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Abstract
We propose new summary statistics to quantify the asso-
ciation between the components in coverage-reweighted
moment stationary multivariate random sets and mea-
sures. They are defined in terms of the coverage-reweighted
cumulant densities and extend classic functional statistics
for stationary random closed sets. We study the relations
between these statistics and evaluate them explicitly for
a range of models. Unbiased estimators are given for all
statistics and applied to simulated examples and to tropical
rain forest data.
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1 INTRODUCTION

Popular statistics for investigating the dependencies between different types of points in
a multivariate point process include cross versions of the K-function (Ripley, 1988), the
nearest-neighbour distance distribution (Diggle, 2014), or the J-function (van Lieshout &
Baddeley, 1996). Although originally proposed under the assumption that the underly-
ing point process distribution is invariant under translations, in the recent years, all
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statistics mentioned have been adapted to an inhomogeneous context. More specifically, for
univariate point processes, Baddeley, Møller, and Waagepetersen (2000) proposed an inhomoge-
neous extension of the K-function, whereas van Lieshout (2011) did so for the nearest-neighbour
distance distribution and the J-function. An inhomogeneous cross K-function was proposed
by Møller and Waagepetersen (2004); cross nearest-neighbour distance distributions and
J-functions were introduced by van Lieshout (2011) and studied further by Cronie and van
Lieshout (2016). The K- and J-functions were extended to space–time point processes by, respec-
tively, Gabriel and Diggle (2009) and van Lieshout (2011), Cronie and van Lieshout (2015).

Although point processes can be seen as the special class of random measures that take
integer values, functional summary statistics for random measures in general do not seem to
be well studied. An exception is the pioneering paper by Stoyan and Ohser (1982) in which,
under the assumption of stationarity, two types of characteristics were proposed for describing
the correlations between the components of bivariate random closed sets in terms of their cov-
erage measures. The first one is based on the second-order moment measure (Daley & Vere-
Jones, 2008) of the coverage measure (Molchanov, 2017), and the second one on the capacity func-
tional (Matheron, 1975). The authors did not pursue any relations between their statistics. Our
goal in this paper is, in the context of bivariate random measures, to define generalisations of
the statistics of and Stoyan and Ohser (1982) that allow for inhomogeneity and to investigate the
relations between them.

The paper is organised as follows. In Section 2, we review the theory of multivariate random
measures. We recall the definition of the Laplace functional and Palm distribution and discuss
the moment problem. We then present the notion of coverage-reweighted moment stationarity.
In Section 3, we introduce new inhomogeneous counterparts to Stoyan and Ohser's reduced cross
correlation measure. In the univariate case, the latter coincides with that proposed by Gallego,
Ibáñez, and Simó (2016) for germ–grain models. We go on to propose a cross J-function and relate
it to the cross hitting intensity (Stoyan & Ohser, 1982) and empty space function (Matheron, 1975)
defined for stationary random closed sets and to the classic cross J-function for point processes
defined in terms of their product densities. Next, we give explicit expressions for our functional
statistics for a range of bivariate models: compound random measures including linked and bal-
anced models, the coverage measure associated to random closed sets such as germ–grain models,
and random field models with particular attention to log-Gaussian and thinning random fields.
Then, in Section 5, we turn to estimators for the new statistics and apply them to simulations of
the models discussed in Section 4. Finally, we use our statistics to provide empirical evidence for
the hypothesis of independence between components for species abundance data in a tropical
rain forest (McGill, 2010; Wiegand et al., 2012).

2 RANDOM MEASURES AND THEIR MOMENTS

In this section, we recall the definition of a multivariate random measure (Chiu, Stoyan, Kendall,
& Mecke, 2013; Daley & Vere-Jones, 2008).

Definition 1. Let = Rd×{1, … ,n}, for d,n ∈ N, be equipped with the metric d(·, ·) defined
by d((x, i), ( y, j)) = ||x − y|| + |i − j| for x, 𝑦 ∈ Rd and i, j ∈ {1, … ,n}. Then a multivariate
random measure Ψ on  is a measurable mapping from a probability space (Ω,,P) into
the space of all locally finite Borel measures on  equipped with the smallest 𝜎-algebra that
makes all

Ψi(B) = Ψ(B × {i}),
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with B ⊂ Rd ranging through the bounded Borel sets and i through {1, … ,n} a random
variable.

Below, being interested in cross statistics, we shall restrict ourselves to the bivariate case
that n = 2. An important functional associated with a bivariate random measure is its Laplace
functional.

Definition 2. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure. Let u ∶ Rd × {1, 2} → R+

be a bounded nonnegative measurable function such that the projections u(·, i) ∶ Rd → R+,
i = 1, 2, have bounded support. Then,

L(u) = E exp

[
−

2∑
i=1

∫Rd
u(x, i)dΨi(x)

]
is the Laplace functional of Ψ evaluated at u.

The Laplace functional completely determines the distribution of the random measure Ψ
(Daley & Vere-Jones, 2008, section 9.4) and is closely related to the moment measures. For Borel
sets B ⊂ Rd and i ∈ {1, 2}, set

𝜇(1)(B × {i}) = EΨi(B).

Provided the set function𝜇(1) is finite for bounded Borel sets, it yields a locally finite Borel measure
that is also denoted by 𝜇(1) and referred to as the first-order moment measure of Ψ. More generally,
for k ≥ 2, the kth order moment measure is defined by the set function

𝜇(k) ((B1 × {i1}) × · · · × (Bk × {ik})) = E
(
Ψi1 (B1) × · · · × Ψik (Bk)

)
,

where B1, … ,Bk ⊂ Rd are Borel sets and i1, … , ik ∈ {1, 2}. If 𝜇(k) is finite for bounded Bi, it
can be extended uniquely to a locally finite Borel measure on k (cf. section 9.5 in Daley and
Vere-Jones , 2008).

In the sequel, we shall need the following relation between the Laplace functional and the
moment measures. Let u be a bounded nonnegative measurable function u ∶ Rd × {1, 2} → R+

such that its projections have bounded support. Then,

L(u) = 1 +
∞∑

k=1

(−1)k

k!

2∑
i1=1

∫Rd
· · ·

2∑
ik=1

∫Rd
u(x1, i1)· · ·u(xk, ik)d𝜇(k) ((x1, i1), … , (xk, ik)) , (1)

provided that the moment measures of all orders exist and that the series on the right-hand side
of (1) is absolutely convergent (Daley & Vere-Jones, 2003, formula 6.1.9).

The above discussion might lead us to expect that the moment measures determine the
distribution of a random measure. Such a claim cannot be made in complete generality, but
Zessin (1983) derived a sufficient condition.

Theorem 1. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure, and assume that the series
∞∑

k=1
𝜇(k)((B × C)k)−1∕(2k) = ∞

diverges for all bounded Borel sets B ⊂ Rd and all C ⊂ {1, 2}. Then, the distribution of Ψ is
uniquely determined by its moment measures.

The existence of the first-order moment measure implies that of a Palm distribution (Daley &
Vere-Jones, 2008, proposition 13.1.IV).
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Definition 3. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure for which 𝜇(1) exists as a
locally finite measure. Then, Ψ admits Palm distributions P(x,i) that are defined uniquely up
to a 𝜇(1)-null set and satisfy

E

[ 2∑
i=1

∫Rd
g((x, i),Ψ)dΨi(x)

]
=

2∑
i=1

∫Rd
E(x,i) [g((x, i),Ψ)] d𝜇(1)(x, i) (2)

for any nonnegative measurable function g. Here, E(x,i) denotes expectation with respect
to P (x,i).

Equation (2) is sometimes referred to as the Campbell–Mecke formula.
Next, we will focus on random measures whose moment measures are absolutely continuous.

Thus, suppose that

𝜇(k) ((B1 × {i1}) × · · · × (Bk × {ik})) = ∫B1

· · ·∫Bk

𝑝k ((x1, i1), … , (xk, ik)) dx1· · ·dxk,

or, in other words, that for fixed i1, … , ik, 𝜇(k) is absolutely continuous with respect to Lebesgue
measure in Rkd with Radon–Nikodym derivative pk, the k-point coverage function. The family of
pk defines cumulant densities as follows (Daley & Vere-Jones, 2008).

Definition 4. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure, and assume that its moment
measures exist and are absolutely continuous. Assume that the coverage function p1 is strictly
positive. Then, the coverage-reweighted cumulant densities 𝜉k are defined recursively by
𝜉1 ≡ 1 and, for k ≥ 2,

𝑝k ((x1, i1), … , (xk, ik))
𝑝1(x1, i1)· · ·𝑝1(xk, ik)

=
k∑

m=1

∑
D1,… ,Dm

m∏
𝑗=1
𝜉|D𝑗 | ({(xl, il) ∶ l ∈ D𝑗

})
,

where the sum is over all possible partitions {D1, … ,Dm}, Dj ≠ ∅, of {1, … , k}. Here, we use
the labels i1, … , ik to define which of the components is considered and denote the cardinality
of Dj by |Dj|.

For the special case k = 2,

𝜉2 ((x1, i1), (x2, i2)) =
𝑝2 ((x1, i1), (x2, i2)) − 𝑝1(x1, i1)𝑝1(x2, i2)

𝑝1(x1, i1)𝑝1(x2, i2)
.

Consequently, 𝜉2 can be interpreted as a coverage-reweighted covariance function.
An application of lemma 5.2.VI in Daley and Vere-Jones (2003) to (1) implies that

log L(u) =
∞∑

k=1

(−1)k

k!

