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a b s t r a c t

We study a restriction of the classic degree sequence graphic realization problem studied
by Erdős, Gallai, Havel, and Hakimi, namely the joint-degree matrix graphic realization
problem. Here, in addition to the degree sequence, a joint degree matrix is given, the
(i, j)th element of which specifies the exact number of edges between vertices of degree
di and vertices of degree dj. The decision and construction versions of the problem have a
relatively straightforward solution. In this work, however, we focus on the corresponding
connected graphic realization version of the problem. We give a necessary and sufficient
condition for a connected graphic realization to exist, aswell as a polynomial time construc-
tion algorithm that involves a novel recursive search of suitable local graph modifications.
As a byproduct, we also suggest an alternative polynomial time algorithm for the joint-
degree matrix graphic realization problem that never increases the number of connected
components of the graph constructed.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Let d1 ≥ d2 ≥ · · · ≥ dn be a sequence of integers. The classic graphic realization problem asks whether there exists
a simple graph on n vertices whose degrees are exactly d1, . . . , dn. Erdős and Gallai showed that the natural necessary
conditions for graphic realizability, namely that each subset of the highest k degree vertices can absorb their degrees within
their subset and the degrees of the remaining vertices:

∑k
i=1di ≤ k(k−1) +

∑n
i=k+1 min{k, di}, are also sufficient [2,4].

The well known Havel–Hakimi algorithm [6,7] achieves such a realization in an efficient greedy way. It repeatedly sorts the
vertices according to residual unsatisfied degree, picks any vertex of residual degree di, and connects it to the di vertices
of highest residual degree. The process is repeated until all the degrees are satisfied. Further, if one wants to construct
a connected graphic realization – an important requirement in networking – Erdős and Gallai showed that the obvious
necessary condition

∑n
i=1di ≥ 2(n−1) (i.e., there is a spanning tree) is also sufficient. In particular, it is easy to see that

a non connected realization can be transformed to a connected one by a sequence of edge flips, each flip breaking a cycle
inside a connected component and reducing the number of connected components by one. A flip picks two edges xy and uv
such that xu and yv are non edges, removes xy and uv from the graph, and adds xu and yv. Clearly, flips do not change the
degrees of the graph.

Here we study a restriction of this problem motivated by the need to generate graphs with realistic topologies, used to
simulate network protocols and predict network evolution. Mahadevan et al. [8,9], argued that a determining metric for a
graph of given degrees to resemble a real network topology, is the specific number of links between vertices in different
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degree classes. Using heuristics that presumably approximate the target number of edges between degree classes, [8]
constructed graphs strikingly similar to real network topologies. More recently, Gjoka et al. [5] proposed heuristics that
also achieve other desired attributes, not captured from the number of links between vertices of different degrees, like the
average clustering coefficient. Amanatidis et al. [1] formalized the approach of [8,9] and defined the problem as we study
it here. In that work, necessary and sufficient conditions for the existence of such graphs were given, as well as polynomial
time constructions, some first results on sampling, and also a preliminary version of the material presented here.

Let V = [n] be a set of vertices, P(V ) = {V1, V2, . . . , Vk} be a partition of V denoting subsets of vertices with the same
degree, and d : P(V ) → N be a function denoting the degree of vertices in Vi. For simplicity, we write P and di instead of
P(V ) and d(Vi) respectively.1 Also, let D = (dij) be a k× k matrix specifying the number of edges between Vi and Vj; if i = j,
dii) is the number of edges entirely within Vi. We call such a D a joint-degree matrix (JDM for short). Note that d is implied by
P and D through di =

(
2dii +

∑
j∈[k],j̸=idij

)
/|Vi|, for 1 ≤ i ≤ k.

In what follows, we assume that, given P and D, d is defined as above.

Definition 1 (JDM Graphic Realization). Given P and D, decide whether there is a simple graph G on V , such that
(i) each vertex in Vi has degree di, ∀i ∈ [k],
(ii) there are exactly dij edges between Vi and Vj, ∀i, j ∈ [k]with i ̸= j, and
(iii) there are exactly dii edges entirely inside Vi, ∀i ∈ [k].

We use ⟨P,D⟩ to denote the set of all such graphs.

Apart from [1], several other recent works [3,5,11] give the necessary and sufficient conditions below for ⟨P,D⟩ to be
nonempty, as well as polynomial time algorithms for constructing a graph in ⟨P,D⟩. It should be noted here that Patrinos
and Hakimi studied the same problem first [10], though with a somewhat different formulation.

Theorem1 ([1,3,5,10,11]). The following conditions are necessary and sufficient for the instanceP , D to have a graphic realization:

1. Degree feasibility:
(
2dii +

∑
j∈[k],j̸=idij

)
/|Vi| = di ∈ N, for 1 ≤ i ≤ k.

2. Matrix feasibility: The matrix D is symmetric with nonnegative integral entries, and dij ≤ |Vi| · |Vj|, for 1 ≤ i < j ≤ k,
while dii ≤ |Vi| · (|Vi| − 1)/2, for 1 ≤ i ≤ k.

Theorem 1 is relatively straightforward, and the same holds for the proposed construction algorithms. Here, however,
we focus on the corresponding connected graphic realization version of the problem:
JDM Connected Graphic Realization: GivenP andD, canwe decidewhether there exists a simple connected graph G ∈ ⟨P,D⟩?
Can we efficiently construct such a graph?

