,M,t)∈−→M (a.w!e.M!m.Σ f∈D�r? f .Ct, f)[+1]s↓M (s ∈ SM, d ∈ D�) .

Note that from Lemma 4.21, the above process can be specified in TCP].
We prove the following lemma.

86CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

Lemma 4.24 (the finite control). T (M) ↔∆
b [C↑M,� ‖ T]{r,w,L,R}.

Proof. By the proof of Theorem 4.11, ↔∆
b is compatible with parallel composition.

Therefore, it is enough to show that T (M) ↔∆
b [C↑,� ‖ T�̌]{r,w,L,R}.

We define a binary relation R by:

R = {((s, δLďδR), [Cs,d ‖ TδLďδR
]{r,w,L,R}) | s ∈ SM , δL, δR ∈ D

∗
�, d ∈ D�}

∪ {((s, δL
<dδR), [Cs, f ‖ TδL

<dδR]{r,w,L,R}) | s ∈ SM , δL, δR ∈ D
∗
�, d ∈ D�, δL , ε, δL = δ′L f }

∪ {((s, δLd >δR), [Cs, f ‖ TδLd >δR]{r,w,L,R}) | s ∈ SM , δL, δR ∈ D
∗
�, d ∈ D�, δR , ε, δR = f δ′R}

∪ {((s, �̌δR), [Cs,� ‖ T�̌δR]{r,w,L,R}) | s ∈ SM , δR ∈ D
∗
�}

∪ {((s, δL�̌), [Cs,� ‖ TδL�̌]{r,w,L,R}) | s ∈ SM , δL ∈ D
∗
�} .

We show that R ⊆↔∆
b .

(s, δLďδR) has the following transitions:

(s, δLďδR)
a
−→ (t, δL

<eδR) if (s, d, a, e, L, t) ∈−→M, δL , ε

(s, δLďδR)
a
−→ (t, δLe >δR) if (s, d, a, e,R, t) ∈−→M, δR , ε

(s, δLďδR)
a
−→ (t, �̌eδR) if (s, d, a, e, L, t) ∈−→M, δL = ε

(s, δLďδR)
a
−→ (t, δLe�̌) if (s, d, a, e,R, t) ∈−→M, δR = ε .

They are simulated by:

[Cs,d ‖ TδLďδR
]{r,w,L,R}

a
−→ [w!e.L!m.Σ f∈D�r? f .Ct, f ‖ TδLďδR

]{r,w,L,R}
−→

∗ [Ct, f ‖ TδL
<dδR]{r,w,L,R}, if (s, d, a, e, L, t) ∈−→M, δL , ε, δL = δ′L f

[Cs,d ‖ TδLďδR
]{r,w,L,R}

a
−→ [w!e.R!m.Σ f∈D�r? f .Ct, f ‖ TδLďδR

]{r,w,L,R}
−→

∗ [Ct, f ‖ TδLd >δR]{r,w,L,R}, if (s, d, a, e,R, t) ∈−→M, δR , ε, δR = f δ′R

[Cs,d ‖ TδLďδR
]{r,w,L,R}

a
−→ [w!e.L!m.Σ f∈D�r? f .Ct, f ‖ TδLďδR

]{r,w,L,R}
−→

∗ [Ct,� ‖ T�̌dδR]{r,w,L,R}, if (s, d, a, e, L, t) ∈−→M, δL = ε

[Cs,d ‖ TδLďδR
]{r,w,L,R}

a
−→ [w!e.R!m.Σ f∈D�r? f .Ct, f ‖ TδLďδR

]{r,w,L,R}
−→

∗ [Ct,� ‖ TδLd�̌]{r,w,L,R}, if (s, d, a, e, L, t) ∈−→M, δR = ε .

We apply a similar analysis to other pairs in R. Using the proof strategy similar to
Lemma 4.22, it is straightforward to show that R is a bisimulation up to ↔b. Hence,
we have R ⊂↔b. Moreover, using a similar strategy in the proof to show the reactive

4.6. REMARKS 87

Turing powerfulness of the π-calculus from Section 5.2(See also [61]), we can show
that R satisfies the divergence-preserving condition. For every infinite τ-transition se-
quence in T (M), we can find an infinite τ-transition sequence in the transition system
induced from [C↑M,� ‖ T]{r,w,L,R}. Therefore, R ⊆↔∆

b .
Hence, we have T (M) ↔∆

b [C↑M,� ‖ T]{r,w,L,R}. �

Concluding, we have proved the following theorem.

Theorem 4.25 (the reactive Turing powerfulness of TCPN). TCP] is reactively Turing
powerful modulo↔∆

b .

4.6 Remarks
The results established in this chapter show that a revision of the operational semantics
of sequential composition leads to a smoother integration of process theory and the
classical theory of automata and formal languages. In particular, the correspondence
between context-free processes and pushdown processes can be established up to strong
bisimilarity, which does not seem to hold with the more standard operational semantics
of sequential composition in a setting with intermediate termination [4]. Furthermore,
the revised operational semantics of sequential composition also seems to work bet-
ter in combination with the recursive operations of [21]. We conjecture that it is not
possible to specify an always terminating counter or stack in a process calculus with
iteration and nesting if the original operational semantics of sequential composition is
used.

There are also some disadvantages to the revised operational semantics.

1. First of all, the negative premise in the operational semantics gives well-known
formal complications in determining whether some process does, or does not, ad-
mit a transition. For instance, consider the following unguarded recursive speci-
fication:

X = X;Y + 1
Y = a.1 .

It is not a priori clear whether an a-transition is possible from X: if X only has
the option to terminate, then X;Y can do the a-transition from Y , but then also X
can do the a-transition, contradicting the assumption that X only has the option
to terminate. Therefore, we have to restrict the semantics to guarded recursive
specifications.

88CHAPTER 4. SEQUENTIAL COMPOSITION AND INTERMEDIATE TERMINATION

2. Second, as we have illustrated in Section 4.3, rooted branching bisimilarity is
not compatible with respect to the new sequential composition operation. The
divergence-preserving condition is required for the congruence property.

3. Finally, note that (a.1 + 1);b.1 is not strongly bisimilar to (a.1;b.1) + (1;b.1), and
hence the operator ; does not distribute from the right over +. It is to be expected
that there is no finite sound and ground-complete set of equational axioms for
the process calculus TCP; with respect to strong bisimilarity without using an
auxiliary operator. We leave for future work to further investigate the equational
theory of sequential composition.

Another interesting future work is to establish the reactive Turing powerfulness
on other process calculi with non-regular iterators based on the revised semantics of
the sequential composition operator. For instance, we could consider the pushdown
operator “$” and the back-and-forth operator “�” introduced by Bergstra and Ponse
in [21]. They are given by the following equations:

P1
$P2 = P1;(P1

$P2);(P1
$P2) + P2

P1
�P2 = P1;(P1

�P2);P2 + P2 .

By analogy to the nesting operator, we can also give them some proper rules of opera-
tional semantics, and then use the calculus obtained by the revised semantics to define
other versions of terminating counters. Moreover, we expect to establish their reactive
Turing powerfulness.

Chapter 5

RTM and the π-Calculus

The π-calculus [68, 77] is a well-known process calculus for the formal specification
of the behaviour of reactive systems in concurrency theory.

Research in concurrency theory has focussed on defining expressive process spec-
ification formalisms, modal logics, studying suitable behavioural equivalences, etc.
Expressivity questions have also been addressed extensively in concurrency theory, es-
pecially in the context of the π-calculus (see, e.g., [47, 38]), but mostly pertaining to the
so-called relative expressivity of process calculi. The absolute expressivity of process
calculi, and in particular the question as to which interactive behaviour can actually
be executed by a conventional computing system, has received less attention. In this
chapter, we consider the expressivity of the π-calculus with respect to the model of
Reactive Turing Machines.

We confirm that the π-calculus is expressive: every executable behaviour can be
specified in the π-calculus up to divergence-preserving branching bisimilarity [43, 42],
which is the finest behavioural equivalence discussed in van Glabbeek’s seminal paper
on behavioural equivalences [40]. Although divergence-preserving branching bisimi-
larity is not the behavioural equivalence that is most used in the π-calculus, we choose
it for it is the finest one that fits in the theory of executability. Our proof explains how
an arbitrary Reactive Turing Machine can be specified in the π-calculus. The specifi-
cation consists of a component that specifies the behaviour of the tape memory, and
a component that specifies the behaviour of the finite control of the Reactive Turing
Machine under consideration. The specification of the behaviour of the tape memory
is generic and elegantly uses the link mobility feature of the π-calculus.

We also prove that the converse is not true: it is possible to specify, in the π-
calculus, transition systems that are not executable up to divergence-preserving branch-

89

90 CHAPTER 5. RTM AND THE π-CALCULUS

ing bisimilarity. We shall analyze the discrepancy and identify two causes.
The first cause is that the π-calculus presupposes an infinite supply of names, which

is technically essential both for the way input is modelled and for the way fresh name
generation is implemented. The infinite supply of names in the π-calculus gives rise
to an infinite alphabet of actions. The presupposed alphabet of actions of a Reactive
Turing Machine is, however, purposely kept finite, since allowing Reactive Turing Ma-
chines to have an infinite alphabet of actions arguably leads to an unrealistic model
of executability. As an alternative, we shall therefore investigate the executability of
π-calculus behaviour subject to finitely many names, considering only the observable
behaviour of a π-calculus term that refers to a finite subset of the set of names. The
underlying assumption is that any realistic system will be based on a finite alphabet of
input symbols.

The second cause is that, even under a finite name restriction, the transition system
associated with a π-calculus term may still have unbounded branching. Transition
systems with unbounded branching are not executable up to divergence-preserving
branching bisimilarity, but unbounded branching behaviour can be simulated at the
expense of sacrificing divergence preservation. We shall establish that, given a finite
name restriction, the behaviour associated with a π-term is always executable up to the
divergence-insensitive variant of branching bisimilarity.

We shall investigate the possibility of extending the Reactive Turing Machines with
an infinite alphabet of actions in Chapter 6. To this end, an infinite alphabet of states
or an infinite alphabet of data symbols has to be introduced. We shall see that such a
machine is capable of simulating any effective transition system, thus the π-calculus
can be simulated. However, such a model is unrealistic. According to the work in [26],
a Turing machine with atoms is capable of dealing with the formalism of an infinite
alphabet of names. As an analogy to Turing machine with atoms, we define Reactive
Turing Machines with atoms, and show that every π-calculus term can be simulated
by a Reactive Turing Machine with atoms up to the divergence-insensitive version of
branching bisimilarity.

This chapter is organized as follows. In Section 5.1, we recall the operational se-
mantics of the π-calculus with replication. In Section 5.2, we prove the reactive Turing
power of the π-calculus modulo divergence-preserving branching bisimilarity: a finite
specification of Reactive Turing Machines in the π-calculus is proposed and verified.
In Section 5.3, we discuss the executability of transition systems associated with π-
calculus processes. We first argue that the π-calculus is not executable in general. Then,
we establish that every behaviour specified by the π-calculus restricted to finitely many
names is executable modulo the divergence-insensitive variant of branching bisimilar-
ity, but not modulo divergence-preserving branching bisimilarity. The chapter ends
with a discussion of related work and some conclusions in Section 5.4.

5.1. THE π-CALCULUS 91

5.1 The π-Calculus

5.1.1 Syntax

The π-calculus was proposed by Milner, Parrow and Walker in [69] as a language
to specify processes with link mobility. The expressivity of many variants of the π-
calculus has been extensively studied. In this thesis, we shall consider the basic version
presented in the textbook by Sangiorgi and Walker [77], but the match prefix operator
from [69] is not considered here. We recapitulate some definitions from [77] below
and refer to the book for detailed explanations.

We presuppose a countably infinite set N of names; we use strings of lower case
letters for elements of N . Furthermore, we use upper case letters for π-calculus pro-
cesses (which are also referred to as π-terms). The prefixes, processes and summations
of the π-calculus are, respectively, defined by the following grammar:

π B x y | x(z) | τ (x, y, z ∈ N)
P B M | P | P | (z)P | !P

M B 0 | π.P | M + M .

We briefly explain the meaning of each notation above. 0 denotes the empty pro-
cess; x y represents the event of sending a name y along the channel x; x(z) represents
the event of receiving a name along the channel x. τ represents an internal action; +

denotes a choice between two behaviours; | is the parallel composition operator; (z)P
denotes a restriction of the name z in P; and !P denotes the replication of P.

In x(z).P and (z)P, the displayed occurrence of the name z is binding with scope P.
An occurrence of a name in a process is bound if it is, or lies within the scope of, a
binding occurrence in P; otherwise it is free. We use fn(P) to denote the set of names
that occur free in P, and bn(P) to denote the set of names that occur bound in P.

We use P{z/y} to denote a π-term obtained by substituting every occurrence of y
to z in P; and we use P{~z/~y} to denote a substitution of a sequence of names, i.e.,
P{~z/~y} = (. . . (P{z1/y1}){z2/y2} . . .){zn/yn} for~z = (z1, z2, . . . , zn) and~y = (y1, y2, . . . , yn).

A finite number of changes of bound names in a π-term is often called an α-
conversion. We rephrase the definition in [77] as below.

Definition 5.1 (α-conversion). Let P be a π-term, then Q is an α-conversion of P if it
is obtained by a finite number of substitution operations of bound names from P, i.e.,
there exists ~y = (y1, . . . , yn), ~z = (z1, . . . , zn),y1, . . . , yn ∈ bn(P) and Q = P{~z/~y}. We
write P =α Q if P and Q are two π-terms that are α-convertible.

92 CHAPTER 5. RTM AND THE π-CALCULUS

We call the equivalence class of the α-convertible terms of a π-term P the α equiv-
alence class of P, which is defined as:

[P]α = {Q | P =α Q} .

Two α-convertible terms has the same behaviour, so we consider them as equiva-
lent. Moreover, in Chapter 6, we shall introduce nominal sets to deal with infinite sets
having finite quotients up to α-conversion.

Remark 5.2. For convenience, we sometimes want to abbreviate interactions that in-
volve the transmission of no name at all, or more than one name. Instead of giving a full
treatment of the polyadic π-calculus (see [77]), we define the following abbreviations:

(z1, . . . , zn)P def
= (z1). . .(zn)P,

x 〈y1, . . . , yn〉.P
def
= (w)x w.w y1. · · ·w yn.P (w < fn(P)), and

x(z1, . . . , zn).P def
= x(w).w(z1). · · ·w(zn).P, for n ∈ N+ .

5.1.2 Structural Operational Semantics
We define the operational behaviour of π-calculus processes by means of the structural
operational semantics in Table 5.1, in which a ranges over the set of actions of the
π-calculus

Aπ = {x y, x y, x (z) | x, y, z ∈ N} ∪ {τ} .

The rules in Table 5.1 define on π-terms an Aπ-labelled transition relation −→. We
now briefly explain the effect of each rule. PREFIX consists of three rules for input,
output and internal action prefixes, respectively. SUM states the rules for alternative
choice; the process is free to choose one of the summands to perform a transition. PAR
are the rules for parallel composition without communication, the process may perform
a transition from one of its components. COM illustrates the communication of free
names, and CLOSE illustrates the communication of bound names; a communication
may happen between two parallel components, where one of them sends a name and
the other receives it through an arbitrary channel. RES explains the effect of restriction,
i.e., a transition may happen if it does not contain a restricted name. OPEN states the
effect of sending a bound name; it leads to a scope extrusion regarding that bound
name. REP shows the semantics of the replication operator; it always generates new
instances of processes. ALPHA is the rule for α-conversion, i.e., α-convertible terms
share the same set of transitions.

5.1. THE π-CALCULUS 93

PREFIX
τ.P

τ
−→ P x y.P

x y
−→ P x(y).P

x z
−→ P{z/y}

SUM P
a
−→ P′

P + Q
a
−→ P′

Q
a
−→ Q′

P + Q
a
−→ Q′

PAR P
a
−→ P′

P | Q
a
−→ P′ | Q

bn(a) ∩ fn(Q) = ∅

Q
a
−→ Q′

P | Q
a
−→ P | Q′

bn(a) ∩ fn(P) = ∅

COM
P

x y
−→ P′, Q

x y
−→ Q′

P | Q
τ
−→ P′ | Q′

P
x y
−→ P′, Q

x y
−→ Q′

P | Q
τ
−→ P′ | Q′

CLOSE
P

x (z)
−→ P′, Q

x z
−→ Q′

P | Q
τ
−→ (z)(P′ | Q′)

z < fn(Q)
P

x z
−→ P′, Q

x (z)
−→ Q′

P | Q
τ
−→ (z)(P′ | Q′)

z < fn(P)

RES P
a
−→ P′

(z)P
a
−→ (z)P′

z < a OPEN P
x z
−→ P′

(z)P
x (z)
−→ P′

z , x

REP P
a
−→ P′

!P
a
−→ P′ | !P

P
x y
−→ P′, P

x y
−→ P′′

!P
τ
−→ (P′ | P′′) | !P

P
x (z)
−→ P′, P

x z
−→ P′′

!P
τ
−→ (z)(P′ | P′′) | !P

ALPHA P
a
−→ P′

Q
a
−→ P′

Q =α P

Table 5.1: Structural operational semantics of the π-calculus

94 CHAPTER 5. RTM AND THE π-CALCULUS

We can associate with every π-term P an Aπ-labelled transition system T (P) =

(SP,−→P, P) as follows.

Definition 5.3 (the LTS associated with a π-term). Let P be a π-term. The transition
system associated with P is T (P) = (SP,−→P, ↑P), where

1. SP = {Q | Q ∈ Reach(P)} is the set of all reachable π-terms from P by the
operational semantics;

2. −→P= {(P, a,Q) | P
a
−→ Q} is the set of transitions between all reachable π-

terms; and

3. ↑P= P is the initial state.

We use the following example to illustrate the semantics of the π-calculus and an
important feature of link mobility.

Example 5.4. We define three π-calculus processes as follows:

P = x z.v(w).0
Q = x(y).y(u).0
R = z w.0 .

Consider a process (z)(P | R) | Q, P and Q share a common channel name x, and P
and R share a bound name z as illustrated in Figure 5.1. By the structural operational
semantics, we have the following transition:

(z)(P | R) | Q
τ
−→ v(w).0 | (z)(z w.0 | z(u).0) = P′ | (z)(R | Q′{z/y}) ,

where P′ = v(w).0 and Q′ = y(u).0. After the transition, P′ and Q′{z/y} do not share
the channel name x, and the bound name z is now shared by R and Q′{z/y}. In other
words, the link between the first component and the third component is broken and the
link between the first component and the second component is moved to the second
component and the third component of the parallel composition during the above τ-
transition. We call this phenomenon link mobility. We shall take advantage of this
feature to simulate the linking structure of the tape of an RTM.