2∑
i1=1

∫Rd
· · ·

2∑
ik=1

∫Rd
𝜉k ((x1, i1), … , (xk, ik))

k∏
𝑗=1

u(x𝑗 , i𝑗)𝑝1(x𝑗 , i𝑗)dx𝑗 , (3)

provided that the series on the right-hand side of (3) is absolutely convergent.
Indeed, up to a factor

∏k
𝑗=1 𝑝1(x𝑗 , i𝑗), the 𝜉k are the Radon–Nikodym derivatives of the cumu-

lant measures of Ψ. If Ψ is stationary, the cumulant measures are invariant under translations.
We shall need a weaker form of stationarity that can be interpreted as moment stationarity after
accounting for fluctuations in the coverage function.

Definition 5. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure. Then, Ψ is called
coverage-reweighted moment stationary if its coverage function exists and is bounded away
from zero (i.e., inf 𝑝1(x, i) > 0) and if its coverage-reweighted cumulant densities 𝜉k, k ≥ 2,
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exist and are translation invariant in the sense that for all a ∈ Rd, the equation
𝜉k ((x1 + a, i1), … , (xk + a, ik)) = 𝜉k ((x1, i1), … , (xk, ik))

holds for all ij ∈ {1, 2} and almost all x𝑗 ∈ Rd.

The next result states that under the condition of Definition 5, the Palm moment measures
of the coverage-reweighted random measure Ψ(·)∕p1(·) can be expressed in terms of the k-point
coverage functions of Ψ.

Theorem 2. Let Ψ be a coverage-reweighted moment stationary bivariate random measure
and k ∈ N. Then, for all bounded Borel sets B1, … ,Bk and all i1, … , ik ∈ {1, 2}, the Palm
expectation is given by

E(a,i)
[
∫a+B1

· · ·∫a+Bk

dΨi1 (x1) · · ·dΨik (xk)
𝑝1(x1, i1) · · ·𝑝1(xk, ik)

]
= ∫B1

· · ·∫Bk

𝑝k+1 ((0, i), (x1, i1), … , (xk, ik))
𝑝1(0, i)𝑝1(x1, i1) · · ·𝑝1(xk, ik)

dx1 · · ·dxk

for i ∈ {1, 2} and almost all a ∈ Rd.

Proof. By (2) with g((a, j),Ψ) = 0 if j ≠ i, and

g((a, i),Ψ) = 1A(a)
𝑝1(a, i)∫a+B1

· · ·∫a+Bk

1
𝑝1(x1, i1) · · ·𝑝1(xk, ik)

dΨi1 (x1) · · ·dΨik (xk),

for some bounded Borel sets A,B1, … ,Bk ⊂ Rd and any i, i1, … , ik ∈ {1, 2}, one sees that

E

[
∫A

1
𝑝1(a, i)∫a+B1

· · ·∫a+Bk

1
𝑝1(x1, i1)· · ·𝑝1(xk, ik)

dΨi1 (x1) · · ·dΨik (xk)dΨi(a)
]

= ∫A
E(a,i)

[
∫a+B1

· · ·∫a+Bk

1
𝑝1(a, i)𝑝1(x1, i1)· · ·𝑝1(xk, ik)

dΨi1 (x1) · · ·dΨik (xk)
]
𝑝1(a, i)da.

The left-hand side is equal to

∫A

[
∫B1

· · ·∫Bk

𝑝k+1 ((a, i), (a + x1, i1), … , (a + xk, ik))
𝑝1(a, i)𝑝1(a + x1, i1)· · ·𝑝1(a + xk, ik)

dx1· · ·dxk

]
da,

and the inner integrand does not depend on the choice of a ∈ A by the assumptions on Ψ.
Hence, for all bounded Borel sets A ⊂ Rd,

∫A
E(a,i)

[
∫a+B1

· · ·∫a+Bk

dΨi1 (x1) · · ·dΨik (xk)
𝑝1(x1, i1) · · ·𝑝1(xk, ik)

]
da

= ∫A

[
∫B1

· · ·∫Bk

𝑝k+1 ((0, i), (x1, i1), … , (xk, ik))
𝑝1(0, i)𝑝1(x1, i1) · · ·𝑝1(xk, ik)

dx1 · · ·dxk

]
da.

Therefore, the Palm expectation takes the same value for almost all a ∈ Rd.

3 SUMMARY STATISTICS FOR BIVARIATE RANDOM
MEASURES

3.1 The inhomogeneous cross K-function
For the coverage measures associated to a stationary bivariate random closed set,
Stoyan and Ohser (1982) defined the reduced cross correlation measure as follows. Let B(x, t) be



990 Scandinavian Journal of Statistics VAN LIESHOUT

the closed ball of radius t ≥ 0 centred at x ∈ Rd and set, for any bounded Borel set B of positive
volume 𝓁(B),

R12(t) =
1

𝑝1(0, 1)𝑝1(0, 2)
E

[
1

𝓁(B)∫B
Ψ2(B(x, t))dΨ1(x)

]
. (4)

Due to the assumed stationarity, the right-hand side of (4) does not depend on the choice of B. In
the univariate case, Ayala and Simó (1998) called a function of this type the K-function in analogy
to a similar statistic for point processes (Diggle, 2014; Ripley, 1977).

In order to modify (4) so that it applies to more general, and not necessarily stationary, random
measures, we focus on the second-order coverage-reweighted cumulant density 𝜉2 and assume
it is invariant under translations. If additionally p1 is bounded away from zero, Ψ is said to be
second-order coverage-reweighted stationary.

Definition 6. Let Ψ = (Ψ1,Ψ2) be a bivariate random measure that admits a second-order
coverage-reweighted cumulant density 𝜉2 that is invariant under translations and a coverage
function p1 that is bounded away from zero. Then, for t ≥ 0, the cross K-function is defined by

K12(t) = ∫B(0,t)
(1 + 𝜉2((0, 1), (x, 2)))dx.

Note that the cross K-function is symmetric in the components of Ψ, that is, K12 = K21. The
next result gives an alternative expression in terms of the expected content of a ball under the
Palm distribution of the coverage-reweighted random measure.

Lemma 1. Let Ψ = (Ψ1,Ψ2) be a second-order coverage-reweighted stationary bivariate
random measure. Then,

K12(t) = E(a,1)
[
∫B(a,t)

1
𝑝1(x, 2)

dΨ2(x)
]
,

and the right-hand side does not depend on the choice of a ∈ Rd.

Proof. Apply Theorem 2 for k = 1, i = 1, B1 = B(0, t), and i1 = 2 to obtain

E(a,1)
[
∫B(a,t)

1
𝑝1(x, 2)

dΨ2(x)
]
= ∫B(0,t)

𝑝2((0, 1), (x, 2))
𝑝1(0, 1)𝑝1(x, 2)

dx

= ∫B(0,t)
(1 + 𝜉2((0, 1), (x, 2)))dx.

In particular, the right-hand side does not depend on a.

To interpret the statistic, recall that 𝜉2 is equal to the coverage-reweighted covariance. Thus,
if Ψ1 and Ψ2 are independent, then

K12(t) = 𝓁(B(0, t)),

the Lebesgue measure of B(0, t). Larger values are due to positive correlation, and smaller ones
to negative correlation between Ψ1 and Ψ2. Furthermore, if Ψ = (Ψ1,Ψ2) is stationary, Lemma 1
implies that

K12(t) =
1

𝑝1(0, 2)
E(0,1) [Ψ2(B(0, t))] ,
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which, by the Campbell–Mecke equation (2), is equal to

1
𝑝1(0, 1)𝑝1(0, 2)

E

[
1

𝓁(B)∫B
Ψ2(B(x, t))dΨ1(x)

]
for any bounded Borel set B for which 𝓁(B) > 0. Consequently, K12(t) = R12(t), the reduced cross
correlation measure of Stoyan and Ohser (1982).

3.2 Inhomogeneous cross J-function
The cross K-function is based on the second-order coverage-reweighted cumulant density. In this
section, we propose a new statistic that incorporates the coverage-reweighted cumulant densities
of all orders.

Definition 7. Let Ψ = (Ψ1,Ψ2) be a coverage-reweighted moment stationary bivariate
random measure. For t ≥ 0 and k ≥ 1, set

J(k)12 (t) = ∫B(0,t)
· · ·∫B(0,t)

𝜉k+1 ((0, 1), (x1, 2), … , (xk, 2)) dx1 · · ·dxk,

and define the cross J-function by

J12(t) = 1 +
∞∑

k=1

(−1)k

k!
J(k)12 (t)

for all t ≥ 0 for which the series is absolutely convergent.

Note that

J(1)12 (t) = K12(t) − 𝓁(B(0, t)).

The appeal of Definition 7 lies in the fact that its dependence on the cumulant densities and,
furthermore, its relation to K12 are immediately apparent. However, being an alternating series,
J12(t) is not convenient to handle in practise. The next theorem gives a simpler characterisation
in terms of the Laplace transform.

Theorem 3. Let Ψ = (Ψ1,Ψ2) be a coverage-reweighted moment stationary bivariate random
measure. Write L(a,1) for the Laplace transform under the Palm distribution P (a,1). Then, for t ≥ 0
and a ∈ Rd,

J12(t) =
L(a,1) (ua

t
)

L
(

ua
t
) (5)

for ua
t (x, i) = 1{(x, i) ∈ B(a, t) × {2})∕𝑝1(x, i), provided that the series expansions of L(ua

t )
and J12(t) are absolutely convergent. In particular, J12(t) does not depend on the choice of origin
a ∈ Rd.