In Section 3 we give a necessary and sufficient condition for a connected graphic realization to exist (Theorem 5).
Although the condition suggests checking a simple inequality in exponentially many graphs, we provide a polynomial time
construction algorithm for the problem (Algorithm 4). Our algorithm, that involves a recursive search of suitable local graph
modifications (Algorithm 3), returns either a graph in ⟨P,D⟩, or a short certificate that no such graph exists. A necessary
subroutine of our algorithm is an alternative polynomial time algorithm for JDMGraphic Realization, presented in Section 2,
that never increases the number of connected components of the graph constructed.

2. An alternative algorithm for JDM graphic realization

Although the JDM Graphic Realization problem has a straightforward solution, this is not the case if we also ask for the
resulting graph to be connected. In order to give the bigger picture, think of all of the constraints as upper bounds. That is,
let [P,D] ⊇ ⟨P,D⟩ be the set of graphs such that for any i, j ∈ [k] there are at most dij edges between Vi and Vj, there are at
most dii edges inside Vi, and the degree of any vertex in Vi is upper bounded by di. The main idea is to construct a connected
graph G0 ∈ [P,D] and then grow it into a connected graph G ∈ ⟨P,D⟩.

Towards this direction, we present an alternative algorithm for the JDM Graphic Realization problem. In particular,
Algorithm 1, given any G0 ∈ [P,D] as input, iteratively increases the number of edges by one at a time by appropriately
adding and removing a few edges. Despite the fact that some existing edgesmay be removed in each iteration, the algorithm
always makes sure that the number of connected components of the current graph is not increased. Moreover, after each
iteration, the resulting graph is always in [P,D]. In time polynomial in n, it outputs some G ∈ ⟨P,D⟩, if such a graph exists.

When we just need to construct any graph in ⟨P,D⟩, the natural choice of G0 is the empty graph on V . However, in order
to construct a connected G ∈ ⟨P,D⟩, one should be more careful about the choice of the input. In particular, it would suffice
to start with a tree in [P,D]. The construction of such a tree is non trivial, and is the main focus of Section 3.

1 In the related literature it is often the case that d(Vi) = i. This is not necessary for any of our results. In particular, it is allowed to have i ̸= j such that
d(Vi) = d(Vj).
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To facilitate the presentation, the procedure that increases the number of edges by one in each iteration of Algorithm 1 is
stated separately. Recall that k is the number of vertex subsets in P and d is the (uniquely determined by P and D) function
denoting the degree of vertices in each of this subsets.

Algorithm 1: JDM-Construct(G0,P, d,D)
1 G← G0
2 for i = 1 to k do
3 for j = i to k do
4 while the dij constraint is not saturated do
5 Augment(G, i, j, d,P)

6 return G

In the procedure Augment (Algorithm 2) the cases i = j and i ̸= j are treated together since they differ only slightly. Of
course, some conditions, like u ̸= v in line 1, are redundant when i ̸= j. Here, and throughout this paper, we write xy for the
edge {x, y} for ease of notation.

Algorithm 2: Augment(G, i, j, d,P)
1 if ∃ u ∈ Vi, v ∈ Vj with u ̸= v, uv /∈ E(G), d(u) < di, d(v) < dj then
2 Add the edge uv to E(G)
3 else if ∃ u ∈ Vi, v ∈ Vj with u ̸= v, uv /∈ E(G), d(u) < di, d(v) = dj then
4 Pick a v′ ∈ Vj with d(v′) < dj and, if possible, v′ ̸= u
5 Find a neighbor x of v such that v′x /∈ E(G)
6 Remove the edge vx from E(G) and add the edges uv and v′x
7 else if ∃ u ∈ Vi, v ∈ Vj with u ̸= v, uv /∈ E(G), d(u) = di, d(v) < dj then
8 Pick a u′ ∈ Vi with d(u′) < di and, if possible, u′ ̸= v

9 Find a neighbor x of u such that u′x /∈ E(G)
10 Remove the edge ux from E(G) and add the edges uv and u′x
11 else
12 Pick u ∈ Vi, v ∈ Vj with u ̸= v, uv /∈ E(G)
13 Pick a v′ ∈ Vj with d(v′) < dj
14 Find a neighbor x of v such that v′x /∈ E(G)
15 Remove the edge vx from E(G) and add the edge v′x
16 Pick a u′ ∈ Vi with d(u′) < di and, if possible, u′ ̸= v

17 Find a neighbor y of u such that u′y /∈ E(G)
18 Remove the edge uy from E(G) and add the edges uv and u′y

Themain underlying idea of Algorithm 2 is that as long as there exist unsaturated constraints, it is possible to get closer to
a graph in G ∈ ⟨P,D⟩ by adding (and possibly deleting) a very small number of edges. The same idea is used in other works
that derive Theorem 1, e.g., [3,5]. What makes Algorithm 2 somewhat more involved is the extra property of not affecting
the connectivity.

Theorem 2. If the degree and matrix feasibility conditions of Theorem 1 hold and G0 ∈ [P,D], then Algorithm 1 constructs a
graph G ∈ ⟨P,D⟩ in time polynomial in n. Moreover, no iteration increases the number of connected components of the current
graph.

Proof. Inwhat follows,we call an edge between Vi and Vj an ij-edge and, respectively, an edge inside Vi an ii-edge. Notice that
every graph G ∈ [P,D] that satisfies all the edge constraints with equality, belongs to ⟨P,D⟩ as well. To prove the theorem, it
suffices to prove that given a graph G ∈ [P,D] with δij < dij ij-edges for some i, j ∈ [k], a single call of Augment(G, i, j, d,P)
returns a graph G′ ∈ [P,D] with δij + 1 ij-edges, without affecting any other edge constraints and without increasing the
number of connected components.

