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INTRODUCTION
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2 Chapter 1. Introduction

1.1 Motivation

Schedules give structure to the dynamic, chaotic world that we live in. With our daily

schedules, people know at what time to wake up, when to bring the kids to school, at

what time the next meeting commences, and when to be at the doctor’s office. More

often than not, unfortunately, something causes you to deviate from that schedule.

You tend to miss that important meeting because you find yourself in a traffic jam. Or

perhaps your doctor’s appointment starts late because an earlier patient required more

than the scheduled amount of time. Of course you knew that this could happen, but

what are the odds?

All in all, we find ourselves in a constant conflict between planning on the one hand,

and uncertainty on the other. It is therefore not quite incidental that both aspects are

represented in mathematical areas. First, there is the area of scheduling theory. Schedul-

ing theory concerns itself with the planning of a set of tasks under various restrictions.

Second, there is the area of queueing theory. This area focusses on congestion phe-

nomena; situations, subject to uncertainty, in which customers arrive and require some

kind of service. Both queueing and scheduling theory have developed individually and

there are still many challenges at their interface. It is at this interface that one finds the

contributions of this dissertation.

As it is conceivable that the reader is not an expert in both queueing and scheduling

theory, the following two sections aim to provide a first step into introducing them. Spe-

cifically, Sections 1.2 and 1.3 present some history, notation, techniques and key results

in queueing and scheduling theory, respectively. We occasionally include material that

is not quite essential for later chapters, but that gives a more complete picture of the

areas of discussion. Additionally, as we aim at a broader audience, the technical level

in these sections is kept at a minimum. This is compensated for by the more technical

nature of all other chapters, each of which is self-contained.

Once the basis is established, Section 1.4 provides a discussion of the overlap

between the two areas, and discusses some results therein. Section 1.5 subsequently

concludes the chapter with an overview of this dissertation’s contributions.

1.2 Basics of queueing theory

Many researchers consider Agner Krarup Erlang as the founding father of the area of

queueing theory. Erlang was a Danish mathematician and engineer who worked as

head of the laboratory at the Copenhagen Telephone Company. There, he wrote an

article in which he considered the following problem: if customers initiated a telephone

connection at random moments during some time interval, and every operator required

a fixed amount of time to put the customer through, then what is the statistical beha-



1.2. Basics of queueing theory 3

viour of the incoming calls and of customer waiting times? The mathematical answers

to these questions were published in Erlang [52], where he ignored the fact that all lines

to the company might be occupied. If indeed all lines are occupied, then a customer is

unable to connect to the company; he or she is blocked. In 1917, Erlang appended his

prior work by considering a model that incorporated blocking events, presenting his

famous “Erlang-B” formula on the probability that a customer is blocked upon dialling

[53]. These key results were later collected and translated [34].

Although the foundations of queueing theory lie in telecommunication systems,

there are many more applications that share some or all characteristic components

of the above telecommunication system and therefore benefit from the analyses of

similar models. Specifically, one may think of queueing phenomena at the check-in

counters at airports or at counters in supermarkets, but also of more general congestion

phenomena such as data packets waiting for transmission in communication networks

[79] or emergency patients in hospitals [35]. In all of these examples, there are customers

that have some service requirement, which can be fulfilled by one or more servers. These

notions are directly related to the following key components that characterise a classical

queueing model:

a The arrival process describes the dynamics that underlie the arrival of customers.

It is often more convenient to consider the amount of time Ai that expires between

two consecutive (the i -th and (i +1)-th) arrival instances, where it is generally

assumed that one customer arrives per arrival instance. We refer to the random

variable Ai as the i -th inter-arrival time, and to FAi (x) :=P(Ai ≤ x) as the inter-

arrival distribution.

b The service-requirement distribution FBi (x) :=P(Bi ≤ x) quantifies the probability

that the i -th customer requires at most x units of service, where the exact service

requirement is denoted by the positive random variable Bi . Once the server has

served the i -th customer for Bi units of time, the customer is finished and leaves

the system.

c The number c of servers in the system. Standard models assume that the servers

are parallel and homogeneous, meaning that every server is able to help any

customer and that the time required to help a customer is independent of the

server. These assumptions may be relaxed in more complex models.

d The scheduling policy or service discipline is a rule or algorithm that, at any point

in time, indicates which customer or customers are served by the server.

A typical characteristic of queueing models is that the arrivals never stop; either new

customers keep emerging, customers return after some time, or both. Equivalently, one

can say that there is an infinite stream of arrivals.
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Property Description

blind policy does not base its decisions on the processing

requirement of a job

pre-emptive policy may pause the service of a customer momentarily,

only to resume service later without losing any progress

work-conserving policy assigns full capacity of the server to customers at

any time

Table 1.1: Three properties of scheduling policies that are repeatedly men-

tioned throughout this dissertation.

Policy Description

FB Foreground-Background simultaneously serves all customers that

have received the least amount of service thus far at equal, possibly

reduced, rate

FIFO First In First Out serves customers in order of arrival

LIFO (Pre-emptive) Last In First Out serves the customer that arrived most

recently, thereby pre-empting service of all other customers

PS Processor Sharing simultaneously serves all customers in the system

at equal, possibly reduced, rate

SRPT Shortest Remaining Processing Time serves the customer that

requires the least amount of service until completion; breaking ties

arbitrarily

Table 1.2: A brief overview of classical scheduling policies used in this

dissertation. SRPT is work-conserving but not blind. All other policies are

work-conserving and blind. FB, LIFO and SRPT may pre-empt service, and

both FB and PS can serve any number x of customers simultaneously at

rate 1/x.

Initial research generally assumed that customers were served in order of arrival;

a policy that is typically referred to as the First In First Out (FIFO) or First Come First

Served policy. FIFO is a natural policy in many applications, but is also attractive due

to its analytical simplicity. The FIFO policy is blind and work-conserving, but never

pre-empts service; see Table 1.1. Other well-studied policies are listed in Table 1.2.

Without specification of the scheduling policy, it is generally assumed that customers

are served in accordance with the FIFO policy.

By specifying the components that characterise a classical queueing model, we are

able to define many queueing models and pursue numerous research questions. Prior
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to further discussion, however, we present an established classification scheme and

simultaneously touch upon several standard models. The classification scheme then

facilitates further discussions due to its compact notation.

1.2.1 Kendall’s classification

The coming paragraphs introduce Kendall’s a/b/c classification scheme [80]. Proper

use of this notation allows us to compactly denote some of the most studied classical

queueing models. In particular, the ‘a’ field corresponds to the inter-arrival distribution,

the ‘b’ field relates to the service-requirement distribution, and the ‘c’ field describes

the number c of servers.

The following abbreviations are often used as input for the ‘a’ and ‘b’ fields: D, M,

Ek , G and GI. Here, D denotes a Degenerate distribution, i.e. the associated random

variable is deterministic; M is short for Markovian or Memoryless, i.e. the associated

random variable is exponentially distributed; and Ek stands for the Erlang distribution

with k phases. If the associated random variable has a General, unspecified distribution,

then this is denoted by G. Here, we note that it is possible that the associated random

variables may not be independent of each other; for example, if G is the input for field

‘a’, then it is possible that the random variables A1, A2, . . . are mutually dependent. If

this is not allowed, then we say that the distribution is General but Independent, and

abbreviate this by GI.

Let us have a quick look at some examples. An M/M/1 queueing model is short for a

queueing model where both the inter-arrival and the service-requirement distributions

are exponentially distributed, and there is one server to serve the customers. If instead

there are c servers and the service-requirement of every customer is fixed, then this is

denoted by M/D/c. Note that this is the first model studied by Erlang.

Kendall’s classification covered the mostly used queueing models at the time and

has served for many years without alterations. However, it also suffers from serious

limitations. For example, we are not able to capture Erlang’s second model in Kendall’s

classification as it does not allow for a limited number of customers at a time. Also,

if customers are served in an order different from FIFO, then this cannot be captured

in the classification scheme. It is for those reasons that the notation was augmented

to a/b/c/d/e/f, where ‘d’ represents the scheduling policy, and ‘e’ and ‘f’ respectively

denote [92, 131]

e the buffer size, which is an integer that indicates how many customers can reside

in the queue, including the customers in service, at any time. If unspecified, this

number is assumed to be infinite.

f the calling source, which is an integer that equals the number of potential cus-

tomers from which the actual customers originate. If this number is finite, then
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no outsiders can enter the system (it is closed to the outside world). When unspe-

cified, this number is assumed to be infinite (open system).

Again, we consider two examples to illustrate the extended Kendall’s classification.

First, the M/M/c/FIFO/c/∞ queueing model assumes that both the inter-arrival and

the service-requirement distributions are exponential, that there are c servers, that

customers originate from an infinite pool and are served in order of arrival, and finally

that no more than c customers can reside in the system. This latter assumption implies

that no more customers may enter the system once all servers are occupied. We note

that this is the model studied in Erlang [53]. Second, the M/M/c/FIFO/∞/k queueing

model only has a customer pool of size k, and has no buffer capacity1. This model

is a special case of the machine repair model, where there are k machines and one

repairman [70]. Only the k existing machines (customer pool) can break, and once they

do they require service from the repairman (the server).

Authors often omit one or more fields of the extended Kendall’s classification. Its

meaning should then be clear from either the notation or from the context. In this

dissertation, we consistently omit the ‘e’ and ‘f’ fields as they would always be replaced

by their default, infinite value. We also omit the d field if the scheduling policy is FIFO.

With these remarks in mind, we are ready to move on to a deeper understanding of

queueing models.

1.2.2 Waiting time, system stability and related areas

When analysing a system, it is of interest to measure the performance of this system.

A natural performance metric for assessing a queueing system is the waiting time of

a customer. This metric has been studied extensively for many models and is closely

associated to many key results in queueing theory. It is intuitively defined in a system

that obeys the FIFO policy, where the waiting time Wi of the i -th customer equals the

amount of time that the customer is in the system but has not yet received any service.

The customer clearly benefits from a short waiting time; however, for general queueing

models, it is possible that liminfi→∞Wi is unbounded. To exclude this undesired

behaviour, one may be interested in the system stability.

We call a queueing system stable if a proper steady-state distribution exists for

the sequence of waiting times; i.e. that there exists a random variable W such that

limi→∞P(Wi ≤ x) =P(W ≤ x) for all x ∈R. It turns out that there is a remarkably elegant

and intuitive condition that ensures system stability for basic models. Specifically, one

of the most important results in queueing theory is that a GI/GI/c queue is stable if

ρ := E[B1]/(cE[A1]) < 1. The traffic intensity ρ equals the long-term fraction of time

1Note that, in this model, this is equivalent to a buffer capacity of size k.
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that a work-conserving server is serving customers. Indeed, it is conceivable that this

fraction should be less than unity for the system to be stable. Among the exceptions to

this intuition is the D/D/c model, which remains stable even for ρ = 1.

System stability is a fundamental subject of investigation in several mathematical

areas. The relatively young area of queueing theory could therefore benefit from known

stability results in its early days. For example, the evolution of the number of customers

in a M/M/1 queue is described by a continuous-time Markov process. Ergodicity

of the embedded Markov chain then implies system stability; a result that Kendall

[80] later applied to the non-Markovian GI/M/c model in a non-trivial way. Another

parallel can be found between the evolution of the waiting time and a random walk

with absorbing or reflecting barriers. Khintchine2[81], Lindley [96] and Kiefer and

Wolfowitz [82] successfully exploited such parallels to study stability of the M/GI/1,

GI/GI/1 and GI/GI/c models, respectively. Here, we should note that the stability result

for the M/GI/1 model was obtained independently by Khintchine [81] and Pollaczek

[110, 111], where the latter pioneered in applying functional-analytic methods. A survey

of more recent stability analysis methods, such as the Lyapunov function and fluid

approximation method, can be found in the survey by Foss and Konstantopoulos [57].

The above examples clearly illustrate the intrinsic relation of queueing theory to

other areas in applied probability and suggest that many tools and techniques from

other areas may also be applicable in queueing theory. This is indeed true, and these

parallels will be exploited on several occasions in this dissertation.

1.2.3 Steady-state and time-dependent analysis

By our notion of system stability, the sequence (Wi )i∈N of waiting times in a stable

queueing system converges weakly to a random variable W . We refer to this random

variable as the steady-state waiting time. The literature that we described in the previous

section was not only dedicated to the existence of W , but also made an effort to uncover

its probabilistic behaviour. This effort emerged into several important results, of which

we discuss only one: the Pollaczek-Khintchine formula, derived independently by both

researchers [81, 110, 111].

The Pollaczek-Khintchine formula is an expression for the steady-state waiting time

in the M/GI/1 queueing model. In its classical form, it relates the Laplace-Stieltjes

transform (LST) of W to the LST of B1 and the rate of customer arrivals. Since the

LST of a random variable uniquely defines the random variable, this result contains all

information about W . Another form of the Pollaczek-Khintchine formula represents

2The phonetically more accurate, but seldom used, translation of his name would be Hintchin [130]. For

reasons of convenience, we comply with the more frequently used spelling Khintchine.



8 Chapter 1. Introduction

the waiting-time distribution as the geometric sum of independent random variables

B∗
i , where the distribution of the B∗

i is related to that of the Bi .

A direct consequence of the LST representation is that all moments of the steady-

state waiting time can be deduced; in particular, it yields

E[W ] = ρ

1−ρ · E[B 2
1 ]

2E[B1]
(1.1)

for all ρ < 1. At this point, we emphasise the dependence on the traffic intensity ρ.

Clearly, the expected steady-state waiting time diverges to infinity as ρ increases to

unity. This supports the claim that ρ must be smaller than unity for system stability.

Perhaps more interesting is the fact that the (1−ρ)−1 scaling shows up in many analyses

of queueing models, despite its deceivingly simple dependence on only the mean of the

inter-arrival and service-time distributions.

We have not yet said anything about the time required for the system to achieve

steady state, or about the behaviour of Wi for specific i . Our account on this part will

be very limited, as it is concerned with the time-dependent or transient analysis of

queueing models; topics that are outside the scope of this dissertation. It is generally

much harder to obtain explicit expressions for P(Wi ≤ x) than for P(W ≤ x). This is

clearly illustrated by Kleinrock [85] in his expression (2.163), which presents an explicit

expression for the number of customers in the system at time t in the M/M/1 model.

The expression involves an infinite sum of modified Bessel functions of the first kind,

and is described as “most disheartening” by its author. The time-dependent expressions

for the virtual waiting time in the M/GI/1 model are no more attractive [22, 132].

In fact, even the analysis of queueing models in steady-state rapidly complicates as

we move away from the standard M/GI/1 setting. It is therefore that many researchers

restrict their analyses to certain regimes that allow for further analysis, but still yield

meaningful insights.

1.2.4 Large deviations and heavy traffic

The literature on queueing theory recognises several well-studied regimes, of which we

consider two: the large-deviation and the heavy-traffic regime. First, the large-deviation

regime concerns itself with the behaviour of P(W > x) as x grows large. Second, the

heavy-traffic regime investigates the probabilistic behaviour of W as the traffic intensity

ρ tends to one. The results from both regimes contribute to the literature by both

quantifying the behaviour of a performance metric of interest, and obtaining insight

into the circumstances under which rare events occur. Quite different techniques are

used among these two regimes, which we shortly discuss.

Among others, the probability P(W > x) is of interest in telecommunication systems.

It assesses the probability that a customer has to wait longer than x units of time,
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which is related to customer satisfaction and is often part of the company’s targets.

Alternatively, the waiting time can be shown to relate to risk analyses. It then translates

to the probability that an insurance company with capital x goes bankrupt.

A technique employed in this dissertation to derive a large-deviation result, is a

sample-path analysis. In such analyses, one tries to recognise a likely way to obtain

the event of interest, and then shows that the event of interest is unlikely to occur

in any other way as x grows large (i.e. x →∞). For example, if we expect that a long

waiting time is caused by having a single high-demanding customer in the system, then

we try to show that it is unlikely that a customer has a long waiting time if there are

no high-demanding customers in the system. The reader interested in general large

deviations theory is referred to the books by Ganesh et al. [61] and Dembo and Zeitouni

[44].

On the other hand, one might be interested in the behaviour of W as the traffic

intensity ρ increases to unity. This corresponds to a change in the system input distri-

butions: either the rate of arriving customers increases or the customers become more

demanding. One may think of an increasing number of internet users, or the transfer

of larger data files. In either case, the server is pushed to the limits of its capacity3 and

we have seen in relation (1.1) that this may have a considerable impact on the system

performance. Heavy-traffic results aim to quantify this impact [135].

The heavy-traffic regime received ample attention after Kingman [83, 84] published

two fundamental papers on the waiting time in GI/GI/1 queues. Specifically, he found

that the scaled waiting time (1−ρ)W in such a model converges to an exponential

random variable as ρ ↑ 1, provided that both A1 and B1 have finite variance. Kingman

derived his results by means of analytical methods, whereas similar results in this area

have been obtained by diffusion approximations. This technique approximates the

discrete process of arriving and leaving customers by a continuous process, thereby

greatly simplifying the analytical structure [63]. A general development of the theory

and techniques associated with the heavy-traffic regime can be found in the books by

Chen and Yao [37] and Whitt [136].

On a final note, we would like to point out that care needs to be taken in the steady-

state analysis of queueing models in heavy traffic. Heavy traffic is achieved by changing

the input distributions; however, alteration of these distributions will also disrupt the

(steady) state of the system. One way to overcome this problem is by considering a

family of queueing models where every next model has slightly different, but fixed, input

distributions. Every system is then assumed to be in steady state, and one investigates

how the metric of interest changes over the various models. This technique is exploited

repeatedly throughout this dissertation.

3Here, we assume that the system remains stable.
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The above models and techniques by no means form a complete picture of queueing

theory. Nonetheless, we hope that the unfamiliar reader has gotten a flavour of the basic

concepts and most fundamental results in the area. The interested reader is referred to

the introductory lecture notes of Adan and Resing [6] or the more advanced books by

Asmussen [8], Cohen [39], Harchol-Balter [71], Kleinrock [85, 86] and Wolff [141].

1.3 Basics of scheduling theory

Scheduling theory emerged from inventory management and manufacturing theory

and gained momentum in the 1950s [40, 123]. At the time, the problems that we would

now refer to as scheduling problems used to be solved by means of linear programming.

Scheduling theory progressed as interest grew for techniques that allowed for more

flexibility, and researchers longed for a more fundamental understanding of scheduling

problems. As one might expect, the first papers that could be classified as scheduling

literature focussed on the latter issue. Among these papers are the influential works of

Jackson [74] and Johnson [75], who both considered a manufacturing problem.

The problem considered by Jackson can be illustrated as follows. Suppose that

a carpenter sells several types of wooden furniture upon request, and a number of

customers submit an order at about the same time. Since the carpenter crafts and coats

all furniture himself, he decides to take no new orders until he has finished the current

orders. Now, what is the best system to complete the orders?

The answer depends on the interpretation of “best”. Jackson [74] assumes that every

customer also mentioned when they would like to pick up the order. He additionally

assumes that the carpenter would ideally deliver all furniture on time, but would oth-

erwise aim to reduce the maximum tardiness over all orders. The optimal solution to

this problem is a very simple rule, stating that the carpenter should always work on the

order that needs to be finished first. This result may not sound surprising; however, if

the carpenter had decided to take some more orders along the way, then there exists no

computationally efficient manner to solve this problem. We will get back to this notion

in Section 1.3.4.

Johnson [75], on the other hand, presumes that the carpenter hires an assistant

for the second part of his manufacturing process. This introduces some dependency

in the system, since the assistant can only start working once the carpenter finished

crafting some furniture. Johnson also assumes that their common goal is to work as

efficient as possible, that is, to finish all furniture as soon as possible. He then presents

a surprisingly elegant and easy-to-use rule to optimise this. An interesting feature of his

seminal paper is that it was written prior to the aforementioned article, even though

the considered model is relatively complex.

In both of the above examples, we tried to allocate time to the tasks at hand in



1.3. Basics of scheduling theory 11

order to minimise a certain objective. These characteristics are in fact common to

all scheduling problems. More specifically, Pinedo [109] defines scheduling as “(. . . )

a decision-making process that (. . . ) deals with the allocation of resources to tasks

over given time periods and its goal is to optimise one or more objectives.” As one

might guess from this definition, scheduling theory has found its way into numerous

applications. Among others, its insights have been applied in computer operating

systems [26, 86], web servers [72, 126], aircraft landings [18] and healthcare [67].

We will generally say that tasks are assigned to or scheduled on machines, rather

than that resources are allocated to tasks. This perspective facilitates the similarity

between queueing and scheduling theory. The due date of the j -th task is denoted by

d j , which is assumed to be infinite if unspecified. Also, we should note that scheduling

problems traditionally consider a finite set of tasks that needs to be scheduled.

In parallel with Section 1.2, we continue by presenting some standard classification

and seize the opportunity to give a taste of the endless model variations.

1.3.1 Three-field classification

Conway et al. [40] made a first attempt to structure scheduling problems. They proposed

a four-field classification that, among others, had one field dedicated to the arrival

process of tasks. By removing this field and improving the use of other fields, Graham

et al.4[66] lay basis to the three-field classification α |β | γ that is now standard. In this

notation, the field indicated by

α denotes the machine environment. Common inputs for parallel machine envir-

onments are: 1 (single machine), Pm (m identical machines), Qm (m machines

that have different speeds) and Rm (m machines whose speed depends on the

task assigned). Alternatively, jobs might have to run on several machines. This is

usually denoted by Fm (“flow shop”; each job is scheduled on all m machines in

series), Jm (“job shop”; each job is scheduled on all m machines in an individual,

predetermined order) or Om (“open shop”; each job is scheduled on an individual,

predetermined set of machines in arbitrary order).

β indicates processing restrictions and relaxations. There may be several inputs

in this field simultaneously, presumably among r j (the j -th task can not be

scheduled prior to its release date r j ), pmtn (tasks may be pre-empted even

though they have not yet finished) and prec (precedence constraints among tasks).

There are many more restrictions and relaxations possible, of which this disserta-

tion focusses primarily on scheduling problems with the online relaxation. This

paradigm is described in Section 1.3.2.

4Graham et al.’s paper was later revised by Lawler et al. [91].
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γ symbolises the optimality criteria. It is a function of the scheduling output that

we intend to minimize. Usually, the scheduling output of interest is related to a

task’s completion time C j , defined as the time when it has received all required

resources; flow time F j , defined as the difference between its completion time

and release date; or tardiness L j , defined as the difference between its completion

time and due date. Common optimality criteria are then: Cmax (“makespan”,

maximum over all C j ),
∑

j C j , Fmax,
∑

j F j , Lmax and
∑

j L j . Possibly, the sums are

weighted by individual task weights w j ; this is typically denoted by
∑

j w j C j .

From the above descriptions, one may recognise the carpenter model of Jackson

[74] as a 1 || Lmax problem, the extension where the carpenter accepted more orders as a

1 | r j | Lmax problem, and the carpenter model by Johnson [75] as a F2 ||Cmax problem.

It is generally assumed that every machine can process at most one task at a time,

and every task can be processed at only one machine at a time. This makes sense from

a technical perspective. However, by repeatedly allocating a set of tasks to a machine

during very short intervals, one approaches a model where machines seemingly work

on several tasks at the same time. From this perspective, the machine works on every

task at reduced speed (cf. Table 1.2). It should be noted that, in reality, there may

be overhead incurred by switching jobs on a machine. This approach may then be

infeasible or expensive.

1.3.2 Off-line, on-line and scenario scheduling

In the following paragraphs, we discuss the off-line, on-line and scenario scheduling

paradigms. Especially the on-line paradigm is of importance in this dissertation, as it is

closely connected to queueing models.

Traditional scheduling problems assume that all information is available a priori.

The scheduler is aware of the number of tasks, their release dates, and their require-

ments and is therefore able to make a schedule off-line. This may be a realistic ap-

proximation of certain real-life problems; for example, all of this information may be

estimated very accurately when it comes to the day-to-day planning in a factory of mass

production. A survey on this account was written by Potts and Strusevich [112], and

standard textbooks cover this paradigm extensively [40, 109].

Alternatively, a scheduler may be unable to design a schedule if some of the inform-

ation is missing prior to the process commences. The scheduler may then have to resort

to on-line scheduling. In this paradigm, any of the task’s properties may be (partially)

unknown. If only the release dates are unknown, indicated by online-time, then the

scheduler is oblivious of the task’s existence until the time of its release. If, additionally,

the processing requirements of a task are not revealed until it is actually finished, then

the scheduler is said to be non-clairvoyant and this is denoted by online-time-nclv. In
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this case, it is often assumed that the distribution of task requirements is known. We

invite the reader to realise the resemblance between this latter setting and a queueing

model. A well-written survey of on-line scheduling can be found in Pruhs et al. [116]

and Sgall [128], whereas Borodin and El-Yaniv [27] and Pinedo [109] dedicated several

chapters to the development of the subject.

Feuerstein et al. [55] and Kasperski et al. [77] recently considered a paradigm that

lives between the off-line and on-line setting. Their papers describe scenario scheduling,

where the scheduler designs a schedule before the actual problem instance is sampled

from a known, finite set of problem instances. It is yet to be seen how this interesting

paradigm evolves.

The above descriptions suggest that the off-line scheduler has a big advantage over

the on-line scheduler. The off-line scheduler has all information needed to make a good

schedule, whereas the on-line scheduler unknowingly makes decisions that may later

turn out to be sub-optimal. The study of competitive analysis [65] is dedicated to the

investigation of this phenomenon.

1.3.3 Competitive analysis

Consider an on-line scheduling problem. Let S(I) denote a schedule for a given problem

instance I and let f (S(I)) denote the corresponding value of the function that we wish

to minimize. Assume that S∗(I) is a schedule that minimizes this value; i.e. S∗(I) is an

optimal schedule. A deterministic algorithm ALG is then said to be c-competitive, c ≥ 1,

if the algorithm designs a schedule S(I) = ALG(I) satisfying f (ALG(I)) ≤ c f (S∗(I)) for

any problem instance I . Here, c is allowed to depend on the problem parameters, such

as the number of tasks in the instance.

There are several remarks to be made about this definition. First, we note that an

optimal schedule S∗(I) is oblivious to the on-line nature of the problem. One may

think of S∗(I) as an optimal schedule that was designed by an off-line scheduler that

first observed the on-line instance materialize. Clearly, this off-line scheduler can never

do worse than the on-line scheduler. Second, we observe that the competitive ratio is a

worst-case classification, meaning that c is large if the algorithm performs very well on

all but a few problem instances, and poorly on these few. It is this aspect upon which

randomised algorithms provide an advantage.

Randomised algorithms flip internal coins during their execution and base their

decisions on the corresponding outcomes. Consequently, the algorithm may design

different schedules during repetitive executions on the same problem instance, and, as a

result, the performance on a fixed problem instance is a random variable. A randomised

algorithm rALG is now said to be c-competitive if it satisfies E[ f (rALG(I))] ≤ c f (S∗(I))

for all problem instances I , where E[ f (rALG(I))] is the expected function value with
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respect to the internal random choices of the algorithm. That is, the competitive ratio of

a randomised algorithm quantifies its worst-case expected performance. One therefore

finds that the competitive ratio of the best randomised algorithm is never worse, and

generally better, than that of the best deterministic algorithm.

The competitive ratio can be thought of as follows: it is the worst-case (expected)

relative performance of an on-line algorithm that plays against an oblivious adversary.

This adversary is able to decide upon all task’s characteristics, necessarily including

the task’s release date and its requirements. He may do so with full knowledge of the

algorithm; that is, he knows the code of the algorithm but not the outcome of randomised

choices. Armed with this knowledge, he designs a problem instance that maximizes the

ratio of the expected performance of the algorithm to that of the optimal schedule in

hindsight. The advantage of randomization in an algorithm then lies in the fact that the

adversary is not quite sure how the algorithm responds to his problem instance.

To illustrate the difference between the competitive ratio of deterministic and

stochastic algorithms, we consider the scheduling problem 1 | online-time-nclv,r j ,

pmtn |∑ j F j . Motwani et al. [102] showed that the competitive ratio of every determin-

istic algorithm isΩ(n1/3). Here,Ω(n1/3) indicates that any achievable competitive ratio

grows at least as fast in the number of tasks n as some function of the form c1n1/3. In

their proof, Motwani et al. exploit their knowledge of the algorithm, whichever determ-

inistic algorithm is given, to construct a problem instance where it performs badly. If,

instead, one considers randomised algorithms, then Motwani et al. [102] found that

all algorithms have a competitive ratio of at least Ω(logn); a significantly lower ratio.

Kalyanasundaram and Pruhs [76] subsequently presented a randomised algorithm that

actually achieves this ratio; see also Chapter 2.