5.1.3 Compatibility
The following lemma establishes that divergence-preserving branching bisimilarity is
compatible with restriction and parallel composition. This will be a useful property
when establishing the correctness of our simulation of RTMs in the π-calculus, in the
next section.

5.1. THE π-CALCULUS 95

P R Q P′ R Q′{z/y}
z

x

z

Figure 5.1: An example to illustrate the link mobility of the π-calculus

Lemma 5.5 (compatibility with restriction and parallel composition). For all π-terms
P, P′, Q, and Q′:

1. if P ↔∆
b P′, then (x)P ↔∆

b (x)P′;

2. if P ↔∆
b P′ and Q ↔∆

b Q′, then P | Q ↔∆
b P′ | Q′.

Proof. 1. It is straightforward to verify that the relation

R = {((x)P, (x)P′) | P and P′ are π-terms s.t. P ↔∆
b P′} ∪ ↔∆

b

is a divergence-preserving branching bisimulation relation.

2. We define the relation R by

{(P|Q, P′ |Q′) | P, P′, Q, and Q′ are π-terms s.t. P ↔∆
b P′ and Q ↔∆

b Q′}∪↔∆
b ;

we verify that R is a divergence-preserving branching bisimulation. To this end,
we first suppose that P |Q

a
−→ R, and distinguish three cases according to which

operational rule is applied last in the derivation of this transition:

(a) if P
a
−→ P1 and R = P1 | Q, then, since P ↔∆

b P′, there exist P′′1 and

P′1, such that P′ −→∗ P′′1
a
−→ P′1 with P′ ↔∆

b P′′1 and P1 ↔
∆
b P′1. Thus

P′ | Q′ −→∗ P′′1 | Q
a
−→ P′1 | Q, and, according to the definition of R, we

have P | Q R P′′1 | Q and P1 | Q R P′1 | Q.

(b) If P
x y
−→ P1, Q

x y
−→ Q1, R = P1 | Q1, and a = τ, then, since P ↔∆

b P′ and

Q ↔∆
b Q′, there exist P′′1 , P′1, Q′′1 and Q′1 such that P′ −→∗ P′′1

x y
−→ P′1 with

P ↔∆
b P′′1 and P1 ↔

∆
b P′1, and Q′ −→∗ Q′′1

x y
−→ Q′1 with Q ↔∆

b Q′′1 and

Q1 ↔
∆
b Q′1. Hence, it follows that P′ | Q′ −→∗ P′′1 | Q

′′
1

τ
−→ P′1 | Q

′
1, with

P | Q R P′′1 | Q
′′
1 and P1 | Q1 R P′1 | Q

′
1.

96 CHAPTER 5. RTM AND THE π-CALCULUS

(c) If P
x (z)
−→ P1, Q

x z
−→ Q1, R = (z)(P1 | Q1), and a = τ, then, since P ↔∆

b P′

and Q ↔∆
b Q′, there exist P′′1 , P′1, Q′′1 and Q′1 such that P′ −→∗ P′′1

x (z)
−→ P′1

with P ↔∆
b P′′1 and P1 ↔

∆
b P′1, and Q′ −→∗ Q′′1

x z
−→ Q′1 with Q ↔∆

b Q′′1
and Q1 ↔

∆
b Q′1. Hence, it follows that P′ | Q′ −→∗ P′′1 |Q

′′
1

τ
−→ (z)(P′1 |Q

′
1),

with P | Q R P′′1 | Q
′′
1 and (z)(P1 | Q1) R (z)(P′1 | Q

′
1).

The symmetric cases can be proved analogously.

Moreover, we argue that the divergence-preserving condition holds, since all the
transitions above are mutually simulated without introducing a divergence. If
P | Q has a divergence, then the divergence is simulated by P′ | Q′ according to
our analysis; otherwise, if P | Q does not have a divergence, then no divergence
can be derived from P′ | Q′.

�

5.2 Reactively Turing Powerfulness of the π-Calculus

In the previous section, we have introduced the π-calculus as a language to specify
behaviour of systems with link mobility, and we have proposed RTMs to define a notion
of executable behaviour. In this section we prove that every executable behaviour can
be specified in the π-calculus up to divergence-preserving branching bisimilarity. To
this end, we associate with every RTMM a π-term P that simulates the behaviour of
M up to divergence-preserving branching bisimilarity, that is, T (M) ↔∆

b T (P).
The structure of our specification is illustrated in Figure 5.2. In this figure, each

node represents a parallel component of the specification, each labelled arrow stands
for a communication channel, and the dashed lines represent the links maintained by
the components. Moreover, the equalities on arrows and dashed lines indicate the cor-
respondence between the names as they occur in the definitions of the linked compo-
nents. The specification consists of a generic finite specification of the behaviour of a
tape (parallel components Hk, Bl,k, Ck and Br,k, for k ∈ Z in Figure 5.2), and a finite
specification of a control process that is specific for the RTMM under consideration
(parallel component S in Figure 5.2). We first discuss the generic specification of the
tape in Section 5.2.1; then we discuss how to add a suitable control process specific for
M in Section 5.2.2; and we finally prove thatM is simulated by the parallel composi-
tion of the two parts.

5.2. REACTIVELY TURING POWERFULNESS OF THE π-CALCULUS 97

Ci Ci+1 Cn Br,n+1Ci−1CmBl,m−1

Hi

S

ri = ti+1ti−1 = li rn = tn+1tm−1 = lm

ti ri = ti+1ti−1 = li ui

write, left, rightread

Figure 5.2: Specification of an RTM utilizing the linking structure of the π-calculus

5.2.1 Tape
In [5], the behaviour of the tape of a Turing machine is finitely specified in ACPτ
making use of finite specifications of two stacks. The specification is not easily modi-
fied to take intermediate termination into account, and therefore, in [13], an alternative
solution is presented, specifying the behaviour of a tape in TCPτ by using a finite spec-
ification of a queue (see also [4]). In the previous chapter (see Section 4.5), we also
gave a specification of a tape that is always terminating. That specification essentially
used sequential composition (with a revised semantics) and a nesting operator. Neither
operation is present in the π-calculus. In this section, we exploit the link passing fea-
ture of the π-calculus to give a more direct specification. In particular, we shall model
the tape as a collection of cells endowed with a link structure that organises them in a
linear fashion. Note that we do not consider termination since the π-calculus does not
(explicitly) distinguish between successful and unsuccessful termination.

We first give an informal description of the behaviour of a tape. The state of a tape
is characterised by a tape instance δLďδR, with d ∈ D� and δL, δR ∈ D�

∗, consisting
of a finite (but unbounded) sequence of data with the current position of the tape head
indicated by .̌ The tape may then exhibit the following observable actions:

1. read d: the datum under the tape head is output along the channel read;

2. write e: a datum e is written on the position of the tape head, resulting in a new
tape instance δLěδR; and

3. left, right: the tape head moves one position left or right, resulting in δL
<dδR or

δLd >δR, respectively.

98 CHAPTER 5. RTM AND THE π-CALCULUS

Henceforth, we assume that tape symbols are included in the set of names, i.e., that
D� ⊆ N .

In our π-calculus specification of a tape, each individual tape cell is specified as
a separate component, and there is a separate component modelling the tape head. A
tape cell stores a datum d, represented by a free name in the specification, and it has
pointers l and r to its left and right neighbour cells. Furthermore, it has two links to the
component modelling the tape head: the link u is used by the tape head for updating the
datum, and the link t serves as a general communication channel for communicating all
relevant information about the cell to the tape head. The following π-term represents
the behaviour of a tape cell:

C def
= c(t, l, r, u, d).C(t, l, r, u, d)

C(t, l, r, u, d) def
= u(e).c 〈t, l, r, u, e〉.0 + t 〈l, r, u, d〉.c 〈t, l, r, u, d〉.0 .

Note that the behaviour of an individual tape cell C(t, l, r, u, d) is as follows: either
it receives along channel u an update e for its datum d, after which it recreates itself
with datum e in place of d; or it outputs all relevant information about itself (i.e., the
links to its left and right neighbours, its update channel u, and the stored datum d) to
the tape head along channel t, after which it recreates itself. A cell is created by a
synchronisation on name c, by which all relevant information about the cell is passed;
we include a component !C for the generation of new incarnations of existing tape
cells.

At all times, the number of tape cells will be finite, but there is no a priori bound
on the number of tape cells used in an execution of an RTM. To model the unbounded
nature of the tape, we define a process B that serves to generate new blank tape cells
on either side of the tape whenever needed:

B def
= bl(t, r).(u, l)Bl(t, l, r, u) + br(t, l).(u, r)Br(t, l, r, u)

Bl(t, l, r, u) def
= t 〈l, r, u,�〉.(c 〈t, l, r, u,�〉.0 | bl 〈l, t〉.0)

Br(t, l, r, u) def
= t 〈l, r, u,�〉.(c 〈t, l, r, u,�〉.0 | br 〈t, r〉.0) .

Note that B offers the choice to either create a blank tape cell at the left-hand side
of the tape through bl(t, r), or a blank tape cell at the right-hand side of the tape through
br(t, l). In the first case, suppose the original leftmost cell has the channels to and lo,
for itself and its left neighbour, respectively; then for the new cell, we have t = lo and
r = to, in order to maintain the links to its neighbour. Moreover, at the creation of the
new blank cell, two new links are utilized: u is the update channel of the new blank
cell, and l will later be used as the link to generate another cell. Thus a new cell is

5.2. REACTIVELY TURING POWERFULNESS OF THE π-CALCULUS 99

generated from the process Bl(t, l, r, u) by a synchronisation along channel c, and the
cell generator on the left is updated by bl 〈l, t〉.0. In the second case, a symmetrical
procedure is implemented by Br(t, l, r, u).

Throughout the simulation of an RTM, the number of parallel components mod-
elling individual tape cells will grow. We shall presuppose a numbering of these par-
allel components with consecutive integers from some interval [m, n] (m and n are
integers such that m ≤ n), in agreement with the link structure. The numbering is re-
flected by a naming scheme that adds the subscript i to the links t, l, r, u and d of the
ith cell. We abbreviate C(ti, li, ri, ui, di) by Ci(di), and Bl(ti, li, ri, ui) and Bl(ti, li, ri, ui)
by Bl,i and Br,i, respectively. Let ~d[m,n] = dm, dm+1, . . . , dn−1, dn; we define:

Cells[m,n](~d[m,n])
def
= (bl, br, c)(Bl,m−1 |Cm(dm) |Cm+1(dm+1) |
· · · |Cn−1(dn−1) |Cn(dn) | Br,n+1 | !C | !B) .

Note that an intuitive illustration of the linking structure in process Cells is shown in
the bottom row of Figure 5.2.

The component modelling the tape head serves as the interface between the tape
cells and the RTM-specific control process. The four channels for tape actions are
referring to names read, write, left, and right. An instance of the tape head process
H(t, l, r, u, d) is initiated by the 5 names that parameterise the current cell, which is
defined by

H def
= h(t, l, r, u, d).H(t, l, r, u, d)

H(t, l, r, u, d) def
= read d.h 〈t, l, r, u, d〉.0 + write(e).u e.h 〈t, l, r, u, e〉.0
+ left.l(l′, r′, u′, d′).h 〈l, l′, r′, u′, d′〉.0
+ right.r(l′, r′, u′, d′).h 〈r, l′, r′, u′, d′〉.0 .

The tape head maintains two links to the current cell (a communication channel t
and an update channel u), as well as links to its left and right neighbour cells (l and
r, respectively). Furthermore, the tape head remembers the datum d in the current
cell. The datum d may be output along the read-channel. Furthermore, a new datum e
may be received through the write-channel, which is then forwarded through the update
channel u to the current cell. Finally, the tape head may receive instructions to move left
or right, which has the effect of receiving information about the left or right neighbours
of the current cell through l or r, respectively. In all cases, a new incarnation of the
tape head is started, with a call on the h-channel.

Let ~t[m,n] = tm, tm+1, . . . , tn−1, tn, let ~u[m,n] = um, um+1, . . . , un−1, un, and let Hi =

100 CHAPTER 5. RTM AND THE π-CALCULUS

H(ti, li, ri, ui, di); we define

Tapei
[m,n](~d[m,n])

def
= (~t[m−1,n+1], ~u[m,n])((h)(Hi | !H) | Cells[m,n](~d[m,n])) .

We prove the following lemmas about the behaviour of our tape specification:

Lemma 5.6. The following statements are valid:

1. (c)(c 〈ti, li, ri, ui, di〉.0 | !C) ↔∆
b (c)(Ci(di) | !C);

2. (bl, br)(bl 〈tm, rm〉.0 | !B) ↔∆
b (bl, br, um, lm)(Bl,m | !B);

3. (bl, br)(br 〈tn, ln〉.0 | !B) ↔∆
b (bl, br, un, rn)(Br,n | !B); and

4. (h)(h 〈ti, li, ri, ui, di〉.0 | !H) ↔∆
b (h)(Hi | !H).

Proof. We just show the first statement. There is only one transition from the process
(c)(c 〈ti, li, ri, ui, di〉.0 | !C), which labelled by τ and exactly leads to (c)(Ci(di) | !C), i.e.,

(c)(c 〈ti, li, ri, ui, di〉.0 | !C)
τ
−→ (c)(Ci(di) | !C) .

Hence, we have (c)(c 〈ti, li, ri, ui, di〉.0 | !C) ↔∆
b (c)(Ci(di) | !C).

One may verify in the same way that all the other statements hold. �

We write P
a
−→↔∆

b P′ for “there is a P′′ such that P
a
−→ P′′ and P′′ ↔∆

b P′”.

Lemma 5.7. Tapei
[m,n](~d[m,n])

a
−→ T ′ if, and only if:

1. a = read di and T ′ ↔∆
b Tapei

[m,n](~d[m,n]);

2. a = write e and T ′ ↔∆
b Tapei

[m,n](~d[m,i−1], e, ~d[i+1,n]), where e ∈ D�;

3. a = left and T ′ ↔∆
b Tapei−1

[m,n](~d[m,n]), for i > m;

4. a = left and T ′ ↔∆
b Tapei−1

[m−1,n](�, ~d[m,n]), for i = m;

5. a = right and T ′ ↔∆
b Tapei+1

[m,n](~d[m,n]), for i < n; or

6. a = right and T ′ ↔∆
b Tapei+1

[m,n+1](~d[m,n],�), for i = n.

5.2. REACTIVELY TURING POWERFULNESS OF THE π-CALCULUS 101

Proof. Tapei
[m,n](~d[m,n]) has six possible types of outgoing transitions, namely, read-

ing through the name read, writing through the name write, moving the head through
names left, and right with or without generating a new tape cell, respectively. We use
T ′ to denote the resulting process. We just argue (only in the first case) that T ′ is indeed
bisimilar to Tapei

[m,n](~d[m,n]).

Tapei
[m,n](~d[m,n])

read di
−→ (~t[m−1,n+1], ~u[m,n])((h)(h 〈ti, li, ri, ui, di〉.0 | !H) | Cells[m,n]) = T ′ .

By Lemma 5.6, we have (h)(h 〈ti, li, ri, ui, di〉.0 | !H) ↔∆
b (h)(Hi | !H), so by Lemma 5.5,

we have T ′ ↔∆
b Tapei

[m,n](~d[m,n]). Moreover, only a finite sequence of τ transitions is
introduced here, so we do not introduce any divergence.

One may verify in the same way that all the other statements hold. �

5.2.2 Finite Control

We associate with every RTM M = (Q, 7→, Ini) a finite specification of its control
process S . Here m can be either left or right, and S is defined as follows:

S def
=

∑
s∈Q

s.
∑

d∈D�

d.S s,d

S s,d
def
=

∑
(s,d,a,e,m,t)∈7→

a.write e.m .read(f).t . f .0 .

We assume that Q ⊆ N , D� ⊆ N and Q ∩ D� = ∅. We let ~s = s1, s2, . . . , sk ∈ Q,
and ~e = e1, e2, . . . , el ∈ D� be two vectors that contain all states and data symbols,
respectively; we define the control process as:

Controls,d
def
= (~s, ~e)(S s,d | !S), s ∈ Q, d ∈ D� .

On each call of the control process, an instance from the replication of S reads the
current state s from the previous stage, and the current datum d. After that, the control
process S s,d chooses a transition (s, d, a, e,m, t) from the transition rules ofM that is
correlated with the s and d, and it performs a sequence of actions. First, it executes an
a-labelled transition, then it writes the updated data to the current cell on the tape, and
does the move instructions. Finally, it reads the data f from the new position of the
tape, and passes the resulting state t and updated data f to reach another process S t, f .

The following lemma illustrates the behaviour of the control process.

102 CHAPTER 5. RTM AND THE π-CALCULUS

Lemma 5.8. Given an RTMM = (Q, 7→, Ini) and a control process defined as above,
then for every s ∈ Q and d ∈ D�, we have the following transition sequence:

Controls,d
a
−→ (~s, ~e)(write e.m .read(f).t . f .0 | !S)

write e
−→

m
−→

read f
−→↔∆

b Controlt, f ,

if and only if there is a transition rule (s, d, a, e,m, t) ∈ 7→.

Finally, for a given RTM M, we associate with every configuration (s, δLďδR) a
π-term Ms,δLďδR

, consisting of a parallel composition of the specifications of its tape
instance and control process. Let ~r = read,write, left, right; we define

Ms,δLďδR
= (~r)(Controls,d |Tapei

[m,n](~d[m,n])), where ~d[m,i−1] = δL, di = d, and ~d[i+1,n] = δR .

The following lemma shows that Ms,δLďδR
actually simulates every step of a transi-

tion of an RTM.

Lemma 5.9. Given an RTMM = (Q, 7→, Ini), we associate with every configuration
(s, δLďδR) a specification Ms,δLďδR

. Moreover, there is a one-to-one correspondence as
illustrated in Figure 5.3 between their transitions:

Ms,δLďδR

a
−→↔∆

b Mt,δ′L f̌ δ′R
,

if and only if there is a transition (s, δLďδR)
a
−→ (t, δ′L f̌ δ′R).

Proof. 1. For the “if” part, we assume that there is a transition of the RTM

(s, δLďδR)
a
−→ (t, δ′L f̌ δ′R) .

According to the semantics of the RTM in Definition 2.11, the transition re-
sults from the application of the rule (s, d, a, e,m, t) ∈ 7→. Then according to
Lemma 5.8, we have

Ms,δLďδR

a
−→ (~r, ~s, ~e)(write e.m .read(f).t . f .0 | !S | Tapei

[m,n](~d[m,n])) = M′ .

In the next step we just prove that

M′ ↔∆
b (~r, ~s, ~e)(m .read(f).t . f .0|!S |Tapei

[m,n](dm, . . . , di−1, e, di+1, . . . , dn)) = M′′ .

