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1. Cel-celcommunicatie door middel van krachten uitgeoefend op de ex-
tracellulaire matrix leidt in computersimulaties tot de formatie van net-
werkachtige structuren (Hoofdstuk 2).

2. Door willekeurige bewegingen te maken, kunnen cellen “ontsnappen”
uit een aggregaat en door middel van communicatie tussen cellen via
krachten in de matrix ontstaan spruiten in computersimulaties (Hoofd-
stuk 2).

3. Door een gerekte matrix lokaal nog meer op te rekken kunnen gesimu-
leerde cellen zich beter langs de rek oriënteren (Hoofdstuk 3).

4. Doordat gesimuleerde cellen sneller krachten kunnen uitoefenen op
stijvere substraten dan op flexibele substraten en daardoor de cel-
substraatbindingen verstevigen, kunnen ze zich uitspreiden over een
stijf substraat. (Hoofdstuk 4).

5. Doordat gesimuleerde cellen op een substraat met een stijfheidsgradi-
ënt zich sterker binden aan de stijvere kant van het substraat, kunnen
cellen naar stijvere delen van het substraat migreren. (Hoofdstuk 4).

6. Het versnellen van het klieven van een eiwit naar zijn gematureerde
vorm in de cel kan de reikwijdte van de eiwitgradiënt in de extracellu-
laire ruimte vergroten (Hoofdstuk 5).

7. Een gesimuleerd weefsel kan zich vertakken door een chemische stof
uit te scheiden die lokaal celbewegingen onderdrukt (Hoofdstuk 6).

8. Een wiskundig model is uitermate geschikt voor mechanobiologisch
onderzoek omdat mechanische en chemische processen losgekoppeld
kunnen worden om ze afzonderlijk te bestuderen.



9. Door stap voor stap fysische krachten en biologische schalen aan een
wiskundig model toe te voegen kunnen we gedetailleerder inzicht ver-
krijgen in het effect van schaalinteracties in mechanobiologie.

10. Een wiskundig model kan pas opgeschaald worden naar een meercel-
lig systeem als het gedrag van de individuele cellen voldoende goed
beschreven wordt.

11. Niet-significante variaties in fysische krachten op celniveau kunnen sig-
nificante veranderingen teweegbrengen op het weefselniveau.

12. Een kwantitatieve fit van een wiskundig model aan een experimenteel
model beperkt zich tot dat modelsysteem, terwijl een kwalitatief mo-
del inzicht kan geven in de biologie onafhankelijk van deze speciale
context.

13. Het verenigen van equivalente computationele modellen tot een stan-
daard set generieke modellen zou samenwerkingsverbanden binnen
de biologische wetenschap kunnen bevorderen.

14. Het versnellen van multischaal modelsimulaties biedt de mogelijkheid
om het model op een relevante schaal toe te passen in klinische prak-
tijken.

15. Een goed geschreven artikel draagt bij aan de wetenschappelijke im-
pact van interessante resultaten.

16. In tegenstelling tot een computationeel bioloog, kan een computatio-
neel biologe tijdens haar promotieonderzoek ook een embryologisch
in vivo experiment uitvoeren.

17. De aanwezigheid van kolfruimtes op wetenschappelijke conferenties
zou de participatie van wetenschapsters met jonge kinderen kunnen
bevorderen.
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1. Introduction

1.1 Morphogenesis

Every multi-cellular organism originates from a single fertilized egg cell. This cell
multiplies and the resulting clump of cells undergoes complex shape changes to form
different tissues and organs, resulting in a full functioning organism. This process is
called morphogenesis and involves a seemingly fixed choreography of cells, which
move collectively while differentiating and interacting with each other. Much like in a
ballet choreography, slight missteps of a member of the corps de ballet, will not result
in a complete failure of the formation. Indeed, the mechanisms behind morphogenesis
are quite robust. However, if many members fail to do their part, and errors are not
compensated, the resulting formation will not be right. Indeed, failure of migration
and differentiation of cells during embryonic growth leads to numerous birth defects,
such as cardiac diseases.

Morphogenesis is not only important during embryonic growth, it also plays a cru-
cial role throughout development. During the lifetime of an organism, cells reorganize
and reshape tissues to maintain optimal functioning of organs. For example, capillar-
ies continuously reorganize in order to keep properly distributing the oxygen in the
body and comply to the changing demands of the surrounding tissues [1]. The ability
of tissues to adapt can be very helpful. Continuing on the example of blood vessels,
the growth of new blood vessels during wound healing supplies the new tissue with
oxygen. Blood vessel formation, however, may also be harmful. Excessive growth
of blood vessels induced by a tumor can further progress growth of the tumor and
metastases [2, 3]. Thus, morphogenesis is involved in tissue homeostasis, healing and
disease. In order to better treat diseases and heal organs, we need a good understand-
ing of the mechanisms behind morphogenesis.

Due to great progress in genetic sciences since the 1970s, developmental biology has
largely focused on gene regulation of developmental growth and disease. It was, and
is, often investigated how the knock-out or over-expression of genes affects the shape
and state of the organism [4, 5]. Such studies provided us with insights into which
genes control which developmental process and which diseases are associated with
them [4, 5]. Furthermore, it is even possible to visualize the activity of multiple genes
concurrently [6]. This enables the association of spatial and temporal patterns of gene
expressions with the development of organs and disease [7]. However, such data does
not fully explain how and what cell behavior, that is regulated by gene expressions,
drives the growth and form of multicellular organisms. Signaling molecules that affect
the transcription rate of genes, either directly or indirectly through a gene regulatory
network, are often considered to regulate morphogenesis. Signaling molecules are
produced by cells and diffuse through the tissue. If cell behavior depends on the local
level of the signaling molecule, a cell can “read out” its position based on the distri-
bution/gradient of the signaling molecule [8]. In 1952, Alan Turing showed that two
diffusive chemicals that react with one another, can produce patterns such as stripes
and spots, depending on their diffusibility [9]. Such chemicals were termed “mor-
phogens” and their concentration gradients have since often been postulated to drive
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1.1. Morphogenesis

various morphogenetic processes. For instance, reducing the binding rate of the sig-
naling molecule FGF10, involved in epithelial branching, to the substrate lowered its
diffusion rate and as a result the tissue branched instead of elongated [10]. Gradients of
morphogens are thought to provide tissues with global positional information [8] by
regulating cell proliferation, differentiation and motility through gene transcription.
Non-diffusive membrane-bound signaling molecules can also regulate morphogene-
sis by inducing cell-cell communication. For instance, in the Delta-Notch signaling
pathway [11], Delta production of one cell activates Notch in a neighbouring cell, in-
hibiting the production of Delta. This mechanism results in a salt-pepper pattern of
two cell types in a tissue [12]. Thus, both global and local chemical signaling can
drive morphogenesis.

1.1.1 Physical forces in development

It has become increasingly clear that not only chemical signals but also mechanical
forces, originating from, for instance, tissue movements, greatly impact morphogene-
sis. In 1917, D’Arcy Thompson published his famous book “On Growth and Form”
[13], where he argued how physical forces and environmental constraints can shape
biological forms, such as cells and whole organisms. If a tissue is subject to forces,
it undergoes shape changes, similar to non-biological materials. A recent example
of this phenomenon is a physical model resembling the gut, made of silicone rubber,
attached to a latex sheet resembling the dorsal mesenteric sheet, which showed that
differential growth of the two tissues may drive looping of the gut [14]. Experimental
data seems to confirm this mechanism, as the gut tube experiences strain due to ten-
sion of the mesentery and only loops when attached to it [14]. Theoretical modeling
of elastic tissues has given further insight into how physical forces and environmental
constraints can mediate shape changes, such as bending, buckling and extensions of
tissues [15]. Besides such “passive” responses of tissues to forces, the cells in tissues
also change their activity in response to force. Physical forces can change gene ex-
pression and other intracellular activities. For instance, mechanical loading of bone
stimulates osteocytic cells to produce bone and also inhibits osteoclasts to break down
bone [16]. Intricate interplays between osteocytes and osteoclasts is thought to regu-
late the formation of bone in response to mechanical loading [17, 18]. Because of the
increasing evidence of the ability of forces to drive development, physical forces are
thought to play an equally important role as chemical signaling in morphogenesis.

1.1.2 The cell as a contractile apparatus

Similar to chemical signaling, mechanical forces can originate from surrounding tis-
sues or at a local level. In 1980, Harris and coworkers showed that mechanical forces
can originate locally from cells itself [19]. By placing a cell on a silicone rubber
substrata, the substrate started to wrinkle, indicating that cells apply forces to their
environment [19]. Indeed, it has become clear that the cytoskeleton is able to resist
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1. Introduction

and generate forces, making the cell a mechanically active material. As a result, the
cell has been modeled by a tensegrity model, which is originally a structural principle
coined by the architect Buckminster Fuller and first applied to describe cell structure
by Donald Ingber [20]. In this model, cells are thought to stabilize in shape by a
balance of forces between tensed actin filaments, intermediate filaments, compressed
microtubules within the cytoskeleton and adherence to its environment (Figure 1.1).

Actin filaments can assemble in large load bearing structures called stress fibers,
which are actin filaments bundled by non-muscle myosin II molecules. Through hy-
drolysis of ATP, myosin motors convert chemical energy into mechanical energy and
walk along the connected actin filaments, which makes the stress fiber become tensed
[22]. This allows a cell to generate significant forces (locally up to tens of nano New-
tons [23]), and since stress fibers attach to cell adhesion molecules at the membrane,
these forces are transmitted to what the cell adheres to.

Cells in tissues adhere to each other through the Cadherin adhesion molecules, that
link to the cytoskeleton [24], which allows for force transmission between cells in
tissues. Long range force transmission has been shown to regulate tissue shaping.
For instance, dorsal closure of Drosophila melanogaster (fruitfly) is mediated by the
propagation of stresses, originating from collective cell contractions at various places
of origin in the embryo (reviewed in [25]). Cell contraction via actin-myosin has
been implicated in many other developmental processes, such as tissue elongation
and collective cell migration (reviewed in [26]).

1.1.3 Mechanical interactions with the extracellular matrix

Cells in tissues are surrounded by the extracellular matrix (ECM), an interconnected
network of fibers and proteins that supports tissues. By adhering to and applying
forces on the ECM, cells are able to sense and respond to the mechanical cues in the
ECM. The architecture of the ECM mediates cell migration [27]; cells move up ECM
density gradients (haptotaxis), matrix stiffness gradients (durotaxis) and along fibers
(contact guidance). Not only do cells respond to the structure of the ECM, but they
can also actively change its local architecture. Cells deposit matrix fibers, reorient,
degrade and link the fibers in the ECM. Also, cells locally stiffen the matrix either by
contracting it, or by depositing matrix fibers. Because cells sense matrix deformations
generated by adjacent cells, matrix remodeling allows cells to communicate via the
ECM.

Advances in in vitro modeling of cells and the extracellular matrix has given more
insight into mechanical cell-cell communication [28]. In such studies, synthetic gels
or naturally-derived gels are used to mimic the extracellular matrix. Matrigel is a
natural gel that contains a mixture of extracellular matrix proteins, such as growth
factors and collagen fibers. Although Matrigel mimics the complex environment well,
it is difficult to tune separate effects, such as fiber density or matrix stiffness or exclude
the effects of unknown components of the gel. Instead, synthetic gels may be used,
of which the components are controlled and its mechanical properties are tunable [29,
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1.1. Morphogenesis

Figure 1.1: Tensegrity model of the cell its cytoskeleton. (A) A tensegrity toy illustrates the
principle of a self-stabilizing network of compressed struts and tensed cables, cour-
tesy of Daniel Lont; (B) A schematic representation of a cell adherent to the extra-
cellular matrix. Red shows radially oriented microtubles that oppose the oppose the
inward-directed forces of the actomyosin network depicted in black. Panel B was
reproduced in part from [21] with permission of The Royal Society of Chemistry.

5



1. Introduction

30]. An example of synthetic gels are polyacrylamide (PA) gels, which are flexible
substrates with tunable stiffness. These gels are derivatized with RGD peptides or
coated with matrix fibers, to allow cell-substrate binding.

PA gels have been used to reconstruct cell traction forces based on matrix deforma-
tions [31]. Similar experimental set-ups were used to show that these traction forces
can mediate cell-cell communication (e.g. [32], Figure 1.2A). In this study [32], it
was shown that cell-cell contact depends on the stiffness of the substrate. On the soft-
est substrates, cells adhere to one another while on substrates of intermediate stiffness
cells repeatedly touch and break contact. On the stiffest substrates, the cells first make
contact but then migrate away. The cells were able to apply sufficient force to create
substrate deformations under nearby cells and the range of substrate deformation was
correlated with the separation distance between cells. This study showed that cells
communicate short range (≈ 25 µm) through matrix stresses on PA gels. The range
of communication is much longer on collagen gels, and can even be up to 450 µm,
depending on cell type and gel stiffness [33]. Long range communication has been at-
tributed to strain-stiffening of fibrous gels [33, 34]. Indeed, cells can apply sufficient
force to strain-stiffen the matrix (Figure 1.2B). This allows cells to elongate and align
with one another, forming network-like structures [33]. Network formation has often
been observed and depends on the magnitude of cell force, substrate stiffness and sub-
strate density [35, 36]. Besides network formation, local substrate deformations also
regulate other processes such as collective cell migration [37, 38].

Cells can also steer the migration of other cells by means of traction force induced
realignment of matrix fibers [39, 40], to which cells migrate along by contact guid-
ance. Since fibers are quite long and can span multiple cells, they allow for long range
communication. Based on experimental images of cells and matrix fibers, a computa-
tional study was performed to that suggests that fiber alignment is crucial long range
stress propagation (Figure 1.2C).

Theoretical models

Many theoretical models were developed to understand how cells respond to mechan-
ical cues in the matrix [41, 42]. Theoretical models were often based on homeostatic
principles, motivated by experimental observations of cells that maintain local stresses
or strains in the substrate [43, 44]. For instance, a theoretical model of cells repre-
sented as contractile dipole forces suggested that cells can reorient to matrix stress if it
attempts to maintain either local stresses or strains. Furthermore, either stress or strain
optimization allowed cells to move towards neighboring cells. Using a similar theoret-
ical model, it was proposed that cells minimize the amount of work needed to contract
the matrix [45]. This allows cells to align to each other and form networks-like struc-
tures [46]. However, it is still poorly understood how and why a cell would maintain
local stresses or strains or minimize the amount of work. Cytoskeleton remodeling is
governed by the dynamics of stress fibers and cell-matrix adhesions, which are in turn
influenced by matrix stresses and thus are considered to regulate the response of cells
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1.2. Mathematical modeling of morphogenesis

to matrix mechanics. Theoretical models have suggested that cells can respond to ma-
trix stresses by aligning stress fibers, upregulating traction forces [47] and stabilizing
cell-matrix adhesions [48, 49]. Although such models have provided further insight
into how cells can respond to the ECM, it is still poorly understood how this affects
tissue organization.

Cell-cell communication through matrix stresses are very relevant to many morpho-
genetic processes. For instance, sprouting cells from an aggregate has been shown
to be mediated by traction force induced reorientation of matrix fibers, which guides
the directional outgrowth of cells [40, 51]. Furthermore, during Drosophila egg de-
velopment, collagen deposition of cells generate a stiffness gradient, which instructs
elongation of the follicle [52]. However, excessive matrix remodeling, which may
occur during wound healing and is associated with fibrotic diseases, can lead to organ
dysfunction [53]. Also, cancerous cells can significantly reorient and stiffen the ma-
trix, which allows a tumor to grow and metastasize [53]. In conclusion, cell-matrix
interactions have been implicated in morphogenesis, homeostasis and disease.

A better understanding of how cell-matrix interactions shape tissues, can greatly ben-
efit medicine. For instance, cancer therapy would benefit from a better understanding
on how the mechanical properties of cells and the matrix may drive cancer progres-
sion [53]. Cancer metastasis is associated with increased remodeling of the matrix
[53]. By targeting, for instance, enzymes involved in matrix remodeling, we could
obtain new therapeutic agents for cancer therapy [53]. Furthermore, mechanical load-
ing of artificial tissues regulates the orientation and structural integrity of the tissue
[54]. Artificial tissues may be implemented to promote healing of a damaged organ
or even replace it and the efficiency of tissue engineered constructs depends on how
well the artificial tissue resembles the present in vivo tissue structure [55]. So, a better
understanding of how forces regulate tissue formation can benefit the design of such
constructs [56].

1.2 Mathematical modeling of morphogenesis

Because of the complexity of biology, it is very challenging to study morphogene-
sis by solely doing experimental studies. Mathematical modeling has become a use-
ful tool to study morphogenesis and has many benefits. In contrast to experimental
approaches, in a mathematical model, every variable can be tracked, and it is rel-
atively easy to knock out specific mechanisms or variables and interactions, while
maintaining others. Hypotheses from experimental observations can be formulated in
mathematical equations. Solving or simulating mathematical models can thus help us
understand how certain mechanisms influence the behavior of the system [57]. Fur-
thermore, models can be used to investigate how different mechanisms interact in a
system. A mathematical model can also be used to make a prediction about the exper-
imental system [57].

Mathematical models can be used to describe and study different scales of the bi-
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1. Introduction

Figure 1.2: Experimental observations of matrix remodeling and mechanical cell-cell
communication. (A) Two adjacent cells on polyacrylamide gels with traction
stress distributions. The cell at the bottom extends a small pseudopod towards the
top cell while it was moving away, revealing that the cell senses traction stresses of
the adjacent cell. Reprinted from [32] with permission from Elsevier; (B) Heatmap
of the matrix stiffness around a migration fibroblast, indicating that the cell locally
stiffens the matrix. Adapted from [37] with permission from American Chemi-
cal Society; (C) Heatmap of stresses between two adjacent cells on a fibrous ma-
trix. Stresses were calculated using a finite element model of a nonlinear strain-
hardening material based on the experimental images of the cells and fibers. This
shows that stresses propagate between cells via matrix fibers. Adapted from [50]
with permission from Elsevier.
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1.2. Mathematical modeling of morphogenesis

ological system. The microscale of cell biology, like for instance protein and gene
interactive networks within cells, has been described by mathematical models [58].
Although we can measure how proteins and genes interact, we can not grasp what the
consequence is of all interactions between different genes and proteins. Mathematical
modeling can provide insights into how changes in such large interactions networks
affect the expression of the cell [58]. However, such models do not translate to the
impact on the tissue level. Other mathematical models focused on dynamics at the
tissue level by modeling the tissue as a continuum by averaging out individual cells.
These models give insight how laws of motions for the cells results in tissue pattern-
ing. Such models have been used to study pattern formation in a wide variety of
developmental processes [59]. However, continuum models do not provide sufficient
detail of cellular mechanisms, such as cell shape changes, that are relevant to morpho-
genesis. It has been proposed that mathematical biology should take a cell-centered
approach [60]. More specifically, it was argued that cells should be considered as
black boxes that behave a certain way, while neglecting the intercellular mechanisms
that drive this behavior. The individual cell behavior can be inferred from experimen-
tal observations and be put into a cell-based model. Then, we can use this cell-based
model to understand how a specific input (i.e. cell behavior) leads to a certain output
(tissue formation). By comparing the model output to experimental observations, we
can determine if this cell behavior suffices to explain the experimental data. If not,
the model can be further adapted and subsequently tested with experiments to find the
cell behavior that suffices to reproduce certain experimental observations.
As morphogenesis is an inherently multi-scale problem we believe that we should

take a multi-scale mathematical modeling approach. Organisms consist of tissues,
which consist of cells, the extracellular matrix and their molecules. During devel-
opment, all different scales in biology interact and feed back on one another. For
instance, gene expressions change cell behavior, which change tissue forces, which
in turn change gene expressions. So, a better understanding of how forces can drive
morphogenesis should take into account the forces acting and interacting at all differ-
ent scales. A multi-scale model consists of separate models that describe the scales
of interest, from the molecular scale, to the cellular scale to the tissue scale [61]. We
believe that we should start with modeling only the scales and interactions of inter-
est, like for instance cells and the extracellular matrix and their interactions. Then, if
the model is not able to explain the experimental observations, we can further build
up the model, by adding more mechanisms, scales and interactions between scales.
Doing complementary biological experiments allows us to validate model predictions
but also to investigate what aspects are missing in our model. Such a feedback loop
between experimental biologists and mathematical modelers allows for a systematic
exploration of the necessary mechanisms in a biological system and thus increases our
understanding of the system.
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1. Introduction

1.2.1 Cell based modeling

Because cells are the building blocks of tissues, we aim to develop multi-scale models
that explicitly describe cells. Discrete cell-based models describe cells as individual
elements, and thus, in contrast to continuum models, provide sufficient detail on the
cellular level. We can divide cell based models in single and multi-particle meth-
ods. Single-particle models represent cells as point particles or ellipsoids. Multiple-
particle-based models use a collection of particles to represent each cell, allowing for
a more detailed description of cell shape [62]. A further distinction is made between
representations on regular lattices, which can be computationally more efficient, and
off-lattice representations, which allows more flexibility in cell shape. An overview
of cell-based methodology is given in Figure 1.3. In single particle-based models cell
migration is described by differential equations of motion for each particle. These
differential equations usually include active, random or directed cell migrations and
external forces applied to the cell, which can be either cell-cell interactive forces or
forces from the environment [see, e.g. 63]. Alternatively, particles comply to a set of
behavioral or migratory rules [see, e.g. 64], as in an agent-based model.

Using particle-based methods, various cell migration behaviors have been modeled.
For instance, Szabo et al. [66] included diffusion, directional persistence and an at-
traction to anisotropic structures to model cell organization into network-like patterns.
Cell-cell interactions, such as pressure and velocity adaption to neighbors, were added
by Sepulveda et al. [67] and Byrne et al. [64] respectively. Dallon et al. [68, 69] sim-
ulated contact guidance, haptokinesis and chemotaxis in a particle-based model.

While particle-based methods make it possible to simulate how individual cell be-
haviour is responsible for collective cell motility during morphogenesis, more detail
may be needed. The shape of the cell is key to many developmental processes. The
shape of the cell determines the extent of cell-cell interactions, i.e. cell-cell signalling
or cell-cell adhesion. To account for differerential cell shape, multiple particle meth-
ods describe cells as a collection of connected particles, so that the boundary or in-
terior of a cell is defined (Figure 1.3). Thus, cell shape is explicit and can change
in response to external forces and interactions with adjacent cells. The subcellular
elements method [70] is an example of an off-lattice multiple particle method, where
cells are divided into subcellular elements (for instance, points in space), which can
locally interact with elements of the same cell and elements of other cells via equa-
tions of motion. These equations describe both the internal rheology of individual
cells, as well as the adhesive and repulsive forces with adjacent cells. Mechanotactic
and chemotactic cell migration can be included in such models [see e.g., 71]. Alter-
native off-lattice and lattice-based multi-particle methods are the vertex-based models
and the cellular Potts model (CPM). The CPM describes cell shape and cell movement
on the level of protrusions. It can be easily extended to describe various cell behav-
iors and other scales such as intercellular dynamics and the extracellular matrix. For
this reason, the research presented in this thesis has employed the CPM, so we will
describe the CPM in more detail here.
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1.2. Mathematical modeling of morphogenesis

The CPM [72, 73] represents cells as a set of connected lattice sites (Figure 1.4) on
a 2D square lattice Λ ⊂ Z2. Each lattice site, ~x ∈ Λ, has a state σ(~x) ∈ {0, 1, ..., n}
that identifies the individual cell the lattice site belongs to, where σ = 0 represents the
surrounding medium, and n is the total number of cells in the lattice. Forces acting on
the cells are described in the Hamiltonian,

H =
∑
(~x,~x′)

J(τ(σ(~x)), τ(σ(~x′)))
(
1 − δ(σ(~x), σ(~x′))

)
+ λ

∑
σ∈[1,n]

(aσ − Aσ)2 , (1.1)

where J is an adhesive energy between two adjacent sites ~x and ~x′ and δ is the Kro-
necker delta function: δ(x, y) = 1 if x = y and δ(x, y) = 0 otherwise, such that the
first term counts the total adhesive energy across cell-cell and cell-medium interfaces
(Figure 1.4). The second term is a cellular volume conservation term, with aσ the
cell area, Aσ, the resting area of cell σ, and λ a compressibility parameter. To mimic
cell motility and membrane fluctuations, the cellular Potts model iteratively attempts
to copy the state σ(~x) of a randomly selected lattice site ~x, into a randomly selected,
adjacent lattice site ~x′; If such a copy reduces the value of the Hamiltonian (∆H ≤ 0),
it is accepted. If the attempt would increase the value of the Hamiltonian (∆H > 0) it
is accepted with a Boltzmann probability, P(∆H) = exp(−∆H/T ). These copy steps
account for the intrinsic random motility of cells, with large values of T corresponding
with more random motility. During one time step, N copy attempts are made, with N
the total number of lattice sites in the lattice.

The CPM has often been extended to account for additional cell behaviours, which
are typically described by additional terms in the Hamiltonian (Eq. 1.1). Hybrid Cel-
lular Potts models, in which the CPM is combined with discretized continuum models
(PDEs) to account for secreted chemical signals [75] were developed to study how
chemical signaling affects tissue patterning. Other extensions include anisotropic cell
adhesion [76], cell elongation [77] and persistent cell motility [78].

1.2.2 Modeling of mechanical cell-matrix interactions

Various modeling techniques can be used to model the extracellular matrix. Similar
to cells, depending on the context and objective, the ECM can be modeled using
continuum or discrete approaches. Within continuum models we can make a further
distinction between models excluding and including matrix fibers. In this section, we
will give a overview of matrix models that were coupled to cell models in order to
investigate how cell-matrix interactions can influence morphogenesis.

Murray and Oster [79] developed a continuum model for the extracellular matrix.
Here, the ECM was modeled as an viscoelastic material that deforms in response to
external forces and the laws of motions are described using partial differential equa-
tions (PDEs). To study cell-matrix interactions, PDEs that describe cell movement
can be coupled to the PDEs that describe the matrix. In the model by Murray and
Oster, cells are assumed to contract the matrix so that the matrix deforms. Cells then
are pulled passively along substrate deformations. This causes an initially random dis-
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1. Introduction

Figure 1.3: An overview of cell-based modeling methods. Reprinted [65] with permission
from Elsevier.

Figure 1.4: An overview of the cellular Potts model. Three cells with two cell types interact
via adhesive energies and the surrounding medium. Reprinted from [74].
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1.2. Mathematical modeling of morphogenesis

persed cells to accumulate the matrix underneath them so that cells form aggregates.
Then, tension lines between aggregates enable the aggregates to connect and form pat-
terns. This model has been extended many times to include active cell-matrix interac-
tions. For instance, models that included active cell movement along matrix strains,
chemotaxis and haptotaxis were used to study cellular network formation [80–82].

Continuum modeling approaches have also been used to describe matrix fibers. For
instance, the ECM has been modeled by a vector field that describes the orientation
of fibers [68]. The reorientation of the vector field is modeled by a ordinary differ-
ential equation, where it assumed that the vector field reorients to an external force
field with a rate proportional to the magnitude of the external force. As the ECM is
anisotropic and not unidirectional it was proposed that the ECM should be modeled as
a tensor field instead [83]. These vector or tensor fields of matrix fibers were coupled
to discrete models of cells and applied to study wound healing [68, 83].

Continuum models that describe both matrix elasticity and fiber orientation have
also been developed. Barocas and Tranquillo developed a biphasic theory for tissues,
where the tissue is described a mixture of the matrix and cells [84]. This model defines
the fraction of volume that contains either cells or the matrix and describes how the
two phases deform and interact through forces. An additional tensor field is introduced
that describes the fiber orientation which rotates in response to cell forces and affects
cell migration [85]. Recently, a similar multiphase modeling framework was adopted
that in addition describes how the fiber orientation affect the stress in the matrix. Using
this model, it was studied how matrix anisotropy affects cellular pattern formation
[86]. Matrix fibers can also be included in elastic material models by considering
fiber-reinforced elastic materials. Checa et al. [87] modeled an elastic material where
the orientation of fibers determines the stress in the material [87]. It was assumed that
the fibers rotate towards the principal stress orientation of the tension field generated
by discrete cells. This model was used to study the effect of boundary conditions on
cellular self-organization and fiber alignment [87]. Yang et al. [88] modeled how the
orientation of the fibers but also that the density of the fibers affect matrix stresses.
This model was coupled to a discrete model of cells to study the effect of matrix fiber
realignment during wound healing (Figure 1.5A).

Because fibers can be of the same length or even longer than cells, it may not be
appropriate to model a fibrous matrix as a continuum. Instead, models were devel-
oped that describe both the cell and matrix fibers as discrete objects. Schluter et al.
modeled fibers as thin cylinders that rotates as a lever as a cell pulls on it [89]. Dis-
crete cells then move along the orientation of the fibers. Fibers and cells have also
been represented as a set of connected nodes and springs [90, 91]. In such models,
fibers are multiple springs connected to each other by particles that can be anchored
to the cell. The sum of all forces between cells and the matrix deform the elements,
effectively resulting in cell migration. Typically, discrete models are computationally
more expensive and thus have focused on single cell migration or the migration of two
interacting cells (Figure 1.5B) [89–91]. In the CPM, the architecture of the ECM has
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1. Introduction

been modeled by including ECM fibers as immovable lattice sites in the medium sur-
rounding the cells in the CPM (Figure 1.5C) [92, 93]. By allowing more lattice sites
to be of type fiber, higher densities of matrix fibers can be modeled. Note however
that the fibers in this model are static.

In the models described in this section, cell-matrix interactions were often based on
the alignment of fibers in the matrix. However, experimental observations indicate that
cells can also communicate through matrix stresses in the absence of fibers [32]. Some
continuum models [80–82] have focused on how matrix stresses influence pattern
formation. In this thesis, we take a cell-based modeling approach to study how matrix
stresses affects morphogenesis.

1.3 Thesis outline

In this thesis, we address the overarching question “How do cell-matrix interactions
drive morphogenesis?”. We mainly focus on mechanical cell-interactions through
matrix stresses but also study chemical signaling via the matrix. We take a multiscale
computational modeling approach to attempt to answer our research question. We
have developed a multiscale model, by extending the Cellular Potts Model with a
finite element model of the substrate. In our model, the cell and the ECM interact
through a feedback-loop. By pulling on the matrix, the cell adapts the matrix, and in
turn, the cells sense the matrix and respond to it, a process called dynamic reciprocity.
By testing different hypotheses on cell-matrix interactions, we can use our model to
understand how this affects morphogenesis. Since our model is generic it does not
specify a certain cell type or other tissue-specific constraints, so we can use our model
to study different systems.
In chapter 2, we use our model to explain how matrix stiffness regulates vasculo-

genesis. Experimental observations have shown that endothelial cells on compliant
polyacrylamide gels only form vascular network-like patterns on substrates of inter-
mediate stiffness [36]. In our model, we assume that by straining the matrix, the
matrix strain-stiffens. Furthermore, the cells respond to the matrix by preferentially
extending protrusions on stiffer matrix sites, based on the observation that cell-matrix
adhesions are larger on stiff matrices, and in the direction of strain. This minimal
assumption already reproduces observed single cell behavior; cells elongate on sub-
strates of intermediate stiffness. When simulating a group of cells, the cells elongate
and locally align with each other because they respond to the matrix strains induced
by neighbouring cells. This local cell-cell alignment then results in global cellular net-
work formation. We furthermore show that this cell behavior enables cells to sprout
from a circular blob of cells, suggesting that the proposed mechanical cell-matrix in-
teractions might also drive sprouting angiogenesis.

In chapter 3, we dive a little deeper into cell alignment. Here, we aim to understand
how cells and tissues can align along matrix strains. In vitro experiments where a
tissue is uniaxially loaded show that many cell types elongate along the orientation of
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1.3. Thesis outline

Figure 1.5: Examples of multiscale models of cell-extracellular matrix interactions. (A)
Substrate deformation given by natural tension lines around the wound (Left), col-
lagen fibers (grey) align with tension field, discrete cells are indicated by yellow
spots and invade the wound (Right). Adapted from [88] with permission from El-
sevier; (B) Two discrete circular cells pulling on and migrating in a fibrous matrix,
one cell follows the other by contact guidance along the track of fibers that were
aligned by the leader cell. Adapted from [89] with permission from Elsevier; (C)
cellular Potts model (red cells) coupled to discrete matrix fibers (green), cells form
sprout that branches. Adapt from [93].
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1. Introduction

static matrix strain. Furthermore, whole tissues can align to strain [94] or cells orga-
nize into stripes oriented along the strain [95]. Our model suggests that cell alignment
to static strain is promoted by cellular forces. Cells respond to the static strain by
slightly elongating. If a cell then applies a force to the matrix, it locally increases the
strain of the matrix at the tip of its body. This increased strain then allows cells to
elongate even further, compared to a cell that would not have strained the matrix. So,
a positive feedback loop between cell extensions and cell contractility enables a cell
to align along the strain. Simulations of multiple cells suggest that this mechanism
enables cell-cell alignment so that cells form stripes of cells along strain. Increas-
ing cell-cell adhesions and cell density makes the stripes disappear, while cells still
elongate, suggesting that tissue level alignment depends on cell specific parameters.

In chapter 4, we present a hybrid model that includes focal adhesion dynamics, in
order to gain a molecular level understanding of how cells respond to matrix rigidity.
Focal adhesions are mechanosensitive molecular structures that bind the cell to the
ECM. In our model, the cells apply a force to the focal adhesions and the rate of
force build-up depends on matrix stiffness and the velocity of motor proteins [96]. We
assume that the likelihood of cell-matrix deadhesion decreases with focal adhesion
size. Our model suggests that on stiff matrices, the cells build up enough force so
that focal adhesions grow and the cell is able to spread. If we included that matrix
stresses induces adhesion strengthening, the simulated cells elongated on matrices of
intermediate stiffness. We show that the range on which cells elongate depends on the
velocity of the motor protein. Finally, we show that cells in our model durotact: move
up a stiffness gradient. So, with a more detailed model of focal adhesions we can now
explain cell spreading, elongation and durotaxis on a molecular level.

In chapter 5 and 6, we will focus on chemical signaling through the extracellular
matrix. In chapter 5, we introduce a model that describes the formation of a Nodal
signaling gradient. Nodal is one of the signaling molecules that is involved in left-right
patterning of embryos. Experimental observations in zebrafish show that the protein
FurinA is able to cleave the Nodal protein Southpaw to a mature form, so that it can
be secreted by cells [97]. The experiments suggest that FurinA regulates the signaling
range of Nodal [97]. To better understand the dynamics, we introduce a PDE model
that assumes that the rate of maturation of Southpaw depends on the level of FurinA.
The model shows that the speed of extracellular Southpaw gradient formation and
the range of this gradient increases with FurinA levels, which was confirmed by our
experimental data.

In chapter 6, we introduce a multiscale cell based model for epithelial branching.
Here, we show that gradients of an autocrine signaling factor can drive branching mor-
phogenesis. Experimental observations of mammary epithelial cells [98] indicated
that branching sites are regulated by TGF-β, an inhibitory autocrine signal. Based on
these observations, we assume that cell extensions at the tissue boundary negatively
depend on the local level of the autocrine signal. In this cellular Potts model, the tissue
secretes the autocrine that accumulates at concave tissue boundaries. This curvature
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effect allows the simulated tissue to branch.
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2. Mechanical Cell-Matrix Feedback

Abstract

In vitro cultures of endothelial cells are a widely used model system of the collec-
tive behavior of endothelial cells during vasculogenesis and angiogenesis. When
seeded in an extracellular matrix, endothelial cells can form blood vessel-like
structures, including vascular networks and sprouts. Endothelial morphogenesis
depends on a large number of chemical and mechanical factors, including the
compliancy of the extracellular matrix, the available growth factors, the adhe-
sion of cells to the extracellular matrix, cell-cell signaling, etc. Although various
computational models have been proposed to explain the role of each of these
biochemical and biomechanical effects, the understanding of the mechanisms un-
derlying in vitro angiogenesis is still incomplete. Most explanations focus on
predicting the whole vascular network or sprout from the underlying cell behav-
ior, and do not check if the same model also correctly captures the intermediate
scale: the pairwise cell-cell interactions or single cell responses to ECM mechan-
ics. Here we show, using a hybrid cellular Potts and finite element computational
model, that a single set of biologically plausible rules describing (a) the contrac-
tile forces that endothelial cells exert on the ECM, (b) the resulting strains in
the extracellular matrix, and (c) the cellular response to the strains, suffices for
reproducing the behavior of individual endothelial cells and the interactions of
endothelial cell pairs in compliant matrices. With the same set of rules, the model
also reproduces network formation from scattered cells, and sprouting from en-
dothelial spheroids. Combining the present mechanical model with aspects of
previously proposed mechanical and chemical models may lead to a more com-
plete understanding of in vitro angiogenesis.