Proof. First, note that, by (3), L(ua
t ) does not depend on the choice of a. Also, by Theorem 2

and the series expansion (1) of the Laplace transform for ua
t (x, i), provided that the series is



992 Scandinavian Journal of Statistics VAN LIESHOUT

absolutely convergent,

L(a,1) (ua
t
)
= 1 +

∞∑
k=1

(−1)k

k!
E(a,1)

[
∫B(a,t)

· · ·∫B(a,t)

dΨ2(x1) · · ·dΨ2(xk)
𝑝1(x1, 2) · · ·𝑝1(xk, 2)

]
= 1 +

∞∑
k=1

(−1)k

k! ∫B(0,t)
· · ·∫B(0,t)

𝑝k+1 ((0, 1), (x2, 2), … , (xk+1, 2))
𝑝1(0, 1)𝑝1(x2, 2)· · ·𝑝1(xk+1, 2)

dx2 · · ·dxk+1

= 1 +
∞∑

k=1

(−1)k

k! ∫B(0,t)
· · ·∫B(0,t)

k+1∑
m=1

∑
D1,… ,Dm

m∏
𝑗=1
𝜉|D𝑗 | ({(xl, il) ∶ l ∈ D𝑗

}) k+1∏
i=2

dxi,

where (x1, i1) ≡ (0, 1) and il = 2 for l > 1. By splitting the last expression into terms based on
whether the sets Dj contain the index 1 (i.e., on whether 𝜉|D𝑗 | includes (x1, i1) ≡ (0, 1)), under
the convention that

∑0
k=1 = 1, we obtain

L(a,1) (ua
t
)
= 1 +

∞∑
k=1

(−1)k

k!
∑
Π∈k

J(|Π|)
12 (t)

k−|Π|∑
m=1

∑
D1,… ,Dm≠∅disjoint
∪m
𝑗=1D𝑗={1,… ,k}∖Π

m∏
𝑗=1

I|D𝑗 |,

where

Ik = ∫B(0,t)
· · ·∫B(0,t)

𝜉k((x1, 2), … , (xk, 2))dx1· · ·dxk,

J(0)12 (t) ≡ 1, and k is the power set of {1, … , k}. Finally, by noting that the expansion contains
terms of the form J(k)12 (t)I

m1
k1
· · ·Imn

kn
multiplied by a scalar and basic combinatorial arguments,

we conclude that

L(a,1) (ua
t
)
=

(
1 +

∞∑
k=1

(−1)k

k!
J(k)12 (t)

)
×

⎛⎜⎜⎜⎜⎝
1 +

∞∑
k=1

(−1)k

k!

k∑
m=1

∑
D1,… ,Dm≠∅disjoint
∪m
𝑗=1D𝑗={1,… ,k}

m∏
𝑗=1

I|D𝑗 |
⎞⎟⎟⎟⎟⎠

= J12(t)L
(

ua
t
)
.

The right-hand side does not depend on a and is absolutely convergent as a product of
absolutely convergent terms. Therefore, so is the series expansion for L(a,1).

Heuristically, the cross J-function compares expectations under the Palm distribution P (0,1)

with those under the distribution P ofΨ. If the components ofΨ are independent, conditioning on
the first component placing mass at the origin, does not affect the second component, so J12(t) = 1.
A value larger than 1 means that such conditioning tends to lead to a smaller Ψ2(B(0, t)) content
(typical for negative association); analogously, J12(t) < 1 suggests positive association between
the components of Ψ.

4 EXAMPLES

In this section, we calculate the cross K- and J-function for a range of well-known models that can
be shown to be coverage-reweighted moment stationary and we point out some relations to famil-
iar statistics including the empty space and spherical contact distribution functions. The explicit
expressions thus obtained may be used in minimum contrast methods for parameter estimation
purposes (Møller & Waagepetersen, 2004).
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4.1 Point processes
A point process is a random measure that takes integer values. For this special case, both
cross K- and J-functions have been proposed to quantify the dependence between components
(Cronie & van Lieshout, 2016; Møller & Waagepetersen, 2004; van Lieshout, 2011). However, it
would be a mistake to think that the family of coverage-reweighted cumulant densities 𝜉k and the
notion of weak stationarity based upon it coincide with the family of n-point correlation func-
tions and the associated notion of weak stationarity that form the theoretical foundations for the
cross statistic in the context of a point process (van Lieshout, 2011).

To see why, let N = (N1,N2) be a simple bivariate point process, that is, N almost surely does
not place two points at the same location. The first-order moment measure of N seen as a random
measure is given by

𝜇(1)(B × {i}) = ENi(B)

for Borel sets B ⊂ Rd. The right-hand side in the formula above is the first-order moment measure
of the point process Ni. Hence, assuming absolute continuity with respect to Lebesgue measure,

𝑝1(x, i) = 𝜆i(x),

so the 1-point coverage function p1(x, i) coincides with the intensity function 𝜆i(x) of Ni.
The second-order moment measure of the random measure N is equal to

𝜇(2)((B1 × {i1}) × (B2 × {i2})) = E
[
Ni1 (B1)Ni2(B2)

]
,

for Borel sets B1,B2 ⊂ Rd and i1, i2 ∈ {1, 2}. It can be broken up in two terms, as follows:

E

[ ∑
x∈N1∪N2

∑
x≠𝑦∈N1∪N2

1
{

x ∈ B1 ∩ Ni1 ; 𝑦 ∈ B2 ∩ Ni2

}]
and

E

[ ∑
x∈N1∪N2

1
{

x ∈ (B1 ∩ Ni1 ) ∩ (B2 ∩ Ni2)
}]

. (6)

The first term may be absolutely continuous with respect to Lebesgue measure on R2d, so that it
can be expressed as an integral

∫B1
∫B2

𝜌2 ((x, i1), (𝑦, i2)) dxd𝑦

of product densities 𝜌2 (Daley & Vere-Jones, 2008), but the second term is concentrated on a lower
dimensional subspace and cannot be absolutely continuous with respect to Lebesgue measure on
R2d. Similar considerations apply for higher orders, and we conclude that a point process seen as
a random measure is not in general coverage-reweighted moment stationary.

The cross statistic K12 of Definition 6, however, relies solely on the two-point coverage function
evaluated at pairs of different types. Therefore, (6) may be ignored, and

𝑝2 ((x, 1), (𝑦, 2))
𝑝1(x, 1)𝑝1(𝑦, 2)

= 𝜌2((x, 1), (𝑦, 2))
𝜆1(x)𝜆2(𝑦)

is invariant under translations when the point process is second-order intensity-reweighted sta-
tionary in the sense of Møller and Waagepetersen (2004). Therefore, the cross K-function for point
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processes defined by

1
𝓁(B)

E

[∑
x∈N1

∑
𝑦∈N2

1 {x ∈ B; 𝑦 ∈ B(x, t)}
𝜆1(x)𝜆1(𝑦)

]
= 1

𝓁(B)∫B∫B(x,t)

𝜌2 ((x, 1), (𝑦, 2))
𝜆1(x)𝜆1(𝑦)

dxd𝑦

reduces to

∫B(0,t)

𝜌2 ((0, 1), (z, 2))
𝜆1(0)𝜆1(z)

dz = ∫B(0,t)

𝑝2 ((0, 1), (z, 2))
𝑝1(0, 1)𝑝1(z, 2)

dz = K12(t),

the cross K-function of Definition 6.
A similar remark does not hold for the cross J-function, as it fundamentally relies on k-point

coverage functions of all orders. Therefore, Definition 7 does not apply. Regarding the character-
isation in Theorem 3, the Laplace transform of the random measure N can be expressed as

L
(

ua
t
)
= G

(
e−ua

t
)

in terms of the generating functional G (Daley & Vere-Jones, 2008, section 9.4) of the point pro-
cess N. If we assume that the point process is intensity-reweighted moment stationary (van
Lieshout, 2011; Cronie & van Lieshout, 2016) in the sense that the intensity function is bounded
away from zero, the product densities 𝜌k of all orders exist, and the k-point correlation functions 𝜂k
(defined in complete analogy to Definition 4 with 𝜌k replacing pk) are translation invariant, then

log G
(

e−ua
t
)
=

∞∑
k=1

(−1)k

k!

2∑
i1=1

∫Rd
· · ·

2∑
ik=1

∫Rd
𝜂k ((x1, i1), … , (xk, ik)) ×

×
k∏
𝑗=1
𝜆i𝑗 (x𝑗)

(
1 − e−ua

t (x𝑗 , i𝑗)
)

dx𝑗 =

=
∞∑

k=1

(−1)k

k! ∫B(a,t)
· · ·∫B(a,t)

𝜂k ((x1, 2), … , (xk, 2))
k∏
𝑗=1
𝜆2(x𝑗)

(
1 − e−1∕𝜆2(x𝑗 )

)
dx𝑗 ,

provided that the series converges. Note that G(e−ua
t ) may depend on the choice of origin a, even

when all 𝜂k are translation invariant. However, the Taylor approximation

1 − e−1∕𝜆2(x𝑗 ) ≈ 1∕𝜆2(x𝑗)

ensures that the multiplier 𝜆2(xj) cancels out and the resulting approximation of G(e−ua
t ) no longer

depends on the choice of origin. For this reason, van Lieshout (2011) based inhomogeneous
J-functions on the generating functional of the function

va
t (x𝑗 , i𝑗) = 1 − inf

{
𝜆2(x) ∶ x ∈ Rd} × ua

t (x𝑗 , i𝑗)

instead of e−ua
t . The scaling is needed to ensure function values in [0, 1]. Further details may be

found in Cronie and van Lieshout (2016).
The idea to take the opposite route and define a random measure version of the cross

J-function by means of L(− log va
t ) = G(va

t ) will not hold water either because the Laplace
transform is ill defined due to the unboundedness of the function − log va

t .
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4.2 Compound random measures
Let Λ = (Λ1,Λ2) be a random vector such that its components take values in R+ and have finite,
strictly positive expectation. Set

Ψ = (Λ1𝜈,Λ2𝜈) (7)

for some locally finite Borel measure 𝜈 on Rd that is absolutely continuous with density function
f𝜈 ≥ 𝜖 > 0. In other words, Ψi(B) = Λi ∫B f𝜈(x) dx = Λi 𝜈(B).