By Lemma 5.7, there exists a T such that

M′
τ
−→ (~r, ~s, ~e)(m .read(f).t . f .0 | !S | T ′) ,

5.2. REACTIVELY TURING POWERFULNESS OF THE π-CALCULUS 103

and T ′ ↔∆
b Tapei

[m,n](dm, . . . , di−1, e, di+1, . . . , dn). Thus M′
τ
−→↔∆

b M′′ accord-
ing to Lemma 5.5. Moreover, since M′ has only one outgoing τ-transition, we
have M′ ↔∆

b M′′.

Hence, let T ′′ = Tapei′
[m′,n′](~d

′
[m′,n′]), where ~d′[m′,n′] = δ′L f̌ δ′R, and we get a transi-

tion sequence,

M′
τ
−→↔∆

b (~r, ~s, ~e)(m .read(f).t . f .0 | !S | T ′)
τ
−→↔∆

b (~r, ~s, ~e)(read(f).t . f .0 | !S | T ′′)
τ
−→↔∆

b (~r, ~s, ~e)(t . f .0 | !S | T ′′)
−→

∗↔∆
b Mt,δ′L f̌ δ′R

.

by applying Lemma 5.7.

2. For the “only iff” part, we assume that there is a sequence of transitions

Ms,δLďδR

a
−→↔∆

b Mt,δ′L f̌ δ′R
,

Then, by Lemma 5.8, we have that there is a transition rule (s, d, a, e,m, t) ∈ 7→.
By Definition 2.11, the RTM has a transition

(s, δLďδR)
a
−→ (t, δ′L f̌ δ′R) .

�

Now we proceed to show that the specification simulates the execution of an RTM
up to divergence-preserving branching bisimilarity. By Lemma 5.9, every transition of
an RTM is simulated by the specification. Moreover, we need to show that every diver-
gence in the transition system of an RTM also leads to a divergence in the simulation.
Hence, we shall distinguish the τ-labelled transitions in RTMs from the τ-labelled tran-
sitions introduced by the simulation. To this end, we rename the τ to another special
label in τ-labelled rules in the RTM.

Lemma 5.10. Given an RTMM, we have

T (MIni,�̌) ↔∆
b T (M) .

Proof. Let M = (Q, 7→, Ini), and let i < Aτ be a special symbol. We construct an
auxiliary RTMM′ = (Q, 7→′, Ini), where 7→′ is obtained by replacing every τ-labelled

104 CHAPTER 5. RTM AND THE π-CALCULUS

(s, δLďδR)Ms,δLďδR

M′

Mt,δ′L f̌ δ′R (t, δ′L f̌ δ′R)

a

a

τ∗

↔∆
b

↔∆
b

↔∆
b

Figure 5.3: Bisimulation relation between Ms,δL,ďδR
and (s, δL, ďδR)

transition in 7→ by an i-labelled transition. Let M′Ini,�̌ be the π-term associated with the
initial configuration ofM′ as above.

We consider the relation

R
′ = {(M′

s,δLďδR
, (s, δLďδR)) | s ∈ Q, δL, δR ∈ D

∗
�, ď ∈ Ď�} .

R
′ is a branching bisimulation up to ↔b which could be verified by Lemma 5.9. For

then we establish that T (M′Ini,�̌) ↔b T ((Ini, �̌)) by Lemma 2.9.
Now we proceed to show the branching bisimulation that relates T (M′Ini,�̌) and

T ((Ini, �̌)) is divergence-preserving.
Note that there is no τ-transition inM′, which means T ((Ini, �̌)) has no divergence.

Then, by Lemma 5.9, the specification of a certain configuration M′
s,δLďδR

can only do
transitions labelled with a, where a ∈ A ∪ {i}, i.e.

M′
s,δLďδR

a
−→ M′ ↔∆

b M′
t,δ′L f̌ δ′R

.

Since there is no τ-labelled transition from the term M′
t,δ′L f̌ δ′R

, it follows that M′ has no

divergence either. Hence, none of the terms reachable from M′
s,δLďδR

introduce diver-
gence, and we have

T (M′Ini,�̌) ↔∆
b T ((Ini, �̌)) .

Finally, we switch back to M, by changing all the i-labelled transitions to τ, and
we let MIni,�̌ be the specification of the initial state of M. We can also establish that

5.3. EXECUTABILITY OF FINITE π-CALCULUS 105

the relation

R
′ = {(Ms,δLďδR

, (s, δLďδR)) | s ∈ Q, δL, δR ∈ D
∗
�, ď ∈ Ď�}

is a branching bisimulation up to ↔b. Moreover, note that every infinite sequence of

the form
i
−→−→

∗ i
−→−→

∗
· · · from M′Ini,�̌ corresponds with an infinite sequence of the

form
i
−→

i
−→ · · · fromM′, and vice versa. Additionally, there is no divergence from

M′Ini,�̌. Therefore, every infinite τ-labelled sequence from MIni,�̌ corresponds with an
infinite τ-labelled sequence fromM. So we can conclude that R⊆ ↔∆

b .
As a remark, the transition systems associated with M′Ini,�̌ and MIni,�̌ are isomorphic

up to a renaming of occurrences of i into τ, and similarly for the transition systems
associated with the RTMs, and hence, since the transition systems with the i’s do not
have divergence at all, the ones in which i’s are replaced by τ’s only have divergences
of a certain shape. These τ-labelled transitions of the RTM are clearly simulated by the
π-calculus specification and vice versa. Therefore, the above branching bisimulation is
divergence-preserving. �

Thus we have the following expressivity result for the π-calculus.

Theorem 5.11 (reactively Turing powerfulness of the π-calculus). The π-calculus is
reactively Turing powerful modulo↔∆

b .

5.3 Executability of Finite π-Calculus
We have proved that every executable behaviour can be specified in the π-calculus
modulo divergence-preserving branching bisimilarity. We now investigate to what ex-
tent behaviour specified in the π-calculus is executable. Recall that we have defined
executable behaviour as behaviour of an RTM. So, in order to prove that the behaviour
specified by a π-term is executable, we need to show that the transition system asso-
ciated with this π-term is behaviourally equivalent to the transition system associated
with some RTM.

5.3.1 A Gap Between RTMs and the π-Calculus
Note that there is an apparent mismatch between the formalisms of RTMs and the π-
calculus. On the one hand, the notion of RTM as we have defined it in Section 2.2
presupposes finite setsAτ and D� of actions and data symbols, and also the transition
relation of an RTM is finite. As a consequence, the transition system associated with

106 CHAPTER 5. RTM AND THE π-CALCULUS

an RTM is finitely branching, and, in fact, its branching degree is bounded by a natural
number (see Proposition 2.21). Note that this does not mean that RTMs cannot deal
with data of unbounded size; it only means that it has to be encoded using finitely many
symbols. The π-calculus, on the other hand, presupposes an infinite set of names by
which an infinite set of actions Aπ is generated. Furthermore, the transition system
associated with a π-term by the structural operational semantics (see Table 5.1) may
contain states with an infinite branching degree, due to the rules for input prefix and
bound output prefix.

In this section and in Chapter 6, we explore three ways to bridge the gap and estab-
lish a simulation of the π-calculus by RTMs.

First, we consider an alternative operational semantics for the π-calculus in which
the observable behaviour of every π-term is restricted to some presupposed finite subset
of names. We shall see that this restricted variant of the π-calculus is executable up to
branching bisimilarity; the simulation in general does require the use of divergence to
simulate any unbounded branching that may occur in π-calculus processes.

Then, we consider an extension of the formalism of RTMs allowing infinite sets
of actions in Section 6.1. We prove that the π-calculus processes can be simulated by
RTMs if both arbitrary infinite sets of actions and infinite sets of states/data symbols
are allowed. The result is hardly surprising since every effective transition system can
be simulated up to branching bisimilarity by an RTM with only three states if an infinite
set of data symbols is allowed (see the proof of Theorem 6.5).

Finally, we consider an extension of the notion of RTMs, referred to as RTMs with
atoms in Chapter 6, following the work of Bojańczyk, Klin, Lasota, and Toruńczyk
[26]. RTMs with atoms also facilitate infinite sets of actions, states and data symbols,
but with the explicit proviso that these infinite sets have no other structure than equality
and that they are, in fact, orbit-finite (the notion of sets with atoms and orbit-finite set
are defined in Section 6.2). We see that the type of infinity provided by RTMs with
atoms is all that is needed to simulate the π-calculus processes.

5.3.2 Restricting the π-Calculus
Now we proceed to consider the first option, which is to propose a restriction on the
transition systems associated with π-terms such that they refer only to finitely many
actions.

The infinity of the set of actions in the π-calculus arises from the fact that there are
infinitely many names available to construct actions. Namely, from an input prefix a(x),
we can derive infinitely many input actions with infinitely many distinct names, which
are referred to as free input names; and from an output prefix a x a bounded name x,
we can also derive infinitely many output actions with infinitely many distinct names,

5.3. EXECUTABILITY OF FINITE π-CALCULUS 107

which are referred to as bound output names. The free input names allow a process
to receive any potential input from the environment and the bound output names give
a process the ability to generate unboundedly many distinct private channels to com-
municate with other processes. For both purposes, infinite branching of the transition
system is essential.

First observe that the infinite branching caused by input prefix can be thought of
as a technical device in the operational semantics to model the communication of an
arbitrary name from one parallel component to another. The name that will be received,
can either be a free name of the sending process (a value), or a bound name (a private
channel). Since the sending parallel component will only have a finite number of free
names, only finitely many values can be communicated.

Second, technically speaking, according to the operational semantics, infinitely
many distinct private channels may be communicated when an input prefix synchro-
nises with a bound output prefix, the communicated private channel is not observable,
and the resulting π-terms are all equal up to α-conversion, so the only observable ef-
fect of the interaction is that after the communication the sending and receiving parties
share a private channel of which the name is irrelevant.

Our goal is to investigate to what extent the behaviour specified by an individual
π-term is executable. Motivated by the above intuitive interpretation of interaction of
a π-term with its environment, we assume that the behaviour specified by that π-term
is executed in an environment that may offer data values from some presupposed finite
set on its input channels. This assumption seems reasonable as a machine should know
in advance which symbols to expect as input. Furthermore, we assume that there is a
facility for establishing a private channel between the π-term and its environment. Such
a facility could, e.g., be implemented using encryption; we will abstract from its actual
implementation. We define a restriction on the transition systems associated with π-
terms that is based on these assumptions. We call the π-calculus restricted to finitely
many names the finite π-calculus. The semantics of the finite π-calculus is defined as
follows.

Definition 5.12 (the finite π-calculus). Let N ′ ⊆ N be a finite set of names, let A′π =

Aπ − ({x y | x, y ∈ N , y < N ′} ∪ {x (z) | x, z ∈ N}), and let P be a π-term. The
transition system associated with P restricted toN ′ , denoted by T (P) � N ′, is a triple
(SP � N

′,−→P� N
′, P), obtained from T (P) = (SP,−→P, P) as follows:

1. SP � N
′ is the set of states reachable from P by means of transitions that are not

labelled by x y with y < N ′; and

2. −→P� N
′ is the restriction of −→P obtained by excluding all transitions labelled

by x y with y < N ′, and relabelling all transitions labelled with x (z) (x, z ∈ N) to

108 CHAPTER 5. RTM AND THE π-CALCULUS

νx , i.e.,

−→P� N
′ = (−→P ∩ (SP � N

′ ×A′π × SP � N
′))

∪{(s, νx , t) | s, t ∈ SP � N
′, s

x (z)
−→P t} .

Remark 5.13. Our notion of restriction is introduced to restrict labelled transition
systems associated with π-terms to refer to finitely many names. Alternatively, we
could have defined a finite version πfin of the π-calculus, presupposing a finite set of
namesN right from the beginning. If T (P) is the labelled transition system associated
with P according to the operational semantics of πfin, then T (P) � N is obtained from
T (P) by replacing all transitions with the label x (z) by transitions with the label νx .
Apart from this modification, restriction keeps all observable behaviour. Additionally,
our modification in Definition 5.12 is arguably less restrictive than this alternative one
since the set of names is not set to be finite at the beginning.

Using [77, Lemma 1.4.1], it is straightforward to show that for every π-term the set
of actions of the π-calculus appearing as labels in T (P) � N ′ is finite. Furthermore,
the transition system associated with a π-term by the operational semantics, and also its
restriction according to Definition 5.12 are clearly effective. Hence, as an immediate
corollary of Theorem 2.23, we may conclude that the transition system associated with
a π-term can be simulated by an RTM modulo (the divergence-insensitive variant of)
branching bisimilarity.

Corollary 5.14 (executability of the finite π-calculus modulo ↔b). For every closed
π-term P, and for every finite set of input namesN ′ ⊆ N , there exists an RTMM such
that T (P) � N ′ ↔b T (M).

The following example shows that there exist π-terms with which the structural op-
erational semantics associates a transition system without divergence that is unbound-
edly branching up to ↔∆

b . Note that by Theorem 2.32 such π-terms are not executable
modulo divergence-preserving branching bisimilarity.

Example 5.15 (unboundedly branching π-calculus process). Consider the π-process
P def

= (c, i, d, s, flip)(i s.0 | flip.0 | !C | !I | !D), with C, I and D defined as follows:

C def
= c(h, t, b).(h 〈t, b〉.0 + flip.c 〈h, t, 1〉.0)

I def
= i(h).(inc(h′).c 〈h′, h, 0〉.i h′.0 + flush.flip .d h.0)

D def
= d(h).(h(t, b).b .d t.0) .

5.3. EXECUTABILITY OF FINITE π-CALCULUS 109

P P(1) P(n) P(n + 1)

Q(1) Q(n) Q(n + 1)

. . .

P(n, i)P(n, 0) P(n, n)
6↔∆

b 6↔∆
b

inc

flush

inc

flush

ττ
τ

flush

0i−110n−i0n 0n−11

Figure 5.4: A π-calculus process with unbounded branching

The unboundedly branching behaviour of P is illustrated in Figure 5.4. For clarity,
we omit deterministic τ-transitions from the figure. Intuitively, the process !C facili-
tates the generation of a linked list of one-bit cells with a pointer h to the head of the
list, a pointer t to the tail of the list, and a bit b. Each cell may either output, along h,
the link t to the tail of the list and its bit b, or it may receive the instruction flip after
which it recreates itself with the value 1. The process I serves as the interface process.
It maintains a link to the head of the list. Upon receiving an inc-instruction, it adds
another one-bit cell to the list, and upon receiving the flush-instruction, it flips at most
one of the bits, and then calls D. The process D then simply outputs the bits in reverse
order.

Consider the state reached after performing n inc-actions, followed by a flush-
action. In this state, the list contains a string of n 0s. We denote the state before
performing the flush action with a list of n 0s by P(n), and the state after performing

a flush action by Q(n), i.e., P(n)
flush
−→ Q(n). The τ-transitions that correspond to the

interaction of flip between I and one of the flips of one of the one-bit cells or flip in the

110 CHAPTER 5. RTM AND THE π-CALCULUS

definition of P have the effect of non-deterministically changing (at most) one of the
0s to a 1. We denote the state with a list of n numbers, where the ith position is 1 and
all the others are 0 by P(n, i). Note that there are n + 1 such τ-transitions, and since D
will subsequently output the sequence in order, the states reached by these τ-transitions
are (pairwise) not divergence-preserving branching bisimilar. Hence, it follows that for
every n, the transition system associated with P has a reachable state with a branching
degree modulo ↔∆

b of at least n + 1. It follows that the transition system associated
with P is unboundedly branching up to↔∆

b .

Note that the only names occurring as part of the labels on the transitions in the
transition system associated with the π-term P in the preceding example are 0 , 1 , inc
and flush, so if N ′ contains at least these four names, then P satisfies T (P) � N ′ =

T (P). Let us say, in general, that a π-term P has finitely many observable names if
there exists a finite set N ′ ⊆ N such that T (P) � N ′ = T (P). Note that, in this
case, P cannot have parameterised free inputs, nor bound outputs. For π-terms with
finitely many observable names, we have the following corollary as a consequence of
a combination of Corollary 5.14 and Example 5.15.

Corollary 5.16 (unexecutability of the finite π-calculus modulo ↔∆
b). Every finite π-

calculus process P is executable modulo↔b, but there exist finite π-calculus processes
that are not executable modulo↔∆

b .

5.4 Remarks
We have investigated the expressivity of the π-calculus in relation to the theory of ex-
ecutability provided by Reactive Turing Machines. The issue of the expressivity of
the π-calculus has been extensively studied (see [47] for a comprehensive overview of
research in this area). A distinction is usually made between absolute and relative ex-
pressivity results. The absolute expressivity results focus on proving the (im)possibility
of expressing a computational phenomenon in a calculus; the relative expressivity re-
sults are mostly about encoding one calculus in another. Our results pertain to the
absolute expressivity of the π-calculus.

We have established that, up to divergence-preserving branching bisimilarity, ev-
ery executable transition system can be specified in the π-calculus, showing that the
π-calculus is reactively Turing powerful. Milner already established in [68] that the
π-calculus is Turing powerful, by exhibiting an encoding of the λ-calculus in the π-
calculus by which every reduction in the λ-calculus is simulated by a sequence of
reductions in the π-calculus. Our result that all executable behaviour can be speci-
fied in the π-calculus up to divergence-preserving branching bisimilarity also implies

5.4. REMARKS 111

that the π-calculus is Turing powerful, and thus it subsumes Milner’s result. Similarly,
in [28] several expressivity results for variants of CCS are obtained via an encoding of
Random Access Machines, and also those results only make claims about the compu-
tational expressivity of the calculi. Notice that the results in [68] and [28] confirm the
computational power of the respective calculi, but do not make a qualitative statement
about its interactive expressivity. By showing that Reactive Turing Machines can be
faithfully simulated, we at the same time confirm the interactive expressivity of the
π-calculus.

In a recent work [37], Fu also proposes to study computation and interaction in an
integrated theory. His theory is built on four fundamental principles, rather than on a
machine model. One of the contributions of his theory is a calculus including a bare
minimum of primitives to be computationally and interactively complete, and he uses
it to confirm the completeness of the π-calculus. We leave it for future work to explore
the relationship between Fu’s theory of interaction and the theory of executability based
on Reactive Turing Machines.

We have observed that it is possible to specify behaviour in the π-calculus that is
not executable up to any reasonable notion of behavioural equivalence, simply because
it uses infinitely many observable names. For the presentation of the π-calculus it is
technically important to presuppose an infinite set of names especially to model the
feature of dynamic creation of private channels between components. In this chap-
ter, we have shown that a behaviour specified in the π-calculus is executable up to the
divergence-insensitive variant of branching bisimilarity if one restricts to finitely many
observable names and does not associate a unique identifier with every dynamically
created private channel. Allowing RTMs to have an infinite set of actions and either an
infinite set of states or an infinite set of data symbols would arguably lead to an unreal-
istically powerful notion of executability. Moreover, in a real system, private channels
between components are likely to be implemented differently, e.g., using some form of
encryption.