Together with the fact that G0 ∈ [P,D], this implies that the while loop in line 4 of Algorithm 1 runs for at most dij
iterations to saturate the corresponding constraint. Therefore, with no more than m calls of Augment( · ) – where m is
the number of edges – Algorithm 1 ends up with a graph G ∈ [P,D] that satisfies all the edge constraints with equality,
i.e., G ∈ ⟨P,D⟩. It is straightforward to see that even a naive implementation of Algorithm 2 has a running time that is O(n2).
Thus, the running time of Algorithm 2 is O(m · n2).

So, consider the call of Augment(G, i, j, d,P) on a graph G ∈ [P,D] with δij < dij ij-edges, and let G′ be the resulting
graph. When the condition in line 1 holds, then clearly G′ has δij+1 ij-edges and no other edge constraints are affected, thus
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G′ ∈ [P,D]. Moreover, the number of connected components is not increased. So, suppose that the condition in line 1 does
not hold.

If the condition in line 3 holds, then there exists some v′ ∈ Vj with d(v′) < dj, or else all the constraints associated with
Vj would already be saturated. First, assume v′ ̸= u, and therefore uv′ ∈ E(G), or the condition in line 1 would hold. Since
d(v′) < d(v) there exists some neighbor x of v such that v′x ̸∈ E(G). By removing the edge vx from E(G) and by adding the
edges uv and v′x, the degrees of only u and v′ increase by one, the ij-edges increase by one, and no other edge constraints
are affected; thus G′ ∈ [P,D]. To see that the number of connected components did not increase, recall that uv′ ∈ E(G), and
notice that the only edge removed is vx. Nevertheless, v and x remain connected through the path (v, u, v′, x).

Next, consider the case where v′ = u, i.e., i = j and there are no vertices in Vi with degree less than di other than u.
Then d(u) ≤ di − 2, since otherwise the corresponding degree feasibility condition of Theorem 1 would fail. Like before,
d(u) < d(v) and thus there exists some neighbor x of v such that ux ̸∈ E(G). By removing vx from E(G) and by adding uv
and ux, the degree of only u increases by two, the ii-edges increase by one, and no other edge constraints are affected; thus
G′ ∈ [P,D]. Again the number of connected components is not increased, since the only edge removed is vx, but v and x
remain connected through the path (v, u, x). So, suppose that the condition in line 3 does not hold.

If the condition in line 7 holds, the analysis is symmetric to the above. So, finally, suppose that the condition in line 7 does
not hold either.

Due to the matrix feasibility conditions, there exist u ∈ Vi, v ∈ Vj with u ̸= v and uv ̸∈ E(G), and it must be the case
where d(u) = di, d(v) = dj, or one of the conditions in lines 1, 3, and 7 would hold. Since not all the constraints associated
with Vj are saturated, there exists some v′ ∈ Vj with d(v′) < dj = d(v). Hence, there exists some neighbor x of v such that
v′x ̸∈ E(G). By removing vx from E(G) and by adding v′x – call G′′ this intermediate graph – the degree of v′ increases by one,
the degree of v decreases by one, and no edge constraints are affected; thus G′′ ∈ [P,D]. Now, what happens in lines 16–18
is identical to what happens in lines 7– 10, thus resulting in a graph G′ ∈ [P,D] with δij + 1 ij-edges, without affecting any
other edge constraints.

Here, to see that the number of connected components did not increase, first notice that uv′ ∈ E(G), otherwise the
condition in line 7 would hold for G. Moreover, either u′ = v or u′v ∈ E(G), otherwise the condition in line 3 would hold
for G. So, in G′ where vx and uy are removed, v and x remain connected through the path (v, u, v′, x), while u and y remain
connected either through the path (u, v, y) (when u′ = v), or through the path (u, v, u′, y) (when u′ ̸= v and u′v ∈ E(G)). □

3. JDM connected graphic realization

As already stated, the actual goal is to either construct a connected realization in ⟨P,D⟩, or show that such a realization
does not exist. Here it is not reasonable to expect that a simple condition like the Erdős–Gallai condition, i.e., the degrees
summing up to at least 2(n−1), would suffice. In particular, there are graphically realizable instances with Θ(n2) edges that
have no connected realization. A straightforward such example is when all the edges are required to be inside distinct Vis,
e.g., for i = 1, 2, Vi contains n/2 vertices of degree n/2− 1 and D requires

(n/2
2

)
edges within each Vi but no edges between

them.
These, however, are not the only problematic cases. Suppose that we have 6 vertices of degree 1 in V1, 1 vertex of degree

2 in V2, 3 vertices of degree 3 in V3 and 7 vertices of degree 5 in V4. The edge requirements are given by

D =

⎛⎜⎝0 0 6 0
0 0 1 1
6 1 1 0
0 1 0 17

⎞⎟⎠ .

There are a few such graphs and all look, more or less, like the graph below:

In such a case, although there seem to be enough edges in total, there are not enough edges outside of V4 in order to connect
everything else. The obvious observation – and the intuition behind our connectivity condition – is that we should think of
V4 as a single vertex in such a case; then it becomes obvious that there are too few edges. In fact, one can think of this as a
certificate that this instance does not have a connected realization. Unfortunately, in more complex examples it is not at all
clear which groups of vertices one should contract to get such a counterexample when one exists.