2.1 Introduction

How the behavior of cells in a multicellular organism is coordinated to form structured
tissues, organs and whole organisms, is a central question in developmental biology.
Keys to answering this question are chemical and mechanical cell-cell communication
and the biophysics of self-organization. Cells exchange information by means of dif-
fusing molecular signals, and by membrane-bound molecular signals for which direct
cell-cell contact is required. In general, these developmental signals are short-lived
and move over short distances. The extracellular matrix (ECM), the jelly or hard ma-
terials that cells secrete, provides the micro-environment the cells live in. Apart from
its supportive function, the ECM mediates molecular [99] and biomechanical [32] sig-
nals between cells. Mechanical signals, in the form of tissue strains and stresses to
which cells respond [100], can act over long distances and integrate mechanical infor-
mation over the whole tissue [101], and also mediate short-range, mechanical cell-cell
communication [32]. How such mechanical cell-cell communication via the ECM can
coordinate the self-organization of cells into tissues is still poorly understood. Here
we propose a cell-based model of endothelial cell motility on compliant matrices to
address this problem.
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2.1. Introduction

A widely used approach to study the role of cell-ECM interactions in coordinating
collective cell behavior is to isolate cells (e.g., endothelial cells isolate from bovine
aortae or from human umbilical cords or foreskins) and culture them on top of or
inside an artificial or natural ECM (e.g., Matrigel). This makes it possible to study
the intrinsic ability of cells to form tissues in absence of potential organizing sig-
nals or pre-patterns from adjacent tissues. A problem particularly well-studied in cell
cultures is the ability of endothelial cells to form blood vessel-like structures, includ-
ing the formation of vascular-like networks from dispersed cells and the sprouting of
spheroids. To this end, cell cultures can be initialized with a dispersion of endothelial
cells on top of an ECM material (e.g., Matrigel, collagen, or fibrin) [36, 102], with en-
dothelial spheroids embedded within the ECM [51, 103], or with confluent endothelial
monolayers [104–106]. Although the conditions required for vascular-like develop-
ment in these in vitro culture systems are well established, the mechanisms driving
pattern formation of endothelial cells are heavily debated, and a wide range of plau-
sible mechanisms has been proposed in the form of mathematical and computational
models reproducing aspects of angiogenesis (reviewed in [107–109]).

Typical ingredients of network formation models are (a) an attractive force between
endothelial cells, which is (b) proportional to the cell density, and (c) inhibited or at-
tenuated at higher cellular densities. The attractive force can be due to mechanical
traction or due to chemotaxis. Manoussaki, Murray, and coworkers [80, 81] proposed
a mechanical model of angiogenic network formation, based on the Oster and Murray
[79, 110] continuum mechanics theory of morphogenesis. In their model, endothelial
cells exert a uniform traction force on the ECM, dragging the ECM and the associated
endothelial cells towards them. The traction forces saturated at a maximum cell den-
sity. Namy and coworkers [82] replaced the endothelial cells’ passive motion along
with the ECM for active cell motility via haptotaxis, in which cells move actively to-
wards higher concentrations of the ECM. Both models also included a strain-biased
random walk term for the endothelial cells, but they found that it had little effect on
network formation; the mechanism was dominated by cell aggregation. In their model
based on chemotaxis, Preziosi and coworkers [111, 112] assumed that cells attract one
another via the secreted chemoattractant VEGF. Due to diffusion and first-order degra-
dation, the chemoattractant forms exponential gradients around cells leading to cell
aggregation in much the same way as that assumed in the Manoussaki and Namy mod-
els. These chemotaxis-based hypotheses formed the basis for a series of cell-based
models based on the cellular Potts model (CPM). Assuming chemotactic cell-cell at-
traction, and a biologically-plausible overdamped cell motility, the cells in these CPM
models form round aggregates, in accordance with the Keller-Segel model of cell ag-
gregation [113]. Additional assumptions, including an elongated cell shape [77] or
contact inhibition of chemotaxis [114] are needed to transform these circular aggre-
gates into vascular-like network patterns. Related network formation models studied
the role of ECM-bound growth factors [115–117] and a range of additional secreted
and exogenous growth factors [117], and studied the ability of the contact-inhibition
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mechanism to produce three-dimensional blood-vessel-like structures [118]. Szabó
and coworkers found that in culture, astroglia-related rat C6 cells and muscle-related
mouse C2C12 cells organize into network-like structures on rigid culture substrates
[66], such that ECM-density or chemoattractant gradients are excluded. They pro-
posed a model where cells were preferentially attracted to or preferentially adhered
to locally elongated structures. As an alternative mechanism for “gel-free” network
formation it was found that elongated cells can also produce networks in absence of
chemoattractant gradients [119].

Paradoxically, despite the diverse assumptions underlying the mathematical models
proposed for vascular network formation, many are at least partly supported by exper-
imental evidence. This suggests that a combination of chemotaxis, and chemical and
mechanical cell-ECM interactions drives network formation, or that each alternative
mechanism operates in a different tissue, developmental stage, or culture condition.
A problem is that one mathematical representation may represent a range of equiva-
lent alternative underlying mechanisms. For example, a model representing cell-cell
attraction cannot distinguish between chemotaxis-based cellular attraction [77, 111,
112, 114], attraction via haptotaxis [82], direct mechanical attraction [80, 120] or cell
shape dependent adhesion [66, 121], because the basic principles underlying these
models are equivalent [107, 114]. As a solution to this problem, a sufficiently correct
complete description of endothelial cell behavior should suffice for the emergence of
the subsequent levels of organization of the system, an approach that requires that the
system has been experimentally characterized at all levels of organization.

The role of cell traction and ECM mechanics during in vitro angiogenesis have been
characterized experimentally particularly well, making it a good starting point for
such a multiscale approach. Endothelial cells apply traction forces on the extracel-
lular matrix, as demonstrated by a variety of techniques, e.g., wrinkle formation on
elastic substrates [104], force-generation on micropillar substrates [122], and traction
force microscopy [36, 123]. Using scanning electron microscopy, Vernon and Sage
[104] found that ECM ribbons radiate from endothelial cells cultured in Matrigel,
suggesting that the traction forces locally reorient the extracellular matrix. The cel-
lular traction forces produce local strains in the matrix, which can affect the motility
of nearby cells [32]. Thus endothelial cells can both generate, and respond to local
strains in the extracellular matrix, suggesting a feedback loop that may act as a means
for mechanical cell-cell communication [32] and hence coordinate collective cell be-
havior. Here, we use a hybrid cellular Potts and finite element model to show that a set
of assumptions mimicking mechanical cell-cell communication via the ECM suffices
to reproduce observed single cell behavior [124, 125], pairwise cell interactions [32],
and collective cell behavior: network formation and sprouting.
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2.2. Results

2.2 Results

2.2.1 Response of endothelial cells to static strains in ECM

First we set out to capture, at a phenomenological level, the response of endothelial
cells to static strains in the ECM in absence of cellular traction forces. When grown
on statically, uniaxially stretched collagen-enriched scaffolds, murine embryonic heart
endothelial (H5V) cells orient in the direction of strain, whereas cells grown on un-
strained scaffolds orient in random directions [94]. Because the collagen fibers make
the scaffold stiffen in the direction of strain, we hypothesized that the observed align-
ment of cells is due to durotaxis, the propensity of cells to migrate up gradients of
substrate rigidity [126] and to spread on stiff substrates [127, 128]. In our model we
assumed (a) strain stiffening: a strained ECM is stiffer along the strain orientation
than perpendicular to it, such that (b) due to durotaxis the endothelial cells preferen-
tially extend pseudopods along the strain orientation, along which the ECM is stiffest,
giving cells the most grip. To keep the ECM mechanics simulations computationally
tractable, we assumed an isotropic and linearly elastic ECM. With these assumptions
it is not possible to model strain stiffening explicitly. We therefore mimicked strain
stiffening by assuming that stiffness is an increasing, linear function of the local strain.
Durotaxis was modelled as follows, to reflect the observation that focal adhesion mat-

uration occurs under the influence of local tension [129]: At low local stiffness, we
applied standard cellular Potts dynamics to mimic the iterative formation and break-
down of ECM adhesions, producing “fluctuating” pseudopods. However, if the stiff-
ness was enhanced locally, we assumed that the resulting tension in the pseudopod
led to maturation of the focal adhesion [129, 130], stabilizing the pseudopod as long
as the tension persists. To mimic such focal adhesion maturation in the cellular Potts
model, we increased the probability of extension along the local strain orientation, and
reduced the probability of retraction (see Methods for detail).

Figure 2.1A shows the response of the simulated cells to uniaxial stretch along the
vertical axis. With increasing values of the durotaxis parameter λdurotaxis (see Eq. 2.8),
the endothelial cells elongate more. To test the sensitivity of the durotaxis model for
lattice effects, we varied the orientation of the applied strain over a range [0 − 180]◦

and measured the resulting orientation of the cells. Figure 2.1 shows that the aver-
age orientation of the cells follows the orientation of the stretch isotropically. Thus
the durotaxis component of our model phenomenologically reproduces published re-
sponses of endothelial cells to uniaxial stretch [94].

2.2.2 Generation of strains in ECM due to cellular traction

We next attempted to mimic the forces applied by cells onto the extracellular matrix,
in absence of durotaxis. Traction-force microscopy experiments [123, 127] show that
endothelial cells contract and exert tensional forces on the ECM. The forces are typi-
cally directed inward, towards the center of the cell, and forces concentrate at the tips
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Figure 2.1: Simulated cellular responses to static strains. Cells do not generate traction
forces in this figure. (A) Cell length as a function of the durotaxis parameter,
λdurotaxis, on a substrate stretched along the vertical axis; (B) Cell orientation as a
function of the stretch orientation (simulated with λdurotaxis = 10). Error bars show
standard deviation for n = 100. Insets show five simulations per value tested.

of pseudopods. A recent modeling study by Lemmon and Romer [131] found that an
accurate prediction of the direction and relative magnitudes of these traction forces
within the cell can be obtained by assuming that each lattice node i covered by the cell
pulls on every other node the cell covers, j, with a force proportional to their distance,
di, j. Because this model gives experimentally plausible predictions for fibroblasts,
endothelial cells, and keratocytes [131], we adopted it to mimic the cell-shape depen-
dent contractile forces that endothelial cells exert onto the ECM. Figure 2.2 shows the
contractile forces (black) and resulting ECM strains (blue) generated in our model by
two adjacent cells. The traction forces and ECM strains become largest at the cellular
“pseudopods”, qualitatively agreeing with traction force fields reported for endothelial
cells [123].

2.2.3 Mechanical cell-ECM feedback qualitatively reproduces effect of
substrate stiffness on cell shape and motility

The two previous sections discussed how the simulated cells can respond to and in-
duce strain in the ECM in an experimentally plausible way. To test how the simulated
cells respond to the strains they generate themselves, we studied the behavior of sim-
ulated, single cells in presence of both the cell traction mechanisms and the durotaxis
mechanisms. During each time step, we used the Lemmon and Romer [131] model
to calculate traction forces corresponding to current cell positions. Next, we started
the finite element analysis from an undeformed matrix, calculating steady-state strains
for the current traction forces. To simulate cell movement, which was biased by the
local matrix strains using the durotaxis mechanism, we then applied one cell motility
simulation time step, or Monte Carlo step (MCS; the MCS is the unit of time of our
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Figure 2.2: Visualization of simulated traction forces (black arrows) and resulting matrix
strains (blue line segments) generated in the proposed hybrid cellular Potts
and finite element simulation model.

simulation; see Methods for detail and Discussion for an estimate of the real time cor-
responding to an MCS). After running the CPM for one MCS we again relaxed the
matrix such that the next step started with an undeformed matrix. Thus we currently
did not consider cell memory of substrate strains.

As Figure 2.3 and Video S1 demonstrate, in this model matrix stiffness affects both
the morphology and motility of the simulated cells. On the most compliant sub-
strate tested (0.5 kPa) the simulated cells contract and round up, whereas cells spread
isotropically on the stiffest substrate tested (32 kPa). Overall, the cellular area in-
creases with substrate stiffness (Figure 2.3B). On matrices of intermediate stiffnesses
(around 12 kPa) the cells elongate, as reflected by measurements of the cell length
(Figure 2.3C) and eccentricity (Figure 2.3D) that both have maximum values at around
12 kPa. Such a biphasic dependence of cellular morphology on the stiffness of the
ECM mimics the behavior of endothelial cells [127] and cardiac myocytes [125] in
matrices of varying stiffness. The dependence of cell shapes on substrate stiffnesses
is due to the transition from fluctuating to adherent pseudopods with increasing stiff-
ness. Focal adhesions of cells on soft substrates all remain in the “fluctuating” state,
irrespective of the local strains. On intermediate substrates, some pseudopods, due
to increased traction, move to an extended state (mimicking a mature focal adhe-
sion), generating more traction in this direction. Hence an initial stochastic elonga-
tion self-enhances in a feedback loop of increasing traction and strain stiffening. Such
a self-enhancing cell-elongation starting from an initial anisotropy in cell spreading
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Figure 2.3: Simulated individual cell responses to mechanical cell-ECM feedback. (A)
Single cells on substrates of varying stiffness after 100 MCS. Line pieces indi-
cate strain magnitude and orientation; (B) cell area (a(σ)) of cells; (C) cell length
(length of major axis if the cell is seen as an ellipse) as a function of substrate stiff-
ness; (D) cell eccentricity (ξ =

√
1 − b2/a2, with a and b the lengths of the cell’s

major and minor semi-axes) as a function of stiffness. Mean and standard devia-
tion shown for n = 100 in panels B-D; (E) Dispersion coefficients of individual,
simulated cells, derived from a linear fit on the mean square displacements (Sup-
plementary Figure 2.8); n = 1000. Error bars indicate 95% confidence intervals of
linear fits.

has previously been suggested by Winer et al [33]. Extensions perpendicular to the
long axis of an elongated cell do not occur since there is insufficient traction and the
volume constraint is limiting. At matrices of high stiffness all pseudopods attempt to
extend, mimicking the formation of static focal adhesion, until the volume constraint
becomes limiting. This makes the cells spread more on stiff substrates than on soft
substrates, with weaker volume constraints (lower values of λ) producing a stronger
effect of substrate stiffness on cell shape and cell area (Supplementary Figure 2.7) .
We also measured the random motility of the cells by characterizing their disper-

sion coefficients, which we derived from the mean square displacements of the cells
(Supplementary Figure 2.7; see section Morphometry for detail). The dispersion coef-
ficients show biphasic behavior, with the highest motilities occurring at around 12 kPa
(Figure 2.3E). The biphasic dependence of the dispersion to substrate stiffness is in
accordance with in vitro behavior of neutrophils [132], and smooth muscle cells [133].
Here it is typically thought to be due to a balance of adhesion and actin polymerization,
or due to the interplay between focal adhesion dynamics and myosin-based contrac-
tility [132]. In our model, the effect is more likely due to the appearance of eccentric
cell shapes at intermediate stiffnesses; as a result, only the tips of the cell generate
sufficient strain in the matrix to extend pseudopods, producing more persistent motion
than the round cells at stiff or soft substrates. It will be interesting to see if a similar
relationship between cell shape and cell motility holds in vitro. Thus the model rules

26



2.2. Results

for cell traction and stretch guidance based on durotaxis and strain stiffening suffice
to reproduce an experimentally plausible cellular response to matrix stiffness.

2.2.4 Mechanical cell-ECM feedback coordinates behavior of adjacent
cells

Strains induced by endothelial cells on a compliant substrate with low concentrations
of arginine-glycine-aspartic acid(RGD)-containing nonapeptides can affect the behav-
ior of adjacent cells [32]. On soft substrates (5.5 kPa or below) the cells reduced the
motility of adjacent cells, whereas on stiff substrates (33 kPa) such an effect was not
found. On substrates of intermediate stiffness (5.5 kPa), adjacent endothelial cells
repeatedly attached and detached from one another, and cells moved more slowly in
close vicinity of other cells, than when they were on their own. Because the extent to
which cells could affect the motility of nearby cells depended on matrix compliancy,
mechanical traction forces could act as a means for cell-cell communication [32]. To
test if the simple strain-based mechanism represented in our model suffices for repro-
ducing such mechanical cell-cell communication, we initiated the simulations with
pairs of cells placed adjacent to one another at a distance of fourteen lattice sites cor-
responding to a distance of 35 µm, and ran a series of simulations on substrates of
varying stiffness (Figure 2.4A and Video S2).
The cells behaved similar to the single cell simulations (Figure 2.3), with little cell-

cell interactions at the lower and higher stiffness ranges. Consistent with previous
observations [32], cell pairs on substrates of intermediate stiffness (12 kPa) dispersed
more slowly than individual cells (paired two-sample t-test at 5000 MCS, p < 0.05
for 12 kPa), whereas individual cells and cell pairs dispersed at indistinguishable (p >
0.05) rates on stiff (14 kPa or more) or soft (10 kPa or below) substrates (Figure 2.4, B-
D) and Supplementary Figure 2.9).

Also in agreement with the previous, experimental observations [32], on a simulated
substrate of intermediate stiffness (12 kPa) the cells responded to the matrix strains
induced by the adjacent cell by repeatedly touching each other, and separating again
(Figure 2.4E). The contact duration of cells on soft and stiff substrates, when they
get close enough to each other, are typically longer than for intermediate substrates.
This behavior is also similar to observations in vitro [32]. As one might expect that
strongly adherent cells will not repeatedly touch and retract, but rather stay connected
upon first contact, we investigated the effect of cell adhesion on these parameters
(Supplementary Figure 2.10). Consistent with this intuition, for stronger adhesion, the
contact count tends to be reduced and the contact durations tend to increase, but the
overall trend holds: at intermediate matrix stiffnesses we continue to observe more
frequent cell contacts than for more soft or more stiff matrices. Thus the observed
pairwise cell behavior is primarily driven by durotaxis.

Mechanical strain can also coordinate the relative orientation of cells. Fibroblasts
seeded on a compliant gel tend to align in a head-to-tail fashion along the orientation
of mechanical strain [134]. Bischofs and Schwarz [135] proposed a computational
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Figure 2.4: Simulated cell-cell interactions on substrates of varying stiffnesses. (A) Vi-
sualization of cell shapes and substrate strains in absence of external strain. Line
pieces indicate strain magnitude and orientation, (B-D) Mean square displacement
of individual cells (blue errorbars) and cell pairs ( red errorbars) on simulated sub-
strates; (B) 4 kPa; (C) 12 kPa; (D) 32 kPa. Error bars in panels B to D indicate
standard deviation for n = 100; (E) Number of cell-cell contacts made over 500
MCS between two simulated cells initiated at a distance of fourteen lattice sites
from each other. Error bars show standard deviation over n = 100 simulations; (F)
Quantification of head-to-tail alignment of cells. An obtuse angle between the two
cells’ long axes indicates that cells are oriented head-to-tail. Plotted is the fraction
of Monte Carlo steps over MCS 20-500 that the two cells are aligned head-to-tail.
Shown are means and standard deviations over 100 independent simulations on a
field of 0.25 × 0.25 mm2 (100 × 100 pixels). Insets: examples of acute (left) and
obtuse (right) cell configurations.
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model to explain this observation. Their model assumes that cells prefer the direction
of maximal effective stiffness, where the cell has to do the least work to build up a
force. This work is minimal between two aligned cells, because maximum strain stiff-
ening occurs along the axis of contraction. Interestingly, visualization of our model
results (Figure 2.1C) suggested similar head-to-tail alignment of our model cells at
around 12 kPa. To quantify cell alignment in our simulations, we measured the an-
gle α between the lines l1 and l2, defining the long axes of the cells and crossing the
centers of mass of the cells (Figure 2.4F). We classified the angles as acute (α < π/2;
i.e. no alignment) or obtuse (α ≥ π/2; alignment). At matrix stiffnesses up to around
10 kPa, about one fourth of the angles α were obtuse, corresponding to the expected
value for uncorrelated cell orientations. However, at 12 kPa and 14 kPa significantly
more than a fourth of the angles α between the cell axes were obtuse (55/100 for 12
kPa, p < 1×10−8 and 52/100 for 14 kPa, p < 1×10−8, binomial test), and for substrate
compliancies of 8 to 16 kPa significantly more of the angles α were obtuse than for 4
kPa (p < 0.01 for 8 kPa, and p < 1 × 10−12 for 10 kPa to 16 kPa; two-tailed Welch’s
t-test), suggesting that the mechanical coupling represented in our model causes cells
to align in a head-to-tail fashion.

2.2.5 Mechanical cell-cell communication drives biologically-realistic
collective cell behavior

After observing that the local, mechanical cell-ECM interactions assumed in our
model sufficed for correctly reproducing many aspects of the behavior of individ-
ual endothelial cells on compliant matrices and of the mechanical communication of
pairs of endothelial cells on compliant matrices, we asked what collective cell behav-
ior the mechanical cell-cell coordination produced. When seeded subconfluently onto
a compliant matrix (e.g., Matrigel), endothelial cells tend to organize into polygonal,
vascular-like networks [36, 102, 136, 137]. To mimic such endothelial cell cultures,
we initialized our simulations with (approximately) 450 cells uniformly distributed
over a lattice of 300 × 300 pixels (0.75 × 0.75 mm2), corresponding to a cell den-
sity of 800 endothelial cells per mm2. In accordance with experimental observations
on gels with low concentrations of collagen [36] or RGD-peptides [32], after 3000
MCS networks had not formed on soft matrices (0.5-4 kPa) or on stiff matrices (16-32
kPa) (Figure 2.5A): The cells tended to form small clusters (Figure 2.5A). Interest-
ingly, on matrices of intermediate stiffness after around 300 MCS the cells organized
into chains (8 kPa) or network-like structures (10 kPa and 12 kPa) similar to vascular
network-like structures observed in endothelial cell cultures [36, 102, 136, 137]. The
optimal stiffness (≈ 10 kPa) for network formation is slightly lower than the stiffness
of the substrate (≈ 12 kPa) on which single cells elongate the most (Figure 2.3A).
In comparison with a single cell, the collective pulling of a cell colony creates larger
strains in the substrate. Consequently, the strain threshold inducing cell elongation is
crossed at smaller substrate stiffness.

Figure 2.5B and Video S3 show a time-lapse of the development of a network con-
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Figure 2.5: Simulated network formation assay. (A) Simulated collective cell behavior on
substrates of varying stiffness, with a uniformly distributed initiated configuration
of cells; (B) Time lapse showing the development of a polygonal network on a
10kPa substrate (time in MCS). Panels A and B represent a 0.75 × 0.75 mm2 area
(300 × 300 pixels) initiated with 450 cells. (C) Close-up of simulated network
formation on a 10 kPa substrate, showing the reconnection of two sprouts. Time in
MCS; (D) Time lapse imaging of bovine aortic endothelial cells seeded onto a 2.5
kPa polyacrylamide gel functionalized with RGD-peptide. Arrows indicate cells
that join together and elongate into a network. Time scale is in hours. Scale bar is
50 ;µm.
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figuration on a substrate of 10kPa. The cells organized into a network structure within
a few hundred MCS. The network was dynamically stable, with minor remodeling
events taking place, including closure and bridging of lacunae. Figure 2.5C shows
such a bridging event in detail. In an existing lacuna (1800 MCS) stretch lines bridged
the lacuna, and connected two groups of cells penetrating the lacuna (1980 MCS). The
cells preferentially followed the path formed by these stretch lines (2150 MCS) and
reached the other side of the lacuna by 2400 MCS. Such bridging events visually
resemble sprouting in bovine endothelial cell cultures on compliant matrices (Fig-
ure 2.5D, Video S4, and [36]). To stay close to the experimental conditions used for
the observations of pairwise endothelial cell-cell interaction on compliant substrates
[32] that we compared the simulations of pairwise interactions with, in this experi-
ment we used a 2.5 kPa gel functionalized with 5 µg/ml RGD peptide - a stiffness at
which no network-formation is found in our simulations. Although we thus do not yet
reach full quantitative agreement between model and experiment, note that network
formation occurs at substrate stiffness of 10kPa on polyacrylamide matrices enriched
with a low (1 µg/ml) concentration of collagen [36].
We next asked if the mechanical model could also reproduce sprouting from endothe-

lial spheroids [51, 103]. Video S5 and Figure 2.6 shows the results of simulations ini-
tiated with a two-dimensional spheroid of cells after 3000 MCS. On soft (0.5-8 kPa)
and on stiff (32 kPa) matrices the spheroids stayed intact over the time course of the
simulation. On matrices of intermediary stiffness (10-12 kPa) the spheroids formed
distinct sprouts, visually resembling the formation of sprouts in in vitro endothelial
spheroids [51, 103]. On the 14 kPa and 16 kPa matrices the cells migrated away from
the spheroid, with some cell alignment still visible for the 14 kPa matrices. Observa-
tion of a sprout protruding from a spheroid at 10 kPa suggests that a new sprout starts
when one of the cells at the edge of the cluster protrudes and increases the strain in
front of it. In a positive feedback loop via an increase in perceived stiffness the strain
guides the protruding cell forward. The strain in its wake then guides the other cells
along (Figure 2.6C).

2.3 Discussion

In this paper we introduced a computational model of the in vitro collective behav-
ior of endothelial cells seeded on compliant substrates. The model is based on the
experimentally supported assumptions that (a) endothelial cells generate mechanical
strains in the substrate [123, 131], (b) they perceive a stiffening of the substate along
the strain orientation, and (c) they extend preferentially on stiffer substrate [94]. Thus,
in short, the assumptions are: cell traction, strain stiffening, and durotaxis. The model
simulations showed that these assumptions suffice to reproduce, in silico, experimen-
tally observed behavior of endothelial cells at three higher level spatial scales: the
single cell level, cell pairs, and the collective behavior of endothelial cells. In accor-
dance with experimental observation [125, 127], the simulated cells spread out on stiff
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Figure 2.6: Simulated spheroid assay. (A) Collective behavior in a simulation initiated with
a two-dimensional “spheroid” of cells, on substrates of varying stiffness; (B) Time
lapse showing a sprouting spheroid on a 10kPa substrate. Time in MCS. Panels A
and B represent a 0.75 × 0.75 mm2 area (300×300 pixels) initiated with a spheroid
consisting of 113 cells; (C) Close-up of sprouting on a 10 kPa substrate. Time in
MCS. Black line pieces indicate strain magnitude and orientation.
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matrices, they contracted on soft matrices, and elongated on matrices of intermediate
stiffness (Figure 2.3). The same assumptions also sufficed to reproduce experimen-
tally observed pairwise cell-cell coordination. On matrices of intermediate stiffness,
endothelial cells slowed down each other (Figure 2.4B) and repeatedly touched and
retracted from each other (Figure 2.4E and Video S2), in agreement with in vitro ob-
servations of bovine aortic endothelial cells on acrylamide gels [32]. Also, in agree-
ment with experimental observations of fibroblasts on compliant substrates [134] and
previous model studies [135] the cells repositioned into an aligned, head-to-tail orien-
tation (Figure 2.4F). The model simulations further suggest that these pairwise cell-
cell interactions suffice for vascular-like network formation in vitro (Figure 2.5) and
sprouting of endothelial spheroids (Figure 2.6).

The correlation between pairwise cell-cell interactions and collective cell behavior
observed in our computational model parallels observations in vitro. Cells elongate
due to positive feedback between stretch-guided extension and cell traction, as pre-
viously suggested by Winer et al. [33]. Elongated and spindle-shaped cells are con-
sidered indicative of future cell network assembly [36]. Our model suggests that the
elongated cell shapes produce oriented strains in the matrix, via which cells sense
one another at a distance. In this way new connections are continuously formed over
“strain bridges" (see, e.g., Figure 2.5C,D and Video S4), while other cellular connec-
tions break, producing dynamically stable networks as illustrated in Video S3. Such
dynamic network restructuring was also observed during early embryonic develop-
ment of the quail embryo [138] and in bovine aortic endothelial cell cultures (Fig-
ure 2.5D and [36]), but not in human umbilical vein endothelial cell cultures [77, 137].
Also in agreement with experimental results, the collective behavior predicted by our
model strongly depends on substrate stiffness. The strongest interaction between cell
pairs is found on substrates of intermediate stiffness, enabling network formation [32],
whereas network assembly does not occur on stiffer or on softer substrates[36].

These agreements with experimental results are encouraging, but our model also
lacks a number of properties of in vitro angiogenesis that pinpoint key components
still missing from our description. We compared the simulation of pairwise cell-cell
interactions with previous experiments conducted on polyacrylamide gels, functional-
ized with RGD ligands [32], which have linear elastic behavior for small deformations
[139–141]. Strain-stiffening of polyacrylamide gels has been reported for deforma-
tions over 2 µm [142]. Thus with pixels in our model measuring 2.5 µm × 2.5 µm,
strain-stiffening seems a reasonable assumption. Nevertheless, a possible alternative
interpretation of the cell pair simulations is that the increased tension generated in
pseudopods pulling on the matrix leads to a higher probability of focal adhesion mat-
uration[129, 130]. A further issue is that in our simulations, single cells dispersed
somewhat more quickly on soft gels than on stiff gels (Figure 2.3E and Supplementary
Figure 2.8). This model behavior contradicts experimental observations that endothe-
lial cells move fastest on stiff substrates [32]. Another open issue concerns the time
scales of our simulations. In the present paper time we use the Monte Carlo step as a
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(computational) unit of time. To estimate the actual time corresponding to 1 MCS, we
scale the single cell dispersion coefficients shown in Figure 2.3E to experimental dis-
persion coefficients of bovine endothelial cells on compliant substrates in vitro [32].
Reported dispersion coefficients of endothelial cells range from around 1 µm2/min
(on substrates of 500 Pa) to around 10 µm2/min (on substrates of 5500 Pa) (as
derived from the MSDs in Figure 3a,c in [32] and based on MSD(t) = 4Dt; cf.
Eq. 2.13). The dispersion coefficients of single cells in our simulations are in the
range of 0.03− 0.08 µm2/MCS (Figure 2.3), assuming pixels of 2.5× 2.5 µm2. Thus,
based on fitting of single cell dispersion rates, the estimated length of 1 MCS is 0.5
to 3 seconds. The typical time scale of a vascular network formation simulation is
around 3000 MCS (Figure 2.5), i.e., 12.5 min to 2.5 hr for these time scale estimates.
In experiments, network formation takes longer, around 24 hr. Thus in our current
model the time scales of cell dispersion and network formation do not match exactly.
A possible reason of this discrepancy is the short persistent length of cell motility in
standard cellular Potts models. To better match the time scales of single cells and col-
lective cell behavior in our model, in our future work we will increase the persistence
length of the endothelial cells by using the available cellular Potts methodology [143–
145], or model the subcellular mechanisms of cell motility in more detail, e.g. by in-
cluding mean-field models of actin polymerization [146, 147]. A further open issue is
the interaction between substrate mechanics and cell-substrate adhesivity. Although
the model correctly predicts the absence of network formation on stiff substrates, it
cannot yet explain the observation that reducing the substrate adhesivity of the en-
dothelial cells rescues network formation on stiff substrates [36]. On compliant gels
endothelial cells must secrete fibronectin to form stable networks, whereas fibronectin
polymerization inhibitors elicit spindle-like cellular phenotypes associated with net-
work formation on stiff matrices, under conditions where networks do not normally
form [36]. To explain these observations, straightforward future extensions of the
model will include a more detailed description of cell-substrate adhesion, combined
with models of ECM secretion and proteolysis [108, 115, 117, 148].

The current model also assumes a uniform density (i.e., the infinitesimal strain as-
sumption) and thickness of the extracellular matrix, whereas under some culture con-
ditions the endothelial cells have been reported to pull the extracellular matrix under-
neath them [149], producing gradient in matrix density and/or thickness. To describe
the role of viscous deformations of the extracellular matrix in morphogenesis, Oster
and Murray [79, 110] developed a continuum mechanical model of pattern formation
in mesenchymal tissues. Their model assumed (a) that cells exert contractile forces
onto the surrounding extracellular matrix, that will (b) locally deform the ECM, re-
sulting in passive displacements of cells along with the ECM, and (c) produce density
gradients in the ECM along which cells move actively due to haptotaxis. These mech-
anisms together produce periodic cell density patterns. Manoussaki et al. [80] and
Namy et al. [82] applied this work to investigate mechanical cell-ECM interactions
during angiogenesis, and demonstrated that the mechanism can produce vascular-like
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network patterns. In their model they also included an anisotropic diffusion term
to simulate preferential movement along the local strain-direction, but the term was
neither necessary nor sufficient for network formation. This finding contradicts our
model in which strain-induced sprouting is the driving force of network formation
and sprouting. The two models represent the two extremes of network formation on
visco-elastic matrices. Here, the Manoussaki et al. [80] and Namy et al. [82] models
represent patterning on viscous matrices, in which cellular traction forces pull the ma-
trix together while inducing little strain or stress. Our model would represent elastic
materials, in which pulling forces induce local strains. Future extensions of the model
will include matrix remodelling (e.g., by assuming a matrix thickness field) allowing
us to study the full range of viscoelastic matrices.

Apart from these biological issues, we made several mathematical simplifications
that we will improve upon in future models of cell-ECM interactions. In the current
model, for mathematical simplicity, we assumed that after each Monte Carlo step the
matrix was undeformed again. Thus we currently did not consider cell memory of sub-
strate strains. Further developments of the model presented here will improve on this
issue, because actin filament dynamics are typically influenced by the past evolution
of substrate deformations, e.g., due to reorientation of matrix fibers [149]. For compu-
tational efficiency, we assumed linearly elastic materials and infinitesimal strain in the
finite element simulations, and mimicked durotaxis via a perceived strain-stiffening
(Eq. 2.9) where cells perceive increased ECM stiffness due to local strain. In our on-
going work we are interfacing the open source package FEBio (http://febio.org)
with the cellular Potts package CompuCell3D (http://compucell3D.org). This
will allow us to run our model with any ECM material available to users of FEBio, in-
cluding strain-stiffening materials. Using an actual strain stiffening material may lead
to longer-range interactions between cells, because locally stiffer regions may channel
the stress between the cells [150]. A further technical limitation of our model is that
we currently only run two-dimensional simulations, representing cells moving on top
of a two-dimensional culture system. The ongoing interfacing of FEBio and Compu-
Cell3D will pave the way for modeling cell-ECM interactions in three-dimensional
tissue cultures. We also plan to model fibrous extracellular matrix materials in more
detail.

A quite puzzling aspect of vascular network formation and spheroid sprouting is
that so many alternative, often equally plausible computational models can explain it
(reviewed in [107]). Including the present model, there are at least three alternative
computational models based on mechanical cell-ECM interactions [80–82, 120, 151],
a series of models assuming chemoattraction between endothelial cells [77, 111, 112,
114, 152, 153] and extensions thereof [115, 117, 154], and models explaining net-
work formation in absence of chemical or mechanical fields [66, 119, 121]. Each of
the models explains one aspect of vascular network formation or a response to an ex-
perimental treatment that the other models cannot explain, e.g. the relation between
spindle-shaped cell phenotypes and network formation [77, 119], the requirement of
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VE-cadherin signaling for network formation and sprouting [66, 114], the binding
and release of growth factors from the ECM [115, 116], the role of mechanical ECM
restructuring and haptotaxis [80, 82, 120], the response of vascular networks to tox-
ins [117], or the role of intracellular Ca2+ signaling [144]. Among these alternative
models, we must now experimentally falsify incorrect mechanisms, and fine-tune and
possibly combine the remaining models to arrive at a more complete understanding of
the mechanisms of angiogenesis. To this end, we are currently quantitatively com-
paring the kinetics of patterns produced by chemotaxis-based, traction-based, and
cell-elongation based models with the kinetics of in vitro networks [77, 137]. The
resulting, more complete model would likely contain aspects of each of the available
computational models and assist in explaining the conflicting results obtained from
the available experimental systems, culture conditions, and in silico models of angio-
genesis.