It has been claimed (e.g., in [34]) that the π-calculus provides a model of compu-
tation that is behaviourally more expressive than Turing machines. Our results pro-
vide further justification for this claim, and characterise the difference. It should be
noted that the difference in expressive power is at the level of interaction (allowing
interaction between an unbounded number of components), rather than at the level of
computation.

112 CHAPTER 5. RTM AND THE π-CALCULUS

Chapter 6

Nominal Executability

In the previous chapter, we showed that the π-calculus is in general not executable
because of the mismatch between the infinite set of names in the π-calculus and the
finite set of actions in the definition of RTMs. Moreover, the π-calculus is not unique in
relying on an infinite alphabet of actions. A notable number of process calculi leading
to transition systems with infinite sets of actions were proposed for various purposes,
for instance, the psi-calculus [16], the value-passing calculus [36] and mCRL2 [49]. In
this chapter, we therefore investigate extensions of the formalism of Reactive Turing
Machines that allows the set of actions to be infinite.

First, we explore a generalised notion of executability based on Reactive Turing
Machines that allow an infinite alphabet of actions. We observe that allowing an infinite
alphabet only makes sense if we also allow the set of data symbols (or, equivalently, the
set of states) to be infinite. Putting no restrictions at all yields a notion of executabil-
ity that is not discriminating at all: every countable transition system is executable
by such an infinitary RTM. The result has two immediate corollaries: Every effective
transition system is executable modulo divergence-preserving branching bisimilarity
by an infinitary RTM with an effective transition relation, and every computable tran-
sition system is executable modulo divergence-preserving branching bisimilarity by an
infinitary RTM with a computable transition relation.

Second, we consider a more restricted notion of infinitary executability. Following
the research about nominal sets for variable binding with infinite alphabets [39], the
notion of Turing machine with atoms was introduced [26]. We define RTMs with
atoms as an extension of Turing machines with atoms. RTMs with atoms allow the sets
involved in the definition to be infinite, but in a limited way; intuitively, the infinity
can only be exploited to generate fresh names in an execution. By using the notion

113

114 CHAPTER 6. NOMINAL EXECUTABILITY

of legal and orbit-finite set, Turing machines with atoms are allowed to have infinite
alphabets, while keeping the transition relation finitely definable and, in fact, finite up
to atom automorphism. We say a transition system is nominally executable if it is
behaviourally equivalent to a transition system associated with an RTM with atoms.
To investigate the notion of nominal executability, we propose a notion of transition
system with atoms as a restricted version of transition systems. We show that the
transition systems associated with RTMs with atoms satisfy the definition of transition
system with atoms.

Finally, we apply the results to draw conclusions about the executability of process
calculi. We prove that all π-calculus processes are nominally executable. On the other
hand, in mCRL2 it is possible to define behaviours that are not nominally executable.
Therefore, nominal executability provides a new expressivity criterion for process cal-
culi involving infinite alphabets.

The chapter is organized as follows. In Section 6.1, we introduce the infinitary
RTMs and investigate the associated notion of executability. In Section 6.2, we intro-
duce the notion of sets with atoms. In Section 6.3, we propose the notion of RTM with
atoms, and define nominal executability. In Section 6.4, we prove that the transition
systems associated with the π-calculus processes are nominally executable. Section 6.5
proposes a notion of labelled transition system with atoms, and shows that the transi-
tion systems associated with mCRL2 are not nominally executable . The chapter con-
cludes in Section 6.6, in which a hierarchy of executability and some future work are
proposed.

6.1 Infinitary Reactive Turing Machines

In this section, we shall investigate the effect of lifting the finiteness condition imposed
on RTMs on the ensued notion of executability. We start with lifting the finiteness
condition on the alphabet of actions and the transition relation only. We shall argue
by means of an example that this extension is hardly useful, because it is not possible
to sufficiently distinguish the computational effect of each action. The next step is,
therefore, to also allow an infinite set of data symbols. This, in turn, yields a notion
of executability that is too expressive. Finally, we provide two intermediate notions of
executability by restricting the transition relations associated with infinitary Reactive
Turing Machines to be effective or computable.

6.1. INFINITARY REACTIVE TURING MACHINES 115

6.1.1 Infinitely Many States and Data Symbols
In this section, we allow A to be a countable infinite set of action labels. Recall from
Definition 2.10 that an RTM has a finite set of states Q and a finite transition relation. If
we allow RTMs to have infinitely many actions, then, inevitably, we should at least also
allow them to have an infinite transition relation. The following example illustrates that
we then also either need infinitely many states or infinitely many data symbols.

Example 6.1 (infinite states and data symbols). Consider the Aτ-labelled transition
system T = (ST ,−→T , ↑T) in the left of Figure 6.1, where

1. ST = {↑T , ↓T } ∪ {sa | a ∈ A}, and

2. −→T = {(↑T , a, sa) | a ∈ A} ∪ {(sa, a, ↓T) | a ∈ A}.

There does not exist an RTM with finitely many states and data symbols that simulates
T modulo branching bisimilarity.

↑T sa1

sai

sa j

↓T

Ci

C j

6↔b

6↔b

6↔b

6↔b

a1

ai

a j

a1

ai

a j

ai

a j

ai

a j

Figure 6.1: A transition system with infinitely many distinct labels

We suppose that M = (Q, 7→, Ini) is an RTM such that T (M) ↔b T , and we let
A = {a1, a2, . . .}. The transitions ↑T

a1
−→ sa1 , ↑T

a2
−→ sa2 , . . . lead to infinitely many states

116 CHAPTER 6. NOMINAL EXECUTABILITY

sa1 , sa2 , . . ., which are all mutually distinct modulo branching bisimilarity since each of
them has an outgoing transition with a distinct label.

Let C = (↑, �̌) be the initial configuration ofM. Assume that we have C ↔b↑T , so
C admits the following transition sequences: C −→∗

a1
−→−→

∗ C1
a1
−→, C −→∗

a2
−→−→

∗

C2
a2
−→, . . ., where C1 ↔b sa1 , C2 ↔b sa2 ,
The transitions of an RTM are of the form (s, d, a, e,M, t), where s, t ∈ S, and d, e ∈

D�; we call the pair (s, d) the trigger of the transition. A configuration (s′, δLď′δR)
satisfies the trigger (s, d) if s = s′ and d = d′. Now we observe that a transition
(s, d, a, e,M, t) gives rise to an a-transition from every configuration satisfying its trig-
ger (s, d). Since S andD� are finite sets, there are finitely many triggers.

So, in the infinite list of configurations C1,C2, . . ., there are at least two configura-
tions Ci and C j, satisfying the same trigger (s, d); these configurations must have the
same outgoing transitions.

Note that we cannot have both Ci ↔b sai and C j ↔b sa j . Since C j
a j
−→, a transition

labelled by a j is triggered by (s, d). As Ci also satisfies the trigger (s, d), we have the

transition Ci
a j
−→. Hence Ci 6↔b sai , and we get a contradiction to T (M) ↔b T .

6.1.2 Infinitary Reactive Turing Machines

If we allow the set of control states or the set of data symbols to be infinite too, the
expressivity of RTMs is greatly enhanced, as we shall see below. We define a notion of
infinitary Reactive Turing Machines as follows.

Definition 6.2 (infinitary Reactive Turing Machines). An infinitary Reactive Turing
Machine (RTM∞) is a triple (Q, 7→, Ini), where

1. Q is a countable set of states;

2. 7→ ⊆ Q×D�×Aτ×D�×{L,R}×Q is a countable (D�×Aτ×D�×{L,R})-labelled

transition relation (we write s
a[d/e]M
7−−−−−−→t for (s, d, a, e,M, t) ∈ −→); and

3. Ini ∈ S is a distinguished initial state.

Remark 6.3. Note that we do not have to require both the set of states and the set of
data symbols to be infinite simultaneously. Instead, we only need one of them to be
infinite, as in the above definition. Actually, the requirement of having a countable
set of states is equally powerful as the requirement of having a countable set of data
symbols or having both a countable set of states and a countable set of data symbols.

6.1. INFINITARY REACTIVE TURING MACHINES 117

By analogy to Definition 2.11, we associate with every RTM∞ a labelled transition
system. Similar to the notion of executability ensued from RTMs, we also introduce
executability with respect to RTM∞s. In this chapter, we shall only be interested in
the executability with respect to RTM∞s modulo (divergence-preserving) branching
bisimilarity.

Definition 6.4 (executability with respect to RTM∞). A transition system is executable
by an RTM∞ modulo (divergence-preserving) branching bisimilarity if it is (divergence-
preserving) branching bisimilar to a transition system associated with some RTM∞.

As we did for RTMs, we shall discuss to what extent, labelled transition systems
can be simulated by RTM∞s. A transition system is countable, if its sets of labels,
states and transitions are all countable sets. The following theorem illustrates a charac-
terisation of the expressivity of RTM∞s, showing that every countable transition system
is executable by an RTM∞ modulo↔∆

b .

Theorem 6.5 (countable LTS). For every countable set Aτ and every countable Aτ-
labelled transition system T, there exists an RTM∞M such that T ↔∆

b T (M).

Proof. Let T = (ST ,−→T , ↑T) be an Aτ-labelled countable transition system, and let
d e : ST → N be an injective function encoding its states as natural numbers. Then an
RTM∞M = (Q, 7→, Ini) is defined as follows.

1. Q = {s, t, ↑} is the set of control states.

2. −→ is a (D� × A × D� × {L,R})-labelled transition relation consisting of the
following transitions:

(a) (↑,�, τ, d↑T e,R, s),

(b) (s,�, τ,�, L, t), and

(c) (t, ds1e, a, ds2e,R, s) for every transition s1
a
−→T s2.

3. ↑ ∈ Q is the initial state.

Note that a transition s1
a
−→ s2 is simulated by a sequence

(t, ˇds1e�)
a
−→ (s, ds2e�̌)

τ
−→ (t, ˇds2e�) .

Then one can verify that T (M) ↔∆
b T . Note that {(sT , (t, ˇdsT e�)) | sT ∈ ST } ∪

{(sT , (s, dsT e�̌)) | sT ∈ ST } is a divergence-preserving branching bisimulation. The
divergence-preserving branching bisimilarity is illustrated in Figure 6.2. �

118 CHAPTER 6. NOMINAL EXECUTABILITY

s1 (t, ˇds1e�)

(s, ds2e�̌)

(t, ˇds2e�)s2

a

a

τ

↔∆
b

↔∆
b

↔∆
b

Figure 6.2: Bisimulation relation in the proof of Theorem 6.5

So RTM∞s are very expressive, and they certainly do not yield a useful model to
distinguish between processes that can and cannot be executed. The reason is that we
have not yet put a restriction that the transition relation used to define an RTM∞needs
to be computable or effective. As a compromise, we provide two intermediate models
by formulating extra requirements on the transition relation of RTM∞s.

We say that a transition relation of an RTM∞ is effective, if for every pair of a con-
trol state and a data symbol (s, d), the set of subsequent transitions is recursively enu-

merable, i.e., the function out(s, d) = {(a, e,M, t) | s
a[d/e]M
7−−−−−−→t} is recursively enumerable

with respect to some encoding. In the proof of Theorem 6.5, if the transition system
is effective, then the set of transitions {(t, ds1e, a, ds2e,R, s) | s1

a
−→ s2} is recursively

enumerable. It is trivial that all the other transitions are also recursively enumerable.
Hence, we get an effective transition relation. We derive the following corollary for the
executability of effective transition systems from Theorem 6.5.

Corollary 6.6 (effective LTS). For every countable set Aτ and every effective Aτ-
labelled transition system T, there exists an RTM∞M with an effective transition rela-
tion such that T ↔∆

b T (M).

We say that a transition relation of an RTM∞ is computable if for every pair of a
control state and a data symbol (s, d) the set of subsequent transitions is computable,

i.e., the function out(s, d) = {(a, e,M, t) | s
a[d/e]M
7−−−−−−→t} is recursive with respect to some

encoding. By analogy to Corollary 6.6, we derive the following result from Theo-
rem 6.5.

6.2. SETS WITH ATOMS 119

Corollary 6.7 (computable LTS). For every countable set Aτ and every computable
Aτ-labelled transition system T, there exists an RTM∞M with a computable transition
relation such that T ↔∆

b T (M).

6.2 Sets with Atoms
As we discussed in the previous section, an unrestricted lifting of the finiteness condi-
tions of RTMs leads to an extremely expressive notion of executability. Such a notion
is not very useful since every countable transition system is trivially included which
makes it not distinguishing at all.

In this section, we introduce a notion of Reactive Turing Machine with atoms
(RTMA) as a natural intermediate between RTMs and RTM∞s. On the one hand,
RTMAs will be more expressive than RTMs, since they will admit infinite alphabets,
whereas RTMs do not. On the other hand, RTMAs will be less expressive than RTM∞s,
because there will be restrictions imposed that, intuitively, make the alphabets finitely
presentable. We introduce a notion of effective transition system with atoms to char-
acterise the transition systems associated with RTMAs modulo branching bisimilarity.
We then have a proper model to investigate the executability of process calculi with
infinite alphabets (such as the π-calculus).

6.2.1 Equality Atoms
In this section, we introduce the notion of set with atoms as a basis of RTMA. We use
the definition of sets with atoms from Bojańczyk et al. [25, 26]. Moreover, Bojańczyk
recently introduced many useful concepts related to sets with atoms in a book [24]; we
shall also refer to many concepts introduced in this book.

Sets with atoms rely on an infinite set of atoms and sets that contain those atoms,
together with some relations and functions on the set of atoms. We present some ex-
amples of sets of atoms paired with relations over atoms as follows:

• (N,=) the natural numbers (or any countably infinite set) with equality,

• (Q,≤) the rational numbers with an order, and

• (Z,+1) the integers with a unary successor function.

The first structure is referred to as equality atoms. In this chapter, we only consider
equality atoms. For convenience, we just call them sets with atoms. We fix for the
remainder of this chapter a countably infinite set A; we call its elements atoms. We use
the underlined names like 1 or a for examples of atoms.

120 CHAPTER 6. NOMINAL EXECUTABILITY

In set theory, a set x is called a well-founded set if the set membership relation is
well-founded, i.e., the set membership relation has a minimal element on its transitive
closure. We use this notion to define a set with atoms.

Definition 6.8. A set with atoms is any set that contains atoms or other sets with atoms,
in a well-founded way.

Example 6.9. To give some the intuition for this definition, we present some examples
of sets with (equality) atoms.

1. Every set in the traditional sense is a set with atoms, for instance, the empty set
∅;

2. the set of atoms A is a set with atoms;

3. ordered pairs or tuples of atoms are sets with atoms; i.e., we use {a, {a, b}} to
denote an ordered pair (a, b); and

4. the set of n-tuples of atoms An and the set of finite sequences of atoms A∗ are
sets with atoms.

6.2.2 Legality and Orbit-finiteness
The atoms will allow us to formulate certain finiteness restrictions that are slightly more
liberal than simply requiring that sets are finite. To this end we proceed to introduce
legal and orbit-finite sets with atoms.

An atom automorphism is a bijection (permutation) on A. For a set with atoms X
and an atom automorphism π, by π(X) we denote the set obtained by application of π
to every atom in X, in elements of X, in elements of elements of X, etc., recursively.
For a set of atoms S ⊆ A, if an atom automorphism π is the identity on S , i.e. for all
x ∈ S , π(x) = x, then we call it an S -automorphism. We say that S supports a set with
atoms X iff X = π(X) for every S -automorphism π.

Definition 6.10. A set of atoms S is a support of a set with atoms X iff S supports X.
A set with atoms is called legal if it has a finite support, each of its elements has a finite
support, and so on recursively.

A set with atoms may contain infinitely many atoms, but legality restricts the extent.
We give some examples to illustrate this notion.

Example 6.11.

6.2. SETS WITH ATOMS 121

A finite set of atoms is legal. The support is a set that contains every atom from the
finite set.

A co-finite set of atoms is legal. The finite complement of a set that contains every
atom from the co-finite set is a support.

The set of all odd natural numbers is not legal with respect to equality atoms. Its
support necessarily includes all odd numbers, or all even numbers.

For legal sets with atoms, we further introduce a notion of orbit-finiteness, which
restricts the number of equivalence classes partitioned by atom automorphisms of a set
with atoms. Now we proceed to introduce the notion of orbit-finite set. Let x be an
element in a set with atoms X, the orbit of x is the set

{y ∈ X | y = π(x) for some atom automorphism π} .

A set with atoms X is partitioned into disjoint orbits: elements x and y are in the same
orbit iff π(x) = y for some atom automorphism π. We give some examples to orbit-
finiteness

Example 6.12.
A2 decomposes into two orbits, the diagonal {(a, a) | a ∈ A} and its complement
{(a, b) | a, b ∈ A, a , b}. Note that there is no atom automorphism that maps (a, b) to
(a, a) if a and b are different atoms.

A∗ has infinitely many orbits as the elements from A, A2, . . . all fall into disjoint orbits.

Orbit-finiteness restricts the number of partitions of a set with atoms with respect
to atom automorphism.

Definition 6.13. A set with atoms that is partitioned into finitely many orbits is called
an orbit-finite set.

Remark 6.14. In Bojańczyk’s book [24], the notion of orbit is parameterised by a tuple
of atoms ā, namely, an ā-orbit of x is the set

{y ∈ X | y = π(x), π is an ā-automorphism} .

For the definition of orbit-finiteness, we do not need to have a tuple of atoms as a
parameter. Actually, in [24], it was proved that, for equality atoms, every legal set with
atoms X is a finite union of ā-orbits for some tuple ā that supports X if and only if it is a
finite union of ā-orbits for every tuple ā that supports X. In other words, orbit-finiteness
does not depend on the choice of ā.

122 CHAPTER 6. NOMINAL EXECUTABILITY

6.2.3 Definability
In order to utilize the notion of set with atoms in the theory of executability, in par-
ticular, to define RTMs using sets with atoms, we require the sets with atoms to be
definable. In [24], the definability of sets with atoms has been extensively discussed.
Hence, we shall recall them in the remaining part of this section.

To syntactically define a set, we need a notion of set builder expressions.

Definition 6.15. Let V be a countably infinite set of variables. Let x̄ be a tuple of
variables. An x̄-valuation is a function that maps each variable in x̄ to an element in A.
The notion of set builder expression is inductively defined as follows:

1. Atom constant. Every atom a ∈ A is a set builder expression. The expression has
no free variables, and it represents the atom a.

2. Variable expression. A variable x ∈ V is a set builder expression. The variable x
is free in this expression.

3. Set expression. Let x̄ and ȳ be disjoint tuples of variables and let α be a set builder
expression with free variables contained in x̄ȳ, and let φ be a first-order formula
overAwith free variables contained in x̄ȳ which is allowed to use constants from
A (such constants are called parameters). Then

{α(x̄ȳ) | for ȳ such that φ(x̄ȳ)}

is a set builder expression with free variables x̄ and bound variables ȳ.