The above example makes it clear that an on-line scheduler can be significantly

disadvantaged compared to an off-line scheduler. A similar observation holds for nu-

merous scheduling problems, so that one may wonder whether on-line schedulers can

actually achieve optimal off-line performance. The answer to this question is positive, as

the (deterministic!) SRPT algorithm optimally solves the 1 | online-time,r j ,pmtn |∑ j C j

scheduling problem. A more elaborative introduction to competitive on-line scheduling

is presented in Pruhs [115].

Yao’s minimax principle

A key instrument in Motwani et al.’s “Ω(logn)”-result is Yao’s celebrated minimax prin-

ciple [142]. This principle relates the competitive ratio to a game between two players.

The first player may choose from a set of deterministic algorithms A . The second player,

the adversary, may then choose a problem instance from a set I . The competitive ratio

of the algorithm chosen by player one is then lower bounded by the relative perform-
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ance of this algorithm on the problem instance chosen by player two (the “cost” of the

game). Player one and two respectively aim to minimise and maximise this cost.

If player one reveals his strategy first, then player two may exploit this knowledge in

his own strategy. Player one makes this harder by playing a random (“mixed”) strategy,

which corresponds to a randomised algorithm. Player two is aware of this random

strategy but does not know the outcome. He will thus pick the instance that maximizes

the cost for the randomised algorithm. Here, it can be shown that player two does

not benefit from a mixed strategy. Alternatively, if player two defines a probability

distribution F over I rather than fixing an instance, then player one can minimise the

cost by selecting an appropriate deterministic algorithm. The key insight is now that

if both players play their best strategy, then it does not matter which player goes first

(Von Neumann [104]).

Yao used Von Neumann’s result to show that the competitive ratio of a random-

ised algorithm is lower bounded by the best expected relative performance over all

deterministic algorithms on the randomised problem instance. That is, if the expected

performance of all deterministic algorithms is at least C , then it is impossible for the

randomised algorithm to perform better than C on all instances. The power in this

approach lies in the freedom for the researcher to decide upon F .

1.3.4 Algorithmic complexity and approximation algorithms

We finish our introduction to scheduling theory with a short account on algorithmic

complexity; a concept that has had significant impact on the field.

Algorithmic complexity is related to the observation that all off-line scheduling

problems are combinatorial problems. That is, given the inputs for the model, there is

only a finite number of meaningful schedules and we could write down all of them. By

specifying this list for any scheduling problem, examining all schedules and selecting

one that is optimal, we could solve any off-line problem to optimality. Unfortunately,

the number of meaningful schedules may be so large that even with all computing

power on earth it could easily take hundreds if not thousands of years to list them all. It

is for this reason that researchers philosophised about a way to quantify the efficiency

of scheduling algorithms, which led to the study of algorithmic complexity [62].

The main idea in algorithmic complexity, as described by Edmonds [49], is that an

algorithm is efficient if the number of computations needed to execute the algorithm

is polynomial in the number of binaries needed to encode the problem input. Among

these are the algorithms presented by Jackson [74] and Johnson [75] that correspond

to the carpenter problems at the beginning of this section. Such algorithms are called

polynomial-time algorithms.

For many problems, however, nobody has yet succeeded in designing a polynomial-
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time algorithm, nor to show that such algorithm can not exist (the P equals NP problem).

Among these is the problem of the carpenter that took more orders [93]. It is for this

set of hard problems that researchers quest for polynomial-time algorithms that are in

some sense close to optimal; the study of approximation algorithms.

The study of approximation algorithms applies to polynomial-time algorithms on

off-line problems, and aims to quantify the worst-case sub-optimality that is caused

by the restriction on their running time. Note that this is quite different from the

competitive ratio, which relates to on-line problems and (possibly non-polynomial-

time) algorithms that are restricted in their knowledge of the future. Also, one may

show that the best achievable approximation ratio of randomised algorithms is no

better than that of deterministic algorithms, which is in sharp contrast to several results

in competitive analysis. The reader eager for more information on approximation

algorithms is referred to the books of Vazirani [134] and Williamson and Shmoys [140].

This concludes our introduction to scheduling theory. As before, the models and

techniques described in this section by no means cover all facets of scheduling theory

but merely serve to illustrate the richness of its literature and possibilities. The next

section facilitates the reader in organising his thoughts on the connection between

queueing and scheduling theory, and discusses some results at their interface.

1.4 Fusing queueing and scheduling

Now that a basic understanding of the areas of queueing and scheduling theory has

been established, we briefly discuss the major similarities and differences among them.

We then examine several results at their interface and set the stage for all later chapters.

The final paragraphs contain key results and references to more elaborate surveys

and textbooks, rather than an independent overview of all results at the interface.

Every next chapter contains a more detailed literature review specified to that chapter’s

contributions.

1.4.1 Overlap between both areas

Both queueing and scheduling theory are concerned with models where jobs (cus-

tomers, tasks) require service (resources) from one or more servers (machines). This

similarity remains intact when the models become more complex. For example, both

queueing networks and job shop models consider customers that visit multiple – pos-

sibly heterogeneous – servers in some order. The role of the scheduler in scheduling

theory is in both cases equivalent to the role of the scheduling policy in queueing sys-

tems. The key differences, however, lie in the job arrival characteristics, the information

available to the scheduler, and the performance metrics.
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First, the process according to which jobs arrive is quite different. The arrival

process in queueing systems is typically stochastic. This implies that jobs have release

dates, which are unknown to the scheduler, and that there is an infinite arrival stream

of jobs. As a consequence of this latter characteristic, one needs to consider system

stability. Scheduling problems instead assume a fixed number of jobs which may either

be available from the start or released individually over time. When released over time,

the release dates may be known or unknown to the scheduler. An algorithm from

scheduling literature is therefore only a feasible scheduling policy for a queueing model

if it makes on-line decisions.

Second, the stochastic nature of queueing processes is usually reflected in the

performance metrics. Standard performance metrics for queueing models are the

moment and distribution-tail characteristics of random variables associated to the

performance of the system, such as queue length, waiting time and flow time. The

probabilistic properties of the inter-arrival and service-requirement distributions are

often reflected in these metrics. Also, these characteristics are meaningful even with, or

primarily due to, the infinite stream of arriving jobs.

The competitive ratio, on the other hand, assumes a finite number of jobs and

quantifies the worst-case behaviour of an (on-line) algorithm compared to the off-line

optimal schedule. It therefore provides no immediate insights into the behaviour of

an algorithm in a queueing model, where the number of jobs is infinite. Additionally,

the competitive ratio does not take the characteristics of the queueing model into

consideration. For example, the FIFO policy is both n-competitive for 1 | r j | ∑ j C j

(worst possible) and optimal for minimising the expected waiting time in a stable

D/D/1 queueing model. More generally, the competitive ratio is not designed to give

any indication about the most likely or long-time average behaviour of an algorithm in

a stochastic environment. This implies that an algorithm with a high competitive ratio

may actually perform quite well with respect to a different performance metric. We will

elaborate on this notion shortly, when we consider the large-deviations behaviour of

the waiting time in M/GI/1.

1.4.2 Results at the interface of queueing and scheduling

As only on-line algorithms can be applied in queueing models and stochastic analysis of

such algorithms tends to become intractable, there are relatively few well-understood

scheduling policies. Nevertheless, current literature displays a rich and fascinating

variety in the behaviour among the most classical scheduling policies (cf. Table 1.2). In

the following paragraphs, we denote the steady-state waiting time and sojourn time

(a.k.a. flow time, response time) in a queueing model with scheduling policy P by WP

and TP, respectively. The reason for occasionally considering the sojourn time rather
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than the waiting time is that the definition of the waiting time becomes less intuitive

or meaningless for scheduling policies that may serve customers at reduced rate (e.g.

FB,PS); however, since TP
d=WP +B1 and WP asymptotically stochastically dominates

B1, the waiting time results easily translate to sojourn time results.

The best-understood scheduling policy is FIFO, and even this policy is still not

completely understood in the GI/GI/1 model. Our understanding improves if either the

inter-arrival or the service-requirement distribution is exponential. In particular, it is

known that the waiting time in the GI/M/1 model is exponentially distributed with some

parameter that is obtained as the solution to an integral equation [8, Theorem X.5.1].

Furthermore, the waiting time in the M/GI/1 model has distribution P(WFIFO > x) =∑∞
n=0(1−ρ)ρnP(B∗

1 + . . .+B∗
n > x). The B∗

i in this expression are independently distrib-

uted as a residual service requirement; P(B∗
i > x) = E[B1]−1

∫ ∞
x P(B1 > y)dy .

Although the representation of the M/GI/1 waiting time is explicit, it does not quite

indicate how well FIFO performs relative to other scheduling policies. In particular,

this representation does not reveal how FIFO compares to frequently investigated

scheduling policies like LIFO, PS and SRPT. A comparison would obviously benefit

from waiting-time representations in models with these scheduling policies. Known

representations, unfortunately, typically discourage one from attempting such com-

parisons. One is then forced to limit the comparison to asymptotic regimes, where it is

easier to analyse the behaviour of scheduling policies. In particular, we focus on their

behaviour in the large-deviations and heavy-traffic regimes.

The behaviour in either regime depends on the service-requirement distribution;

specifically, queueing models exhibit fundamentally different behaviour for light-tailed

and heavy-tailed distributions [50, 59]. We say that the service-requirement distribution

is light-tailed if E[e sB ] is finite for some s > 0. This class includes all distributions with

finite support and all phase-type distributions. The service-requirement distribution is

heavy-tailed if it is not light-tailed; however, we will focus here on the subset of heavy-

tailed distributions that satisfy limx→∞(1−FB (µx))/(1−FB (x)) = µ−α for some index

α> 2 and all fixed µ≥ 1. This is the class of regularly-varying distributions.

Large deviations

Let f (x) ∼ g (x) denote limx→∞ f (x)/g (x) = 1 and recall that the large-deviations regime

corresponds to the asymptotic behaviour of tail probabilities for fixed traffic intensities

ρ.

The Cramér-Lundberg theorem [50, Theorem 1.2.2] states that, for almost all light-

tailed service-time distributions, there exists c2 > 0 and γFIFO(ρ) = γFIFO > 0 such that

P(W > x) ∼ c2e−γFIFOx . Sequentially, Boxma and Zwart [32] proved that no scheduling

policy can improve the waiting time tail by more than a multiplicative constant. This is
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in sharp contrast with the tail of TPS, for which Mandjes and Zwart [99] showed that, for

a certain subclass of light-tailed service-requirement distributions, logP(TPS > x) ∼ γBP,

where γBP < γFIFO is the worst (lowest) decay rate that any work-conserving scheduling

policy can have. The same result holds for the tails of TLIFO and TSRPT [106]. One may

thus conclude that FIFO outperforms LIFO, PS and SRPT in the large-deviations regime

for most light-tailed service-requirement distributions. This illustrates the fact that

scheduling policies with poor competitive ratios (FIFO is n-competitive), may actually

perform well in queueing models.

If we instead consider the large-deviations regime with regularly-varying distribu-

tions, we observe the opposite relations. In that case, Borovkov [28] proved that

P(WFIFO > x) ∼ c3(1−ρ)−1xP(B1 > x) (1.2)

for all fixed ρ and some c3 > 0. Thus, if the service-requirement distribution is regularly

varying with index −α, then WFIFO is regularly varying with index 1−α. This is the

heaviest tail index possible, meaning that FIFO performs very poorly. The PS and

SRPT scheduling policies instead achieve a sojourn-time distribution tail satisfying

P(TPS > x) ∼P(TSRPT > x) ∼ (1−ρ)−αP(B > x), which has the lightest tail index possible

[106, 145]. The tail of TLIFO has the same tail index, but a slightly larger multiplicative

factor of (1−ρ)1−α.

We have observed that scheduling policies that perform well in the large-deviations

regime for some distributions, perform poorly for other distributions. Indeed, if no

information of the service-requirement distribution is given or learned, then Wierman

and Zwart [139] proved that it is impossible for a scheduling policy to perform near-

optimal for both light-tailed and regularly-varying service-time distributions. Nair et al.

[103] subsequently showed that a hybrid between LIFO and PS, namely the LPS policy,

remains robust over both classes in the sense that the decay rate and the tail index are

better than γBP and 1−α, respectively. Their implementation of the LPS policy only

requires knowledge of the traffic intensity ρ.

Two worthwhile surveys on the large-deviations performance of scheduling policies

were presented by Borst et al. [30] and Boxma and Zwart [32].

Heavy traffic

We now consider the heavy-traffic regime; specifically, we limit our focus to the depend-

ence of the expected sojourn time on the traffic intensity ρ as it tends to one. We alter

our previous definition, by now denoting f (ρ) ∼ g (ρ) if limρ↑1 f (ρ)/g (ρ) = 1.

As opposed to the large-deviations regime, it is possible for a scheduling policy

to minimise the expected sojourn time over all GI/GI/1 models. Specifically, Schrage

[125] showed that the SRPT policy is 1-competitive and therefore, as it works on-line,
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minimizes E[T ] over all scheduling policies. However, it took several more decades

before the dependence of E[TSRPT] on ρ was studied.

Pollaczek [110, 111] and Khintchine [81] showed that the expected sojourn time

E[TFIFO] in the M/GI/1 model is identical to ρE[B 2
1 ]/(2(1− ρ)E[B1])+ E[B1] (cf. rela-

tion (1.1)). Kleinrock [86] found an even more appealing formula for the sojourn time

under PS, namely E[TPS] = (1−ρ)−1E[B1]. However, it wasn’t until 2005 that Bansal

[14] was able to quantify the superiority of SRPT in the M/M/1 model. For this model,

Bansal showed that

E[TSRPT] ∼ E[B1]

1−ρ
1

log(e/(1−ρ))
; (1.3)

that is, the expected sojourn time in M/M/1/SRPT is improved over FIFO, PS and in

fact all blind scheduling policies [40] by a logarithmic factor.

Bansal was able to derive his result by examining the conditional sojourn time

E[TSRPT(x)] for a job of size exactly x and integrating this expression over all possible

job sizes, while making several approximations along the way. Similar approaches

were applied successfully to quantify the asymptotic behaviour of the expected sojourn

time in general M/GI/1 models; specifically, Bansal and Gamarnik [15] considered

the M/GI/1 model for the Foreground-Background and pre-emptive Shortest Job First

policies, and Lin et al. [95] studied the M/GI/1/SRPT model.

Heavy-traffic results that concern tail probabilities in non-FIFO models are scarce. If

the scheduling policy is LIFO, then Abate and Whitt [5] show that the scaled probability

(1−ρ)−1P((1−ρ)2WLIFO > y) converges to a non-degenerate function of y . Zhang and

Zwart [143] show that the same scaling is appropriate if the scheduling policy is LPS.

On the other hand, we recall that Kingman [83, 84] showed that P((1−ρ)WFIFO > x) ∼
e−E[B 2

1 ]/(2E[B ])x as ρ ↑ 1 in GI/GI/1 models. This result may be surprising at first sight,

as we just established that the large-deviations behaviour of P(WFIFO > x) is regularly

varying if the service-requirement distribution is regularly varying. This brings us to

our final observations.

Transition between asymptotic regimes

If the service-requirement distribution is regularly varying, then the tail distribution of

the waiting time behaves in fundamentally different ways depending on which regime

is considered. This observation is reflected in relation (1.2), which decreases as function

of x and (even though ρ is fixed) increases as a function of ρ. This is explained by the

fact that the event {WFIFO > x} can be caused in different ways, with different associated

probabilities.

For the large-deviations regime, where ρ is fixed and x is sufficiently large, the

event of a long waiting time is mainly determined by the presence of a single customer

with exceptional processing requirements, prior to one’s own arrival. This behaviour is
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caused by the heavy tail of the service-time distribution, and is known as the principle

of a single big jump [101, 144]. Relation (1.2) reflects this intuition, since the expected

number of jobs between two idle periods is of the order (1− ρ)−1, and xP(B1 > x)

relates to the probability that a customer requires at least x more units of service before

completion.

Alternatively, consider the heavy-traffic regime where x is fixed and ρ is sufficiently

large. Then the probability of having to wait for x units of time is most likely caused

by an accumulation of many waiting customers that all require a moderate amount of

processing. With this many customers, the work that is still in the system can be shown

to behave as the all-time supremum of a Brownian motion, which is exponentially

distributed.

One may now wonder how robust the large-deviations and heavy-traffic limits are,

i.e. how large does x need to be before the heavy tail of B is reflected in P(WFIFO > x); or

how large does ρ need to be in order for the heavy tail to vanish into a general diffusion

process? More specifically, one may ask whether there exist functions x1(ρ) and x2(ρ)

such that the large-deviations limit remains intact for all x ≥ x1(ρ), and the heavy-traffic

still remains true for all x ≤ x2(ρ) as ρ ↑ 1. Olvera-Cravioto et al. [107] gave a positive

answer to this question and in fact showed that the transition from one regime to the

other is sharp; i.e. x1(ρ) coincides with x2(ρ). This is contrasting with M/GI/1 models

for a class of service-requirement distributions with slightly lighter tails, where there is

an intermediate regime [108]. To the best of our knowledge, no results of this kind are

known for other service disciplines.

1.5 Contributions of this dissertation

The previous section presented a rather diverse collection of results on scheduling

policies in queueing models. Specifically, it was concerned with large-deviations and

heavy-traffic behaviour of such policies, and concluded with a note on the robustness

of asymptotic results if both x and ρ tend to their limiting values. The contributions in

this dissertation are equally diverse, as will become apparent in this final section.

In Chapter 2, we aim to understand how well blind scheduling policies can perform

compared to the optimal non-blind policy. In particular, we consider a GI/GI/1 model

that operates under the Randomised Multilevel Feedback (RMLF) algorithm; a blind,

pre-emptive and work-conserving algorithm that efficiently balances the number of

pre-emptions and the prioritising of the jobs that have received the least service. We

show that the expected sojourn time under the RMLF algorithm is at most a factor

c4 log(1/(1−ρ)) larger than E[TSRPT]. Here, c4 is a constant that may depend on the

(2+ε)-th moment of the service-requirement distribution. Also, we show that this result

is sharp in the sense that it cannot be improved by more than a multiplicative constant
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for the M/M/1 model.

The importance of this result is two-fold. First, as opposed to the SRPT algorithm,

the RMLF algorithm does not require knowledge of the processing requirements. Pro-

cessing requirement information may be inaccurate or unavailable in real-life applica-

tions, thereby affecting the performance or even the applicability of SRPT. Second, the

proof is based on a novel combination of techniques from queueing and scheduling

theory. The proof independently analyses busy periods with less or more than N0 jobs,

exploits the log(n)-competitiveness of RMLF to analyse the first type and employs ap-

plied probability techniques to inspect the second type. As the obtained bounds are

quite loose, it is conceivable that a similar approach may yield results in other queueing

models.

Chapter 3 intends to substantiate the latter suggestion in multi-server queueing

models. We follow a straightforward, but naive approach to derive the queueing-

theoretic equivalent of the competitive ratio for multi-server SRPT. Since the regenerat-

ive properties of the GI/GI/1 model – which were essential for exploiting the competitive

ratio – do not easily translate to the GI/GI/c model, this approach concludes with a

negative result. The chapter ends with a discussion on approaches that are potentially

more successful.

In Chapter 4, our focus shifts from relative performance of algorithms to absolute

performance. We derive the heavy-traffic behaviour of the expected sojourn time in

a broad class of M/GI/1/FB models, and provide the reader with the intuition behind

the technical derivations. Additionally, we show that TFB/E[TFB] converges to zero in

probability and subsequently obtain the non-trivial heavy-traffic behaviour of the tail

probability P((1−ρ)2TFB > y) for fixed y > 0. Both the analyses and the results in this

chapter depend on assumptions that are commonly encountered in extreme value

theory. Also, the proof of the latter result exploits a fine connection between (1−ρ)2TFB

and the supremum of a Lévy process that is stopped at an exponential time.

Lévy processes also form the basis of Chapter 5. The terminology in Chapter 5

transcends the more specified terminology of the earlier chapters, but its contributions

translate to our understanding of M/GI/1 models in three ways. First, the described

all-time supremum M∞ is equivalent to the waiting time WFIFO. As such, the uniform

asymptotic presented in Theorem 5.3.1 is a “local” analogue of the large-deviations

robustness result in Olvera-Cravioto et al. [107]. Second, and most importantly, is the

large-deviations result concerning the busy period duration τ, Theorem 5.3.5. Since τ is

equal in distribution to TLIFO, this result may be interpreted as a large-deviations result

for the LIFO scheduling algorithm. Finally, we provide a “local” analogue of Kingman’s

heavy-traffic approximation in Lemma 5.3.6. Among the techniques in this chapter are

a sample-path analysis, and a derivation involving q-scale functions [90].



CHAPTER 2

ACHIEVABLE PERFORMANCE OF BLIND POLICIES

IN HEAVY TRAFFIC

For a GI/GI/1 queueing model, we show that the expected sojourn time under the

(blind) Randomised Multilevel Feedback algorithm is no worse than that under the

Shortest Remaining Processing Time algorithm times a logarithmic function of the

traffic intensity. Moreover, it is verified that this bound is tight in heavy traffic, up to a

constant multiplicative factor. We obtain this result by means of a novel combination of

techniques from competitive analysis and applied probability.

Based on Bansal et al. [S1].

23
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2.1 Introduction

One of the most relevant and widely studied measures of quality of service in a GI/GI/1

queue is the expected sojourn time, also known as response time or flow time, defined

as the expected time spent by a job from its arrival in the system until its completion

[14–16, 19, 32, 95, 103, 106, 137–139]. We consider the most basic setting of a single

machine with pre-emption, i.e. jobs can be interrupted arbitrarily and resumed later

without any penalty. Schrage [125] showed that the Shortest Remaining Processing Time

(SRPT) policy, that at any time works on the job with the least remaining processing

time, is the optimal policy for every problem instance (or equivalently for every sample

path) for minimising the expected sojourn time. However, SRPT can only be executed

appropriately if all exact job sizes are known upon arrival. This information may not be

available in many settings; specifically, jobs sizes may only be known approximately, or

may not be known at all [98]. In such settings, one may have to be content with more

generally applicable policies.

In this chapter we are interested in policies that do not require the knowledge of

job sizes in their scheduling decisions. We refer to such policies as blind policies. More

formally, in a blind policy the scheduler is only aware of the existence of a job and

how much processing it has received thus far. The size of the job becomes known to

the scheduler only when it terminates and leaves the system. Observe that the class

of blind policies contains several well-studied policies, such as First In First Out [8],

Foreground-Background [105] and Processor Sharing [86].

It is natural to ask how much this inability to use the knowledge of job sizes can hurt

performance. In particular, how much can the expected sojourn time differ between

SRPT and an optimal blind policy for a given GI/GI/1 queue? As an illustration, let us

consider the M/M/1 queueing model. In this setting, all blind policies are identical due

to the memoryless nature of the job-size distribution. More precisely, Conway et al. [40]

state that any blind policy has an expected sojourn time equal to E[B ]/(1−ρ), where

E[B ] is the average job size and ρ is the traffic intensity of the system. On the other hand,

if job sizes are known upon arrival, then Bansal [14] derives that the expected sojourn

time T SRPT under M/M/1/SRPT is

T SRPT = (1+o(1))
1

log
(

e
1−ρ

) E[B ]

1−ρ , (2.1)

where o(1) vanishes as ρ approaches one. That is, the SRPT policy outperforms all blind

policies in M/M/1 models by a factor log(e/(1−ρ)) in heavy traffic.

The performance of SRPT as a function of the traffic intensity can be dramatically

different for heavy-tailed distributions. Bansal and Gamarnik [15] and Lin et al. [95]

show that the growth factor of the expected sojourn time in heavy traffic can be much

smaller than 1/(1−ρ) even in M/GI/1 models. For example, if the job sizes follow a
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Pareto(β) distribution with β ∈ (1,2), then the growth factor of the expected sojourn

time T SRPT is E[B ] log(1/(1−ρ)), up to constant factors depending on β. On the other

hand, Kleinrock [86] states that Processor Sharing has an expected sojourn time of

E[B ]/(1−ρ) in any M/GI/1 model. As this example illustrates, it is conceivable that for a

general distribution, the gap between blind policies and SRPT can be much larger than

in the M/M/1 case.

Another subfield of computer science where the performance improvement of

SRPT over blind policies has been studied is competitive analysis [27, 56, 116], which

generally regards worst case analyses of algorithms. The study of competitive analysis

of blind scheduling policies was initiated by Motwani et al. [102], who showed that no

blind deterministic algorithm1 can have a better competitive ratio thanΩ(m1/3) for the

problem of minimising the expected sojourn time, where m is the number of jobs in an

instance. Motwani et al. also showed that no blind randomised algorithm can have a

competitive ratio better thanΩ(log(m)).

In a breakthrough, Kalyanasundaram and Pruhs [76] gave an elegant and non-trivial

randomised algorithm that they called Randomised Multilevel Feedback (RMLF) and

proved that it has a competitive ratio of at most O(log(m) log(log(m))). Later, Becchetti

and Leonardi [19] showed that RMLF is in fact an O(log(m))-competitive randomised

algorithm and hence the best possible (up to constant factors). Becchetti and Leonardi

derive their result under the assumption that job sizes are bounded from below by a

strictly positive constant, an assumption which is removed in this chapter. The resulting

“extended” version of RMLF is denoted by eRMLF and introduced in Section 2.3.2.

Additional background on multilevel algorithms can be found in Kleinrock [86], and an

analysis of the expected sojourn time under such algorithms is performed in Aalto and

Ayesta [4].

The insights from applied probability and competitive analysis concerning the

relation between blind policies and SRPT can be combined when m is taken as the

number of jobs in a regeneration cycle, which has an expected value of the order

1/(1−ρ). We make this precise in our main theorem and its proof. In Section 2.4, the

main theorem shows that, for a GI/GI/1 queue, the gap between SRPT and the best

blind policy A for that system is at most log(1/(1−ρ)) up to a constant factor. More

specifically, we show that this growth factor is a guaranteed upper bound on the gap

between SRPT and the eRMLF algorithm. That is, we show that

E[T A] ≤ E[T eRMLF] =O

(
log

(
1

1−ρ
))

·T SRPT (2.2)

as ρ grows to one. Note that the eRMLF algorithm makes random decisions, and as such

the outcome of T eRMLF is a stochastic random variable for any given instance. The same

1 Note that SRPT is deterministic, but not blind.
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may hold for the optimal blind policy A. Also, we emphasise that the implementation

of the RMLF algorithm does not depend on the distributions of inter-arrival times and

job sizes and is therefore applicable to every GI/GI/1 queue. The optimal blind policy

A may not have this appealing property.

The second main contribution of this chapter is the proof of (2.2) itself. It involves

a novel combination of techniques from competitive analysis and applied probability.

Using a renewal argument, we consider the expected sojourn time E[T RMLF] of jobs in a

general busy period, and subsequently distinguish two types of busy periods (small and

large) by the number of jobs. For small busy periods, we apply a worst-case performance

bound of RMLF from the study of competitive analysis. For large busy periods, we derive

the heavy-traffic behaviour of moments of two functionals: the busy period duration

and the number of jobs in a busy period. In particular, we show that the κ-th moment

of both of these functionals behaves like O((1−ρ)1−2κ) for κ ≥ 1. These new results

are presented in Section 2.5.4 and may facilitate future instances where competitive

analysis and regenerative process theory are combined to obtain information about

algorithms under uncertainty. To prove these bounds, we rely on properties of ladder-

height distributions derived in Asmussen [8] and Lotov [97].

This chapter is organised as follows. A detailed model description and notation

are introduced in Section 2.2. Section 2.3 clarifies the concept of a competitive ratio

and describes the RMLF algorithm. Additionally, Section 2.3.2 relaxes the constraints

on RMLF while preserving the competitive ratio. The main result, Theorem 2.4.1, is

presented in Section 2.4, whereas its proof is given in Section 2.5. Propositions required

for the main theorem are proven in Section 2.6. Finally, Section 2.7 concludes the

chapter.

2.2 Preliminaries

This section introduces a general framework for sequences of GI/GI/1 queueing models,

so that we may analyse their limiting behaviour in further sections. In particular, the

model allows for a heavy-traffic analysis of the expected sojourn time and various other

functionals.

Sequence of queues

Consider a sequence of GI/GI/1 queueing systems, indexed by n ≥ 1, where jobs arrive

sequentially with independent and identically distributed (i.i.d.) sizes B (n)
i , i ∈ {1,2, . . .},

chosen from a distribution F (n)
B . The jobs are then processed by a single server with unit

speed. The times between two consecutive job arrivals are given by the i.i.d. inter-arrival

times A(n)
i , i ∈ {1,2, . . .}, chosen from a distribution F (n)

A . All job sizes and inter-arrival
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times are assumed to be positive, i.e. the support of F (n)
A and F (n)

B is contained in (0,∞).