It is also easy to see that arbitrary simple flips cannot be used to decrease the number of connected components of a
non-connected graphic realization G ∈ ⟨P,D⟩, even when connected realizations do exist. In particular, let uv, xy ∈ E(G),
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ux, vy ̸∈ E(G), such that u ∈ Vi, v ∈ Vj, x ∈ Vi′ and y ∈ Vj′ . Note that the flip of removing uv and xy and adding ux and vy
yields a graph in ⟨P,D⟩ if and only if Vi = Vj′ or/and Vj = Vi′ . Even then, however, the number of connected components
may increase!

In this sectionwe give a necessary and sufficient condition for the instanceP ,D to have a connected realization. The proof
also provides a polynomial time algorithm that constructs a connected realization, if one exists, or produces a certificate that
P , D does not have such a realization.

3.1. Reducing to a weaker problem on another instance

Eventually, we are going to show that the existence of connected graphs in ⟨P,D⟩ is equivalent to the existence of a
certain type of trees for a slightly simpler instance P̃ , D̃. In this subsection we define P̃ and D̃, while at the same time we
pave the way for an algorithmic solution.

As discussed in Section 2, the general algorithmic approach to construct a connected graph in ⟨P,D⟩ is to first construct
a tree T in [P,D] and give T as input to Algorithm 1 to extend it to a connected graph in ⟨P,D⟩. Recall that such a tree T
satisfies three different constraints: connectivity, the upper bounds imposed by the edge constraints of D, and the upper
bounds imposed by the degree constraints of d. As Lemma 3 shows, however, the latter set of constraints is the easiest to
satisfy, and can be initially ignored.

A tree on V that does not violate the upper bounds imposed by the edge constraints of D, but may violate the upper
bounds imposed by the degree constraints of d, will be called a valid tree for P and D. If such a tree exists, then Lemma 3
shows how to efficiently transform it into a tree in [P,D] and proceed as described above.

Lemma 3. Let Tv be a valid tree for P and D. Then, we can efficiently construct a tree T ∈ [P,D].

Proof. The proof is constructive and requires a polynomial number of steps. To construct T we modify the degrees of Tv

within each Vi. Initially, T = Tv . Fix some i ∈ [k], and let δi be the average degree of the vertices in Vi. Then, as long as
maxv∈V deg(v) > ⌈δi⌉, we pick x ∈ argmaxv∈V deg(v) and y ∈ argminv∈V deg(v). Clearly deg(x) > deg(y), so we can find a
neighbor z of x such that the edge yz ̸∈ E(T ). We then remove the edge xz from E(T ) and add the edge yz.

In each iteration a vertex x of large initial degree, i.e., deg(x) > ⌈δi⌉, decreases its degree by one. So, in less than∑
v∈Vi

deg(v) = O(n2) iterations all the degrees in Vi will be at most ⌈δi⌉ ≤ di. This is done for every i to get the desired T .
Notice that, while the degrees change, the number of edges between Vi and Vj is not affected, for any i, j ∈ [k]. Thus,

T ∈ [P,D]. □

Note that if G ∈ ⟨P,D⟩ is connected, then any spanning tree T of G is a tree in [P,D]. In particular, T is a valid tree for P
and D. Thus, a certificate of non existence of a valid tree is also a certificate of non existence of a connected graph in ⟨P,D⟩.
In general, however, it is not clear how to construct efficiently a valid tree or a certificate of non existence of such a tree.
Indeed, the sufficient and necessary condition for connectivity given in Section 3.2 appears to require exponential search.
Nevertheless, our Valid-Tree-Construct algorithm (Algorithm 3) solves both problems in polynomial time.

Before we proceed to the technical details, we should note that there is a very specific type of valid tree we need to focus
on. As the edge requirementsmay create a local shortage of edges, it is reasonable to think that trying to connect the vertices
of Vi with each other as much as possible would only help. As a result, instead of any valid tree for P and D, we could try to
produce a valid tree T such that the subgraph of T induced by Vi has theminimumpossible number of connected components
for every i. We are not going to prove this explicitly at this point, as it essentially is a corollary of Theorem 5, but it gives the
intuition behind the following construct.

Given an instance P , D, in order to look for a valid tree, we are going to consider a somewhat simpler instance. Consider
a graph G ∈ ⟨P,D⟩ such that for all i ∈ [k] the subgraph of G induced by Vi has the minimum possible number of connected
components. Now suppose that we contract the vertices of each such component into a single vertex and delete loops and
multiple edges to get a graph G′. It is not hard to show (see Lemma 4) that finding a spanning tree of G′ is as good as finding
a spanning tree of G. So, let P̃ =

{
Ṽ1, Ṽ2, . . . , Ṽk

}
, where |Ṽi| = max{1, |Vi| − dii} is the minimum possible number of

connected components of the subgraph induced by Vi in any realization in ⟨P,D⟩. Moreover, let D̃ =
(
d̃ij

)
be derived from D

in the natural way: d̃ii = 0 and d̃ij = min
{
|Ṽi| · |Ṽj|, dij

}
.

Lemma 4. A valid tree T̃ for P̃ and D̃ can be transformed efficiently into a valid tree T for P and D.