4. Union expression. If α1, . . . , αn are set builder expressions, then so is α1∪· · ·∪αn.

We useB to denote the set of all set builder expressions. For a set builder expression
α with free variables x̄, we define ~α� to be the function which inputs a tuple of atoms
as the valuation of x̄ and outputs the corresponding set (or set of sets, etc.). When α
has no free variables, then ~α� is simply a set (or atom).

Definition 6.16. A set with atoms x is definable if x = ~α�, where α is a set builder
expression without free variables.

A definable set could be an atom, if α is an atom constant, or a set. Moreover, a
definable set can be represented using different set builder expressions.

In [24], it was proved that for equality atoms, definable sets are equivalent to hered-
itarily orbit-finite sets.

Definition 6.17. A hereditarily orbit-finite set is a set with atoms which is orbit finite,
whose elements are orbit-finite, and so on until the empty set is or an atom is reached.

6.3. REACTIVE TURING MACHINES WITH ATOMS 123

For example, a set {A∗} is orbit-finite, since its only orbit is A∗. However, it is not
hereditarily orbit-finite, since its element A∗ is not an orbit-finite set.

Lemma 6.18. Every legal and hereditarily orbit-finite set with atoms is definable.

Taking the π-calculus as an example assuming that the set of names to be the infi-
nite supply of atoms, the set of all π-terms is not definable, since it is not orbit-finite.
π-terms with different lengths are in different orbits, in other words, infinitely many
distinct structures are involved in the π-calculus. However, the α-equivalence class
of a single π-term is definable since it has only one orbit (every α-conversion can be
achieved by some automorphisms on names).

6.3 Reactive Turing Machines with Atoms
Bojańczyk et al. [26] defined a notion of Turing machine with atoms based on sets with
atoms. Now we generalize this notion by defining a notion of Reactive Turing Machine
with atoms. We assume that the sets of action symbols Aτ and data symbols D� are
definable (legal and hereditarily orbit-finite) sets with atoms.

Definition 6.19 (Reactive Turing Machines with atoms). A Reactive Turing Machine
with atoms (RTMA) is a triple (Q, 7→, Ini), where

1. Q is a definable set of states,

2. 7→ ⊆ Q×D�×Aτ×D�×{L,R}×Q is a definable (D�×Aτ×D�×{L,R})-labelled

transition relation (we write s
a[d/e]M
7−−−−−−→t for (s, d, a, e,M, t) ∈ 7→),

3. Ini ∈ Q is a distinguished initial state.

By analogy to Definition 2.16, we associate with every RTMA a labelled transition
system, and define a notion of executability with respect to RTMA. In this chapter,
we only consider nominal executability modulo the divergence-insensitive variant of
branching bisimilarity.

Definition 6.20 (nominal executability). A transition system is nominally executable
if it is branching bisimilar to a transition system associated with some RTMA.

RTMAs give rise to a less liberal notion of executability compared to the one in-
duced by RTM∞s. The following example gives us an insight in the effect of the legality
restriction, which makes RTMA a more restrictive notion than RTM∞.

124 CHAPTER 6. NOMINAL EXECUTABILITY

1start 3 5 n n + 2

wstart s t

T :

M:

1 3 n

τ[�, 1]R
n[n, n + 2]R

τ[�,�]L

Figure 6.3: Enumerating odd numbers with an RTM∞

Example 6.21. Assume that A = N. Consider a transition system T = (S,−→, ↑)
(see Figure 6.3) defined as follows:

1. S = {n | n ∈ N},

2. −→ = {(n, n, n + 2) | n ∈ N}, and

3. ↑= 1.

We recognize that T is a transition system that enumerates all the odd numbers. It
can be simulated by an RTM∞M = (Q, 7→, Ini) (see Figure 6.3) defined as follows:

1. Q = {s, t,w},

2. 7→ = {(w,�, τ, 1,R, s)} ∪ {(s, n, n, n + 2,R, t) | n ∈ N} ∪ {(t,�, τ,�, L, s)}, and

3. Ini = w.

Both the set of odd numbers and the set of even numbers supports the above set, how-
ever, neither of them is finite. For any finite set S , there exists an S -automorphism that
maps an odd number to an even number. Therefore, the above transition relation does
not have a finite support. Therefore, the above RTM∞ is not an RTMA.

Besides legality, orbit-finiteness also restricts the notion of executability. The tran-
sition relations of RTMAs are restricted to finitely many different orbits up to atom
automorphism. As a result, RTMAs cannot make transitions labelled with tuples of
atoms of arbitrary lengths, nevertheless, such transitions can be realized by an RTM∞.

Example 6.22. Consider an RTM∞M = (Q, 7→, Ini) defined as follows:

6.4. NOMINAL EXECUTABILITY OF THE π-CALCULUS 125

sstart · · · t

· · ·

ā ∈ A

ā ∈ A2

ā ∈ An

Figure 6.4: A labelled transition system with infinitely many orbits

1. Q = {s, t},

2. 7→ = {(s,�, ā, ā,R, t) | ā ∈ A∗}, and

3. Ini = s.

The transition system associated withM is illustrated in Figure 6.4. Note that we allow
labels and data symbols of this RTM∞ to be tuples of atoms of arbitrary lengths, which
are not orbit-finite. Therefore this RTM∞ is not an RTMA.

6.4 Nominal Executability of the π-Calculus
In this section, we prove that the π-calculus is nominally executable modulo (the
divergence-insensitive variant of) branching bisimilarity. We show that for every π-
calculus process P, there exists an RTMAM such that T (M) ↔b T (P).

Recall that we consider the set of names as the set of atoms. Note that in the π-
calculus the set of labels is a definable set. Henceforth, we assume the set of data
symbols includes the set of labels. We give an encoding from π-terms to D∗�. The
encoding allows us to store an arbitrary π-term on the tape.

First of all, we shall present some examples to illustrate the capability of an RTMA

to manipulate sets with atoms. We propose some fragments of RTMAs. A fragment
of an RTMA defines a certain behaviour from a certain configuration, and the idea is
that several fragments of RTMAs can be combined to form a single RTMA. In the
following three examples, we show that an RTMA is capable of duplicating a data
symbol, generating an fresh atom and rename an atom. These three operations are
crucial for an RTMA to simulate the transition system associated with a π-calculus
process.

126 CHAPTER 6. NOMINAL EXECUTABILITY

Example 6.23. We define some fragments that duplicate non-blank data symbols. Let
d̄ ∈ D∗ be a string of data symbols, and let n be the length of d̄. We define n fragments
of RTMAs, denoted byM1,M2, . . . ,Mn respectively. We suppose thatMi is initially
set to a configuration (start, d̄, i), where the d̄ is its tape instance, and the tape head
is on the i-th element of d̄. Note that the notation we use here for a configuration is
different from that in Definition 2.11. The transition relation associated withMi admits
a sequence of transitions (start, d̄, i) −→∗ (finish, d̄x, n + 1) satisfying that x is the i-th
element of d̄ (i ≤ n), and the head is at the position of x. The functionality of the RTMA

Mi is to duplicate the i-th element of a string of symbols.
We first explain our intuition to design a fragment of an RTMA to fulfill the above

requirements. A simple solution is to use the tape head to read the symbol to be du-
plicated, and then move the tape head towards the destination of the duplication and
write the symbol onto the tape. Note that the position of the symbol to be duplicated
is different from the destination of the duplication. We need a way to “remember” the
symbol while the tape head is moving towards the destination. We introduce a set of
control states {copyx | x ∈ D�} to “remember” the symbols.

We take {start, finish} ∪ {copyx | x ∈ D�} as the set of control states ofMi and the
initial configuration is (start, ā, i). The machine remembers the symbol x ∈ D� using
a state copyx. Note that the set of states is definable since D� is a definable set, and
it contains all copyx where x ranges over D�. Then the duplication is realized by the
following set of transitions:

{(start, x, τ, x,R, copyx) | x ∈ D�}
∪{(copyx, y, τ, y,R, copyx) | x, y ∈ D�}
∪{(copyx,�, τ, x,R, finish) | x ∈ D�} .

This is a definable set of transitions. The least support equals the least support of
D�, and it has finitely many orbits sinceD� has finitely many orbits. For instance, the
first component {(start, x, τ, x,R, copyx) | x ∈ D�} in the union has the same number of
orbits asD�, i.e., every {(start, x, τ, x,R, copyx) | x ∈ O} forms an orbit of the above set,
where O is an orbit ofD�. We remark that ifD� = A, then the set of transitions has four
orbits, namely {(start, x, τ, x,R, copyx) | x ∈ A}, {(copyx, y, τ, y,R, copyx) | x, y ∈ A, x ,
y}, {(copyx, y, τ, y,R, copyx) | x, y ∈ A, x = y} and {(copyx,�, τ, x,R, finish) | x ∈ A}.

Example 6.24. We define a fragment that generates a fresh atom. Let d̄ ∈ D∗ be a
string of data symbols, and let n be the length of d̄. We define a fragment, denoted by
M f . We suppose thatM f is initially set to a configuration (start, d̄, n + 1), where the
d̄ is its tape instance, and the tape head is directly right of the last symbol of d̄. Its
transition system admits a sequence of transitions (start, d̄, n + 1) −→∗ (finish, d̄x, 1)
satisfying that x is a fresh atom that does not appear in any symbol in d̄.

6.4. NOMINAL EXECUTABILITY OF THE π-CALCULUS 127

We first explain our intuition to design a fragment of an RTMA to fulfill the above
requirements. Our solution is to first create an arbitrary atom x ∈ A, and then check
whether x is a fresh one, i.e., whether it has already appeared in the tape. In order to
check the freshness of x, we introduce a set of states {checkx | x ∈ A} to “remember” the
atom while the tape head is moving through the tape to check whether x has appeared
in the current data symbol. Whenever we find a symbol that contains x, the machine
recreate another atom and repeat the checking procedure. The checking procedure
terminates after all the tape symbols have been checked.

We take {start, finish} ∪ {checkx, refreshx | x ∈ A} as the set of control states ofM f

and the initial configuration is (start, d̄, n + 1). We use x ∈ y for x ∈ A and y ∈ D� to
denote that x is an atom that appears in y. The machine generates an arbitrary atom and
checks whether it is a fresh one by the following set of transitions,

{(start,�, τ, x, L, checkx) | x ∈ A}
∪{(checkx, y, τ, y, L, checkx) | x < y ∧ x ∈ A ∧ y ∈ D}

∪{(checkx, y, τ, y, L, refreshx) | x ∈ y ∧ x ∈ A ∧ y ∈ D}

∪{(refreshx, y, τ, y,R, refreshx) | x ∈ A ∧ y ∈ D}

∪{(refreshx, x, τ, z, L, checkz) | x, z ∈ A}
∪{(checkx,�, τ,�,R, finish) | x ∈ A} .

The machine first creates an arbitrary atom x, and then it checks for every symbol
on the tape whether it contains x. Note that � indicates the end of the sequence of
atoms on tape. If the check procedure succeeds, the creation is finished, otherwise, the
machine creates another atom and checks again. Note that the above transitions form a
definable set, sinceD� is definable.

Example 6.25. We define a fragment to rename atoms. Let d̄ ∈ D∗ be a string of
data symbols, and let n be the length of d̄. We define an RTMA, denoted byMr. We
suppose that Mr is initially set to a configuration (start, xyd̄, 1), where x, y ∈ A are
two symbols, and the tape head is at x. Its transition system consists of a sequence of
transitions (start, xyd̄, 1) −→∗ (finish, xyd̄{y/x}, n + 1) satisfying that every occurrence
of x in d̄ is renamed to y. The functionality of the RTMAMr is to rename an atom x to
y in an arbitrary sequence of data symbols.

We first explain our intuition to design a fragment of an RTMA to fulfill the above
requirements. Our solution is to introduce a set of states {renamex | x ∈ A} to “remem-
ber” the name to be renamed and a set of states {renamex,y | x, y ∈ A} to “remember”
the name to be renamed and renamed to. The machine first enters a state renamex,y to
represent that a name x should be renamed to y. Then the tape head moves through all
the tape symbols and makes the renaming operation.

128 CHAPTER 6. NOMINAL EXECUTABILITY

We take {start, finish} ∪ {renamex | x ∈ A} ∪ {renamex,y | x, y ∈ A} as the set
of control states of Mr and the initial configuration is (start, xyd̄, 1). The machine
renames every symbol in d̄ by the following set of transitions,

{(start, x, τ, x,R, renamex) | x ∈ A}
{(renamex, y, τ, y,R, renamex,y) | x, y ∈ A}

∪{(renamex,y, z, τ, z,R, renamex,y) | x < z ∧ x, y ∈ A ∧ z ∈ D}

∪{(renamex,y, z, τ, z{y/x},R, renamex,y) | x ∈ z ∧ x, y ∈ A ∧ z ∈ D}

∪{(renamex,y,�, τ,�, L, finish) | x, y ∈ A} .

The machine first checks the first symbol (x, y), and enters the state renamex,y.
Then, the machine searches through every element of d̄ and makes a renaming from x
to y to a symbol z if x appears in z. Note that the above transitions form a definable set.

In order to simulate the transition system associated with a π-term, we give an en-
coding d e from π-terms toD∗�. We assume that the set of action labels {x y | x, y ∈ N}∪
{x y | x, y ∈ N} ∪ {x (y) | x, y ∈ N} ∪ {τ}, the set of special symbols {(,), .,+, |, !, 0} and
the set of names N are subsets of D�. A π-term can be (literally) written on tape with
the given set of tape symbols. We use dPe to denote the symbols written on the tape to
represent a π-term P.

Moreover, we define a function Next to map every π-term to the set of outgoing
transitions as follows:

1. Next(0) = ∅;

2. Next(τ.P) = {(τ,Q) | τ.Q =α τ.P};

3. Next(x(y).P) = {(x z,Q{z/y′}) | z ∈ N , x(y′).Q =α x(y).P};

4. Next(x y.P) = {(x y,Q) | x y.Q =α x y.P};

5. Next(P1 + P2) = Next(P1) ∪ Next(P2);

6. Next(P1 | P2) = {(a, P1 | P′2) | (a, P′2) ∈ Next(P2), bn(a) ∩ fn(P1) = ∅}

∪ {(a, P′1 | P2) | (a, P′1) ∈ Next(P1), bn(a) ∩ fn(P2) = ∅}

∪ {(τ, P′1{z/y} | P
′
2) | (x z, P′1{z/y}) ∈ Next(P1), (x z, P′2) ∈ Next(P2)}

∪ {(τ, P′1 | P
′
2{z/y}) | (x z, P′2{z/y}) ∈ Next(P2), (x z, P′1) ∈ Next(P1)}

∪ {(τ, (z)P′1{z/y} | P
′
2) | (x z, P′1{z/y}) ∈ Next(P1), (x (z), P′2) ∈ Next(P2), z <

fn(P2)}
∪ {(τ, (z)P′1 | P

′
2{z/y}) | (x z, P′2{z/y}) ∈ Next(P2), (x (z), P′1) ∈ Next(P1), z <

fn(P1)};

6.4. NOMINAL EXECUTABILITY OF THE π-CALCULUS 129

7. Next((z)P) = {(a, (z′)P′) | (a, P′) ∈ Next(Q), z′ < a, (z′)Q =α (z)P}
∪ {(x (z′), P′) | (x z′, P′) ∈ Next(Q), (z′)Q =α (z)P};

8. Next(!P) = {(a, P′ | !P) | (a, P′) ∈ Next(P)}
∪ {(τ, (P′ | P′′{z/y}) | !P) | (x z, P′) ∈ Next(P), (x z, P′′{z/y}) ∈ Next(P)}
∪ {(τ, (z)(P′ | P′′{z/y}) | !P) | (x (z), P′) ∈ Next(P), (x z, P′′{z/y}) ∈ Next(P)}.

Proposition 6.26. Let P be a π term, then Next(P) is a definable set.

Proof. We show that Next(P) is definable by induction on the structure of P.

1. Next(0) = ∅. An empty set is trivially definable.

2. Next(τ.P) = {(τ,Q) | τ.Q =α τ.P}. Note that τ.P is definable, therefore, the α-
equivalence class of τ.P is also definable by taking all the (finitely many) bound
names in P as parameters to define the set. Hence, {(τ,Q) | τ.Q =α τ.P} is
definable.

3. Next(x(y).P) = {(x z,Q{z/y′}) | z ∈ N , x(y′).Q =α x(y).P}. See case 2.

4. Next(x y.P) = {(x y,Q) | x y.Q =α x y.P}. See case 2.

5. Next(P1 + P2) = Next(P1)∪Next(P2). By the induction hypothesis, Next(P1) and
Next(P2) are definable, therefore, Next(P1) ∪ Next(P2) is definable.

6. Next(P1 | P2) = {(a, P1 | P′2) | (a, P′2) ∈ Next(P2), bn(a) ∩ fn(P1) = ∅}

∪ {(a, P′1 | P2) | (a, P′1) ∈ Next(P1), bn(a) ∩ fn(P2) = ∅}

∪ {(τ, P′1{z/y} | P
′
2) | (x z, P′1{z/y}) ∈ Next(P1), (x z, P′2) ∈ Next(P2)}

∪ {(τ, P′1 | P
′
2{z/y}) | (x z, P′2{z/y}) ∈ Next(P2), (x z, P′1) ∈ Next(P1)}

∪ {(τ, (z)P′1{z/y} | P
′
2) | (x z, P′1{z/y}) ∈ Next(P1), (x (z), P′2) ∈ Next(P2), z <

fn(P2)}
∪ {(τ, (z)P′1 | P

′
2{z/y}) | (x z, P′2{z/y}) ∈ Next(P2), (x (z), P′1) ∈ Next(P1), z <

fn(P1)}. Note that each subset connected by the union operator is definable,
we conclude that the union is also definable.

7. Next((z)P) = {(a, (z′)P′) | (a, P′) ∈ Next(Q), z′ < a, (z′)Q =α (z)P}
∪ {(x (z′), P′) | (x z′, P′) ∈ Next(Q), (z′)Q =α (z)P}. Same as the above cases.

8. Next(!P) = {(a, P′ | !P) | (a, P′) ∈ Next(P)}
∪ {(τ, (P′ | P′′{z/y}) | !P) | (x z, P′) ∈ Next(P), (x z, P′′{z/y}) ∈ Next(P)}
∪{(τ, (z)(P′ | P′′{z/y})|!P) | (x (z), P′) ∈ Next(P), (x z, P′′{z/y}) ∈ Next(P)}. Same
as the above cases.

130 CHAPTER 6. NOMINAL EXECUTABILITY

�

Next is used as an auxiliary function in the simulation of a π-term. We shall show
later that an RTMA is capable of executing every transition from a π-term by enumer-
ating Next in an algorithm. Now we give a lemma about Next to relate it with the
operational semantics of the π-calculus.