For notational convenience, we define A(n) := A(n)
1 and B (n) := B (n)

1 .

In order for every queueing system to be stable, we require E[A(n)] > E[B (n)] for all

n ≥ 1. The traffic intensity of the n-th system is denoted by ρ(n) := E[B (n)]/E[A(n)] ∈ (0,1)

and is interpreted as the fraction of time that the server is busy. As is customary in the

literature on heavy-traffic analysis, we assume limn→∞ρ(n) = 1. The expected change in

backlog between two consecutive arrivals is represented by µ(n) := E[A(n)]−E[B (n)] =
E[A(n)](1−ρ(n)).

Furthermore, we require that the inter-arrival times have finite variance for all n

and additionally that limsupn→∞E[(A(n))2] <∞. Since a queue can only form when a

job arrives to a non-empty system, we pose the final requirement that there exist two

constants δ > 0 and γ > 0, both independent of n, such that P(B (n) − A(n) ≥ δ) ≥ γ is

satisfied for all n ≥ 1. The independence of n is a technical restriction that we exploit in

Lemma 2.6.1.

Example model. In order to interpret some of our obtained results, one may com-

pare them to a M/GI/1 queue that is sent into heavy traffic in a natural manner. Specific-

ally, assume that both the Ai ’s and Bi ’s have unit mean and that the inter-arrival times

in the r -th system are given by A(r )
i = Ai /r, i ∈ {1,2, . . .},r ∈ (0,1). This model experiences

a traffic intensity of ρ = E[B ]/E[A(r )] = r and is exposed to heavy traffic as r tends to

one due to decreasing inter-arrival times. The model fits in the framework described

above by letting A(n)
i = Ai /(1−1/n),B (n)

i = Bi and ρ(n) = 1−1/n, and is referred to as

the Example Model. All further references to the Example Model are recognised by

superscripts r for all related variables and functionals.

Queueing functionals

The sojourn time of a job is the amount of time it spends in the system, i.e. the difference

between its service completion time and its arrival time. Given a scheduling policy

π, we denote the expected sojourn time of a generic job by E[T
(n)
π ] or just T

(n)
π if the

scheduling policy is deterministic. The steady-state cumulative amount of work in the

system is represented by V (n), whose distribution has an atom at zero that corresponds

to the times when the server is idle. The steady-state duration of such an idle period is

denoted by I (n).

Idle periods are ended by the arrival of a new job, which initiates a busy period. A

busy period finishes at the earliest subsequent time for which the system is empty again.

The steady-state duration of a busy period is represented by P (n), whereas the total

number of arrivals between two subsequent idle periods is denoted by N (n). Finally,

the steady-state cumulative amount of work in the system at an arrival instance is

represented by W (n).
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Scheduling policies

A scheduling policy π is an algorithm or a rule which specifies which job receives

service at any time in the system. For the GI/GI/1 queue under consideration, such

a policy prescribes the behaviour of a single server under the relaxation that jobs can

be pre-empted; that is, jobs can be interrupted at any point during their execution

and can be resumed later from this point without any penalty. Of the large class of

scheduling policies that apply to this system, we consider only those policies π that

satisfy the following two criteria (quoted from Wierman and Zwart [139], after Stolyar

and Ramanan [129]):

1. π is non-anticipative : a scheduling decision at time t does not depend on inform-

ation about jobs that arrive beyond time t .

2. π is non-learning: the scheduling decisions cannot depend on information about

previous busy periods. That is, a scheduling decision on a sample path cannot

change when the history before the current busy period is changed.

Of special interest are those scheduling policies π that additionally obey the following

characteristic:

3. π is blind: the scheduling decisions do not depend on the sizes of the jobs. That

is, the scheduling decisions on a sample path up to time t cannot change when

the sizes of jobs that have not finished at that time are altered (in such a way that

the jobs remain unfinished).

Policies that satisfy all above criteria are very common: First In First Out (FIFO),

Foreground-Background (FB) and Processor Sharing are all blind policies within the

specified subclass of scheduling policies. On the other hand, policies like Shortest

Job First or Shortest Remaining Processing Time (SRPT) are non-blind elements of the

specified subclass as they require knowledge of the job sizes when making a scheduling

decision.

We let A(n) denote a blind policy that minimizes the expected sojourn time over the

space of all blind policies for the n-th GI/GI/1 queue. In general, A(n) could depend on

the distributions F (n)
A and F (n)

B that specify the GI/GI/1 queue. The implementation of

the RMLF and eRMLF algorithms, which are respectively formalised in Sections 2.3.1

and 2.3.2, does not depend on F (n)
A and F (n)

B and is therefore independent of the system

index n.

Finally, we call a scheduling policy π work-conserving if it always has the server

working at unit speed whenever work is present in the system. One can easily verify that

all above policies, including A(n), are work-conserving.
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Asymptotic relations

We use the standard notation that for two functions f (n) and g (n), f (n) =O(g (n)) and

f (n) = o(g (n)) if limsupn→∞ f (n)/g (n) < ∞ and limsupn→∞ f (n)/g (n) = 0, respect-

ively. Similarly, f (n) =Ω(g (n)) means liminfn→∞ f (n)/g (n) > 0 and f (n) =Θ(g (n)) is

equivalent to 0 < liminfn→∞ f (n)/g (n) ≤ limsupn→∞ f (n)/g (n) <∞.

This chapter’s final notational conventions are the floor-function bxc, defined as

sup{m ∈ N : m ≤ x}, and the indicator function 1([logical expression]) that assumes

value 1 if the logical expression is true, and value 0 otherwise.

2.3 Competitive analysis of scheduling policies

In this section, we describe some relevant definitions and results from the area of

competitive analysis, which deals with the worst case analysis of algorithms. We restrict

our presentation here to the competitive analysis of scheduling algorithms with respect

to expected sojourn time. Subsequently, we introduce the original RMLF algorithm and

its extension eRMLF.

A scheduling problem instance I consists of a collection of jobs specified by their

sizes and their arrival times. We say that an instance has size m, i.e. | I | = m, if it

consists of m jobs. For an instance I , we denote the optimal expected sojourn time

possible for this instance by T OPT(I), which for our purposes is the same as T SRPT(I).

For a deterministic algorithm π, we let T π(I) denote the expected sojourn time

when the instance I is executed according to the algorithm π. We say that the algorithm

π has competitive ratio c(m) if

sup
I :|I |≤m

T π(I)

T OPT(I)
≤ c(m).

Thus, the competitive ratio of an algorithm (possibly a function of m) is the worst

case ratio over all input instances of length at most m of the sojourn time achieved by

π and the optimal sojourn time on that instance. Observe that the definition of the

competitive ratio is rather strict, in that even if an algorithm is close to optimal on all

but one input instance, its competitive ratio will be lower bounded by its performance

on the bad input instance.

For this reason it is useful to consider randomised algorithms. A randomised al-

gorithm π̃ can toss coins internally and base its decisions on the outcome of these

internal random variables. Such an algorithm can thus be interpreted as a random vari-

able on a space of deterministic algorithms πi [27]. It then follows that the expected so-

journ time of instance I under a randomised algorithm π̃ equals E[T π̃(I)] = Ei [T πi (I)],

where the expectation is over the internal random choices of the algorithm. We say that
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π̃ has competitive ratio c(m) if

sup
I :|I |≤m

E[T π̃(I)]

T OPT(I)
≤ c(m). (2.3)

Observe that the expectation is only over the random choices made by the algorithm,

and the competitive ratio is still determined by the worst possible instance. However,

the competitive ratio of a blind randomised algorithm can be substantially lower, e.g. in

models where no single blind deterministic algorithm is good for all instances, but a

suitable combination of algorithms is close to optimal for all instances.

2.3.1 Randomised Multilevel Feedback algorithm

This section introduces Kalyanasundaram and Pruhs’s Randomised Multilevel Feedback

(RMLF) algorithm [76]. As the name suggests, it is a randomised version of the Multilevel

Feedback (MLF) algorithm proposed by Corbató et al. [41]. Both algorithms are blind

and can therefore only learn the size of a job upon completion.

The general idea of both MLF and RMLF is to prioritise potential short jobs (e.g.

jobs that have not received much service) and reduce the priority of a job as it receives

more service. This prioritisation is embodied by assigning every job J j to a virtual high

priority queue Qi , and move it to a lower priority queue Qi+1 once it has received Ui , j

units of service. The performance of the algorithm may suffer from a poor choice of the

so-called targets Ui , j ; in particular, if the job sizes are slightly above their targets, then

jobs are moved to lower priority queues just prior to completion. The improvement of

RMLF over MLF is due to randomization of the targets, thereby reducing the possibility

of such events over general instances.

We now provide a mathematical representation of the RMLF algorithm. Assume

first that there is a universal lower bound on the job sizes in every instance I , say with

value 2. For every instance of size m, the j -th job J j is released at time r j and has

size B j . The process w j (t) denotes the amount of time that RMLF has run J j before

time t . For some symbolic constant θ, fixed at θ := 4/3, we define the independent

exponentially distributed variables β j with P(β j ≤ x) = 1−exp[−θx ln j ]. Finally, the

targets are defined as Ui , j = 2i max{1,2−β j } for all i ∈ {1,2, . . .}, j ∈ {1, . . . ,m}. RMLF is

then formalised in Figure 2.1, similar to Kalyanasundaram and Pruhs [76] and Becchetti

and Leonardi [19].

Kalyanasundaram and Pruhs [76] proved that the RMLF algorithm has a competitive

ratio of O(log(m) log(log(m))). This result was later strengthened by Becchetti and

Leonardi [19] to a competitive ratio of O(log(m)):

Theorem 2.3.1 (Becchetti and Leonardi [19]). The RMLFalgorithm is log(m)-competitive.

That is,

E[T RMLF(I)] ≤C1 log(m)T SRPT(I) (2.4)
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Algorithm RMLF: At all times the collection of released, but uncompleted, jobs is partitioned

into queues, Q0,Q1, . . . We say that Qi is lower than Q j for i < j . For each job J j ∈Qi ,Ui , j ∈
[2i ,2i+1] when it entered Qi . RMLF maintains the invariant that it is always running the

earliest released job in the lowest non-empty queue.

When a job Jh is released at time rh , RMLF takes the following actions:

• Job Jh is enqueued on Q0.

• The target U0,h is set to max{1,2−βh }.

• If, just prior to rh , it was the case that Q0 was empty, and that RMLF was running a

job J j , RMLF then takes the following actions:

– Job J j is pre-empted. Note that J j remains at the front of its queue.

– RMLF begins running Jh .

If at some time t , a job J j ∈ Qi−1 is being run when w j (t) becomes equal to Ui−1, j , then

RMLF takes the following actions:

• Job J j is dequeued from Qi−1.

• Job J j is enqueued on Qi .

• The target Ui , j is set to 2Ui−1, j = 2i max{1,2−β j }.

Whenever a job is completed, it is removed from its queue.

Figure 2.1: Formal statement of RMLF algorithm.

for all instances I of size at most m and a universal constant C1 > 0.

The competitive ratio lower bound ofΩ(log(m)) as shown by Motwani et al. [102]

implies that, up to multiplicative factors, this is the best bound possible for randomised

algorithms in the current model. Note that this competitive ratio is significantly lower

than the best possible ratio for blind deterministic algorithms: Ω(m1/3).

In the next section we propose a variant on RMLF that makes the assumption of a

universal lower bound on job sizes obsolete.

2.3.2 Extending the RMLF algorithm

In a general GI/GI/1 queue there may not be a strictly positive lower bound on the

job sizes. The RMLF algorithm is not directly applicable in that case. This problem

is solved in an extension of the RMLF algorithm, which we will refer to as the eRMLF

algorithm. The eRMLF algorithm defines queues Q̃1,Q̃2, . . . that are identical to the

queues Q1,Q2, . . . of the RMLF algorithm, but splits the first queue Q0 into many queues

Q̃0,Q̃−1, . . . Additionally, it considers a “new job” queue Q̃∗. The concept of the eRMLF

algorithm is described below; the formal statement is presented in Appendix 2.A.
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Let a problem instance Ĩ for eRMLF be given. A target Ũ∗, j = 2
z∗j max{1,2− β̃ j } is

assigned to every job J̃ j upon arrival, where β̃ j is an exponentially distributed random

variable and z∗
j ∈ Z depends on the current state of the system. When the target has

been assigned to the new job, it receives service in Q̃∗ until either the job is completed,

the obtained service equals the target, or a new job arrives. Once either of the latter two

events happens, the job in Q̃∗ is assigned to a queue Q̃z , z ∈Z.

If there are no jobs in queue Q̃∗, the eRMLF algorithm serves the queues Q̃z in a

similar fashion as the RMLF algorithm. Moreover, at any time the problem instance Ĩ
can be converted to a problem instance I for RMLF by a scaling argument, and under

this scaling the sojourn times of all jobs are identical for both algorithms. From this

perspective, it is only natural that eRMLF inherits the competitive ratio of RMLF:

Theorem 2.3.2. The eRMLF algorithm is log(m)-competitive. That is,

E[T eRMLF(I)] ≤C1 log(m)T SRPT(I) (2.5)

for all instances I of size at most m for a universal constant C1 > 0. This constant is

identical to the constant C1 in Theorem 2.3.1.

The proof of Theorem 2.3.2 is given in Appendix 2.A.

2.4 Main result and discussion

We are now ready to present the main result, Theorem 2.4.1. The main result states that

the expected sojourn time under SRPT is at most a factor log(1/(1−ρ(n))) better than

that under eRMLF in heavy traffic:

Theorem 2.4.1. For a GI/GI/1 queue, the eRMLF algorithm satisfies the relation

E[T
(n)
eRMLF] =O

(
log

(
1

1−ρ(n)

))
·T

(n)
SRPT (2.6)

as n →∞, provided that supn∈{1,2,...}E[(B (n))α] <∞ for some α> 2.

The proof of the theorem is postponed until the next section. It relies on techniques

from both competitive analysis and applied probability.

As a consequence of Theorem 2.4.1, the optimal blind policy A(n) also satisfies the

above performance bound. We emphasise the fact that the implementation of eRMLF

does not depend on the inter-arrival and job-size distributions, whereas this may not be

true for the optimal blind policy A(n). This property may pose a considerable advantage

over a system-dependent optimal blind policy with similar expected performance, for

example when the input distributions are only approximately known. Also, we note that

Theorem 2.4.1 remains true if eRMLF is replaced by RMLF, provided that the support of



2.5. Proof of the main theorem 33

the job-size distribution F (n)
B is uniformly bounded away from zero (i.e. B (n)

i ≥ Bmin for

some Bmin > 0 independent of i and n). We conclude this section with some remarks:

Remark 1. Recall that the expected sojourn time under any blind policy in an M/M/1

queue is E[B (n)]/(1−ρ(n)), whereas the expected sojourn time under SRPT is [16]

T
(n)
SRPT = (1+o(1))

1

log
(
e/(1−ρ(n))

) E[B (n)]

1−ρ(n)
. (2.7)

In this case, our result is tight up to a multiplicative factor.

Remark 2. There may be sequences of GI/GI/1 queues for which E[T
(n)
eRMLF] has a worse

heavy-traffic scaling than E[T
(n)
A(n) ]. For example, it is known that the FB policy min-

imizes the expected sojourn time over all blind policies in a M/GI/1 queue if F (n)
B

has a decreasing failure rate [122]. Moreover, if F (n)
B (x) = 1−x−β, x ≥ 1,β ∈ (1,∞)/{2},

then T
(n)
FB =Θ(T

(n)
SRPT) displays the best possible scaling in heavy traffic [95, 105]. The

heavy-traffic behaviour of E[T
(n)
eRMLF] is unknown for any GI/GI/1 queue and could

scale worse than T
(n)
FB (although no worse than log(1/(1−ρ)) ·T

(n)
FB by Theorem 2.4.1).

On the other hand, the optimal blind policy A(n) may not be robust under different

input distributions F (n)
A and F (n)

B . Continuing the FB example, we see that it is optimal

if F (n)
B is the Pareto distribution, yet T

(n)
FB =Θ((1−ρ)−2) =Θ((1−ρ)−1) ·T

(n)
SRPT if F (n)

B is

deterministic [95, 105].

2.5 Proof of the main theorem

The current section presents the proof of Theorem 2.4.1.

2.5.1 Proof strategy

The competitive ratio of the eRMLF algorithm provides an upper bound on the subop-

timality of eRMLF. Specifically, it guarantees an upper bound of O(log(m)) on the ratio

of the expected sojourn time under eRMLF over the expected sojourn time under SRPT,

for instances of length at most m. Unfortunately, a general GI/GI/1 queue corresponds

to an infinite-length problem instance and hence the competitive ratio result can not

be applied directly.

The key idea of the proof is that a GI/GI/1 queue is a regenerative process, and

as such one would like to analyse individual busy periods rather than the infinite

problem instance. This approach is justified by the fact that for a single server, any

two work-conserving scheduling policies π1 and π2 generate the same busy periods,

i.e. V (n)
π1

(t) ≡ V (n)
π2

(t). This means that the server is simultaneously active under both

policies, and hence that every busy period under π1 can be compared to the same busy

period under π2.
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Still, regarding every busy period as an individual problem instance does not bound

the problem instance length. One way to circumvent the unbounded problem instances

is by discriminating between “small” busy periods with at most N (n)
0 jobs, and “large”

busy periods. Busy periods with at most N (n)
0 jobs can be analysed with the competitive

ratio, yielding a bound of O(log(N (n)
0 )). This leaves us with the analysis of large busy

periods.

Since the GI/GI/1 queue induces a distribution over problem instances, the prob-

ability of experiencing busy periods with at least N (n)
0 jobs can be made arbitrarily

small by choosing the threshold N (n)
0 properly. The combined sojourn time of all

the jobs in such a large busy period is dominated by the product of the number of

jobs N (n) in the busy period and the duration P (n) of the busy period. Therefore, the

contribution of large busy periods to the overall expected sojourn time is at most

E[N (n)P (n)
1(N (n) > N (n)

0 )]/E[N (n)]. We will show that, for an appropriate choice of N (n)
0 ,

the contribution of the large busy periods is o(log(N (n)
0 )).

The second part of this section formalizes the above strategy. In the analysis of the

expectation E[N (n)P (n)
1(N (n) > N (n)

0 )] we greatly rely on Hölder’s inequality for decoup-

ling the given expectation into individual moments of P (n) and N (n). The behaviour of

these moments is then the subject of Propositions 2.5.1 and 2.5.2, both of which are

proven in Section 2.6.

2.5.2 Small and large busy periods

We begin by specifying the threshold that distinguishes small and large busy periods

based on the number of jobs. Fix s ∈ (
α
α−1 ,2

)
and ζ> 4+2s

2−s . The threshold N (n)
0 is now

defined as N (n)
0 := (1−ρ(n))−ζ.

Let T (n)
eRMLF,i ,T (n)

SRPT,i , i ∈ {1, . . . , N (n)}, be the sojourn time of job i under algorithm

eRMLF and SRPT, respectively. Using the fact that a GI/GI/1 queue is a regenerative

process, we only need to consider a general busy period when analysing the expected

sojourn time [8, Theorem VI.1.2, Proposition X.1.3]:

E[T
(n)
eRMLF] = 1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i

]
. (2.8)

Discriminating between small and large busy periods then yields

E[T
(n)
eRMLF] = 1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) ≤ N (n)

0 )

]

+ 1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) > N (n)

0 )

]
. (2.9)
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As described in the strategy, we will bound the first term by means of the competitive

ratio of eRMLF and show that the second term vanishes asymptotically as n →∞. These

analyses are the subjects of the following two subsections.

2.5.3 Small busy periods: competitive ratio

The first term in (2.9) considers busy periods with at most N (n)
0 jobs. Theorem 2.3.2

ensures that, for any problem instance I with N (n) ≤ N (n)
0 jobs, the expected sojourn

time E[T eRMLF(I)] is bounded by C1 log(N (n)
0 )T SRPT(I). In particular,

1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) ≤ N (n)

0 )

]
≤ C1

E[N (n)]
log(N (n)

0 )E

[
N (n)∑
i=1

T (n)
SRPT,i1(N (n) ≤ N (n)

0 )

]

≤ C1

E[N (n)]
log(N (n)

0 )E

[
N (n)∑
i=1

T (n)
SRPT,i

]
=C1 log(N (n)

0 ) ·T
(n)
SRPT.

The proof is complete once we show that the second term in (2.9) is dominated by

log(N (n)
0 )T

(n)
SRPT as n →∞.

2.5.4 Large busy periods: Hölders inequality

For any work-conserving scheduling policy, the sojourn time of an individual job is

bounded by the duration P (n) of the busy period. Therefore, the second term in (2.9) is

bounded by

1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) > N (n)

0 )

]
≤ 1

E[N (n)]
E
[

N (n)P (n)
1(N (n) > N (n)

0 )
]

. (2.10)

The functionals N (n) and P (n) are dependent, which makes an exact analysis of the

expectation troublesome. This complication is avoided by applying Hölder’s inequality,

which allows us to approximate the dependent expectation by the product of two

expectations. In particular, for s̃ = s
s−1 ∈ (2,α) we have 1/s +1/s̃ = 1 and hence

E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) > N (n)

0 )

]
≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))s

1(N (n) > N (n)
0 )]

1
s . (2.11)

Applying Hölder’s inequality once more with parameters 2/s and 2/(2− s), we get

E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) > N (n)

0 )

]
≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))2]

1
2P(N (n) > N (n)

0 )
2−s
2s . (2.12)
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Finally, the tail probability of N (n) is bounded by Markov’s inequality. We therefore

obtain the following upper bound for the second term in (2.9):

1

E[N (n)]
E

[
N (n)∑
i=1

T (n)
eRMLF,i1(N (n) > N (n)

0 )

]
≤ E[(P (n))

s
s−1 ]

s−1
s E[(N (n))2]

1
2
E[N (n)]

2−s
2s −1

(N (n)
0 )

2−s
2s

.

(2.13)

The analysis of the expected sojourn time for large busy periods is now reduced to

the analysis of moments of N (n) and P (n). The following two propositions quantify the

behaviour of these moments.

Proposition 2.5.1. Assume supn∈{1,2,...}E[(B (n))α] <∞ for some α≥ 2. Then

E[(P (n))κ] =O
(
(1−ρ(n))1−2κ) (2.14)

for all κ ∈ [1,α]. Moreover, E[P (n)] =Θ(
(1−ρ(n))−1

)
.

Proposition 2.5.2. Assume supn∈{1,2,...}E[(B (n))α] <∞ for some α≥ 2. Then

E[(N (n))κ] =O
(
(1−ρ(n))1−2κ) (2.15)

for all κ ∈ [1,α]. Moreover, E[N (n)] =Θ(
(1−ρ(n))−1

)
.

Both propositions are proven in Section 2.6.

Remark 3. When applied to the Example Model, Proposition 2.5.1 states that E[(P (r ))κ]

is uniformly bounded from above by C2(1−r )1−2κ, for some constant C2 > 0. Alternat-

ively, the integer moments of the busy period duration in an M/GI/1 queue can be cal-

culated explicitly from its Laplace-Stieltjes transform, yielding E[P (r )] = E[B ](1− r )−1

and E[(P (r ))2] = E[B 2](1− r )−3. One may therefore conclude that the asymptotic beha-

viour of the bound in Proposition 2.5.1 is in fact sharp for the first two moments of

the busy period duration P (r ) in the Example Model.

From Propositions 2.5.1 and 2.5.2 it follows that, for some constant C3 > 0,

1

E[N (n)]
E
[

P (n)N (n)
1(N (n) > N (n)

0 )
]

≤C3(1−ρ(n))
(
1−2 s

s−1

) s−1
s (1−ρ(n))−

3
2 (1−ρ(n))1− 2−s

2s (1−ρ(n))
2−s
2s ζ

=C3(1−ρ(n))−1− 1
s (1−ρ(n))−

3
2 (1−ρ(n))

3
2 − 1

s (1−ρ(n))
2−s
2s ζ

=C3(1−ρ(n))
2−s
2s ζ− 2+s

s . (2.16)

Now, by choice of ζ, this expression tends to zero as n →∞. In particular, the contribu-

tion of large busy periods to the overall expected sojourn time is negligible compared to

the contribution of small busy periods. This completes the proof of Theorem 2.4.1.
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2.6 Moments of busy period functionals

This section proves several results on the moments of functionals. First, we introduce

some new notation in Section 2.6.1. We then state two lemmas in Section 2.6.2 in

order to prove Propositions 2.5.1 and 2.5.2. Subsequently, the propositions are proven

in Sections 2.6.3 and 2.6.4. We emphasise that all of the functionals considered are

independent of the scheduling policy, provided that it is work-conserving. This makes

the results of this section applicable to a wide range of queueing models.

2.6.1 Counting and netput processes

For any non-negative random variable Y , we define a random variable Ye that is dis-

tributed as the excess of Y ; i.e. P(Ye ≤ x) := ∫ x
0 P(Y > x)dx/E[Y ]. Next, we define

two counting processes in the GI/GI/1 queue under consideration. The first process

N (n)(t) := inf{m ∈ {1,2, . . .} : A(n)
1 + . . .+ A(n)

m ≥ t }, t ≥ 0, counts the number of arrivals in

t time units, starting from a reference arrival that is also the first count. The second

process Ñ (n)(t ), t ≥ 0, is similar and only differs by initialising the count at an arbitrary

point in time. Specifically,

Ñ (n)(t ) :=
{

0 if t < A(n)
e ,

inf{m ∈ {1,2, . . .} : A(n)
e + A(n)

1 + . . .+ A(n)
m ≥ t } otherwise.

We subsequently introduce the two netput processes X (n)(t ) :=∑N (n)(t )
i=1 B (n)

i − t and

X̃ (n)(t) :=∑Ñ (n)(t )
i=1 B (n)

i − t , that quantify the net amount of work that could have been

processed by the server in the t time units after an arrival, or respectively after an

arbitrary point in time. Note that X (t ) becomes negative right after the first time that

the queue is emptied. One may verify that P(X̃ (n)(t) > x) ≤ P(X (n)(t) > x) for all t ≥ 0,

which will be denoted by X̃ (n)(t ) ≤st X (n)(t ).

Similarly, we define two discrete processes that quantify the netput process at an

arrival instance. The process S(n)
m , m ≥ 0, is defined as S(n)

0 := 0, S(n)
m :=∑m

i=1[B (n)
i − A(n)

i ]

and quantifies all the work that has entered the system between the arrival of the

reference job and the m-th next arrival, minus the work that it could have addressed

during this time. The process S̃(n)
m , m ≥ 0, instead starts observing at an arbitrary point

in time and is defined as S̃(n)
0 :=−A(n)

e , S̃(n)
m :=−A(n)

e +∑m
i=1[B (n)

i −A(n)
i ]. Again, we obtain

the relation S̃(n)
m ≤st S(n)

m .

One may additionally verify that supt≥0 X (n)(t) = supm∈{1,2,...} S(n)
m and hence, by

Asmussen [8, Corollary III.6.5], we have supt≥0 X (n)(t ) = supm∈{0,1,...} S(n)
m

d=W (n) where

· d= · denotes equality in distribution.

In the remainder of this chapter, all sums
∑0

i=1 are understood to be zero.
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2.6.2 Preliminary lemmas

We present and prove two lemmas that facilitate the proof of Propositions 2.5.1 and

2.5.2. Lemma 2.6.1 concerns the first moment of N (n) and I (n), whereas Lemma 2.6.2

considers general moments of W (n).

Lemma 2.6.1. The relations

(1−ρ(n))E[N (n)] =Θ(1) and E[I (n)] =Θ(1) (2.17)

both hold as n →∞.

Proof of Lemma 2.6.1. Since we have µ(n) := E[A(n)](1−ρ(n)) = Θ(1−ρ(n)), it suffices

to prove the relation µ(n)E[N (n)] = Θ(1). Proposition X.3.1 in Asmussen [8], stating

E[I (n)] =µ(n)E[N (n)], then implies that this is equivalent to the relation E[I (n)] =Θ(1).

Both the upper and the lower bound follow from Lotov [97], who considers the ladder

height of a random walk. Specifically, Lotov obtains upper bounds for the moments of

the ladder epochs and the moments of overshoot over an arbitrary non-negative level if

the expectation of jumps is positive and close to zero. As such, his results apply to the

random walk −S(n)
m with ladder epochs N (n).

The upper bound is implied by Theorem 2 in Lotov [97]. This theorem states that

µ(n)E[N (n)] ≤ C4 for some constant C4 > 0 and all n, provided that the supremum

supn∈{1,2,...}E[(max{A(n) −B (n),0})2] is bounded. Accordance with this condition follows

directly from supn∈{1,2,...}E[(A(n))2] <∞.