2.4 Methods

To model the biomechanical interactions between endothelial cells and compliant ma-
trices, we developed a hybrid of the cellular Potts model (CPM) [72, 73] to represent
the stochastic motility of the endothelial cells, and a mechanical model based on the
finite element method (FEM) [155] of the compliant extracellular matrix. Related
CPM-FEM models were proposed for the simulation of load-induced bone remod-
eling [18, 156], and recently a related approach was proposed in a model study of
cell alignment [87]. A detailed list of parameter values is given in Supplementary
Table 2.1.

2.4.1 Cellular Potts model

The CPM represents cells on a regular square lattice, with one biological cell cov-
ering a cluster of connected lattice sites. To mimic random cell motility, the CPM
iteratively expands and retracts the boundaries of the cells, depending on the passive
forces acting on them and on the active forces exerted by the cells themselves. These
are summarized in a balance of forces, represented by the Hamiltonian,

H =
∑
σ∈cells

λ

(
a(σ) − A(σ)

A(σ)

)2

+
∑
(~x,~x′)

J(σ(~x), σ(~x′))(1 − δ(σ(~x), σ(~x′))). (2.1)

The first term is an (approximate) volume constraint, with a(σ) the actual volume of
the cells, A(σ), a resting volume, and λ an elasticity parameter that regulates the per-
mitted fluctuation around the resting volume. In contrast with the original formulation
of the CPM [72], the deviation of the cell from its target volume is taken relative to
the target volume, by analogy with the (non-dimensional) engineering strain. Alterna-
tive, similar volume constraints can be chosen [154]. We use a value A(σ) = 50 for all
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cells; the medium does not have a volume constraint. The second term represents cell-
cell and cell-medium adhesion, where J(σ(~x), σ(~x′)) ≥ 0 is the contact cost between
two neighboring pixels, and δ, the Kronecker delta. Throughout the manuscript we
use neutral cell-cell adhesion settings; J(σ(~x), σ(~x′)) = 2.5 at cell-cell interfaces, and
J(σ(~x), 0) = 1.25 at cell-medium interfaces, with σ(~x) > 0 and σ(~x′) > 0. In other
words, cells have no preference for adhering to other cells or the medium. For these
neutral cell adhesion parameter settings, cells will still adhere weakly to one another
(a remedy for this effect was proposed in [157]). Additional terms in the Hamiltonian
represent the cells’ responses to ECM mechanics, and will be described in more detail
below.

The CPM iteratively selects a random lattice site ~x′ and attempts to copy its state,
σ(~x′), into a randomly selected adjacent lattice site ~x. To reflect the physical, “pas-
sive” behavioral response of the cells to their environment, the copy step is always
accepted if it decreases the Hamiltonian. To account for the active random motility
of biological cells, we allow for energetically unfavorable cell moves, by accepting
copies that increase the Hamiltonian with Boltzmann probability,

P(∆H) =

1 if ∆H < 0

e−∆H/T if ∆H ≥ 0,
(2.2)

where ∆H is the change in H if the copying were to occur, and T > 0 parameterizes
the intrinsic cell motility. It represents the extent to which the active cell motility can
overcome the reactive forces (e.g. volume constraint or adhesions) in the environ-
ment. We assume that all cells keep the same motility and thus set T to be constant
throughout the simulations. During one Monte Carlo step (MCS), we perform n copy
attempts, with n equal to the number of sites in the lattice. To prevent cells from split-
ting up into two or more disconnected patches, we use a connectivity constraint that
rejects a spin flip σ(~x′)→ ~x if it would break apart the retracting cell σ(~x).

2.4.2 Model of Compliant Substrate based on Finite Element Method

A two-dimensional model describes the compliant substrate on which the cells move.
Deformations are calculated using the finite element method (FEM; reviewed in [155]).
The FEM represents the substrate as a lattice of finite elements, e, with each element
corresponding to a pixel of the CPM. To obtain the finite element equations, the weak
formulation (associated with the total potential energy) of the governing equations
of the displacement u of the substrate is set up, in order to obtain the finite element
equations,

Ku = f , (2.3)

with stiffness matrix K, displacement u, and forces f . The vector u = [ux1 , uy1 , ux2 ,

..., uxn , uyn ]T contains the displacements of all nodes, which are the unknowns that the

37



2. Mechanical Cell-Matrix Feedback

FEM calculates based on the active forces exerted onto the material, presented in f .
In this paper f only consists of traction forces that the cells apply onto the ECM,
unless stated otherwise. In a two-dimensional analysis the forces f are divided by the
thickness they are working on. For this we assume an effective substrate thickness
t = 10 µm. We impose boundary conditions of u = 0 at the boundary of the CPM
grid, this means that the substrate is fixed along the boundaries.

To a first approximation, in this work we consider an isotropic, uniform, linearly
elastic substrate [135, 158] and we apply infinitesimal strain theory: We assume that
material properties, including local density and stiffness are unchanged by deforma-
tions. The global stiffness matrix K is assembled from the element stiffness matrices
Ke [155], which describe the relation between nodes of each element, e,

Ke =

∫
Ωe

BT DBdΩe. (2.4)

where B—the conventional strain-displacement matrix for a four-noded quadrilateral
element [155]—relates the node displacements ue to the local strains, as,

ε = Bue. (2.5)

The strain vector ε is a column notation of the strain tensor ε and D is the material
property matrix. Assuming plane stress conditions,

D =
E

1 − v2


1 ν 0
ν 1 0
0 0 1

2 (1 − ν),

 (2.6)

where E is the material’s Young’s modulus, and ν is Poisson’s ratio. Throughout this
study, we use a Poisson’s ratio ν = 0.45 and Young’s moduli ranging from E = 0.5 kPa
to E = 32 kPa, which are plausible values for most cell culture substrates [135, 140,
159]. For more details of the derivation of Eq. 2.3, and the entries in B [155].
As a reference configuration for the displacements we used an unstretched substrate,

u = 0. Thus, after each Monte Carlo step (during which the cells positions and shapes
have changed) the substrate is assumed to be undeformed, such that the stiffness ma-
trix, K, is constant in time. This prevents expensive calculations that would be nec-
essary for recalculating K in each iteration. Although the previous displacements do
not influence the new deformation of the substrate, they are used as an initial guess
for solving Ku = f , in order to reduce the number of iterations necessary to converge
to the FEM solution.

2.4.3 Mechanical cell-substrate coupling

To simulate cell-substrate feedback we alternate the cellular Potts model (CPM) steps
with a simulation of the substrate deformations using the finite element method. We
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assume that cells apply a cell-shape dependent traction on the ECM and the cells
respond to the resulting ECM strains by adjusting their cell shape. Using the CPM grid
as the finite element mesh, the pixels of the CPM become four-node square elements
in the FE-mesh. Adopting the model by Lemmon & Romer [131], we assume that
each node i covered by a CPM cell pulls on all other nodes j in the same cell, at a
force proportional to distance ~di, j. The resultant force ~Fi on node i then becomes,

~Fi = µ
∑

j

~di, j, (2.7)

where ∆x is the lattice spacing and µ gives the tension per unit length. This parameter
has been scaled to µ = 0.01 nN/µm, such that the total cell traction corresponds
to experimentally reported values [160]. The resultant forces point towards the cell
centroid, and are proportional to the distance from it (Figure 2.2). In this way a CPM
configuration yields a traction force F, which are collected in the forces f for the
finite element calculation. To calculate the resulting ECM strains, we solve Ku = f
for the node displacements u with a preconditioned conjugate gradient (PCG) solver
[161], and derive the local strains using Eq. 2.5. The reference configuration for
the displacements is an unstretched substrate, u = 0. After a sufficiently accurate
solution for the FEM equations has been obtained by the PCG solver, we run a Monte
Carlo step of the CPM. After each MCS, which changes cell positions, the substrate is
assumed to be undeformed again, for the sake of simplicity. Thus, the stiffness matrix,
K, is constant in time.
We assume durotaxis, i.e., the CPM cells preferentially extend pseudopods on matri-

ces of higher stiffness (e.g., because of strain stiffening). By analogy with chemotaxis
algorithms [75] at the time of copying we add the following durotaxis term to ∆H in
response to the strain- and orientation-dependent ECM stiffness E,

∆Hdurotaxis = −g(~x, ~x′)λdurotaxis

(
h(E(ε1))(~v1 · ~vm)2 + h(E(ε2))(~v2 · ~vm)2

)
, (2.8)

with g(~x, ~x′) = 1 for extensions and g(~x, ~x′) = −1 for retractions, λdurotaxis is a param-
eter, ~vm = ~̂x − ~x′, a unit vector giving the copy direction, and ε1 and ε2, and v1 and v2

eigenvalues and eigenvectors of ε representing the principal strains and strain orienta-
tion. We use the strain ε(~x) in the target pixel when considering an extension, and for
retractions we use the strain in the source pixel, ε(~x′). Thus we consider the strain in
the ECM adjacent to the pseudopod. The sigmoid h(E) = 1/(1 + exp(−β(E − Eθ))),
with threshold stiffness Eθ, and β, the steepness of the sigmoid, mimics maturation of
focal adhesions under the influence of tension [129]. The tension in focal adhesions
will increase with higher local matrix stiffness, E, because the matrix will deform
less easily. The sigmoid function starts at zero, goes up when there is sufficient stiff-
ness, and eventually reaches a maximum. This means that a certain level of stiffness
is needed to cause a cell to spread. Alternative forms of h(E) can be used: For an
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2. Mechanical Cell-Matrix Feedback

overview see Supplementary Figure 2.11. Due to limitations of our current finite ele-
ment code and for reasons of computational efficiency, we assumed a linearly elastic,
isotropic material in the FEM, thus precluding explicit strain stiffening effects in the
FEM calculations. Instead, we implemented the effect of strain-stiffening in the cell
response, where cells perceive increased ECM stiffness as a function of the principal
strains ε1 and ε2,

E(ε) = E0(1 + (ε/εst)1ε≥0) (2.9)

where E0 sets a base stiffness for the substrate, and εst is a stiffening parameter. The
indicator function 1ε>0 = {1, ε > 0; 0, ε ≤ 0} indicates that strain stiffening of the sub-
strate only occurs for substrate extensions (ε ≥ 0); compression (ε < 0) does not
stiffen or soften the substrate.

2.4.4 Morphometry

To characterize the random motility of single cells and cell pairs, we measured the
cells’ mean square displacement,

MSD(t) = 〈(C(S , t) −C(S , 0))2〉, (2.10)

with C(S , t), the centroid of cell S at Monte Carlo step ("time") t, given by

C(S , t) =
1

|C(S , t)|

∑
~x∈C(S ,t)

~x, (2.11)

with C(S , t), the set of coordinates of the lattice sites comprising cell S at MCS t,

C(S , t) =
{
~x : ~x ∈ Z2 ∧ σ(~x, t) = S

}
, (2.12)

and ~x = {x1, x2}. The MSD is a reliable measure of random motility [162] and it can
be directly compared with experimental data (e.g., [32]).

The dispersion coefficient, defined as

D = lim
t→∞

1
4t
〈(C(S , t) −C(S , 0))2〉, (2.13)

is derived from the slope of the MSD, and is used as a measure of the motility of
random walkers. The length, orientation and eccentricity of cells were estimated from
the inertia tensors I(S ) of the cells, defined as [76],

I(S ) =

( ∑
~x∈C(S )(x2 −C2(S ))2 −

∑
~x∈C(S )(x1 −C1(S ))(x2 −C2(S ))

−
∑
~x∈C(S )(x1 −C1(S ))(x2 −C2(S ))

∑
~x∈C(S )(x1 −C1(S ))2

)
.
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2.4. Methods

(2.14)

Assuming cells are approximately ellipse-shaped, the length of cell σ is approxi-
mated as l(σ) = 4

√
e2(I(S ))/|C(S )|, with e2(I(σ)) the largest eigenvalue of I(S ).

The eccentricity of a cell is defined using the eigenvalues of the inertia tensor I(σ)

as ξ(σ) =

√
1 −

(
e1(I(S ))
e2(I(S ))

)2
, where e1(I(S )) ≤ e2(I(S )) are the eigenvalues of I(S ). An

eccentricity close to zero corresponds to roughly circular cells and cells with an ec-
centricity close to unity are more elongated. The orientation of the cell is given by the
eigenvectors of the inertia tensor I(S ).

2.4.5 Endothelial Cell Culture

Bovine aortic endothelial cells (BAECs) (VEC Technologies, Rensselaer, NY) were
cultured through passage 12. Cells were kept at 37◦C and 5% CO2 and fed every other
day with Medium 199 (Invitrogen, Carlsbad, CA) supplemented with 10% Fetal Clone
III (HyClone, Logan, UT), 1% MEM amino acids (Invitrogen), 1% MEM vitamins
(Medtech, Manassas, VA), and 1% penicillin-streptomyocin (Invitrogen). Polyacry-
lamide hydrogels were synthesized as previously described [36]. Briefly, a gel mixture
was prepared from MilliQ water, HEPES, TEMED (Bio-Rad, Hercules, CA) and a
5%:0.1% ratio of acrylamide to bis-acrylamide (Bio-Rad) to generate substrates with
a Young’s modulus of 2,500 Pascals. Polymerization was initiated by the addition of
N-6-((acryloyl)amido)hexanoic acid (synthesized according to Pless et al. [163]) and
ammonium persulfate (Bio-Rad) into the gel mixture. Following polymerization, gels
were incubated with 5 µg/ml RGD peptide (GCGYGRGDSPG) (Genscript), followed
by ethanolamine (Sigma). Gels were stored in PBS overnight. Hydrogels were ster-
ilized with ultraviolet light before cell culture. A T-75 flask with a confluent BAEC
monolayer was seeded onto the hydrogels at 350,000 cells per gel (approximately
1,375 cells per mm2). The gels were maintained at 37◦C and 5% CO2 for three days
prior to imaging. ÊAfter replenishing with fresh complete media, the cells on hydro-
gels were visualized with a Zeiss Axio Observer.Z1 inverted spinning disc microscope
with a Hamamatsu ORCA-R2 digital camera. Images were captured every 30 minutes
for 24 hours.
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2.5 Supplementary tables

Parameter symbol value unit
discretization parameters
element size ∆x 2.5 µm
basic CPM parameters
intrinsic cell motility T 1 -
target volume A 50 pixels
strength of volume constraint λ 500 -
cell-medium contact cost Jcm 1.25 pixelside−1

cell-cell contact cost Jcc 2.5 pixelside−1

FEM parameters
Young’s modulus E 0.5-32 kPa
Poisson’s ratio ν 0.45 -
substrate thickness τ 10 µm
accuracy level of solver ψ 0.00001 -
cell traction model
traction per unit length µ 0.01 nN µm−1

stretch guidance model
maximum guidance term λdurotaxis 10 -
threshold for stiffness preference Eθ 15 kPa
steepness of stiffness preference β 0.5 kPa−1

strain stiffening parameters εst 0.1 -

Table 2.1: Parameter settings.
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2.6 Supplementary figures
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Figure 2.7: Simulated responses of individual cells to mechanical cell-ECM feedback as
a function of the values of the volume restriction, λ. Columns: area (left), cell
length (middle) and eccentricity (right). Mean and standard deviation shown for
n = 100 after 500 MCS on simulated substrates of stiffness varying from 0.5 kPa
to 32 kPa.
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Figure 2.8: Mean square displacements of individual cells on simulated substrates of stiff-
ness varying from 0.5 kPa to 32 kPa. Mean square displacement shown over
n = 1000 cells.
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Figure 2.9: Mean square displacement of individual cells (blue errorbars) and cell pairs
(red errorbars) on simulated substrates of stiffness varying from 0.5 kPa to 32
kPa. Error bars indicate standard deviation for n = 100.
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Figure 2.10: Number of cell-cell contacts made over 500 MCS (left column) and contact
duration (right column) over 500 MCS between two simulated cells initiated
at a distance of fourteen lattice sites from each other on simulated substrates
of stiffness varying from 0.5 kPa to 32 kPa, for intercellular contact energies
varying from J(σ(~x), σ(~x′)) = 0.5 (adhesive cells) to J(σ(~x), σ(~x′)) = 4 (repul-
sive cells), with σ(~x) ≥ 1 and σ(~x′) ≥ 1; J(σ(~x), 0) = 1.25 for all simulations.
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Part 2 of Figure 2.10
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A B

C D

Figure 2.11: Effect of form of model function h(E) on cell shapes on substrates of differ-
ent stiffnesses. (A) Standard, sigmoid function, as used in main text, h(E) =

1/(1 + exp(−β(E − E0))) with E0 = 15000, β = 0.0005, and λdurotaxis = 10;
(B) Saturated function, h(E) = (E/E0)/(1 + E/E0), with E0 = 15000 and
λdurotaxis = 25; (C) Piecewise linear function, h(E) = {E/α, E ≤ Emax, E ≥ Emax},
with Emax = 30000, α = 30000, and λdurotaxis = 20; (D) Gaussian function,
h(E) = exp

(
−(E − E0)2/(2γ2)

)
, with E0 = 15000 and γ = 2000, λdurotaxis = 10.

Insets show typical cell shape for regions indicated by red bars.
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2.7 Supplementary videos

All supplementary movies can be found at https://doi.org/10.1371/journal.
pcbi.1003774

Video S1 Behavior in silico of a single cell on substrates of 4 kPa, 12 kPa, and 32 kPa,
for a duration of 500 MCS per simulation. Parameter settings as in Figure 2.3.

Video S2 Pairwise cell-cell interactions in silico on substrates of 4 kPa, 12 kPa, and
32 kPa, for a duration of 500 MCS per simulation. Parameter settings as in
Figure 2.4.

Video S3 Network formation in silico on a substrate of 10kPa, for a duration of 3000
MCS. Video represents a 0.75×0.75 mm2 area (300×300 pixels) initiated with
450 cells. Parameter settings are as in Figure 2.5.

Video S4 Network formation of bovine aortic endothelial cells on a 2.5 kPa polyacry-
lamide gel functionalized with RGD-peptide. Time lapse images were captured
in 30 minute intervals over an 8 hour time period. Image size as in Figure 2.5D.

Video S5 Sprouting in silico from a spheroid on a substrate of 10kPa, for a duration
of 3000 MCS. Video represents a 0.75 × 0.75 mm2 area (300 × 300 pixels)
initiated with 450 cells. Parameter settings are as in Figure 2.6.
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3. Cell alignment to static stretch

Abstract

During animal development and homeostasis, the structure of tissues, including
muscles, blood vessels and connective tissues adapts to mechanical strains in the
extracellular matrix (ECM). These strains originate from the differential growth
of tissues or forces due to muscle contraction or gravity. Here we show using a
computational model that by amplifying local strain cues, active cell contractility
can facilitate and accelerate the reorientation of single cells to static strains. At
the collective cell level, the model simulations show that active cell contractility
can facilitate the formation of strings along the orientation of stretch. The com-
putational model is based on a hybrid cellular Potts and finite-element simulation
framework describing a mechanical cell-substrate feedback, where: 1) cells apply
forces on the ECM, such that 2) local strains are generated in the ECM, and 3)
cells preferentially extend protrusions along the strain orientation. In accordance
with experimental observations, simulated cells align and form string-like struc-
tures parallel to static uniaxial stretch. Our model simulations predict that the
magnitude of the uniaxial stretch and the strength of the contractile forces reg-
ulate a gradual transition between string-like patterns and vascular network-like
patterns. Our simulations also suggest that at high population densities, less cell
cohesion promotes string formation.

3.1 Introduction

During embryonic development, a single fertilized egg cell grows into a complex func-
tional organism [164]. Even after years of studying morphogenesis, the organization
of cells into tissues, organs and organisms, it still remains a puzzle how cells migrate
and form the right pattern in the right part of the body at the right moment [165].
Apart from chemical signals [166], mechanical signals play an equally important role
in morphogenesis [26, 167]. Static strains originating from differential growth of tis-
sues are instrumental for the organization of cells in tissues in vivo. For example, in
quail heart, the endocardium generates strains to which cardiomyocyte microtubules
orient [168]. Wing hinge contractions in Drosophila cause anisotropic tension in the
wing-blade epithelium, to which the cells align [169]. Using a multiscale computa-
tional modeling approach, here we unravel how static strains, e.g., resulting from the
differential growth of tissues, may drive the organization of cells and tissues.
In vitro and in silico experiments have helped to unravel the cellular mechanisms

underlying the adaptation of tissues to strain. Myocytes [170], mesenchymal stem
cells [171], muscle cells, and endothelial cells [94] orient in parallel to uniaxial static
stretch. Furthermore, fibroblasts organize into string-like structures in parallel to the
stretch orientation [95], whereas endothelial cells form monolayers of cells oriented
in parallel to the stretch [94].

Active cell traction forces play a crucial role in the alignment of cells to static uni-
axial stretch. Using contact guidance, cells can adjust their orientation to the fibers
which align with strain [172, 173]. Then, by pulling on the matrix, cells can fur-
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ther align the fibers [174]. Such mechanical cell-fiber feedback can coordinate cell
alignment [90, 134, 175] and string formation [86] along strain. However, in vitro ob-
servations suggest that cell alignment to uniaxial stretch may not necessarily be driven
by fiber alignment. Mesenchymal stem cells align along the orientation of strain on
a nonfibrous matrix [171]. In stretched collagen matrices, fibroblasts were found to
align along strain in the absence of fiber alignment [95, 176]. Other authors observed
that collagen fibers aligned only after the cells had aligned [177, 178]. Moreover, fi-
broblasts can orient along the uniaxial stretch even if fibronectin fibers were aligned
perpendicular to the stretch [179]. Altogether, these results suggest that cells can ori-
ent to stretch independently of the fiber orientation.

Mathematical modeling is a helpful tool to explore what biophysical mechanisms
can explain the alignment of cells to strain. Previous mathematical models [45, 180]
were based on optimization principles. Bischofs and Schwarz [45] proposed that cells
minimize the amount of work needed for contracting the matrix. For dipolar cells,
the work was minimized if they oriented in parallel with the uniaxial stretch. If the
cells were assumed to generate strains in their local environment, cells formed strings,
which aligned with an external strain field [45, 46, 181]. Based on the observation that
cells reorganize focal adhesions and stress fibers to maintain constant local stresses,
De et al. [180] proposed that cells adapt their contractility and orientation in order to
find the minimal local stress in the matrix. They showed that the local stress becomes
minimal if a dipolar cell orients in parallel to uniaxial stretch, as in this configuration
the cell traction forces counteract the uniaxial stretch.

In this work, we explain cellular alignment to strain based on a mesoscopic, exper-
imentally testable cellular mechanism. To simulate this mechanism, we propose a
hybrid computational model in which the Cellular Potts Model (CPM) [72] is coupled
to a finite-element model (FEM) of the matrix. The computational model [182] cap-
tures the mechanical cross-talk between the extracellular matric (ECM) and the cells
as follows: 1) cells apply forces on the ECM [131]; 2) the resulting strains in the ECM
are calculated using a Finite Element Method (FEM); and 3) cells extend protrusions
oriented along strain [178].

Based on experimental observations of fibroblasts on elastic substrates [126] and on
modeling studies [180], it has been suggested that cellular traction forces may dom-
inate over, or even counteract global strain cues. Paradoxically, our model suggests
that contractile cells locally increase the global uniaxial strain which facilitates cell
alignment to static uniaxial stretch. Our model also suggests that by contracting the
matrix, cells can form strings in parallel to the orientation of uniaxial stretch. Finally,
our simulations show that differences in cell cohesion and population density may
determine under what conditions cells form strings, and when they only align on a
individual level.
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3.2 Results

This work proposes a computational model for the collective response of cells to uni-
axial stretch in compliant tissues. In the model, cells apply contractile forces onto a
compliant substrate. The resulting strains in the matrix affect the motility of the cell
itself and the motility of its neighbors. In all of the simulations described in this pa-
per, we stretched a substrate of Young’s modulus 12kPa with a stress of σstretch = 1000
N/m2 applied to the boundary of the matrix in the FEM. This results in a static strain
of around 8% on the matrix. The cellular tension µ (see Eq. 3.6) was set to 0.0025
nN/µm, resulting in local strains around the tips of elongated cells of up to 2%, am-
plifying the static strain to values of around 10%.

3.2.1 Individual cell response to uniaxial stretch is amplified by cell
contractility

In order to elucidate how cell traction forces affect individual cell response to uniaxial
stretch in our model, we simulated the response of a single cell to uniaxial stretch ap-
plied in the vertical orientation. This was carried out both in the presence (µ > 0) and
in the absence (µ = 0) of active cell contraction. Figure 3.1A shows a non-contractile
cell on a uniaxially stretched ECM after 500 MCS; the cell elongates slightly along the
stretch orientation, in accordance with our previous results [182]. Figure 3.1B shows
the same simulation set-up in the presence of active cell contraction. The contractile
cell elongates more strongly than the non-contractile cell (Figure 3.1A). Interestingly,
the cell orients itself along the strain orientation, despite the fact that the contractile
forces (Eq. 3.6) counteract the uniaxial stretch. The current choice for ∆x is based
on balance between precision and computation time. To confirm that the model is
scalable, we repeated the simulation on grids that were refined by a factor of two
(∆x = 1.25µm, Supplementary Figure 3.9A) and four (∆x = 0.625µm, Supplemen-
tary Figure 3.9B), and observed qualitatively similar behavior. Out of the batch of
100 simulations, in 38 of the simulations, the middle part of contractile cells became
rather slender (Supplementary Figure 3.8C), resulting in a cell shape that seems un-
realistic, as elongated cells are typically reported to have a spindle-like shape. The
area conservation (Eq. 3.1) imposes that extensions are, on average, balanced by re-
tractions. Because contractile cells reduce the uniaxial stretch around the center of the
cell, retractions are most likely to occur here, resulting in a slender middle part.

To study single cell orientation in more detail and check the isotropy of the model,
we performed 100 simulations of single contractile and non-contractile cells for 500
MCS, using stretch angles in the range 0◦ to 180◦ with increments of 15◦ on a 100
× 100 lattice, representing a piece of tissue of 250 × 250 µm. Cells with a diameter
of seven lattice sites were initiated in the middle of the matrix. The cell orientation
was estimated from the inertia tensor of the cells (see Supplementary Methods). Fig-
ure 3.1C plots the cell orientation as a function of the orientation of stretch for cells
without active contraction (red boxes) and with active contraction (green boxes). In

54



3.2. Results

A B

C

s
tr

e
tc

h
 o

ri
e

n
ta

ti
o

n

strain

0

0.1

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

D
stretch

stretch & cell forces

0

20

40

60

80

100

0 50 100 150 200

0

50

100

150

200

0 30 60 90 120 150

stretch

stretch & cell forces

cell orientation (°) 

s
tr

e
tc

h
 o

ri
e
n

ta
ti

o
n

 (
°)

 

a
n

g
le

 w
it

h
 s

tr
e
tc

h
 (

°)
 

time (MCS)

Figure 3.1: Single cell response to static stress. (A) Non-contractile cell on substrate
stretched along 0◦ at 500 MCS; (B) contractile cell on substrate stretched along
0◦ at 500 MCS; (A-B) colors: principal strain magnitude; orientation and length
of black line pieces: orientation and magnitude of principal strain; (C) cell ori-
entation as a function of stretch orientation at 500 MCS; averaged over n = 100
simulations; error bars: standard deviations; black line shows linear fit; (D) time
series of the orientation of a single cell on a substrate stretched over 0◦, averaged
over n = 100 simulations; shaded regions: standard deviations. Color coding (C-
D): red (with large standard deviations): non-contractile cells; green (with larger
standard deviations): contractile cells.

both conditions, the cells follow the strain orientation on average. However, the cells
that apply active contractile forces on the matrix followed the orientation with much
higher accuracy, as evidenced by the much smaller standard deviations. Also, the ec-
centricities of the contractile cells were much more narrowly distributed than those of
non-contractile cells (Supplementary Figure 3.8A). Figure 3.1D shows that the con-
tractile cells oriented more quickly to the stretch orientation than the non-contractile
cells. This behavior was only observed on matrices of intermediate stiffness (Supple-
mentary Figure 3.8B). On soft substrates, cells remain small [182] and as a result do
not apply sufficient force on the matrix. On a very stiff matrix, cells protrude in all
directions [182] and thus they cannot orient along a specific angle.

Altogether, the simulated contractile cells aligned with the strain more accurately
than the non-contractile cells. This can be explained by a positive feedback loop
between cell shape, cell traction forces and strain stiffening. Cells elongate slightly in
response to uniaxial stretch. Due to the anisotropic cell shape, cells pull harder on the
matrix around the tip of the cells, since the distance between the tip of the cell and the
cell interior increases (see Eq. 3.6). So, the matrix stiffens around the tip of the cell
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which further promotes cell elongation along uniaxial stretch.

3.2.2 Cell contractility enables cells to align with each other in parallel
to uniaxial stretch

We next looked at the alignment of neighboring cells in uniaxially stretched matrices.
We simulated the response of two circular cells placed horizontally next to each other
on a substrate with a static strain along the vertical axis, both in the presence (µ > 0)
and in the absence (µ = 0) of active cell contraction. Figure 3.2A shows a pair of
cells on a statically stretched matrix at 500 MCS; the cells elongate slightly and do
not align in a head-to-tail fashion. Figure 3.2B shows the same simulation set-up in
the presence of active cell contraction. In contrast to non-contractile cells, a pair of
contractile cells assume a head-to-tail configuration. Also, similar to the response
of a single cell found in the previous section, both cells elongate more strongly than
the non-contractile cell in Figure 3.2A. Notably, the pair of contractile cells assume a
head-to-tail configuration along the orientation of uniaxial stretch.

To study this head-to-tail alignment in more detail, we performed 100 simulations of
paired cells for 500 MCS for both scenarios on a 200 × 200 lattice, corresponding to
500 × 500 µm, for stretch angles in the range 0◦ to 180◦ with increments of 15◦. Two
cells with a diameter of seven lattice sites were initiated in the middle of the matrix,
eight lattice sites apart. Cell-cell alignment was quantified by evaluating the triangle
(A,B,C), where A and B are the center of masses of the two cells and C is the point
where the lines describing the orientations of the two cells intersect. Supplementary
Table 3.2 describes how this triangle is used to decide whether a pair of cells is aligned
or not. Figure 3.2C plots the fraction of time that cells are aligned on a stretched
substrate as a function of stretch orientation for cells without active contraction (red
boxes) and with active contraction (green boxes). Contractile cells align more often
with each other than non-contractile cells. To confirm that cells align along the stretch
orientation, we measured the orientation of the line connecting the center of masses of
the two cells. Figure 3.2D plots this cell-cell angle as a function of stretch orientation;
a pair of contractile cells align along stretch, compared to non-contractile cells that
stick around their initial position (placed horizontally next to each other) and thus
keep their initial alignment angle of 90◦.

Figure 3.2E plots the number of cell pairs that aligned as a function of time in n = 100
simulations. This shows that with stretch around 0◦, cells cannot always align. This
is because, after initial elongation, the tips of the cells are not in each other’s vicinity,
such that the cells cannot sense each other’s strain. Interestingly, this phenomenon
may provide an explanation for an experimental observation reported by Winer et
al.[33]. Studying the behavior of endothelial cells on compliant matrices, they ob-
served that cell pairs aligned more on 2 mg/ml polyacrylamide gels than on a softer, 1
mg/ml gel on which cell assumed an extremely elongated shape. They hypothesized
that this “extremely elongated shape of the cells and thus the shape of the resulting
strain field reduced the probability that a second cell would come in contact with the
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Figure 3.2: Response of two adjacent cells to static stress. (A) Non-contractile cell pair
on substrate stretched along 0◦ at 500 MCS; (B) contractile cell pair on substrate
stretched along 0◦ at 500 MCS; (A-B) colors: principal strain magnitude; orienta-
tion and length of black line pieces: orientation and magnitude of principal strain;
(C) fraction of time a cell pair is aligned, averaged over n = 100 simulations, up-
per bars for contractile cells and lower bars for non-contractile cells; (D) angle of
the line connecting the center of masses as a function of stretch orientation at 500
MCS, averaged over n = 100 simulations, contractile cells follow the extra plot-
ted linear line piece. (C-D): error bars: standard deviations; (E) time series of the
number of cell pairs that are aligned on stretched substrates with different stretch
orientations; symbols are circle: 0◦, cross: 30◦, star: 60◦, plus: 90◦, upper lines for
contractile cells and lower lines for non-contractile cells. Color coding (C-E): red:
non-contractile cells; green: contractile cells.
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affected gel”. To test this hypothesis in our model, we increased the probability of
a cell to come into contact with the strain field of the other cell, by increasing the
cellular temperature T . Increasing T increases the probability that a cell makes a pro-
trusion. Supplementary Figure 3.10A shows the fraction of time a pair of contractile
cells are aligned as a function of T and Supplementary Figure 3.10B shows how the
number of cell pairs that are aligned depend on T . This illustrates that pairs of cells
more readily align at higher values of T . These simulation results thus match the hy-
pothesis of Winer et al. [33]. At motilities larger than approximately T = 20 cell
motility became randomized to the extent that the cells could no longer align.

In summary, in our model pairs of contractile cells aligned in head-to-tail configura-
tions along the orientation of stretch, whereas non-contractile cells oriented with the
stretch, but not in a head-to-tail fashion. The bipolar strain fields around the contrac-
tile cells were instrumental for this cell-cell alignment.

3.2.3 Cell contractility facilitates the self-organization of cells into
strings oriented parallel to uniaxial stretch

After identifying the orientation response of a pair of cells, we asked how cell con-
tractility affects the alignment of a large group of cells. We simulated a group of cells
on a stretched matrix, both in the presence (µ > 0) and in the absence (µ = 0) of active
cell contraction. The behavior of the model does not depend on the stretch orienta-
tion, so we only show the results for stretching in the vertical orientation in the next
sections. Figure 3.3A shows a group of cells on a statically stretched matrix in the
vertical orientation at 3000 MCS; the cells have elongated slightly and have not mi-
grated away from their initial position. Figure 3.3B shows the same simulation set-up
in the presence of active cell contraction. The contractile cell aligned locally with one
another in a head-to-tail configuration, as observed in our simulation of paired cells.
This cell-cell alignment enables cells to form strings along the orientation of uniaxial
stretch, as observed experimentally by Eastwood et al. [95].
To study this behavior in more detail, we performed 25 simulations of a group of

cells on a 400 × 400 lattice, representing a piece of tissue of 1 × 1 mm, for 3000 MCS
for both scenarios, for a stretch angle of 0◦. Cells are initially placed uniformly inside
a region of 200 × 200 lattice sites in the middle of the matrix, as to minimize boundary
effects. Cells are initially one lattice site in size. The density of cells was d =0.15,
yielding around 120 cells. To characterize the collective orientation of cells, we mea-
sured a two-dimensional orientational order parameter S (r), with range r (µm), de-
fined for the Cellular Potts Model as in Ref.[119]. Briefly, S (r) =

〈
cos 2θ(~X(s), r)

〉
s
,

where ~X(s) is the center of mass of cell s and θ(~X(s), r) is the angle between the orien-
tation of the cell of spin s and a local director, i.e., the average orientation of the cells
within a radius r around the centroid of cell s (see Supplementary Methods for detail).
S (r) ranges from S (r) = 0 for configurations of randomly oriented cells, to S (r) = 1
for fully aligned cells. Figure 3.3C plots the orientational order parameter as a func-
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Figure 3.3: Collective cell response to static stress. (A) Non-contractile cells on substrate
stretched along 0◦ at 3000 MCS; (B) contractile cells on substrate stretched along
0◦ at 3000 MCS; (A-B) colors: principal strain magnitude; orientation and length
of black line pieces: orientation and magnitude of principal strain; (C) time series
of orientational order parameter S (r), averaged over n = 25 simulations; color
coding: red (lowest line): r=100 µ m for non-contractile cells, orange (second
lowest line): r=1500 µm for non-contractile cells, green (highest line): r=100 µm
for contractile cells, dark-green (second highest line): r=1500 µm for contractile
cells; (D) time series of the orientation of cell aggregates on a substrate stretched
over 0◦ at 3000 MCS, averaged over n = 25 simulations; shaded regions: standard
deviations. red (with large standard deviations): non-contractile cells; green (with
larger standard deviations): contractile cells.

tion of time, showing a local orientational order (r = 100µm) for non-contractile
cells (orange curve) and for contractile cells (green curve) and the global orienta-
tional order (r = 1500µm) for non-contractile cells (red curve) and for contractile
cells (dark-green curve). Contractile cells achieve a higher local and similar global
ordering than non-contractile cells. Note that contractile cells initially obtain a high
orientational order, close to 0.8. Since cells initially have enough space, they elongate
well. When cells start to adhere to another and form strings, cells in the interior of a
string cannot orient well, such that the global orientational order parameter decreases.
This is a model artifact which we investigated further in the Supplementary Methods
and address in the discussion section.