Note that the set Next(P) is defined by structural induction on P, in the same way as
the structural operational semantics of the π-calculus. Moreover, if a transition Q

a
−→

P′ can be derived from the operational semantics, then by the ALPHA rule, there is
a transition P

a
−→ P′ where P =α Q. In the definition of Next(P), we also collect all

the possible transitions from an α-equivalence class of a P. We can establish a one-
to-one correspondence between the pairs in Next(P) and the transitions obtained from
Table 5.1.

Lemma 6.27. Let P be a π-term. We have P
a
−→ Q according to the operational

semantics in Table 5.1 iff (a,Q) ∈ Next(P).

Now we proceed to illustrate the framework of simulating the transition system
associated with a π-term P using an RTMA. We start from a configuration in which
dPe is written on the tape. The RTMA may choose to produce an α-conversion of P.
The machine first nondeterministically finds a bound name in P, and then generates a
fresh name, and renames every occurrence of the bound name to the fresh name. An
α-conversion is accomplished by repeating the above procedure an arbitrary number of
times. Then the machine continues to enumerate the contents of Next(P), and executing
a transition according to the contents of Next.

As illustrated in Figure 6.5, we shall explain the simulation of a π-term P in 4 steps:

1. apply an α-conversion to P,

2. enumerate a pair from Next(P),

3. execute an action from P, and

4. perform a substitution if necessary to reach the resulting state of the transition.

Firstly, we introduce a procedure to create an α-conversion of a π-term P.

1. The machine first traverses through the dPe, until it finds a bound name. The
RTMA may syntactically recognize a bound name in P with some appropriate
representation dPe for P.

2. The machine nondeterministically chooses to either copy the name to a specific
place (using the method in Example 6.23), or to continue the traversal procedure.

6.4. NOMINAL EXECUTABILITY OF THE π-CALCULUS 131

P dPe

(a, P′) ∈ Next(P)

dP′e y, z

dP′′e with P′′ = P′{y/z}P′′

dQe with P =α Q

a

enumeration

α-conversion

execution of a

substitution (if necessary)

↔b

↔b

↔b

↔b

↔b

Figure 6.5: Simulation of the transitions from a π-term

3. When it reaches the end of dPe and get a copy of a bound name y, it creates a
fresh name z (using the method in Example 6.24).

4. It renames y to z to obtain dP{z/y}e (using the method in Example 6.25).

5. The machine repeats the above procedure an arbitrary number of times.

We use the above procedure to generate the transitions of a π-term obtained from
its α-conversions. This is the first step of enumerating Next(P).

Secondly, we explain the procedure of enumerating pairs in Next(P). The set
Next(P) is defined by induction on the structure of P. The enumeration can be done
by a recursive call of the function according to the structure of P. Note that every pair
in Next(P) can be encoded as a finite string of symbols in D�. So the result generated
by the enumeration can be recorded on the tape. Whenever a pair is generated, the
machine has three choices: continuing the enumeration, returning to the initial state, or
starting to execute a transition.

132 CHAPTER 6. NOMINAL EXECUTABILITY

Next, we introduce the mechanism of executing a transition from a pair (a, P′) that
is written on the tape. We use a case distinction on a.

1. If a is of the form x yx y, x (y), then P′ is the resulting process. We introduce the
following set of transitions in RTMA to execute such a transition:

{(trans, a, a,�,R, rename) | a = x y ∨ a = x y ∨ a = x (y), x, y ∈ N} .

2. If a is τ, then P′{~z/~y} would be the resulting process (~y and ~z could be empty
tuples). We could use the same method as in the previous case.

Note that the transitions in RTMA mentioned above are all definable sets.
Finally, the machine starts to complete the renaming procedure. We suppose that

a process dP′e and a sequence of renaming pairs {~z/~y} is already on the tape. The
renaming is done by just repeating the method in Example 6.25.

We have the following theorem.

Theorem 6.28. For every π-term P, there exists an RTMA M, such that T (P) ↔b
T (M).

We only provide an intuitive analysis here. We consider the method we illustrated
in Figure 6.5. Let P be a π-term, and we suppose that it has a transition P

a
−→ P′′.

There is a configuration (start, dPe), and it has a sequence of transitions

(start, dPe) −→∗ (trans, (a, P′))
a
−→ (rename, dP′e) −→∗ (finish, dP′′e) .

Note that every τ-transition sequence above has a backward transition to the previous
stage. Hence, those τ-transitions does not change the state modulo↔b. Therefore, one
is able to establish an RTMAM with T (P) ↔b T (M).

Moreover, there is the following corollary about the nominal executability of the
π-calculus.

Corollary 6.29. The π-calculus is nominally executable modulo↔b.

6.5 Negative Result on mCRL2

In this section, we use the notion of nominal executability to study the expressivity
of mCRL2. We show that the transition systems associated with mCRL2 processes are
not nominally executable. Therefore, nominal executability gives a difference between
mCRL2 and the π-calculus with respect to their expressivity.

6.5. NEGATIVE RESULT ON MCRL2 133

6.5.1 LTSs with Atoms
We propose labelled transition systems with atoms to characterise nominally executable
transition systems. In the view of Example 6.21 and Example 6.22, we exclude the
transition systems with an illegal or a non-orbit-finite set of labels. We let Aτ be
a definable set of labels for the remainder of this section. We define the notion of
transition system with atoms as follows:

Definition 6.30 (LTSs with atoms). AnAτ-labelled transition system T = (ST ,−→T , ↑T)
is a transition system with atoms if ST and −→T are legal sets with atoms. We say that
a transition system with atoms is K-supported if K ⊂ A and K is a support of the sets
ST and −→T .

We observe that a transition system with atoms T = (ST ,−→T , ↑T) is K-supported
iff for every (s, a, t) ∈ −→T and for every K-automorphism πK we have πK(s, a, t) ∈ −→T ,
where πK(s, a, t) = (πK(s), πK(a), πK(t)). This fact also applies on sequences of transi-
tions.

For example, the transition systems associated with π-calculus terms are transition
systems with atoms. We consider the set of names as the set of atoms. The set of
π-terms and the set of transitions from all the π-terms are sets with atoms with empty
supports. The support of the transition system associated with an individual π-term
is the set of its free names. Note that the set of free names does not grow by transi-
tion [77].

The following theorem shows that nominally executable transition systems are la-
belled transition systems with atoms.

Theorem 6.31. For every RTMAM, the associated transition system T (M) is a tran-
sition system with atoms.

Proof. LetM = (QM, 7→ M, IniM), then there exists a finite set of atoms K ⊂ A such
that, for every (s, a, d, e,M, t) ∈ 7→ M, and for every K-automorphism πK , we have
πK(s, a, d, e,M, t) ∈ 7→ M. It follows that, K is a support of the set of configurations of
M, as well as the transition relation of T (M). Therefore the transition system T (M)
is legal. �

6.5.2 mCRL2
The formal specification language mCRL2 [49, 50] is widely used to specify and an-
alyze the behaviour of distributed systems. The question arises to what extent the
transition systems specified by mCRL2 are executable. The actions in an mCRL2
specification may contain tuples of integers of any arbitrary lengths, which leads to

134 CHAPTER 6. NOMINAL EXECUTABILITY

a set of actions with infinitely many orbits. Moreover, we can also specify transition
systems that do not have a finite support in mCRL2. Therefore, we conclude that such
transition systems are not nominally executable.

Corollary 6.32. There exists an mCRL2 specification P, such that the transition system
T (P) is not nominally executable.

Proof. Consider the following mCRL2 specification:

act num : Nat;
init sum v : Nat . num(2 ∗ v);

It defines a transition system that includes a set of transitions from the initial state
labelled by all even natural numbers as follows:

{(↑, 2n, ↓) | n ∈ N} .

This transition system does not have a finite support, therefore, it is not an LTS with
atoms. By Theorem 6.31, every nominally executable transition systems is a transition
system with atoms. So the transition systems associated with mCRL2 processes are
not necessarily nominally executable. �

Remark 6.33. Actually, in mCRL2, we can also specify the transition system in 6.3,
which is also not a transition system with atoms. Moreover, such a transition system
could be simulated in a value-passing calculus that communicates with natural numbers
and can make an addition operation on numbers, see [36].

6.6 Remarks
In this chapter, we investigated the notion of executable transition systems associated
with RTM∞ s and RTMA s. We gave some properties for executable transition systems
regarding RTM∞ and RTMA. We proposed a notion of nominal executability and used
it to distinguish the expressivity of the π-calculus and mCRL2. We got some evidence
to show that nominal executability is a proper notion for the study of expressivity on
process calculus with nominal sets.

Last but not least, we propose some future work on this issue.

1. An independent characterisation of the classes of nominally executable LTSs is
still not clear to us. We need to propose a notion of ”effectiveness” on definable
sets, as well as labelled transition systems with atoms.

6.6. REMARKS 135

RTM↔∆
b

RTM↔b

RTMA ↔b Computable RTM∞ ↔∆
b

Effective RTM∞ ↔∆
b

RTM∞ ↔∆
b

Figure 6.6: A hierarchy of executability

We hereby give an example of ”effective” LTS with atoms and show that it is
nominally executable which may gives us some ideas of the simulation of an
”effective” LTS with atoms.

Example 6.34. Consider the transition system with atoms T = (ST ,−→T , ↑T)
withA = {a | a ∈ A} ∪ {(a, b) |∈ a, b ∈ A} defined as follows:

(a) ST = {↑T , t} ∪ {sa | a ∈ A} ∪ {sa,b | a, b ∈ A}, and

(b) −→T = {(↑T , τ, sa) | a ∈ A} ∪ {(sa, a, sa,b) | a, b ∈ A}
∪ {(sa,b, (a, b), t) | a, b ∈ A}.

We define an RTMAM = (QM , 7→M , IniM) withD = A to simulate T as follows:

(a) QM = {IniM , s1, s2, s3}, and

(b) 7→M = {(IniM ,�, τ, a,R, s1) | a ∈ A} ∪ {(s1,�, τ,�, L, s2)}
∪ {(s2, a, a, (a, b),R, s1) | a, b ∈ A} ∪ {(s2, (a, b), (a, b),�,R, s3) | a, b ∈ A}.

7→M is a legal and orbit-finite set. The least support is the empty set, and it has
six orbits, namely,

(a) {(IniM ,�, τ, a,R, s1) | a ∈ A},

(b) {(s1,�, τ,�, L, s2)},

(c) {(s2, a, a, (a, b),R, s1) | a, b ∈ A, a = b},

136 CHAPTER 6. NOMINAL EXECUTABILITY

(d) {(s2, a, a, (a, b),R, s1) | a, b ∈ A, a , b},

(e) {(s2, (a, b), (a, b),�,R, s3) | a, b ∈ A, a = b}, and

(f) {(s2, (a, b), (a, b),�,R, s3) | a, b ∈ A, a , b}.

We verify T (M) ↔b T by establishing a branching bisimulation relation as
follows:

R = {((IniM , δ0, 0), ↑T)} ∪ {((s1, δa, 1), sa) | a ∈ A}
∪{((s2, δa, 0), sa) | a ∈ A} ∪ {((s1, δa,b, 1), sa,b) | a, b ∈ A}
∪{((s2, δa,b, 0), sa,b) | a, b ∈ A} ∪ {((s3, δ0, 1), t)} ,

where δa(0) = a and δa(i) = � for all i , 0 and for all a ∈ A; δa,b(0) = (a, b) and
δa,b(i) = � for all i , 0 and for all a, b ∈ A.

According to [24], atoms and set builder expressions which use atom parameters
can be written down as bit strings and processed by algorithms (e.g. formalised
as Turing machines). Moreover, the paper gives the definition of computable
functions and recursively enumerable sets on definable sets. The following ques-
tions should be answered in order to arrive at a satisfactory characterisation of
nominal executability.

(a) How to enumerate a nominally recursively enumerable definable set under
an encoding using an RTMA (or Turing machine with atoms)?

(b) How to enumerate the transition relation of an effective LTS with atoms
using an RTMA (or Turing machine with atoms)?

(c) How to simulate the an effective LTS with atoms using an RTMA?

As long as we are able to answer the above questions, we aims to a hierarchy of
executability as in Figure 6.6:

(a) by Theorem 2.22, the class of executable transition systems by RTMs mod-
ulo ↔∆

b consists of the boundedly branching computable transition system
with a finite set of labels;

(b) by Theorem 2.23, the class of executable transition systems by RTMs mod-
ulo↔b consists of the effective transition system with a finite set of labels;

(c) The class of nominally executable transition systems consists of the effec-
tive transition system with atoms, provided a proper notion of ”effective
transition system with atoms”;

6.6. REMARKS 137

(d) by Corollary 6.7, the class of executable transition systems by RTM∞s with
a computable transition relation modulo ↔∆

b is the computable transition
system;

(e) by Corollary 6.6,the class of executable transition systems by RTM∞s with
an effective transition relation modulo↔∆

b is the effective transition system;
and

(f) by Theorem 6.5, the class of executable transition systems by RTM∞s mod-
ulo↔∆

b is the countable transition system.

2. The precise characterisation of the transition systems executable by RTMAs mod-
ulo ↔∆

b is still open. Further restrictions should be imposed to make it possible
to generate all possible transitions of an arbitrary state in the transition system
from a single configuration of an RTMA.

3. It would be interesting to show the existence of a universal RTMA, such that it is
able to simulate the behaviour of every RTMA with its encoding.

4. Psi-calculi [16] were introduced to characterise transition systems with nominal
data types for data structures and with logical assertions representing facts about
data. The adoption of nominal data types provides a natural characterisation of
the behaviour executed by RTMA. An encoding of the π-calculus was proposed
in the psi-calculus [17], proving that the psi-calculus is at least as expressive
as the π-calculus. It would be interesting to figure out the relationship between
the transition systems associated with the psi-calculus and the transition systems
associated with RTMA. We conjecture that as long as the logical assertions used
in psi-calculus are semi-decidable, the transition systems associated with the psi-
calculus processes are nominally executable.

5. A notion of nominal transition system was proposed by Parrow et al. [73]. Nom-
inal transition systems satisfy the requirements of transition systems with atoms
naturally. We did not use the notion of nominal transition system since the pred-
icates for states in Hennessy-Milner logic are ignored in proving the executabil-
ity. By assuming an appropriate definition of effectiveness, we conjecture that
the effective nominal transition systems are nominally executable.

6. The value-passing calculus [36] is a process calculus in which the contents of
communications are values chosen from natural numbers. It can be used to spec-
ify transition systems that are not nominally executable (such as the one we used
in the proof of Corollary 6.32). We could investigate its expressivity with an ex-
tended version of nominal executability by imposing some structures on the sets
of atoms, e.g., the natural numbers.

138 CHAPTER 6. NOMINAL EXECUTABILITY

Chapter 7

Conclusion

Executability theory provides an integration of computability theory and concurrency
theory. This thesis presents some studies of the executability theory which are summa-
rized as follows.

7.1 Robustness
A first basic goal in this thesis is to collect evidence for the robustness of RTMs. To
achieve this goal, we compare RTMs with other models of interactive computation,
both in the transition system semantics, and in the semantics of other models.

In [13], RTMs is proved to be at least as expressive as PTMs both in transition
system semantics modulo branching bisimilarity and in interactive transition system
semantics of PTMs.

In Chapter 3 of this thesis, we provide another evidence by showing that RTMs
also subsume ITMs both in transition system semantics modulo divergence-preserving
branching bisimilarity and in the semantics of stream translations. At a first glance,
RTMs and ITMs are incomparable since RTMs give rise to executable transition sys-
tems whereas ITMs give rise to interactive computable ω-translations. We use two
approaches to compare the two models in a unified semantics. One is to propose a
transition system semantics to ITMs. We show that every transition system associ-
ated with an ITM is executable modulo divergence-preserving branching bisimilarity,
which is illustrated as Theorem 3.8. The other approach is to define a class of RTMs
for interactive ω-translations. We show that RTMs and ITMs define the same class of
interactive ω-translations, see Corollary 3.19. Van Leeuwen and Wiedermann further

139

140 CHAPTER 7. CONCLUSION

introduced ITMs with advice [60]; we also make an analogy to that notion and define
RTMs with advice. We show that RTMs with advice yield more powerful notions of
executability, namely, every boundedly branching transition system is executable by
some RTM/A modulo divergence-preserving branching bisimilarity and every count-
able transition system is executable by some RTM/A modulo the divergence-insensitive
variant of branching bisimilarity, see Theorem 3.25 and Theorem 3.26.

7.2 Comparison
The second goal of this thesis is to integrate notions in computability theory and con-
currency theory, which is the starting point of the theory of executability. In Chapter 4,
we investigate the effect of termination to the operational semantics of process calculi,
which is one of the bases of concurrency theory. The distinction between successful
and unsuccessful termination is important for a smooth integration; in automata theory
this distinction is important to express whether a string should be accepted or not. We
give an argument that the current semantics of sequential composition does not work
ideally in the presence of intermediate termination. The phenomenon of transparency
becomes the main obstacle for two problems, namely, showing that pushdown pro-
cesses could simulate context-free processes modulo strong bisimilarity, and showing
that TCP with iteration and nesting is reactively Turing powerful modulo divergence-
preserving branching bisimilarity.

In order to solve the above problems, we revise the operational semantics of the
sequential composition operator by adding a negative premises. We show that in the
revised semantics, every context-free process can be simulated by a pushdown process
modulo strong bisimilarity, see Theorem 4.18; and TCP with iteration and nesting is
reactively Turing powerful modulo divergence-preserving branching bisimilarity, see
Theorem 4.25.

7.3 Expressivity
The final goal of this thesis is to apply the executability theory in evaluating the expres-
sivity of process calculi. We establish a general framework of evaluating the expres-
sivity of process calculi based on executability and reactive Turing powerfulness and
parameterised by the choice of behavioural equivalences.

In Chapter 5, we apply this framework on the π-calculus. We show that the π-
calculus is reactively Turing powerful modulo divergence-preserving branching bisim-
ilarity by making use of the feature of link mobility in the π-calculus, see Theorem 5.11.

7.4. FUTURE WORK 141

For the executability of the π-calculus, it took us more effort than we expected.
The infinity of names in the setting of the π-calculus and the finiteness of set of labels
of RTMs makes the π-calculus unexecutable trivially. This result is certainly unsatis-
factory. We made a first effort to improve the result by restricting the π-calculus to
finitely many names. We show that the restricted π-calculus is executable modulo the
divergence-insensitive variant of branching bisimilarity, see 5.16.