The lower bound is implied by inequality (2) in Lotov [97]. In our model, we assumed

that there exist constants δ> 0,γ> 0 such that P(B (n) − A(n) ≥ δ) ≥ γ for all n. Lotov’s

inequality then states

µ(n)E[N (n)] ≥
∫ ∞

0
x dP(B (n) − A(n) ≤ x) ≥ δγ

for all n. This completes the proof.

Lemma 2.6.2. Let p > 0 and define q := max{2, p+1}. Assume supn∈{1,2,...}E[(B (n))q ] <∞.

Then

limsup
n→∞

(1−ρ(n))pE[(W (n))p ] <∞. (2.18)

Remark 4. Consider the Example Model, and assume that jobs are served according to

the FIFO discipline. Then W (r ) =W
(r )
FIFO represents the waiting time of a generic job,

and hence for some constant C5 > 0 the expected sojourn time T
(r )
FIFO =W

(r )
FIFO+E[B ] ≤

C5(1− r )−1 +E[B ] scales no worse than 1/(1− r ). Lemma 2.6.2 provides bounds on

more general moments of the waiting time W
(r )
FIFO provided that a sufficiently high

moment of the job-size distribution exists.
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Proof of Lemma 2.6.2. Since supn∈{1,2,...}E[A(n)] <∞, relation (2.18) is equivalent to

limsup
n→∞

(µ(n))pE[(W (n))p ] <∞, (2.19)

which is proven below.

Assume p ≥ 1 and let E (n),E (n)
i , i ∈ {1,2, . . .}, be independent exponentially distrib-

uted random variables with mean

E[E (n)] = E[A(n)]+E[B (n)]

2
< E[A(n)].

By Asmussen [8, Corollary III.6.5] and subadditivity of suprema, W (n) is upper bounded

as

W (n) d= sup
m∈{0,1,2,...}

m∑
i=1

[
B (n)

i − A(n)
i

]
≤ sup

m∈{0,1,2,...}

m∑
i=1

[
B (n)

i −E (n)
i

]
+ sup

m∈{0,1,2,...}

m∑
i=1

[
E (n)

i − A(n)
i

]
=: W (n)

1 +W (n)
2 ,

where W (n)
1 can be interpreted as the total work in an M/GI/1 queue as observed by an

arrival and W (n)
2 as the total work in an GI/M/1 queue as observed by an arrival. As a

consequence, P(W (n) > x) ≤ P(W (n)
1 +W (n)

2 > x) ≤ P(W (n)
1 > x/2)+P(W (n)

2 > x/2) and

thus

E[(W (n))p ] = p
∫ ∞

0
xp−1P(W (n) > x)dx

≤ p
∫ ∞

0
xp−1P(W (n)

1 > x/2)dx +p
∫ ∞

0
xp−1P(W (n)

2 > x/2)dx

= 2p
(
E[(W (n)

1 )p ]+E[(W (n)
2 )p ]

)
.

First, we consider W (n)
1 . Define the geometrically distributed random variable K (n)

1

with support {0,1, . . .} and fail parameter

ξ(n)
1 := E[B (n)]

E[E (n)]
= 2E[B (n)]

E[A(n)]+E[B (n)]
.

For notational convenience, we drop the superscript (n) of ξ(n)
1 for the remainder of this

section. Theorem VIII.5.7 in Asmussen [8] presents a random sum representation of the

functional W (n)
1 in terms of K (n)

1 and B (n)
e,i :

W (n)
1

d=
K (n)

1∑
i=1

B (n)
e,i .

Since f (x) = xp is a convex function for all p ≥ 1, Lemma 5 in Remerova et al. [118]

implies

E[(W (n)
1 )p ] ≤ E[(K (n)

1 )p ]E[(B (n)
e )p ]. (2.20)
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The conditions of Lemma 2.6.2 ensure that the p-th moment of B (n)
e is finite as

n →∞:

E[(B (n)
e )p ] =

∫ ∞

0
xp dP(B (n)

e ≤ x) = 1

E[B (n)]

∫ ∞

0
xpP(B (n) > x)dx

= 1

(p +1)E[B (n)]

∫ ∞

0
xp+1 dP(B (n) ≤ x) = 1

(p +1)E[B (n)]
E[(B (n))p+1]. (2.21)

Therefore, we need to show that (µ(n))pE[(K (n)
1 )p ] is uniformly bounded as n →∞. Let

k = bpc. Then

E[(K (n)
1 )p ] = 1−ξ1

(1−ξ1)p

∞∑
m=0

((1−ξ1)m)pξm
1

≤ 1−ξ1

(1−ξ1)p

⌊
1

1−ξ1

⌋∑
m=0

((1−ξ1)m)kξm
1 + 1−ξ1

(1−ξ1)p

∞∑
m=

⌊
1

1−ξ1

⌋
+1

((1−ξ1)m)k+1ξm
1

≤ (1−ξ1)k+1

(1−ξ1)p

∞∑
m=0

mkξm
1 + (1−ξ1)k+2

(1−ξ1)p

∞∑
m=0

mk+1ξm
1 . (2.22)

On the one hand, for any ` ∈ {1,2, . . .}, we have

(1−ξ1)`+1ξ`1
d`

dξ`1

∞∑
m=0

ξm
1 = (1−ξ1)`+1ξ`1

d`

dξ`1
(1−ξ1)−1 = `!ξ`1 . (2.23)

On the other hand we have

(1−ξ1)`+1ξ`1
d`

dξ`1

∞∑
m=0

ξm
1 = (1−ξ1)`+1

∞∑
m=`

m(m −1) · · · (m −`+1)ξm
1

= (1−ξ1)`+1
∞∑

m=0
m`ξm

1 − (1−ξ1)`+1
`−1∑
m=0

m`ξm
1

+ (1−ξ1)`+1
∞∑

m=`
o(m`)ξm

1 . (2.24)

Combining equalities (2.23) and (2.24), we find that

(1−ξ1)`+1
∞∑

m=0
m`ξm

1 = `!ξ`1 + (1−ξ1)`+1
`−1∑
m=0

m`ξm
1 + (1−ξ1)`+1

∞∑
m=`

o(m`)ξm
1 .

Now, for any ν> 0 there exists a Mν ∈ {1,2, . . .} independent of the system index n

such that for all m ≥ Mν the o(m`) term is dominated by νm`. Fix such ν ∈ (0,1) and

Mν. Then

(1−ξ1)`+1
∞∑

m=0
m`ξm

1 ≤ `!+``+1 + (1−ξ1)`+1ν
∞∑

m=Mν

m`ξm
1 + (1−ξ1)`+1

Mν∑
m=0

o(m`)ξm
1

≤C6 + (1−ξ1)`+1ν
∞∑

m=0
m`ξm

1
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for some constant C6 > 0, and hence

(1−ξ1)`+1
∞∑

m=0
m`ξm

1 ≤ C6

1−ν . (2.25)

Since (µ(n)/(1 − ξ1))p = (E[A(n)] + E[B (n)])p , we may conclude from relations (2.22)

and (2.25) that (µ(n))pE[(K (n)
1 )p ] is uniformly bounded from above as n →∞ and so

is (µ(n))pE[(W (n)
1 )p ] by (2.20).

Second, we consider the functional W (n)
2 . Recall that W (n)

2 denotes the steady-state

workload in a GI/M/1 queue upon arrival. Theorem VIII.5.8 and page 296 in Asmussen

[8] together state that

W (n)
2

d=
K (n)

2∑
i=1

E (n)
i , (2.26)

where K (n)
2 is a geometrically distributed random variable with support {0,1, . . .} and

unknown fail parameter ξ(n)
2 . Remerova et al. [118] again ensure that

E[(W (n)
2 )p ] ≤ E[(K (n)

2 )p ]E[(E (n))p ], (2.27)

where the latter expectation is finite uniformly in n as a property of exponential distri-

butions. The p-th moment of K (n)
2 is bounded by (2.22) and (2.25), so that

(µ(n))pE[(K (n)
2 )p ] ≤C7

(
µ(n)

1−ξ(n)
2

)p

(2.28)

for some constant C7 > 0.

The proof is complete once we show µ(n)

1−ξ(n)
2

=O(1). One may deduce from (2.26) that

P(W (n)
2 = 0) =P(K (n)

2 = 0) = 1−ξ(n)
2 . Additionally, by Theorem VIII.2.3 in Asmussen [8],

we haveP(W (n)
2 = 0) = 1/E[N (n)

2 ] and hence E[N (n)
2 ] = 1/(1−ξ(n)

2 ). Here, N (n)
2 is the steady-

state number of jobs in a busy period of the GI/M/1 queue. Applying Lemma 2.6.1 with

inter-arrival times A(n)
i , job sizes E (n)

i , and expected change in backlog between two

consecutive arrivals 1
2µ

(n) yields 1
2µ

(n)E[N (n)
2 ] =Θ(1), and therefore µ(n)/(1−ξ(n)

2 ) =O(1).

Finally, for 0 < p < 1 the lemma follows directly from the case p = 1 after observing

that (µ(n))pE[(W (n))p ] ≤ (
µ(n)E[W (n)]

)p
by Jensen’s inequality.

Lemmas 2.6.1 and 2.6.2 provide the asymptotic behaviour of functionals that are

closely related to P (n) and N (n). The remainder of this section utilizes these results in

order to prove Propositions 2.5.1 and 2.5.2.

2.6.3 Busy period duration P (n)

This section is devoted to the proof of Proposition 2.5.1. We wish to show that

E[(P (n))κ] =O
(
(1−ρ(n))1−2κ) (2.14, revisited)
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for all κ ∈ [1,α], provided that supn∈{1,2,...}E[(B (n))α] <∞ for some α≥ 2. Moreover, we

claim that E[P (n)] =Θ(
(1−ρ(n))−1

)
.

First, consider κ= 1. Due to Little’s law for a busy server, we have

1−ρ(n) = E[I (n)]

E[I (n)]+E[P (n)]
, (2.29)

so that

E[P (n)] = ρ(n)E[I (n)]

1−ρ(n)
. (2.30)

The result now follows from Lemma 2.6.1.

Second, consider κ > 1. Similar to (2.21), one obtains E[(P (n)
e )κ−1] = E[(P (n))κ]

κE[P (n)]
and

hence it suffices to show that E[(P (n)
e )κ−1] = O((1−ρ(n))2(1−κ)). We have the following

convenient representation for P (n)
e [8, Theorem X.3.4]:

P (n)
e

d= inf{τ≥ 0 : X̃ (n)(τ) ≤−V (n) |V (n) > 0}
d= inf{τ≥ 0 : B (n)

e +W (n) + X̃ (n)(τ) ≤ 0}.

This representation allows us to bound P(P (n)
e > t ) as

P(P (n)
e > t ) =P(inf{τ≥ 0 : B (n)

e +W (n) + X̃ (n)(τ) ≤ 0} > t )

=P(B (n)
e +W (n) + X̃ (n)(τ) > 0,∀τ≤ t )

≤P(B (n)
e +W (n) + X̃ (n)(t )+ (1−ρ(n))t/2 > (1−ρ(n))t/2)

≤P(B (n)
e > (1−ρ(n))t/6)+P(W (n) > (1−ρ(n))t/6)

+P
(
sup
τ≥0

[X̃ (n)(τ)+ (1−ρ(n))τ/2] > (1−ρ(n))t/6

)
.

In Section 2.6.1 we derived the relations X̃ (n)(τ) ≤st X (n)(τ) and W (n) d= supτ≥0 X (n)(τ),

which now imply

P(P (n)
e > t ) ≤P(B (n)

e > (1−ρ(n))t/6)+2P

(
sup
τ≥0

[X (n)(τ)+ (1−ρ(n))τ/2] > (1−ρ(n))t/6

)
.

(2.31)

Consequently,

E[(P (n)
e )κ−1] = (κ−1)

∫ ∞

0
tκ−2P(P (n)

e > t )dt

≤ (κ−1)
∫ ∞

0
tκ−2P(B (n)

e > (1−ρ(n))t/6)dt

+2(κ−1)
∫ ∞

0
tκ−2P

(
sup
τ≥0

[X (n)(τ)+ (1−ρ(n))τ/2] > (1−ρ(n))t/6

)
dt .

To deal with the first term, note that

(κ−1)
∫ ∞

0
tκ−2P(B (n)

e > (1−ρ(n))t/6)dt = (κ−1)
∫ ∞

0
tκ−2P(6B (n)

e /(1−ρ(n)) > t )dt

= E
[(

6B (n)
e

1−ρ(n)

)κ−1]
=O

(
(1−ρ(n))1−κ)E[(B (n)

e )κ−1]
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since E[(B (n))κ] <∞ implies E[(B (n)
e )κ−1] <∞ (cf. relation (2.21)). Consequently, the

first term is of order o
(
(1−ρ(n))2(1−κ)

)
.

For the second term, observe that

sup
τ≥0

[X (n)(τ)+ (1−ρ(n))τ/2] = sup
τ≥0

[
N (n)(τ)∑

i=1
B (n)

i −τ+ (1−ρ(n))τ/2

]

= sup
τ≥0

[
N (n)(τ)∑

i=1
B (n)

i − 1+ρ(n)

2
τ

]
= sup
η∈{0,1,2,...}

[
η∑

i=1

{
B (n)

i − 1+ρ(n)

2
A(n)

i

}]
=: W̃ (n),

where W̃ (n) is equal in distribution to the steady-state cumulative amount of work at an

arrival moment in a GI/GI/1 queue with inter-arrival times 1+ρ(n)

2 A(n)
i and job sizes B (n)

i .

Furthermore, the expected change in backlog between two consecutive arrivals in this

system is given by µ̃(n) := 1+ρ(n)

2 E[A(n)]−E[B (n)] = 1−ρ(n)

2 E[A(n)]. We therefore obtain

(κ−1)
∫ ∞

0
tκ−2P

(
sup
τ≥0

[X (n)(τ)+ (1−ρ(n))τ/2] > (1−ρ(n))t/6

)
dt

= (κ−1)
∫ ∞

0
tκ−2P

(
6

1−ρ(n)
W̃ (n) > t

)
dt = 6κ−1

(1−ρ(n))κ−1(µ̃(n))κ−1
E[(µ̃(n)W̃ (n))κ−1]

≤ C8

(1−ρ(n))2(κ−1)
E[(µ̃(n)W̃ (n))κ−1]

for some constant C8 > 0. Finally, E[(µ̃(n)W̃ (n))κ−1] is bounded due to Lemma 2.6.2,

which completes the proof of the proposition.

2.6.4 Arrivals in a busy period N (n)

This section contains the proof of Proposition 2.5.2. The proposition states that

E[(N (n))κ] =O
(
(1−ρ(n))1−2κ) (2.15, revisited)

for all κ ∈ [1,α], provided that supn∈{1,2,...}E[(B (n))α] <∞ for some α≥ 2. Moreover, we

claim that E[N (n)] =Θ(
(1−ρ(n))−1

)
.

The structure of the proof is identical to the proof of Proposition 2.5.1; in particular,

if κ = 1 then the result follows directly from Lemma 2.6.1. Therefore, we consider

E[(N (n))κ] for κ> 1 and exploit the relations E[(N (n)
e )κ−1] = E[(N (n))κ]/(κE[N (n)]) and

N (n)
e

d= inf{η ∈ {0,1,2, . . .} : S̃(n)
η ≤−V (n) |V (n) > 0}

d= inf{η ∈ {0,1,2, . . .} : B (n)
e +W (n) + S̃(n)

η ≤ 0}.
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As before, the relations S̃(n)
η ≤st S(n)

η and W (n) d= supη∈{0,1,...} S(n)
η are exploited in order to

obtain an equivalent of (2.31):

P(N (n)
e > m) ≤P(B (n)

e > (1−ρ(n))m/6)

+2P

(
sup

η∈{0,1,2,...}
[S(n)
η + (1−ρ(n))η/2] > (1−ρ(n))m/6

)
.

For any η ∈ {0,1,2, . . .}, let τ(n)
η := A(n)

1 + . . .+ A(n)
η . Then S(n)

η = X (n)(τ(n)
η ), so in particular

P(N (n)
e > m)≤P(B (n)

e > (1−ρ(n))m/6)+2P

(
sup
τ≥0

[X (n)(τ)+ (1−ρ(n))τ/2] > (1−ρ(n))m/6

)
.

The remainder of the proof is identical to that of Proposition 2.5.1.

2.7 Conclusion

In this chapter, we proved a result about the expected performance of (an extension of)

the Randomised Multilevel Feedback (RMLF) algorithm in a GI/GI/1 queue. Specific-

ally, the gap in expected sojourn time between the RMLF algorithm and the Shortest

Remaining Processing Time algorithm behaves like O(log(1/(1−ρ(n)))) and this bound

is tight for the M/M/1 queue. An appealing property of the RMLF algorithm is that its

implementation does not depend on the input distributions F (n)
A and F (n)

B ; however, if

F (n)
A and F (n)

B are known then there can be blind algorithms with a better performance

than RMLF (e.g. Foreground-Background if F (n)
B has decreasing failure rate). The result

was established by using techniques from both competitive analysis and applied prob-

ability. As the structure of the proof is quite general, it would be interesting to explore

other possibilities in the intersection of these areas.

2.A The eRMLF algorithm

The eRMLF algorithm is presented after the introduction of some notation. Define

the virtual queues Q̃z , z ∈Z, and a “new job” queue Q̃∗. Let the targets Ũz, j be given

by Ũz, j = 2z max{1,2 − β̃ j }, where the β̃ j ’s are independent random variables with

exponential cumulative distribution function P(β̃ j ≤ x) = 1−exp[−θx ln j ]. Similar to

the RMLF algorithm, θ is a symbolic constant fixed at θ = 4/3. All symbols J̃ j , r̃ j , B̃ j and

w̃ j (t) are defined analogously to the symbols without accent in the RMLF algorithm.

All release times r̃ j must be distinct (e.g. all inter-arrival times are strictly positive), and

jobs may have any size B̃ j ≥ 0. Note that the original RMLF algorithm requires the job

sizes to be uniformly bounded from below, but does not restrict the inter-arrival times

to be non-zero.

Every job J̃h is assigned an initial target Ũ∗,h upon arrival, after which it is immedi-

ately served in Q̃∗ by a dedicated server. It departs from Q̃∗ on three occasions:
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• The amount of service received equals the size B̃h of the job. In this case, J̃h is

completed and leaves the system.

• A new job enters the system. In this case, J̃h is moved to a queue Q̃z , z ∈Z, that it

naturally belongs to based on the amount of service w̃h(t ) it has obtained thus far;

that is, it is moved to the unique queue Q̃z∗h that satisfies Ũz∗h−1,h ≤ w̃h(t ) < Ũz∗h ,h .

• The amount of service received equals the initial target Ũ∗,h . In this case, similar

to the previous case, J̃h is moved to a queue Q̃z that it naturally belongs to.

The choice of the initial target Ũ∗,h depends on the system state:

• If the system is empty upon arrival, then the server is dedicated to J̃h regardless

of the queue that J̃h is in. In this case, the target can be chosen arbitrarily; we set

it to Ũ∗,h = Ũ0,h .

• If the system is not empty upon arrival, then there must be a lowest-index non-

empty queue Q̃z∗h (possibly after moving the job originally in Q̃∗ to another queue).

J̃h may now experience a dedicated server until the moment when it would

enter queue Q̃z∗h based on its obtained service and the (z∗
h −1)-th target Ũz∗h−1,h .

Therefore, J̃h should be moved no later then after Ũ∗,h = Ũz∗h−1,h units of obtained

service.

If Q̃∗ is empty, then eRMLF always works on the earliest released job in the non-empty

queue Q̃z with the lowest index z ∈Z.

The eRMLF algorithm is formally presented in Figures 2.2 and 2.3. Observe that

both RMLF and eRMLF preserve the ordering of the jobs; that is, if job J̃ j is released

prior to job J̃k then as long as both jobs are incomplete:

• job J̃ j will never be in a lower queue than job J̃k , and

• if both jobs are in the same queue, then job J̃ j has priority over job J̃k .

We are now ready to prove Theorem 2.3.2, stating that

E[T eRMLF(I)] ≤C1 log(m) ·T SRPT(I) (2.5, revisited)

for all instances I of size at most m for a universal constant C1. This constant is identical

to the constant C1 in Theorem 2.3.1.

Proof of Theorem 2.3.2. Consider any instance Ĩ for eRMLF of size at most m. Since

all jobs of size zero are immediately served in queue Q̃∗ upon arrival, we assume

without loss of generality that the instance does not contain any jobs of size zero. As a

consequence, the minimum job size B̃min = min j=1,...,|Ĩ | B̃ j is strictly positive. We now

transform the instance Ĩ for eRMLF to a corresponding instance I for RMLF.
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Algorithm eRMLF: At all times the collection of released, but uncompleted, jobs is parti-

tioned into queues, Q̃∗,Q̃z , z ∈Z. We say that Q̃i is lower than Q̃ j for i < j . Q̃∗ is the lowest

queue. For each job J̃ j ∈ Q̃i ,Ũi , j ∈ [2i ,2i+1] when it entered Q̃i . eRMLF maintains the

invariant that it is always running the earliest released job in the lowest non-empty queue.

When a job J̃h is released at time r̃h , eRMLF takes the following actions:

• If, just prior to r̃h , all queues were empty, then

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũ0,h = max{1,2− β̃h }.

• If, just prior to r̃h , there are unfinished jobs in the system but Q̃∗ is empty, then

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũz∗h−1,h = 2z∗h−1 max{1,2− β̃h }, where the queue

index z∗h = min{z ∈Z : Q̃z non-empty at time t } corresponds to the lowest non-

empty queue.

• If, just prior to r̃h , Q̃∗ is non-empty, then Q̃∗ = { J̃h−1} at that time. Now,

– The target Ũz∗h ,h−1 = 2z∗h max{1,2− β̃h−1} with z∗h := min{z ∈ Z : w̃h−1(r̃h ) ≤
Ũz,h−1} is the lowest target not yet reached by job J̃h−1.

– Job J̃h−1 is dequeued from Q̃∗.

– Job J̃h−1 is enqueued on Q̃z∗h
.

– Job J̃h is enqueued on Q̃∗.

– The initial target Ũ∗,h is set to Ũz∗h−1,h = 2z∗h−1 max{1,2− β̃h }.

• If, just prior to r̃h , it was the case that eRMLF was running a job J̃ j , then J̃ j is pre-

empted.

• eRMLF begins running J̃h .

If at some time t , a job J̃ j ∈ Q̃z−1 is being run when w̃ j (t) becomes equal to Ũz−1, j , then

eRMLF takes the following actions:

• Job J̃ j is dequeued from Q̃z−1.

• Job J̃ j is enqueued on Q̃z .

• The target Ũz, j is set to 2Ũz−1, j = 2z max{1,2− β̃ j }.

<algorithm continues on next page>

Figure 2.2: Formal statement of eRMLF algorithm, part I. Continued in

Figure 2.3.
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<algorithm continued from previous page>

If at some time t , a job J̃ j ∈ Q̃∗ is being run when w̃ j (t ) becomes equal to Ũ∗, j , then eRMLF

takes the following actions:

• Job J̃ j is dequeued from Q̃∗.

• Job J̃ j is enqueued on Q̃z∗h
, where z∗h = log2

(
w̃ j (t )/max{1,2− β̃ j }

)
+1.

• The target Ũz∗h , j is set to 2Ũ∗, j = 2z∗h max{1,2− β̃ j }.

Whenever a job is completed, it is removed from its queue.

Figure 2.3: Formal statement of eRMLF algorithm, part II. Continuation

from Figure 2.2.

Define the scaling parameter g := blog2(B̃min)c−1 ∈Z, satisfying 2−g B̃min ≥ 2. The

instance I consists of |Ĩ | jobs that are scaled versions of the original |Ĩ | jobs; specifically,

job J j has size B j := 2−g B̃ j and release date r j := 2−g r̃ j . Then, the smallest job is of size

at least 2 and the RMLF algorithm may be applied to the instance I .

Since the jobs are released in the same order as in the original instance, we note

that the random variables β j assigned by RMLF have the same distribution as the β̃ j

assigned by eRMLF. We therefore couple these random variables in a trivial way: β j ≡ β̃ j

for all j = 1, . . . , |Ĩ |. It immediately follows that the targets Ũz, j as assigned to Ĩ by eRMLF

and the targets Ui , j as assigned to I by RMLF satisfy Ũi , j = Ui , j for all i ∈ {0,1,2, . . .}.

Additionally, the initial RMLF target U0, j satisfies U0, j = Ũ0, j = 2g−g max{1,2− β̃ j } =
2−gŨg , j .

We will show that the above construction implies an equivalence between RMLF

and eRMLF. For all z ∈Z and t ≥ 0 define the sets

Q̃z (t ) := {
J̃ j : Ũz−1, j ≤ w̃ j (t ) < Ũz, j

}
(2.32)

that contain all jobs in the system at time t that are in queue Q̃z , or the most recently re-

leased job if it has received a similar amount of service. The equivalence is first observed

between the initial RMLF queue Q0(t ) and the augmented eRMLF queue Q̂(t ), defined

as

Q0(t ) := {
J j : w j (t ) <U0, j

}
(2.33)

and

Q̂(t ) :=
g⋃

z=−∞
Q̃z (t ) = {

J̃ j : w̃ j (t ) < Ũg , j
}

, (2.34)

respectively. One may observe that since Q0 is the highest priority queue, it experiences

a dedicated, work-conserving server that works at unit speed on jobs J j with sizes

U0, j . Therefore, the event that the RMLF server works on Q0 is equivalent to the event

{Q0(t ) > 0}.
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We assume without loss of generality that job J1 arrives at time r1 = 0. The arrival of

this job initiates a first busy period for Q0(t ) of N1 jobs, where N1 is such that the cumu-

lative targets U0, j of the first N1 jobs can be served before the (N1 +1)-th job is released.

It is defined as N1 = inf{k ≥ 1 :
∑k

j=1 U0, j − r j+1 ≤ 0}, where r|Ĩ |+1 is understood as plus

infinity. The duration of the busy period is given by P1 =∑N1
j=1 U0, j =∑N1

j=1 2−gŨg , j . The

server may then work on jobs in higher queues (perceived as idle time by Q0) until time

rN1+1, when a new busy period is initiated. For t ∈ [0,rN1+1) we have now obtained

Q0(t ) > 0 ⇔ t ≤ P1 ⇔ 2g t ≤
N1∑
j=1

Ũg , j . (2.35)

By a similar analysis of the augmented queue Q̂ we find that for all t ∈ [0,2g rN1+1) =
[0, r̃N1+1) the relation Q̂(t ) > 0 ⇔Q0(2−g t ) > 0 holds, and for all t ≥ 0 by a straightforward

generalisation of the above procedure.

After observing that both algorithms preserve the ordering of jobs, we may similarly

show that the eRMLF server processes job J̃ j in queue Q̃g+i at time t if and only if the

RMLF server processes job J j in queue Qi at time 2g t for all i ∈ {1,2, . . .} and t ≥ 0.

From the above results, one may deduce that the expected sojourn time E[T eRMLF(Ĩ)]

of instance Ĩ under eRMLF equals 2g times the expected sojourn time E[T RMLF(I)] of

instance I under RMLF. The competitive ratio of RMLF as stated in Theorem 2.3.1

hence guarantees that, for all instances Ĩ of size at most m,

E[T eRMLF(Ĩ)] = 2gE[T RMLF(I)] ≤C1 log(m)2g ·T SRPT(I). (2.36)

The competitive ratio of eRMLF is concluded by verifying

2g ·T SRPT(I) = T SRPT(Ĩ), (2.37)

which is a direct consequence of our scaling. In particular, the constant C1 in the upper

bound is the same for RMLF and eRMLF.



CHAPTER 3

BARRIERS TO ANALYSING THE PERFORMANCE OF

MULTI-SERVER POLICIES

In the previous chapter we derived a theorem that compares the expected sojourn

time under blind scheduling policies in GI/GI/1 queueing systems to the minimum

achievable expected sojourn time (in hindsight). Some of the bounds that facilitated

the proof were quite loose (e.g. bounding the sojourn time by the duration of the busy

period) or exploited a large body of existing literature (e.g. the competitive ratio). One

may thus wonder whether similar approaches may facilitate novel results for more

general queueing systems. The current chapter results from the pursuit of one such

approach in the setting of multi-server queueing systems.