To confirm that by contracting the matrix, cells co-align into strings oriented along
uniaxial stretch, we measured the orientation of cell aggregates, with a cell aggregate
defined as a connected patch of cells (see Supplementary Methods for details on the
calculation). Figure 3.3D plots the orientation of cell aggregates as a function of
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time, of non-contractile cells (green curve) and of contractile cells (red curve). In
both conditions, cells form aggregates with an orientation around 0◦, which is the
orientation of stretch. The aggregates formed by contractile cells follow the stretch
orientation more accurately, as shown by the smaller standard deviations, indicating
that strings have formed.

In our model, contractility facilitates the formation of strings of cells along the stretch
orientation, in agreement with experimental observations [95]. We have shown pre-
viously that in unstrained matrices, contractile cells organize into network-like struc-
tures [182]. We next studied what level of uniaxial stretching is needed for cells to
prefer a string-like organization instead of a network-like organization.
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Figure 3.4: Model sensitivity to cell traction force and matrix stretching force. (A) Con-
tractile cells on substrate stretched along 0◦ at 3000 MCS simulated with various
values of cell traction force and matrix stretching force; (B) Global orientational
order parameter S (r = 1500 µm) at 3000 MCS, averaged over n = 25 simulations;
error bars: standard deviations; bars in bar chart are sorted according to value of
σstretch as indicated in figure inset; (C) zoom in of cell configuration of µ = 0.0025,
Fstretch = 100; (D) zoom in of cell configuration of µ = 0.0025, Fstretch = 1000; (E)
zoom in of cell configuration of µ = 0.01, Fstretch = 500. Colors A,(C-E): princi-
pal strain magnitude; orientation and length of black line pieces: orientation and
magnitude of principal strain.
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The results of varying uniaxial stretch are shown in Figure 3.4. How the amount of
uniaxial stretch affects string formation, depends on the magnitude of the cell traction
forces. When we varied the uniaxial stretch and fixed the cell traction force to the
default parameter value (middle row in Figure 3.4A), we observed that cells can more
easily align in a head-to-tail configuration and form strings (Figure 3.4C) if stretching
is lower than the default value (Figure 3.4D). Indeed, the global ordering decreases as
a function of uniaxial stretch (middle set of barplots in Figure 3.4B). In our model,
this is explained as follows. Due to the assumed strain stiffening behavior, the cells
spread more [182] on highly stretched matrices. Then, within strings, cells have less
space and orient less well. If cells apply little traction (first row in Figure 3.4A), they
do not form strings with small uniaxial stretch, but do when stretching is increased.
Then, with even more uniaxial stretch, cells orient along stretch, but do not forms
strings, similar to non-contractile cells (Figure 3.3B). Indeed, the global orientational
order parameter shows a biphasic dependence on uniaxial stretching (first set of bar
plots in Figure 3.4B). This is explained in our model as follows. Cell forces cannot
sufficiently amplify a small uniaxial stretch and thus more uniaxial stretch is needed to
instigate string formation. However, at higher uniaxial stretch, the cell traction forces
are insufficiently strong to amplify the uniaxial strain and as a result cells do not form
strings. Note that these cells do not form networks with little uniaxial stretch, as they
do not sufficiently contract the matrix to align with other cells. If cells are highly
contractile (last row in Figure 3.4A) they form networks, similar to cells on non-
stretched matrices (Figure 3.6F). Higher uniaxial stretching transforms a network into
an oriented network (Figure 3.4E) and subsequently into strings. Indeed, the global
order has a biphasic dependence on stretching (last set of barplots in Figure 3.4B).
This is because with too little uniaxial stretch, cell generated strains dominate the
global strain cue and thus cells do not collectively orient. Of course, if we would
increase uniaxial stretch even more, cells would align but not form strings anymore.

To better understand the results in Figure 3.4, recall that cells extend towards areas
that are stiffened by strain, as described by the sigmoid function h(E(ε)) = 1/(1 +

exp(−β(E(ε) − Eθ))) (Supplementary Figure 3.11B), where E(ε) = E0(1 + (ε/εst).
Supplementary Figure 3.11A shows that cells can only form strings when the matrix
is stiffened to values above Eθ (Supplementary Figure 3.11D). If the matrix is not
stiffened, or becomes too rigid, the cells will not align (Supplementary Figure 3.11C
and E). To relate this to Figure 3.4, instead of strain, we plotted normalized stiffness
values E(ε)

Eθ
in Supplementary Figure 3.12. This shows that when the uniaxial stretch

stiffens the matrix to values around Eθ and cell traction forces then stiffen the matrix
more, strings can be formed. However, strings can not be formed when the matrix is
stiffened too much by either the cells or the uniaxial stretch.
Altogether, the results suggest that an optimal balance between uniaxial stretch and

cell contractility is needed for cells to form strings.
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3.2.4 Decreasing cell-cell adhesion promotes string formation in
populations with high cell density

Experimental work has reported two alternative cellular responses to uniaxial strain.
Fibroblasts seeded at a density of 106 cells/ml form strings along the orientation of
uniaxial stretch [95]. 3D cultures of endothelial cells at much higher density of 107

cells/ml to 109 cells/ml align along the stretch orientation, but do not form strings
[94]. Thus, the differences between these two experiments could be due to cellular
densities, or due to specific differences between fibroblasts and endothelial cells. In
particular, endothelial cells have stronger cell-cell adhesion than fibroblasts, as the
endothelial-specific VE-cadherins have stronger bond strengths than the N-cadherins
found in fibroblast cell-cell junctions [183].

Figure 3.5A shows an overview of the final configurations of simulations in which we
systematically varied cell density and cell-cell contact energies; Figure 3.5B shows the
corresponding global orientational order parameters. To better mimic variable densi-
ties of cells, we initialized cells on the whole grid of 400 × 400 lattice sites. The
configurations shown in Figure 3.5A suggest that fewer, thicker strings are formed if
the cells adhere more strongly to one another (i.e., low Jcc). Also, the global order
parameter increases as the cell-cell contact energies increase (Figure 3.5B), suggest-
ing that non-adhering cells respond more easily to the strain cue. At a seeding density
d = 0.35 and mildly repellent cell-cell adhesion settings of Jcc = 5 the final configura-
tions (Figure 3.5C) and the distribution of cell orientations (Figure 3.5D) qualitatively
resemble the experiments by Van der Schaft et al. [94] (Figure 3.5 F and G). Decreas-
ing cell-cell adhesion and cell densities to d = 0.05 and Jcc = 6.25 produces configu-
rations similar to Eastwood et al. [95] (Figure 3.5E and H). Currently, in completely
confluent cell layers with high cell-cell adhesion (d = 0.35, d = 0.5, Jcc = 3.75, 2.5 in
Figure 3.5) the cells do not align at all, because in our model the cells cannot respond
to strain at cell-cell interfaces. We investigated this issue further in the Supplementary
Methods and address this in the discussion section.

3.3 Discussion

In this paper we have presented a computational model to show that active cell con-
traction can facilitate cellular alignment to the orientation of static uniaxial stretch.
The computational model describes motile cells living on top of an elastic substrate,
and is based on only a few, experimentally validated assumptions: (a) cells exert con-
tractile forces on the substrate, which locally generate strains in the substrate [127,
131]; (b) cells move by repeatedly attempting to extend or retract pseudopods at ran-
dom, and (c) along the substrate strain orientation, pseudopod extensions are promoted
and pseudopod retractions are inhibited [178], a procedure mimicking the maturation
of focal adhesions under strain [184]. We have shown previously [182] that these
assumptions suffice to reproduce (1) the elongation of single cells on compliant sub-
strates, (2) the alignment of two adjacent cells, and at the collective level (3) the for-
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Figure 3.5: Model sensitivity to cell density and cell-cell adhesion. (A) Contractile cells
on substrate stretched along 0◦ at 3000 MCS simulated with various values of cell
density and cell-cell contact energy; (B) Global orientational order parameter S (r =

1500 µm) at 3000 MCS, averaged over n = 25 simulations; error bars: standard
deviations, first bar is for the lowest value of Jcc; (B) Global orientational order
parameter S (r = 1500 µm) at 3000 MCS, averaged over n = 25 simulations; error
bars: standard deviations; bars in bar chart are sorted according to value of Jcc as
indicated in figure inset; (C) zoom in of cell configuration of Jcc = 5, d = 0.35;
(D) Cell orientations of Jcc = 6.25, d = 0.35; (E) zoom in of cell configuration of
Jcc = 6.25, d = 0.05; (F) 3D culture of endothelial cells on uniaxially stretched
matrix, taken from Van der Schaft et al. [94]; (G) Orientation of 3D culture of
endothelial cells on uniaxially stretched matrix, taken from Van der Schaft et al.
[94]; (H) Fibroblasts on uniaxially stretched matrix, taken from Eastwood et al.
[95]. Colors A,C,E: principal strain magnitude; orientation and length of black line
pieces: orientation and magnitude of principal strain.
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mation of vascular-like network structures and angiogenesis-like sprouting structures.
Here we show that a refined version of this model also reproduces experimentally ob-
served behavior of fibroblasts, endothelial cells and myocytes on statically, uniaxially
stretched substrates: (1) cells tend to align in parallel to the uniaxial stretch orienta-
tion [94, 170, 171] (cf. Figure 3.1); (2) cells align with one another in parallel to the
uniaxial stretch orientation (Figure 3.2); and (3) collectively, the cells form strings ori-
ented along the stretch (Ref. [95] and Figure 3.3) and they elongate along the stretch
in close to confluent layers of cells (Ref. [94] and Figure 3.5). Although the assumed
response to strains (assumption (c)) makes the simulated cells orient to the stretch
without contractility (see Ref. [182] and Figure 3.1A), active contractility makes cells
elongate more strongly (Figure 3.1B), and allows them to respond to strain cues more
accurately (Figure 3.1C) and more rapidly (Figure 3.1D) than non-contractile cells.
Thus, a crucial factor for these phenomena is the balance between active cell con-
tractility and the magnitude of the uniaxial stretch cue. Provided the cellular traction
forces are sufficiently strong, the cells will collectively organize into oriented strings
even in response to very subtle strain cues (Figure 3.4). For stronger cell contractility,
however, the local strains will override the global strain cue and the cells will organize
into network-like patterns as reported previously (see Figure 3.4A, lower left panels;
also cf. Ref [182]). The reported model behavior holds for substrates with stiffness of
approximately 10 kPa to approximately 16 kPa, a wider range than the autonomous
cell elongation reported previously [182]. Note that the exact magnitude of this range
depends on the parameter settings and in particular threshold E0 in sigmoid function
h(E(ε)), whose values were kept unchanged relative to Ref. [182].

Experimental validation of our model predictions would need to focus both on the
response to uniaxial static stretch of single cells and on the collective behavior of
multiple cells. Single cells in our models elongate more easily and reorient more
easily to uniaxial static stretch if they contract the matrix. At the multicellular level,
contractility induces string formation on uniaxially statically stretched matrices. A
number of published in vitro experiments already support the single cell behavior
that our model predicts. For example, oxidatively modified low density lipoprotein
(oxLDL) stimulates the contractility of human aortic endothelial cells, which corre-
lates with increased cell elongation [185]. Fibroblasts moving on stretched collagen
gels align their trajectories more strongly to the strain orientation than less contrac-
tile neutrophils [186]. To validate single cell response to uniaxial static stretch, we
propose experiments in which cells with different contractilities are seeded on a uni-
axially stretched matrix as, e.g., in Ref. [186]. Treatment with lysophosphatidic acid
(LPA) can stimulate Rho-mediated contractility [181, 187], while treating cells with
blebbistatin or cytochalasin D inhibits contractility [33]. At the multicellular level,
with increasing uniaxial stretch, our model system switches gradually between net-
works and strings (Figure 3.4). Previous cell culture studies [94, 95] have not varied
the strain magnitude, but in uniaxially, statically stretched ex ovo chick chorioallan-
toic membranes blood vessels realign along stretch [188]. Further in vitro experiments
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could vary the magnitude of the uniaxial stretch and the degree of contractility using
chemical treatments (see e.g., Ref. [189] for a suitable experimental system). The
cell density and the cell-cell adhesion strength also influenced the ability of cells to
form strings. At high cell densities, simulated cells are less able to form strings, while
decreasing cell-cell adhesion restores string formation. Uniaxial stretching experi-
ments where cell-seeding densities are varied and cell-cell adhesion is controlled, by
inhibiting or knocking out Cadherins, could validate these predictions.

Although our model is currently not resolved to molecular detail, its simulation re-
sults do suggest a mechanistic explanation for the response of cells to static uniax-
ial stretch. Previous theoretical models [45, 180] proposed that cells actively regu-
late their orientation in order to optimize a local mechanical property. Bischofs and
Schwarz [45] represented cells as active dipoles, and showed that the dipole can min-
imize the amount of work required to contract the matrix by orienting along the ex-
ternal strain [45]. This optimization principle was motivated by force-induced focal
adhesion maturation: maximum forces will develop at the focal adhesions that are
displaced the least. Based on observations suggesting that cells maintain a constant
local stress in their microenvironment, De et al. [180] proposed that dipolar cells
actively regulate their orientation and contractility in order to maintain a constant op-
timal amount of local stresses in the matrix. In this model, the dipolar cells reorient to
the uniaxial stretch and gradually reduce the magnitude of their contractility in order
to reduce the stress in the matrix. Mechanistic rationales certainly motivated these op-
timization principles, but the mechanisms were not modelled explicitly and a dipole
shape was presumed. Our approach instead aims to derive single-cell phenomena
and collective cellular responses to strain from a small set of experimentally plausible
assumptions at the subcellular level. The present work is only a first step towards
this aim. Currently, the local substrate strains regulate the protrusion and retraction
probabilities based on a phenomenological function (Eq. 3.2), which simulates focal
adhesion maturation. In our ongoing work we are refining this part of the model by
introducing explicit kinetic models of the focal adhesions.

The current, coarse-grained description has suggested new mechanisms for the ex-
perimental observations listed above, but due to a number of technical limitations
it still fails to reproduce others. We cannot yet reproduce cell alignment to uniax-
ial stretch in a completely confluent layer, because the strain-bias of the cell pro-
trusions and retractions is cancelled out at cell-cell interfaces (see Eq. 3.2 and Fig-
ures 3.13A and 3.13B). As a first exploration of the behavior of our model in absence
of this effect, we ran a series of simulations in which we differentiated the probabil-
ity of the retractions relative to extensions. With an decreased retraction probabil-
ity (∆Hretraction

dir = −2∆Hextension
dir ), fully confluent cell layers collectively oriented in

parallel to stretch (Figures 3.13C and 3.13D). In contrast, in simulations with an in-
creased retraction probability (∆Hretraction

dir = −0.5∆Hextension
dir ), the cells oriented them-

selves perpendicular to the stretch orientations in a confluent layer (Figures 3.13E
and 3.13F). Another result of the absence of strain-effects at cell-cell boundaries,

65



3. Cell alignment to static stretch

is that contractile cells do not achieve a high global ordering within strings (Fig-
ure 3.3A); this is because cells in the interior of the strings do not elongate. When
the retraction probability is decreased (∆Hretraction

dir = −2∆Hextension
dir ), the contractile

cells reach a higher global ordering (S (r = 1500 µm) = 0.71) compared to the non-
contractile cells (S (r = 1500 µm) = 0.51) (Supplementary Figure 3.14A). In simu-
lations in which the retraction probability is increased (∆Hretraction

dir = −0.5∆Hextension
dir ),

the contractile cells reached a lower global ordering (S (r = 1500 µm) = 0.37) com-
pared to the non-contractile cells (S (r = 1500 µm) = 0.64), as some cells in the inte-
rior of strings started to align perpendicular to strain (Supplementary Figure 3.14B).
Despite these quantitative differences, note that cells form strings irrespective of the
specific modeling choices (Supplementary Figure 3.14 C and D). Also related to this
modeling choice is the apparent unrealistic cell shape as presented in Supplementary
Figure 3.8C. Such cells appear less frequently in simulations where retraction proba-
bilities are decreased (∆Hretraction

dir = −2∆Hextension
dir ) (Supplementary Figure 3.14 C and

D)). This work primarily focused on the collective behavior of cells; in our ongoing
work we are developing more detailed, single-cell models.

Apart from this course-graining of the focal adhesion dynamics and cell motility,
our model also relies on other methodological simplifications. The finite-element de-
scription of the substrate assumes that the ECM is isotropic, non-fibrous, and linearly
elastic. Because of these assumptions, our model best applies to non-fibrous matri-
ces (e.g., synthetic polyacrylamide matrices), or to matrices with fibers much smaller
than the size of the cells. Of course, more complex matrix mechanics can be mod-
elled using FEM approaches. Interestingly, Aghvami et al. [190], who modelled
an anisotropic fiber reinforced material showed similar increased local strains around
(non-migratory) cells pulling on uniaxially stretched matrices as in our model. Alter-
native, agent-based approaches have been proposed for fibrous matrices [89, 90, 175];
in comparison to these models, an advantage of our hybrid approach is in particular its
scalability to multicellular systems. As a disadvantage relative to these agent-based
approaches, our hybrid set-up relies on an operator splitting approach, which alter-
nates updates of the cell traction forces with the MCS’s of the Cellular Potts Model.
Although this process speeds up our computations and operator splitting approaches
are routinely applied in hybrid modeling (see e.g., Refs. [87, 191, 192]), it of course
also introduces numerical errors: ideally we would recalculate the cellular traction
forces and substrate strains after every copy attempt of the CPM. From a biophys-
ical point of view the operator splitting assumption is valid if we can separate the
time-scales of the growth and degradation of focal adhesions, such that cell traction
forces remain approximately constant during the time represented by one MCS. In-
deed, focal adhesion dynamics occur at a timescale of minutes, which is longer than
one MCS, which in our model is equivalent to 0.5 to 3 seconds [182]. An ongoing im-
provement of our approach concerns the coupling between the cellular traction forces,
as represented by the FMA model (Eq. 3.6), and the representation of these forces
in the Hamiltonian (Eqs. 3.1). In the basic CPM, the area conservation and adhesive
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energy terms in the Hamiltonian describe a pressure and approximate a membrane
tension which together represent cell contractility. This allowed us to study the effects
of cell-cell contact energies. These terms are not equal to the forces described by the
FMA model. The strength of this model is that it produces experimentally validated
strain fields. The decoupling of the CPM and the FMA model will become an issue
at locations where the two sets of forces are unequal, e.g., at cell-cell interfaces and
can affect te mesoscopic cell behavior. Since we are interested in how mesoscopic
cell behavior affects the macroscopic level, i.e., collective behavior, these approxima-
tions and decoupling suffice here. In our ongoing work, we are adopting an approach
proposed by Albert and Schwarz [191] to alleviate this issue.

In summary, we proposed a local cell-matrix feedback mechanism explaining the
reorientation of cells to external stretch. In agreement with experimental observations,
in this model cell contractility facilitates the reorientation of cells. The proposed
mechanism also suffices for the formation of strings along the orientation of stretch.
In our future work, we are refining the model by introducing explicit focal adhesion
dynamics. This approach will pave the way for issues that our model can currently
not explain, including the response of cells to cyclic stretch [193, 194], and the role of
cell-substrate adhesivity in the formation of network-like patterns [36] and collective
cell behavior [192].

3.4 Methods

We extended our previous hybrid, cell-based and continuum model [182] of mechan-
ical cell-ECM feedback to include the effects of static strain. Figures 3.6(A-C) give
an overview of the model structure. Active cell motility is simulated using the Cellu-
lar Potts Model [72]. The CPM is coupled to a finite-element method that is used to
calculate substrate deformations. A time step of the simulation proceeds as follows.
Based on the local strains in the matrix and the interactions with adjacent cells, the
CPM calculates the cell shapes (Figure 3.6A). Based on the cell shapes, the traction
forces that cells apply on the ECM are determined using the empirically validated
first-moment-of-area (FMA) model, as proposed by Lemmon & Romer [131] (Fig-
ure 3.6B). The FEM calculates the deformation of the substrate resulting from these
forces (Figure 3.6C). Subsequently, the strains in the ECM influence cell movement
in the CPM. More precisely, we assume that cells preferentially extend along the ori-
entation of high strain.

3.4.1 Cellular Potts Model

The CPM [72] describes cells on a regular lattice Λ ⊆ Z2 as a domain of connected
lattice sites, ~x, of identical spin, or cell identifier, σ(~x) ∈ Z≥0. Sites of spin σ(~x) > 0
identify sections of the substrate that are covered by a biological cell, whereas sites
of spin σ(~x) = 0 identify exposed substrate sites. The configuration of cells evolves
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Figure 3.6: Structure of the coupled CPM-FEM model. (A) CPM calculates cell shapes in
response to local ECM strains; (B) calculation of cellular traction forces based on
cell shapes [131]; (C) substrate strains due to cellular traction forces.

according to the Hamiltonian,

H =
∑

s∈cells

λ

(
a(s) − A(s)

A(s)

)2

+
∑
(~x,~x′)

J(σ(~x), σ(~x′))(1 − δ(σ(~x), σ(~x′))). (3.1)

The first term is a surface area constraint, with a(s) = |{~x|~x ∈ Λ ∧ σ(~x) = s}|, the
number of lattice sites covered by cell s, A(s) a target area and λ a Lagrange multiplier.
The second term represents the interfacial energies in the system, e.g., due to cell
adhesion and cortical tensions. Here, J(σ(~x), σ(~x′)) is the interfacial energy between
an adjacent lattice site pair (~x, ~x′) and δ(σ(~x), σ(~x′)) is the Kronecker delta. The
contact energy Jcc regulates the degree of cell-cell adhesion, with lower values of Jcc

corresponding to strong cell-cell adhesion.
To mimic cellular protrusions and retractions of the cells, the cellular Potts model

iteratively picks a random lattice site ~x and attempts to copy its spin σ(~x) into an
adjacent site ~x′. The algorithm then calculates the energy change ∆H associated
with the copy attempt based on the Hamiltonian (Eq. 3.1) and any additional en-
ergy changes associated with the copy direction [195], in this case ∆Hdir. With
∆Hdir we express the cellular response to matrix strains, as outlined below. The copy
is accepted if ∆H + ∆Hdir ≤ 0, or with Boltzmann probability P(∆H + ∆Hdir) =

exp(−(∆H + ∆Hdir)/T ) to allow for stochasticity of cell movements. T ≥ 0 is a cel-
lular temperature whose magnitude gives the amount of random cell motility. An
additional connectivity constraint rejects copy attempts that would split cells into dis-
connected patches. During one Monte Carlo Step (MCS) N copy attempts are made,
with N = |Λ|, i.e., the number of sites in the lattice.
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To simulate the response of cells to strains in the substrate, we assumed that local
strains promote cellular protrusion and inhibit cellular retractions. Such a mechanism
is motivated by focal adhesions, large integrin complexes that bind the cell to the
matrix and maturate on stiffer matrices [184]. We assume a strain stiffening material,
so that focal adhesions mature on highly strained areas. We thus set

∆Hdir = −g(σ(~x), σ(~x′))λdir

(
h(E(ε1))(~v1 · ~vm)2 + h(E(ε2))(~v2 · ~vm)2

)
, (3.2)

where λdir is a parameter that describes the sensitivity of cells to strain. ~vm = ~̂x − ~x′,
is the direction of copying, and ε1 and ε2, and v1 and v2 are the eigenvalues and eigen-
vectors of ε that represent the principal strains and strain orientation in the target site
~x′. We use g(σ(~x), σ(~x′)) = 1 if a cell is extending and g(σ(~x), σ(~x′)) = −1 if a
cell is retracting, to impose that strain stiffening of the matrix promotes extensions
and inhibits retractions. At cell-cell interfaces we assume that the forces due to strain
(∆Hdir) on the extending cell and the retracting cell are balanced, i.e., g(σ(~x, ~x′)) = 0
if σ(~x) , σ(~x′) and σ(~x) > 0 ∧ σ(~x′) > 0. We thus assume that neither of the two
cells involved in the copy attempt benefits more from occupying a strained lattice site
than another cell. The sigmoid function h(E(ε)) = 1/(1 + exp(−β(E(ε) − Eθ))) ex-
presses that a minimum stiffness, Eθ, is required for focal adhesion maturation. We
assume that cells perceive strain stiffening of the matrix, described by the function
E(ε) = E0(1 + (ε/εst), where εst is a stiffening parameter. Compared to our previous
implementation of this model [182], slight adaptations have been made in the Hamil-
tonian, which are discussed in the Supplementary Methods. They do not affect the
qualitative behavior of the model. The parameter values used in this study are re-
ported in Supplementary Table 3.1. We use a discretization of ∆x = 2.5µm. Based on
single cell dispersion rates in our model, we previously estimated the time interval ∆t
corresponding to one MCS to be between ∆t = 0.5 seconds and ∆t = 3 seconds [182].

3.4.2 Finite-element model of compliant substrate

A FEM [155] is used to calculate the strain on the substrate resulting from forces ap-
plied to the substrate. The substrate is assumed to be isotropic and linearly elastic.
For simplicity, we applied infinitesimal strain theory, assuming that material prop-
erties, including local density and stiffness are unchanged by deformations. So, the
strain tensor ε is given by

ε =

(
εxx εxy

εyx εyy

)
≈

1
2

(∇~u + ∇~uT ), (3.3)

where ~u = (ux, uy) is the substrate deformation.
The elements of the FEM coincide with the lattice sites of the CPM, i.e., the de-

formation in a lattice site ~ue(x, y) is approximated by an interpolation of the shape
functions Ne

n(x, y), for n = 1, 2, 3, 4 corresponding to the four nodes (corners) of lat-
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tice site/element e:

~ue(x, y) =

4∑
n=1

Nn(x, y)~un, (3.4)

where ~un is the substrate deformation at node n. We used conventional linear shape
functions for four-noded quadrilateral elements [155]. The FEM is iterated until equi-
librium (K~u = ~f , where K denotes the stiffness matrix [155]), to calculate the defor-
mation ~un at each node. All figures in this paper show the strain in equilibrium. The
terms εi j in the strain tensor εe of element e are thus given by

εe
i j(x, y) =

1
2

4∑
n=1

∂Nn(x, y)
∂i

~un +
∂Nn(x, y)

∂ j
~un. (3.5)

In our simulations, the unstretched substrate ~u = ~0 is used as a reference configuration
for the displacements due to uniaxial stretch and cell contractility. This simplifies our
calculations and speeds them up. For details, see Ref. [182].

3.4.3 Cellular traction forces

To model the traction forces that cells apply on the substrate we make use of an
experimentally-validated, predictive model, called the first-moment-of-area (FMA)
model [131]. The FMA model is based on the assumption that the network of actin
fibers acts in the cells as a single, cohesive unit. In the context of our hybrid CPM-
FEM model, we implement the FMA model as follows. Defining lattice nodes as the
corners of the CPM lattice sites, each lattice node i covered by a CPM cell pulls on ev-
ery other node j within the same cell, with a force ~F of magnitude proportional to the
distance between the nodes, ~di, j, and ~di, j = 0 if line piece (i, j) intersects with the cell
boundary (see Ref. [131], Figure 3.7A-D and Supplementary Methods for details).
The total force ~Fi on node i then becomes,

~Fi = µ
∑

j

~di, j, (3.6)

In accordance with the assumption that the cytoskeleton has uniform contractility, the
line pieces have a constant tension per unit distance µ [131]. For convex cells, the
resultant forces point towards the cell’s center of mass. For non-convex cells, the
resultant forces are directed towards the individual, convex compartments that the cell
shape is composed of (see Supplementary Methods).
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3.5 Supplementary methods

To quantify cell elongation and orientation, we used the inertia tensor I of a cell σ:

I(σ) =

( ∑
~x∈C(σ)(x2 −C2(σ))2 −

∑
~x∈C(σ)(x1 −C1(σ))(x2 −C2(σ))

−
∑
~x∈C(σ)(x1 −C1(σ))(x2 −C2(σ))

∑
~x∈C(σ)(x1 −C1(σ))2

)
.

(3.7)

Here, C(σ, t), is the center of mass of cell σ at MCS (time) t, given by

C(σ, t) =
1

|C(σ, t)|

∑
~x∈C(σ,t)

~x, (3.8)

with C(σ, t), the set of coordinates of the lattice sites occupied by cell σ at MCS t.
Cell elongation is quantified by the eccentricity ξ of a cell, given by

ξ(σ) =

√
1 −

(
e1(I(σ))
e2(I(σ))

)2

, (3.9)

where e1(I(σ)) ≤ e2(I(σ)) are the eigenvalues of I(σ). An eccentricity close to zero
corresponds to roughly circular cells and cells with an eccentricity close to unity are
more elongated. Further, the orientation of a cell is given by the orientation of the
eigenvector associated with the largest eigenvalue of the inertia tensor I(σ).
For the orientational order parameter S (r) we calculated θ(~x, r): the angle between

the direction of the long axis ~v(σ(~x)) of the cell at ~x, and a local direction ~n, which is
the weighted local average of cell orientations, taken within a radius r around ~x, such
that ~n(~x, r) =

〈
~v(σ(~y))

〉
{~y∈Z:|~x−~y|<r}. The orientational order parameter is then defined as

S (r) =
〈
cos 2θ(~X(σ), r)

〉
σ

where ~X(σ) is the center of mass of cell σ.
To determine the orientation of strings (or cell aggregates), we first find the con-

nected components of the cell pattern, by applying morphological closing on the pat-
tern [196], using a line of five lattice sites with an angle equal to the stretch orientation.
We then took the connected components larger than 300 lattice sites and determined
the average orientation of those. Aggregate orientations were calculated in the same
way as the orientation of a single cell, by using the inertia tensor.

In the FMA model [131], the force ~Fi acting on node ~ni of a cell is determined by

~Fi = µ
∑
~n j

|~ni − ~n j|, (3.10)

where the sum is over nodes ~n j in the same cell of which the straight line connecting
node j with node i is completely within the cell. µ is the cell tension in nN µm−1.
To determine whether a line between nodes stays within the cell, one needs to know
which lattice sites this line crosses. The Bresenham algorithm [197] is used for this
purpose. Now let s(~n, ~n1) be the lattice sites that the line l(~n, ~n1) between node ~n =

(nx, ny) and node ~n1 = (n1
x, n

1
y) crosses. In order to be consistent, we impose that
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s(− ~n1, ~n) = s(~n, ~n1) mirrored vertically and turned 180◦ clockwise, so that ~n pulls on
~n1 if and only if ~n1 pulls on ~n. In order to prevent a bias in either 45◦ or −45◦, we
impose that s(~n, ~n1) = s(~n, (n1

x,−n1
y)) mirrored horizontally. The resulting lattice sites

are shown in an example in Supplementary Figure 3.15.
In the calculation of the response of the CPM to the local strains in the substrate, we

previously used the strain in the target site when a cell was extending and the strain in
the source site was used when a cell was retracting. We changed this assumption to
make cell behavior more compatible with focal adhesion dynamics on strained tissues.
For an extending cell, i.e. when σ(~x) > 0, the strain in the target site promotes
the maturation of a focal adhesion in the protrusion. When a cell is retracting, i.e.
σ(~x′) > 0, it costs a lot of energy to unbind a matured focal adhesion from the target
site.

A bias in the angle of cell orientations can occur as a result of the square lattice. In
Van Oers et al. [182], forces were pointed towards the center of mass (Supplementary
Figure 3.7A). With this model, a small bias in cell elongation oriented along ±45◦

was found (Supplementary Figure 3.16A). We found that the origin of this bias lies
in the mechanotaxis term in the Hamiltonian ∆Hdir, that describes a cell perceiving
stiffening of the matrix, as a result of positive, stretching strains. When we also let
cells perceive strain stiffening as a result of negative strains, i.e. compression, the
bias is reduced. This is shown in Supplementary Figure 3.16 A and B, in which we
plot the orientation of cells on a unstretched matrix with stretch stiffening only and
stretch and compression stiffening, respectively. With stretch and compression stiff-
ening, cells are still able to elongate, as a Poisson ratio ν < 0.5 makes sure that stretch
strains are higher than compression strains, so cells protrude more preferably towards
stretch strains and can thus promote elongation. It is not completely clear to us why
the inclusion of compressions stiffening reduces the orientational bias: we found this
bias effect by investigating the Hamiltonian for spin copies: with strain stiffening for
stretch only, diagonal spin copies gave a higher dHmechanotaxis. We discovered that
the FMA model (in which nodes only pull on other nodes if they are connected by a
straight line within a cell [131]) is another origin for a cell orientation bias, but now
along 0◦ and 90◦. We suspect a reason for this, which is illustrated in Supplementary
Figure 3.17. Our reasoning is as follows. A cell that only experiences contact energy
(surface tension) and an area constraint, will obtain a round shape. A cell that elon-
gates wants to stay as round as possible and thus prefers to obtain an ellipse shape.
Here we show that an ellipse shaped cell with an orientation of 0◦ has a wider tip
than an ellipse orientated along 45◦, because of the 2D grid. A wider tip makes the
nodes able to pull on more other nodes, causing more highly strained lattice sites and
thus more extensions along 0◦. By increasing the cellular temperature T , this bias
can sufficiently be reduced. This is shown in Supplementary Figure 3.16 C and D, in
which we plot the orientation of cells on a unstretched matrix with the FMA model for
cell temperature T = 1 and T = 5, respectively. Because cells elongate with slightly
different parameters for the model with the FMA model compared to previous work
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([182]), we changed some parameter values with respect to our original work [182].
So, in the analysis on cell orientation presented here, we used our previous parameter
as in [182]: Jcc = 1.25, Jcm = 0.625, λ = 500, λdir = 20,T = 1. Finally, there is
always a bias in the direction of ±45◦, as a cell elongated in this direction has a lower
adhesive energy due to the square lattice. This does not cause major problems as long
as sufficient noise is introduced.
In our current model formulation [182] cells perceive an increase in matrix stiffness

as a result of compressive (ε < 0) and extension strains (ε > 0), while in our original
model this was only implemented for extensions strains. This was adapted to avoid a
directional bias of cell elongation in ±45◦, see next section.
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3.6 Supplementary tables

Parameter symbol Description value units
∆x width of lattice site 2.5 µm
A target area 50 lattice sites
Jcc cell-cell contact energy 3.75 -
Jcm cell-medium contact energy 1.875 -
λ strength of volume constraint 250 -
λdir strength of cell response to strain 24 -
T cellular temperature 5 -
µ cell traction per unit length 0.0025 nN µm−1

E Young’s modulus 12 kPa
υ Poisson’s ratio 0.45 -
τ substrate thickness 10 µm
E0 threshold for stiffness sensitivity 15 kPa
β steepness of stiffness sensitivity 0.5 kPa−1

εst strain stiffening parameter 0.1 -
σstretch uniaxial stretch 1000 N/m2

d cell density 0.15 #{~x:σ(~x)>0}
#{~x:σ(~x)=0}

Table 3.1: Parameter settings

condition example aligned?

case 1 θ1, θ2, θ3 < 90

θ

3
θ

no

case 2 θ3 ≥ 90
θ
1

2
θ3

θ

yes

case 3 90 < θ2 < 135

θ
1

2
θ

3
θ

no

case 4 θ2 ≥ 135
θ
1

3
θ

yes

Table 3.2: Determination of paired cell alignment.
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3.7 Supplementary figures

Figure 3.7: Traction forces for non-convex cell shapes (A) Cell traction forces towards center
of mass (van Oers et al. [182]); (B) Cell shape 50 MCS after initial configuration
in (A) with λdir = 50; (C) FMA model [131]; (D) Cell shape 50 MCS after initial
configuration in (C) with λdir = 50; (A-C) length and direction of red arrows:
traction force magnitude and direction. B and D colors: principal strain magnitude;
orientation and length of black line pieces: orientation and magnitude of principal
strain.