Theorem 4. The bivariate random measure Ψ = (Λ1𝜈,Λ2𝜈) defined by (7) is
coverage-reweighted moment stationary and

K12(t) = 𝜅dtd
(

1 + Cov(Λ1,Λ2)
E(Λ1)E(Λ2)

)
J12(t) =

E
(
Λ1 exp

[
−Λ2𝜅dtd∕EΛ2

])
E (Λ1)E

(
exp

[
−Λ2𝜅dtd∕EΛ2

]) .
Here, 𝜅d = 𝓁(B(0, 1)) is the volume of the unit ball in Rd.

Proof. Because

E [Ψ1(B1)· · ·Ψ1(Bk)Ψ2(Bk+1)· · ·Ψ2(Bk+l)] = E
(
Λk

1Λ
l
2
)
∫B1

· · ·∫Bk+l

k+l∏
i=1
𝑓𝜈(xi)dxi,

for Borel sets B1, … ,Bk+l ⊂ Rd, the coverage function of Ψ is given by

𝑝k+l((x1, 1), … , (xk, 1), (xk+1, 2), … , (xk+l, 2)) = E
(
Λk

1Λ
l
2
) k+l∏

i=1
𝑓𝜈(xi),

so that the coverage-reweighted cumulant densities of Ψ are translation invariant. The
assumptions imply that 𝑝1(x, i) = E(Λi)𝑓𝜈(x) is bounded away from zero. Hence, Ψ is
coverage-reweighted moment stationary.

Specialising to second order, one finds that

𝜉2((0, 1), (x, 2)) =
E(Λ1Λ2) − E(Λ1)E(Λ2)

E(Λ1)E(Λ2)
= Cov(Λ1,Λ2)

E(Λ1)E(Λ2)
from which the expression for K12(t) follows upon integration.

As for the cross J-function, the denominator in Theorem 3 can be written as

L(u0
t ) = E exp

[
−∫B(0,t)

1
E(Λ2)𝑓𝜈(x)

dΨ2(x)
]

= E exp
[
− 1
E(Λ2)∫B(0,t)

1
𝑓𝜈(x)

Λ2d𝜈(x)
]

= E exp
[
−Λ2𝜅dtd∕EΛ2

]
,

using d𝜈(x) = f𝜈(x)dx. Using a result of Daley and Vere-Jones (2008, p. 274),

L(0,1) (u0
t
)
= E

(
Λ1 exp

[
−Λ2𝜅dtd∕EΛ2

])
∕E(Λ1),

and the proof is complete.

Both statistics do not depend on f𝜈 . To see that they capture a form of “dependence” between
the components of Ψ, note that the cross K-function exceeds 𝜅dt d if and only if Λ1 and Λ2 are
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positively correlated. For the cross J-function, recall that two random variables X and Y are neg-
atively quadrant dependent if Cov(𝑓 (X)), g(Y ) ≤ 0 whenever f,g are nondecreasing functions,
and positively quadrant dependent if Cov(𝑓 (X)), g(Y ) ≥ 0 ( provided the moments exist; cf. Esary,
Proschan, & Walkup, 1967; Kumar & Proschan, 1983; Lehmann, 1966). Applied to our context, it
follows that if Λ1 and Λ2 are positively quadrant dependent, J12(t) ≤ 1 whilst J12(t) ≥ 1 if Λ1 and
Λ2 are negatively quadrant dependent.

Let us consider two specific examples discussed by Diggle (2014).
Linked model Let Λ2 = AΛ1 and hence Ψ2 = AΨ1 for some A > 0. Because, for l1, l2 ∈ R+,

P(Λ1 ≤ l1; Λ2 ≤ l2) = P(Λ1 ≤ min(l1, l2∕A)) ≥ P(Λ1 ≤ l1)P(AΛ1 ≤ l2),

Λ1 and Λ2 are positively quadrant dependent (Theorem 4.4 in Esary et al., 1967) and, a fortiori,
positively correlated. Therefore, K12(t) ≥ 𝜅dt d and J12(t) ≤ 1.
Balanced model Let Λ1 be supported on the interval (0,A) for some A > 0, and set Λ2 = A−Λ1.
Because, for l1, l2 ∈ (0,A) such that A − l2 ≤ l1,

P(Λ1 ≤ l1; Λ2 ≤ l2) = P(Λ1 ≤ l1) − P(Λ1 < A − l2)
≤ P(Λ1 ≤ l1) − P(Λ1 ≤ l1)P(Λ1 < A − l2) = P(Λ1 ≤ l1)P(Λ2 ≤ l2),

Λ1 andΛ2 are negatively quadrant dependent (Kumar & Proschan, 1983) and, a fortiori, negatively
correlated. Therefore, K12(t) ≤ 𝜅dt d and J12(t) ≥ 1.

4.3 Coverage measure of random closed sets
Let X = (X1,X2) be a bivariate random closed set. Then, by Robbins' theorem
(Molchanov, 2017, p. 97), the Lebesgue content

𝓁(Xi ∩ B) = ∫B
1{x ∈ Xi}dx

of Xi ∩B is a random variable for every Borel set B ⊂ Rd and every component Xi, i = 1, 2. Letting
B and i vary, one obtains a bivariate random measure denoted by Ψ. Clearly, Ψ is locally finite.

Reversely, a bivariate random measure Ψ = (Ψ1,Ψ2) defines a bivariate random closed set by
the supports

supp(Ψi) =
∞⋂

n=1
cl
({

x𝑗 ∈ Qd ∶ Ψi
(

B
(

x𝑗 , 1∕n
))
> 0

})
,

where B
(

x𝑗 , 1∕n
)

is the closed ball around xj with radius 1∕n, and cl(B) is the topological closure of
the Borel set B. In other words, if x ∈ supp(Ψi), then every ball that contains x has strictly positive
Ψi mass. By proposition 1.9.22 in Molchanov (2017), the supports are well-defined random closed
sets whose joint distribution is uniquely determined by that of the random measures.

Indeed, Ayala, Ferrandiz, and Montes (1991) proved the following result.

Theorem 5. Let X = (X1,X2) be a bivariate random closed set. Then, the distribution of X is
completely determined by that of Ψ = (𝓁(X1 ∩ ·),𝓁(X2 ∩ ·)) if and only if X is distributed as the
(random) support of Ψ.

From now on, assume that X is stationary. Then, Stoyan and Ohser (1982) showed that

T12(t) = E

[
1

𝓁(B)∫B
1{X2 ∩ B(x, t) ≠ ∅}dΨ1(x)

]
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does not depend on the choice of B from the family of bounded Borel sets with positive volume
𝓁(B) and called T12(t) the hitting intensity at range t. The hitting intensity is similar in spirit to
another classic statistic, the empty space function (Matheron, 1975) defined by

F2(t) = P(X2 ∩ B(a, t) ≠ ∅),

which can also be shown to not depend on the choice of origin a. The related cross spherical contact
distribution can be defined as

H12(t) = P(X2 ∩ B(a, t) ≠ ∅ ∣ a ∈ X1)

in analogy to the classical univariate definition (Chiu et al., 2013). Again, the expression on the
right-hand side does not depend on the choice of a ∈ Rd due to the assumed stationarity. In order
to relate T12 and F2 to our J12-function, we need the concept of “scaling”. Let s > 0. Then, the
scaling of X by s results in sX = (sX1, sX2), where sXi = {sx ∶ x ∈ Xi}.

Theorem 6. Let X = (X1,X2) be a stationary bivariate random closed set with strictly positive
volume fractions 𝑝1(0, i) = P(0 ∈ Xi), i = 1, 2. Then, the associated random coverage measure Ψ
is coverage-reweighted moment stationary and the following hold.

1. The cross statistics are

K12(t) =
E (𝓁 (X2 ∩ B(0, t)) |0 ∈ X1)

𝑝1(0, 2)
;

J12(t) =
E
(
1{0 ∈ X1} exp

[
−𝓁(X2 ∩ B(0, t))∕𝑝1(0, 2)

])
𝑝1(0, 1)E

(
exp

[
−𝓁(X2 ∩ B(0, t))∕𝑝1(0, 2)

]) .

2. Use a subscript sX to denote that the statistic is evaluated for the scaled random closed set
sX, and let u0

t be as in Theorem 3. Then,

lim
s→∞

L(0,1) (sdu0
t
)
= 1 − T12(t)

𝑝1(0, 1)

and, for t > 0,

lim
s→∞

J12;sX (st) = P(X2 ∩ B(0, t) = ∅ ∣ 0 ∈ X1)
P(X2 ∩ B(0, t) = ∅)

= E

[
1{0 ∈ X1}
𝑝1(0, 1)

||||X2 ∩ B(0, t) = ∅
]

whenever P(X2 ∩ B(0, t) = ∅) ≠ 0.

In words, the scaling limit of the cross J-function compares the empty space function with the
cross spherical contact distribution.

Proof. First, note that

𝜇(k)((B1 × {i1}) × · · · × (Bk × {ik})) = E
(
𝓁
(

Xi1 ∩ B1
)
× · · · × 𝓁

(
Xik ∩ Bk

))
,

which, by (1.5.11) in Molchanov (2017, p. 98) is equal to

∫B1

· · ·∫Bk

P
(

x1 ∈ Xi1 ; … ; xk ∈ Xik

)
dx1· · ·dxk.

Here, k ∈ N and B1, … ,Bk are Borel subsets of Rd. Hence, Ψ admits moment measures of
all orders, and the probabilities P(x1 ∈ Xi1 ; … ; xk ∈ Xik ) = 𝑝k((x1, i1), … , (xk, ik)) define the
coverage functions. By assumption, p1 is bounded away from zero, so the stationarity of X
implies that Ψ is coverage-reweighted moment stationary.
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By Chiu et al. (2013, p. 288), the Palm distribution amounts to conditioning on having a
point of the required component at the origin, and the expression for the cross K-function
follows from Lemma 1, whereas that for the cross J-function follows from Theorem 3.