In Chapter 6, we made another try of incorporating infinite labels in the formal-
ism of RTMs. We introduce a notion of infinitary RTMs, and show that the associated
notion of executability is so strong that every countable transition system is trivially
executable modulo divergence-preserving branching bisimilarity, see Theorem 6.5. To
obtain a more useable notion of executability with infinite alphabets, we use sets with
atoms and propose a notion of RTMs with atoms as well as the associated notion of
nominal executability. We establish that the π-calculus is nominally executable mod-
ulo the divergence-insensitive variant of branching bisimilarity and we show also that
another process calculus mCRL2 is not nominally executable. In this way we obtain
some evidence showing that nominal executability is a useful notion in evaluating the
expressivity for process calculi with infinite alphabets.

7.4 Future Work
We make a final remark of this thesis by listing some future work in the theory of
executability.

1. We need to get more evidence for the robustness of RTMs. There are still quite a
number of interactive computation models in the literature which have not been
proved to be subsumed by RTMs, for instance:

(a) Lynch and Tuttle’s I/O automaton [65], which is already mentioned in Sec-
tion 3.5.

(b) Gurevich’s Abstract State Machine [51] also includes a facility of interac-
tion.

(c) Fu’s theory of interaction [37] introduces a minimal requirement of inter-
active computation models and proposes a notion of subbisimilarity as a
standard way of comparing different models of interaction.

(d) Bergstra and Middelburg’s Maurer machines [20] also have a mechanism
of interaction and they could simulate Turing machines.

In order to confirm a concurrent version of the Church-Turing thesis, we need
to compare the above theories with the theory of executability, and to show that

142 CHAPTER 7. CONCLUSION

these models are equivalent to RTMs in an appropriate semantics (or at least in
the labelled transition system semantics).

2. Complexity theory is induced from computability theory by making a constraint
on the usage of resources during computation. Executing a certain behaviour
in an arbitrary transition system also costs an amount of resources, e.g., time
or space. In [81], a complexity model is established based on ITMs. By an
analogy, we might be able to evaluate the complexity of RTMs that simulates
ITMs. Furthermore, we are interested in a general theory to evaluate the resource
consumption of executing a certain behaviour.

3. For the revised semantics of the sequential composition operator, we already got
a positive result on its congruence property. In future work, we shall establish an
axiomatization for TSP; modulo strong bisimilarity.

4. In Section 4.4, the relationship between pushdown processes and context-free
processes is discussed in the revised semantics. However, the correspondence
between these models is still not yet clear in the original semantics. The best-
known result is that every context-free process can be simulated by a pushdown
process modulo contrasimulation [9], but no correspondence has been estab-
lished modulo any finer notion of behavioural equivalence. We shall leave it
as a future work to close this gap.

5. Both TCP and TCP] have been shown to be reactively Turing powerful. As men-
tioned in Section 4.6, we are interested in finding more alternatives for recursive
specification which still keeps the calculus reactively Turing powerful, such as
replication, pushdown, and back-and-forth.

6. We could make some extensions to executability theory in two dimensions:

(a) As discussed in Section 3.5, we could introduce different classes of advice
functions for RTM/A. In a way, a hierarchy of RTMs with different advice
could be imagined.

(b) As mentioned in Section 6.6, we are interested in a more complete hier-
archy of RTMs with different classes of infinite sets. We already have
the executability of infinitary RTMs, and we still need a clear character-
isation of nominally executable transition systems independent of RTMAs.
Moreover, we could even introduce an RTM that uses natural numbers as
its alphabet, and extend our theory to numeral executability in the future.
Hence, we are looking forward to establish a correspondence between the
value-passing calculus [36] with the theory of executability.

7.4. FUTURE WORK 143

(c) By analogy to the robustness of the theory of executability, we shall also
collect evidence for nominal executability, for instance, the existence of a
universal RTMA, and the comparison of RTMA with Psi-calculi [16] and
nominal transition systems [73].

7. The executability theory could be suitable material for a course about models
of computation or a course about concurrency theory. In order to incorporate
the executability theory in a course for students, more examples and exercises
should be invented. We hereby list a few:

(a) Show the equivalence between an RTM with a stay transition and a general
RTM.

(b) Show the equivalence between a single-tape RTM and a multi-tape RTM.

(c) Show the equivalence between an RTM with a two-way infinite tape and
an RTM with an one-way infinite tape.

(d) Give a proper definition of deterministic RTM, and illustrate its relationship
with a general RTM,

(e) In [13], an example of an unexecutable transition system was given. We
expect to construct more such transition systems.

A theory of executability has been established by this thesis, nevertheless there is
still a long journey towards the theory of executability.

144 CHAPTER 7. CONCLUSION

Bibliography

[1] L. Aceto, W.J. Fokkink, and C. Verhoef. Structural operational semantics. In
Handbook of Process Algebra, pages 197–292. Elsevier, 2001.

[2] L. Aceto and M. Hennessy. Termination, Deadlock, and Divergence. J. ACM,
39(1):147–187, 1992.

[3] L. Aceto, A. Ingólfsdóttir, K. M. Larsen, and J. Srba. Reactive Systems—
Modelling, Specification and Verification. Cambridge University Press, 2007.

[4] J.C.M. Baeten, T. Basten, and M. A. Reniers. Process Algebra: Equational Theo-
ries of Communicating Processes, volume 50. Cambridge university press, 2010.

[5] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the Consistency of Koomen’s
Fair Abstraction Rule. Theoretical Computer Science, 51:129–176, 1987.

[6] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Decidability of Bisimulation Equiv-
alence for Processes Generating Context-free Languages. J. ACM, 40(3):653–
682, 1993.

[7] J.C.M Baeten, F. Corradini, and C. Grabmayer. A Characterization of Regular
Expressions under Bisimulation. J. ACM, 54(2):6, 2007.

[8] J.C.M. Baeten, P.J.L. Cuijpers, B. Luttik, and P.J.A. van Tilburg. A Process-
theoretic Look at Automata. In Farhad Arbab and Marjan Sirjani, editors, Fun-
damentals of Software Engineering, Third IPM International Conference, FSEN
2009, Kish Island, Iran, April 15-17, 2009, Revised Selected Papers, volume 5961
of Lecture Notes in Computer Science, pages 1–33. Springer, 2009.

[9] J.C.M. Baeten, P.J.L. Cuijpers, and P.J.A. van Tilburg. A Context-Free Process
as a Pushdown Automaton. In Franck van Breugel and Marsha Chechik, editors,

145

146 BIBLIOGRAPHY

CONCUR 2008 - Concurrency Theory, 19th International Conference, CONCUR
2008, Toronto, Canada, August 19-22, 2008. Proceedings, volume 5201 of Lec-
ture Notes in Computer Science, pages 98–113. Springer, 2008.

[10] J.C.M. Baeten, B. Luttik, T. Muller, and P.J.A. van Tilburg. Expressiveness mod-
ulo Bisimilarity of Regular Expressions with Parallel Composition. Mathematical
Structures in Computer Science, 26:933–968, 2016.

[11] J.C.M. Baeten, B. Luttik, and P.J.A. van Tilburg. Computations and Interaction.
In Raja Natarajan and Adegboyega K. Ojo, editors, ICDCIT, volume 6536 of
Lecture Notes in Computer Science, pages 35–54. Springer, 2011.

[12] J.C.M. Baeten, B. Luttik, and P.J.A. van Tilburg. Turing Meets Milner. In Maciej
Koutny and Irek Ulidowski, editors, CONCUR 2012 - Concurrency Theory - 23rd
International Conference, CONCUR 2012, Newcastle upon Tyne, UK, Septem-
ber 4-7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science,
pages 1–20. Springer, 2012.

[13] J.C.M. Baeten, B. Luttik, and P.J.A. van Tilburg. Reactive Turing machines.
Information and Computation, 231:143–166, 2013.

[14] J.C.M. Baeten, B. Luttik, and F. Yang. Sequential Composition in the Presence of
Intermediate Termination (Extended Abstract). In Kirstin Peters and Simone Tini,
editors, Proceedings Combined 24th International Workshop on Expressiveness
in Concurrency and 14th Workshop on Structural Operational Semantics, EX-
PRESS/SOS 2017, Berlin, Germany, 4th September 2017, volume 255 of EPTCS,
pages 1–17, 2017.

[15] T. Basten. Branching bisimilarity is an equivalence indeed! Information Process-
ing Letters, 58(3):141–147, 1996.

[16] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: Mobile Pro-
cesses, Nominal Data, and Logic. In Proceedings of the 24th Annual IEEE Sym-
posium on Logic in Computer Science, LICS 2009, 11-14 August 2009, Los An-
geles, CA, USA, pages 39–48. IEEE Computer Society, 2009.

[17] J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: a Framework for
Mobile Processes with Nominal Data and Logic. Logical Methods in Computer
Science, 7(1), 2011.

[18] J.A. Bergstra, I. Bethke, and A. Ponse. Process Algebra with Iteration and Nest-
ing. The Computer Journal, 37(4):243–258, 1994.

BIBLIOGRAPHY 147

[19] J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Communication.
Information and control, 60(1-3):109–137, 1984.

[20] J.A. Bergstra and C.A. Middelburg. Simulating Turing Machines on Maurer Ma-
chines. Journal of Applied Logic, 6(1):1–23, 2008.

[21] J.A. Bergstra and A. Ponse. Non-regular Iterators in Process Algebra. Theoretical
Computer Science, 269(1):203–229, 2001.

[22] J.A. Bergstra and A. Ponse. Register-machine based processes. J. ACM,
48(6):1207–1241, 2001.

[23] B. Bloom. When is Partial Trace Equivalence Adequate? Formal Aspects of
Computing, 6(3):317–338, 1994.

[24] M. Bojańczyk. Slightly Infinite Sets. 2016.

[25] M. Bojańczyk, B. Klin, and S. Lasota. Automata with Group Actions. In Pro-
ceedings of the 26th Annual IEEE Symposium on Logic in Computer Science,
LICS 2011, June 21-24, 2011, Toronto, Ontario, Canada, pages 355–364. IEEE
Computer Society, 2011.

[26] M. Bojańczyk, B. Klin, S. Lasota, and S. Toruńczyk. Turing Machines with
Atoms. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 183–192. IEEE
Computer Society, 2013.

[27] R. Bol and J.F. Groote. The Meaning of Negative Premises in Transition System
Specifications. J. ACM, 43(5):863–914, 1996.

[28] N. Busi, M. Gabbrielli, and G. Zavattaro. On the Expressive Power of Recur-
sion, Replication and Iteration in Process Calculi. Mathematical Structures in
Computer Science, 19(6):1191–1222, 2009.

[29] J. Cabessa and A.E.P. Villa. The Super-Turing Computational Power of In-
teractive Evolving Recurrent Neural Networks. In Valeri Mladenov, Petia D.
Koprinkova-Hristova, Günther Palm, Alessandro E. P. Villa, Bruno Appollini, and
Nikola Kasabov, editors, Proceedings of ICANN 2013, volume 8131 of LNCS,
pages 58–65. Springer, 2013.

148 BIBLIOGRAPHY

[30] D. Caucal. Branching Bisimulation for Context-free Processes. In R. K. Shya-
masundar, editor, Foundations of Software Technology and Theoretical Com-
puter Science, 12th Conference, New Delhi, India, December 18-20, 1992, Pro-
ceedings, volume 652 of Lecture Notes in Computer Science, pages 316–327.
Springer, 1992.

[31] A. Church. An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, 58(2):345–363, 1936.

[32] P. Darondeau. Bismulation and Effectiveness. Information Processing Letters,
30(1):19–20, 1989.

[33] E.W. Dijkstra. Solution of a Problem in Concurrent Programming Control. Com-
mun. ACM, 8(9):569, 1965.

[34] E. Eberbach. The $-calculus Process Algebra for Problem Solving: A Paradig-
matic Shift in Handling Hard computational Problems. Theoretical Computer
Science, 383(2):200–243, 2007.

[35] W. Fokkink, R.J. van Glabbeek, and B. Luttik. Divide and Congruence III: Sta-
bility & Divergence. In Roland Meyer and Uwe Nestmann, editors, 28th Interna-
tional Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017,
Berlin, Germany, volume 85 of LIPIcs, pages 15:1–15:16. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2017.

[36] Y. Fu. The Value-Passing Calculus. In Zhiming Liu, Jim Woodcock, and Huibiao
Zhu, editors, Theories of Programming and Formal Methods - Essays Dedicated
to Jifeng He on the Occasion of His 70th Birthday, volume 8051 of Lecture Notes
in Computer Science, pages 166–195. Springer, 2013.

[37] Y. Fu. Theory of Interaction. Theoretical Computer Science, 611:1–49, 2016.

[38] Y. Fu and H. Lu. On the Expressiveness of Interaction. Theoretical Computer
Science, 411(11-13):1387–1451, 2010.

[39] M.J. Gabbay and A.M. Pitts. A New Approach to Abstract Syntax with Variable
Binding. Formal Aspects of Computing, 13(3), 2002.

[40] R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II. In Eike
Best, editor, CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings, volume 715 of Lecture
Notes in Computer Science, pages 66–81. Springer, 1993.

BIBLIOGRAPHY 149

[41] R.J. van Glabbeek. The Meaning of Negative Premises in Transition System
Specifications II. J. Log. Algebr. Program., 60-61:229–258, 2004.

[42] R.J. van Glabbeek, B. Luttik, and N. Trčka. Branching Bisimilarity with Explicit
Divergence. Fundamenta Informaticae, 93(4):371–392, 2009.

[43] R.J. van Glabbeek and W. P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. J. ACM, 43(3):555–600, 1996.

[44] K.F. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik, 38(1):173–198,
1931.

[45] D.Q. Goldin, S.A. Smolka, P.C. Attie, and E.L. Sonderegger. Turing Machines,
Transition Systems, and Interaction. Information and Computation, 194(2):101–
128, 2004.

[46] D.Q. Goldin, S.A. Smolka, and P. Wegner. Interactive Computation: The New
Paradigm. Springer Science & Business Media, 2006.

[47] D. Gorla. Towards a Unified Approach to Encodability and Separation Results
for Process Calculi. Information and Computation, 208(9):1031–1053, 2010.

[48] J.F. Groote. Transition System Specifications with Negative Premises. Theoreti-
cal Computer Science, 118(2):263–299, 1993.

[49] J.F. Groote, A. Mathijssen, M.A. Reniers, Y. Usenko, and M. van Weerdenburg.
The Formal Specification Language mCRL2. In Ed Brinksma, David Harel, An-
gelika Mader, Perdita Stevens, and Roel Wieringa, editors, Methods for Modelling
Software Systems (MMOSS), 27.08. - 01.09.2006, volume 06351 of Dagstuhl
Seminar Proceedings. Internationales Begegnungs- und Forschungszentrum fuer
Informatik (IBFI), Schloss Dagstuhl, Germany, 2006.

[50] J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Sys-
tems. MIT press, 2014.

[51] Y. Gurevich. Evolving Algebras 1993: Lipari guide. In Egon Börger, editor,
Specification and validation methods, pages 9–36. Oxford University Press, 1993.

[52] F.C. Hennie and R.E. Stearns. Two-tape Simulation of Multitape Turing Ma-
chines. J. ACM, 13(4):533–546, 1966.

150 BIBLIOGRAPHY

[53] C.A.R. Hoare. Communicating Sequential Processes. Commun. ACM,
21(8):666–677, 1978.

[54] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory,
Languages, and Computation - (2. ed.). Addison-Wesley series in computer sci-
ence. Addison-Wesley-Longman, 2001.

[55] H. Huang and F. Yang. An Interpretation of Erlang into Value-Passing Calculus.
Journal of Networks, 8(7):1504–1513, 2013.

[56] S. C. Kleene. General Recursive Functions of Natural Numbers. Mathematische
annalen, 112(1):727–742, 1936.

[57] J. van Leeuwen and J. Wiedermann. On Algorithms and Interaction. In Mogens
Nielsen and Branislav Rovan, editors, Mathematical Foundations of Computer
Science 2000, 25th International Symposium, MFCS 2000, Bratislava, Slovakia,
August 28 - September 1, 2000, Proceedings, volume 1893 of Lecture Notes in
Computer Science, pages 99–113. Springer, 2000.

[58] J. van Leeuwen and J. Wiedermann. Beyond the Turing Limit: Evolving Inter-
active Systems. In Leszek Pacholski and Peter Ruzicka, editors, SOFSEM 2001:
Theory and Practice of Informatics, 28th Conference on Current Trends in Theory
and Practice of Informatics Piestany, Slovak Republic, November 24 - December
1, 2001, Proceedings, volume 2234 of Lecture Notes in Computer Science, pages
90–109. Springer, 2001.

[59] J. van Leeuwen and J. Wiedermann. The Turing Machine Paradigm in Contempo-
rary Computing. In Mathematics unlimited-2001 and beyond, pages 1139–1155.
Springer, 2001.

[60] J. van Leeuwen and J. Wiedermann. A Theory of Interactive Computation. In
Interactive Computation, pages 119–142. Springer, 2006.

[61] B. Luttik and F. Yang. Executable Behaviour and the π-Calculus. CoRR,
abs/1410.4512, 2014.

[62] B. Luttik and F. Yang. Executable Behaviour and the π-Calculus (Extended Ab-
stract). In Sophia Knight, Ivan Lanese, Alberto Lluch-Lafuente, and Hugo Torres
Vieira, editors, Proceedings 8th Interaction and Concurrency Experience, ICE
2015, Grenoble, France, 4-5th June 2015., volume 189 of EPTCS, pages 37–52,
2015.

BIBLIOGRAPHY 151

[63] B. Luttik and F. Yang. On the Executability of Interactive Computation. In Arnold
Beckmann, Laurent Bienvenu, and Natasa Jonoska, editors, Pursuit of the Uni-
versal - 12th Conference on Computability in Europe, CiE 2016, Paris, France,
June 27 - July 1, 2016, Proceedings, volume 9709 of Lecture Notes in Computer
Science, pages 312–322. Springer, 2016.

[64] B. Luttik and F. Yang. Reactive Turing Machines with Infinite Alphabets. CoRR,
abs/1610.06552, 2016.

[65] N.A. Lynch and M.R. Tuttle. Hierarchical Correctness Proofs for Distributed
Algorithms. In Fred B. Schneider, editor, Proceedings of the Sixth Annual
ACM Symposium on Principles of Distributed Computing, Vancouver, British
Columbia, Canada, August 10-12, 1987, pages 137–151. ACM, 1987.

[66] J.C. Martin. Introduction to Languages and the Theory of Computation, volume 4.
McGraw-Hill NY, USA, 1991.

[67] R. Milner. Communication and Concurrency. PHI Series in computer science.
Prentice Hall, 1989.

[68] R. Milner. Functions as Processes. Mathematical structures in computer science,
2(2):119–141, 1992.

[69] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I & II.
Information and computation, 100(1):1–77, 1992.

[70] F. Moller. Infinite Results. In Ugo Montanari and Vladimiro Sassone, editors,
CONCUR ’96, Concurrency Theory, 7th International Conference, Pisa, Italy,
August 26-29, 1996, Proceedings, volume 1119 of Lecture Notes in Computer
Science, pages 195–216. Springer, 1996.