Figure 3.9: Effect of lattice refinement. Cells on substrate stretched along 0◦ at 500 MCS;
(A) ∆x = 1.25µm, i.e. refined by a factor of 2 in each lattice direction; (B) ∆x =

0.625µm, i.e. refined by a factor of 4 in each lattice direction.
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Figure 3.8: Cell eccentricity and orientation (A) Distribution of eccentricities of cells on
substrate stretched along 0◦, plotted are the eccentricities of cells during 500 MCS
and 100 simulations; (B) Cell orientation as a function of matrix stiffness at 500
MCS; averaged over n = 100 simulations; error bars: standard deviations. Color
coding (A-B): red: non-contractile cells; green: contractile cells; (C) Example of
cell shape in which the middle part is much more slender.

Figure 3.10: Effect of temperature on cell alignment. (A) Fraction of time a cell pair is
aligned as a function of cellular temperature T , averaged over n = 100 simula-
tions; error bars: standard deviations; (B) time series of the number of cell pairs
that are aligned. symbols are circle: T = 1, cross: T = 2, star: T = 5, plus:
T = 10, triangle: T = 20, square: T = 30, diamond: T = 50. Color coding: red:
non-contractile cells; green: contractile cells
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Figure 3.11: Model sensitivity to Eθ and εst. (A) Contractile cells on substrate stretched
along 0◦ at 3000 MCS simulated with various values of Eθ and εst; (B) graph
of h(E(ε)) = 1/(1 + exp(−β(E(ε) − Eθ))); (C) zoom in of cell configuration of
Eθ = 5000,εst = 0.05; (D) zoom in of cell configuration of Eθ = 10000,εst = 0.1
(E) zoom in of cell configuration of Eθ = 15000,εst = 0.4 Colors A,(C-E): nor-
malized stiffness, defined as: E(ε)

Eθ
=

E0
Eθ

(1 + ε
εst

); orientation and length of black
line pieces: orientation and magnitude of principal strain.
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Figure 3.12: Model sensitivity to cell traction force and matrix stretching force. Contractile
cells on substrate stretched along 0◦ at 3000 MCS simulated with various values
of cell traction force and matrix stretching force; Colors: normalized stiffness, de-
fined as: E(ε)

Eθ
=

E0
Eθ

(1+ ε
εst

); orientation and length of black line pieces: orientation
and magnitude of principal strain.
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Figure 3.13: Model sensitivity to ∆Hdir in confluent conditions. Contractile cells on substrate
stretched along 0◦ at 3000 MCS with cell density d = 0.5. (A) Original model;
(B) corresponding cell orientations; (C) Model with ∆Hretraction

dir = −0.5∆Hextension
dir ;

(D) corresponding cell orientations; (E) Model with ∆Hretraction
dir = −2∆Hextension

dir ;
(F) corresponding cell orientations.
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Figure 3.14: Model sensitivity to ∆Hdir in string formation. Time series of orientational
order parameter, averaged over n = 25 simulations; color coding: red: r=40
for non-contractile cells, orange: r=600 for non-contractile cells, green: r=40
for contractile cells, dark-green: r=600 for contractile cells. (A) Model with
∆Hretraction

dir = −0.5∆Hextension
dir ; (B) Model with ∆Hretraction

dir = −0.5∆Hextension
dir ;

Contractile cells on substrate stretched along 0◦ at 3000 MCS. (C) Model with
∆Hretraction

dir = −0.5∆Hextension
dir ; (D) Model with ∆Hretraction

dir = −0.5∆Hextension
dir .
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Figure 3.15: Lines between nodes. The lattice sites s1 that the line l1 from node n to n1 crosses
is determined using the Bresenham line algorithm. The lattice sites s2, s3, s4 cor-
responding to lines l2, l3, l4 from node n to node n2, n3, n4 are such that s4 = s1

mirrored horizontally, s3 = s1 mirrored vertically and turned 180◦ clockwise and
s2 = s3 mirrored horizontally.

Figure 3.16: Exploring a bias in cell orientation. Cell orientations, one contractile cell on
a unstretched substrate, 500 simulations and 500 MCS are plotted. (A) Forces
pointed towards center of mass (Van Oers et al. [182]), no compression stiffening
and T = 1; (B) Forces pointed towards center of mass (Van Oers et al. [182]),
compression stiffening and T = 1; (C) FMA model [131], compression stiffening
and T = 1; (D) FMA model [131], compression stiffening and T = 5.

81



3. Cell alignment to static stretch

Figure 3.17: Exploring a grid effect. Strain field around ellipse shaped cell (A) oriented along
0◦; (B) oriented along 45◦.
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4. From focal adhesions to cell shape

Abstract

Cells adapt their behavior in response to physical properties of the matrix, such
as matrix stiffness. Cells are able to sense the mechanical properties of the ma-
trix through transmembrane integrin molecules, which assemble into large multi-
molecular complexes called focal adhesions. Focal adhesions grow and assemble
in response to force application. Here we show with a multiscale cell based com-
putational model that force based growth of focal adhesions suffices to explain
the response of cells to substrate stiffness. We base our model on the fact that
individual integrins within focal adhesions, such as α5β1, have been shown to
behave as catch-bonds; special bonds whose lifetime is maximal under positive
force. In our model, cells apply a contractile force on integrin clusters. How fast
this force builds up, depends on the stiffness of the substrate. The integrin clus-
ters then grow according to catch-bond dynamics. These integrin clusters affect
the probability of a cell detaching from the substrate. The model can accurately
predict cell area as a function of substrate stiffness. The model can also repro-
duce cell elongation when we added another force based molecular mechanism
of focal adhesions; where matrix stresses induces adhesion strengthening. The
model suggests that the stiffness regime on which cells elongate is regulated by
the velocity of its myosin motors. Furthermore, our model reproduces durotaxis,
suggesting that is regulated by a bias in integrin clustering due to the catch-bond
behavior of integrins.

4.1 Introduction

Embryonic development, structural homeostasis and developmental diseases are driven
by biochemical signals and biomechanical forces. By interacting with the extracellu-
lar matrix (ECM), a network of fibers and proteins that surrounds tissues, cells can
migrate and communicate with other cells, which contributes to tissue development.
Mechanical interactions between cells and the ECM are crucial for the formation and
function of tissues. By sensing and responding to physical forces in the ECM, tissues
can adapt accordingly.

In particular, many mammalian cells change their shape and migrate in response to
matrix stiffness. On soft matrices, cells are small and rounded, while on stiffer ma-
trices cells are elongated. On matrices of glass like rigidity, cells can spread out like
pancakes. This behavior has been observed for many cell types (endothelial cells:
[198], fibroblasts: [128, 199], smooth muscle cells: [200], osteogenic cells: [201]),
although the range of stiffness on which the cell becomes elongated varies between
cell types [202, 203]. Another generic cell behavior is durotaxis, cell migration up-
wards a stiffness gradient [126, 204, 205]. However, it is still poorly understood what
molecular mechanism regulates cell response to matrix stiffness [206].
Cells are able to sense matrix stiffness through focal adhesions, which are multi-

molecular complexes consisting of integrin molecules and structural proteins [207].
Integrins are receptors for ECM proteins and mediate cell-ECM binding and force
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transmission. Structural proteins, such as vinculin and talin, bind integrin to actin
stress fibers in the cytoskeleton. On compliant matrices, adhesions dynamically as-
semble and disassemble, while on more stiff matrices, focal adhesions stabilize [128].
Such mechanosensitivity of focal adhesion assembly is regulated by molecular com-
ponents, like talin and p130Cas, that change conformation in response to mechanical
force [206, 207], which allows focal adhesions to assemble or disassemble in response
to forces. For instance, stretching the structural protein talin reveales vinculin binding
sites, allowing additional vinculin to bind to focal adhesions [208] and stabilize the
adhesion [209]. Also, integrins such as α5β1, behave as “catch-bonds” [210], bonds of
which the lifetime increases under force [211]. Because focal adhesions regulate cell
spreading, orientation and migration [212–217], the mechanosensitive growth of focal
adhesions is the key to our understanding of how cells respond to matrix stiffness.

Previous mathematical models proposed that cell spreading on compliant matrices
is due to dynamic reciprocity: cells apply a force to the matrix and respond to the
reaction of the substrate by changing cellular activities. On stiff matrices, cells expe-
rience more stress, as the matrix does not deform. If this stress positively feeds back
on cellular traction forces, a cell can polarize because an initial asymmetric cell shape
is reinforced by this feedback mechanism [47]. Similarly, it was proposed that cells
elongate because of a positive feedback loop between contraction and strain stiffening
of the matrix [182]. A feedback between stress induced recruitment of motor proteins
and increased traction forces has been proposed to regulate cell spreading [218].

Other mathematical models predicted cell spreading by integrating a focal adhesion
model into a cell-based model [219–221]. In these models, it was assumed that stress
induces the recruitment of adhesive molecules [48, 49]. It was proposed that as sub-
strate stiffness increases, stress fibers become more tensed and thus apply larger forces
which stabilizes focal adhesions and allows a cell to spread [219, 220]. These models
included many variables, including cytoskeleton/actin fiber dynamics, adhesion dy-
namics and their interactions. This made it difficult to dissect how exactly cell shape
changes are regulated. A model including focal adhesions but no stress fiber dynam-
ics could predict the localization of focal adhesions in a cell but could not explain
increased cell area on stiffer matrices [221]. So, it is still not clear what the minimal
condition is for cell spreading in response to matrix stiffness.
A range of mathematical models have also been used to explain durotaxis. For in-

stance, it was proposed that the mechanosensitivity of stress fibers regulates durotaxis.
It was suggested that a stress fiber becomes more tensed and thus stabilizes if it at-
taches to a stiff substrate, which results in movement up the stiffness gradient [222].
Another model proposed that a stress fiber durotacts because tensing of a stress fiber
resulted in faster sliding of adhesions on the softer side of the matrix [223]. It has
also been suggested that cell polarization drives durotaxis. It was proposed that cells
durotact by polarizing more on stiffer substrates [224] or by polarizing towards stiffer
substrates [225]. Furthermore, it was proposed that durotaxis is driven by a stiffness
mediated traction force [226], bias in velocity [227], viscous force and cell stiffening
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[228], motor protein recruitment [218], cell-matrix adhesion strength [229] or persis-
tence time [230]. Many of the proposed mechanisms for durotaxis [224, 226, 227,
229] are based on the fact that focal adhesions stabilize on stiff matrices, but it is
still poorly understood how the mechanosensitive growth of focal adhesions can drive
durotaxis.

By integrating a focal adhesion model in a cell-substrate model, we show that dy-
namic reciprocity through focal adhesion dynamics are sufficient to explain three im-
portant cell generic phenonema 1) cell area increases with matrix stiffness; 2) cell
elongation depends on matrix stiffness; 3) durotaxis. We model focal adhesions as
clusters of integrin-ligand bonds and assume that the unbinding of integrin bonds de-
creases with force [231]. The cells pull on these clusters and the rate of force build-up
depends on the matrix stiffness [96]. In our cell based model, we assume that cell-
matrix adhesion strength increases with integrin cluster size. This model explains cell
spreading as a function of substrate stiffness. We also include an adhesion strength
reinforcement due to matrix stresses. This matrix stress feedback allows cells to elon-
gate on matrices of intermediate stiffness. We show that the range of stiffness on
which cells elongates depends on the velocity of myosin motor proteins. Finally, our
model suggests that durotaxis speed increases with the slope of the stiffness gradient.

4.2 Results

Using a multiscale computational model, we propose that focal adhesion dynamics
can explain cell spreading, cell elongation and durotaxis in response to substrate stiff-
ness. Figure 4.1 gives an overview of the model, showing the flow and feedback be-
tween the cell, its focal adhesions and the elastic substrate it adheres to. In a first ver-
sion of our model (M1), we only follow the loop with arrows 1 and 2 in the flowchart,
thus excluding a feedback with matrix stress. We start out with model M1, to study
how this minimal model, which describes focal adhesions as clusters of catch bonds,
translates to cell spreading.

Model M1 proceeds as follows. A cell is described as a collection of discrete lattice
sites in a cellular Potts model (CPM), see Figure 4.1A. The cell applies a contractile
force upon focal adhesions that adhere to the matrix. We use the shape of the cell to
calculate the contractile force based on a First Moment of Area (FMA) model [131],
see Figure 4.1B. Because focal adhesions adhere to the substrate, how fast a cell can
build up this force, depends on the substrate stiffness. We adopt a model of Schwarz
et al. [96] to describe the build up of force in time due to myosin motor activity:
F(t) = Fs(1 − exp(−t · v0K

Fs
)), with v0 the free velocity of the motor proteins and K

the substrate stiffness. So, in model M1, matrix stiffness only affects the rate of force
build-up. The more compliant the substrate is, the longer it takes for a cell to build up
this force. In part B of the model, we let the forces build up for tFA seconds. At the
same time, part C of the model is executed. At each site of the CPM, a focal adhesions
is defined (see Figure 4.1C) as a cluster of bound integrin bonds. We assume that the
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Figure 4.1: Flowchart of the multiscale CPM. (A) CPM calculates cell shapes in response
to focal adhesions and substrate stresses; (B) calculation of cellular traction forces
based on cell shape and force build-up dynamics; (C) focal adhesion grow accord-
ing to dynamics of catch-slip bond clusters; and (D) calculation of substrate stresses
due to cellular traction forces.

growth of each integrin cluster is a function of the force it experiences, according to
the catch-slip bond behavior described as an ODE proposed by Novikova and Storm
[231]. Simultaneously with the force build-up, we let the integrin clusters grow. After
these tFA seconds, we perform one timestep in the CPM. Cells in the CPM change
shape by iteratively making extensions and retractions, modeling the formation and
break down of adhesions with the substrate. We assume that retractions from the
substrate are less likely at sites with larger integrin clusters. After one timestep of the
CPM, we again let the forces build up and the integrin clusters grow for tFA, and so
forth.

4.2.1 Integrin catch-bond dynamics suffices to predict cell area as a
function of substrate stiffness

In this section, we show with model M1, that catch-bond dynamics of integrin bonds
suffices to explain cell spreading on elastic substrates. Figure 4.2A shows the response
of cells on substrate of 500 µm by 500 µm with a Young’s modulus of 1 kPa, 5 kPa,
10 kPa, 20 kPa, 50 kPa, 100 kPa and 108 kPa after 2000 MCS (≈ 5.5 h). On the most
soft substrate, focal adhesions do not grow and the cell does not spread. On a slightly
stiffer substrate of 5 kPa, focal adhesions have grown and the cell has significantly
increased in size. Increasing the substrate further also increases the cell area, although
from 50 kPa the cell does not seem to change in size. On stiffer substrates, there are
more larger focal adhesions visible and they seem to accumulate more around the cell
membrane, as shown in the two insets in Figure 4.2A.
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Figure 4.2B plots the cell area as a function of substrate stiffness. Cell area increases
from around 2500 µm2 on the softest substrate and plateaus at around 6500 µm2 at
a stiffness of 50 kPa. Thus, the cell area has increased more than 2.5 fold on the
stiffest substrate compared to the softest substrates. This factor is consistent with
experimental observations [198, 232, 233]. We also investigated if the model could
quantitatively predict spreading dynamics. Figure 4.2C plots the cell area as a function
of time. The cells quickly increase in size and and reach their final size after 30 to
60 minutes. Experimental curves of cell area versus time follow a similar trend [123,
202].

We also investigated the distribution of the integrin cluster sizes. Figure 4.2D plots
the distribution of the cluster sizes and the median cluster size (average cluster size is
roughly the same). The median cluster size and variance are unaffected by substrate
stiffness, in contrast with experimental observations [234]. We performed a more
detailed analysis of the distribution of integrin clusters and describe two observations.
1) On stiffer substrates, there are more larger clusters. For instance, the percentage
of adhesions with N > 10000 is 20% on 50000 kPa, 15% on 10 kPa and 10% on
5 kPa. 2) On stiffer substrates, large focal adhesions are found at the cell boundary
(Figure 4.2A for 50 kPa and Supplementary Figure 4.6). On soft substrates, large
focal adhesions are found further away from the cell center, where forces had time to
build up because in the bulk of the cell no retractions take place (Figure 4.2A for 5
kPa and Supplementary Figure 4.6).

All in all, the results presented in this section suggest that the catch-slip bond dynam-
ics of single integrins within focal adhesions suffice to predict cell area and spreading
dynamics from substrates stiffness. Our model explains that cells spread due to inter-
twined dynamics of force build-up, focal adhesion growth and cell-matrix adhesion.
On soft substrates, forces build up slowly, so there is not enough time for a focal ad-
hesion to grow to strongly adhere the cell to the matrix. So, the cell will continuously
make extensions and retractions. In contrast, on stiff substrates, forces build up fast
and focal adhesions are able to grow and extensions have a long lifetime, allowing the
cell to spread.

4.2.2 Adhesion strengthening due to matrix stress induces cell
elongation

After having captured, at a quantitative level, the rate of spreading as a function of
substrate stiffness, we now set out to explain the ability of mammalian cells to elongate
on stiff enough substrates. Because the first version of the model (M1) could not yet
explain cell elongation, we aimed to find an additional focal adhesion mechanism that
can explain cell elongation.

Since cell traction forces are transferred to the matrix through the integrins, stresses
develop in the matrix. Such stresses have been observed to affect focal adhesion as-
sembly [216]. We therefore hypothesized that such a feedback may explain cell shape
changes. We extended our model to Model M2, that includes a finite element model
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4.2. Results

Figure 4.2: Cell area increases with increasing substrate stiffness. Model M1 was used. (A)
Example configurations of cells at 2000 MCS on substrates of 1,50 and 50 kPa; (B)
Cell area as a function of substrate stiffness, shaded regions: standard deviations of
25 simulations; (C) Timeseries of cell area, shaded regions: standard deviations of
25 simulations; and (D) distribution of N, the number of integrin bonds per cluster,
all clusters at 2000 MCS from 25 simulations were pooled. We indicate the median.
Color coding (C and D): See legend next to (D).
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to calculate the matrix stress (Figure 4.1D) as a result of the cell traction forces. So,
model M2 follows arrows 1, 3 and 4 in Figure 4.1D. We assume that matrix stresses
reinforces cell-matrix adhesions. We model adhesion strengthening by reducing the
probability of retractions from the matrix due to matrix stress, i.e. we multiply the
energy it takes for a cell to make a retraction with 1 + p g(σ(~x′))

σh+g(σ(~x′)) . Here, parameter
p regulates the strengthening and σh its saturation and g(σ(~x′)) denotes the hydro-
static stress on the lattice site of retraction. Such a strengthening due to matrix stress
can have various molecular origins. We hypothesize that this strengthening is due
to stretching of the structural protein talin exposes binding sites for vinculin, which
binds to the cytoskeleton and thus strengthens the actin-integrin linkage [208, 209].

Figure 4.3A shows representative configurations of cells after running model M2.
Similar to model M1, on the most soft substrate (1 kPa), the cell stays small and round.
From around 10 kPa/20 kPa, the cells start to slightly elongate. On stiffer matrices,
50 kPa and 100 kPa, cells are very much polarized in shape and large focal adhesions
have grown at the tips of the cell. On the very rigid substrate, the cell is more circular
again. To quantify cell elongation, we measured the eccentricity of cells as

√
(1 − b2

a2 )
with a and b the lengths of the cell’s major and minor semi-axes, calculated as the
eigenvalues of the inertia tensor. Figure 4.3B shows that the eccentricity of cells has a
biphasic dependence on substrate stiffness. We also again quantified the distribution
of the integrin cluster size again. Figure 4.3C shows the distribution of the cluster
sizes for the different elastic substrates. The median cluster size does not vary much
between substrate stiffness. The shape of the distributions, however, is much more flat
and with higher variance on the substrates where cells have elongated. This is because
an elongated shape results in large traction force at the tip of the cells, such that focal
adhesions grow larger in size there, while at the sides of the cell, the forces are much
smaller and focal adhesion stay small there.

The model explains the process of cell elongation as follows. On sufficiently stiff
matrices, the cell initially starts to spread. The cell continuously makes random pro-
trusions, allowing the cell shape to become slightly anisotropic. Around these cell
protrusions, matrix stresses develop, which strengthens cell-matrix adhesion in this
region. So, the cell can continue to build up forces, allowing the focal adhesion to
grow larger. In contrast, at site of lower matrix stress, focal adhesions are more likely
to disassemble. At protruding sites, cell traction forces increase due to an increased
distance from the cell centroid. This results in a breaking of symmetry and the cell
starts to elongate due to a positive feedback loop of force build-up, focal adhesion
growth and matrix stress induced adhesion strengthening. On soft matrices, matrix
stresses are not high enough to initiate a symmetry breaking. On the most rigid sur-
face, matrix stresses are too high, allowing adhesions to strengthen equally well such
that no symmetry breaking can occur. So, cell elongation is only possible on substrates
with an optimal rigidity. Similar dynamics of cell spreading followed by a symme-
try breaking has also been observed experimentally [214]. Note that the spindle-like
shape that cells obtain in our model is similar to observed in vitro [127].
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Figure 4.3: Cells elongate on substrates of intermediate stiffness. Model M2 was used.
(A) Example configurations of cells at 2000 MCS on substrates of 1,50 and 50
kPa. Colors: hydrostatic stress; (B) Cell eccentricity as a function of substrate
stiffness, shaded regions: standard deviations of 25 simulations; (C) distribution
of N, the number of integrin bonds per cluster, all adhesion at 2000 MCS from 25
simulations were pooled. We indicate the median. Color coding (C): See legend
next to (C).
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Some parameters, such as p and σh were chosen arbitrarily. So, we tested the sensi-
tivity of our model M2 to these parameters. Increasing p which regulates the extend
of adhesion strengthening by matrix stress, enables cells to start elongating on softer
matrices and also induces cell elongation on the most rigid surface (Supplementary
Figure 4.7). Variations inσh, which regulates the saturation of stretch exposed binding
sites for vinculin does not greatly affect model behavior (Supplementary Figure 4.8).
Other parameters might be cell type specific, such as the lifetime of protrusions tFA

(Supplementary Figure 4.9), extent of random motility T (Supplementary Figure 4.10)
and the magnitude of traction forces µ (Supplementary Figure 4.11). The qualitative
behavior is conserved for variations of these parameters, but all parameters affect the
range of substrate stiffness on which the cell can elongate.

Symmetry breaking due to matrix stress can also occur by a matrix stress medi-
ated increase in traction force. If, instead of adhesion strengthening, we assume
in our model that the stall force increases as a function of matrix stress, i.e. ~Fs =
~Fs ·

(
1 + p g(σ(~x′))

σh+g(σ(~x′))

)
, we obtain similar results as in Figure 4.3 (see Supplementary

Figure 4.12). Such a mechanism can have various molecular origins. For instance, ad-
dition of vinculin through talin stretching can induce increased traction forces [235].
Stretching also induces α-smooth muscle actin recruitment to stress fibers [236], and
myosin motor binding [237].

In conclusion, our model suggests that by applying a force on the matrix, cells de-
velop an anistropic matrix stress field that can induce a symmetry breaking of the cell
by reinforcing adhesion sites. This allows a cell to elongate on substrates of inter-
mediate stiffness. Such a matrix stress reinforcement can be from various molecular
origins, such as a matrix stress induced adhesion strengthening or increased traction
forces.

4.2.3 Motor protein velocity changes stiffness regime on which cells
elongate

The regime of substrate stiffness on which cells spread and elongate varies per cell
type. For instance, neutrophils do not respond to changes of substrate stiffness in the
range of substrate stiffness where both fibroblasts and endothelial change in area and
shape [202]. To try and understand why this is the case, we can vary cell related
parameters in our model. One cell specific parameter is the velocity of the myosin
motors. Many cells express non-muscle myosin II, which exists in isoforms A,B and
C [238]. Other cell types also expresses myosin isoforms such as skeletal, cardiac and
smooth muscle myosin [238]. Different cell types may have different expression pro-
files of myosin isoforms [239] and since the velocity of myosin motors varies among
isoforms [240, 241], this may impact the response of cells to matrix stiffness. Using
our model, we study how myosin motor velocity, v0, can impact cell shape. We study
a range from 10 nm/s (order of non-muscle myosin II B [240]) to 1000 nm/s (can be
achieved by muscle myosin [242]).

Figure 4.4A and B shows the cell configurations for a slow (10 nm/s) and fast mo-
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Figure 4.4: Range of stiffness on which cells elongate depends on myosin motor veloc-
ity. Model M2 was used. (A) Example configurations of cells at 2000 MCS on
substrates of 1,50 and 50 kPa with motor velocity 10 nm/s; (B) Example configu-
rations of cells at 2000 MCS on substrates of 1,50 and 50 kPa with motor velocity
1000 nm/s. Colors (A-B): hydrostatic stress; (C) Mean cell area as a function of
motor velocity, error bars: standard deviations of 25 simulations; (D) Mean cell
eccentricity as a function of motor velocity, error bars: standard deviations of 25
simulations.
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tor velocity (1000 nm/s), compared to the default value of 100 nm/s as shown in
Figure 4.3A, respectively. This shows that cells with slow motors do not spread sig-
nificantly and do not elongate, even on stiffer substrates. In contrast, cells with fast
motors already spread more and elongate on softer matrices. We quantified this further
by running 25 simulations for each combination of substrate stiffness and motor ve-
locity. Figure 4.4B and Figure 4.4C plot the cell area and eccentricity, respectively, as
a function of motor protein velocity. With the fastest velocity tested here (1000 nm/s),
cell area saturates already at 5 kPa and cells elongate on a larger stiffness regime (5
kPa - 100 kPa). With the slowest motor velocity (10 nm/s), cells do not elongate at all,
while they still spread well on stiff matrices. This is explained as follows. Decreasing
v0 is very similar to decreasing the stiffness of the substrate, because they both con-
tribute to the rate of force build-up in the same way, given by | ~Fs |

v0K . So, in terms of cell
area, cells with slower motor proteins would obtain a larger spreading area at stiffer
matrices. However, they are not able to elongate because forces are not built up fast
enough to generate high enough matrix stress that induces the adhesion strengthening.

So, in summary, we predict that cells with faster motor proteins start spreading/e-
longating at softer substrates, while cells with slower motor proteins need a stiffer
substrate to instigate a response.

4.2.4 Durotaxis explained by a bias in integrin clustering

On substrates with a stiffness gradient, cells move up the stiffness gradient, a phe-
nomena called durotaxis. Cells may durotact by sending out protrusions which better
stick to stiff substrates because focal adhesions grow on stiff substrates [126, 243].
Here, we investigate if force induced focal adhesion growth is sufficient to reproduce
durotaxis. We simulated durotaxis by placing an initial circular cell with its center
at x=y=250 µm on a grid of 1250 µm by 500 µm for 10000 MCS (≈ 28h). In the
x-direction, we let the stiffness increase from 1 kPa to 26 kPa, so with a slope of 20
Pa/µm. Figure 4.5A plots ten different trajectories of the cell, showing that most cells
have moved significantly in the x-direction, up the stiffness gradient. Cells, on av-
erage, move in the x-direction with a constant speed of around 4.3 µm/h, measured
as the slope of the x-coordinate of the cell from 25 simulations. Vincent et al. [205]
found speeds of 6.2 µm/h with gradient slope 10 Pa/µm in vitro for mesenchymal stem
cells. In our model, how far cells can move up the gradient, depends on the flexibility
and motility of the cell. We varied λ, the Lagrangian multiplier of the area constraint,
controlling cell flexibility, and the cellular temperature T , and found that both affect
cell speed (Table 4.2).

In the CPM, cell movement is a result of subsequent protrusions and retractions. In
stiffer areas the focal adhesions grow larger, so that retraction are more likely to be
made at more flexible parts of the matrix. As a result, the cell moves up the stiffness
gradient. So, naturally, one would expect that durotaxis depends on the slope of the
stiffness gradient. Figure 4.5B shows the speed of the cell as a function of the slope
of the stiffness gradient. Indeed, simulated cells move faster up the gradient if the
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Figure 4.5: Durotaxis as a result of integrin catch-bond dynamics. (A) Ten trajectories of
durotacting cells on a matrix with slope 20 kPa/ µ m; (B) Cell speed as a function
of the slope of the stiffness gradient.

slope is steeper, as observed in experimental conditions [204, 205]. This is because
the difference in focal adhesion growth between the front and the back of the cell is
larger with a higher slope, causing a larger bias. We suspect that the durotaxis speed
saturates at steep slopes, because the growth rate of focal adhesions is limited.

In conclusion, durotaxis is an emergent behavior in our model, cells exhibit durotaxis
as a result of a biased growth of focal adhesions. A cell can build up forces faster
on stiffer matrices, allowing focal adhesions to grow larger here. So, the cell better
attaches at the stiffer part and will retract at the softer side. As a result, the cell moves
up the stiffness gradient.

4.3 Discussion

We have presented a multiscale computational model to show that force induced focal
adhesion dynamics can explain 1) cell area increasing with substrate stiffness (Fig-
ure 4.2A-B), 2) cell elongation on substrates of intermediate stiffness (Figure 4.3A-B)
and 3) durotaxis (Figure 4.5A). The model described cells spreading on an elastic
substrate via focal adhesions, which are modelled as integrin clusters. Cells applied
traction forces on integrin clusters, which grow according to catch-slip bond dynam-
ics as proposed by Novikova and Storm [231]. How fast a cell in our model can build
up this force depended on the stiffness of the matrix, based on a model by Schwarz
et al. [96]. On soft matrices, forces build up slowly such that integrin clusters do
not have enough time to grow, while on stiff matrices forces build up fast such that
integrin clusters can grow in size. Because we assumed that larger focal adhesions
detach less likely from the substrate than smaller ones, cell spreading area increased
on stiffer substrates (Figure 4.2B). If we included a feedback between matrix stresses
and cell-matrix adhesion, simulated cells were able to elongate. Based on experimen-
tal observations [216], we assumed that matrix stress stabilizes focal adhesions. We

97



4. From focal adhesions to cell shape

modeled this by reducing the likelihood of cell-matrix deadhesion. This allowed cells
to elongate on matrices of intermediate stiffness (Figure 4.3A-B). The model suggests
that the range of substrate stiffness on which cells elongate depends on the velocity
of the myosin molecular motors, which determine the rate of force build-up. Cells
with higher motor protein velocity started to elongate on softer matrices (Figure 4.4).
Finally, our model explains durotaxis as a bias in focal adhesion growth on stiffer ma-
trices. Because extensions are more likely to stick at these regions and retractions are
more likely to be made on the softer side, cells obtain a bias in cell motility up the
stiffness gradient (Figure 4.5A). Our model predicted that cell velocity increases with
the slope of the stiffness gradient (Figure 4.5B), which compares well with experimen-
tal data [204, 205]. The spreading dynamics in our model also qualitatively compare
well with in vitro dynamics: the spreading dynamics in Figure 4.2C are similar to
spreading area curves found in vitro [123, 202] and the dynamics of cell elongation
(Movie S1) resemble in vitro observations [214].
We hypothesized that the stabilization of focal adhesions by matrix stress is due

to stretching of talin. Stretching of talin exposes vinculin binding sites [208] and
vinculin in turn binds the focal adhesion to the cytoskeleton, which strengthens cell-
matrix adhesion [209]. Our model suggests that this might regulate cell elongation. In
agreement with this observation, vinculin regulates cell elongation on glass substrates
[212]. We could attempt to further unravel how vinculin drives cell elongation by
studying vinculin depleted cells on substrates of different stiffness, or by adapting
talin in such a way that vinculin cannot bind as a result of talin stretching.

Interestingly, our model suggests that cells can also elongate if matrix stress induces
an increase in cell traction forces (Supplementary Figure 4.12). This mechanism can
be justified by two experimental observations; 1) vinculin increases cell traction forces
[235] and 2) stressing focal adhesions induces α-smooth muscle actin recruitment to
stress fibers that in turn increases traction forces [236]. Experimental testing can be
done to elucidate which mechanism might be required for cell elongation, since our
model does not differentiate between these two and vinculin adhesion strengthening.
Our model also predicts that cells elongate on different ranges of substrate stiffness,

due to different velocities of their myosin motors (Figure 4.4). This could explain
why different cell types elongate on different stiffness regimes [202, 203], as they
might express different isoforms of myosin motors. Many studies of different types
of cells on compliant substrates have been performed, but often either the range of
substrate stiffness tested differs or the type of matrix (i.e. type of ligand, ligand den-
sity, or gel type) is different. Therefore, spreading of different cell types cannot be
compared one to one. Model validation would benefit from more systematic in vitro
experiments of different cell types on compliant matrices. To then confirm this model
prediction, it could be measured which isoform of myosin the cells express. There are
some experiments that seem to support our model prediction. For instance, cell elon-
gation is promoted in Dlc1 deficient ovarian tumour [244]. Dlc1 leads to increases
of phosphorylation level of nonmuscle IIA mysosin [244], which suggests that an in-
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crease in motor protein velocity indeed enables cells to elongate more. Furthermore,
cells treated with blebbistatin on stiff matrices obtain phenotype as if they are on a soft
matrix [245], while upregulating myosin gives opposite results. In this paper by Jiang
et al. [245] it was suggested that the actomyosin pulling speed produce has a similar
effect on integrin stem cell lineage specification (which is highly associated with cell
shape [246]) as the effective spring constant of the substrate.
The strength of our model is that we can associate response of cells to matrix stiff-

ness with mechanisms at the level of adhesions. In our model, we differentiate be-
tween integrin size dependent adhesion strength and adhesion strength reinforcement
by structural proteins, as observed experimentally [247] and studied what the effect
was on cell shape. Previous models have explained cell responses based on how ma-
trix stiffness influences cellular mechanisms. For instance, increased cell spreading
on stiff matrices has been proposed to be regulated by a stiffness induced upregulation
of cell traction forces [47], stress fiber stabilization [220] or motor protein recruitment
[218]. In previous computational models, assumptions on cell dynamics were often
motivated by adhesion dynamics and could explain stiffness sensing [45, 47, 248, 249]
and durotaxis [224, 226, 227, 229].

Similarly, the mechanism for cell spreading proposed in our previous work [182],
was based on focal adhesion dynamics. In this previous model, we suggested that pro-
trusions are more likely to stick to highly strained matrices that have strain-stiffened.
This was motivated by the observation that cells more efficiently build up forces on
stiff matrices, which enables stabilization of focal adhesions [128]. In this work, we
developed an explicit model for focal adhesion growth, to study how the mechanosen-
sitive assembly of focal adhesions drives cell spreading and durotaxis. Previous com-
putational models that included focal adhesions suggested that an intricate interplay
between stress fiber remodeling and focal adhesion growth is required for cell spread-
ing on compliant matrices [219, 220]. A model by Stolarska et al. [221] suggested that
the mechanosensitive growth of focal adhesions alone could not explain increased cell
spreading on stiff matrices [221]. In this model, rigid matrices induce increased cell
contraction which resists cell spreading. We however suggest that the mechanosen-
sitive growth of focal adhesions is sufficient to explain cell spreading as a function
of substrate stiffness. In contrast to the model by Stolarska et al. [221], cells in our
model are able to spread on rigid matrices, because the adhesion strength of large
focal adhesions resist cell retractions on stiff matrices.

A previous coupled cell-based - focal adhesion model was used to study durotaxis
[224]. In this model, the number of focal adhesions was assumed to be higher on stiff
substrates and the distribution of focal adhesions was assumed to be more narrow on
stiff substrates. Both the number and distribution of focal adhesion then controlled the
deviation from the direction of motion: on stiff matrices cells move more persistent,
causing it to durotact. Recently, it was also proposed that cells durotact by tugging
on the matrix and changing their direction towards areas that the cell perceives as
stiff [225]. Our model shows that the directed movement of cells emerges from the
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4. From focal adhesions to cell shape

mechanosensitive growth of focal adhesions and that no inherent persistent or directed
cell migration is required.