More specifically, we observe that the approach in Chapter 2 crucially depends

on the regenerative structure of the GI/GI/1 queue and the fact that the regeneration

points are independent of the employed scheduling policy. When aiming to mirror that

approach, it is thus essential to find such an invariant regenerative structure in the multi-

server queueing system. The current chapter quests to find an intuitive regenerative

structure that allows for further analysis of the multi-server SRPT algorithm, but instead

concludes that SRPT may be both slower and faster than an expected sojourn time

minimising assignment.
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3.1 Introduction

Consider a job scheduling problem with a given number of identical servers. If there is

only one server, then all work-conserving schedules yield the same makespan; i.e. the

time at which all jobs have been fully processed is independent of the schedule, provided

that the schedule never idles the server if there are jobs available for processing1. In

Chapter 2 we exploited this property to analyse the expected time that a job spends in

a GI/GI/1 queueing system (i.e. sojourn time, flow time) if the server employs either

of two scheduling policies. In particular, we showed that the expected sojourn time

under the optimal blind scheduling policy is at most a factor C log(1/(1−ρ)) larger than

the expected sojourn time in the optimal off-line schedule, where ρ < 1 is the long-run

fraction of capacity needed to complete the jobs and C > 0 is a constant independent

of ρ. Some of the analyses in the previous chapter seem applicable to more general

queueing systems; however, as the analyses depend heavily on the above invariance

property it could prove beneficial to have access to some – perhaps weaker – version of

the invariance property in the multi-server setting.

To illustrate the desired properties, we discuss the role of the invariance property in

Chapter 2. There, the invariance property allowed us to exploit the competitive ratio of

an algorithm. The competitive ratio cP(n) of an algorithm P quantifies the performance

of the algorithm relative to the best performance that could have been achieved in

hindsight (OPT), and bounds the worst possible ratio over all problem instances with at

most n jobs. It is for this reason that results from competitive analysis are generally not

applicable in a queueing setting, where the number of jobs is infinite. We overcame this

problem by noting that the work in a GI/GI/1 queueing system is a regenerative process,

implying that the infinitely many jobs can be partitioned into finite sets of jobs that can

each be regarded as a separate scheduling sub-problem, oblivious to and independent

of all other jobs.

A regenerative process is characterised by an embedded renewal process, which

indicates at which times the regenerative process regenerates [8]. If one may choose

the embedded renewal process under scheduling policy P identical to the embedded

renewal process under the OPT, then the sub-problems coincide and, consequently, the

competitive ratio can relate the performance of P to that of OPT for every sub-problem.

These results may then be used to compare the relative performance in the infinite

jobs problem. Finding a common embedded renewal process, however, is generally

non-trivial.

Chapter 2 considered a typical embedded renewal process for an GI/GI/1 queue,

characterised by the times at which a job arrives in an empty system. In this case, every

1This is readily seen if one considers the total amount of available, unprocessed work in the system and

notes that this amount is reduced at fixed rate.
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period between two consecutive renewal points consists of a period during which the

server is busy and then idle. Since the server idles at the same time under all work-

conserving scheduling policies, the given embedded renewal process is independent of

the scheduling policy. Sequentially, we analysed busy periods with less than N0 jobs by

means of the competitive ratio, and presented a probabilistic analysis to show that busy

periods with more than N0 jobs are negligible.

Unfortunately, the described renewal process does generally not apply to multi-

server systems. A work-conserving policy P1 may idle servers at different times than

another work-conserving policy P2 due to different usage of its total capacity. This

implies that the busy periods are no longer independent of the scheduling policy.

One may hope, however, that there exists a relationship between embedded renewal

processes for particular policies P1 and P2, thereby constructing sets of jobs upon which

P1 and P2 can be compared.

A relationship that would potentially allow for further analysis, is that a well-chosen

embedded renewal process under P2 is a refinement of an embedded renewal processes

under P1. An example of this relation translates to a policy P2 that always idles if P1

idles, where the embedded renewal processes again correspond to moments at which

a job arrives in an empty system. In this case, P2 may experience several regenerative

cycles during a single regeneration cycle of P1, so that both policies may be compared

between two renewal times for P1. Note that this relation is equivalent to showing that

the makespan C P1
max under P1 is never larger than the makespan C P2

max under P2.

The presented relation holds true in the GI/GI/1 queue and is an intuitive candidate

for relating the embedded renewal processes in the multi-server queues. Recalling that

we ultimately wish to exploit competitive ratios, we limit ourselves to examining the

makespan under an appropriate policy P and OPT. As Leonardi and Raz [94] have shown

that the Shortest Remaining Processing Time (SRPT) algorithm has the best possible

competitive ratio2[102], it seems natural to examine the makespan of P = SRPT. SRPT

tends to work intensively on small jobs, but may consequently end up with some idle

machines and some machines working on stalled large jobs. It is therefore conceivable

that the makespan under SRPT may suffer from poor use of capacity, whereas the

makespan under OPT could potentially be consistently low due to its efficient use of

capacity.

Finding instances where SRPT has strictly larger makespan than OPT is not hard. In

order to show that SRPT never has strictly smaller makespan than OPT, one is required

to show that this is true for any version of OPT; i.e. if multiple assignments minimise the

expected sojourn time, then SRPT should not have smaller makespan than any of them.

This chapter, however, presents an instance where this is not true, implying that our

2Up to a multiplicative factor independent of n.
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candidate for the embedded renewal process can not facilitate the intended sojourn

time comparison between SRPT and OPT.

The rest of this section is organised as follows. A formal model description is presen-

ted in Section 3.2. Section 3.3 supports the above discussion by presenting two problem

instances that illustrate opposing relations between the makespan of SRPT and OPT.

Finally, Section 3.4 discusses the implications of this chapter and discusses alternative

approaches to the problem at hand.

3.2 Preliminaries

We consider a scheduling problem where the scheduler has access to m identical

servers. A problem instance is completely characterised by the number n of jobs in the

instance and the vectors r = (r1, . . . ,rn) and p = (p1, . . . , pn), where r j and p j represent

the release date and the processing requirements of job j , respectively. The scheduler

becomes aware of a job’s existence and processing requirements only after the job

has been released, and is allowed to pre-empt and migrate jobs without any penalty.

For any schedule π, the completion time of the j -th job is indicated by Cπ
j , whereas

the makespan is denoted by Cπ
max := max j=1,...,n Cπ

j . We refer to
∑n

j=1 Cπ
j as the total

completion time. The sojourn time of job j is defined as T π
j =Cπ

j − r j .

Let OPT denote a policy that always minimizes the total completion time, i.e. a

solution to Pm | r j ,pmtn |∑ j C j , and note that this policy also minimizes the expected

sojourn time. Finding such policy for m ≥ 2 is an NP-hard problem [47] and therefore

one commonly resorts to scheduling policies that are known to perform well in some

sense.

A common benchmark for the performance of a scheduling policy is its competitive

ratio. In the current setting, the competitive ratio cπ(m,n) of an algorithm π is defined

as the supremum of the ratio of the total completion time under π over that under OPT,

where the supremum is taken over all instances with m servers and at most n jobs. That

is, it is a function that satisfies
∑k

j=1 Cπ
j ≤ cπ(m,n)

∑k
j=1 C OPT

j for every problem instance

with k ≤ n jobs. Note that the competitive ratio only quantifies the worst possible

instance and may consequently be overly pessimistic for generic instances. We denote

cπ(m,n) = O( f (m,n)) if cπ(m,n) ≤C f (m,n) for some constant C > 0 independent of

m and n.

We consider the multi-server variant of the SRPT policy, which at any time serves

the at most m released, unfinished jobs that require the least remaining amount of

processing. SRPT is known to minimise the expected sojourn time if there is only a

single server [125]. Contrastingly, if there are at least two servers, then Leonardi and

Raz [94] state that SRPT has a competitive ratio of at most O(log(n/m)). They also show
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that the dependence on n and m can not be improved, which makes SRPT an appealing

policy.

A potential downside of the SRPT policy is that it migrates jobs, i.e. jobs may be

processed by multiple servers during their stay. The incurred overhead may be a major

disadvantage and as such one may be interested in policies that circumvent this. Awer-

buch et al. [12] introduce a nameless scheduling policy that refrains from migrating jobs

while still achieving a competitive ratio of at most O(log(n)). Two key administrative

elements of their policy are that there is a central pool containing all jobs that have

not yet received any processing, and that all jobs are categorised according to their

remaining processing time. The Smallest Group policy by Chekuri et al. [36] potentially

improves upon Awerbuch et al.’s policy by categorising jobs according to their initial

processing time. Their analysis is simpler and allows for fine-tuning of the categories,

resulting in a competitive ratio of O(log(n/m)). Finally, Avrahami and Azar’s Immediate

Dispatching policy [10] is O(log(n))-competitive while refraining from both migrating

jobs and administrating a central pool. The interested reader is referred to Pruhs et al.

[116] for a more detailed discussion on the topic.

As a cost for not migrating jobs, however, the choices made by any of the above

three policies depend on choices that it made earlier. This dependence on the past

is a potential obstacle if one wishes to regard the queueing process as a regenerative

processes, where regenerative cycles are required to be mutually independent. As such,

the SRPT policy seems to be best suited for further analysis.

The next section considers the makespan of both SRPT and OPT for some key in-

stances. We will abuse the notation introduced in this section by replacing the schedule

superscript π by the scheduling policy superscript SRPT or OPT. We note that internal

choices of a scheduling policy may affect the schedule that it produces, and may there-

with affect characteristics such as the completion time of a job. Conveniently, neither

the makespan nor the total completion time of the instances considered in the next

section are affected by the internal choices of SRPT and OPT.

3.3 Results

We argued before that SRPT and OPT have identical makespan for any instance if m = 1.

We will show that this contrasts with the m = 2 setting, where neither C OPT
max ≥C SRPT

max nor

C OPT
max ≤C SRPT

max is generally true.

The first case can be discarded with an elementary example. Consider n = 3 jobs

with release dates r = (0,0,0) and processing requirements p = (1,1,2). Then OPT may

yield the schedule shown in Figure 3.1(a), which has total completion time
∑n

j=1 C OPT
j =

5 and makespan C OPT
max = 2. On the other hand, SRPT yields the schedule in Figure 3.1(b),
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S1 1 2

S2 3

Time 0 2 4

(a) Schedule by OPT.

S1 1

S2 2 3

Time 0 2 4

(b) Schedule by SRPT.

Figure 3.1: Three-job problem instance for which C OPT
max <C SRPT

max . A job can

be processed by either of servers S1 and S2 at any time after its release.

which has total completion time3 ∑n
j=1 C SRPT

j = 5 and C SRPT
max = 3.

The above example shows that C OPT
max ≥ C SRPT

max is generally not true. The reason

for this is that SRPT postponed working on job 3 and consequentially worked at half

capacity from t = 1 onward. In fact, there are numerous instances where SRPT finds

itself working on postponed jobs that occupy only a fraction of its servers. OPT, on the

other hand, is designed to minimise the total completion time. This makes it imaginable

that OPT never has larger makespan than SRPT. The following example, however, shows

that this is not true.

Consider n = 8 jobs with release dates r = (0,0,0,0,4,4,6,6) and processing require-

ments p = (2,2,4,5,2,3,1,2). Now, a schedule that minimizes the total completion time

is shown in Figure 3.2(a) and has total completion time
∑n

j=1 C OPT
j = 51 and makespan

C OPT
max = 12. One may verify that any schedule that achieves this total completion time

also has the same makespan. SRPT, on the other hand, yields a schedule equivalent to

the one in Figure 3.2(b) and has total completion time
∑n

j=1 C SRPT
j = 52 and makespan

C SRPT
max = 11. As such, the example shows that the makespan under SRPT may be strictly

smaller than the makespan of a schedule that minimizes the total completion time.

This confirms our claim that neither C OPT
max ≥C SRPT

max nor C OPT
max ≤C SRPT

max is generally true if

there are at least two servers.

3.4 Discussion

To facilitate extension of the results in Chapter 2 to multi-server queueing systems, we

investigated the existence of a specific common embedded renewal process underlying

the workload process of a multi-server queueing system. Ideally, we would show that

the makespan induced by SRPT is never smaller than the makespan induced by any

scheduling policy OPT that minimizes the expected sojourn time, or vice versa. Our

result is negative, in the sense that we presented problem instances for which opposing

3The identical total completion times in this example are not surprising; indeed, Conway et al. [40, p.77]

show that OPT and SRPT always yield the same total completion time in case of uniform release dates.
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S1 1 2 5 7 4

S2 3 6 8

Time 0 2 4 6 8 10 12

(a) Schedule by OPT.

S1 1 4a 5 7 4b

S2 2 3 8 6

Time 0 2 4 6 8 10 12

(b) Schedule by SRPT.

Figure 3.2: Eight-job problem instance for which C OPT
max >C SRPT

max . SRPT pre-

empts the processing of job 4 by server S1 at time 4, and resumes its service

on the same server at time 7 without any penalty.

relations hold. This implies that our candidate for the embedded renewal process can

not facilitate the intended sojourn time comparison between SRPT and OPT.

Alternatively, one may consider one of the following methods to analyse the beha-

viour of scheduling policies in multi-server queueing systems:

1. Find a more suitable regenerative process representation of the amount of work

in a multi-server queueing system. There might very well be more suitable ways

that transform the queueing systems into regenerative processes and that lend

themselves for further analysis. However, it may be far from trivial how the

corresponding regenerative cycles can be analysed; for example, to deduce the

stochastic properties of the number of jobs in every cycle.

2. Consider a policy different from SRPT. We listed several other policies that may

have a more favourable relationship with OPT. However, these policies also

exhibit the property that their internal choices depend on past choices. This

property may complicate the analysis, but does not necessarily rule out the

regenerative process approach pursued in the previous chapter.

3. Consider a policy different from OPT. The competitive ratio guarantees that a

scheduling policy P1 performs at most a factor cP1 (m,n) worse than the off-line

optimal schedule. In particular, it performs at most that factor worse than any

scheduling policy P2. If one is able to find a scheduling policy P2 that idles at the

same time as P1, then one could possibly derive statements of the performance

of P1 by instead analysing the performance of P2.
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4. Modify the OPT policy in a negligible manner. The examples in this chapter sug-

gested that it is far more likely for OPT to have smaller makespan than SRPT than

the other way around. As such, consider the (unknown) policy P2 that minimizes

the sum of completion times (in hindsight, similar to OPT) under the constraint

that the makespan under P2 is at most the makespan that SRPT would incur. Then

any embedded renewal process that underlies the regenerative workload process

under SRPT is also a valid choice for the embedded renewal process that underlies

the workload process under P2. The challenge in this approach is to show that the

contribution of instances where P2 is different from OPT to the overall expected

sojourn time is asymptotically negligible.

In summary, it seems non-trivial to extend the intuitive approach of Chapter 2

to multi-server queueing systems; however, there are many alternative, unexplored

approaches that may prove to be more successful.



CHAPTER 4

HEAVY-TRAFFIC ANALYSIS OF SOJOURN TIME

UNDER THE FOREGROUND-BACKGROUND

POLICY

This chapter considers the steady-state distribution of the sojourn time of a job entering

an M/GI/1 queue with the foreground-background scheduling policy in heavy traffic.

The growth rate of its mean, as well as the limiting distribution, are derived under broad

conditions. Assumptions commonly used in extreme value theory play a key role in

both the analysis and the results.

Based on Kamphorst and Zwart [S2].
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4.1 Introduction

One of the main insights from queueing theory is that the M/GI/1 queue length and

sojourn time grow at the order of 1/(1−ρ) as the traffic intensity of the system ρ ap-

proaches 100 percent utilization. This insight dates back to Kingman [83] and Prokhorov

[114] and, appropriately reformulated, remains valid for queueing networks and mul-

tiple server queues [33, 60, 136]. However, the growth factor can be very different when

the scheduling policy is no longer First In First Out (FIFO). This observation specifically

applies to the Foreground-Background (FB) algorithm, which we investigate in this

chapter.

Bansal [14] was the first to point out that the expected sojourn time (a.k.a. response

time, flow time) of a user is of o(1/(1−ρ)) in the M/M/1 queue when the scheduling

policy is Shortest Remaining Processing Time (SRPT). In particular, he showed that the

growth factor of the expected sojourn time under SRPT is log(1/(1−ρ)) smaller than

the growth factor under FIFO. However, since SRPT requires information on service

times in advance, the question was raised if the same growth rate in heavy traffic can be

reached with a blind scheduling policy.

Bansal et al. [S1] answered this question negatively for the general GI/GI/1 queueing

model. Specifically, the authors showed that for every blind scheduling policy there

exists a service-time distribution under which the growth rate in heavy traffic of the

expected sojourn time is at least a factor log(1/(1−ρ)) larger than the growth rate of

SRPT. Bansal et al. also constructed a scheduling policy that achieves this growth rate,

but this policy is rather complicated as it involves randomization.

One might wonder whether the SRPT growth rate can be achieved by a deterministic

blind algorithm for specific service-time distributions. To the best of the author’s

knowledge, no comprehensive answer to this question has been issued for the GI/GI/1

queue. However, researchers have derived the growth rate of the expected sojourn

time in specific queueing models, thereby giving more insight into their behaviour

and allowing for a comparison with SRPT. On this account, there have been several

contributions: for certain M/GI/1 models, there are expected sojourn-time results for

the FB [15, 105, 137], Pre-emptive Shortest Job First [15], and SRPT [14, 95] scheduling

policies. All of these results utilize an explicit expression, focusing on a narrow class of

job size distributions. Furthermore, these results only concern the mean sojourn time,

and it is of interest to obtain information about the distribution of the sojourn time as

well.

Motivated by these developments, we consider the sojourn-time distribution in

the M/GI/1 queue with the FB scheduling policy. Like in previous works, we exploit

explicit expression for this distribution, but will do so for a comprehensive class of

job-size distributions, aiming to provide as much insight as possible in how the job-size
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distribution affects the behavior in heavy traffic. The FB policy operates as follows:

priority is given to the customer with the least-attained service, and when multiple

customers satisfy this property, they are served at an equal rate. The only heavy-traffic

results for FB we are aware of are of “big-O” type and are known in case of deterministic,

exponential, Pareto and specific finite-support service times [15, 105]. For deterministic

service times, it is straightforward to see that all customers under FB depart in one

batch at the end of every busy period, and as a result the growth rate in heavy traffic in

this case, O((1−ρ)−2), is very poor. The behaviour of FB is much better for service-time

distributions with a decreasing failure rate, as FB then optimizes the expected sojourn

time among all blind policies [121]. For more background on the FB policy we refer to

the survey by Nuyens and Wierman [105].

The main results of this chapter are of three types:

1. We characterise the exact growth rate (up to a constant independent of ρ) of

the sojourn time in heavy traffic under very general assumptions on the service-

time distribution. As in Bansal and Gamarnik [15] and Lin et al. [95], we find a

dichotomy: when the service-time distribution has finite variance, the expected

sojourn time E[T ρ

FB] =Θ
(

F (G←(ρ))
(1−ρ)2

)
. Here F (x) = 1−F (x) is the tail of the service-

time distribution and G← is the right-inverse of the distribution function of a

residual service time; a detailed overview of notation can be found in Section 4.2.

In the infinite variance case, we find that E[T ρ

FB] = Θ
(
log 1

1−ρ
)
. This result is

formally stated in Theorem 4.3.1. The precise conditions for these results to hold

involve Matuszewska indices, a concept that will be reviewed in Section 4.2. The

behaviour of F (G←(ρ)) is quite rich, as will be illustrated by several examples.

2. Contrary to the results in Bansal and Gamarnik [15] and Lin et al. [95], we have

been able to obtain a more precise estimate of the growth rate of E[T ρ

FB]. It turns

out that extreme value theory plays an essential role in our analysis, and the

limiting constant factor in front of the growth rate F (G←(ρ))
(1−ρ)2 crucially depends

on in which domain of attraction the service-time distribution is. This result is

summarised in Theorem 4.3.2 and appended in Theorem 4.3.4. When the service-

time distribution tail is regularly varying, it is shown that the growth rate of the

sojourn time under FB is equal to that of SRPT up to a multiplicative constant. A

comparison of the sojourn times under FB and SRPT is given in Corollary 4.3.5.

3. When analysing the distribution, we first show that T ρ

FB/E[T ρ

FB] converges to zero

in probability as ρ ↑ 1. To still get a heavy-traffic approximation for P(T ρ

FB > y), we

state a sample path representation for the sojourn-time distribution for a job that

requires a known amount of service. We then use fluctuation theory for spectrally

negative Lévy processes to rewrite this representation into an expression that is



60 Chapter 4. Sojourn time under the FB policy

amenable to analysis; in particular, we obtain a representation for the Laplace

transform of the residual sojourn-time distribution from which a heavy-traffic

limit theorem follows. Finally, this Laplace transform provides an estimate for the

tail distribution of TFB.

More specifically, our results show that P((1−ρ)2TFB > y)/F (G←(ρ)) converges

to a non-trivial function g∗(y), for which we give an integral expression in terms

of error functions. Along the way, we derive a heavy-traffic limit for the total

workload in an M/GI/1 queue with truncated service times that also seems to be

of independent interest (see Proposition 4.7.1). As in the analysis for the expected

sojourn time, ideas from extreme value theory play an important role in the

analysis, and the limit function g∗ depends on which domain of attraction the

service-time distribution falls into. A precise description of this result can be

found in Theorem 4.3.7.

The function F (G←(ρ)) that shows up in many of our results corresponds to the

probability that a customer requires at least G←(ρ) units of service. Our analyses

indicate that customers who require at least G←(ρ) units of service determine the

generic sojourn time characteristics, whereas the contribution of smaller customers is

negligible. Although not mentioned explicitly, a similar phenomenon (with a different

function G) can be observed in the analysis of the mean sojourn time under SRPT by

Lin et al. [95].

Even though our analysis relies on an explicit representation of the sojourn-time

distribution, we hope that the insights given by our results (apart from how to separate

small and large jobs, also the determination of the right scaling, which we think will

not be affected by the inter-arrival time distribution), will help to design proofs that do

not require explicit expressions. Hopefully, such proofs can also deal with non-Poisson

arrival streams and process limit theorems. An example of such a proof for the queue-

length process for SRPT with light-tailed job sizes can be found in Puha et al. [117].

A similar comment applies to the extension of our results from FB to a broader class

of scheduling disciplines, like the class of SMART scheduling policies considered in

Wierman et al. [137] and Nuyens et al. [106]. Developing a more probabilistic proof of

our result potentially would also clarify the precise role of extreme value theory, which

we feel is not entirely clear from the analysis in this chapter. Finally, we want to point

out that the methodology in this chapter does seem to be applicable to the class of

size-based scheduling disciplines which is introduced and analyzed in Scully et al. [127].

The rest of the chapter is organised as follows. Section 4.2 formally introduces the

model that is considered. Section 4.3 presents all our main results on the asymptotic

behaviour of the expectation and the tail of the sojourn-time distribution under FB.

The results concerning the expectation are then proven in Sections 4.4 and 4.5, whereas
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the results on the tail distribution are supported in Sections 4.6 and 4.7.

4.2 Preliminaries

Consider a sequence of M/GI/1 queues, indexed by n, where the i -th job requires

Bi units of service for all n. For convenience, we say that a job that requires x units

of service is a job of size x. All Bi are independent and identically distributed (i.i.d.)

random variables with cumulative distribution function (c.d.f.) F (x) = P(Bi ≤ x) and

finite mean E[B1]. We assume that F (0) = 0, and denote xR := sup{x ≥ 0 : F (x) < 1} ≤∞.

Jobs in the n-th queue arrive with rate λ(n), where λ(n) < 1/E[B1] to ensure that the n-th

system experiences traffic intensity ρ(n) :=λ(n)E[B1] < 1. For notational convenience,

we let B denote a random variable with c.d.f. F .

Let F (x) := 1−F (x) and F←(y) := inf{x ≥ 0 : F (x) ≥ y} denote the complementary

c.d.f. (c.c.d.f.) and the right-inverse of F respectively. The random variable B∗ is defined

by its c.d.f. G(x) := P(B∗ ≤ x) = ∫ x
0 F (t)/E[B ]dt and has k-th moment E[(B∗)k−1] =

E[B k ]/(kE[B ]). Since G←(y) is continuous and strictly increasing, its (right-)inverse

G←(y) satisfies G←(G(x)) = x. Also, we recognise h∗(x) := F (x)
E[B ]G(x)

as the failure rate of

B∗. One may deduce that h∗(x) equals the reciprocal of the expected residual time;

h∗(x) = 1/E[B −x | B > x].

Foreground-Background scheduling policy

Jobs are served according to the Foreground-Background (FB) policy, meaning that

at any moment in time, the server equally shares its capacity over all available jobs

that have received the least amount of service thus far. First, we are interested in

characteristics of the sojourn time T (n)
FB , defined as the duration of time that a generic

job spends in the system. In order to analyse this, we consider an expression for the

expected sojourn time of a generic job of size x, E[T (n)
FB (x)], for which Schrage [124,

relation (18)] states that

E[T (n)
FB (x)] = x

1−ρ(n)
x

+ E[W (n)(x)]

1−ρ(n)
x

= x

1−ρ(n)
x

+ λ(n)m2(x)

2(1−ρ(n)
x )2

, (4.1)

where ρ(n)
x := λ(n)E[B ∧ x] = ρP(B∗ ≤ x) and m2(x) := E[(B ∧ x)2] = 2

∫ x
0 tF (t)dt are

functions of the first and second moments of B ∧ x := min{B , x}, and W (n)(x) is the

steady-state waiting time in a M/GI/1/FIFO queue with arrival rate λ(n) and jobs of size

Bi ∧x. As a consequence of (4.1), the expected sojourn time E[T (n)
FB ] of a generic job is

given by

E[T (n)
FB ] =

∫ ∞

0

x

1−ρ(n)
x

dF (x)+
∫ ∞

0

λ(n)m2(x)

2(1−ρ(n)
x )2

dF (x). (4.2)
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The intuition behind relation (4.1) is that a job J1 of size x experiences a system

where all job sizes are truncated. Indeed, if another job J2 of size x + y, y > 0, has

received at least x service, then FB will never dedicate its resources to job J2 while job

J1 is incomplete. The expected sojourn time of job J1 can now be salvaged from its own

service requirement x, the truncated work already in the system upon arrival W (n)(x),

and the rate 1−ρ(n)
x at which it is expected to be served.

Second, we focus attention on the tail behaviour of T (n)
FB . Write X

d= Y if the relation

P(X ≤ x) = P(Y ≤ x) is satisfied for all x ∈ R and let Lx (y) denote the time required

by the server to empty the system if all job sizes are truncated to Bi ∧ x and the cur-

rent amount of work is y . The analysis of the tail behaviour is then facilitated by

relation (4.28) in Kleinrock [86], stating

T (n)
FB (x)

d=Lx (W (n)
x +x). (4.3)

For both the expectation and tail behaviour of T (n)
FB , we take specific interest in

systems that experience heavy traffic, that is, systems where ρ(n) ↑ 1 as n →∞. In the

current setting, this is equivalent to sequences λ(n) that converge to 1/E[B ]. Most results

in this chapter make no assumptions on sequence λ(n), in which case we drop the

superscript n for notational convenience and just state ρ ↑ 1.

The remainder of this section introduces some notation related to Matuszewska

indices and extreme value theory.

Matuszewska indices

We now introduce the notion of the upper and lower Matuszewska index.

Definition 4.2.1. Suppose that f (·) is positive.

• The upper Matuszewska index α( f ) is the infimum of those α for which there

exists a constant C =C (α) such that for each µ∗ > 1,

lim
x→∞ f (µx)/ f (x) ≤Cµα (4.4)

uniformly in µ ∈ [1,µ∗] as x →∞.

• The lower Matuszewska index β( f ) is the supremum of those β for which there

exists a constant D = D(β) > 0 such that for each µ∗ > 1,

lim
x→∞ f (µx)/ f (x) ≥ Dµβ (4.5)

uniformly in µ ∈ [1,µ∗] as x →∞.
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One may note from the above definitions that β( f ) =−α(1/ f ) holds for any positive

f . Intuitively, a function f with upper and lower Matuszewska indices α( f ) and β( f )

is bounded between functions Dxβ( f ) and C xα( f ) for appropriate constants C ,D > 0.

More accurately, however, C and D could be unbounded or vanishing functions of x. Of

special interest is the class of functions that satisfy β( f ) =α( f ).

Definition 4.2.2. A measurable function f :R≥0 →R≥0 is regularly varying (at infinity)

with index α ∈R (denoted by f ∈ RVα) if for all µ> 0

lim
x→∞ f (µx)/ f (x) =µα. (4.6)

If (4.6) holds with α= 0, then f is called slowly varying. If (4.6) holds with α=−∞, then

f is called rapidly varying.

The following result elegantly characterises functions of regular variation.

Theorem 4.2.3 (Bingham et al. [24], Theorem 1.4.1). A measurable function f (x) is

regularly varying with index α ∈R if and only if there exists a slowly varying function l (x)

such that f (x) = l (x)xα.

Extreme value theory

The next paragraphs introduce some notions and results from extreme value theory.