[71] C. Palamidessi. Comparing the Expressive Power of the Synchronous and Asyn-
chronous π-calculi. Mathematical Structures in Computer Science, 13(5):685–
719, 2003.

[72] D.M.R. Park. Concurrency and automata on infinite sequences. In Peter Deussen,
editor, Theoretical Computer Science, 5th GI-Conference, Karlsruhe, Germany,
March 23-25, 1981, Proceedings, volume 104 of Lecture Notes in Computer Sci-
ence, pages 167–183. Springer, 1981.

[73] J. Parrow, J. Borgström, L. Eriksson, R. Gutkovas, and T. Weber. Modal Logics
for Nominal Transition Systems. In Luca Aceto and David de Frutos-Escrig, ed-
itors, 26th International Conference on Concurrency Theory, CONCUR 2015,

152 BIBLIOGRAPHY

Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 198–211.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[74] C.A. Petri. Kommunikation mit Automaten. PhD thesis, University of Bonn, West
Germany, 1962.

[75] I.C.C. Phillips. A Note on Expressiveness of Process Algebra. In Geoffrey L.
Burn, Simon J. Gay, and Mark Ryan, editors, Theory and Formal Methods 1993,
Proceedings of the First Imperial College Department of Computing Workshop
on Theory and Formal Methods, Isle of Thorns Conference Centre, Chelwood
Gate, Sussex, UK, 29-31 March 1993, Workshops in Computing, pages 260–264.
Springer, 1993.

[76] H. Rogers. Theory of Recursive Functions and Effective Computability, volume 5.
McGraw-Hill New York, 1967.

[77] D. Sangiorgi and D. Walker. The Pi-Calculus - a Theory of Mobile Processes.
Cambridge University Press, 2001.

[78] J.C. Shepherdson and H.E. Sturgis. Computability of Recursive Functions. J.
ACM, 10(2):217–255, 1963.

[79] P.J.A. van Tilburg. From Computability to Executability: a Process-theoretic
View on Automata Theory. PhD thesis, Eindhovn University of Technology, 2011.

[80] A.M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. In Proceedings of the London Mathematical Society, volume 2,
pages 230–265. Wiley Online Library, 1937.

[81] P.R.A. Verbaan. The Computational Complexity of Evolving Systems. PhD thesis,
Utrecht University, 2006.

[82] J. Wiedermann and J. van Leeuwen. How We Think of Computing Today. In
Arnold Beckmann, Costas Dimitracopoulos, and Benedikt Löwe, editors, Logic
and Theory of Algorithms, 4th Conference on Computability in Europe, CiE 2008,
Athens, Greece, June 15-20, 2008, Proceedings, volume 5028 of Lecture Notes in
Computer Science, pages 579–593. Springer, 2008.

Index

λ-calculus, 2
ω-translation, 31

A, see action symbols
α equivalence class, 92
α-conversion, 91
Abstract State Machines, 27
accepting states, 2
ACP, 3, 27
action symbols, 9
advice function, 41
advice process, 41
arithmetical hierarchy, 2
Aτ, see action symbol,unobservable

action
atom automorphism, 120
atoms, 119

behavioural equivalence, 10
bisimulation up to↔b, 13
bisimulation up to↔∆

b , 13
blank tape cell, 16
bound name, 91
bounded branching, 21
boundedly branching up to↔∆

b , 24
branching bisimulation, 11
branching degree, 20

branching degree up to↔∆
b , 24

C, see channels
Con f , see configuration of an RTM
CCS, 3, 27
channels, 17
Church-Turing thesis, 2
communication, 17
complexity theory, 2
component, 30
computability theory, 1
computable functions, 2
computable LTSs, 20
concurrency theory, 1
configuration of an RTM, 16
congruence, 12
context-free process, 68
control state, 2
countable transition system, 117
CSP, 27

D, see data symbols
D�, see tape symbols
data symbols, 16
definable, 122
divergence, 22
divergence up to↔∆

b , 25

153

154 INDEX

divergence-insensitive variant of
branching bisimilarity, see
branching bisimulation

divergence-preserving branching
bisimilarity, 11

divergence-preserving condition, 12

effective LTSs, 20
effectively computable function, 20
effectively executable behaviour, 20
enumeration, 22
environment, 30
equality atoms, see atoms
executability, 28
executable LTSs, 20

final states, 2, see terminating states
finitely branching, 20
forgetfulness, 57
free name, 91

Gödel numbering, 20

half counter, 59

i/o labelled transition system, 37
infinitary Reactive Turing Machines,

116
initial state, 2, 10
interaction, 17
Interactive Turing Machine, 4
interactive Turing machine, 27
interactiveness, 31
intermediate termination, 49
iteration, 51
ITM, see Interactive Turing Machine

labelled transition system, see
transition systems

labelled transition systems with atoms,
133

λ calculus, 26
legal, 120
link mobility, 94
LTS, see transition systems

M, see models in concurrency theory
mCRL2, 27
models in concurrency theory, 27

N , see names
names, 91
nesting, 51
nominal executability, 114, 123
nominal sets, 113

orbit, 121
orbit-finite, 120

parallel composition on RTMs, 19
parallel composition on transition

systems, 18
partial computable function, 22
persistent Turing machine, 27
Persistent Turing Machine, 4
Petri Net, 3
process calculi, 3
PTM, see Persistent Turing Machine
pushdown automata, 69
pushdown processes, 70

R, see Reactive Turing Machine
Random Access Machines, 2, 26
reachability, 10
reachable, 10
Reactive Turing Machine, 4, 16
Reactive Turing Machine with advice,

42

INDEX 155

Reactive Turing Machine with atoms,
123

reactively Turing powerfulness, 28
recursive functions, 2
reflexive-transitive closure, 10
relative expressivity, 26
rooted divergence-preserving

branching bisimulation, 13
rootedness condition, 12
RTM, see Reactive Turing Machine,

see Reactive Turing
Machine

RTMs with stay transitions, 34

S, see states
set with atoms, 120
states, 9
strong bisimulation, 10
structural operational semantics, 92
support, 120

T (), see transition system
tape head, 2, 16
tape instance, 16
tape symbol, 2
tape symbols, 16

τ, see unobservable action
TCP, see Theory of Communicating

Processes
terminating states, 10
the π-calculus, 3, 27, 91
the finite π-calculus, 107
Theory of Communicating Processes,

27, 54
Theory of Sequential Processes, 52, 68
transition, 2, 10
transition relation, 10
transition system, 9
transitive closure, 10
transparency, 56
transparent, 56
Turing machines, 1, 15

unbounded branching behaviour, 56
unboundedly branching up to↔∆

b , 24
uncomputable functions, 2
unobservable action, 9

value-passing calculus, 27

well-founded set, 120
word, 10

156 INDEX

Summary

A Theory of Executability

with a Focus on the Expressivity of Process Calculi

Computability theory and concurrency theory are two of the fundamental research ar-
eas in theoretical computer science. Computability theory studies the computational
power of computing systems in terms of functions on natural numbers. Many models
of computation, e.g., Turing machines, recursive functions, lambda calculus, etc., were
shown to be equivalent. Such equivalences provide evidence for the famous Church-
Turing thesis, which could be phrased as: a function on the natural numbers is com-
putable by an algorithm, ignoring resource limitations, if and only if it is computable
by a Turing machine.

Computability theory does not address the aspect of interaction between systems.
In order to study interaction between systems, concurrency theory was proposed. In
concurrency theory, the behaviour of a system is mathematically represented as a la-
belled transition system. To specify and reason about labelled transition systems, many
process calculi have been proposed. The community of concurrency theory developed
a large variety of methods to measure the expressivity of process calculi. We address a
natural question whether we can use the knowledge in computability theory to evaluate
the expressivity of process calculi.

In this thesis, we study a theory of executability, which is the integration of com-
putability theory and concurrency theory. It is based on Reactive Turing Machines
(RTMs), concurrent variants of Turing machines. Every RTM has an associated la-
belled transition system. The labelled transition system semantics allows us to de-
fine that a transition system is executable when it is behaviourally equivalent to the
transition system associated with an RTM. In concurrency theory, there are many be-
havioural equivalences, differing in the behavioural properties they preserve. From

157

158 SUMMARY

the perspective of expressivity, it is convenient to consider behavioural equivalence
as a parameter of the theory of executability. We aim for results modulo divergence-
preserving branching bisimilarity, which is the finest known behavioural equivalence
in van Glabbeek’s spectrum of equivalences.

In Chapter 2 of the thesis, we first provide some preliminaries for the theory of exe-
cutability, including the definitions and some basic lemmas about RTMs and executable
behaviours. In particular, the role of divergence is discussed, since divergence plays a
significant role in the theory of executability. Moreover, a framework of expressivity is
proposed. The theory of executability could be applied to measure the expressivity of
a process calculus in two aspects. One is the executability, that is, whether every tran-
sition system specified in the process calculus is executable modulo some behavioural
equivalence; the other one is the reactive Turing powerfulness, that is, whether every
executable transition system could be specified in the process calculus modulo some
behavioural equivalence.

This thesis proceeds to contribute to four topics in the theory of executability.
Chapter 3 of the thesis gives some evidence for the robustness of executability

theory based on RTMs. A comparison is made between RTMs and Interactive Turing
Machines (ITMs). An ITM is a model of interactive computation invented by van
Leeuwen and Wiedermann. It models interactive computation as a translation over
infinite streams. We show that RTMs are at least as expressive as ITMs, both with
respect to its semantics in terms of labelled transition systems modulo divergence-
preserving branching bisimilarity and also with respect to its semantics in terms of
stream translations. For ITMs, van Leeuwen and Wiedermann proposed an extension
with a notion of advice, allowing them to model evolving systems such as the Internet.
We show that such an extension can also be defined for RTMs.

Chapter 4 of the thesis aims to make some revision of concurrency theory in the
context of executability theory. The chapter addresses the semantics of sequential
composition in a calculus with intermediate termination. We identify two problems
with the standard semantics, namely unbounded branching and forgetfulness. Two is-
sues have been considered in this chapter in the presence of intermediate termination,
namely, the relationship between pushdown processes and context-free processes, and
the reactive Turing powerfulness of a process calculus with the nesting operator. We
cannot resolve unbounded branching and forgetfulness in the classical operational se-
mantics due to transparency. For this reason, we cannot answer the two issues above.
We propose a revised semantics of the sequential composition operator in the pres-
ence of intermediate termination. In the revised semantics, transparency is eliminated.
Thus, we resolve the two problems above in the revised semantics. We show that every
context-free process can be simulated by a pushdown process modulo strong bisimi-
larity, and the process calculus with a nesting operator is reactively Turing powerful

159

modulo branching bisimilarity.
Chapter 5 of the thesis applies the theory of executability to evaluate the expres-

sivity of the π-calculus. The π-calculus is a widely used process calculus, and its
expressivity has been studied extensively in the literature. Most of the results about the
expressivity of the π-calculus are about its relative expressivity, that is, the expressivity
compared to some other calculus. In the theory of executability, we investigate its ab-
solute expressivity, that is, whether a transition system specified in the π-calculus can
be executed by an interactive computing system or not. We show that the π-calculus is
reactively Turing powerful modulo divergence-preserving branching bisimilarity. It is
not executable since the transition systems associated with π-calculus processes are not
limited to a finite set of labels whereas an RTM only accept a finite set of action labels.
We investigate the executability of π-calculus by making a compromise that restricts
the transition systems associated with π-calculus processes referring to only finitely
many names. We show that the π-calculus is executable in the restricted semantics
modulo a divergence-insensitive variant of branching bisimilarity.

Chapter 6 of the thesis tries to adapt the theory of executability to a broader domain.
In order to apply executability theory to evaluate expressivity of process calculi with
infinite alphabets such as the π-calculus, mCRL2 and the value-passing calculus, we
extend the theory on the dimension of the infinity of the alphabet. We first propose
a notion of an infinitary RTM that allows the sets in the definition of an RTM to be
countable. However, it turns out that such an extension hardly makes any sense since
every countable transition system is then simply executable. Then, we make some
attempts to restrict the transition relation in the RTMs to be effective or computable,
which leads to two slightly better notions of executability. Finally, we introduce a
theory of nominal executability by using sets with atoms in the definition of RTMs. In
the theory of nominal executability, there are two requirements imposed on sets with
atoms, namely, legality and hereditary orbit-finiteness. These two requirements do not
restrict a set to finitely many elements and still keep the set definable by finitely many
elements with finitely many orbits modulo permutation of atoms. We show that the π-
calculus is nominally executable modulo a divergence-insensitive variant of branching
bisimilarity, but mCRL2 is not. Hence, we have some evidence that the theory of
nominal executability is a meaningful notion in the study of expressivity.

Chapter 7 concludes the thesis and proposes some future directions in the research
of executability theory. Firstly, there are many models for interactive computation
in the literature. Comparing them with RTMs would gain more evidence for the ro-
bustness of executability theory. Secondly, an integration of complexity theory and
concurrency theory can be an interesting extension of executability theory. Thirdly,
the process calculus with the revised sequential composition operator still lacks an
axiomatization. Fourthly, the relationship between pushdown processes and context-

160 SUMMARY

free processes is still unclear in the classical semantics. Fifthly, the reactive Turing
powerfulness of many process calculi using non-regular iterators other than the nest-
ing operator still needs to be proved. Sixthly, the extensions of RTMs could still be
exploited in two dimensions, the choice of advice and the choice of infiniteness.

As a conclusion, the thesis results in some basic building blocks for a theory of
executability, namely, the robustness of RTMs, the revision in concurrency theory, the
evaluation of expressivity, and the extension of a theory of executability. A step has
been made towards a concurrent version of the Church-Turing thesis.

Curriculum Vitae

Fei Yang was born on November 4th, 1988 in Zhenjiang, Jiangsu, China.
After finishing secondary education in 2007 at No. 2 High School of East China

Normal University in Shanghai, China, he studied at Shanghai Jiao Tong University in
Shanghai, China. He received his bachelor degree in computer science in 2011. Then
he studied the master program in the major of computer science at the same university.
He worked in the BASICS group and finished his master thesis titled Regularity Prob-
lems of Process Rewriting Systems supervised by Prof. Yuxi Fu. He got his master
degree in 2014.

In the same year he started a PhD project at Eindhoven University of Technology
of which the results are presented in this dissertation.

161

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity Man-
agement: Bridging the Cryptographic
Design of ABCs with the Real World.
Faculty of Science, Mathematics and
Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient Abstrac-
tions for Visualization and Interaction.
Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Con-
trol in Health Care Systems. Faculty of
Mechanical Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexi-
bility and Trustworthiness. Faculty
of Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and
Their Clients. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics and
Computer Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtain-
ing and understanding fixpoints in model

checking. Faculty of Mathematics and
Computer Science, TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolution-
ary Computation to Cryptology. Faculty
of Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis
Methods for Resource-Sensitive Systems.

Faculty of Science, Mathematics and
Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for the In-
ternet of Things. Faculty of Mathematics
and Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Intercon-
nects. Faculty of Mathematics and Com-
puter Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty

of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis and
Verification of Embedded Systems for
Healthcare. Faculty of Mathematics and
Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time Re-
quirements: Just-Enough and Just-in-
Time. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2016-05

Y. Luo. From Conceptual Models to
Safety Assurance – Applying Model-
Based Techniques to Support Safety As-
surance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis of
Embedded Devices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10

A.C. van Hulst. Control Synthesis using
Modal Logic and Partial Bisimilarity – A
Treatise Supported by Computer Verified

Proofs. Faculty of Mechanical Engineer-
ing, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sciences,
UL. 2016-14

M.J. Steindorfer. Efficient Immutable
Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Effi-
cient Energy Management of Multipro-
cessor Streaming Applications via Model
Checking. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of private
matters: Privacy of communication on

the Internet and in the Internet of Things
(IoT). Faculty of Science, Mathematics
and Computer Science, RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty
of Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy via
Cryptography – Having your cake and
eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. Şutı̂i. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific
Languages. Faculty of Mathematics and
Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Verifica-
tion of Synchronisation Classes in Java:
A Practical Approach. Faculty of Elec-
trical Engineering, Mathematics & Com-
puter Science, UT. 2018-01

S. Darabi. Verification of Program Par-
allelization. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2018-02

J.R. Salamanca Tellez. Coequations
and Eilenberg-type Correspondences.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Coinductive
Reasoning Types, Programs and Logic.
Faculty of Science, Mathematics and
Computer Science, RU. 2018-06

A. Lele. Response Modeling: Model Re-

finements for Timing Analysis of Runtime
Scheduling in Real-time Streaming Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the art of rail-
way maintenance: Analysis and opti-
mization of maintenance via fault trees
and statistical model checking. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2018-10

F. Yang. A Theory of Executability: with
a Focus on the Expressivity of Process
Calculi. Faculty of Mathematics and
Computer Science, TU/e. 2018-11

	Contents
	Figures
	Tables
	Abstract
	Preface
	Introduction
	Background
	Computability Theory
	Concurrency Theory

	A Theory of Executability
	Thesis Outline

	Preliminaries
	A Characterisation of Discrete-event Behaviour
	Labelled Transition Systems
	Behavioural Equivalences
	Congruence
	Bisimulation up to

	Reactive Turing Machines
	Definition and Semantics
	Parallel Composition

	Executable Behaviours
	Divergence
	Enumeration with Divergence
	Unbounded Branching

	A Framework of Expressivity

	Interactive Computation
	Interactive Turing Machines and -Translation
	Executability of Interactive Turing Machines
	Executable -Translations
	Advice
	Remarks

	Sequential Composition and Intermediate Termination
	TCP and Variations of TCP
	TSP
	TCP
	TCP with Non-regular Iterators

	Transparency
	A Revised Semantics of the Sequential Composition Operator
	Context-free Processes and Pushdown Process
	Executability in the Context of Termination
	Remarks

	RTM and the -Calculus
	The -Calculus
	Syntax
	Structural Operational Semantics
	Compatibility

	Reactively Turing Powerfulness of the -Calculus
	Tape
	Finite Control

	Executability of Finite -Calculus
	A Gap Between RTMs and the -Calculus
	Restricting the -Calculus

	Remarks

	Nominal Executability
	Infinitary Reactive Turing Machines
	Infinitely Many States and Data Symbols
	Infinitary Reactive Turing Machines

	Sets with Atoms
	Equality Atoms
	Legality and Orbit-finiteness
	Definability

	Reactive Turing Machines with Atoms
	Nominal Executability of the -Calculus
	Negative Result on mCRL2
	LTSs with Atoms
	mCRL2

	Remarks

	Conclusion
	Robustness
	Comparison
	Expressivity
	Future Work

	Bibliography
	Index
	Summary
	Curriculum Vitae
	IPA Dissertation Series