A limitation of our model is that it cannot accurately predict increasing focal adhe-
sion sizes as a function of substrate stiffness (see Figure 4.2D), while this has been
observed experimentally [214]. This may be explained by modeling choices. In the
CPM, cells only make retractions at the boundary of the cell, so in the middle of the
cell, integrin clusters continue to grow even on soft matrices. Also, there is a con-
stant pool of free integrin bonds, making the growth rate of new focal adhesions to
go down due to existing focal adhesions. Furthermore, our lattice based model does
not define spatial effects in integrin clustering. In reality, small clusters may merge
into larger adhesions and the availability of integrins that can bind to ECM, active
integrin, is spatially and temporally regulated. Cells produce integrins, that diffuse
and are activated within the cell. This activation of integrin depends on interaction
with other proteins, such as talin [250] and vinculin [251]. Furthermore, Stretching of
p130cas induces its phosphorylation, which in turn activates the small GTPase Rap1
[252] which activates integrins [253]. So, to better reproduce focal adhesion growth
in future models, we can include other relevant mechanisms such as diffusion and the
activation of integrins [48, 220, 250, 254]. However, because we were interested in
cell shape in this work, which can be predicted with our model, we find the level of
detail of focal adhesion dynamics sufficient at the moment.

In summary, we propose that the mechanosensitive response of molecules in focal
adhesions suffice to explain the response of cells to matrix stiffness. In agreement with
experimental observations, cells spread more on stiff matrices and obtain an elongated
shape if the matrix is stiff enough. Furthermore, cells durotact and move faster with
steeper stiffness gradients. This model paves the way to study how specific molecular
mechanisms within focal adhesions impact cell and tissue level responses to matrix
mechanics. This can give rise to new targets of treatment and the design of tissue
engineering experiments.

4.4 Methods

We developed a multiscale model where cell movement depends on force induced
focal adhesion dynamics. The model couples a cell-based model, substrate model
and focal adhesion model in the following way. The Cellular Potts Model (CPM) de-
scribes cell movement. The shape of the cell is used to describe the stall forces that
the cell exerts on the focal adhesions attached to a flexible substrate. These forces
affect the growth of the focal adhesions. We assume that focal adhesions are clusters
of integrins that behave as catch-slip bonds. Its dynamics are described using ordinary
differential equations (ODEs). Finally, we assume that the cell-matrix link is strength-
ened by matrix stresses, which we calculate using a finite element model (FEM). In
all simulations described in this work, we employ the parameter values as described
in Table 4.1.
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4.4.1 Cellular Potts Model

To simulate cell movement, we used the Cellular Potts Model (CPM) [72]. The CPM
describes cells on a lattice Λ ⊂ Z2 as a set of connected lattice sites. Since the simula-
tions in this article are limited to one cell, we describe the CPM here for a single cell.
To each lattice site ~x ∈ Λ a spin s(~x) ∈ {0, 1} is assigned. This spin value indicates if
the cell s(~x) = 1 or the extracellular matrix s(~x) = 0 occupies this site. So, the cell
configuration is given by C = {~x : s(~x) = 1}. The cell configuration evolves by dy-
namic Monte Carlo simulation. During one Monte Carlo Step (MCS), copies of a spin
s(~x) from a source site ~x into a neighboring target site ~x′ are attempted. Such copies
mimic active cellular protrusions and retractions. During a MCS, N copy attempts are
made, with N the number of lattice sites in the grid. Whether a copy is accepted or
not depends on a balance of forces, which are represented in a Hamiltonian H.
A copy is accepted if H decreases, or with a Boltzmann probability otherwise, to

allow for stochasticity of cell movements:

P(∆H) =

1 if ∆H + Y < 0

e(−∆H+Y)/T if ∆H + Y ≥ 0.
(4.1)

Here ∆H = Hafter −Hbefore is the change in H due to copying, and the cellular temper-
ature T ≥ 0 determines the extent of random cell motility. Furthermore, Y denotes a
yield energy, an energy a cell needs to overcome to make a movement. Finally, to pre-
vent cells from splitting up into disconnected patches, we use a connectivity constraint
that rejects a copy if it would break apart a cell in two or more pieces.

We use the following Hamiltonian:

H = λA2︸︷︷︸
compression

+
∑

neighbours(~x,~x′)

J(s(~x), s(~x′))︸                          ︷︷                          ︸
line tension

− λC
A

Ah + A︸      ︷︷      ︸
cell-matrix adhesion

(4.2)

The first term of H denotes a area constraint or compression, where A is the area of
cell and λ is the corresponding Lagrange multiplier. In the second term, J(s(~x), s(~x′)
are the adhesive energy between two sites ~x and ~x′ with spins s(~x) and s(~x′). When
taking a sufficient large neighborhood, the second term describes a line tension, as
it approximates the perimeter of a cell [255]. We take a neighborhood order of 10.
The third term describes the formation of adhesive contacts of cells with the substrate,
where the bond energies lower the total energy [191], causing the cells to spread. The
parameter λC is the corresponding Lagrange multiplier. The energy gain of occupying
more lattice sites saturates with the cell area, as the total number of binding sites is
limited. The parameter Ah regulates this saturation.

To describe cell-matrix binding via focal adhesions, we implement the following
yield energy in the CPM

Y = λN
N(~x′) − N0

Nh + N(~x′)
· 1s(~x′)=1 · 1s(~x)=0, (4.3)
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4. From focal adhesions to cell shape

where N(~x′) is the size of the focal adhesion at the target site. This models that a
retraction is energetically costly for a cell to make, because it needs to break the actin-
integrin connection. We assume that the size of the actin-integrin link is proportional
to the size of the focal adhesion, i.e. the number of integrin bonds [256], and that
the strength of adhesion saturates [209] with a parameter Nh. The substraction of N0

represents that an adhesion only creates extra linkage if it is greater than a nascent
adhesions. Note that the Y can not become negative, because we assume that ad-
hesions smaller than N0, a nascent adhesion, breaks down due to its short lifetime,
see section C. So, only adhesions larger than N0 create a yield energy. In section C,
we further adapt this yield energy to describe a matrix stress induced focal adhesion
reinforcement.

4.4.2 Cell traction forces

Following Schwarz et al [96], we assume that traction forces are generated by myosin
II molecular motors on the actin fibers, of which the velocity is given by

v( ~F) = v0

(
1 − ~F/ ~Fs

)
, (4.4)

where v0 is a free velocity. The traction forces are applied to the ECM, which we
assume is in plane stress. The constitutive equation is given by h~∇σ = ~F where σ is
the ECM stress tensor and h is the thickness of the ECM. We assume that the ECM
is isotropic, uniform, linearly elastic and we assume infinitesimal strain theory. We
solve this equation using a Finite Element Model (FEM). In the FEM, traction field ~f
and ECM deformation ~u are related by:

K~u = ~f , (4.5)

where K is the stiffness matrix given by

K = h
∫

BT E
1 − ν2


1 ν 0
ν 1 0
0 0 1−ν

2

 B, (4.6)

where B is the conventional strain-displacement matrix for a four-noded quadrilateral
element [155] and E is the Young’s modulus and ν is the Poisson’s ratio of the ECM.
For more details on this part of the model, we refer to our previous work [182, 257].

Following Schwarz et al. [96], the force build-up is given by the ODE:

K~v( ~f ) =
d ~f
dt
. (4.7)

However, since this equation is complex and also expensive to solve, we, for now,
ignore the interactions between neighbouring sites, i.e. we reduce K to it’s diagonal
components. This gives us:

~F(~x, t) = ~Fs(~x) + ( ~F0(~x) − ~Fs(~x)) exp(−t/tk) (4.8)
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where ~F0 is the force already exerted by the actin, and tk is given by | ~Fs |

v0K where K is
given by the diagonal entry of K Since the cell configuration and therefore the traction
forces change each MCS, the tension on the focal adhesions does not build up from
zero, but from the tension that was built up during the previous MCS: ~F0 at the current
MCS is given by ~F(tFA) of the previous MCS.
To calculate ~Fs, the stall force of the cells, we employ a first-moment-of-area (FMA)

model, proposed and experimentally validated by Lemmon & Romer [131]. This
model infers stall forces from the shape of the cell of the CPM, based on the assump-
tion that a network of actin fibers in the cell acts as a single, cohesive unit.

~Fs(~x) =
µ

A

∑
line piece ~x→~y⊂C

~x − ~y, (4.9)

We divided with the cell area A such that force increases roughly linear with cell area,
as experimentally observed [127].

4.4.3 Focal adhesions

At each lattice site (~x) occupied by the cell (s(~x) = 1), a focal adhesion is modeled
as a cluster of bound integrin bonds N. Each individual integrin bond behaves as a
catch-slip bond, whose lifetime is maximal under a positive force [231]. Accordingly,
the growth of a cluster of such bonds is described by an ODE derived by Novikova
and Storm [231]:

dN(~x, t)
dt

= γNa(t)(1 −
N(~x, t)

Nb
) − d(φ(~x, t))N(~x, t) (4.10)

with γ a binding rate, Na the number of free bonds, and Nb the maximal number of
bound bonds a lattice site can contain. This logistic growth term is a slight adaptation
compared to Novikova and Storm [231]. The degradation of the focal adhesions d(φ)
depends on the tension φ on the focal adhesion N. This degradation rate is given by

d(φ(~x, t)) = exp (
φ(~x, t)
N(~x, t)

− φs) + exp−(
φ(~x, t)
N(~x, t)

− φc) (4.11)

where φs and φc describe the slip and catch bond regime in N/m2, respectively. Here,
φ(~x, t) =

| ~F(~x,t)|
∆x2 is the stress applied to the lattice site of the focal adhesion. We assume

that the number of free bonds Na is limited by the number of available integrin recep-
tors in the entire cell, Nm. These Nm receptors can be recruited to each focal adhesion
site and enable binding of a bond. Thus, Na(t) = Nm −

∑
{~x|s(~x)=1}}

N(~x, t). We let the
focal adhesions grow after each MCS for tFA seconds with time increments of ∆tFA. If
N(~x) = 0 and s(~x) = 1, we set N(~x) = N0, such that degraded focal adhesions have the
potential to grow again. This models that the cell creates focal complexes, precursors
of focal adhesions that contain a small amount of integrins and have a very short life-
time. During a MCS, a cell breaks adhesions if it retracts, so, we set N(~x) = 0 when
a retraction occurs. We assume that if a cell extends, it binds a number of integrins
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4. From focal adhesions to cell shape

to the matrix. So, after an extension we set N(~x) = N0. Furthermore, after the focal
adhesions were allowed to grow, i.e. at t = tFA we set all N(~x) = 0 if N(~x) < N0.
This models that the cell fails to build a focal adhesion from a focal complex/nascent
adhesion, which subsequently breaks down quickly do to its short lifetime [258].

4.4.4 Substrate stresses

The forces that were build up during a MCS, ~F(tFA), are plugged into a finite element
model (FEM) to calculate the stress tensor σ(~x) on each lattice site. We assume that
the integrin-cytoskeletal adhesion strengthens as a result of stress. We define

g(σ) =

 1
2 (σxx + σyy) if 1

2 (σxx + σyy) ≥ 0

0 if 1
2 (σxx + σyy) < 0

(4.12)

the positive hydrostatic stress of the stress tensor that describes how much stress the
adhesion experiences. Now, we extend the yield energy as follows:

Y = λN
N(~x′) − N0

Nh + N(~x′)
·

(
1 + p

g(σ(~x′))
σh + g(σ(~x′))

)
· 1s(~x′)=1 · 1s(~x)=0 (4.13)

We thus assume that stress strengthens the adhesion, with parameter p and that this
strengthening saturates with parameter σh.

4.4.5 Stiffness gradient

To study durotaxis, we model a stiffness gradient in the x-direction on a lattice of
1250 µm by 500 µm. The Young’s modulus of the substrate E(Pa) is given by E(x) =

max{1, 6000 + (x − 250) · slope}, with x in µm, such that the Young’s modulus at the
center of the cell at time t = 0 is 6000 Pa and is nonzero. The default value for the
slope is 20 20 Pa/µm.
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4.5 Supplementary methods

In the main text, we proposed that matrix stress induces adhesion strengthening but
noted that matrix stress might also reinforce cell contractility. Supplementary Fig-
ure 4.12 shows the results of having ~Fs = ~Fs ·

(
1 + p g(σ(~x′))

σh+g(σ(~x′))

)
instead of equation

4.13 in the main text. Since matrix stresses are defined on the lattice sites while forces
are defined on the nodes of the lattice, we needed to assume some interpolation. We
choose to take

~Fs = ~Fs ·
1
4

∑
surrounding4nodes

(
1 + p

g(σ(~x′))
σh + g(σ(~x′))

)
(4.14)
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4.6 Supplementary tables

parameter description value unit value was
CPM
∆x lattice site width 2.5 µm chosen
λ area constraint 0.0002 N/m per lat-

tice site2
chosen

J(0, cell) adhesive energy 3000 Nm per lattice
site

chosen

nbo neighbourhood order 10 - estimated based on
accuracy of line ten-
sion [255]

λC adhesion strength 600 Nm per lattice
site

chosen

Ah area saturation 1000 lattice sites chosen
λN focal adhesion

strength
4 Nm chosen

p actin-integrin
strength

1 - chosen

σh saturation actin-
integrin binding

5000 N/m2 chosen

T cellular temperature 2 Nm chosen
Forces
µ traction magnitude 0.001 Nm per lattice

site
estimated based on
endothelial traction
stresses [198]

v0 free velocity of
myosin molecules

100 nm/s estimated based on
non-muscle myosin
IIB [240, 242]

E Young’s modulus 10000 N/m2 varies
ν Poisson’s ratio 0.45 - chosen
τ substrate thickness 10 µm [158]
FAs
γ growth rate 0.05 /s estimated [231]
N0 size initial adhesion 5000 - estimated based on

nascent adhesions
[258]

Nm maximum free bonds 8000000 - chosen
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Nb maximum size focal
adhesion

39062 - estimated based on
number of integrins
that fit in one lattice
site [258]

φs slip tension 4.02 pN/m2 [231]
φc catch tension 7.76 pN/m2 [231]
tFA focal adhesion

growth time
10 s estimated based on

protrusion lifetimes
[259]

∆tFA time steps 0.01 s chosen

Table 4.1: Parameter setting.

λ/T 1 2 3
0.0015 7.5106 ± 0.7971 5.3998 ± 1.1767 5.1622 ± 0.7922
0.002 6.7372 ± 1.1609 4.2945 ± 0.9978 3.8785 ± 1.1845
0.0025 5.5544 ± 1.3991 4.0823 ± 1.4943 3.0196 ± 1.3468

Table 4.2: Durotaxis speed in µm/h as a function of λ and T . Values: mean ± standard
deviation of 25 simulations.

107



4. From focal adhesions to cell shape

4.7 Supplementary figures

Figure 4.6: The number of integrin bonds per cluster (N) in model M1 as a function of
distance from the cell center. All clusters at 2000 MCS from 25 simulations were
pooled. Shaded regions show standard deviations.

Figure 4.7: Model sensitivity to p. (A) Cell area as a function of substrate stiffness, shaded
regions: standard deviations of 25 simulations; (B) Cell eccentricity as a function
of substrate stiffness, shaded regions: standard deviations of 25 simulations.
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Figure 4.8: Model sensitivity to σh. (A) Cell area as a function of substrate stiffness, shaded
regions: standard deviations of 25 simulations; (B) Cell eccentricity as a function
of substrate stiffness, shaded regions: standard deviations of 25 simulations.

Figure 4.9: Model sensitivity to tFA. (A) Cell area as a function of substrate stiffness, shaded
regions: standard deviations of 25 simulations; (B) Cell eccentricity as a function
of substrate stiffness, shaded regions: standard deviations of 25 simulations.
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Figure 4.10: Model sensitivity to T . (A) Cell area as a function of substrate stiffness, shaded
regions: standard deviations of 25 simulations; (B) Cell eccentricity as a function
of substrate stiffness, shaded regions: standard deviations of 25 simulations.

Figure 4.11: Model sensitivity to µ. (A) Cell area as a function of substrate stiffness, shaded
regions: standard deviations of 25 simulations; (B) Cell eccentricity as a function
of substrate stiffness, shaded regions: standard deviations of 25 simulations.
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Figure 4.12: Cells elongate on substrates of intermediate stiffness if matrix stress rein-
forces traction force ~Fs with p = 5. (A) Example configurations of cells at 2000
MCS on substrates of 1,50 and 50 kPa. Colors: hydrostatic stress; (B) Cell eccen-
tricity as a function of substrate stiffness, shaded regions: standard deviations of
25 simulations; (C) distribution of N, the number of integrin bonds per cluster, all
adhesion at 2000 MCS from 25 simulations were pooled. We indicate the median.
Color coding (C): See legend next to (C).
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Signaling Range Regulated by FurinA
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5. Furin

Abstract

Morphogens that diffuse through tissues drive tissue patterning. In many animal
species, left-right patterning is governed by a reaction- diffusion system relying
on the different diffusivity of an activator, Nodal, and an inhibitor, Lefty. In a
genetic screen, a zebrafish loss of function mutant for the proprotein convertase
FurinA was identified. The Spaw protein in zebrafish is a Nodal-related pro-
protein and is able to induce its own expression trough extracellular signaling.
Embryological and biochemical experiments demonstrate that FurinA cleaves the
Nodal-related Spaw proprotein into a mature form. This mature form can then be
secreted and diffuse, allowing for long range Nodal signaling. We developed a
model that describes inter and extracellular Nodal dynamics and included cleav-
age by FurinA. This mathematical shows that FurinA is required for Spaw gra-
dient formation. The model suggests that the speed of gradient formation and
the range of Spaw signaling is regulated by FurinA, which is validated by in vivo
experiments. Finally, the model suggests that the effect of FurinA saturates with
increasing levels of FurinA. This study shows that tissue patterning, such as left-
right patterning, can be regulated by proprotein convertases.

5.1 Introduction

In the previous chapters, we focused on how mechanical forces can drive tissue pat-
terning. Cells sense and respond to mechanical forces that are present in the extracel-
lular matrix. However, cells also respond to chemical signals from the extracellular
matrix. For decades, tissue patterning has been thought to be mainly regulated by mor-
phogens, chemical signals or growth factors diffusing through the extracellular space,
that affect the gene transcription of cells. In this chapter, we focus on how chemical
signaling is involved in the left-right patterning of tissues. During embryogenesis,
an asymmetry between the left and right part of the body is established. This left-
right (LR) assymetry is crucial for the formation, positioning and function of organs
[260]. During somitogenesis, the vertebrate LR axis is patterned by the interplay of
Nodal and its repressor Lefty [261, 262]. Nodal and Lefty form a activator/inhibitor
pair and have different diffusivities, activation ranges. As such, the pair behaves as a
reaction-diffusion model for tissue patterning. Lefty inhibits the expression of Nodal
and Nodal induces its own expression. An initial assymetry between left and right,
caused by the accumulation of Nodal in the left lateral plate mesoderm (LMP) (due
to cilia-induced flow in the node), is amplified by the Nodal/Lefty interactions [260].
Since Lefty acts on a long range, the expression of Nodal is repressed in the right side
of the body.

Nodal is an extracellular protein that induces its own gene expression, by signaling
through cell membrane receptors. Nodal protein can only be secreted by cells once it
matures, which is regulated by proprotein convertases such as Furin. In this chapter,
we focus on the model system zebrafish to study the signaling range of Nodal. In
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zebrafish, the Nodal gene southpaw (Spaw) is required for LR patterning. At early so-
matogenesis, Spaw expression is initiated around the posteriorly localized Kupffer’s
vesicle, which is the functional homolog to the mouse’s node [263]. Experimental
studies on the ace of hearts (aoh), a zebrafish mutant for the proprotein convertase Fu-
rinA, shows that Spaw acquires its biological activity and signaling range via FurinA-
mediated maturation. A combination of in vivo and in silico experiments shows that
the level of FurinA expression in the zebrafish embryo controls the signaling range of
Spaw.

5.1.1 Zebrafish aoh mutant

Tessadori et al. [97] identified a zebrafish mutant that displayed a defect in left-right
patterning; it had a midline-positioned cardiac tube, which is normally located at the
left side. This mutant is called the aoh mutant. For more details, we refer to the
original paper [97]. In this chapter, we only describe the most relevant observations
for the mathematical modeling. The left-right defect was due to a reduced expression
of the gene Spaw in the LPM (Figure 5.1). But what characteristic of this mutant
affected the signaling range of Spaw?
It was determined that aoh mutants carry a point mutation resulting in a premature

truncation of the FurinA subtilisin-like proprotein convertase (SPC). Furin is part of
a larger family of SPCs, which are crucial for conferring biological functionality to a
wide variety of substrates including growth factors belonging to the Tgf-β superfamily
[264, 265]. To confirm that the lack of FurinA is responsible for reduced Nodal sig-
naling, additional experiments were performed. This showed that FurinA can cleave
Nodal and that the in vitro addition of Furin protein resulted in the efficient cleavage
of Spaw. By in vivo mutation of cleavage sites of Spaw, it was shown that if Furin
could not cleave Spaw, the function of Spaw was abrogated.

5.1.2 The role of FurinA

Studies showed that Spaw induces the activity of Spaw [266] and that Spaw acts on
a long range [97]. Furthermore, it was shown that the cell-autonomous cleavage of
Spaw by FurinA is required for this long range signaling [97]. Localization of Spaw
maturation by FurinA correlates positively with extracellular Spaw localization and
thus mediates the formation of an extracellular Spaw gradient [97]. To understand
how FurinA processing of Spaw controls the establishment of the Nodal signaling
domain in the LPM during LR patterning, we developed a mathematical model.

5.2 Model description

The mathematical model considers the intercellular and extracellular Spaw protein
dynamics and their interactions in a 1D domain. The domain represents an embryonic
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Figure 5.1: Expression of Spaw (arrowhead indicates anterior-ward expansion) in WT,
Zaoh, and MZaoh embryos.

tissue, where x = 0 corresponds to the source of Nodal and x = L represents the
boundary of the relevant tissue.

The model is given by the following reaction-diffusion system

∂S i

∂t
= cme

S e
he

1 + S e
he︸       ︷︷       ︸

production

− ε iS i︸︷︷︸
degradation

− kFS i︸︷︷︸
maturation

, (5.1)

∂S m
i

∂t
= kFS i︸︷︷︸

maturation

− εm
i S m

i︸︷︷︸
degradation

− sS m
i︸︷︷︸

secretion

, (5.2)

∂S e

∂t
= D∇2S e︸ ︷︷ ︸

diffusion

− εeS e︸︷︷︸
degradation

+ sS m
i︸︷︷︸

secretion

, (5.3)

with boundary conditions,

∂S e

∂x
(x = L, t) = 0, (5.4)

D
∂S e

∂x
(x = 0, t) = −P, (5.5)

and initial conditions,

S i(x, t = 0) = 0, (5.6)

S m
i (x, t = 0) = 0, (5.7)

S e(x, t = 0) = 0. (5.8)

Here, S i (x, t) , S m
i (x, t) and S e (x, t) denote the concentration (in molecules/liter) of

synthesized intercellular Spaw, mature intercellular Spaw and extracellular Spaw, re-
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spectively. The model takes into account that the extracellular Spaw diffuses with
diffusion coefficient D (m2s−1) and degrades with an extracellular clearance rate of εe

(s−1). Further, the intracellular Spaw degrades with an intercellular clearance rate of
εi (s−1) and εm

i (s−1) for its mature form. The mature form of Spaw is secreted with a
rate s (s−1). Spaw only spreads between cells through the extracellular space, so there
is no diffusion of S i(x, t) or S m

i (x, t). We assume that FurinA promotes the maturation
of Spaw. This is represented by the term kFS i, present in both of the intercellular
Spaw equations. Here, F is the concentration of FurinA (molecules/liter) and k is a
constant. We thus assume that the rate of maturation, which is kF (s−1), is linearly
dependent on the level of FurinA.

The model describes the production of intercellular Spaw, at a maximum of cme (s−1

molecules/liter), in response to the cells’ binding of extracellular Spaw. We assume
that this activation of intercellular protein production becomes saturated when the
level of S e(x, t) increases, as then the number of receptors sensing the extracellular
Spaw depletes. This is indicated by the Michaelis-Menten kinetics function, where
me and he are constants. More specifically, me is the extracellular Spaw concentration
at which all Spaw receptors of the cells are occupied and he is the extracellular Spaw
concentration at which the synthesis activation rate is at half-maximum.

The boundary condition at x = L reflects the fact that extracellular Spaw can not
leave the tissue. At x = 0, we assume a constant influx of P (molecules s−1 m−2) of
extracellular Spaw. As initial conditions, we assumed S e(x, t) = S i(x, t) = S m

i (x, t) =

0; that is, at no extracellular or intracellular Spaw is present anywhere in the domain.

5.3 Results

The results and comparison with in vivo data of the mathematical model are shown in
Figure 5.2; the mathematical equations are shown in Figure 5.2). In brief, in this one-
dimension reaction-diffusion model (Figures 5.2A and 5.2B), the maturation of Spaw
is controlled by FurinA processing. Once processed, Spaw is secreted and forms
an extracellular gradient. Extracellular mature Spaw diffuses to surrounding cells,
where it binds to its receptor and stimulates the production of intracellular Spaw. Both
intracellular and extracellular Spaw are assumed to be degraded according to first
order kinetics, i.e., due to proteolysis independent of Spaw or FurinA.

5.3.1 FurinA expression levels controls speed and range of Spaw
gradient formation

The model produces a front of extracellular, mature Spaw protruding into the LPM,
with a propagation speed that is enhanced by the level of FurinA. In Movie S1, snap-
shots of which are shown in Figure 5.2D, the faster propagation of extracellular Spaw
resulting from an increase in FurinA levels can be appreciated. The mathematical
model predicts that the distance reached by a specific amount of extracellular Spaw
within a given time is a function of FurinA levels (Figure 5.2E). Due to its self-
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inducing activity, we used the Spaw expression domain as a readout for extracellular
Spaw activity in vivo. With increasing FurinA levels, the model predicts an increasing
anterior extension of the Spaw expression domain at a given developmental stage. To
test this prediction in vivo, we determined the signaling range of Spaw in the LPM by
measuring the length of the Spaw expression domain in embryos with different levels
of FurinA (Figure 5.2F). First, we compared the Spaw expression domain in embryos
with no FurinA (MZaoh mutant), low levels of FurinA (Zaoh), and normal FurinA
expression (wild-type [WT] embryos). In agreement with the prediction of the mathe-
matical model, we observed that the Spaw expression domain in the LPM was absent
in the MZaoh mutant embryos, while the extension of the Spaw expression domain
was limited in Zaoh mutant embryos, which is consistent with its expression in the
posterior, but not in the anterior LPM.

Next, we examined whether increasing FurinA levels in WT embryos would be suf-
ficient to expand the signaling range of Spaw even further in the anterior direction,
as the mathematical model predicts. Since endogenous FurinA is broadly expressed
at early developmental stages and during somitogenesis [267], we overexpressed Fu-
rinA in all cells by mRNA injection into WT embryos and determined the anterior-
posterior length of the Spaw expression domain. We observed that increasing FurinA
was sufficient to induce an expansion of the signaling range of Spaw (Figure 5.2F).
Interestingly, increased FurinA expression levels resulted not only in faster expansion
of Spaw expression toward the anterior LPM, but also in an increased incidence of
bilateral Spaw expression and the appearance of right-sided Spaw expression in the
LPM. This could be the consequence of the saturation of the midline barrier and of the
activity of a self-enhancement lateral-inhibition system, as described for mouse Nodal
and Lefty [268] (Figure 5.2F; see Nakamura et al., 2006). Altogether, we conclude
that the level of FurinA determines the signaling range of Spaw in the LPM, which is
critical for the establishment of correct LR patterning of the embryo.

5.3.2 Signaling range saturates by increasing level of FurinA

Increasing FurinaA levels, F in the model, leads to an increase of extracellular Spaw,
as its promotes maturation of Spaw that can subsequently be secreted. The amount of
Spaw maturation depends on the production rate of intercellular Spaw, so the effect
of increasing F is likely limited. In order to better understand the effect of F, we
linearized the original model to

∂S i

∂t
= cS e − ε iS i − kFS i, (5.9)

∂S m
i

∂t
= kFS i − ε

m
i S m

i − sS m
i , (5.10)

∂S e

∂t
= D∇2S e − εeS i + sS m

i , (5.11)

with the same boundary conditions and initial conditions as described in the model
formulation given in the methods section.
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Figure 5.2: Caption is on next page
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Caption of figure on previous page: FurinA Levels Control the Expansion of the Spaw Ex-
pression Domain in the LPM. (A and B) For the purpose of mathematical modeling, we have
considered the left LPM of the developing zebrafish embryo as a linear domain (displayed as
a rectangle here) with a source of Spaw at the posterior end (x = 0); (B) behavior of Spaw in
the competent LPM described in (A). Synthetized intracellular Spaw (S i), mature intracellular
Spaw (S m

i ), and extracellular Spaw (S e). (C) Partial-differential equation model of the system
described in (B). (D) Snapshots of Movie S1 showing a simulation of the model defined in
(C). The speed of progression of Se, and consequently of the domain of Spaw expression in the
LPM, increases with the level of FurinA. (E) The model predicted that increasing FurinA levels,
resulting in enhanced maturation of Spaw, results in increased length of the Spaw expression
domain at a given time (180 min here). (F) Quantification of the length of the Spaw expression
domain (anterior-posterior) in embryos with no (MZaoh; n = 12), low (Zaoh mutants; n = 7),
normal (WT; n = 15), or high (WT injected respectively with 25 pg; n = 25 and 50 pg; n =

17 FurinA mRNA) FurinA levels. Histograms display average value Âś SEM; *p < 0.05, **p
< 0.01, and ***p < 0.005 in Student’s t test. (G) Cartoon illustrating the effect of FurinA on
the signaling range of Spaw in the LPM. In a WT situation, Spaw is cleaved prior to secretion
by cells at the posterior end of the LPM (10 somite stage, 13 hpf). Spaw induces its own ex-
pression in a paracrine fashion, and the Spaw expression domain expands toward the anterior
end of the developing LPM, reaching the heart field at the 23-somite stage (20 hpf). Spaw also
induces expression of Lft1 at the midline, which prevents it from reaching the right LPM. Spaw
expression is consequently limited to the left LPM and establishes LR patterning. In the MZaoh
mutants, the absence of FurinA processing of Spaw results in failure to induce Spaw expression
in the LPM and of Lft1 in the midline. As a consequence, LR patterning is affected. Overex-
pression of FurinA results in increased presence of mature Spaw in the extracellular space. The
activation of Spaw in the LPM progresses faster toward the anterior left LPM. LR patterning
is affected, likely as a result of an excess of Spaw protein overcoming the Lft1 midline barrier,
Kupffer’s Vesicle (KV) and midline (M).

Let us first consider the steady state solution, which is obtained by solving

∂S i

∂t
= 0, (5.12)

∂S m
i

∂t
= 0, (5.13)

∂S e

∂t
= 0, (5.14)

or,

cS e − ε iS i − kFS i = 0, (5.15)

kFS i − ε
m
i S m

i − sS m
i = 0, (5.16)

D∇2S e − εeS e + sS m
i = 0. (5.17)

This can be rewritten to

D∇2S e + αS e = 0 (5.18)
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with simply

S i(x) =
c

ε i + kF
S e(x), (5.19)

S m
i (x) =

kF
εm

i + s
S i(x). (5.20)

Here, α is given by α = sc
εm

i +s
kF

εi+kF − εe.
The case α > 0 represents a system where the production of Spaw exceeds Spaw’s
extracellular degradation rate. This implies that no steady state exists. Thus, for
high values of c, the level of extracellular Spaw will increase indefinitely in the linear
model. For this reason, we take this case out of consideration in this analysis. We also
omit the case α = 0, because it can generally only be obtained when εe = 0 ∧ (c =

0 ∨ s = 0 ∨ F = 0), which are all irrelevant cases, because then only diffusion of
extracellular Spaw is present. For α < 0, we obtain the steady state solution

S e(x) = C1 exp (−
√
|α|/Dx) + C2 exp (

√
|α|/Dx), (5.21)

where C1 andC2 are constants of integration. These constants are given by the pre-
scribed boundary conditions. We find the following expressions for the constants C1

and C2:

C2 =

−P
D

√
|α|/D

+ C1, (5.22)

C1 = −(
−P
D

√
|α|/D

) ·
exp (

√
|α|/D)

exp (
√
−|α|/D) − exp (

√
|α|/D)

. (5.23)

Note that in order to have α < 0 for all values of F, we need that c < εe. Figure 5.3
shows the steady states for c = 90 · 10−6, εe = 100 · 10−6 and a range of values for
F. The extracellular Spaw concentration in the domain correlates positively with the
level of FurinA. To get an idea of how exactly the total concentration reached in the
domain, is influenced by F, we consider the total amount of extracellular Spaw in the
system at time t [269], which is given by

Ne(t) =

∫ x=L

0
S e(x, t)dx. (5.24)

Analogously, let the total amount of intercellular Spaw be denoted by

Ni(t) =

∫ x=L

0
S i(x, t)dx, (5.25)

Nm
i (t) =

∫ x=L

0
S m

i (x, t)dx. (5.26)
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Figure 5.3: Steady state extracellular Spaw (S e) concentration gradients over domain x =

[0, 1000 µm] as a function of FurinA (F) concentration (color bar)

Now,

dNe

dt
=

∫ x=L

0

∂S e

∂t
dx, (5.27)

= D
∫ x=L

0
∇2S edx − εe

∫ x=L

0
S edx + s

∫ x=L

0
S m

i dx, (5.28)

= D[∇S e]x=L
0 − εeNe(t) + sNm

i (t), (5.29)

= P − εeNe(t) + sNm
i (t), (5.30)

and similarly,

dNi

dt
= cNe(t) − (ε i + kF)Ni(t) (5.31)

dNm
i

dt
= kFNi(t) − (εm

i + s)Nm
i (t) (5.32)

In steady state we have that

dNe

dt
= 0, (5.33)

dNi

dt
= 0, (5.34)

dNm
i

dt
= 0, (5.35)
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or,

P − εeNe(t) + sNm
i (t) = 0, (5.36)

cNe(t) + (ε i + kF)Ni(t) = 0, (5.37)

kFNi(t) + (εm
i + s)Nm

i (t) = 0, (5.38)

which gives the following expression for Ne(t)

Ne(t) =
−P

sc
εm

i +s
kF

εi+kF − εe
=
−P
α
. (5.39)

This shows that a higher F implies a higher total amount of extracellular Spaw in
steady state condition (as we assumed that α < 0). However, this influence of F satu-
rates with increasing levels of FurinA. This can be explained by the following obser-
vation: limF→∞α = limF→∞

sc
εm

i +s
kF

ε i+kF −εe = sc
εm

i +s−εe, indicating that increasing F will
ultimately not change the system behavior. Increasing FurinA only helps to increase
the extracellular Spaw to a certain point, as it is limited by the intercellular production
rate. Notably, the magnitude of the effect of Fon the system depends on the value of
c. The higher the c, the larger the effect of F. In other words, with a lower value for
c , the convergence due to F is faster. This is because how much Spaw is produced
within the cell, limits the amount of mature Spaw. In conclusion, by regulating the
maturation of intercellular Nodal, FurinA regulates the signaling range of Nodal. In-
creasing FurinA increases the signaling range, upto a maximum range determined by
the maximum rate of intercellular production of Nodal.

5.4 Discussion

Based on experimental studies we developed a model that shows that cleavage of
the Nodal-related Spaw proprotein into a mature form by FurinA is required for the
formation of an extracellular Spaw gradient. In this model, extracellular Spaw induces
intercellular Spaw production, which is cleaved by FurinA into a mature form that can
be secreted and diffuse through the extracellular matrix. This diffusion allows for long
range cell-cell signaling. In the absence of FurinA, this signaling can not take place.
Increasing FurinA speeds up gradient formation and creates a longer signaling range,
which has been validated with in vivo experiments. The model suggests that this
positive effect of FurinA saturates, as the production of intercellular Spaw is bounded
by the number of Spaw receptors that enable extracellular Spaw signaling. This study
shows that proprotein convertase FurinA is essential for Spaw signaling, which in turn
is essential for correct establishment of LR patterning and organ laterality.