The field of extreme value theory generally aims to assess the probability of an extreme

event; however, for our purposes we restrict attention to the limiting distribution of

max{X1, . . . , Xm}. A key result on this functional is the Fisher-Tippett theorem:

Theorem 4.2.4 (Resnick [119], Proposition 0.3). Let (Xm)m∈N be a sequence of i.i.d.

random variables and define Mm := max{X1, . . . , Xm}. If there exist norming sequences

cm > 0, dm ∈R and some non-degenerate H such that

P(c−1
m (Mm −dm) ≤ x) = F m(cm x +dm) → H(x) (4.7)

weakly as m →∞, then H belongs to the type of one of the following three c.d.f.’s:

Fréchet: Φα(x) =
{

0,

exp{−x−α},

x ≤ 0,

x > 0,
α> 0,

Weibull: Ψα(x) =
{

exp{−(−x)α},

1,

x ≤ 0,

x > 0,
α> 0, and

Gumbel: Λ(x) = exp{−e−x }, x ∈R.

The three distributions above are referred to as the extreme value distributions.
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A c.d.f. F is said to be in the maximum domain of attraction of H if there exist

norming sequences cm and dm such that (4.7) holds. In this case, we write F ∈ MDA(H ).

A large body of literature has identified conditions on F such that F ∈ MDA(H) and

excellent collections of such and related results can be found in Embrechts et al. [50]

and Resnick [119].

The following theorems show a particularly elegant characterisation of the classes

MDA(Φα) and MDA(Ψα) as classes of regularly-varying distributions.

Theorem 4.2.5 (Embrechts et al. [50], Theorem 3.3.7). The c.d.f. F belongs to the max-

imum domain of attraction of Φα,α> 0 if and only if xR =∞ and F is regularly vary-

ing with index −α. If F ∈ MDA(Φα), then the norming constants can be chosen as

cn = F←(1−n−1) and dn = 0.

Theorem 4.2.6 (Embrechts et al. [50], Theorem 3.3.12). The c.d.f. F belongs to the

maximum domain of attraction of Ψα,α> 0 if and only if xR <∞ and F (xR − (·)−1) is

regularly varying with index −α. If F ∈ MDA(Ψα), then the norming constants can be

chosen as cn = xR −F←(1−n−1) and dn = xR .

The class MDA(Λ) is not quite as closely related to regularly-varying distributions,

and can be characterised as follows:

Theorem 4.2.7 (Embrechts et al. [50], Theorem 3.3.26). The c.d.f. F with right endpoint

xR ≤∞ belongs to the maximum domain of attraction of Λ if and only if there exists

some z < xR such that F has representation

F (x) = c(x)exp

{
−

∫ x

z

g (t )

f (t )
dt

}
, z < x < xR , (4.8)

where c and g are measurable functions satisfying c(x) → c > 0, g (x) → 1 as x ↑ xR , and

f (·) is a positive, absolutely continuous function (with respect to the Lebesgue measure)

with density f ′(x) having limx↑xR f ′(x) = 0.

If F ∈ MDA(Λ), then the norming constants can be chosen as cm = f (dm) and dm =
F←(1−m−1). A possible choice for the function f (·) is f (·) = 1/h∗(·).

The function f (·) in the above definition is unique up to asymptotic equivalence.

We refer to f as the auxiliary function of F . Also, we note the following property of f (·):

Lemma 4.2.8 (Resnick [119], Lemma 1.2). Suppose that f (·) is an absolutely continuous

auxiliary function with f ′(x) → 0 as x ↑ xR .

(i) If xR =∞, then limx→∞
f (x)

x = 0.

(ii) If xR <∞, then limx↑xR

f (x)
xR−x = 0.
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Although MDA(Λ) does not coincide with a class of regularly-varying distributions,

the following lemma shows that it is related to the class of rapidly varying distributions.

Corollary 4.2.9 (Embrechts et al. [50], Corollary 3.3.32). Assume that F ∈ MDA(Λ). If

xR =∞, then F ∈ RV−∞. If xR <∞, then F (xR − (·)−1) ∈ RV−∞.

This section’s final lemma presents a useful property for c.d.f.’s in MDA(Λ):

Lemma 4.2.10. Suppose that the c.d.f. F is in MDA(Λ) and let G(x) = ∫ x
0 F (t)/E[B ]dt .

Then G ∈ MDA(Λ) and any auxiliary function for F is also an auxiliary function for G.

Proof. According to Theorem 3.3.27 in Embrechts et al. [50], G ∈ MDA(Λ) with auxiliary

function f (·) if and only if limx↑xR G(x + t f (x))/G(x) = e−t for all t ∈R. It is straightfor-

ward to check that the above relation holds for any auxiliary function f (·) of F by using

l’Hôpital’s rule and limx↑xR f ′(x) = 0.

Asymptotic relations

Let f (·) and g (·) denote two positive functions and X and Y two random variables. We

write f ∼ g if limz↑z∗ f (z)/g (z) = 1, where the appropriate limit z ↑ z∗ should be clear

from the context; it usually equals x ↑ xR or ρ ↑ 1. Similarly, we adopt the conventions

f = o(g ) if limsupz↑z∗ f (z)/g (z) = 0, f =O(g ) if limsupz↑z∗ f (z)/g (z) <∞ and f =Θ(g )

if 0 < liminfz↑z∗ f (z)/g (z) ≤ limsupz↑z∗ f (z)/g (z) <∞. We write X ≤st Y if the relation

P (X > x) ≤P(Y > x) is satisfied for all x ∈R.

Finally, the complementary error function is defined as Erfc(x) := 2π−1/2
∫ ∞

x e−u2
du.

4.3 Main results and discussion

This section presents and discusses our main results. Theorems 4.3.1 and 4.3.2 con-

sider the asymptotic behaviour of the expected sojourn time E[TFB] for various classes

of service-time distributions. Theorem 4.3.4 connects the asymptotic behaviour of

F (G←(ρ)) to the literature on extreme value theory. As a consequence, the expressions

obtained in Theorem 4.3.2 can be specified for many distributions in MDA(Λ). The-

orem 4.3.6 shifts focus to the distribution of TFB and states that the scaled sojourn time

TFB/E[TFB] tends to zero in probability. Instead, Theorem 4.3.7 shows that a certain

fraction of jobs experiences a sojourn time of order (1−ρ)−2. This result is achieved

through the Laplace transform of the remaining sojourn time T ∗
FB, for which we give an

integral representation. The proofs of the theorems are postponed to later sections.

Recall that F (G←(ρ)) = E[B ](1−ρ)h∗(G←(ρ)). Our first theorem presents the growth

rate of E[TFB].
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Theorem 4.3.1. Assume that either xR =∞ and −∞<β(F ) ≤α(F ) <−2, or that xR <∞
and −∞<β(F (xR − (·)−1)) ≤α(F (xR − (·)−1)) < 0. Then the relations

E[TFB] =Θ
(

F (G←(ρ))

(1−ρ)2

)
=Θ

(
h∗(G←(ρ))

1−ρ
)

(4.9)

hold as ρ ↑ 1, where limρ↑1 h∗(G←(ρ)) = 0 if xR =∞ and limρ↑1 h∗(G←(ρ)) =∞ if xR <∞.

Alternatively, assume xR =∞ and β(F (x)) >−2. Then the relation

E[TFB] =Θ
(
log

1

1−ρ
)

(4.10)

holds as ρ ↑ 1.

Theorem 4.3.1 shows that the behaviour of E[TFB] is fundamentally different for

α(F ) <−2 andβ(F (x)) >−2. In the first case, the variance of B1 is bounded and therefore

the expected remaining busy period duration is of order Θ((1−ρ)−2). Our analysis

roughly shows that all jobs of size G←(ρ) and larger will remain in the system until

the end of the busy period, and hence experience a sojourn time of orderΘ((1−ρ)−2).

The threshold G←(ρ) itself originates as the solution of 1−ρx = 1−ρ2, which indicates

that – as the traffic intensity increases to unity – jobs of size at least G←(ρ) experience

a truncated system that is almost as heavily congested as the non-truncated system.

The theorem indicates that these jobs determine the asymptotic growth of the overall

expected sojourn time.

The above argumentation does not apply in case β(F (x)) > −2, since then the

expected remaining busy period duration is infinite. It turns out that in this case the

expected sojourn time of a large job of size x is of the same order as the time that the

job is in service, which has expectation x/(1−ρx ). The result follows after integrating

over the service-time distribution.

Additionally, it can be shown that the statements in Theorem 4.3.1 also hold if

F ∈ MDA(Λ), which is a special case of either α(F ) = β(F ) = −∞ or α(F (xR − (·)−1)) =
β(F (xR − (·)−1) =−∞ (cf. Corollary 4.2.9). In this case, and equivalently in case F (·) or

F (xR − (·)−1) is regularly varying, one can show that (1−ρ)2E[TFB]/F (G←(ρ)) converges.

Theorem 4.3.2 specifies Theorem 4.3.1 for the aforementioned cases, as well as for

distributions with an atom in their endpoint.

Theorem 4.3.2. The following relations hold as ρ ↑ 1:

(i) If F ∈ MDA(Φα),α ∈ (1,2), then E[TFB] ∼ α
2−αE[B ] log 1

1−ρ .

(ii) If F ∈ MDA(H), then E[TFB] ∼ r (H)E[B∗]F (G←(ρ))
(1−ρ)2 = r (H)E[B 2]h∗(G←(ρ))

2(1−ρ) where

r (H) =


π/(α−1)

sin(π/(α−1))
α
α−1 if H =Φα,α> 2,

1 if H =Λ, and
π/(α+1)

sin(π/(α+1))
α
α+1 if H =Ψα,α> 0.

(4.11)
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Additionally, if H =Φα,α> 2, then limρ↑1 h∗(G←(ρ)) = 0, whereas if either H =Λ
and xR <∞ or if H =Ψα,α> 0, then limρ↑1 h∗(G←(ρ)) =∞.

(iii) If F has an atom in xR <∞, say limδ↓0 F (xR −δ) = p > 0, then E[TFB] ∼ pE[B∗]
(1−ρ)2 .

The expressions in Theorems 4.3.1 and 4.3.2 give insight into the asymptotic beha-

viour of E[TFB]. The following corollary shows that the asymptotic expressions above

may be specified further if the service times are Pareto distributed. This extends the

result by Bansal and Gamarnik [15], who derived the growth factor of E[TFB] but not the

exact asymptotics.

Corollary 4.3.3. Assume F (x) = (x/xL)−α, x ≥ xL . Then the relations

E[TFB] ∼


α
2−αE[B ] log 1

1−ρ if α ∈ (1,2),

π/(α−1)
2sin(π/(α−1))

E[B 2]α
α
α−1

xL (1−ρ)
α−2
α−1

if α ∈ (2,∞),
(4.12)

hold as ρ ↑ 1.

Proof. One may derive that G(x) = 1
α

(
x

xL

)1−α
for x ≥ xL . Consequentially, one deduces

that h∗(x) = α−1
x for x ≥ xL and G←(ρ) = xL(α(1−ρ))

−1
α−1 for ρ ≥ 1−1/α. The result then

follows from Theorem 4.3.2.

Corollary 4.3.3 exemplifies that the asymptotic growth of E[TFB] can be specified

in some cases. However, it is often non-trivial to analyse the behaviour of F (G←(ρ)) or

equivalently h∗(G←(ρ)). Theorem 4.3.4 aims to overcome this problem if F ∈ MDA(Λ)

by presenting a relation between h∗(G←(ρ)) and norming constants cn of F , which can

often be found in the large body of literature on extreme value theory.

Theorem 4.3.4. Assume F ∈ MDA(Λ) and xR = ∞, and let cm and dm be such that

F m(cm x +dm) → Λ(x) weakly as m → ∞. Define λ(n) = (1−n−1)/E[B ] so that ρ(n) =
1−n−1.

(i) If there existsα> 0 and a slowly varying function l (x) such that − logF (x) ∼ l (x)xα

as x →∞, then h∗(x) ∼αl (x)xα−1 if and only if

inf
λ↓1

liminf
x→∞ inf

t∈[1,λ]
{logh∗(t x)− logh∗(x)} ≥ 0. (4.13)

If (4.13) holds, then E[T (n)
FB ] ∼ E[B 2]

2(1−ρ(n))cn
as n →∞.

(ii) If there exists a function l (x) : [0,∞) →R, liminfx→∞ l (x) > 1 such that for all λ> 0

lim
x→∞

− logF (λx)+ logF (x)

l (x)
= log(λ) (4.14)

and L = limx→∞
log(x)

l (x) exists in [0,∞], then limn→∞
2(1−ρ(n))cn

E[B 2]
E[T (n)

FB ] = e−L .
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The same results hold if xR <∞, provided that the F (·) and h∗(·) in (i) and (ii) are replaced

by F (xR − (·)−1) and (·)−2h∗(xR − (·)−1), respectively.

Remark 1. Condition (4.13) in part (i) of Theorem 4.3.4 is a Tauberian condition, and

originates from Theorem 1.7.5 in Bingham et al. [24]. A Tauberian theorem makes

assumptions on a transformed function (here h∗), and uses these assumptions to

deduce the asymptotic behaviour of that transform. The interested reader is referred to

Section 1.7 in Bingham et al. [24] or Section XIII.5 in Feller [54].

Theorem 4.2.7 implies that cn∼1/h∗(G←(1−n−1)) for many distributions in MDA(Λ).

As cn may be chosen as 1/h∗(F←(1−n−1)), Theorem 4.3.4 implicitly states conditions un-

der which limn→∞ h∗(G←(1−n−1))/h∗(F←(1−n−1))= limy↑1(1−y)−2F (G←(y))G(F←(y))

exists, and exploits this limit to write E[T (n)
FB ] as function of cn rather than of the generally

unknown h∗(G←(1−n−1)). To illustrate the implications of Theorem 4.3.4, the exact

asymptotic behaviour of several well-known distributions is presented in Table 4.1.

We take a brief moment to compare the asymptotic expected sojourn time under FB

to that under SRPT in M/GI/1 models. Clearly, FB can perform no better than SRPT due

to SRPT’s optimality [125]. The ratio of their respective expected sojourn time is shown

to be unbounded if the service times are exponentially distributed or if the service-time

distribution has finite support [14, 86, 95, 105], but bounded if the service times are

Pareto distributed [15, 95]. To the best of the authors’ knowledge, no results of this

nature are known if service times are Weibull distributed.

The following corollary specifies the asymptotic advantage of SRPT over FB if the

service times are Pareto distributed, and presents the first such results for Weibull

distributed service times. Its statements follow directly from Corollaries 1 and 2 in Lin

et al. [95] and the results earlier in this section. Further results may be obtained by

analysing their function G−1(ρ) for other service-time distributions.

Corollary 4.3.5. The following relations hold as ρ ↑ 1:

(i) If F (x) = (x/xL)−α, x ≥ xL > 0 and α ∈ (1,2), then E[TFB]/E[TSRPT] ∼α2.

(ii) If F (x) = (x/xL)−α, x ≥ xL > 0 and α> 2, then E[TFB]/E[TSRPT] ∼α α
α−1 .

(iii) If F (x) = e−µxβ , x ≥ 0 and µ,β> 0, then E[TFB]/E[TSRPT] ∼β log
(

1
1−ρ

)
.

On the other hand, we may also compare FB to the classic FIFO policy [40]. Since

E[TFIFO] = E[B ]+ρE[B∗]/(1−ρ), Theorems 4.3.1 and 4.3.2 indicate that FB performs

better than FIFO if the service-time distribution has a heavy tail, but also that FB

performs worse than FIFO if the service-time distribution has finite support. If the

service-time distribution has infinite support but no heavy tail, then Table 4.1 shows

that their relationship depends on the tail of the service-time distribution. This is
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exemplified by Weibull distributed service-times, F (x) = e−µxβ ,β > 0, in which case

E[TFB]/E[TFIFO] ∼βΓ(1+1/β)(µ−1 log1/(1−ρ))1−1/β. In fact, Table 4.1 seems to suggests

that FB outperforms FIFO if − logF (x)/x → 0 as x →∞ and vice versa if − logF (x)/x → 0

as x →∞. However, investigating this observation is beyond the scope of this chapter.

Now that the asymptotic behaviour of the expected sojourn time under FB has

been quantified, it is natural to investigate more complex characteristics. One such

characteristic is the behaviour of the tail of the sojourn-time distribution, where one

usually starts by analysing the distribution of the sojourn time normalised by its mean,

TFB/E[TFB]. The following theorem indicates that this random variable converges to

zero in probability, meaning that almost every job experiences a sojourn time that is

significantly shorter than the expected sojourn time as ρ ↑ 1:

Theorem 4.3.6. If either

(i) xR =∞ and either β(F ) >−2 or −∞<β(F ) ≤α(F ) <−2, or

(ii) xR <∞ and −∞<β(F (xR − (·)−1)) ≤α(F (xR − (·)−1)) < 0, or

(iii) F ∈ MDA(Λ),

then TFB
E[TFB]

p→ 0 as ρ ↑ 1.

Theorem 4.3.6 indicates that a decreasing fraction of jobs experiences a sojourn

time of at least duration E[TFB]. Our final main result aims to specify both the size of

this fraction, and the growth factor of the associated jobs’ sojourn time.

The intuition behind Theorem 4.3.1 suggests that TFB scales as (1−ρ)−2, but only

for jobs of size at least G←(ρ). This makes it conceivable that the scaled probability

P((1 − ρ)2TFB > y)/F (G←(ρ)) may be of Θ(1) as ρ ↑ 1. Theorem 4.3.7 confirms this

hypothesis, and additionally shows that the residual sojourn time T ∗
FB with density

P(TFB > x)/E[TFB] scales as (1−ρ)−2.

Theorem 4.3.7. Assume F ∈ MDA(H), where H is an extreme value distributions with

finite (2+ε)-th moment for some ε> 0. Let r (H ) be as in relation (4.11). Then (1−ρ)2T ∗
FB

converges to a non-degenerate random variable with monotone density g∗ as ρ ↑ 1, and

lim
ρ↑1

P((1−ρ)2TFB > y)

r (H)E[B∗]F (G←(ρ))
= g∗(y) (4.15)

almost everywhere. Here,

g∗(t ) =
∫ 1

0
8r (H)−1ν

(
1−ν
ν

)p(H)

g (t ,ν)dν, (4.16)

g (t ,ν) = e
− t

4E[B∗]ν2

4E[B∗]ν2

( p
t

ν
p
πE[B∗]

− t

2E[B∗]ν2 e
t

4E[B∗]ν2 Erfc

(
1

2ν

√
t

E[B∗]

))
, (4.17)

and p(H) = α
α−1 if H =Φα, α> 2; p(H) = 1 if H =Λ and p(H) = α

α+1 if H =Ψα, α> 0.
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All theorems presented in this section are now proven in order. First, Theorems 4.3.1

and 4.3.2 are proven in Section 4.4. Then, Theorem 4.3.4 is justified in Section 4.5.

Finally, Sections 4.6 and 4.7 respectively validate Theorems 4.3.6 and 4.3.7.

4.4 Asymptotic behaviour of the expected sojourn time

In this section, we prove Theorems 4.3.1 and 4.3.2 in order. The intuition behind the

theorems is that jobs of size x can only be completed once the server has finished

processing of all jobs of size at most x. Additionally, jobs of size x experience a system

with job sizes Bi ∧ x since no job will receive more than x units of processing as long

as there are size x jobs in the system. One thus expects all jobs of size x to stay in the

system for the duration of a remaining busy period in the truncated system, which is

expected to last forΘ(E[(B ∧x)2]/(1−ρx )2) time.

Now, if E[B 2] <∞ and xνρ is such that (1−ρ)/(1−ρxνρ ) = ν ∈ (1−ρ,1), then one can

see from (4.1) that

(1−ρ)2E[TFB(xνρ)] = ν(1−ρ)xνρ +ν2
λm2(xνρ)

2
. (4.18)

It turns out that the asymptotic behaviour of (1−ρ)2E[TFB] is now determined by the

fraction of jobs for which ν takes values away from zero.

If instead E[B 2] =∞, it will be shown that the growth rate of the second term in (4.1)

is bounded by the growth rate of xG(x). It then turns out that the sojourn time is of the

same order as the time that a job receives service, which is of orderΘ(x/(1−ρx )).

Both theorems follow after integrating E[TFB(x)] over all possible values of x, as

shown in (4.2). By integrating by parts, we find that the first integral in (4.2) can be

rewritten as ∫ ∞

0

x

1−ρx
dF (x) =

∫ ∞

0

F (x)

1−ρx
dx +λ

∫ ∞

0

xF (x)2

(1−ρx )2 dx

= 1

λ
log

1

1−ρ +λ
∫ ∞

0

xF (x)2

(1−ρx )2 dx.

Similarly, the second integral can be rewritten as∫ ∞

0

λm2(x)

2(1−ρx )2 dF (x) =λ
∫ ∞

0

xF (x)2

(1−ρx )2 dx +λ2
∫ ∞

0

m2(x)F (x)2

(1−ρx )3 dx,

and therefore

E[TFB] = 1

λ
log

1

1−ρ +2λ
∫ ∞

0

xF (x)2

(1−ρx )2 dx +λ2
∫ ∞

0

m2(x)F (x)2

(1−ρx )3 dx

= E[B ]

ρ
log

1

1−ρ +2ρ
∫ ∞

0

xF (x)

(1−ρx )2 dG(x)+ ρ2

E[B ]

∫ ∞

0

m2(x)F (x)

(1−ρx )3 dG(x). (4.19)

We will now derive Theorems 4.3.1 and 4.3.2 from this relation.
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4.4.1 General Matuszewska indices

This section proves Theorem 4.3.1. Relation (4.19) will be analysed separately for the

cases −∞<β(F ) ≤α(F ) <−2 and −2 <β(F ) ≤α(F ) < 1, which will be referred to as the

finite and the infinite variance case, respectively. The finite variance case also considers

−∞< β(F (xR − (·)−1). Note that we always have β(F (xR − (·)−1)) ≤α(F (xR − (·)−1)) ≤ 0

since F (xR − (·)−1) is non-increasing. Prior to further analysis, however, we introduce

several results that will facilitate the analysis.

Lemma 4.4.1. Let f1(·), f2(·) be positive.

(i) If α( f1),α( f2) <∞, then α( f1 · f2) ≤ α( f1)+α( f2) and, assuming that f1 is non-

decreasing, α( f1 ◦ f2) ≤α( f1) ·α( f2).

(ii) If β( f1),β( f2) >−∞, then β( f1 · f2) ≥ β( f1)+β( f2) and, assuming that f1 is non-

increasing, β( f1 ◦ f2) ≥β( f1) ·β( f2).

Lemma 4.4.2. Let f be positive. If α( f ) < 0, then limx→∞ f (x) = 0.

Lemma 4.4.3 (Bingham et al. [24], Theorem 2.6.1). Let f be positive and locally integ-

rable on [X ,∞). Let g (x) := ∫ x
X f (t )/t dt . If β( f ) > 0, then liminfx→∞ f (x)/g (x) > 0.

Lemma 4.4.4 (Bingham et al. [24], Theorem 2.6.3). Let f be positive and measurable.

Let g (x) := ∫ ∞
x f (t )/t dt .

(i) If α( f ) < 0, then g (x) <∞ for all large x.

(ii) If β( f ) >−∞, then limsupx→∞ f (x)/g (x) <∞.

Lemma 4.4.5. If xR = ∞, then α(G) ≤ α(F )+1 and β(G) ≥ β(F )+1. If xR < ∞, then

α(G(xR − (·)−1)) ≤α(F (xR − (·)−1))−1 and β(G(xR − (·)−1)) ≥β(F (xR − (·)−1))−1.

Lemma 4.4.6. If xR =∞ and β(F ) >−∞, then α(G←(1− (·)−1)) ≤− 1
α(F )+1

and

β(G←(1− (·)−1)) ≥ − 1
β(F )+1

. Alternatively, if xR < ∞ and β(F (xR − (·)−1)) > −∞, then

α(G←(1− (·)−1)) ≤− 1
α(F (xR−(·)−1))−1

and β(G←(1− (·)−1)) ≥− 1
β(F (xR−(·)−1))−1

.

Corollary 4.4.7. If xR = ∞ and β(F ) > −∞, then α(F (G←(1 − (·)−1))) ≤ −α(F )
α(F )+1

and

β(F (G←(1− (·)−1))) ≥ −β(F )

β(F )+1
. Alternatively, if xR <∞ and β(F (xR − (·)−1)) > −∞, then

α(F (G←(1− (·)−1))) ≤ −α(F (xR−(·)−1))
α(F (xR−(·)−1))−1

and β(F (G←(1− (·)−1))) ≥ −β(F (xR−(·)−1))

β(F (xR−(·)−1))−1
.

Lemma 4.4.1 states some closure properties of Matuszewska indices. Lemma 4.4.2

gives a sufficient condition for f to vanish. Lemmas 4.4.3 and 4.4.4 state helpful results

on the asymptotic behaviour of the ratio between a function and certain integrals

over this function, depending on its Matuszewska indices. Lemmas 4.4.5 and 4.4.6
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and Corollary 4.4.7 specify the earlier lemmas by giving bounds on the Matuszewska

indices of G , G← and the composition of F and G←. The proofs of Lemmas 4.4.1, 4.4.2,

4.4.5 and 4.4.6, along with several additional results, are postponed to Appendix 4.A.

Corollary 4.4.7 follows immediately from Lemmas 4.4.1 and 4.4.6.

Finite variance

In this section, we assume either xR =∞ and −∞< β(F ) ≤α(F ) <−2, or xR <∞ and

β(F (xR −(·)−1)) >−∞. If xR =∞, thenα((·)2F (·)) < 0 and thus E[B 2] = 2
∫ ∞

0 tF (t )dt <∞
by Lemma 4.4.4(i); if xR <∞ then clearly E[B 2] <∞.

Noting that G← is a continuous, strictly increasing function, it follows that the

function xνρ :=G←
(
1− 1−ρ

ρ
1−ν
ν

)
is well-defined for all ν ∈ (1−ρ,1). For this choice of xνρ ,

we have 1−ρ
1−ρxνρ

= ν and
dG(xνρ )

dν = 1−ρ
ρ

1
ν2 , and therefore relation (4.19) becomes

(1−ρ)2E[TFB] = E[B ](1−ρ)2

ρ
log

1

1−ρ +2ρ
∫ ∞

0

(
1−ρ

1−ρx

)2

xF (x)dG(x)

+ ρ2

E[B ]

∫ ∞

0

(
1−ρ

1−ρx

)3 m2(x)F (x)

1−ρ dG(x)

= E[B ](1−ρ)2

ρ
log

1

1−ρ

+2(1−ρ)
∫ 1

1−ρ
G←

(
1− 1−ρ

ρ

1−ν
ν

)
F

(
G←

(
1− 1−ρ

ρ

1−ν
ν

))
dν

+ ρ

E[B ]

∫ 1

1−ρ
νm2

(
G←

(
1− 1−ρ

ρ

1−ν
ν

))
F

(
G←

(
1− 1−ρ

ρ

1−ν
ν

))
dν.

Dividing both sides by F (G←(ρ)) yields

(1−ρ)2E[TFB]

F (G←(ρ))
= E[B ](1−ρ)2

ρF (G←(ρ))
log

1

1−ρ

+ 2(1−ρ)

F (G←(ρ))

∫ 1

1−ρ
G←

(
1− 1−ρ

ρ

1−ν
ν

)
F

(
G←

(
1− 1−ρ

ρ

1−ν
ν

))
dν

+ ρ

E[B ]

∫ 1

1−ρ
νm2

(
G←

(
1− 1−ρ

ρ

1−ν
ν

)) F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν

= I(ρ)+ II(ρ)+ III(ρ). (4.20)

We will show that I(ρ)+ II(ρ) = o(1) and III(ρ) =Θ(1).

Assume xR =∞. Then, by Lemma 4.4.1 and Corollary 4.4.7 we find that

α(I(1− (·)−1) ≤α((·)−2)+α(1/F (G←(1− (·)−1)))+α(log(·))

=−2−β(F (G←(1− (·)−1)))+0 ≤−2+ β(F )

β(F )+1
< 0, (4.21)
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and consequently I(ρ) = o(1) as ρ ↑ 1 by Lemma 4.4.2.

Next, fix 0 ≤ ε< 2− β(F )

β(F )+1
. Substitution of w = ρ

1−ρ
ν

1−ν in II(ρ) yields

II(ρ) = 2(1−ρ)

F (G←(ρ))

∫ ∞

1

ρ

1−ρ
(

ρ

1−ρ +w

)−2

G←(1−w−1)F (G←(1−w−1))dw

≤ 2(1−ρ)2−ε

ρ1−εF (G←(ρ))

∫ ∞

1
w−εG←(1−w−1)F (G←(1−w−1))dw.