Proof. To turn T̃ into a tree T on V that satisfies the dijs as upper bounds, we replace an arbitrary vertex of Ṽi with a path of
length |Vi| − |Ṽi| so that we get |Vi| vertices. We do this for every i. Now for the resulting tree T we have that the edges of T
inside Vi are |Vi| − |Ṽi|. Recall that, by definition, |Ṽi| = max{1, |Vi| − dii}, and thus the edges of T inside Vi are at most dii.
Moreover, those paths inside each Vi were the only thing added to T̃ . Therefore, the number of edges between Vi and Vj is at
most d̃ij ≤ dij. That is, in time O(n) we create a valid tree T for P and D. □

Lemmata 3 and 4 reduce the original algorithmic problem to finding a valid tree for P̃ and D̃. Indeed, suppose that
somehowwe construct such a tree T ′′ (this is what Algorithm 3 in Section 3.3 does). Then, by Lemma 4, T ′′ can be efficiently
transformed into a valid tree T ′ for P and D. Further, by Lemma 3, T ′ can be efficiently transformed into a tree T ∈ [P,D].
Finally, T may be given as an initial seed to Algorithm 1 and a connected graph in ⟨P,D⟩ is returned.
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3.2. The necessary and sufficient condition

We are almost ready to state the necessary and sufficient condition for the existence of a connected graph in ⟨P,D⟩ in
terms of the reduced instance P̃ , D̃.

In the simple second example mentioned at the beginning of the current section we would have |Ṽ1| = 6, |Ṽ2| = 1,
|Ṽ3| = 2, |Ṽ4| = 1, d̃13 = 6, d̃23 = d̃24 = 1 and for all the other edge requirements with i ≤ j, d̃ij = 0. It is immediately
apparent that there is no valid tree (or any tree whatsoever) since we have 10 vertices and only 8 edges. In general, however,
things are more subtle. Having enough edges globally is still not sufficient. One has to connect vertices in Ṽj using paths
that go outside Ṽj while respecting the local edge requirements. In fact, in order for the ‘‘local shortage of edges’’ to be
revealed, it can be the case that several groups of Ṽis need to be collapsed together, each in a single vertex. At this point
we need to introduce some extra notation that serves this exact purpose. For every grouping of some of the Ṽis we define a
weighted graph. Each vertex of this graph is either some collapsed Ṽi (the local requirements of which wewant to highlight)
or a collapsed group of Ṽis (to which we may pay less attention). The weights are defined as to reflect the relevant edge
requirements.

Let F ⊆ P̃ , and let A = {A1,A2, . . .Aλ} be a partition of F . As discussed above, the interpretation is that each Ai will
collapse to a single vertex. The undirected weighted graph GF,A = (V, E, w) is defined as follows:

− V = {α1, α2, . . . αλ} ∪
⋃

j:Ṽj ̸∈F
{uj}, i.e., one vertex αi for each Ai and one vertex uj for each Ṽj ̸∈ F .

− For any i, j ∈ [λ]with i ̸= j, if there exist Ṽx ∈ Ai and Ṽy ∈ Aj such that d̃xy > 0, then αiαj ∈ E and w(αiαj) = 1.
− For any i ∈ [λ] and any Ṽj ̸∈ F , if there exists Ṽx ∈ Ai such that d̃xj > 0, then αiuj ∈ E and w(αiuj) =

min
{
|Ṽj|,

∑
x:Ṽx∈Ai

d̃xj
}
.

− For any Ṽi ̸∈ F , Ṽj ̸∈ F with i ̸= j, if d̃ij > 0, then uiuj ∈ E and w(uiuj) = d̃ij.

We can now state the necessary and sufficient condition for a connected graphic realization to exist.

Theorem 5. There exists a connected G ∈ ⟨P,D⟩ if and only if for every F ⊆ P̃ and every partition A of F ,∑
e∈E

w(e) ≥ |A| +
∑
Ṽi ̸∈F

|Ṽi| − 1

holds for the graph GF,A = (V, E, w) defined above.

The fact that the condition stated in Theorem 5 is necessary is relatively straightforward, and it is proved in Lemma 6.
The challenging part is showing that these conditions are also sufficient, and this follows from the proof of Theorem 7 that
deals with the correctness of Algorithm 3.

Lemma 6. If there is a connected G ∈ ⟨P,D⟩, then for every F and A,
∑

e∈Ew(e) ≥ |A| +
∑

Ṽi ̸∈F
|Ṽi| − 1 holds for GF,A.

Proof. Given a connected graph G ∈ ⟨P,D⟩ we can easily get a connected graph G̃ on
⋃k

i=1Ṽi that satisfies with equality
the constraints imposed by D̃, i.e., there are exactly d̃ij edges between Ṽi and Ṽj for all i, j ∈ [k]. To do so, we contract each
connected component of the subgraph Gi of G induced by Vi into a single vertex, and if necessary a few of these vertices
together, so that the cardinality of the vertices of Gi reduces from |Vi| to |Ṽi|. Then, we delete any loops or multiple edges.
The resulting graph is still connected, since vertex contractions never increase the number of connected components. We
do this for every i ∈ [k] to get G̃. The edge constraints are satisfied by the definition of D̃.