We demonstrated how FurinA acts as a regulator of LR patterning by controlling
the signaling range of Spaw. Signaling ranges are typically controlled by diffusion
and reaction. This work suggests a new mechanism that also controls extracellular
gradient formation: the maturation of intercellular proteins.
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5.5 Supplementary methods

5.5.1 Numerical analysis

For the numerical simulations, we used a backward Euler scheme in time and a
second-order central difference scheme in space, with spatial discretization sizes of
∆x = L

1000 and time steps of ∆t = 15s. The simulation ends when time tend is reached.
In order to evaluate the time it takes for the system to reach a given state, we need to
define a position in the domain, denoted by xsignal, at which we test if the concentra-
tion of extracellular Spaw exceeds a threshold level of extracellular Spaw, S threshold

e .
So, more specifically, we determine tsignal(x) = min{t : S e(xsignal, t) > S threshold

e }. We
also identify how far the signal has extended at each point in time, as xsignal(t) =

min{x : S e(x, t) < S threshold
e }. These measures help illustrate how FurinA speeds up the

extracellular Spaw propagation.

5.5.2 Parameter value estimation

Values for parameters were either adopted from literature, or estimated based on our
data. The parameter values are given in Table 5.1. The length of the tissue and the
simulation duration is based on our data. The parameters D and εe are chosen ac-
cording to values for the protein Squint as described in [270], because Spaw protein
dynamics are comparable to Squint. The constant k, a measure of how efficiently Fu-
rinA converts Spaw into its mature form, is assumed to be 10−4 s−1 liter/mol, which is
comparable to typical values for various enzymes [271]. The concentration of FurinA
in the system was estimated using our data as follows. We consider an injection of
25 pg of FurinA mRNA in 200 nl and assume a translational efficiency of 103 [272],
which gives us a FurinA protein concentration of 10−6 mol/liter. The influx P of ex-
tracellular Spaw was estimated based on HER2 secretion rates in [273]. Here, 1500
pg of HER2 was secreted into 1 ml of medium by 3 ·105 mammalian cells in 24 hours.
We assume that the secreted protein is transported over at membrane of one spherical
cell with radius 5µm. With these values, we obtain an influx of in the order of 10−8

mol m−2 s−1 The values for he and me were estimated based on the lower range of
the concentrations of signaling molecules, of around 10 nM (BioNumbers.org). The
S threshold

e was chosen such that this threshold could not be reached in the absence of
FurinA, in correspondence to the experiments. The parameters s and εm

i were given
the same value as εe. The parameters εi and c were chosen such that the time it takes
for the modeled system to reach a certain state in the presence of FurinA is similar
to our data. To be more specific, these parameters were chosen such that after 180
min, the signal is roughly between 0 and 700 µm and the time it takes for the signal
to reach 1000 µm is roughly between 180 and 360 min. Within the limits identified
using the theoretical analysis of the linearized model, however, the overall behavior
of the non-linear system described here does not depend on the specific choice of pa-
rameter values. Further, we would like to point out that we assume a round number
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of molecules for a number of parameters. We divide these by Avogadro’s number,
yielding the non-intuitive molarity values.
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5.6 Supplementary tables

parameter description value unit
∆x Spatial discretization

stepsize
1 µm

∆t Time discretitazion step-
size

15 s

L Length of tissue 1000 (data) µm
tend Simulation end 360 (data) min
D Diffusion coefficient 3.2 [270] µm2 s−1

εe Extracellular clearance
rate

1 · 10−4 [270] s−1

εi Intercellular clearance
rate

75 · 10−4 s−1

εm
i Intercellular clearance

rate for mature form
1 · 10−4 s−1

c Synthesis activation rate 200 · 10−4 s−1

s Secretion rate 1 · 10−4 s−1

k Constant that relates
level of FurinA to rate of
Spaw maturation

104 [271] s−1liter/mol

F FurinA concentration ranges from 0 to
5·10−6 (data, [272])

mol/liter

he Extracellular Spaw con-
centration at which the
synthesis activation rate
is at half-maximum

4.15 · 10−10 mol/liter

me Concentration of extra-
cellular Spaw at which
all Spaw receptors of the
cells are occupied

8.3 · 10−10 mol/liter

P Extracellular Spaw flux 1.66 · 10−8 mol m−2s−1 [273]
S threshold

e Signalling threshold 4.15 · 10−10 mol/liter

Table 5.1: Parameter settings.
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5.7 Supplementary videos

Video S1 shows numerical simulations of the progression of extracellular Spaw (S e)
and, subsequently, of the domain of spaw expression in the LPM, in the presence of
increasing levels of FurinA. It can be found at http://dx.doi.org/10.1016/j.
devcel.2014.12.014
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6. Autocrine inhibition in branching

Abstract

Branching morphogenesis, the emergence of tree-like structures in organs such
as lungs, kidneys and the mammary gland, has been the subject of many in vitro
and in silico experiments. Branching morphogenesis involves many mechanisms,
such as cell proliferation, differentiation and migration and is regulated by a net-
work of signaling factors. In this work, we aim to explain how an epithelial tissue
can branch autonomously; without cell proliferation and in the absence of sig-
naling from the surrounding mesenchymal tissue. in vitro evidence suggests that
branching sites are regulated in a curvature dependent manner by an autocrine
inhibitory signal that diffuses through the matrix and locally inhibits cell protru-
sions. Based on this hypothesis, we developed a multiscale cellular Potts model.
Using this model, we show that autocrine inhibition of cell protrusions is suffi-
cient to induce branching morphogenesis. The model suggests that the autocrine
signal accumulates at concave tissue boundaries, so that cell extensions are more
preferable at convex sites. This curvature effect initiates a positive feedback loop
where convex sites become even more convex, allowing even more extensions
which results in a fully branched structure.

6.1 Introduction

During the development of organs such as lungs, kidneys and the mammary gland,
epithelial tissues undergo shape changes during embryonic development resulting in a
tree-like structure of branches [274, 275]. The function of branched tissues is to opti-
mize the exchange of chemicals with the surrounding tissue by maximizing its surface.
The dynamics of branching from an initially tube shaped epithelial tissue, called the
duct, into the surrounding mesenchymal tissue involves involves many cellular mech-
anisms such as directed cell migration, oriented cell division, cell shape changes, cell
differentiation and cell competition (see reviews [276–278]). The specific process of
branching morphogenesis varies per organ, but the key mechanisms are believed to
be conserved [279, 280]. Although the dynamics of branching in various organs have
been characterized well (see for instance, lung: [281], kidney: [282], mammary gland:
[283], pancreas [284]), it is still poorly understood what drives branching morphogen-
esis and which mechanisms are necessary or merely instructive.

For a long time, it was thought that localized cell proliferation is the main driving
factor of branching, but more recent experimental data indicate that this is not always
true (for review see Ref. [277]). Branches have been observed to initiate and extend
prior to the localization of cell proliferation [217, 285]. Signaling factors from the
mesenchyme have also been proposed to drive branching [286]. However, the mes-
enchyme is not required either, as epithelial tissues can branch in the absence of a
surrounding mesenchyme in vitro [287–289]. In conclusion, it is still poorly under-
stood how epithelial tissues branch autonomously in the absence of cell proliferation
and the mesenchyme. Here we propose a cellular mechanism for such autonomous
branching of epithelial tissues.
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Previous models were often based on tissue growth. They employed known, physical
principles of branching growth. It has been thus proposed that epithelial branching can
be described by Laplacian growth models. Laplacian growth underlies branching in
many non-biological systems, like crystal growth [290] and viscous fingering [291]. In
Laplacian growth, the interface of a domain advances with a velocity proportional to
the gradient of a field that obeys the Laplacian equation (in quasi-steady state) (∇2u =

0), i.e. is dominated by diffusion [292], with u = 0 at the interface. Positive curvatures,
that arise due to small deviations from a initially homogeneous boundary, experience
a higher gradient of the Laplacian field and thus will advance. This curvature effect is
then enhanced and the initial deviations advance further. This is known as the Mullins-
Sekerka instability that causes branching. In viscous fingering [291], for instance,
water is injected into oil between two parallel flat plates. As water is less viscous
then oil, the pressure between the two substances makes the water branch out into
the oil. It has been proposed that epithelial branching resembles viscous fingering.
A mathematical model showed that an epithelial tissue branches into the surrounding
mesenchyme if the mesenchyme is less viscous than the luminal fluid in the epithelium
[293]. Biological branching has also been proposed to be driven by diffusion limited
aggregation (DLA), a concept that is mathematically very similar to Laplacian growth
[294]. It was proposed that branching patterns of bacterial colonies are governed by
DLA of nutrients [295]. Similarly, it has been suggested that a tumor branches out as
proliferating cells consume oxygen [296] and that an epithelial tissue can branch by
consuming fibroblastic growth factor (FGF) that upregulates cell proliferation [297].

Other mathematical models proposed that patterns of stimulatory growth factors
from the mesenchyme can drive branching by locally upregulated cell proliferation.
These models are based on experimental observations that suggest that in the devel-
oping lung bud, the position and levels of FGF10 are associated with the mode of
branching [298]; domain/lateral branching, planar bifurcation and orthogonal bifurca-
tion [281, 286]. Hirashima et al. [299] developed a reaction-diffusion model including
FGF10 signaling in the mesenchyme which is inhibited by TGF-β and SHH and ac-
tivated by SHH. This model suggests that the pattern of FGF10 and thus the mode
of branching depends on the curvature of the lung bud, like in Laplacian models.
Menshykau et al. [300] extended the reaction-diffusion model by including FGF10 in-
duced SHH production in epithelial cells. Furthermore, binding of SHH to its receptor
both up-regulates the expression of this receptor and upregulates FGF10 expression in
the mesenchyme. During simulated bud growth, the curvature of the domain increases,
which causes a localized spot of FGF10 at the tip of the bed. The models suggests that
the SHH ligand-receptor interactions allows the localized spots to stabilize. By letting
the growth rate of the tissue domain depend on the level of ligand-receptor signaling,
it was shown that the tissue branches out [301]. In many branched organs, there are
homologies of FGF10 and SSH that drive branching [277] and the ones involved in
branching of the kidney have been shown to produce a similar Turing mechanism as
in lung [302]. So, it has been suggested that an intricate signaling network between
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the epithelium and mesenchyme results in a pattern of growth factors, which drives
branching by locally upregulating tissue growth.

Another class of models asked how stereotypic rules for branching splitting deter-
mines the architecture of the whole organ. A model that describes branching by
chemotaxis towards a growth factor, showed that the number of branches depends
on the ratio between the proliferation rate and the chemotaxis speed [303]. Another
modeling paper proposed that branch splitting is controlled by an inhibitory signal
produced by the epithelium [304]. In this model, it was assumed that a branch bi-
furcates if the inhibitory signal is below a certain threshold, resulting in a network of
branches that avoid each other similar to experimental data [304].

Because there is increasing experimental evidence that inhibitory signals and not
stimulatory growth factors are associated with sites of branching [98, 305, 306], math-
ematical models have explored the role of inhibitory signals. Two different models
have suggested that an autocrine signal can drive branching by locally inhibiting tis-
sue growth. One modeling paper argued that the displacement field of a modeled
growing domain more accurately fitted to experimental data if an autocrine signal in-
hibited, instead of stimulated, tissue growth [307]. A cell-based model suggests that
a tissue branches due to a curvature effect on an autocrine signal that inhibits cell
proliferation [308]. Due to diffusion, the autocrine inhibitor accumulates at concave
tissue boundaries, such that cell proliferation occurs at a higher rate at convex tissue
boundaries.

Our model is based on in vitro observations that suggest a mechanism by which
mammary epithelial gland cells can branch out autonomously [98]. In this experi-
mental study by Nelson et al. [98] it was asked how branching sites are determined.
They embedded mammary epithelial cells in cavities with a specific geometry in 3D
collagen gels, to study the extent of sprouting into the surrounding collagen gel. By
varying the geometry, it was found that cell protrusions into the surrounding gel were
most frequent at sites where the geometry was convex. It was hypothesized that an au-
tocrine signal determines these sites of branching, but it was not known what molecule
this could be. A numerical model describing a constant flux of a signal from the tissue
(s) and its diffusion (D) and degradation (ε) in the matrix ( ∂c

∂t = D∇2c−εc+ s) showed
that the autocrine signal accumulated at concave boundaries and that its concentra-
tions negatively correlated with the rate of in vitro cell movement. In vitro disruption
and overexpression of TGF-β caused cell movements to appear or disappear through-
out the tissue boundary, respectively. This suggests that TGF-β is responsible for the
observed curvature dependent cell movement. Because cell movement and not tis-
sue growth depends on the curvature, this mechanism is conceptually different from
Laplacian growth.

We introduce a cellular Potts model to study if such autocrine inhibition of cell move-
ment is sufficient to drive branching morphogenesis. We assume that local concentra-
tion of the autocrine signal inhibits cell protrusions at the boundary of the tissue. This
model thus suggests that a tissue branches as a result of a curvature effect on cell
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movement caused by diffusion and degradation of an autocrine signal in the matrix.
In the model the autocrine signal accumulates at concave areas, allowing extensions
to occur around the convex areas. Then, the tissue can branch further because tissue
extensions at the convex sites makes the tissue more convex (which increases accu-
mulation of the inhibitor at concave areas), making extensions at convex sites even
more preferential. The model also suggests that the initiation and speed of branching
is regulated by the extent of random motility of cells. Furthermore, the model sug-
gests there is an optimal level of autocrine signaling that promotes branching and that
lower surface tensions in our model induces branching.

6.2 Results

Experimental observations suggest that cell protrusions are inhibited by the local con-
centration of TGF-β [98]. It was hypothesized that diffusion of autocrine TGF-β drives
curvature dependent sites of branching [98]. To test if this mechanism suffices to drive
epithelial branching, we developed a coupled cell based - continuum model. A frame-
work of this model is given in Figure 6.1. For more details of the model, we refer
to the methods section. We model a tissue with the cellular Potts model (CPM) (Fig-
ure 6.1A), which describes cells as a collection of lattice sites on a 2D square lattice.
So, each lattice site ~x is assigned a spinσ(~x) ∈ Z{0,+} that describes which cell occupies
this lattice site. The spin is assigned value 0 if the medium that surrounds the tissue
occupies this site. Cells in the CPM move by making protrusions and retractions. The
tissue evolves in time by a Monte Carlo simulation. At each Monte Carlo Step (MCS),
a number of N movements are attempted, where N is the number of lattice sites. A
movement is defined as copying the spin of a lattice site σ(~x) to a neighbouring lat-
tice site ~x ′. Such a movement is accepted or declined based on a Hamiltonian H that
describes the forces acting on the cells:

H =
∑

(~x,~x ′)

J(σ(~x), σ(~x ′))1σ(~x),σ(~x ′) + λ
∑

1≤σ≤n

(a(σ) − Atarget(σ))2. (6.1)

In the first term (~x, ~x ′) is a pair of adjacent lattice sites and J the adhesion energy
between two lattice sites 1. The first term approximates a surface tension of the tissue.
The second term describes a conservation of cell area. Here, a(σ) denotes the area of
cell σ and Atarget(σ) is the target area of cell σ. The parameter λ indicates the strength
of this area constraint.

By making a movement, the Hamiltonian of the system changes by ∆H. We assume
that the concentration of a diffusive signal inhibits cell protrusions into the surround-
ing medium. We model this by adding an extra term to the change in the energy
(Hamiltonian) of the system:

∆Ĥ = ∆H + χ · c(~x ′) · 1σ(~x)>0 · 1σ(~x ′)=0 (6.2)

1The indicator function is defined as 1A =

1 if Ais true

0 if Ais false
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Figure 6.1: Flowchart of the model. (A) CPM calculates cell movement in tissue due to au-
tocrine inhibition; (B) Autocrine signal is forwarded in space and time, according
to PDE in Eq. 6.4.

where c(~x ′) is the concentration of the inhibitory signal at the protruding site and χ
regulates the strength of the inhibition. Now, the total change in energy ∆Ĥ determines
the probability that a movement is accepted:

P(∆Ĥ) =

e
−∆Ĥ

T ,∆Ĥ ≥ 0

1 ,∆Ĥ < 0
(6.3)

Here T is the cellular temperature, that regulates the extent of random cell motility.
The higher the temperature T , the higher the probability a movement will be made
against the forces acted on the cell. We assume that the inhibitory signal is secreted
by the epithelial tissue and diffuses and decays in the medium (Figure 6.1B). So, we
describe the dynamics of the signal by the following partial differential equation:

∂c(~x, t)
∂t

= D∇2c(~x, t)︸      ︷︷      ︸
diffusion

+α1σ(~x)>0︸   ︷︷   ︸
secretion

− εc(~x, t)1σ(~x)=0︸          ︷︷          ︸
decay

(6.4)

A simulation consists of consecutive steps of the CPM and the PDE, where one
timestep of the CPM is followed by 3 seconds of inhibitor dynamics. This time scale
was chosen arbitrarily. Other parameter values are given in Supplementary Table 6.1.

6.2.1 Autocrine inhibition of cell movement drives branching

To study the dynamics of the model, we run the model for 20.000 MCS. The results
should give insight in how the tissue morphology progresses over time, as well as why
the observed behavior takes place. We initiate approximately 1000 cells, by randomly
distributing one-site cells over a disk with radius 0.45 in a tissue of 0.9 mm by 0.9
mm. Then Eden growth [309] is applied for 10 iterations to let the cells grow, thus
filling the circular domain. To let the tissue attain a roughly circular shape with cells
of similar shape we run the CPM for 100 MCS without the autocrine signal dynamics.
Figure 6.2A shows a timelapse of one model realization. A first look at the time
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6.2. Results

Figure 6.2: Simulation of branching by autocrine inhibition. (A) Timelapse of a model real-
ization; (B) Compactness as a function of time, shaded regions: standard deviations
of 100 simulations; (C) Energy spend by the system (H−H0 =

∑
∆H) as a function

of time, shaded regions: standard deviations of 100 simulations.

series of the simulation shows that at approximately 1000 MCS the boundary of the
tissue gets bumpy. Then around 3000 MCS, many droplet-like extensions appear. The
length of these extensions increase and as a result, a fully branched structure, with
evenly thick branches is formed, that stabilizes around 8000 MCS.

To quantify the extent of branching, we measured the compactness of the tissue [114]
C = (Atissue/Ahull), the ratio between the area of the largest connected component of
the tissue and its convex hull, the smallest convex set that contains the tissue [310]. A
compactness of 1 implies a perfectly circular tissue shape, whereas a low value of the
compactness implies a high degree of branching. Figure 6.2B shows the compactness
of the tissue over time. This shows that indeed branching rapidly takes place during
the first 5000 MCS and afterwards, the compactness keeps on slowly decreasing, into
a stabilized structure.

The behavior of the model can be explained as follows. Initially, due to the random
motility of the cells, the boundary of the circular tissue will be become irregular. Con-
sequently, by diffusion, high concentrations of the inhibitor are located at the concave
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boundaries of the tissue, indicated by the darker grayscales at these locations (see Fig-
ure 6.2A), while low concentrations are located at convex boundaries. Because the
contribution of the autocrine signal to the change in total energy in the system is al-
ways positive, extensions at concave sites are least energetically favourable. Instead,
extensions are facilitated at the convex sites of the tissue. As a result, the the bound-
ary at these sites becomes even more convex, allowing for more potential extensions.
Thus, this mechanism reinforces itself.

In conclusion, our model suggests that inhibition of cell movement at negative curva-
tures of the tissue boundary due to autocrine signaling drives a branching instability.

Branching by dissipation

The mechanism in our model resembles a mechanism proposed for vascular network
formation of endothelial cells by Merks et al. (2008) [114]. Here, it was proposed that
cells chemotact towards an autocrine signal and that chemotaxis is contact-inhibited:
cells only respond to the signal at cell-medium interfaces. Because cells at the bound-
ary of the tissue experience a shallower gradient at positive curvatures, a branching in-
stability occurs. Branching was enabled if cell retractions and protrusions responded
to the signal, but also if only cell protrusions responded to the signal. In the latter
case, the cumulative energy of the system Hcum(t) = H(t)−H(t = 0) =

∑ti=t
ti=0

∑
∆Ĥ(ti)

increased as a function of time, suggesting that the tissue branches by a dissipative
mechanism. This is because ∆Ĥ is on average positive, due to the relatively large pos-
itive energy contribution of protrusions against the chemoattractant. So, on average,
cells make movements that cost energy. The intrinsic random motility of cells allows
the tissue to deviate from the optimal configuration. Due to such random fluctuations,
the tissue becomes unstable and converges to a state outside of thermal equilibrium.
Since Hcum does not stabilize in time, it actually costs the system energy to stay in this
new equilibrium. Figure 6.2C shows Hcum as a function of time in our model. Similar
to Merks et al., the energy of the system increases over time, indicating that our sim-
ulated tissue also branches by a dissipative mechanism. In our case, this is due to the
large positive energy contribution of the autocrine inhibition of cell movement in ∆Ĥ
(see equation 6.4). Movements with a positive energy change, against the inhibitor,
can only occur if there is sufficient random motility, which is regulated by the cellular
temperature T (see equation 6.3).

6.2.2 Random motility regulates branch initiation and branching speed

Because the cellular temperature T regulates the extent of random fluctuations, i.e.
how much the tissue may deviate from its optimal configuration, we will vary T to
study how it affects branching morphogenesis in our model. Figure 6.3A shows the
different morphologies of the tissue as a function of T . For low values of T , the tissue
does not branch. Starting around T = 20, the tissue developed droplet-like extensions.
For higher values of T the tissue has branched and the branches are longer and thinner.
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Figure 6.3: Cellular temperature regulates branching dynamics. (A) Example configura-
tions of the tissue at 20000 MCS for different values of T ; (B) Compactness as a
function of T , shaded regions: standard deviations of 100 simulations; (C) Com-
pactness as a function of time, shaded regions: standard deviations of 100 simula-
tions; different colors: different values for T , see legend.

Figure 6.3B shows the compactness of the tissue as a function of T . This shows that
the compactness rapidly decreases for increasing values of T and stabilized at around
T = 20, reflecting that branching occurs from around T = 20.

Because a tissue always starts out with droplet-like extensions that later smooth out,
see Figure 6.2A, we investigated how the temperature regulates the speed of branch-
ing. Figure 6.3B shows the compactness as a function of time for the various values
of T . For low values of T such as T = 18 and T = 20, the compactness decreases, but
it does not reach a low compactness before the end of the simulation. We quantified
speed of branching by measuring the time t(C < 0.8) it takes for the tissue to reach
a compactness below 0.8 (dashed line in Figure 6.3C. Figure 6.3D plots t(C < 0.8)
as a function of the temperature T . This shows that the speed of branching quickly
increases when T increases and then saturates.
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Figure 6.4: Strength of autocrine signal biphasically drives branching. (A) Example con-
figurations of the tissue at 20000 MCS for different values of χ; (B) Compactness as
a function of χ, shaded regions: standard deviations of 100 simulations; (C) Branch
length as a function of χ, shaded regions: standard deviations of 100 simulations.

In conclusion, the temperature regulates both the initiation and the speed of branch-
ing. If T < 18, no branching takes place. If T > 18, branches start to extend but the
tissue only develops in a fully branched structure before a certain time point if T is
sufficiently high.

6.2.3 Strength of autocrine signal has biphasic effect on branching

The previous section showed that cellular temperature affects branch initiation and
speed, but has little effect on the morphology of the tissue. We next studied how the
chemoinhibition strength χ, that regulates the extent of inhibition of cell extensions
due to the autocrine signal, affects branching morphology. Figure 6.4A shows the re-
sulting morphologies as a function of the chemoinhibition strength χ. Interestingly,
branching seems to be have a biphasic dependence on the chemoinhibition strength.
For low values of χ, no branching takes places. This is because the impact of the au-
tocrine signal is negligible in the total Hamiltonian of the CPM; there is no preference
for low compared to high concentrations of the autocrine signal, hence the tissue re-
tains its circular shape. Increasing the value of χ induces branch formation, as now the
difference in levels of the autocrine signal concentration around concave and convex
sites, do affect the Hamiltonian. However, by increasing χ even further, branching oc-
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Figure 6.5: Surface tension affects branch morphology. (A) Example configurations of the
tissue at 20000 MCS for different values of J01; (B) Branch thickness as a function
of γ01, shaded regions: standard deviations of 100 simulations; (C) Branch length
as a function of γ01, shaded regions: standard deviations of 100 simulations.

curs at such a fast rate that branches start to break apart from the spheroid, since with
high values of χ, the chemoinhibition term in the Hamiltonian starts to dominate over
the cell-cell adhesive energy. Then, for more extreme values of χ, branching does not
start, because every extension is very costly.

Figure 6.4B shows how the compactness of the tissue depends on the strength of
the autocrine signal χ, confirming the biphasic effect of χ. Figure 6.4C shows that
χ increases the length of the branches. In conclusion, our model suggests that the
autocrine signal regulates the degree of branching in a biphasic manner. A tissue can
branch within an optimal range of χ.

6.2.4 Decreasing surface tension promotes branching

Experimental studies have shown that cytoskeletal tension impacts branching mor-
phogenesis [297, 311, 312]. In the CPM, cytoskeletal tension is associated with the
surface tension γ01 defined as γ01 = J01 −

J11
2 [73], where J01 is the adhesive energy

between cell and medium and J11 is the adhesive energy between two cells. Here we
will study what effect the surface tension has on the branching morphology in our
model, by varying J01 and thus γ01.

Figure 6.5A shows the morphologies for different values of γ01. For very low values
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of γ01 there are many thin branches, which seem to have merged, almost resembling a
network. Also, the surfaces of the branches are ragged. As γ01 increases, the branches
become more smooth again and for high values of γ01 the branches become droplet-
shaped. Figure 6.5B and Figure 6.5C show that decreasing γ01 decreases the length
and increases the thickness of the branches. The effect of γ01 in our model can be
explained as follows. At low values of γ01 the energy contribution of chemoinhibition
dominates over that of adhesion, so that the tissue is able to branch. Because γ01 is
low, cell-medium interfaces are allowed, so that branches may elongate and become
thin. For high values of γ01 it becomes more energetically costly to have a larger
cell-medium interface.

Taken together, a decrease in surface tension allows for more cell-medium interfaces
so that the tissue is able to deform into a branched structure, with thinner and longer
branches.

6.3 Discussion

Using a computational model, we show that inhibition of cell protrusion by an au-
tocrine signal suffices to drive epithelial branching in the absence of cell proliferation
and in absence of signaling with the surrounding mesenchyme. In a simulated epithe-
lial spheroid, random cell motility causes the periphery to become bumpy. The tissue
branches due to a curvature effect, leading to reduced concentrations of the autocrine
signal at convex sites of the tissue boundary. So, cell protrusions are more preferen-
tially at positive curvatures. This results in an instability where local extensions at
positive tissue curvature make reinforces the curvature effect so that full branching
proceeds (Figure 6.2) that is limited by the surface tension of the tissue.

6.3.1 An autonomous mechanism for branching

Previous mathematical models were often based on Laplacian growth principles, which
assume that tissue growth is proportional the gradient of a Laplacian field. In such
models, tissues branch due to a Mullins-Sekerka instability, where positive curvatures
experience higher gradients of the field and become unstable. It has been proposed
that a pressure field between epithelium and mesenchyme [293], or a growth factor
field [297, 308] can drive branching. It has also been proposed that patterns of stimu-
latory growth factors, arising from Turing-type signaling interactions between the ep-
ithelium and mesenchyme [299, 300, 302], drive branching by locally up-regulating
tissue growth [301, 302]. However, experimental data suggests that branches extend
prior to localized cell proliferation [217, 277, 285]. Furthermore, epithelial tissues
can branch in absence of the mesenchyme [287–289] and distributions of stimula-
tory growth factors are not always associated with branch localization [305, 306].
In contrast to previous models, we propose a cellular mechanism for branching and
our model suggests that neither tissue growth nor signaling from the mesenchyme
is required. Based on experimental data [98], our model suggests that an autocrine
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inhibitory signal determines sites of branching and drives branching by a curvature
effect where the autocrine signal accumulates at concave parts. This curvature effect
is similar to curvature effect in Laplacian growth, but our model suggests that curva-
ture dependent cell movement is sufficient to drive branching.

6.3.2 Experimental validation

Autocrine signaling strength

The experimental study on which we based our model suggests that TGF-β acts as the
autocrine inhibitory signal [98]. Our model predicts that TGF-β can only drive branch-
ing if its signaling strength is around an optimal value (Figure 6.4). In agreement with
our model predictions, several experimental studies suggest that TGF-β drives branch-
ing in a concentration dependent manner. High concentrations of TGF-β1 to obstructs
mammary gland epithelial branching, while low concentrations promoted branching
[313]. Furthermore, low concentration of TGF-β promote tubulogenesis in mammary
glands in vitro [314]. Decreasing the response of TGF-β receptors leads to increased
branching [315]. In our model, decreasing χ also increased branching, but decreasing
χ even further stopped branching (Figure 6.4). To investigate if the biphasic effect of
chemoinhibition strength on branching can be found in vitro, it would be interesting
to extend the experimental set-up by Nelson et al. [98] to larger unconfined mam-
mary epithelial tissues that exhibit full branching morphogenesis (not just sprouting
movements) and modulating TGF-β response.

Since many organs have homologies of the TGF-β family and our model does not
specify a certain cell type or specific signaling molecule, we may validate our model
using experimental observations of various organ systems. In kidney, BMP7 stimu-
lates branching at low concentrations while inhibiting branching at higher concentra-
tions [316]. Similar to our model, the secreted inhibitor is thought to regulate branch
avoidance [304]. The shape of the extensions also resembles experimental obser-
vations of kidney and lung branches. Initially, the extensions are broad and droplet-
shaped, which then elongate over time [282, 297, 317]. In in vitro experiments, branch
bifurcation occurs very often, which is not the case in our model. Simulations show
that if we allow cell proliferation, branch splitting does occur. To better compare in
vitro branching dynamics with our model in the future, we will generate time evolu-
tions of the skeletal tree of the model configurations, similar to what has been done by
Watanabe et al. [282]. Directly comparing in vitro with in silico data could provide us
with realistic parameter values, such as the time scale of one MCS. This might allevi-
ate the issue that the current time scale of our model (branching occurs within 2h) is
much faster than in vitro (2-3 days) [282].

Surface tension

In our model, reducing surface tension promotes branching (Figure 6.5). This com-
pares well with in vitro observations by Hartmann and Miura, who showed that dis-
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ruption of the cytoskeleton in isolated lung epithelium increased branching [297].
Similarly, inhibiting cell contractility promotes branching morphogenesis in pancreas
[289]. In contrast with these experiments, increasing cytoskeletal tension in embry-
onic lung explants increased branching [311, 312]. Because our model is incomplete,
i.e. it does not involve intricate interplay between lung epithelium, the basement mem-
brane and the surrounding mesenchyme, and remodeling of the matrix, it can not ex-
plain all these experimental observations.

Random motility

In our simulations, the cellular temperature T , that regulates cell motility, promotes
branching (Figure 6.3). In agreement with our model, knockout of Btbd7 in kidney
increases cell motility, which resulted in less end bends [318]. In these experiments,
Btbd7 also decreased cell-cell adhesions. The experimental figures indicate that the
buds and branches are thicker [318]. This is also consistent with our model, as an
increase in the cell-cell adhesion energy J11 is equivalent to a decrease in surface
tension γ01, which leads less branches and increased thickness (Figure 6.5).

Our model has given insights into epithelial branching, but it disagrees with observa-
tions in kidney. Recent experimental observations suggest that the autocrine inhibitor
BMP7 does not regulate curvature dependent protrusion [319]. Using a comparable
system to Nelson et al. [98], but with renal epithelial cells, Martin et al. showed
that renal cells did exhibit curvature dependent protrusions, but not because of BMP7
localization. They interfered with autocrine signals, by applying rapid flow to the
medium and showed that cells still exhibited curvature dependent protrusions. The au-
thors suggested that this might be regulated by a membrane tension mediated motility
instead. The authors also suggest that the mechanism for curvature dependent protru-
sion could vary among organ systems; mammary cell do use an autocrine inhibitor for
this purpose while renal cells do not. Pavlovich et al. [305] have argued that reliance
of mammary epithelial branching on patterns of inhibitory signals might be unique.
So, we might only be able to use our model to gain insights in epithelial branching of
mammary gland and not other organs.

6.3.3 Limitations and future work

Like in any model, the model behavior depends on the assumptions that are made.
Our model (Figure 6.1) relies on two major assumptions. Firstly, we view the tissue
as a cross-section, so that decay of the autocrine signal only takes place outside of the
cells. This affects the field of the autocrine signal, which also likely affects the tissue
dynamics. Preliminary simulations show that the model also exhibits branching if we
allow decay to occur everywhere in the tissue (i.e. consider the tissue as a 2D pro-
jection). The other major assumption concerns the definition of the Hamiltonian that
describes chemoinhibiton of cell movements (Eq. 6.11). Here, cell-matrix extensions
are inhibited by the autocrine signal, while cell-cell extensions are independent of the
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autrocrine signal. As a result, cell copies within the tissue are more often accepted
than at the boundary. If we view the tissue as a 2D projection, one could argue that
cell-cell copies should also be affected by the autocrine signal, as the cells sense the
matrix below them. Therefore, in subsequent research we will investigate the influ-
ence of inhibiting extensions at cell-cell copies, similar to Merks et al. [114].

The present model greatly simplifies in vivo branching, which involves many sig-
naling molecules, from the epithelium and mesenchyme, and their interactions. We
could study how interactions between stimulatory and inhibitory growth factors drive
branching. Furthermore, signaling molecules such as TGF-β affect different pathways
[320] and as such can regulate different types of cell behavior. We could for instance
study how growth factor induced patterning of both cell movement and cell prolifer-
ation affects branching. The ability of cells to remodel the extracellular matrix has
been shown to be involved in branching (for a review, see [277]). For instance, fiber
assembly progresses branching in salivary glands [321]. Collagen fiber reorientation
directs branch elongation in mammary epithelia [322]. The activity of matrix metallo-
proteinases (MMPs) has been highly implicated in mammary gland branching [323].
TGF-β is expressed by cells in a latent form that binds to the matrix, and matrix re-
modeling can release TGF-β from the matrix in an active form [324]. TGF-β can be
released from the matrix in many ways (review [320]), for instance due to stretching
of latent TGF-β [325]. On stiffer matrices, bound TGF-β experiences more stress,
which induces its release [325]. Sites of branching are correlated with matrix stresses
[326] and since many morphogenetic processes are highly influenced by matrix stiff-
ness, it would be interesting to implement such interactions between matrix stresses
and TGF-β into account.

In summary, we propose that an inhibitory autocrine signal can drive branching mor-
phogenesis by locally inhibiting cell movement. In this model, the autocrine signal
accumulates at concave areas, so that branching is reinforced at sites with higher cur-
vature. This work paves the way for studying the effects of cell-cell signaling and
other cellular level dynamics on branching morphogenesis.