Let q(w) denote the integrand in the last line. A similar analysis to (4.21) indicates that

the term in front of the integral vanishes as ρ ↑ 1, so we only need to show that the

integral is bounded. This is implied by Lemma 4.4.4(i) after noting that

α(q) ≤−ε+α(G←(1− (·)−1))+α(F (G←(1− (·)−1))) ≤−1−ε< 0,

where the inequalities follow from Lemmas 4.4.1 and 4.4.6 and Corollary 4.4.7.

Lastly, we wish to show that III(ρ) =Θ(1). Observe that

III(ρ) ≤λE[B 2]
∫ 1

1+ρ

1−ρ
ν

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν+λE[B 2]
∫ 1

1
1+ρ

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν

≤ 2ρE[B∗]
∫ 1

1−ρ

1

ρw

1−ρ
(

ρ

1−ρ +w

)−3 F (G←(1−w−1))

F (G←(ρ))
dw +E[B∗]

≤ 2E[B∗]

ρ

∫ 1
1−ρ

1

wF (G←(1−w−1))
1

(1−ρ)2 F (G←(ρ))
dw +E[B∗] = 2E[B∗]

ρ

∫ 1
1−ρ

1

f (w)/w

f (1/(1−ρ))
dw +E[B∗],

where f (w) = w2F (G←(1− w−1)). Lemma 4.4.1 and Corollary 4.4.7 then state that

β( f ) ≥ 2− β(F )

β(F )+1
> 0, and therefore Lemma 4.4.3 implies

limsup
ρ↑1

∫ 1
1−ρ

1

f (w)/w

f (1/(1−ρ))
dv =

[
liminf

y→∞
f (y)∫ y

1 f (w)/w dw

]−1

<∞.

As such, limsupρ↑1 III(ρ) <∞.

In order to show liminfρ↑1 III(ρ) > 0, fix c ∈ (0,1) and let δρ := (1−ρ)/(cρ+1−ρ).

One may then readily verify that III(ρ) ≥λm2(G←(1− c))
∫ 1

1+ρ
δρ

νdν→ m2(G←(1−c))
8E[B ] > 0.

The xR = ∞ case is concluded once we prove limρ↑1 h∗(G←(ρ)) = 0. To this end,

write h∗(G←(ρ)) as xF (G←(1−x−1))/E[B ], where x = (1−ρ)−1. The claim then follows

from Lemma 4.4.2 after noting that

α(h∗(G←(1− (·)−1))) ≤α(·)+α(F (G←(1− (·)−1))) ≤ 1− α(F )

α(F )+1
= 1

α(F )+1
< 0,

where the inequalities follow from Lemma 4.4.1 and Corollary 4.4.7.
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The xR <∞ case can be proven similarly. One then fixes 1 < ε< 2− β(F (xR−(·)−1))

β(F (xR−(·)−1))−1
and obtains

α(I(1− (·)−1) ≤−2+ β(F (xR − (·)−1))

β(F (xR − (·)−1))−1
< 0,

α(q) ≤−ε− α(F (xR − (·)−1))+1

α(F (xR − (·)−1))−1
≤ 1−ε< 0,

and

β( f ) ≥ 2− β(F (xR − (·)−1))

β(F (xR − (·)−1))−1
> 0.

The claim h∗(G←(ρ)) →∞ follows from Lemma 4.2.8.

Infinite variance

Assume β(F ) >−2 and recall that m2(x) = 2E[B ]
∫ x

0 t dG(t ) = 2E[B ]
(∫ x

0 G(t )dt −xG(x)
)
.

By Lemmas 4.4.1 and 4.4.5, one sees that β((·)G(·)) > 0 and therefore it follows from

Lemma 4.4.3 that

limsup
x→∞

m2(x)

2E[B ]xG(x)
= limsup

x→∞

∫ x
0 G(t )dt

xG(x)
−1 <∞. (4.22)

Also, since β((·)F (·)) >−∞, Lemma 4.4.4(ii) indicates that

limsup
x→∞

xF (x)

G(x)
= limsup

x→∞
E[B ]xF (x)∫ ∞

x F (t )dt
<∞.

Consequently, it follows from relation (4.19) that, for some C ,D > 0 and all ρ sufficiently

close to one, we have

E[TFB] ≤ E[B ]

ρ
log

1

1−ρ +2
∫ ∞

0

xF (x)

(1−ρG(x))2 dG(x)+ 1

E[B ]

∫ ∞

0

m2(x)

xG(x)

xF (x)

(1−ρG(x))2 dG(x)

≤ E[B ]

ρ
log

1

1−ρ +C
∫ ∞

0

xF (x)

G(x)

1

1−ρG(x)
dG(x) ≤ D log

1

1−ρ ,

and therefore E[TFB] =Θ
(
log 1

1−ρ
)
.

4.4.2 Special cases

This section proves Theorem 4.3.2. The maximum domains of attraction of each of

the extreme value distributions are considered in order, followed by a distribution

with an atom in its right endpoint. The Fréchet and Weibull cases follow readily from

Theorem 4.3.1 and the Dominated Convergence Theorem. The same approach works

for the Gumbel case, although Theorem 4.3.1 is not directly applicable. Finally, the atom

case follows readily by analysing the sojourn time of maximum-sized jobs.
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Fréchet(α) and Weibull(α)

Theorems 4.2.3 and 4.2.5 together state that F ∈ MDA(Φα) if and only if F (x) = L(x)x−α.

Karamata’s theorem [24, Theorem 1.5.11] then states that E[B ]G(x) ∼ xF (x)/(α−1) is

regularly varying with index −(α−1). Consequently, Theorem 1.5.12 in Bingham et

al. [24] states that G←(1−1/x) is regularly varying with index 1/(α−1) and therefore

Proposition 1.5.7 in Bingham et al. states that F (G←(1−1/x)) is regularly varying with

index −α/(α−1).

First assume α> 2. We saw in Section 4.4.1 that the asymptotic behaviour of E[TFB]

is identical to the asymptotic behaviour of term III(ρ) (cf. relation (4.20)). Now, the

Uniform Convergence Theorem [24, Theorem 1.5.2] states that F (G←(1−1/x))
F (G←(1−1/y))

→ ( y
x

)α/(α−1)

uniformly for all 0 < c < x, y < ∞. We hence substitute w = ν−(1−ρ)
ρ and exploit the

Dominated Convergence Theorem to obtain

lim
ρ↑1

III(ρ)

= lim
ρ↑1

ρ2

E[B ]

∫ 1

0
(ρw +1−ρ)m2

(
G←

(
1− (1−ρ)(1−w)

1−ρ+ρw

)) F
(
G←

(
1− (1−ρ)(1−w)

1−ρ+ρw

))
F (G←(ρ))

dw

= E[B 2]

E[B ]

∫ 1

0
w

(
1−w

w

)α/(α−1)

dw

= E[B∗]
π/(α−1)

sin(π/(α−1))

α

α−1
.

Similarly, Theorems 4.2.3 and 4.2.6 together state that F ∈ MDA(Ψα),α> 0, if and

only if xR <∞ and F (xR −x−1) = L(x)x−α. The corresponding result then follows after

noting that E[B ]G(xR −x−1) ∼ L(x)x−α−1/(α+1) is regularly varying with index −(α+1)

and F (G←(1−1/x))
F (G←(1−1/y))

→ ( y
x

)α/(α+1)
uniformly for all 0 < c < x, y <∞.

Finally, assume that F ∈ MDA(Φα),α ∈ (1,2). Then, Karamata’s Theorem implies

m2(x) = 2
∫ x

0 yF (y)dy ∼ 2x2F (x)/(2−α) as x →∞. We analyse relation (4.19) and again

exploit the Dominated Convergence Theorem to find

E[TFB] = E[B ]

ρ
log

1

1−ρ +2ρ
∫ ∞

0

xF (x)

G(x)

1−G(x)

(1−ρG(x))2 dG(x)

+ ρ2

E[B ]

∫ ∞

0

m2(x)F (x)

G(x)2

(1−G(x))2

(1−ρG(x))3 dG(x)

∼ E[B ] log
1

1−ρ +2(α−1)E[B ]
∫ 1

0

1− y

(1−ρy)2 dy + 2

E[B ]

(α−1)2E[B ]2

2−α
∫ 1

0

(1− y)2

(1−ρy)3 dy

∼ E[B ] log
1

1−ρ +2(α−1)E[B ] log
1

1−ρ + 2(α−1)2E[B ]

2−α log
1

1−ρ = α

2+αE[B ] log
1

1−ρ

as ρ ↑ 1.
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Gumbel

If F ∈ MDA(Λ), then so is G by Lemma 4.2.10 and we may choose h∗ as the auxiliary

function of G . Propositions 0.9(a), 0.10 and 0.12 in Resnick [119] together state that

aG (x) := 1

h∗(G←(1−1/x))
= E[B ]

xF (G←(1−1/x))

is 0-varying1, implying that F (G←(1−1/x)) is (−1)-varying.

Following the analysis in Section 4.4.1, we obtain α(I) =−1 < 0 as before. Consider

term II(ρ). By Markov’s inequality, we have G(x) ≤ E[B∗]/x. Substituting x =G←(1−w−1)

then yields G←(1−w−1) ≤ E[B∗]w , and hence

II(ρ) = 2(1−ρ)

F (G←(ρ))

∫ ∞

1

ρ

1−ρ
(

ρ

1−ρ +w

)−2

G←(1−w−1)F (G←(1−w−1))dw

≤ 2E[B∗](1−ρ)3/2

ρ1/2F (G←(ρ))

∫ ∞

1
w1/2F (G←(1−w−1))dw.

The term in front of the integral and the integrand both have upper Matuszewska index

−1/2, and therefore II(ρ) → 0.

Lastly, consider term III(ρ). The relation limsupρ↑1 III(ρ) <∞ follows analogously

to the analysis in Section 4.4.1. Then, along the lines of the Fréchet and Weibull cases

before, one may apply the Uniform Convergence Theorem and the Dominated Conver-

gence Theorem to derive the theorem statement.

Atom in right endpoint

First, we show that I(ρ)+ II(ρ) = o(1). Lemma 4.2.8 states that limx↑xR h∗(x) =∞, and

therefore limρ↑1 I(ρ) = limρ↑1
(1−ρ) log 1

1−ρ
ρh∗(G←(ρ)) = 0. Also, G← is bounded from above by xR and

consequently limρ↑1 II(ρ) ≤ limρ↑1
2(1−ρ)

F (G←(ρ))
· xR = limρ↑1

2xR
E[B ]h∗(G←(ρ)) = 0.

It remains to show that III(ρ) → E[B∗] and F (G←(ρ)) → p as ρ ↑ 1. The following

lemma facilitates the analysis of this term. The proof of the lemma is postponed until

the end of this section.

Lemma 4.4.8. Let f : D →R be any function that maps D ⊆R onto R, and assume that

limy↑x f (y) = p for some x in the closure D of D. Then, there exist z > 0 and q > 0 such

that

f (x − y) ≤ p +q y (4.23)

for all y ∈ (0, z] that satisfy x − y ∈ D.

1The propositions regardΠ- and Γ-varying functions; we consider these classes in Section 4.5.
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Let q > 0 and δ∗ > 0 be such that F (xR −δ) ≤ p +qδ for all δ ∈ (0,δ∗]. It follows that

E[B ]G(x) = ∫ xR
x F (y)dy ∼ p(xR − x) as x ↑ xR , and hence xR −G←(u) ∼ E[B ](1−u)/p as

u ↑ 1. Fix ε> 0 and let u∗ ∈ (0,1) be such that xR −G←(u) ≤ (1+ε)E[B ](1−u)/p for all

u ∈ (u∗,1). Now, for all u > ρ0 := max{u∗,1−pδ∗/((1+ε)E[B ])} we have

p ≤ F (G←(u)) ≤ p + q

p
(1+ε)E[B ](1−u) =: p +pq̃(1−u) (4.24)

and hence, for q̃ = q(1+ε)E[B ]/p2, the relations

1

1+ q̃(1−ρ)
≤

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

≤ 1+ q̃
1−ρ
ρ

1−ν
ν

≤ 1+ q̃
1−ρ
ρ

1

ν

hold for all ν> 1−ρ
1−ρ·ρ0

,ρ > ρ0.

Consider term III(ρ). On the one hand, we find

limsup
ρ↑1

III(ρ) ≤ limsup
ρ↑1

E[B 2]

E[B ]

∫ 1

1−ρ
ν

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν

≤ limsup
ρ↑1

E[B 2]

E[B ]

∫ 1−ρ
1−ρ·ρ0

1−ρ
1

p
dν+ E[B 2]

E[B ]

∫ 1

1−ρ
1−ρ·ρ0

{
ν+ q̃

1−ρ
ρ

}
dν

≤ limsup
ρ↑1

E[B 2]

pE[B ]

1−ρ
1−ρ ·ρ0

+ E[B 2]

2E[B ]
+ E[B 2]

E[B ]
q̃

1−ρ
ρ

= E[B∗].

On the other hand, we have

liminf
ρ↑1

III(ρ) ≥ liminf
ρ↑1

ρm2(G←(ρ0))

E[B ]

∫ 1

1−ρ
1−ρ·ρ0

ν

1+ q̃(1−ρ)
dν

= liminf
ρ↑1

m2(G←(ρ0))

2E[B ]

ρ

1+ q̃(1−ρ)

(
1−

(
1−ρ

1−ρ ·ρ0

)2)
= m2(G←(ρ0))

E[B 2]
·E[B∗].

Since ρ0 may be chosen arbitrarily close to unity, we find E[TFB] ∼ E[B∗]F (G←(ρ))
(1−ρ)2 ∼ pE[B∗]

(1−ρ)2

as ρ ↑ 1 where the last equivalence follows from (4.24). The section is concluded with

the proof of Lemma 4.4.8.

Proof of Lemma 4.4.8. Without loss of generality, we assume that (x−1, x) ⊂ D . For sake

of finding a contradiction, assume that the lemma statement is not true, i.e. for all z > 0

and all q > 0 there exists ξ ∈ (0, z] such that

f (x −ξ) > p +qξ. (4.25)

Define z1 := 1, q1 := 1 and let ξ1 ∈ (0,1] be such that (4.25) holds with q = q1 and

ξ= ξ1. By definition of the left limit, for any ε> 0 there exists η∗ > 0 such that f (x −η) ≤
p +ε for all η ∈ (0,η∗]. In particular, by choosing ε= q1ξ1 we obtain η∗ =: η∗2 < ξ1 ≤ z1

such that f (x −η) ≤ p +q1ξ1 for all η ∈ (0,η∗2 ].
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Define z2 := min{η∗2 ,1/2} and set q2 := 1/z2. Again, there exists ξ2 ∈ (0, z2] such

that (4.25) holds for q = q2 and ξ= ξ2. By repeating the above procedure we obtain three

sequences (qn)n∈N, (zn)n∈N and (ξn)n∈N such that qn = 1/zn , 0 < zn+1 < ξn < zn ≤ 1/n

and

f (x −ξn) > p +qnξn (4.26)

for all n ∈ N. From these properties, one may additionally deduce that ξn > 1/qn+1,

ξn ↓ 0 and qn →∞.

We will obtain a contradiction by showing that (qn)n∈N must also converge. If

limsupn→∞ qnξn > 0, then by relation (4.26) we must have limsupn→∞ f (x − ξn) ≥
limsupn→∞ p +qnξn > p. However, this contradicts the lemma assumptions and there-

fore limsupn→∞ qnξn must equal zero. As such, we find 0 ≤ limsupn→∞ qn/qn+1 ≤
limsupn→∞ qnξn = 0 so that the sequence (qn)n∈N converges by the ratio test.

Note that Lemma 4.4.8 can be applied generally to yield lower and upper bounds

for f (y) around any point x ∈ D for which either limy↑x f (y) or limy↓x f (y) exists.

4.5 Asymptotic relation for h∗(G←(ρ)) in the Gumbel case

This section is dedicated to the proof of Theorem 4.3.4. Theorem 4.2.7 states that

cn may be chosen as 1/h∗(F←(1 − n−1)), so that Theorem 4.3.4 follows from The-

orem 4.3.2 and an analysis of the limit limn→∞ h∗(G←(1−n−1))/h∗(F←(1−n−1)) =
limy↑1(1− y)−2F (G←(y))G(F←(y)). The proof heavily relies upon the work by De Haan

[69] and Resnick [119], who both consider Γ- andΠ-varying functions:

Definition 4.5.1. A function U : (xL , xR ) → R, limx↑xR U (x) = ∞ is in the class of Γ-

varying functions if it is non-decreasing, and there exists a function f : (xL , xR ) →R≥0

satisfying

lim
x↑xR

U (x + t f (x))

U (x)
= e t (4.27)

for all t ∈ R. The function f (·) is called an auxiliary function and is unique up to

asymptotic equivalence.

Definition 4.5.2. A function V : (xL ,∞) →R≥0 is in the class ofΠ-varying functions if it

is non-decreasing, and there exist functions a(x) > 0,b(x) ∈R, such that

lim
x→∞

V (t x)−b(x)

a(x)
= log t (4.28)

for all t ∈ R. The function a(·) is called an auxiliary function and is unique up to

asymptotic equivalence.
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It turns out that Γ- and Π-varying functions are closely related to MDA(Λ). In

particular, if F ∈ MDA(Λ) with auxiliary function 1/h∗, then Proposition 1.9 in Resnick

[119] states that UF := 1/F ∈ Γ with auxiliary function fF := 1/h∗. Proposition 0.9(a)

then states that VF (·) :=U←
F (·) =

(
1/F

)←
(·) = F← (

1− (·)−1
) ∈Π with auxiliary function

aF (·) := fF (U←
F (·)) = 1/h∗(F←(1− (·)−1)). Similarly, using Lemma 4.2.10, we find that

UG := 1/G ∈ Γ and VG (·) := U←
G (·) = G← (

1− (·)−1
) ∈ Π with auxiliary function aG (·) :=

1/h∗(G←(1− (·)−1)).

Now, since Theorem 4.2.7 states that the norming constants cn may be chosen

as 1/h∗(F←(1−n−1)), we are done once we show that limn→∞ cnh∗(G←(1−n−1)) =
limx→∞ aF (x)

aG (x) tends to the right quantity for all cases in the theorem.

Corollary 3.4 in De Haan [69] states that2 limx↑xR
aF (x)
aG (x) = ξ−1 ∈ [0,∞] if and only if

there exist a positive function b(x) with limx↑xR b(x) = ξ and constants b2 > 0 and b3 ∈R
such that3 P (x) = b3 +

∫ x
0 b(t)dt and VF

←(x) ∼ b2VG
←(P (x)) as x ↑ xR . As V•←(x) =

(U•←)←(x) ∼U•(x) [119, p.44], this is equivalent to finding a function P (x), of the given

form, that satisfies

lim
x↑xR

G(P (x))

b2F (x)
= lim

x↑xR

UF (x)

b2UG (P (x))
= lim

x↑xR

V ←
F (x)

b2V ←
G (P (x))

= 1. (4.29)

We use the following lemma, proven at the end of this section, to construct a suitable

P (x):

Lemma 4.5.3. Let F be a c.d.f. Then, there exists a strictly increasing, continuous c.d.f.

F↑(x) satisfying both F ↑(x) ∼ F (x) and G(F↑(x)) ∼G(F (x)) as x ↑ xR .

As G←(F↑(x)) is strictly increasing, there exists a positive function b(·) such that∫ x
0 b(t)dt =G←(F↑(x)). Therefore, we see that (4.29) is satisfied with b2 = 1 and b3 = 0.

The result follows once we show that

lim
x→∞b(x) = lim

x→∞
P (x)

x
= lim

x→∞
G←(F (x))

x
= ξ (4.30)

if xR =∞, and once we show that

lim
x↑xR

b(x) = lim
x↑xR

P (xR )−P (x)

xR −x
= lim

x↑xR

xR −G←(F (x))

xR −x
= ξ (4.31)

if xR <∞.

The right-hand sides of both (4.30) and (4.31) depend on the function G←(F (x)).

The advantage of this representation is apparent from the following key relation, which

connects G←(F (x)) to h∗(x):

E[B ]h∗(x) = exp

[∫ x

G←(F (x))
h∗(t )dt

]
. (4.32)

2Here, we denote 0−1 =+∞.
3Their paper only considers the xR =∞ case; however, the proof also holds for finite xR .



4.5. Asymptotic relation for the Gumbel case 81

Relation (4.32) follows readily from h∗(x) =− d
dx logG(x). In the upcoming analysis, we

first focus on (4.30) and then consider (4.31).

4.5.1 Infinite support

First assume xR =∞. The following theorem relates the assumptions on F (x) to proper-

ties of h∗(x):

Theorem 4.5.4 (Beirlant et al. [20], Theorem 2.1).

(i) If there existsα> 0 and a slowly varying function l (x) such that − logF (x) ∼ l (x)xα

as x →∞, then h∗(x) ∼αl (x)xα−1 as x →∞ if and only if

lim
λ↓1

liminf
x→∞ inf

t∈[1,λ]
{logh∗(t x)− logh∗(x)} ≥ 0. (4.33)

(ii) If there exists a function l (x) : [0,∞) →R, liminfx→∞ l (x) > 1 such that for all λ> 0

lim
x→∞

− logF (λx)+ logF (x)

l (x)
= log(λ), (4.34)

then l (x) is slowly varying and h∗(x) ∼ (l (x)−1)/x as x →∞.

The cases in Theorem 4.3.4 correspond to the cases in Theorem 4.5.4. We will con-

sider the implications of Theorem 4.5.4 to derive the results presented in Theorem 4.3.4.

(i) Assume h∗(x) ∼αl (x)xα−1, α> 0, and note that

lim
x→∞

− log(E[B ]h∗(x))

xh∗(x)
= lim

x→∞
− log(E[B ]αl (x))− (α−1)log(x)

αl (x)xα
= 0.

We will prove the relation limx→∞G←(F (x))/x = 1 by contradiction. Specifically,

if limsupx→∞G←(F (x))/x > 1 then there exists ε > 0 and a sequence (xn)n∈N,

xn →∞, such that G←(F (xn))/xn ≥ 1+ε for all n ∈N. The Uniform Convergence

Theorem [24, Theorems 1.2.1 and 1.5.2] then implies

− log(E[B ]h∗(xn))

xnh∗(xn)
=

∫ G←(F (xn ))

xn

h∗(t )

xnh∗(xn)
dt =

∫ G←(F (xn ))/xn

1

h∗(τxn)

h∗(xn)
dτ

≥
∫ 1+ε

1

h∗(τxn)

h∗(xn)
dτ∼

∫ 1+ε

1
τα−1 dτ=α−1((1+ε)α−1)

for every n ∈ N. However, this contradicts with limx→∞
log(E[B ]h∗(x))

xh∗(x) = 0 and it

follows that liminfx→∞G←(F (x))/x ≤ 1. One may similarly verify the inequality

liminfx→∞G←(F (x))/x ≥ 1, so that limx→∞G←(F (x))/x = 1 as claimed.
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(ii) Alternatively, assume h∗(x) ∼ l (x)−1
x and denote L = limx→∞ log(x)/l (x) ∈ [0,∞].

Then Lemma 4.2.8 states that l (x) →∞ and as such

lim
x→∞

− log(E[B ]h∗(x))

xh∗(x)
= lim

x→∞
− log(E[B ])− log(l (x)−1)+ log(x)

l (x)−1
= L. (4.35)

Now, if L = 0 then the analysis in (i) yields limx→∞G←(F (x))/x = 1. If L ∈ (0,∞)

then (4.32) and (4.35) imply

L = lim
x→∞

− log(E[B ]h∗(x))

xh∗(x)
= lim

x→∞

∫ G←(F (x))

x

h∗(t )

xh∗(x)
dt

= lim
x→∞

1

log(x)

∫ G←(F (x))

x

l (t )−1

log t
· log(x)

l (x)−1
· log(t )

t
dt

= lim
x→∞

1

log(x)

∫ G←(F (x))

x

log(t )

t
dt = lim

x→∞
log2(G←(F (x)))− log2(x)

2log(x)
.

Writing G←(F (x)) = u(x)x,u(x)x →∞, now yields

L = lim
x→∞ log(u(x))

(
1+ log(u(x))

2log(x)

)
,

from which we conclude u(x) → eL and consequently limx→∞G←(F (x))/x = eL .

Finally, if L =∞ then h∗(x) ↓ 0 and therefore G←(F (x)) ≥ x by (4.32). For sake

of contradiction, assume liminfx→∞G←(F (x))/x <∞. Then there exists M0 ≥ 1

such that for all M ≥ M0 there exists a sequence (xn)n∈N, xn → ∞, such that

G←(F (xn))/xn ≤ M for every n ∈N. A similar analysis as in (i) then shows that this

contradicts relation (4.35), and therefore limx→∞G←(F (x))/x =∞.

4.5.2 Finite support

Now assume xR <∞. Theorem 4.2.7 states that F (x) can be represented as

F (x) = c(x)exp

{
−

∫ x

z
g (t )h∗(t )dt

}
, z < x < xR ,

where c and g are measurable functions satisfying c(x) → c > 0, g (t ) → 1 as x ↑ xR , and

the auxiliary function fF (·) = 1/h∗(·) is positive, absolutely continuous and has density

f ′
F (x) satisfying limx↑xR f ′

F (x) = 0. It is easily verified that the c.d.f. F∞(x) := F (xR −x−1),

x ≥ (xR − z)−1, is also in MDA(Λ) with auxiliary function f∞(x) := x2/h∗(xR − x−1).

From this representation it is straightforward to obtain a finite-support equivalent of

Theorem 4.5.4:

Corollary 4.5.5. Assume xR <∞.

(i) If there existsα> 0 and a slowly varying function l (x) such that − logF (xR −x−1) ∼
l (x)xα as x →∞, then h∗(xR −x−1) ∼αl (x)xα+1 as x →∞ if and only if

lim
λ↓1

liminf
x→∞ inf

t∈[1,λ]
{logh∗(xR − (t x)−1)− logh∗(xR −x−1)−2log(t )} ≥ 0. (4.36)
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(ii) If there exists a function l (x) : [0,∞) →R, liminfx→∞ l (x) > 1, such that for all λ> 0

lim
x→∞

− logF (xR − (λx)−1)+ logF (xR −x−1)

l (x)
= log(λ), (4.37)

then l (x) is slowly varying and h∗(xR −x−1) ∼ (l (x)−1)x as x →∞.

Again, the cases in Theorem 4.3.4 correspond to the cases in Corollary 4.5.5. The

proof for the finite support case is similar to the infinite support case, yet we state it

for completeness. Since h∗(x) →∞ as x ↑ xR in both cases, relation (4.32) implies that
xR−G←(F (x))

xR−x ≥ 1 for all x sufficiently close to xR .

(i) Assume h∗(xR −x−1) ∼αl (x)xα+1,α> 0, and note that

lim
x↑xR

− log(E[B ]h∗(x))

(xR −x)h∗(x)
= lim

y→∞
− log(E[B ]h∗(xR − y−1))

h∗(xR − y−1)/y

= lim
y→∞

− log(E[B ]αl (y))− (α+1)log(y)

αl (y)yα
= 0.

We will show that limx→∞ xR−G←(F (x))
xR−x = 1 by contradiction. By our previous re-

mark, we only need to show limsupx→∞
xR−G←(F (x))

xR−x ≤ 1. If this is false, then there

exists ε ∈ (0,1) and a sequence (xn)n∈N, xn ↑ xR , such that xR−xn
xR−G←(F (xn )) ≤ 1−ε for

all n ∈N. As before, the Uniform Convergence Theorem [24, Theorems 1.2.1 and

1.5.2] then implies

− log(E[B ]h∗(xn))

(xR −xn)h∗(xn)
=

∫ G←(F (xn ))

xn

h∗(t )

(xR −xn)h∗(xn)
dt

=
∫ 1

xR−xn
xR−G←(F (xn ))

h∗(xR − (xR −xn)τ−1)

τ2h∗(xR − (xR −xn))
dτ

≥
∫ 1

1−ε
h∗(xR − (xR −xn)τ−1)

τ2h∗(xR − (xR −xn))
dτ

∼
∫ 1

1−ε
τα−1 dτ=α−1(1− (1−ε)α)

for every n ∈N, which contradicts with limx↑xR

log(E[B ]h∗(x))
(xR−x)h∗(x) = 0.

(ii) Now, assume h∗(xR − x−1) ∼ (l (x)−1)x and let L = limx→∞ log(x)/l (x) ∈ [0,∞].