Now for any F ⊆ P̃ and any partition A = {A1,A2, . . .Aλ} of F , we may collapse each Aj in G̃ into a single vertex. To
be precise, starting with G̃, for each j ∈ [λ]we contract

⋃
Ṽi∈Aj

Ṽi into a single vertex αj, and we delete any loops or multiple
edges. The resulting graph G∗ is still connected and has |A| +

∑
Ṽi ̸∈F
|Ṽi| vertices. Therefore,

E(G∗) ≥ |A| +
∑
Ṽi ̸∈F

|Ṽi| − 1 . (1)

Moreover, it is not hard to see that by contracting each Ṽi left in G∗ into a single vertex ui, and then deleting any loops
or multiple edges, we would get (the unweighted version of) GF,A = (V, E, w). To complete the proof, notice that between
αi and Ṽj ̸∈ F there are min

{
|Ṽj|,

∑
x:Ṽx∈Ai

d̃xj
}
edges in E(G∗), which is 0 when αiuj ̸∈ E and w(αiuj) otherwise. Similarly,

between Ṽi ̸∈ F and Ṽj ̸∈ F there are d̃ij edges in E(G∗), which is 0 when uiuj ̸∈ E andw(uiuj) otherwise. Finally, αiαj ∈ E(G∗)
if and only if w(αi, αj) = 1 in GF,A. Therefore,

E(G∗) =
∑
e∈E

w(e) . (2)

Combining (1) and (2) gives
∑

e∈Ew(e) ≥ |A| +
∑

Ṽi ̸∈F
|Ṽi| − 1. □
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3.3. Completing the algorithmic picture

Next, we state the polynomial time Valid-Tree-Construct algorithm (Algorithm 3) that either constructs a valid tree T̃ for P̃
and D̃, or produces a certificate that no connected realization of ⟨P,D⟩ exists, i.e., a pair (F,A) such that the above necessary
condition fails.

The high level description of the algorithm is as follows. Let Ṽ =
⋃k

i=1Ṽi. The algorithm tries to construct a tree on Ṽ by
maintaining exactly |Ṽ |−1 edgeswhich are valid for P̃ and D̃ (i.e., the number of edges between each Ṽi and Ṽj never exceeds
d̃ij), while at the same time decreasing the number of connected components by adding and removing edges appropriately.
The main idea is that if two components cannot be connected in a trivial way that maintains validity, then the Ṽis that
intersect more than one connected component play a critical role. We constantly try to ‘‘free’’ an edge incident to such a
Ṽi while preserving validity and not increasing the number of connected components. In the case that such a Ṽi intersects
a cycle, this is an easy task. Otherwise, we have to remove all the Ṽis that intersect more than one component, and try to
connect two components in the resulting graph. We recursively repeat this until we connect something, and then it is easy
to find a sequence of adding and removing edges that connects two components in the original graph andmaintains validity.
If the recursion fails, we have a certificate that no connected realization exists.

Before we proceed with the statement and the analysis of Algorithm 3, we need to clarify how we construct an initial
graph G0 (line 1 of the algorithm) on |Ṽ | vertices and |Ṽ | − 1 edges, that does not violate any upper bounds imposed by D̃.
This can be achieved by running JDM-Construct on an appropriate input for a restricted number of steps. Specifically, if G∅ is
the empty graph on Ṽ , and δ is a |Ṽ |-dimensional vector with every coordinate equal to a sufficiently large number, e.g., |V |,
then running JDM-Construct(G∅, Ṽ , δ, D̃) for |Ṽ | − 1 iterations will produce such a graph G0.

To facilitate the presentation we abuse the notation and write things like Gj ← G ∪ Pj ∪ Zj instead of Gj ←
(
V (G) ∪⋃

Ṽi∈Pj
Ṽi , E(G) ∪ Zj

)
, or Gj+1 ← Gj \ Pj instead of saying that Gj+1 is the subgraph of Gj induced by V (Gj) \

⋃
Ṽi∈Pj

Ṽi.

Algorithm 3: Valid-Tree-Construct
(
P̃, D̃

)
1 Use JDM-Construct to produce a valid graph G0 for

(
P̃, D̃

)
with |Ṽ |−1 edges, where Ṽ =

⋃k
i=1 Ṽi

2 j← 0 /* the depth of the current recursion */
3 G← G0 /* G is an auxiliary graph */
4 while G0 is not connected do
5 Aj ← {v | v lies in some cycle of Gj}

6 Cj ←
{
Ṽi | Aj ∩ Ṽi ̸= ∅

}
7 Pj ←

{
Ṽi | Ṽi intersects at least two connected components of Gj

}
8 Zj ←

{
e ∈ Gj | at least one endpoint of e is in some Ṽi ∈ Pj

}
9 if there exists an edge e connecting two connected components of G without violating any upper bounds of D̃ then

/* Case 1 */
10 Add e to E(G) and remove an edge that belongs to a cycle in G
11 j← max{j− 1, 0}; Gj ← G ∪ Pj ∪ Zj; G← Gj

12 else if Cj ∩ Pj ̸= ∅ then /* Case 2 */
13 Pick u, v in some Ṽi ∈ Cj ∩ Pj that belong in different connected components of G and u ∈ Aj
14 Find a neighbor x of u that lies on the same cycle in G
15 Remove xu from E(G) and add e = xv
16 j← max{j− 1, 0} ; Gj ← G ∪ Pj ∪ Zj ; G← Gj

17 else if Pj = ∅ then /* Case 3 */
18 Let C1, C2, . . . , Cξ be the connected components of Gj

19 Ai ←
{
Ṽx | Ṽx ⊆ V (Ci)

}
for 1 ≤ i ≤ ξ

20 F ←
⋃ξ

i=1 Ai ; A← {A1, . . . ,Aξ }

21 return (F,A) /* found a certificate of non existence */

22 else /* Case 4 */
23 Gj+1 ← Gj \ Pj ; G← Gj+1 ; j← j+ 1

24 return G0

Theorem 7. Algorithm 3 outputs either a valid tree for P̃ and D̃, or a certificate (F,A) showing that no such tree exists. The
algorithm runs in time polynomial in n.