Use a subscript sX to denote that a statistic is evaluated for the scaled set. To see the effect
of scaling on J12 to obtain J12; sX, observe that, because

P
(

x1 ∈ sXi1 ; … ; xk ∈ sXik

)
= P

(
x1∕s ∈ Xi1 ; … ; xk∕s ∈ Xik

)
,

the k-point coverage probabilities of sX are related to those of X by pk; sX((x1, i1), … , (xk, ik)) =
pX((x1∕s, i1), … , (xk∕s, ik)). Similarly, 𝜉k; sX((x1, i1), … , (xk, ik)) =𝜉k;X((x1∕s, i1), … , (xk∕s, ik)),
and consequently, J(k)12;sX (t) = sdkJ(k)12;X (t∕s). Also, scaling the balls B(0, t) by s to fix the coverage
fraction, one obtains J(k)12;sX (st) = sdkJ(k)12;X (t) and K12;sX (st) = J(1)12;X (st) + 𝜅d(st)d = sdK12;X (t). The
numerator in the expression of J12 in terms of Laplace functionals (cf. Theorem 3) after such
scaling reads as follows. Define, for x ∈ Rd and i ∈ {1, 2},

ust;sX (x, i) =
1 {(x, i) ∈ B(0, st) × {2}}

𝑝1;sX (x, i)
=

1 {(x∕s, i) ∈ B(0, t) × {2}}
𝑝1;X (x∕s, i)

.

Then,

L(0,1)
sX (ust;sX ) = E

[
exp

(
−∫B(0,st)

1{x ∈ sX2}
𝑝1;sX (x, 2)

dx
)||||| 0 ∈ sX1

]
= L(0,1)

X (sdut;X ).

For t > 0, as s → ∞,
L(0,1)

X (sdut;X ) → P(X2 ∩ B(0, t) = ∅ ∣ 0 ∈ X1)

by the monotone convergence theorem.
Turning to T12(t), note that

E

[
1

𝓁(B)∫B
1{X2 ∩ B(x, t) ≠ ∅; x ∈ X1}dx

]
= 1

𝓁(B)∫B
P(X2 ∩ B(x, t) ≠ ∅; x ∈ X1)dx

by Robbins' theorem. Because the volume fractions are strictly positive, we may condition on
having a point at any x ∈ Rd, so that

P(X2 ∩ B(x, t) ≠ ∅; x ∈ X1) = P(X2 ∩ B(0, t) ≠ ∅ ∣ 0 ∈ X1)P(0 ∈ X1)

upon using the stationarity of X. We conclude that L(0,1)
X (sdut;X) → 1−T12(t)∕p1(0, 1) as claimed.

Finally, consider the effect of scaling on the denominator in (5). Now,

LsX (ust;sX ) = E
[
exp (−𝓁 (sX2 ∩ B(0, st)) ∕𝑝1(0, 2))

]
= LX (sdut;X ).

For t > 0,
lim
s→∞

LX (sdut;X ) = P
(

X2 ∩ B(0, t) = ∅
)

by the monotone convergence theorem. Combining numerator and denominator, the theorem
is proved.

The case t = 0 is special. Indeed, both the spherical contact distribution and empty space
function may have a “nugget” at the origin. In contrast, J12(0) ≡ 1.

Before specialising to germ–grain models, let us make a few remarks. First, note that the
moment measures of Ψ have a nice interpretation. Indeed, by Fubini's theorem, the k-point cov-
erage function coincides with the k-point coverage probabilities of the underlying random closed
set. Moreover, because 𝜇(k)((B × {1, 2})k) ≤ (2𝓁(B))k, the Zessin condition holds (cf. Theorem 1).
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Secondly, if X1 and X2 are independent, J12(t) ≡ 1. More generally, if 𝓁(X2 ∩ B(0, t)) and
1{0 ∈ X1} are negatively quadrant dependent, J12(t) ≥ 1. If the two random variables are posi-
tively quadrant dependent, then J12(t) ≤ 1. A similar interpretation holds for the cross K-function:
If𝓁(X2∩B(0, t)) and 1{0 ∈ X1} are negatively correlated, K12(t) ≤ 𝜅dt d; if the two random variables
are positively correlated, then K12(t) ≥ 𝜅dt d.
Germ–grain models Let N = (N1,N2) be a stationary bivariate point process. Placing closed balls
of radius r > 0 around each of the points defines a bivariate random closed set

(X1,X2) = (Ur(N1),Ur(N2)),

where, for every locally finite configuration 𝜙 ⊂ Rd,

Ur(𝜙) =
⋃
x∈𝜙

B(x, r).

Theorem 7. Let N = (N1,N2) be a stationary bivariate point process and X the associated
germ–grain model for balls of radius r > 0. Write, for x ∈ Rd, t1, t2 ∈ R+,

FN(t1, t2; x) = P(d(0,N1) ≤ t1; d(x,N2) ≤ t2)

for the joint empty space function of N at lag x, and let FNi be the marginal empty space function
of Ni , i = 1, 2. Here, d(x,Ni) denotes the distance from x to Ni. If FNi (r) > 0 for i = 1, 2, the
random coverage measure Ψ of X is coverage-reweighted moment stationary with

K12(t) =
1

FN1(r)FN2(r) ∫B(0,t)
FN(r, r; x)dx

and, for t > 0,

lim
s→∞

J12;sX (st) =
FN1 (r) − FN(r, r + t; 0)
FN1 (r)(1 − FN2(r + t))

whenever FN1(r) > 0 and FN2 (r + t) < 1.

Hence, the cross statistic of the germ–grain model can be expressed entirely in terms of the
joint empty space function of the germ processes; the radius of the grains translates itself in a shift.

Proof. Because the coverage probabilities

𝑝1(0, i) = P(0 ∈ Xi) = P(d(0,Ni) ≤ r) = FNi(r)

are strictly positive by assumption, Theorem 6 implies that Ψ is coverage-reweighted moment
stationary. By stationarity,

K12(t) =
1

FN1 (r)FN2(r)∫B(0,t)
P(0 ∈ X1; x ∈ X2)dx.

The observation that

P(0 ∈ X1; x ∈ X2) = P(d(0,N1) ≤ r; d(x,N2) ≤ r) = FN(r, r; x)

implies the claimed expression for the cross K-function. Furthermore,

P(X2 ∩ B(0, t) ≠ ∅) = P(d(0,N2) ≤ r + t) = FN2 (r + t)
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and

P(X2 ∩ B(0, t) = ∅ ∣ 0 ∈ X1) =
P(N1 ∩ B(0, r) ≠ ∅;N2 ∩ B(0, r + t) = ∅)

P(N1 ∩ B(0, r) ≠ ∅)

=
FN1 (r) − FN(r, r + t; 0)

FN1 (r)

can be expressed in terms of the joint empty space function of (N1,N2). The claim for the
scaling limit of J12 follows from Theorem 6.

For the special case t = 0, note that although J12(0) = 1, in the limit, FN1 (r) − FN(r, r; 0) is not
necessarily equal to FN1 (r) − FN1 (r)FN2(r) unless N1 and N2 are independent.

The reader may wonder why we made the strong assumption of stationarity for the “germ”
point processes. The answer is that a germ–grain model built on an inhomogeneous germ process
in general is not coverage-reweighted moment stationary. Consider, for example, a Boolean model
(Molchanov, 1997) obtained as the union set X of closed balls of radius r > 0 centred at the points
of a Poisson process with intensity function 𝜆(·). For this model, the first- and second-order k-point
coverage functions can be calculated explicitly and are given by

𝑝1(x) = 1 − exp
[
−∫ 𝜆(z)1{z ∈ B(x, r)}dz

]
;

𝑝2(x, 𝑦) = 𝑝1(x) + 𝑝1(𝑦) − 1 + exp
[
−∫ 𝜆(z)1{z ∈ B(x, r) ∪ B(𝑦, r)}dz

]
.

Hence, the second-order coverage-reweighted cumulant density 𝜉2(x, y) is not necessarily invari-
ant under translations, contrary to the claim by Gallego et al. (2016).

Even in the stationary case, that is, for constant 𝜆(·), the Laplace transform L(u0
t ) =

E exp[−𝓁(X ∩ B(0, t))∕𝑝1(0)] is intractable, being the partition function of an area-interaction
process with interaction parameter log 𝛾 = 1∕𝑝1(0) and range r observed in the ball B(0, t)
(Baddeley & van Lieshout, 1995).

4.4 Random field models
Inhomogeneity may be introduced into the coverage measure associated to a random closed set
by means of a random weight function. Let X = (X1,X2) be a bivariate random closed set and
Γ = (Γ1,Γ2) a bivariate random field taking almost surely nonnegative values. Suppose that X and
Γ are independent, and set Ψ = (Ψ1,Ψ2), where

Ψi(B) = ∫B
Γi(x)1{x ∈ Xi}dx. (8)

The univariate case was dubbed a random field model by Ballani, Kabluchko, and Schlather (2012)
for which, under the assumption that both X and Γ are stationary, Koubek, Pawlas, Brereton,
Kriesche, and Schmidt (2016) employed the R12-function for testing purposes.

Theorem 8. Let Ψ = (Ψ1,Ψ2) with

Ψi(B) = ∫B
Γi(x)1{x ∈ Xi}dx

as in (8) be a bivariate random field model, and suppose that Γ admits a continuous ver-
sion and that its associated random measure is coverage-reweighted moment stationary. Fur-
thermore, assume that X is stationary and has strictly positive volume fractions. Then, the
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random field model is coverage-reweighted moment stationary, and writing cX
12 and cΓ12 for the

coverage-reweighted cross covariance functions of X and Γ, respectively, the following holds:

K12(t) = ∫B(0,t)

(
cX

12(0, x) + 1
) (

cΓ12(0, x) + 1
)

dx;

J12(t) =
E

[
Γ1(0) exp

(
− 1
P(0∈X2)

∫B(0,t)∩X2

Γ2(x)
EΓ2(x)

dx
)|||| 0 ∈ X1

]
EΓ1(0)E exp

(
− 1
P(0∈X2)

∫B(0,t)∩X2

Γ2(x)
EΓ2(x)

dx
) .