6.4 Methods

We developed a combined continuum - cell based model to describe the secretion
and diffusion of an autocrine growth factor that we assume to inhibit cell movement.
The cellular Potts model (CPM) is used to describe cell movement within a tissue
composed of discrete cells. The dynamics of the inhibitor are described by a PDE, of
which the local concentration feeds back to the CPM by inhibiting pseudopods.
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6.4.1 Cellular Potts Model

To simulate collective cell behaviour we use the Cellular Potts model (CPM)[72, 73].
The CPM defines a two-dimensional lattice Λ ⊂ Z2. The size of the lattice is de-
termined by m and n, which denote the number of lattice sites in the vertical and
horizontal axis respectively. The cells are represented as clusters of connected lattice
sites. Every site is assigned a value σ(~x) ∈ Z{0,+}, which is called a spin, to identify
the cell it belongs to. Spin σ(~x) = 0 is reserved for the ECM. Thus, a cell is defined
as the set of lattice sites mapping to the same spin:

C(i) = {~x ∈ Λ | σ(~x) = i}. (6.5)

The CPM uses a modified Metropolis Monte-Carlo algorithm to simulate cell move-
ment. In this Monte Carlo algorithm, Monte Carlo Steps (MCSs) are taken. In one
MCS, the CPM attempts N movements, where N = mn is the number of lattice sites.
Each movement is defined as follows. A random lattice site ~x is selected. Then, a
random site ~x ′ in the Von Neumann neighbourhood of ~x is selected and the spin σ(~x)
is attempted to be copied to ~x ′. The success of this copy depends the change of energy
associated with this movement. A Hamiltonian function H represents the total energy
of the system, reflecting the forces that are present in the system. The system aims to
minimize H. In the simplest version of the CPM the Hamiltonian includes adhesion
energies of cell-cell interfaces and area constraints [72]. The Hamiltonian is usually
defined as follows:

H = Hadhesion + Harea (6.6)

=
∑

(~x,~x ′)

J(σ(~x), σ(~x ′))1σ(~x),σ(~x ′) + λ
∑

1≤σ≤n

(a(σ) − Atarget(σ))2. (6.7)

with (~x, ~x ′) a pair of adjacent lattice sites. Here J is a matrix with adhesion energies
between cell types (ECM and epithelial cells) and δ is the Kronecker delta function
ensuring that only cell boundaries are considered in the adhesion summation. In ad-
dition, a(σ) denotes the current number of sites occupied by cell σ while Atarget(σ) is
the target area of cell σ. The parameter λ indicates the strength of this area constraint.
The difference in energy corresponding to a copy is given by:

∆H = Hafter − Hbefore. (6.8)

This difference determines the probability that the copy is accepted. If ∆H is nega-
tive, the movement will be accepted, since it will decrease the energy of the system.
However, if ∆H is positive, the movement will be accepted according to a Boltzmann
distribution, yielding:

P(∆H) =

e
−∆H

T ,∆H ≥ 0,

1 ,∆H < 0.
(6.9)

Here T is the cellular temperature, that regulates the magnitude of intrinsic random
cell motility.
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6.4.2 Dynamics of autocrine signal

We assume that cells secrete an inhibitor which diffuses and degrades in the ECM,
giving rise to:

∂c(~x, t)
∂t

= D∇2c(~x, t) + α1σ(~x)>0 − εc(~x, t)1σ(~x)=0 (6.10)

In this equation c(~x, t) is the concentration of the chemical at time t and site ~x. The
PDE contains three parameters, where D is the diffusion coefficient, α is the secretion
rate and ε is the decay rate. We view the tissue as a cross-section, and assume decay of
the autocrine signal in the medium as it binds to matrix components. Initially there is
no signal in the system, thus c(~x, 0) = 0 for all ~x. The boundary of the CPM grid acts
as a sink, setting c(~x, t) = 0. The PDE is solved by using a forward Euler PDE solver
with h = ∆x = ∆y being the distance between the lattice site centers, where ∆x and
∆y are the horizontal and vertical distances respectively. We set ∆t to 0.2 seconds and
during each Monte Carlo iteration 15 of the numerical integration steps are performed,
so that the autocrine dynamics run for tc = 3 seconds.

6.4.3 Local concentration of autocrine inhibits cell movement

To model the inhibitory effect of the autocrine c on the motility of cells, the concen-
tration of the autocrine inhibitor feeds back to the CPM. We assume that, as experi-
mentally observed by Nelson et al. [98], inhibition depends on the amount of local
autrocrine. In accordance, we extend the expression for ∆H by an additional term:

∆Hinhibition = χ · c(~x ′) · 1σ(~x)>0 · 1σ(~x ′)=0 (6.11)

The idea of adding this term is that copies toward high concentrations lead to an
increase in energy and thus are unfavored. Here, χ, is a parameter that regulates the
strength of this inhibition term. The last two terms ensure that this chemoinhibition
term comes into play only when a copy is made from a cell to the ECM, modeling a
pseudopod extension at the boundary of the tissue.

6.4.4 Morphological measures

We introduce the following morphological measures.

Compactness

The compactness is defined as the ratio between A, the domain covered by the tissue,
and the area of its convex hull Aconvex hull [310]:

Ccomp =
Atisse

Aconvex hull
(6.12)

The convex hull of A is the smallest convex set that contains A. The convex hull is
determined by first finding the largest connected component [327] and then running
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Graham’s scan [310] to identify the set of points that make up the convex hull. In the
context of our simulations, a compactness of Ccomp = 1 implies a perfectly circular
tissue shape, whereas a low value of the compactness implies a high the degree of
branching.

Branch length

In order to find the branches of the structure, we generate the morphological skeleton
of the tissue [328, 329]. Using this skeleton image, we calculate the length of the
branches as follows. For every edge, the two nodes of the edge are removed from the
skeleton image Askeleton by removing all lattice sites around the nodes with increasing
radius, until a radius w is found such that Askeleton is divided in at least two separate
components, of which one is the edge of interest. The length of branch is then deter-
mined by counting the pixels that make up the branch and adding twice the radius w
to the final result.

Branch thickness

To calculate the branch thickness, we adopted an approach by Filatov et al. [330]. We
take A to be the image of the tissue and let B be a disk Br = {(x, y) ∈ R2 : x2 + y2 ≤ r}
with variable radius r. The branch thickness can now be defined as the value of r
for which branches disappear out of the morphological opening A ◦ Br. According to
the graph in Figure 6.6 the area of the morphological closing decreases exponentially
with the radius r, because more branches disappear from the image with increasing r.
We approximate the branch thickness by finding a point where this graph decreases
sufficiently fast and then becomes flat, indicating that most branches have disappeared.
For more details, see the Supplementary Methods.
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6.5 Supplementary methods

6.5.1 Calculating branch thickness

According to the graph in Supplementary Figure 6.6 the area of the morphological
opening A ◦ Br decreases exponentially with the radius r. At some point the graph is
more or less horizontal. This region corresponds to the circular part of the tissue, in
which many circles Br fit. So, the value for r for which the graph becomes horizontal
indicates is the thickness of the branches. We detect this horizontal region by first
finding a region where the graph decreases sufficiently fast and then a region where it
decreases slow. Let MA(r) be the area of A ◦ Br. We find an 0 < r1 ≤ rmax for which
MA(r1)−MA(r1−1) < a1 and then the value r1 < r2 ≤ rmax for which MA(r2)−MA(r2−

1) > a2 (r2 is set to rmax if such a value does not exist). The branch thickness is then
found by taking the value of r for which MA(r) is closest to 1

2 (MA(0) + MA(r2 − 1)).
The values of a1 and a2 are experimentally determined. The value of rmax is set to 30
to reduce computation time.

In case of no branches or very small branches (MA(r1) − MA(r1 − 1) ≥ a1 for all 0 <
r1 ≤ rmax) we apply the following algorithm. When the decrease in MA(r) is not larger
than −a1 in the entire graph we simply take the distance from the center of mass of the
tissue to an ECM point in four different directions and select the lowest distance as the
radius. In this case, the radius represents the radius of the unbranched cell aggregate
but we take this as the branch thickness. We take this approach since increasing the
radius to the width of the initial circular tissue (typically more than twice as large as
rmax = 30) and repeatedly computing MA(r) requires a lot of computation time.
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6.6 Supplementary tables

Parameter Description Value Unit value was
T Cellular temperature 50 - similar to

[114]
Aσ Target area 50 - similar to

[114]
χ Chemoinhibition parameter 250 Nm

molL−1 chosen
λ Area constraint strength 50 N

µm3 similar to
[114]

D Diffusion coefficient 15 ·

10−13
µm2s−1 similar to

[114]
ε Decay rate 0.005 s−1 similar to

[114]
α Secretion rate 0.0005 s−1 similar to

[114]
ninit cells Number of initial cells 1000 - chosen
J01 Cell-ECM adhesion energy 50 Nm similar to

[114]
J11 Cell-Cell adhesion energy 20 Nm similar to

[114]
dt Timestep in PDE integrator 0.2 s similar to

[114]
dx Pixel size 2 · 10−6 m chosen
P PDE iterations per MCS 15 - similar to

[114]
m Vertical size of field 450 - chosen
n Horizontal size of field 450 - chosen

Table 6.1: Parameter settings.
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6.7 Supplementary figures

Figure 6.6: The radius r versus the area of the morphological closing.
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7. Discussion

In this thesis we aimed to better understand how interactions between cells and the
extracellular matrix can drive morphogenesis by making use of multiscale computa-
tional models. Mathematical modeling is a powerful tool that is often used alongside
of experimental approaches. Mathematical models can test hypotheses on the driving
mechanisms behind morphogenesis. Furthermore, it enables us to better understand a
biological system, by studying the necessary mechanisms and the complex interplay
between different mechanisms involved. In this thesis, we mainly focused on model-
ing of mechanical cell-matrix interactions at a cellular and molecular level and pre-
dicting how this influences the dynamics at the tissue scale. In the past, many models
have neglected the interplay between cells and the extracellular matrix. Most models
that did consider mechanical cell-matrix interactions mainly focused on matrix fiber
remodeling as a result of stresses but not on the direct response of cells to stresses.
Our model is based on experimental observations that show that cells communicate
by sensing traction stresses in the substrate [32]. Our model couples the cellular Potts
model (CPM) that describes cells as a collection of lattice sites, to a finite element
model (FEM) that calculates substrate deformations. We assumed that cells apply a
traction force to the substrate, inducing substrate strains, and that cells respond to this
strain. With these models we studied how cells respond to matrix stiffness and how
cell-cell communication through matrix stresses drives tissue patterning. Besides me-
chanical signaling, cells also use chemical signaling through the extracellular matrix
to communicate. So, we also studied how chemical signaling can pattern tissues. The
models described in this work pave the way to study the complex interplay between
cells and mechanical and chemical forces in the extracellular matrix.

7.1 Summarizing discussion

In chapter 2, we showed that if cells preferentially extend pseudopods along substrate
strains, cells are able to form network-like patterns, that resemble in vitro vascular
networks. In accordance with experimental observations, cells only formed networks
in simulations with substrates of intermediate stiffness. Furthermore, this model also
reproduced cells sprouting from a cell aggregate. This model suggests a alternate
mechanism for network formation and sprouting, among many existing ones which
are often based on chemical signaling [77, 114].

In chapter 3, we showed that our model also explains cell alignment to static uniaxial
stretch. The model suggests that by contracting the matrix, cells locally amplify sub-
strate strains in the orientation of the global stretch cue, allowing the cell to elongate
along the strain. By applying forces on the matrix, the simulated cells locally align
with other cells, so that the cells forms string like patterns along the uniaxial strain.
This string formation depended on cell-cell adhesivity and cell density, which could
explain why tightly packed endothelial cells do orient [94] but do not form strings,
while fibroblasts form strings [95].

To explain cell orientation to substrate strains, other mathematical models based on

152



7.1. Summarizing discussion

homeostatic principles were employed: these assumed that cells reorient in order to
optimize a certain physical quantity [45, 180], such as local stresses [180]or the ap-
plied work [45]. Our model suggests a cellular mechanism at a level of protrusions,
that allows a cell to migrate and reorient by reshaping itself. Our multiscale models
thus show how a relatively simple mechanism at the subcellular scale can induce com-
plex tissue patterns. The complexity in our multiscale model presents itself not in the
individual models or their assumptions, which are kept relatively simple, but in the
coupling of different scales in our model. By introducing multiple scales in a model,
we are able to translate lower scale dynamics to dynamics at a tissue level.

In chapter 4, we introduced dynamics at the scale of cell-matrix adhesions in our
model, to understand how force based focal adhesion dynamics regulate cell response
to matrix stiffness. We modeled focal adhesions as clusters of integrin bonds, which
grow according to catch-slip bond dynamics [231]. Cells apply a force on these clus-
ters, which builds up faster on stiffer matrices [96], so that the focal adhesions grow on
stiffer matrices. We coupled focal adhesion model to the CPM by assuming that cell-
matrix retractions are less probable for larger focal adhesions. This relatively simple
model for focal adhesions and cell-matrix adhesion sufficed to explain cell spreading
on compliant matrices. If we introduced that matrix stresses strengthen cell-matrix ad-
hesion, we could also reproduce cell elongation on substrates of intermediate stiffness.
Finally, in our model, cells movement up a stiffness gradient (durotaxis) is an emer-
gent phenonemon. By introducing these focal adhesion dynamics in our multiscale
model, we were able to better understand the response of cells to substrate stiffness.

Although physical forces can drive morphogenesis, chemical signaling is also im-
portant in tissue patterning. In chapter 5, we studied how chemical signaling through
the extracellular matrix can regulate morphogen gradient formation. We developed a
partial differential model of gradient formation of the Nodal protein that is involved
in left-right patterning of embryos. Based on experimental data [97], we assumed
that Nodal signaling induced intercellular Nodal production, and is cleaved into a ma-
ture form by the convertase FurinA. Once matured, it is able to be secreted into the
extracellular space and diffuse. A combination of in vitro and in silico experiments
indicate that FurinA is able to regulate speed of Nodal gradient formation and its sig-
naling range.

Chapter 6 studies how chemical signaling can drive branching morphogenesis. Here,
we introduce a CPM to explain branching morphogenesis. We base our model on
in vitro observations of mammary epithelial cells that suggested that the autocrine
growth factor TGF-β acts as a inhibitor of cell movement [98]. Due to a curvature
effect of autocrine signal accumulation at concave tissue boundaries, extensions are
more favorable at convex areas. This mechanism is reinforced, which allows the ex-
tensions to branch out. Thus, our model suggests that inhibition of cell movement by
an autocrine signal suffices to reproduce branching morphogenesis.

Altogether, we have used multiscale models to study the role of cell-matrix interac-
tions in morphogenesis. These models described components at different tissue scales
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(such as growth factors, focal adhesions, cells and the substrate) and how these scales
interact with each other. We studied how single cells respond to matrix stiffness and
how matrix stiffness can regulate vascular network formation and sprouting. We also
studied how matrix stresses regulate cell alignment. Furthermore, we investigated how
chemical signaling through the matrix can drive branching morphogenesis. The mul-
tiscale models presented in this thesis pave the way to a more complete understanding
of how cells can organize into tissues.

7.2 Model validation

A mathematical model is useful in itself because it gives a better understanding of
a biological system, but to drive science even further, complementary experimental
studies should be performed. Experimental data allows us to validate, or invalidate, a
mechanism proposed by the model. Because a model is just a representation of reality,
we can never proof concepts with our model, we can only provide clues. If an exper-
imental system behaves the same way as the model system in response to varying a
specific parameter, it becomes more likely that the mechanism proposed by the model
is valid. For instance, in chapter 4, we propose that the range of substrate stiffness on
which cells elongates depends on the velocity of the molecular motor proteins. This
could be validated by either using different cell types that express different types of
motor proteins with different velocities or by increasing motor protein velocity by af-
fecting ATP levels. In chapter 6, we propose that an epithelial tissue can branch by
secreting TGF-β which inhibits cell movement. Our model predicts that the extent
of branching depends on the strength of the autocrine signal. Experiments in which
TGF-β signaling is increased and decreased can help validate this mechanism.

If the experimental data does not coincide with the mathematical model, the effort
has not been futile. Experimental data can provide insights into what is truly happen-
ing, provide a new hypothesis, which can then be further explored by the mathemat-
ical model. Maybe the model is wrong, but because models are typically a simple
representation of reality, it is possible that the model just misses crucial elements.
Experimental studies can provide clues into what aspects are missing. By iteratively
extending our model and validating our model with in vitro experiments, we can ob-
tain a better understanding of the mechanisms that drive the biological system. For
instance, in chapter 2, we could explain why cells form networks of substrates of in-
termediate stiffness, but not why the range of substrate stiffness on which networks are
formed changes when the matrix density changes [36]. Since cells respond to matrix
mechanics through focal adhesions, it might be possible to explain this observation
with our extended model that includes focal adhesion dynamics of chapter 4. in vitro
experiments indicate that focal adhesion growth and thus cell spreading depends on
matrix density. As a preliminary result, we show that our focal adhesion model (chap-
ter 4) can already reproduce vascular network formation (Figure 7.1), which makes it
promising to further study the relation between matrix properties and network forma-
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tion.
Experimental approaches have made tremendous progress in tracking cell movement

[331] and also the dynamics at a molecular level, such as cell traction forces [332, 333]
and the imaging the molecules in focal adhesions [334]. This makes it possible to test
mutiscale models at multiple tissue levels. Doing complementary experimental stud-
ies to mathematical modeling has other benefits as well. It can help us to formulate
our model. For instance, for more focal adhesion molecules it is being unraveled how
forces affect their structure and as a result their binding, so that qualitative models can
be developed [335]. Experimental data can also provide us with realistic parameter
values in our model. Unfortunately, this is not always possible, as some parameters
can not directly be coupled to experimental quantities. In this case, we can tune pa-
rameters values qualitatively. For instance, cell-cell and cell-matrix adhesive energies
in our model can be tuned so that they have the same relative relation as the adhe-
sive forces of cell-cell adhesions and cell-matrix adhesions [336]. Or, we could tune
the unknown parameter values so that the model best reproduces a particular system,
enabling us to study deviations from that system. For instance, we could tune the
unknown parameters in our focal adhesion model to a specific cell type that is spread-
ing on a compliant substrate. Then, we can change the measurable parameters to fit
to other cell types and use our model to understand why different cell types spread
differently.
Mathematical models should also be validated by other modeling frameworks. Since

the model behavior and thus its results may also depend on the model framework that
is used [337], it is crucial to employ other modeling frameworks and implement sim-
ilar dynamics and investigate the resulting model behavior. So, in order to be sure
that our results are not an artifact of the particular framework that was used, ideally
we should implement our assumptions into other cell-based modeling frameworks,
to check if assumptions specific to the cellular Potts model, such as the lattice and
definition of cell protrusions, do not greatly affect the model behavior. We do not sus-
pect major effects, because we have applied sufficient noise and investigated various
assumptions.

To gain a better idea of how all model parameters interact and affect our model
output, we could perform a global sensitivity analysis [338]. This would be instead of
the local sensitivity analysis as presented in this thesis, where we typically vary only
one or two parameters while keeping others fixed. Sensitivity analysis requires many
costly and time consuming simulations. Alternatively, it may be possible to formulate
our model assumptions in a analytical framework. This can then be used to determine
under which conditions the model obtains a certain configuration [339]. For instance,
for which parameter values does a cell elongate? How does durotactic speed depend
on the model parameters?
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Figure 7.1: Network formation in the hybrid CPM-FEM model including focal adhesion
dynamics, as presented in chapter 4. Cells apply a force on the matrix, which
lets integrin clusters grow according to catch-slip bond dynamics. Matrix stresses
generated by neighbouring cells stabilize these adhesions, so that the net movement
of cells is towards each other and as cells elongate, they locally align and thus are
able to form networks. Colors: hydrostatic stress.
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7.3 Refinement of cell-matrix coupling

To better be able to understand the the biological system of interest and to be able
to validate a model, the model should represent the system well. However, because
we have made various simplifying assumptions in our model, we did not perfectly
describe the system. For instance, in chapter 2 and 3, we assumed that cells perceive
a strain stiffening of the substrate. However, we did not let the matrix actually stiffen
over time. After every timestep in the CPM, we apply a FEM to calculate the substrate
strains, but assumed a homogenous stiffness and initially undeformed matrix every
time. So, there was no memory of previous displacements in the FEM. However, as
a first step, making the model as simple as possible allows us to better understand its
behavior.

Another computational simplification was the decoupling of the cellular forces in
the Hamiltonian of the CPM from the cellular forces in the FEM. Ideally, these forces
should be equivalent in both compartments of the model. In our model, this is not the
case as the cellular forces are descriped by a CPM Hamiltonian while the forces in the
FEM are described using the FMA model. Albert & Schwarz [192] who also coupled
the CPM with a FEM for the substrate, did use the same force descriptions in their
CPM and FEM. They assumed that cells have a surface and line tension, which they
described in a CPM Hamiltonian. For a surface and line tension, the corresponding
forces in the FEM was formulated as follows. The surface tension results in a force
normal to the cell membrane and the line tension generates an additional normal force
proportional to the curvature of the membrane. In the FEM, the normal force on the
CPM cell boundary was approximated using a marching square algorithm. Further-
more, the resulting force was smoothed by a kernel around the cell membrane. We
could do a similar thing, but we chose not to do so in this thesis, since we wanted to
maintain the description of the line tension as in the usual CPM formulation. Here, the
adhesive energy between cells and the matrix describes a line tension, if the neighbour-
hood is large enough [255]. The benefit of this formulation, is that it also describes
cell-cell adhesion and is very useful to study cell-cell interactions.

In order to test if it would improve our model, we developed a method to calculate
forces from a generic Hamiltonian formulation in the CPM. The method is described
in Appendix A. This method is based on that the energy difference ∆H describes
a force in the direction of the copy movement. Figure 7.2 shows a force field for
H = λA +

∑
J and the corresponding substrate stress field, which we compare to the

FMA model for cell traction forces. The downside of this method is, that because
CPM movements are always horizontal, vertical or diagonal, the forces align to the
lattice as well. So, a grid effect occurs. We could alleviate this by considering a
larger neighborhood order for copy attempts in the CPM. Furthermore, since CPM
movements only occur at the cell boundary, the forces are only described on the cell
membrane (Figure 7.2). We could alleviate this issue by smoothing the forces to a
region around the cell membrane, using a kernel, similar to what Albert & Schwarz
did. Another option, would be to formulate our forces in the FEM (the FMA model)
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Figure 7.2: Cell forces around the tip of an elongated cell. (A) The FMA model as used in
this thesis; (B) The traction forces derived from the Hamiltonian as presented in
Appendix A. Colors: principal stress; orientation and length of black line pieces:
orientation and magnitude of principal stress, yellow arrows: cell traction forces.

and than translate that to a Hamiltonian. However, this formulation does not separate
a surface and line tension. In conclusion, there are currently too many unresolved
issues with this method, so we decided to stick with the FMA model in this thesis.
In order to have the same formulation for cell forces in the CPM and the FEM, more
work should be done and we should outweigh the advantages and disadvantages of
the different formulations that are possible.

7.4 Possible model extensions

In our modeling efforts we did not only make computational simplifications but also
neglected various important known driving mechanisms of morphogenesis. An ad-
vantage of mathematical modeling is that we can focus on one specific mechanism,
for instance matrix stiffness, while neglecting others. In this way, we can better under-
stand how a specific factor influences the biological system. The disadvantage of such
an incomplete model is that we can not explain all experimental observations, because
we are missing important factors. Including more dynamics and interactions between
cells, the substrate, cell-matrix adhesions and signaling factors can increase our under-
standing of a biological system. Here, we will give an overview of interesting aspects
that can be included in our model and what it can be used for.

158



7.4. Possible model extensions

7.4.1 Matrix type and density

Because cell spreading does not only depend on matrix stiffness but also on other ma-
trix properties, such as matrix type and density, it would be good to describe substrate
mechanics in more detail. Cell spreading is typically increased on matrices with a
higher density [123], or depends biphasically on matrix density [200]. To deal with
matrix density, we could model this phenomenologically, by relating model parame-
ters, such as the growth rate of focal adhesions, to matrix density. We could also model
thus explicitly by including more detail in our substrate/FEM model. More detailed
finite element models for the substrate have been coupled to circular discrete cells
[88]. Coupling such models to a CPM will allow us to better understand how tissue
respond to matrix mechanics on both a cellular level and tissue level. Cell spreading
also depends on the type of matrix protein (e.g. fibronectin, collagen, laminin) that
cells interact with [340]. Cells bind to different matrix proteins with different types of
integrins. We could fit the catch and slip bond parameters of integrins in our model
to those experimentally identified for the different integrins, to study how matrix type
affects cell spreading.

7.4.2 Fibrous matrices

As the orientation of matrix fibers regulates cell migration [27], it is important to also
take matrix fibers into consideration. Cells not only respond to matrix fibers, but also
actively remodel matrix fibers. For instance, by applying forces on the matrix, cells
can reorient matrix fibers [174]. Cells also deposit and degrade matrix fibers and even
cross-link them [53]. Matrix fibers affect matrix stiffness and the extent of strain-
stiffening [341], which in turn affects cell migration. So, intricate interplays between
cells, fibers and matrix stiffness occur during morphogenesis. To study this, we should
extend our model to include matrix fibers. More refined models of the extracellular
matrix including matrix fibers are being developed. Matrix fibers can for instance be
incorporated in finite element models [87, 342]. As fibers have the same spatial scale
as cells, it might be more appropriate to model fibers using discrete approaches. For
instance, fibers can be described by springs and the reorientation and cross-linking of
fibers can be modeled [343]. Previous models including matrix fiber descriptions did
not include cell shape [87, 89] or are computationally expensive for a larger number
of cells [90]. By coupling matrix fiber models to our CPM framework, we can study
the effect of long-range communication between cells through the matrix fibers on the
tissue level. Furthermore, we could study how the interactions between cells, fibers
and matrix stiffness regulate morphogenesis.

7.4.3 Chemical-mechanical interactions

Another interesting extension would be to combine models for chemical and me-
chanical signaling in cells. For instance, signaling of Rho-family GTPases in the
cytoskeleton, which is involved in cell migration and cell polarization, regulates cell
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contractility and cell-matrix forces in turn feed back on Rho-signaling. It would be
interesting to implement existing models of Rho-family GTPases signaling [147] and
cell-matrix interactions [344]. Coupling such models to our multiscale model includ-
ing focal adhesion, could give new insights on the molecular mechanisms behind cells
polarization and migration as a result of mechanical and chemical cues [345]. There
also exists feedback between mechanical forces and growth factors in the extracel-
lular matrix. For instance, the growth factor TGF-β is secreted by epithelial cells in
an inactive form that subsequently can bind to the matrix [324]. Stretching of this
bound molecule allows it to be released from the matrix in an active form, that can
diffuse freely through the matrix [325]. On stiffer matrices, the matrix-bound TGF-β
experiences more stress, which induces its release [325]. The release from TGF-β
is of particular interest to fibrotic diseases [346] and branching morphogenesis. We
could couple our CPM for branching morphogenesis to a FEM and include binding
of TGF-β to the matrix and its release from the matrix [347] and study how matrix
stresses and matrix stiffness influences branching morphogenesis. Activation of TGF-
β can also occur in other ways than matrix stress [320]. The activation of TGF-β is for
instance mediated by integrin binding [348]. Upon binding with integrin, the matrix
stress activation of TGF-β is further promoted [349]. In turn, TGF-β feeds back on
cell contractility [348]. It would be interesting to investigate such feedback dynamics
with our model. Furthermore, it is possible that other growth factors can also be re-
leased from the matrix by mechanical forces [350]. So, modeling such dynamics can
help explore the possible effects matrix-bound growth factors have on morphogenesis.

Another important aspect in tissue patterning is cell-cell signaling mediated by mem-
brane bound signaling molecules. Interestingly, such signaling also depends on phys-
ical forces. For instance, internalization of the VEGF-R2 receptors and VEGF sig-
naling is enhanced on stiffer matrices, most likely due to increased contraction [351].
Because the CPM allows to describe cell-cell membrane contact, our model may be
used to study how such dynamics [351] affects the formation of vascular networks on
compliant matrices. Furthermore, it has been shown that cell-cell cadherin adhesions,
that mediate cell-cell signaling, can behave as catch-bonds [352]. Through cadherins,
cells apply forces on each other and such forces can be transmitted through the whole
tissue via actin stress fibers [26]. Actin stress fibers remodel and reorient in response
to forces [176, 353]. The orientation of stress fibers regulates cell shape [354] and
the direction of force application [355]. We could implement a model for stress fiber
remodeling (see e.g. [356]) into our CPM. Due to our the multiscale nature of our
model, such an approach may give insights into how feedback between forces, cell
shape and stress fibers regulates cell response to matrix mechanics. On a tissue level
scale, we could study how long-range intercellular cell-cell communication via forces
drives morphogenesis.
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7.5 Long term prospects

The type of multiscale modeling approaches as presented in this thesis may in the long
run assist in developing new treatments. Here we will provide examples of some of
the possibilities. For instance, our modeling approach could be used to help design
tissue engineering approaches. By mechanically loading tissues, it is possible to align
tissues [54]. Our model could help to investigate what experimental condition brings
about the desired tissue pattern. For instance, van der Schaft et al. [94] showed that
a tissue consisting of a mix of muscle cells and endothelial cells aligned to uniaxial
stretch and that the endothelial cells started to form lumen. Models can be used to
better understand the effect of a mixture of different cell types on the tissue pattern-
ing. Furthermore, we could use our modeling approach to help understand how cell
alignment depends on the type of stretching. Cells typically align parallel to static
uniaxial stretch but perpendicular to cyclic stretch. Interestingly, cell alignment to
cyclic stretch depends on the amplitude [357] and frequency of the stretch [358] and
the stiffness of the substrate [176]. Other future directions are the response of tissues
to biaxial stretch [359] and the effect of tissue geometry on tissue patterning [360].

Mechanical forces also play a crucial role in cancer. Physical forces on different
scales regulate cancer progression. Changes in the mechanics of the extracellular ma-
trix are associated with cancer metastasis [53]. Cancer cells are able to excessively re-
model the matrix, inducing high matrix alignment and matrix stiffening, which directs
cancer cell migration. Furthermore, matrix properties, like for instance matrix stiff-
ness, regulates the malignant phenotype of cells in vitro [361]. Mechanical cell-cell
interactions through cadherins have also been shown to drive collective cell migration
in vitro, suggesting an involvement in cancer invasion [362]. The modeling methods
presented in this thesis may be ultimately used to give insights into how cancer growth
and metastatic potential are associated with cell and tissue specific parameters derived
from tissue samples. Models can also be used to help develop new targets for cancer
treatment. For instance, models that relate focal adhesion dynamics to tissue level
dynamics can provide clues into how focal adhesions may be targeted to inhibit can-
cer progression. Furthermore, models can give insights into how cancer progression
could be inhibited by manipulating the extracellular matrix.

In conclusion, due to the multiscale nature of our model, it is possible to include
many interesting dynamics and due to its generic set up, it is possible to study many
different experimental systems. These examples range from tissue engineering, cancer
migration/invasion and various morphogenetic processes like cell sorting [336, 363],
angiogenesis, branching, left-right patterning [364] and somitogenesis [365].
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Appendix A: deriving forces from CPM
Hamiltonian

In chapter 2, 3 and 4 we presented a hybrid cellular Potts model (CPM) which we
coupled to a Finite Element Model (FEM) of the substrate. Here, the forces that a cell
applies on the substrate are described by a first moment of area model. Alternatively,
we can derive the forces ~f a single cell exerts on the matrix in the FEM from the
Hamiltonian in the CPM. As an example, the Hamiltonian that describes cell-matrix
force Hcm may describe a surface tension and line tension as:

Hcm = λA +
∑

{(~x,~x′)|σ(~x),σ(~x′)}

J01 (7.1)

In the CPM, cell movements are simulated by making copies from lattice sites to
neighboring lattice sites, which models cell membrane deformations in a discrete fash-
ion (see figure 7.3).

Figure 7.3: CPM discretizes cell membrane and simulates membrane protrusions and retrac-
tions

Copies only have effect on the cell membrane, as in the cell interior copies will not
change the configuration and thus ∆H = 0. So, forces will only be defined (non-zero)
on points on the cell membrane. To couple the CPM to the FEM, the forces ~f need to
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be approximated on the nodes of the grid. First, we explain how we derive forces on
the cell membrane using Hcm in the CPM and next we explain how we approximate
the forces on the nodes.

Virtual work

To derive the forces a cell exerts on the matrix ~f (~x) from the Hamiltonian Hcm we need
to principle of virtual work. Virtual work is defined as the work of a force acting on a
body if it would move along a certain virtual displacement. For instance, if a particle
is subject to a constant force ~f , then, the virtual work W this particle experiences by
virtually displacing ~δx is W = ~f · ~δx, where · is the dot product. In other words,
virtual work is the scalar projection of force in the direction of the displacement ~δx,
multiplied with the amount of virtual displacement | ~δx|.

In the CPM, a cell experiences virtual work due to potentially extending or retracting
the cell membrane in a certain direction, which are dictated by the type of lattice used.
When one uses the conventional 2D square lattice, forces a defined in four directions.
Now, let ~f (~x) be the force on the cell membrane at ~x and let −∆Ĥ ~δx(~x) be the virtual
work of displacing the cell membrane at ~x in the direction of ~δx. Then,

~f (~x) · ~δx = −∆Ĥ ~δx(~x) (7.2)

For a visual representation, see Figure 7.4. The possible directions of cell membrane
deformations are determined by the lattice of the CPM (Figure 7.3 and 7.5). Because
we are working on a 2D square grid, the CPM can calculate the virtual work in four
directions, namely North, North-East, East and South-East (see Figure 7.5). For a
given direction ~δx, we can extend or retract the membrane, i.e. we can copy the spin
of ~x onto σ(~x + ~δx) or the other way around. Therefore, the virtual work −∆Ĥ ~δx in the
direction ~δx is given by

∆Ĥ ~δx(~x) = −

∆Hcm(σ(~x)→ σ(~x + ~δx)) − ∆Hcm(σ(~x + ~δx)→ σ(~x))
2

 , (7.3)

Much in the same way as one would calculate a surface tension: (internal pressure -
external pressure)/2, where the dividing by two arises from the membrane having two
sides that contribute to the force.

Work on the nodes

Now note that finding ~f from virtual work (the scalar projections of ~f ) known/given in
different directions, is an inverse problem. In the FEM, the forces ~f need to be defined
on the nodes of the grid. So, given virtual work on the cell membrane (Figure 7.5),
we want to derive the forces on the nodes. We approximate the virtual work in four
directions on the nodes as follows. Let fN(~n), fNE(~n), fE(~n) and fS E(~n) be the scalar
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Figure 7.4: Force and virtual work in the CPM

Figure 7.5: Possible direction of forces in a 2D square grid CPM
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Figure 7.6: Example of approximating force component in direction East at a node

projections of the force ~f (~n) on node ~n in the direction North, North, North-East, East
and South-East, respectively. Then,

fN(~n) ≈
− 1

2 ∆Ĥ ~δxN
(~n − ( 1

2 , 0)T ) − 1
2 ∆Ĥ ~δxN

(~n + ( 1
2 , 0)T )

2
(7.4)

fNE(~n) = −
∆Ĥ ~δxNE

(~n)
√

2
(7.5)

fE(~n) ≈
− 1

2 ∆Ĥ ~δxE
(~n − (0, 1

2 )T ) − 1
2 ∆Ĥ ~δxE

(~n + (0, 1
2 )T )

2
(7.6)

fS E(~n) = −
∆Ĥ ~δxS E

(~n)
√

2
(7.7)

where ~δxN = (0, 1)T , ~δxNE = (1, 1)T , ~δxE = (1, 0)T and ~δxS E = (1,−1)T . The
√

2 in
the terms for fNE(~n) and fS E(~n) arise from |δxNE | = |δxS E | =

√
2. For an example of

how the force component in direction East at a node is calculated, see figure 7.6.
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Deriving force from virtual work

Now, to find ~f (~n) we can use equation 7.2 which gives us

~f (~n) · ~δxN

| ~δxN |
= fN(~n) (7.8)

~f (~n) · ~δxNE

| ~δxNE |
= fNE(~n) (7.9)

~f (~n) · ~δxE

| ~δxE |
= fE(~n) (7.10)

~f (~n) · ~δxS E

| ~δxS E |
= fS E(~n) (7.11)

This is an inverse problem. We can approximate ~f (~n) by minimizing the sum of
squares  ~f (~n) · ~δxN

| ~δxN |
− fN(~n)

2

+

 ~f (~n) · ~δxNE

| ~δxNE |
− fNE(~n)

2

+... (7.12) ~f (~n) · ~δxE

| ~δxE |
− fE(~n)

2

+

 ~f (~n) · ~δxS E

| ~δxS E |
− fS E(~n)

2

We use a Levenberg-Marquardt algorithm that numerically minimizes equation 7.12
for ~f (~n) = (Vcos(α),V sin(α))T with α ∈ [0, 2π] and V ∈ [0, inf] with initial condition
~f (~n) = max{ fN(~n), fNE(~n), fE(~n), fS E(~n)}.
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