Proof. The algorithm startswith a graphG0 on |Ṽ | vertices and |Ṽ |−1 edges, that does not violate any upper bounds imposed
by D̃. Then, if G0 is not connected, the algorithm either connects two connected components C, C′ of G0 to each other without
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violating any d̃ij (Cases 1 and 2, lines 9–11 and 12–16 respectively), or outputs a certificate of non existence of a valid tree
for P̃ and D̃ (Case 3, lines 17–21), or creates an induced subgraph G1 of G0 (Case 4, lines 22–23) and then attempts to do the
above for G1.

At first glance, it is not obvious that the number of graphs G1,G2, . . . created this way is bounded, or that the value of
j itself (the depth of the recursion) does not change arbitrarily before anything meaningful happens for G0. Next we show
that the algorithm works in phases. The ℓth phase consists of jℓ ≥ 0 iterations where Case 4 happens, and then either one
iteration where Case 3 happens, or jℓ + 1 iterations where Cases 1 and 2 happen.

Claim 1. Once Case 1 or Case 2 happens, say while G = Gjℓ , then in the next jℓ iterations Cases 1 and 2 will happen.

Proof of Claim 1. For notational convenience, during the second half of the current phase we are going to use G′j , G
′′

j for the
jth level graph at the beginning and at the end respectively of the corresponding iteration, as opposed to Gj that denotes the
‘‘old’’ jth level graph during the first half of the phase. That is, for j ≤ jℓ, Gj is the graph created at the end of the jth iteration of
the current phase, while G′j and G′′j denote the corresponding graph at the beginning and at the end of the (2jℓ− j)th iteration.

We are going to prove the statement by induction on jℓ. In fact, we are going to augment it with the extra statement
‘‘Moreover, the vertex sets of the connected components of G′0 and G0 are the same’’.

When jℓ = 0 the statement trivially holds, so assume jℓ > 0. Note that if we think of G1 as the starting point of the
recursion, the number of iterations before Case 1 or 2 happens is jℓ − 1. Thus, by the inductive hypothesis, once Case 1 or
Case 2 happens when G = Gjℓ , then in the next jℓ − 1 iterations Cases 1 and 2 will happen. Moreover, the vertex sets of the
connected components of G′1 and G1 are the same.

Since one of Cases 1 or 2 happens in the very last iteration that is implied by the inductive hypothesis, two connected
components of G = G′1 become connected to each other without any d̃ij being violated. Let e, e′ denote the edges added and
removed respectively from G′1 during this iteration, i.e., G′′1 = (G′1− e′)+ e. At the end of the iteration, G′0 is created by adding
P0 and Z0 to G′′1 , and it becomes the current graph G.

Since e′ belonged in a cycle, G′1 and G′′1 − e have the same connected components. Thus, the vertex sets of the connected
components of G1 and G′′1 − e are the same. By adding P0 and Z0 to both G1 and G′′1 − e, we directly get that the vertex sets of
the connected components of G0 and G′0− e are the same. Next, towards a contradiction, suppose that G′0 has less connected
components than G′0 − e. It follows that e connects two connected components in G′0 − e, and consequently e connects the
corresponding connected components in G0. But then in the very first iteration of the current phase Case 1 happens, and thus
jℓ = 0. This contradicts the fact that jℓ > 0. Therefore, G′0 has the same connected components as G′0 − e, and we conclude
that the vertex sets of the connected components of G0 and G′0 are the same.

The latter result implies that P0 is not affected, i.e., P ′0 = P0. Moreover, the above discussion implies that the endpoints
of e, that are not connected in G′′1 − e, are connected in G′0 − e. The key observation now is that a new cycle is created in G′0,
containing the new edge e, as well as some v from some Ṽi ∈ P0 that was on a path connecting the endpoints of e in G′0 − e.
That is, in the next iteration, if Case 1 does not happen, Case 2 does (since for G′0 we have C0 ∩ P0 ⊇ {Ṽi}). This completes the
inductive step. ⊡

Claim 1 implies that once Case 1 or Case 2 happens, then after jℓ more iterations the number of connected components
of G0 is decreased by one, without any d̃ij being violated. Clearly, the number of phases is upper bounded by |Ṽ |. Moreover,
we bound each jℓ by k, i.e., the number of degree classes.

Claim 2. Within k iterations one of Cases 1, 2 or 3 happens.

Proof of Claim 2. Notice that when G0 is not a tree, it contains a cycle, i.e., A0 ̸= ∅. Moreover, whenever Gj is created in
Case 4, its vertex set contains Aj−1, or the current iteration would not go further than Case 2. That is, Gj – if created at all –
contains all the cycles of G0. This also implies that whenever Gj is created, V (Gj) ̸= ∅.