Proof. First, with 𝑝X
k for the k-point coverage probabilities of X and B1, … ,Bk+l Borel subsets

of Rd,

E [Ψ1(B1)· · ·Ψ1(Bk)Ψ2(Bk+1)· · ·Ψ2(Bk+l)]

= E

[
∫B1

· · ·∫Bk
∫Bk+1

· · ·∫Bk+l

( k∏
i=1

1{xi ∈ X1}Γ1(xi)dxi

)( l∏
i=1

1{𝑦i ∈ X2}Γ2(𝑦i)d𝑦i

)]
= ∫B1

· · ·∫Bk
∫Bk+1

· · ·∫Bk+l

𝑝X
k+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))×

× E

[ k∏
i=1

Γ1(xi)
l∏

i=1
Γ2(𝑦i)

]
dx1· · ·dxk d𝑦1· · ·d𝑦l

by Fubini's theorem and the independence of X and Γ (recalling that the moment measures
are locally finite). Hence, 𝜇(k+l) is absolutely continuous, and its Radon–Nikodym derivative
pk+l satisfies

𝑝k+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))
𝑝1(x1, 1)· · ·𝑝1(xk, 1)𝑝1(𝑦1, 2)· · ·𝑝1(𝑦l, 2)

=
𝑝X

k+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))

𝑝X
1 (x1, 1)· · ·𝑝X

1 (xk, 1)𝑝X
1 (𝑦1, 2)· · ·𝑝X

1 (𝑦l, 2)

E
[∏k

i=1 Γ1(xi)
∏l

i=1 Γ2(𝑦i)
]

∏k
i=1 EΓ1(xi)

∏l
i=1 EΓ2(𝑦i)

.

Here, 𝑝X
k+l denotes the k + l-point coverage probability of X. Because X is stationary and

Γ coverage-reweighted moment stationary, translation invariance follows. Moreover, the
function

𝑝1(x, i) = 𝑝X
1 (x, i)EΓi(x) = 𝑝X

1 (0, i)EΓi(x)

is bounded away from zero because X has strictly positive volume fractions, and Γ is
coverage-reweighted moment stationary by assumption. For k = 2, we have

𝜉2((x, 1), (𝑦, 2)) =
𝑝X

2 ((x, 1), (𝑦, 2))
𝑝X

1 (x, 1)𝑝
X
1 (𝑦, 2)

E [Γ1(x)Γ2(𝑦)]
EΓ1(x)EΓ2(𝑦)

− 1

from which the claimed form of the cross K-function follows. For the cross J-function, one
needs the Palm distribution. By the Campbell–Mecke formula, for any Borel set A ⊂ Rd,
i = 1, 2, and for any measurable F,

∫A
P(x,i)(F)𝑝1(x, i)dx = E

[
∫A∩Xi

1F(Ψ)Γi(x)dx
]
= ∫A

E [1F(Ψ)Γi(x) ∣ x ∈ Xi]
EΓi(x)

𝑝1(x, i)dx



1002 Scandinavian Journal of Statistics VAN LIESHOUT

by Fubini's theorem. Therefore, for p1-almost all x and i = 1, 2,

P(x,i)(F) = E [1F(Ψ)Γi(x) ∣ x ∈ Xi]
EΓi(x)

,

and the proof is complete.

Note that if the covariance functions of both the random closed set X and the random field Γ
are nonnegative, K12(t) ≥ 𝜅dt d; if there is nonpositive correlation, K12(t) ≤ 𝜅 dtd. Similarly, if the
random variables Γ1(0)1{0 ∈ X1} and

∫B(0,t)∩X2

Γ2(x)
EΓ2(x)

dx

are positively quadrant dependent, J12(t) ≤ 1 and, reversely, J12(t) ≥ 1 when they are negatively
quadrant dependent.
Log-Gaussian random field model A flexible choice is to take Γi = eZi for some bivariate
Gaussian random field Z = (Z1,Z2) with mean functions mi, i = 1, 2, and (valid) covariance func-
tion matrix (ci j)i, j∈{1,2}. Because Ψ involves integrals over Γ, conditions on mi and ci j are needed.
Therefore, we shall assume that m1 and m2 are continuous, bounded functions, for example,
taking into account covariates. For the covariance function, sufficient conditions are given in
theorem 3.4.1 of Adler (1981). Further details and examples can be found in Møller, Syversveen,
and Waagepetersen (1998) or in section 5.8 of Møller and Waagepetersen (2004).

Theorem 9. Consider a bivariate random field model for whichΓ is log-Gaussian with bounded
continuous mean functions and translation invariant covariance functions 𝜎2

i𝑗ri𝑗(·) such that Γ
admits a continuous version. Furthermore, assume that X is stationary and has strictly positive
volume fractions. Then, the random field model is coverage-reweighted moment stationary and
the following holds. The cross K-function is equal to

K12(t) = ∫B(0,t)

(
1 + cX

12(0, x)
)

exp
[
𝜎2

12 r12(x)
]

dx,

where cX
12 is the coverage-reweighted cross covariance function of X; the cross J-function reads

J12(t) =
E

[
exp

(
Y1(0) − 1

P(0∈X2)
∫B(0,t)∩X2

eY2(x)dx
)|||| 0 ∈ X1

]
E exp

[
− 1
P(0∈X2)

∫B(0,t)∩X2
eY2(x)dx

]

=
E

[
exp

(
− 1
P(0∈X2)

∫B(0,t)∩X2
eY2(x)+𝜎2

12r12(x)dx
)|||| 0 ∈ X1

]
E exp

[
− 1
P(0∈X2)

∫B(0,t)∩X2
eY2(x)dx

] ,

where Yi(x) = Zi(x) − mi(x) − 𝜎2
ii∕2.

Proof. For a log-Gaussian random field model,

E exp

[ k∑
i=1

Z1(xi) +
l∑

i=1
Z2(𝑦i)

]
= exp

[ k∑
i=1

m1(xi) +
l∑

i=1
m2(𝑦i) +

k
2
𝜎2

11 +
l
2
𝜎2

22

]

× exp

[
𝜎2

11

∑
1≤i<𝑗≤k

r11(x𝑗 − xi) + 𝜎2
22

∑
1≤i<𝑗≤l

r22(𝑦𝑗 − 𝑦i) + 𝜎2
12

∑
1≤i≤k

∑
1≤𝑗≤l

r12(𝑦𝑗 − xi)

]
,
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so that, with notation as in the proof of Theorem 8, 𝜇(k+l) is absolutely continuous, and its
Radon–Nikodym derivative pk+l satisfies

𝑝k+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))
𝑝1(x1, 1)· · ·𝑝1(xk, 1)𝑝1(𝑦1, 2)· · ·𝑝1(𝑦l, 2)

=
𝑝X

k+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))

𝑝X
1 (x1, 1)· · ·𝑝X

1 (xk, 1)𝑝X
1 (𝑦1, 2)· · ·𝑝X

1 (𝑦l, 2)
×

× exp

[
𝜎2

11

∑
1≤i<𝑗≤k

r11(x𝑗 − xi) + 𝜎2
22

∑
1≤i<𝑗≤l

r22(𝑦𝑗 − 𝑦i) + 𝜎2
12

∑
1≤i≤k

∑
1≤𝑗≤l

r12(𝑦𝑗 − xi)

]
.

Because X is stationary, translation invariance follows.
For k = 1 and k = 2, we have

𝑝1(x, i) = 𝑝X
1 (0, i) exp

[
mi(x) + 𝜎2

ii∕2
]

and

𝜉2((x, 1), (𝑦, 2)) =
𝑝X

2 ((x, 1), (𝑦, 2))
𝑝X

1 (x, 1)𝑝
X
1 (𝑦, 2)

exp
[
𝜎2

12r12(𝑦 − x)
]
− 1.

The function p1(x, i) is bounded away from zero because X has strictly positive volume frac-
tions and the mi are bounded. The form of the cross K-function follows from that of 𝜉2, and
the first expression for J12(t) is an immediate consequence of Theorem 8.

Finally, consider the ratio of p1+k+l((a, 1), (x1, 1), … , (xk, 1), ( y1, 2), … , ( yl, 2)) and
𝑝1(a, 1)

∏k
i=1 𝑝1(xi, 1)

∏l
i=1 𝑝1(𝑦i, 2), which can be written as

P(xi ∈ X1, i = 1, … , k; 𝑦i ∈ X2, i = 1, … , l ∣ a ∈ X1)∏k
i=1 P(xi ∈ X1)

∏l
i=1 P(𝑦i ∈ X2)

×
𝑝Γk+l((x1, 1), … , (xk, 1), (𝑦1, 2), … , (𝑦l, 2))∏k

i=1 𝑝
Γ
1 (xi, 1)

∏l
i=1 𝑝

Γ
1 (𝑦i, 2)

×
k∏

i=1
e𝜎2

11r11(xi−a)
l∏

i=1
e𝜎2

12r12(𝑦i−a).

Hence, L(a,1)(ua
t ) (cf. Theorem 3) becomes the Laplace functional L evaluated for the function

ũa
t (x, i) = 1{(x, i) ∈ B(a, t) × {2}} exp

[
𝜎2

12r12(x − a)
]
∕𝑝1(x, 2)

after conditioning on a ∈ X1, an observation that completes the proof.

In the context of a point process, Coeurjolly, Møller, and Waagepetersen (2017) proved the
stronger result that the Palm distribution of a log-Gaussian Cox process is another log-Gaussian
Cox process.
Random thinning field model Consider the following random field model (Diggle, 2014) with
intercomponent dependence modelled by means of a (deterministic) nonnegative function ri(x),
i = 1, 2, on Rd such that r1 + r2 ≡ 1. Let Γ0 be a nonnegative random field, and assume that the
components Γi(x) = ri(x)Γ0(x) are integrable on bounded Borel sets. As before, X is a stationary
bivariate random closed set, and a random measure is defined through (8). Heuristically speaking,
the ri(x) can be thought of as location-dependent retention probabilities for Xi.

For the model just described,

1 + cΓ12(0, x) =
E [Γ0(0)Γ0(x)]
EΓ0(0)EΓ0(x)

= 1 + cΓ0 (0, x)
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and similarly for higher orders so that Γ is coverage-reweighted moment stationary precisely
when Γ0 is. Hence, Theorem 8 holds with the Γi replaced by Γ0.

5 ESTIMATION

For notational convenience, introduce the random measure Φ = (Φ1,Φ2) defined by

Φi(A) = ∫A

1
𝑝(x, i)

dΨi(x)

for Borel sets A ⊂ Rd.

Theorem 10. Let Ψ = (Ψ1,Ψ2) be a coverage-reweighted moment stationary bivariate random
measure that is observed in a compact set W ⊂ Rd whose erosion W⊖t = {w ∈ W ∶ B(w, t) ⊂ W}
has positive volume 𝓁(W⊖t) > 0. Then, under the assumptions of Theorem 3,

L̂2(t) =
1

𝓁(W⊖t)∫W⊖t

e−Φ2(B(x,t)) dx (9)

is an unbiased estimator for L(u0
t ),

K̂12(t) =
1

𝓁(W⊖t)∫W⊖t

Φ2(B(x, t))dΦ1(x) (10)

is an unbiased estimator for K12(t), and

L̂12(t) =
1

𝓁(W⊖t)∫W⊖t

e−Φ2(B(x,t)) dΦ1(x) (11)

is unbiased for L(0,1)(u0
t ).

Proof. First, note that for all x ∈ W⊖t, the mass Φ2(B(x, t)) can be computed from the
observation because B(x, t) ⊂ W . Moreover,

E
[
e−Φ2(B(x,t))

]
= L(1B(x,t)×{2}(·)∕𝑝1(·))

regardless of x by an appeal to Theorem 3. Consequently, (9) is unbiased.
Turning to (11), by (2) with

g((x, i),Ψ) =
1W⊖t×{1}(x, i)
𝑝1(x, i)

exp[−Φ2(B(x, t))],

we have

𝓁(W⊖t)EL̂12(t) = ∫W⊖t

L(x,1)(1B(x,t)×{2}(·)∕𝑝1(·))
𝑝1(x, 1)

𝑝1(x, 1)dx.

Because L(x,1)(1B(x,t)×{2}(·)∕p1(·)) does not depend on x by Theorem 3, the estimator is unbiased.
The same argument for

g̃((x, i),Ψ) =
1W⊖t×{1}(x, i)
𝑝1(x, i)

Φ2(B(x, t))

proves the unbiasedness of K̂12(t).

A few remarks are in order. In practise, the integrals will be approximated by Riemann sums.
Moreover, in accordance with the Hamilton principle (Stoyan & Stoyan, 2000), the denominator
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𝓁(W⊖t) in K̂12(t) and L̂12(t) can be replaced by Φ1(W⊖t). Finally, we assumed that the coverage
function is known. If this is not the case, a plug-in estimator may be used.

6 THEORETICAL EXAMPLES

In this section, we illustrate the use of our statistics on simulated realisations of some of the
models discussed in Section 4.
Widom–Rowlinson germ–grain model First, consider the Widom–Rowlinson (1970)
germ–grain model defined as follows. Let (N1,N2) be a bivariate point process whose joint density
with respect to the product measure of two independent unit rate Poisson processes is

𝑓mix(𝜙1, 𝜙2) ∝ 𝛽
|𝜙1|
1 𝛽

|𝜙2|
2 1{d(𝜙1, 𝜙2) > r},

writing | ·| for the cardinality and d(𝜙1, 𝜙2) for the smallest distance between a point of𝜙1 and one
of 𝜙2. In other words, points of different components are not allowed to be within distance r of
one another. Placing closed balls of radius r∕2 around each of the points yields a bivariate random
closed set, the Widom–Rowlinson germ–grain model. It is important to note that Ni, i = 1, 2,
cannot, in general, be reconstructed from Ur (Ni), because some discs could be hidden behind
others (van Lieshout, 1997).

A sample from the germ process can be obtained by coupling from the past (Häggström,
van Lieshout, & Møller, 1999; Kendall & Møller, 2000; van Lieshout & Stoica, 2006). We used the
mpplib library (Steenbeek, van Lieshout, & Stoica, 2002) to generate a realisation with 𝛽1 = 𝛽2 =
1 and r = 1 on W = [0, 10] × [0, 20]. To avoid edge effects, we sampled on [−1, 11] × [−1, 21]
and clipped the result to W. Grains in the form of a ball of radius r∕2 were then placed around
the germs to obtain a realisation from the germ–grain model, an example of which is shown in
Figure 1. Note that

Ur∕2(𝜙1) ∩ Ur∕2(𝜙2) = ∅,
so that there is a negative association between the two components as illustrated in Figure 2.

The estimated cross statistic for 20 samples are shown in Figure 3. The graphs of Ĵi𝑗(t) lie above
one, reflecting the inhibition between the components. The graphs of K̂i𝑗(t) lie below that of the
function t → 𝜋t2, which confirms the negative correlation between the components.
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FIGURE 1 Images of Ur/2(𝜙1) (left) and Ur/2(𝜙2) (right) for a realisation (𝜙1, 𝜙2) of the Widom–Rowlinson germ
process with 𝛽1 = 𝛽2 = 1 on W = [0, 10] × [0, 20] for r = 1 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Superposition image of the components in Figure 1 (left) and Figure 4 (right). In red:
Ur/2(𝜙1)∖Ur/2(𝜙2); in yellow: Ur/2(𝜙2)∖Ur/2(𝜙1); in orange: Ur∕2(𝜙2) ∩ Ur∕2(𝜙1) [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 Estimated cross statistics for 20 samples from the Widom–Rowlinson germ–grain model with
parameters as in Figure 1. Top row: Ĵ12(t) plotted against t (left); K̂12(t) (solid) and 𝜋t2 (dotted) plotted against t
(right). Bottom row: Ĵ21(t) plotted against t (left); K̂21(t) (solid) and 𝜋t2 (dotted) plotted against t (right). The graphs
for the data shown in Figure 1 are displayed in red [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Images of Ur/2(𝜙1) (left) and Ur/2(𝜙2) (right) for a realisation (𝜙1, 𝜙2) of the dual
Widom–Rowlinson germ process with 𝛽1 = 𝛽2 = 1∕4 on W = [0, 10] × [0, 20] for r = 1 [Colour figure can be
viewed at wileyonlinelibrary.com]

Dual Widom–Rowlinson germ–grain model The dual Widom–Rowlinson germ–grain model
is based on a bivariate point process with joint density

𝑓mix(𝜙1, 𝜙2) ∝ 𝛽
n(𝜙1)
1 𝛽

n(𝜙2)
2 1{𝜙2 ⊂ Ur(𝜙1)}

with respect to the product measure of two independent unit rate Poisson processes. Because
the germs of the second component lie in Ur(𝜙1), that is, within distance r of a germ from the
first component, the model exhibits positive association. Placing balls of radius r∕2 around the
components yields a germ–grain model. Again, in general, the Ni, i = 1, 2, cannot be reconstructed
from Ur (Ni) due to occlusion of a grain by other grains.

Exact samples from this model can be obtained in three steps. First, generate an
area-interaction point process (Baddeley & van Lieshout, 1995) with parameter 𝛽1 and 𝛾 = e−𝛽2

using coupling from the past (Kendall & Møller, 2000) by means of the mpplib (2002–2003)
library. Then, conditionally on the first component being 𝜙1, generate a Poisson process of inten-
sity 𝛽2 and accept only those points that fall in Ur(𝜙1) to obtain 𝜙2. Finally, place balls of radius
r∕2 around the points of 𝜙1 and 𝜙2.

Figure 4 shows a realisation of the components Ur/2(𝜙1) and Ur/2(𝜙2) for 𝛽1 = 𝛽2 = 1∕4 and
r = 1 on W = [0, 10] × [0, 20]. To avoid edge effects, we sampled the germs on [−1, 11] × [−1, 21]
and clipped the result to W. The positive association due to the tendency of germs in 𝜙2 to fall
near germs in 𝜙1 is inherited by the germ–grain model. Indeed, in Figure 2, the clumps of yellow
balls tend to overlap a red clump. The interaction is not symmetric though, and one may find red
clumps without an overlapping yellow cluster of balls.

The estimated cross statistics for 20 samples are shown in Figure 5. The graphs of Ĵi𝑗(t) lie
below one, reflecting the attraction between the components. It is interesting to note that the lack
of symmetry in the model is reflected in a stronger attraction from the perspective of the second
component than from that of the first. The graphs of K̂i𝑗(t) lie above that of the function t → 𝜋t2,
which confirms the positive correlation between the components.
Boolean model marked by linked log-Gaussian field Our last illustrations concern random
field models based on Gaussian random fields. Thus, let Γ0 be a Gaussian random field with mean
function m(·) and exponential covariance function

𝜎2 exp[−𝛽||x − 𝑦||]. (12)

http://wileyonlinelibrary.com
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FIGURE 5 Estimated cross statistics for 20 samples from the dual Widom–Rowlinson germ–grain model with
parameters as in Figure 4. Top row: Ĵ12(t) plotted against t (left); K̂12(t) (solid) and 𝜋t2 (dotted) plotted against t
(right). Bottom row: Ĵ21(t) plotted against t (left); K̂21(t) (solid) and 𝜋t2 (dotted) plotted against t (right). The graphs
for the data shown in Figure 4 are displayed in red [Colour figure can be viewed at wileyonlinelibrary.com]

The package fields (Nychka, Furrer, Paige, & Sain, 2015) can be used to obtain approximate
realisations. An example on W = [0, 10] × [0, 20] with

m(x, 𝑦) = x + 𝑦
10

and parameters 𝜎2 = 1, 𝛽 = 0.8 viewed through independent Boolean models is depicted in
Figure 6. More precisely, for a linked random field model, let (X1,X2) consist of two independent
stationary Boolean models with balls as primary grains, and set

(Ψ1,Ψ2) =
(
∫X1

eΓ0(x)dx,∫X2

eΓ0(x)dx
)
.