On the other hand, Gj is the subgraph of Gj−1 induced by V (Gj−1) \
⋃

Ṽi∈Pj−1
Ṽi. But Gj is constructed in Case 4, and thus

Pj−1 ̸= ∅, or the algorithm would have terminated in Case 3. Therefore, V (Gj−1) \ V (Gj) contains one or more of the Ṽis. As
discussed above, whenever Gj is created, V (Gj) ̸= ∅, so the algorithm cannot go to Case 4 for k consecutive iterations. That
is, within k iterations one of Cases 1, 2, or 3 happens. ⊡

Combining Claims 1 and 2, we get that within no more than 2k+ 1 iterations Algorithm 3 either reduces the number of
components of G0, or terminates in Case 3. So, in at most (2k+ 1)|Ṽ | iterations the algorithm terminates and, if Case 3 never
happens, the graph G0 returned is a valid tree for P̃ and D̃. Notice that every iteration takes time O(|Ṽ |

2
), hence the running

time of the algorithm is O(n4).
Now suppose that Case 3 happens. That is, for some j, Pj = ∅ and the conditions in lines 9 and 12 fail. Let C1, C2, . . . , Cξ

be the connected components of Gj and letA and F be defined as in lines 19–20 of the algorithm. Note that the definition of
theAis (and thus ofA and F as well) makes sense. Indeed, from the way Gj is constructed, if a vertex v ∈ Ṽx is in V (Gj), then
Ṽx ⊆ V (Gj). Therefore, since Pj = ∅, if a vertex v ∈ Ṽx is in a component Ci, then Ṽx ⊆ V (Ci).

Consider the graph Gj together with all vertices and edges removed in the previous j iterations, i.e., the current G0.

Claim3. In the current G0, any edge that can be addedwithout violating the upper bounds given by D̃, must have both its endpoints
in some Ci.
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Proof of Claim 3. It suffices to show that all other possible cases fail to happen. Suppose that there exists an edge uv that
can be added to G0 without violating any constraint, such that u ∈ V (Ci) and v ∈ V (Ci′ ), where i ̸= i′. But then, uv would
have been found and added in Case 1 of the current iteration. Now, suppose that there exists an edge uv that can be added
to G0 without violating any constraint, such that either u ∈ V (Ci), v ∈ Ṽy ∈ Pi′ with i′ < j, or u ∈ Ṽx ∈ Pi, v ∈ Ṽy ∈ Pi′ with
i′ ≤ i < j. However, uv was also available a few iterations back, when G was Gi′ . Since Ṽy intersects at least two connected
components of Gi′ , there exists v′ ∈ Ṽy such that u and v′ lie in different connected components in Gi′ . Because adding uv is
legal, so is adding uv′. Hence, uv′ would have been added in Case 1 of that iteration. We conclude that the claim is true. ⊡

By Claim 3, for any Ṽx, Ṽy that are not contained in F , we must have as many edges as possible between Ṽx and Ṽy in G0.
That is, if G[X, Y ] denotes the bipartite subgraph of G induced by X and Y ,⏐⏐E(

G0
[
Ṽx, Ṽy

])⏐⏐ = d̃xy .

Similarly, for any Ṽx ̸∈ F and anyAi wemust already have as many edges as possible in G0 between Ṽx and all the Ṽys inAi.
That is,⏐⏐⏐⏐E(

G0

[
Ṽx ,

⋃
Ṽy∈Ai

Ṽy

])⏐⏐⏐⏐ = ∑
y:Ṽy∈Ai

d̃xy .

Now we contract each Ai into a single vertex and delete loops and multiple edges to get H from G0. For the number of
vertices and edges of H it is easy to see that

|V (H)| = |A| +
∑
Ṽi ̸∈F

|Ṽi| , (3)

and

|E(H)| =
1
2

∑
x:Ṽx ̸∈F

∑
y:Ṽy ̸∈F

d̃xy +
∑
Ṽx ̸∈F

ξ∑
i=1

min
{
|Ṽx|,

∑
y:Ṽy∈Ai

d̃xy

}
. (4)

The next step is to relate |V (H)| and |E(H)|with each other.

Claim 4. |E(H)| < |V (H)| − 1.

Proof of Claim 4. It suffices to show that H remains disconnected, but contains no cycles. The former is straightforward,
since G0 is disconnected, and contracting sets of vertices that induce connected subgraphs (like

⋃
Ṽj∈Ai

Ṽj) does not make it
connected. To see that H is acyclic, we need the observation made in the first part of the proof of Claim 2: Gj contains all the
cycles of G0. Thus, by contracting the sets of vertices that induce the connected components of Gj – which is what we do by
contracting each Ai to get H – we get rid of all the cycles of G0. ⊡

It is straightforward to see that if we use F andA to construct the weighted graph G = (P, E, w) as in the necessary and
sufficient condition, then

∑
e∈Ew(e) = |E(H)|. If we combine this with Claim 4 and inequalities (3) and (4), we have∑

e∈E

w(e) < |A| +
∑
Ṽi ̸∈F

|Ṽi| − 1 .

That is, the condition fails to hold and (F,A) is indeed a certificate showing that no connected graph in ⟨P,D⟩ exists. □

Note that the correctness of Algorithm 3 completes the proof of Theorem 5 as well. Below (Algorithm 4) we give a high
level description of all the steps involved in the construction of a connected realization in ⟨P,D⟩. The running time of Valid-
Tree-Construct, i.e., O(n4), dominates the running time of Algorithm 4.

Algorithm 4: JDM-Connected-Construct(P,D)

1 Create P̃ and D̃ /* as described before Lemma 4 */
2 Run Valid-Tree-Construct

(
P̃, D̃

)
/* Algorithm 3 */

3 if Valid-Tree-Construct outputs (F,A) then
4 return (F,A) /* there is no connected graph in ⟨P,D⟩ */
5 else
6 Let T ′′ be the output Valid-Tree-Construct

(
P̃, D̃

)
7 Using T ′′, construct a valid tree T ′ for P and D /* Lemma 4 */
8 Using T ′, construct a tree T ∈ [P,D] /* Lemma 3 */
9 return JDM-Construct(T ,P, d,D) /* Connected by Theorem 2 */
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