Here, the common random field, although viewed through independent prisms, causes positive
association between the components of Ψ.

The estimated cross statistics for 20 samples are shown in Figure 8 for Γ0 as in Figure 6 and
Boolean models having germ intensity 1∕2 and grain radius r = 1∕2. The graphs of Ĵi𝑗(t) lie
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FIGURE 6 Images of a Gaussian random field on W = [0, 10] × [0, 20] with mean function m(x, y) = (x + y)∕10
and covariance function 𝜎2 exp[−𝛽|| · ||] for 𝛽 = 0.8 and 𝜎2 = 1 viewed through independent Boolean models X1

(left) and X2 (right) with germ intensity 1∕2 and primary grain radius 1∕2 [Colour figure can be viewed at
wileyonlinelibrary.com]

below one for small t, reflecting the attraction between the components. The graphs of K̂i𝑗(t)
mostly lie above that of the function t → 𝜋t2, which confirms the positive correlation between the
components.

An example of a random thinning field on W = [0, 10] × [0, 20] with

1 − r2(x, 𝑦) = r1(x, 𝑦) =
𝑦

20
applied to exp[Γ0(·)], with Γ0 having mean zero and covariance function (12) for 𝜎2 = 1 and
𝛽 = 0.8, and X consisting of independent Boolean models as described above is shown in Figure 7.
Note that the first component of the corresponding random measure Ψ tends to place larger mass
towards the top of W (left panel), whereas the second component tends to place its mass near the
bottom (right panel of Figure 7).

Although the first-order structures—as displayed in Figures 7 and 6—of the random thin-
ning field and the linked random field model are completely different, their interaction structures
coincide and so do their cross statistics (cf. Figure 8).
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FIGURE 7 Images of realisations (log𝜓1, log𝜓2) of a random thinning field model (Ψ1,Ψ2) on
W = [0, 10] × [0, 20] with r1(x, y) = y∕20, logΓ0 a mean zero Gaussian random field with covariance function
𝜎2 exp[−𝛽|| · ||] for 𝛽 = 0.8 and 𝜎2 = 1, and X as in Figure 6 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Estimated cross statistics for 20 samples from a random field model on W = [0, 10] × [0, 20] defined
by X and Γ as follows: Γ1(x) = Γ2(x) = exp[Z(x)] where Z is a Gaussian random field with mean function
m(x, y) = (x + y)∕10 and covariance function 𝜎2 exp[−𝛽|| · ||] for 𝛽 = 0.8 and 𝜎2 = 1; the components of X are
independent Boolean models with germ intensity 1∕2 and primary grain radius 1∕2, cf. Figure 6. Top row: Ĵ12(t)
plotted against t (left); K̂12(t) (solid) and 𝜋t2 (dotted) plotted against t (right). Bottom row: Ĵ21(t) plotted against t
(left); K̂21(t) (solid) and 𝜋t2 (dotted) plotted against t (right). The graphs for the data shown in Figure 6 are
displayed in red [Colour figure can be viewed at wileyonlinelibrary.com]

7 APPLICATION TO ECOLOGY

The stochastic geometry of biodiversity according to McGill (2010) relies on three axioms: clus-
tering within a species, the coexistence of many rare species with a few common ones, and
independence between species. The third axiom is addressed by Wiegand et al. (2012) who noted
that in this context, classic point process analyses of bivariate spatial patterns are challenging
“because they require complete mapping and because of difficulties in teasing apart two major,
yet contrasting factors: habitat association and direct species interactions.” Moreover, plots of a
bivariate point pattern with tens of thousands of trees are hard to interpret visually. The authors
proceed by a Monte Carlo approach based on homogeneous summary statistics and random local
translations of the points of the second component to show that species-rich forests approximate
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species independence. Still, due to the erroneous stationarity assumption, this approach cannot
fully separate heterogeneity and interaction; the statistics proposed in this paper can. Indeed, they
do not require stationarity, and the coverage reweighting accounts explicitly for habitat associ-
ation. Moreover, being based on random measures, they only require smoothed quadrat counts
instead of a full map.

As an illustration, let us consider data on the spatial distribution of stems of a large number
of woody trees and shrub species measuring at least 1 cm in diameter found in a 50-hectare plot
on Barro Colorado Island, Panama (Hubbell & Foster, 1983; cf. https://dx.doi.org/10.5479/data.
bci.20130603) and analysed in, amongst others, Volkov, Banavar, Hubbell, and Maritan (2009);
Wiegand et al. (2012); Waagepetersen, Guan, Jalilian, and Mateu (2016). Wiegand et al. (2012)
reported that the species Oenocarpus mapora and Trichilia tuberculata displayed the most signifi-
cant interactions with other species, mostly negative association. An explicit list of large negative
covariances compiled using entropy methods is given in Volkov et al. (2009) and includes the pair
Trichilia tuberculata and Mouriri myrtilloides.

Based on the considerations outlined above, we restrict ourselves from now on to the stems of
Mouriri myrtilloides and Trichilia tuberculata that were alive during the seventh census in 2010.
After weeding out multiple stems belonging to the same tree, we are left with a multivariate point
pattern of which the first component contains 7,241 trees, and the second one 11,293 points.
Because in a mapped pattern of this size, no details are visible, we use the random measure frame-
work and show the smoothed abundance plots normalised into a probability density in Figure 9.
A Gaussian smoother was used with a bandwidth chosen according to the rule of thumb proposed
by Cronie and van Lieshout (2018). To estimate the coverage function p1, we use the data on trees
that had died by 2010. The result is shown in Figure 10. One observes that the Trichilia exhibit a
strong preference for the top right corner of the stand, a region little favoured by Mouriri shrubs
who prefer the left half of the stand.
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FIGURE 9 Normalised abundance plots of alive trees of Mouriri myrtilloides (left) and Trichilia tuberculata
(right) in a [0, 10] × [0, 5] units of 100-m region based on the seventh census in 2010 [Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 10 Normalised abundance plots of dead trees of Mouriri myrtilloides (left) and Trichilia tuberculata
(right) in a [0, 10] × [0, 5] units of 100-m region based on the seventh census in 2010 [Colour figure can be viewed
at wileyonlinelibrary.com]
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https://dx.doi.org/10.5479/data.bci.20130603
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


1012 Scandinavian Journal of Statistics VAN LIESHOUT

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

0.
8

0.
9

1.
0

1.
1

1.
2

0.
8

0.
9

1.
0

1.
1

1.
2

0.0

0.0 0.0

0
0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0

FIGURE 11 Estimated cross statistics for the Barro Colorado data. Top row: The solid red lines are the graphs
of Ĵ12(t) (left) and K̂12(t) (right) plotted against t. Bottom row: The solid red lines are the graphs of Ĵ21(t) (left) and
K̂21(t) (right) plotted against t. The dotted lines are envelopes based on 99 torus translations of the second
component (Trichilia tuberculata) [Colour figure can be viewed at wileyonlinelibrary.com]

The estimated cross statistics are plotted in Figure 11 together with upper and lower envelopes
of 99 torus translations of the second component in the spirit of Lotwick and Silverman (1982) and
Cronie and van Lieshout (2016). Because the graphs of K̂i𝑗(t) and Ĵi𝑗(t) fall within the envelopes,
we find no indication of negative association between the two species. Therefore, we conclude that
a failure to take into account spatial inhomogeneity leads to misleading conclusions. Moreover,
our analysis provides strong empirical evidence for McGill's theory of biodiversity.

To conclude this section, note that there are many more species, and further analy-
sis should be model based. One step in this direction is, for example, the recent paper of
Waagepetersen et al. (2016), but the field of inference for many variate random measures is still
in its infancy and requires further work to mature.

8 CONCLUSION

In this paper, we introduced summary statistics to quantify the correlation between the com-
ponents of coverage-reweighted moment stationary bivariate random measures inspired by the
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F-, G-, and J-function for point processes (Cronie & van Lieshout, 2016; van Lieshout, 2011; van
Lieshout & Baddeley, 1999). The role of the generating functional in these papers is taken over by
the Laplace functional and that of the product densities by the coverage functions. Our statistics
can also be seen as generalisations of the correlation measures introduced by Stoyan and Ohser
(1982) for stationary random closed sets.

To the best of our knowledge, such cross statistics for inhomogeneous marked sets have not
been proposed before. Under the strong assumption of stationarity, however, some statistics were
suggested. Foxall and Baddeley (2002) defined a cross J-function for the dependence of a random
closed set X—a line segment process in their geological application—on a point pattern Y by

J(t) = P0(d((0,X) > t)
P(d(0,X) > t)

,

where P0 is the Palm distribution of Y, whereas Kleinschroth, van Lieshout, Mortier, and
Stoica (2013) replaced the numerator by

P(0,i)(Ψ𝑗(B(0, t)) = 0)

for the random length-measures Ψj associated to a bivariate line segment process. It is not clear,
though, how to generalise the resulting statistics to nonhomogeneous models, as the moment
measure of the random length-measure may not admit a Radon–Nikodym derivative.
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