Lemma 4.2.8 implies l (x) →∞, so that

lim
x↑xR

− log(E[B ]h∗(x))

(xR −x)h∗(x)
= lim

y→∞
− log(E[B ](l (y)−1))− log(y)

l (y)−1
=−L. (4.38)
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If L = 0, then limx→∞ xR−G←(F (x))
xR−x = 1 = e0 by the analysis in (i). Alternatively, if

L ∈ (0,∞) then (4.32) and (4.38) imply

L = lim
x↑xR

log(E[B ]h∗(x))

(xR −x)h∗(x)
= lim

x↑xR

∫ x

G←(F (x))

h∗(t )

(xR −x)h∗(x)
dt

= lim
x↑xR

∫ 1
xR−x

1
xR−G←(F (x))

h∗(xR −τ−1)

(xR −x)τ2h∗(xR − (xR −x))
dτ

= lim
x↑xR

1

log((xR −x)−1)

∫ 1
xR−x

1
xR−G←(F (x))

l (τ)−1

log(τ)
· log((xR −x)−1)

l ((xR −x)−1)−1
· log(τ)

τ
dτ

= lim
x↑xR

1

log(xR −x)

∫ 1
xR−G←(F (x))

1
xR−x

log(τ)

τ
dτ

= lim
x↑xR

log2(xR −G←(F (x)))− log2(xR −x)

2log(xR −x)
.

Write G←(F (x)) = xR − (xR − x)u(x) where (xR − x)u(x) → 0 for all x sufficiently

close to xR . One then obtains

L = lim
x↑xR

log(u(x))

(
1+ log(u(x))

2log(xR −x)

)
,

implying u(x) → eL and subsequently limx→∞ xR−G←(F (x))
xR−x = eL .

Lastly, consider L =∞ and assume limsupx→∞
xR−G←(F (x))

xR−x <∞ for sake of con-

tradiction. Then there exists M0 ≥ 1 such that for all M ≥ M0 there exists a

sequence (xn)n∈N, xn ↑ xR , such that xR−G←(F (xn ))
xR−xn

≤ M for every n ∈N. A similar

analysis as in (i) then shows that this contradicts relation (4.38), and therefore

limx→∞ xR−G←(F (x))
xR−x =∞.

4.5.3 Proof of Lemma 4.5.3

For any positive, non-increasing φ : [0,1) → (0,1) that vanishes as the argument tends to

unity, we may define

Fφ(x) :=
{

F (x) if x < s1, and

F (x)+ x−sn
sn+1−sn

(F (sn+1)−F (x)) if sn ≤ x < sn+1,n ≥ 1,
(4.39)

where s1 := 0 and sn+1 := inf
{

x ≥ 0 : F (x) ≥ F (sn )+φ(F (sn ))
1+φ(F (sn ))

}
forms a strictly increasing

sequence. Now, if sn ↑ s∗ < xR then F (sn) ↑ p for some p ∈ (0,1) and therefore, for any

ε ∈ (0,1) and all n sufficiently large, we have (1−ε)p ≤ F (sn) ≤ p. Consequently, sn+1

must satisfy p ≥ F (sn+1) ≥ (1−ε)p+φ(p)
1+φ(p) , which yields a contradiction if ε<φ(p) 1−p

p . We

conclude that Fφ is a strictly increasing, continuous c.d.f. that satisfies Fφ(x) ≤ F (x) for

all x.
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Define n(x) := sup{n ∈N : sn−1 ≤ x}. Then

Fφ(x)

F (x)
= 1− x − sn(x)

sn(x)+1 − sn(x)

F (sn(x)+1)−F (x)

F (x)
≥ 1− F (sn(x)+1)−F (sn(x))

1−F (sn(x)+1)

≥ 1−
F (sn(x))+φ(F (sn(x)))

1+φ(F (sn(x))) −F (sn(x))

1− F (sn(x))+φ(F (sn(x)))
1+φ(F (sn(x)))

= 1−φ(F (sn(x))) → 1 (4.40)

as x ↑ xR , so that F ↑(x) ∼ F (x) by our earlier remark.

Let (sn)n∈N and (s̃n)n∈N be the sequences associated with Fφ and Fφ̃ and assume

φ̃(y) ≤φ(y) for all y ∈ [0,1). We prove s̃n ≤ sn for all n ∈N by induction. The inequality

s̃1 ≤ s1 is immediate from the definition. Now, assume that s̃n ≤ sn and observe that

(F (s)+q)/(1+q) is non-decreasing in s for every q ≥ 0, and in q for every s ∈R. Thus,

any x that satisfies F (x) ≥ (F (sn)+φ(F (sn)))/(1+φ(F (sn))) evidently satisfies F (x) ≥
(F (s̃n)+ φ̃(F (s̃n)))/(1+ φ̃(F (s̃n))) and hence s̃n+1 ≤ sn+1.

As Fφ(x) ≥ F (x) implies G←(Fφ(x)) ≥G←(F (x)), the proof is complete once we show

that there is a version of φ such that limsupx↑xR

G←(F (x))
G←(Fφ(x)) ≥ 1. To this end, we construct

a suitable φ inductively.

Fix φ1 := 1/2. Then, for n = 1,2, . . ., let rn+1 := inf
{

x ≥ 0 : F (x) ≥ F (sn )+φn
1+φn

}
, denote

φn+1 := min{φn ,F (G←(rn+1))2/(4E[B ]2)} and defineφ(y) :=φn+1 for y ∈ [F (sn),F (sn+1)).

Since φ(F (sn)) ≤ φn , it must be that sn ≤ rn for all n ∈ N. As a consequence,

φ(F (sn)) ≤ 2−2E[B ]−2F (G←(sn+1))2. Writing η(x) :=φ(F (sn(x))) for notational conveni-

ence, one may now use (4.40) to deduce

G←(F (x))=inf{z ∈R : G(z) ≥ F (x)} = inf{z ∈R : G(z) ≤ F (x)}

≥inf

{
z ∈R : G(z) ≤ Fφ(x)

1−η(x)

}

=inf

{
z −√

η(x) ∈R : G(z)+E[B ]−1
∫ z

z−pη(x)
F (t )dt ≤ Fφ(x)+ η(x)

1−η(x)
Fφ(x)

}

≥inf

{
z ∈R : G(z)+E[B ]−1

√
η(x)F (z) ≤ Fφ(x)+ η(x)

1−η(x)

}
−√

η(x)

≥G←(Fφ(x))−√
η(x),

where the last inequality follows from the relation

η(x)

1−η(x)
−E[B ]−1

√
η(x)F (z) ≤ φ(F (sn(x)))

1−φ(F (sn(x)))
−E[B ]−1

√
φ(F (sn(x)))F (G←(F (sn(x)+1)))

≤√
φ(F (sn(x)))

[
2
√
φ(F (sn(x)))−E[B ]−1F (G←(F (sn(x)+1)))

]
≤ 0

for all z ≤G←(Fφ(x)) ≤G←(F (sn(x)+1)). We conclude that G(F↑(x)) ∼G(F (x)) as x ↑ xR .
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4.6 Scaled sojourn time tends to zero in probability

The current section is dedicated to the proof of Theorem 4.3.6. The intuition behind

the proof is that the sojourn times of all jobs of size at most x̃ρ grow slower than E[TFB],

where x̃ρ is a function that depends on F . Alternatively, the fraction of jobs of size at

least x̃ρ tends to zero, since x̃ρ → xR as ρ ↑ 1. Section 4.7 discusses the sojourn time of

these jobs in more detail.

For any ε> 0 we have

P

(
TFB

E[TFB]
> ε

)
=

∫ ∞

0
P(TFB(x) > εE[TFB])dF (x) ≤P(TFB(x̃ρ) > εE[TFB])+F (x̃ρ), (4.41)

where the final term vanishes as ρ ↑ 1 by choice of x̃ρ . The proof is completed if the first

probability at the right-hand side also vanishes as ρ ↑ 1.

In preparation for the analysis of P(TFB(x̃ρ) > εE[TFB]), reconsider the busy period

representation TFB(x)
d=Lx (Wx +x). This relation states that the sojourn time of a job

of size x is equal in distribution to a busy period with job sizes Bi ∧x, initiated by the

job of size x itself and the time Wx required to serve all jobs already in the system up to

level x. Here, the random variable Wx is equal in distribution to the steady-state waiting

time in an M/GI/1/FIFO queue with job sizes Bi ∧x.

Let Nx (t ) denote a Poisson process with rate ρx /E[B ∧x]. Then, it follows from the

busy period representation of TFB that

P((1−ρ)2TFB(x) > y) =P(Lx (Wx +x) > (1−ρ)−2 y)

=P
(

inf

{
t ≥ 0 :

N (t )∑
i=1

(Bi ∧x)− t ≤−(Wx +x)

}
> (1−ρ)−2 y

)

=P
(

inf
t∈[0,(1−ρ)−2 y]

{
N (t )∑
i=1

(Bi ∧x)− t

}
≥−(Wx +x)

)

=P
(

sup
t∈[0,y]

{
t

(1−ρ)2 −
N ((1−ρ)−2t )∑

i=1
(Bi ∧x)

}
≤Wx +x

)
. (4.42)

Additionally, application of Chebychev’s inequality to the above relation yields

P((1−ρ)2TFB(x) > y) ≤P
(

y

(1−ρ)2 −
N ((1−ρ)−2 y)∑

i=1
(Bi ∧x) ≤Wx +x

)

≤P
(∣∣∣Wx +

N ((1−ρ)−2 y)∑
i=1

(Bi ∧x)− ρx

1−ρx
E[(B ∧x)∗]− ρx

(1−ρ)2 y
∣∣∣≥

1−ρx

(1−ρ)2 y −x − ρx

1−ρx
E[(B ∧x)∗]

)

≤
Var[Wx ]+Var

[∑N ((1−ρ)−2 y)
i=1 (Bi ∧x)

]
(

1−ρx

(1−ρ)2 y −x − ρx
1−ρx

E[(B ∧x)∗]
)2
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=
ρ2

x
(1−ρx )2 E[(B ∧x)∗]2 + ρx

1−ρx
E[((B ∧x)∗)2]+ 2ρxE[(B∧x)∗]

(1−ρ)2 y(
1−ρx

(1−ρ)2 y −x − ρx
1−ρx

E[(B ∧x)∗]
)2 . (4.43)

At this point, similar to the approach in Section 4.4, we distinguish between the finite

and infinite variance cases.

4.6.1 Finite variance

This section considers all functions F that satisfy one of the conditions in the theorem

statement and have finite variance. Specifically, this excludes the case xR = ∞ for

β(F ) >−2. Fix

p̃(F ) :=


β(F )

β(F )+1
if F ∉ MDA(Λ) and xR =∞,

β(F (xR−(·)−1)

β(F (xR−(·)−1))−1
if F ∉ MDA(Λ) and xR <∞, and

1 if F ∈ MDA(Λ),

(4.44)

and γ̃ ∈ (p̃(F )/2,1), and define ν(ρ) := (1−ρ)γ̃ and x̃ρ := xν(ρ)
ρ = G←

(
1− 1−ρ

ρ
1−ν(ρ)
ν(ρ)

)
.

Indeed x̃ρ → xR , and we proceed with the analysis in (4.43). Noting that E[((B ∧x)∗)2] =
E[(B∧x)3]

3E[B ] ≤ xE[B 2]
3E[B ] = 2

3E[B∗]x and substituting x = x̃ρ , gives

P((1−ρ)2TFB(x̃ρ) > y) ≤

(
1−ρ

1−ρx̃ρ

)2
E[B∗]2 + 1−ρ

1−ρx̃ρ

2
3E[B∗](1−ρ)x̃ρ +2E[B∗]y( 1−ρx̃ρ

1−ρ y − (1−ρ)x̃ρ − 1−ρ
1−ρx̃ρ

ρ x̃ρE[B∗]
)2

= E[B∗]2ν(ρ)2 + 2
3E[B∗]ν(ρ)(1−ρ)xν(ρ)

ρ +2E[B∗]y(
ν(ρ)−1 y − (1−ρ)xν(ρ)

ρ −ρ
x
ν(ρ)
ρ
E[B∗]ν

)2 .

We now return to the probability P(TFB(x̃ρ) > εE[TFB]) in relation (4.41). By The-

orems 4.3.1 and 4.3.2, there exists C > 0 such that the inequality (1 − ρ)2E[TFB] ≥
C F (G←(ρ)) holds true for all ρ sufficiently close to one. Denoting ε̃ := εC , this gives

P(TFB(x̃ρ) > εE[TFB]) ≤P((1−ρ)2TFB(x̃ρ) > ε̃F (G←(ρ)))

≤ E[B∗]2ν(ρ)2 + 2
3E[B∗]ν(ρ)(1−ρ)xν(ρ)

ρ +2ε̃E[B∗]F (G←(ρ))(
ε̃ν(ρ)−1F (G←(ρ))− (1−ρ)xν(ρ)

ρ −ρ
x
ν(ρ)
ρ
E[B∗]ν(ρ)

)2

=
E[B∗]2 ν(ρ)4

F (G←(ρ))2 + 2E[B∗]
3

ν(ρ)3(1−ρ)x
ν(ρ)
ρ

F (G←(ρ))2 +2ε̃E[B∗] ν(ρ)2

F (G←(ρ))(
ε̃− ν(ρ)(1−ρ)x

ν(ρ)
ρ

F (G←(ρ))
−ρ

x
ν(ρ)
ρ
E[B∗] ν(ρ)2

F (G←(ρ))

)2 .
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Subsequently, we observe for any ν ∈ (0,1) that

lim
ρ↑1

(1−ρ)xνρ = lim
ρ↑1

(1−ρ)G←
(
1− 1−ν

ν

1−ρ
ρ

)
= lim

z→xR

ν
1−νG(z) · z

1+ ν
1−νG(z)

≤ lim
z→xR

ν · zG(z)

1−ν ,

(4.45)

where zG(z) → 0 as z → xR since E[B 2] <∞ (cf. Section 4.4.1). It therefore follows that

(1−ρ)xν(ρ)
ρ = o(ν(ρ)) as ρ ↑ 1, and consequently limρ↑1P(TFB > εE[TFB]) = 0 provided

that limρ↑1
ν(ρ)2

F (G←(ρ))
= 0.

Write x = (1−ρ)−1. By Lemma 4.4.2, it suffices to showα
(
(·)−2γ̃F (G←(1− (·)−1))

)
< 0.

This relation follows from Lemma 4.4.1, Corollary 4.4.7 and our choice of γ̃:

α

(
(·)−2γ̃

F (G←(1− (·)−1))

)
≤−2γ̃−β

(
F (G←(1− (·)−1))

)
≤−2γ̃+ p̃(F ) < 0.

4.6.2 Infinite variance

This section regards all functions F that satisfy xR =∞,β(F ) >−2. In this case, x̃ρ can

be any function that satisfies both limρ↑1 x̃ρ =∞ and limρ↑1
x̃ρ

G(x̃ρ ) log
(

1
1−ρ

) = 0.

Theorem 4.3.1 implies that there exists C > 0 such that E[TFB] ≥C log
(

1
1−ρ

)
for all ρ

sufficiently close to one. Again, denote ε̃= εC . The analysis resumes with relation (4.43),

where we substitute y by ε̃(1−ρ)2 log
(

1
1−ρ

)
to obtain

P(TFB(x) > εE[TFB]) ≤P
(
(1−ρ)2TFB(x) > ε̃(1−ρ)2 log

(
1

1−ρ
))

≤
1

(1−ρx )2 E[(B ∧x)∗]2 + 1
1−ρx

E[((B ∧x)∗)2]+2ε̃E[(B ∧x)∗] log
(

1
1−ρ

)
(
ε̃(1−ρx ) log

(
1

1−ρ
)
−x − ρx

1−ρx
E[(B ∧x)∗]

)2 .

By relation (4.22), there exists a function b(x) that is bounded for all x sufficiently

large and satisfies m2(x) = E[B ]b(x)xG(x). As such, E[((B ∧x)∗)2] = E[(B∧x)3]
3E[B ] ≤ xm2(x)

3E[B ] =
b(x)x2G(x)/3 and similarly E[(B ∧x)∗] = m2(x)

2E[B ] = b(x)xG(x)/2. Substituting this into the

above relation yields

P(TFB(x) > εE[TFB]) ≤
b(x)2

4
x2G(x)2

(1−ρx )2 + b(x)
3

x2G(x)
1−ρx

+ ε̃b(x)xG(x) log
(

1
1−ρ

)
(
ε̃(1−ρx ) log

(
1

1−ρ
)
−x − ρx b(x)

2
xG(x)
1−ρx

)2 ,

so that

P(TFB(x) > εE[TFB])

≤
b(x)2

4
G(x)2

(1−ρx )2
x2

(1−ρx )2 log2
(

1
1−ρ

) + b(x)
3

G(x)
1−ρx

x2

(1−ρx )2 log2
(

1
1−ρ

) + ε̃b(x) G(x)
1−ρx

x

(1−ρx ) log
(

1
1−ρ

)
(
ε̃− x

(1−ρx ) log
(

1
1−ρ

) − ρx b(x)
2

G(x)
1−ρx

x

(1−ρx ) log
(

1
1−ρ

)
)2 .
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The result follows after noting that 1−ρx = 1−ρG(x) ≥G(x) and substituting x̃ρ for x.

4.7 Asymptotic behaviour of the sojourn time tail

In this section, we prove Theorem 4.3.7 after presenting two facilitating propositions.

The proofs of the propositions are postponed to Sections 4.7.1 and 4.7.2. Throughout

this section, e(q) will denote an exponentially distributed random variable with rate

q > 0. We abuse notation by writing e(0) =+∞.

Reconsider the relation TFB(x)
d= Lx (Wx + x) to gain some intuition. A rough ap-

proximation of the duration of a busy period, given Wx +x units of work at time t = 0,

is (Wx + x)/(1−ρx ). The scaled sojourn time (1−ρ)2TFB(x) is then approximated by
1−ρ

1−ρx
(1−ρ)(Wx +x). As in Section 4.4, define xνρ =G←

(
1− 1−ρ

ρ
1−ν
ν

)
,ν ∈ (1−ρ,1), so that

1−ρ
1−ρx

= ν. Then for all ν ∈ (0,1), we have (1−ρ)2TFB(xνρ)
d≈ ν(1−ρ)(Wxνρ + xνρ). We will

show that (1−ρ)xνρ → 0 for all fixed ν ∈ (0,1). Instead, the following proposition shows

that (1−ρ)Wxνρ behaves as an exponentially distributed random variable as ρ ↑ 1:

Proposition 4.7.1. Let xνρ =G←
(
1− 1−ρ

ρ
1−ν
ν

)
,ν ∈ (1−ρ,1), and let W ρ

x denote the steady-

state waiting time in an M/GI/1/FIFO queue with job sizes Bi ∧ x and arrival rate

ρx /E[B ∧x]. Then, for any fixed ν ∈ (0,1), (1−ρ)Wxνρ
d→ Exp((νE[B∗])−1)as ρ ↑ 1.

Kingman [83] proved that if W ρ =W ρ
∞ denotes the steady-state waiting time in the

non-truncated system, then (1−ρ)W ρ d→ Exp(E[B∗]−1). Proposition 4.7.1 shows how

jobs can be truncated such that the exponential behaviour is preserved, and quantifies

how the truncation affects the parameter of the exponential distribution.

Substituting the result in Proposition 4.7.1 into our approximation above yields

(1−ρ)2TFB(xνρ)
d≈ Exp((ν2E[B∗])−1) for every fixedν ∈ (0,1). We will show that the fraction

of jobs for which ν is in (ε,1−ε) scales as F (G←(ρ)), and that the contribution of other

jobs to the tail of (1−ρ)2TFB is negligible. The result is presented in Proposition 4.7.2,

where we focus on the probability P((1−ρ)2TFB > e(q)) for its connection to the Laplace

transform of T ∗
FB.

Proposition 4.7.2. Assume F ∈ MDA(H), where H is an extreme value distribution. Let

p(H) = α
α−1 if H =Φα, α> 2; p(H) = 1 if H =Λ and p(H) = α

α+1 if H =Ψα, α> 0. Then

lim
ρ↑1

P((1−ρ)2TFB > e(q))

F (G←(ρ))
=

∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1

)2

(
1−ν
ν

)p(H)

dν

(4.46)

for all q ≥ 0. Here, the integral is finite for all q ≥ 0.



90 Chapter 4. Sojourn time under the FB policy

We are now ready to prove Theorem 4.3.7. Using the relation E[e−qY ] =P(e(q) > Y ),

one sees that P((1−ρ)2T ρ

FB > e(q)) = 1−E[e−q(1−ρ)2T
ρ
FB ] and consequently

P((1−ρ)2TFB > e(q))

F (G←(ρ))
= (1−ρ)2E[TFB]

F (G←(ρ))
·

1−E
[

e−q(1−ρ)2TFB

]
(1−ρ)2E[TFB]

= (1−ρ)2E[TFB]

F (G←(ρ))
·q ·E

[
e−q(1−ρ)2T ∗

FB

]
,

where T ∗
FB is the residual sojourn time and has density P(TFB > t )/E[TFB]. Consequently,

lim
ρ↑1

E
[

e−q(1−ρ)2T ∗
FB

]
= lim

ρ↑1

F (G←(ρ))

(1−ρ)2E[TFB]

∫ 1

0

8E[B∗]ν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1

)2

(
1−ν
ν

)p(H)

dν

= r (H)−1
∫ 1

0

8ν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1

)2

(
1−ν
ν

)p(H)

dν (4.47)

for all q ≥ 0, where r (H) was introduced in Theorem 4.3.2. It follows from Section 4.4.2

that limq↓0 limρ↑1E
[

e−q(1−ρ)2T ∗
FB

]
= 1. Additionally, the right-hand side is continuous

in q , so that (1−ρ)2T ∗
FB converges to some non-degenerate random variable by the

Continuity Theorem [54, Section XIII.1, Theorem 2a].

The Laplace transform inversion formula (12) in Bateman [17, p.234] states that

f (t ) = 2
p

tp
π
−2te t Erfc(

p
t ) is the Laplace inverse of s−1/2(s1/2+1)−2, i.e.

∫ ∞
0 e−qt f (t )dt =

1p
q(

p
q+1)2 . Consequently, we have∫ ∞

0
e−qt g (t ,ν)dt = 1√

1+4E[B∗]qν2
(√

1+4E[B∗]qν2 +1
)2 (4.48)

for g (t ,ν) = e
− t

4E[B∗]ν2

4E[B∗]ν2 f
(

t
4E[B∗]ν2

)
, and hence relation (4.47) may be rewritten as

lim
ρ↑1

E
[

e−q(1−ρ)2T ∗
FB

]
=

∫ ∞

0
e−qt

[∫ 1

0
8r (H)−1ν

(
1−ν
ν

)p(H)

g (t ,ν)dν

]
dt

=:
∫ ∞

0
e−qt g∗(t )dt .

We conclude that the limiting random variable limρ↑1(1−ρ)2T ∗
FB has density g∗. Fur-

thermore, as

lim
ρ↑1

E
[

e−q(1−ρ)2T ∗
FB

]
= lim

ρ↑1

∫ ∞

0
e−qτP((1−ρ)2TFB > τ)

(1−ρ)2E[TFB]
dτ

= lim
ρ↑1

∫ ∞

0
e−qτ P((1−ρ)2TFB > τ)

r (H)E[B∗]F (G←(ρ))
dτ,
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for all q ≥ 0, we also see that limρ↑1
P((1−ρ)2TFB>y)

r (H)E[B∗]F (G←(ρ))
= g∗(y) almost everywhere.

To see that g∗ is monotone, it suffices to show that f (t) is monotone. To this end,

we exploit the continued fraction representation (13.2.20a) in Cuyt et al. [42] and find

Erfc(x) = xp
π

e−x2 1

x2 +
1/2

1+
1

x2 +
3/2

1+ . . .

≥ e−x2

x
p
π

(
1− x2 +3/2

2x4 +6x2 +3/2

)
. (4.49)

As a consequence, one sees that

d

dt
f (t ) = 1+2tp

π
p

t
−2(1+ t )e t Erfc(

p
t )

≤
1+2t −2(1+ t )

(
1− t+3/2

2t 2+6t+3/2

)
p
π
p

t
=

−1+ 2t 2+5t+3
2t 2+6t+3/2p
π
p

t
,

which is negative for all t ≥ 0. We conclude the section with the postponed proofs of

Propositions 4.7.1 and 4.7.2.

4.7.1 Proof of Proposition 4.7.1

The Pollaczek-Khintchine formula states that E[e−s(1−ρ)Wx ] = 1−ρx

1−ρxE[e−s(1−ρ)(B∧x)∗ ]
. In this

representation, we expand the Laplace-Stieltjes transform E[e−s(1−ρ)(B∧x)∗ ] around ρ = 1

to find

E[e−s(1−ρ)Wx ] = 1−ρx

1−ρx
(
1−E[(B ∧x)∗](1−ρ)s +o(1−ρ)

)
and hence

E[e
−s(1−ρ)Wxνρ ] = 1

1+ 1−ρ
1−ρxνρ

ρxνρE[(B ∧xνρ)∗]s +o

(
1−ρ

1−ρxνρ

) = 1

1+νρxνρE[(B ∧xνρ)∗]s +o(1)
,

where o(1) vanishes as ρ ↑ 1. By definition of xνρ , xνρ →∞ and ρxνρ ↑ 1 as ρ ↑ 1 for any

fixed ν ∈ (0,1). In particular, limρ↑1E[e
−s(1−ρ)Wxνρ ] = 1

1+νE[B∗]s . The proof is completed

by applying the Continuity Theorem [54, Section XIII.1, Theorem 2a].

4.7.2 Proof of Proposition 4.7.2

We require functions νl (ρ) ↓ 0 and νu(ρ) ↑ 1 that distinguish the jobs that significantly

contribute to the tail of (1−ρ)2TFB, and those that do not. For the former function, fix

γ ∈ (p(H )/2,1) and let νl (ρ) = (1−ρ)γ as in Section 4.6.1. This is possible as p(H ) < 2 for
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all H to which the theorem applies. For the latter function, we refer to relation (4.45)

to verify that there exists a function ν(ρ) ↑ 1 such that (1−ρ)xν(ρ)
ρ → 0. Let νu(ρ) be a

function with this property, and write

P((1−ρ)2TFB > e(q))

F (G←(ρ))

=
∫ νl (ρ)

ν=0
P((1−ρ)2TFB(xνρ) > e(q))

dF (xνρ)

F (G←(ρ))

+
∫ νu (ρ)

ν=νl (ρ)
P((1−ρ)2TFB(xνρ) > e(q))

dF (xνρ)

F (G←(ρ))

+
∫ 1

ν=νu (ρ)
P((1−ρ)2TFB(xνρ) > e(q))

dF (xνρ)

F (G←(ρ))

=: Î(ρ)+ ÎI(ρ)+ ÎII(ρ). (4.50)

The next paragraphs study the behaviour of P((1−ρ)2TFB(x) > e(q)), which will then fa-

cilitate the analysis of the above three regions. Specifically, we will derive the asymptotic

behaviour of ÎI(ρ) in terms of q , and show that Î(ρ)+ ÎII(ρ) = o(1) for any q ≥ 0.

Define X ρ
x (t ) := t

1−ρ −∑N ((1−ρ)−2t )
i=1 (1−ρ)(Bi ∧x). Then X ρ

x (t ) is a spectrally negative

Lévy process and we obtain

P((1−ρ)2TFB(x) > e(q)) =P
(

sup
t∈[0,e(q)]

X ρ
x (t ) ≤ (1−ρ)Wx + (1−ρ)x

)
(4.51)

from relation (4.42). The Laplace exponent of X ρ
x (t ) is given by ψ(s) := t−1 logE[e sX

ρ
x (t )],

and has right-inverse ϕ(x,ρ, q) := sup{s ≥ 0 : ψ(x,ρ, s) = q}. With these notions, rela-

tion (8.4) in Kyprianou [90] states that

P((1−ρ)2T ρ

FB(x) > e(q)) =P(
e(ϕ(x,ρ, q)) ≤ (1−ρ)Wx + (1−ρ)x

)
. (4.52)

Since

ψ(x,ρ, s) = t−1 logE

[
e

st
1−ρ−

∑N ((1−ρ)−2 t )
i=1 (1−ρ)s(Bi∧x)

]
= s

1−ρ + t−1 logE

[
e−

∑N ((1−ρ)−2 t )
i=1 (1−ρ)s(Bi∧x)

]
and

E[e−
∑N ((1−ρ)−2 t )

i=1 (1−ρ)s(Bi∧x)] =
∞∑

n=0
E[e−(1−ρ)s(B∧x)]n

(
λt

(1−ρ)2

)n

n!
e
− λt

(1−ρ)2

= e
− λt

(1−ρ)2

(
1−E[e−(1−ρ)s(B∧x)]

)
,
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we obtainψ(x,ρ, s) = s
1−ρ − λ

(1−ρ)2

(
1−E[e−(1−ρ)s(B∧x)]

)
. A Taylor expansion around ρ = 1

now yields

ψ(x,ρ, s)

= s

1−ρ − λ

(1−ρ)2

(
1−

(
1− (1−ρ)sE[B ∧x]+ (1−ρ)2s2

2
E[(B ∧x)2]+o((1−ρ)2s2)

))
= s

1−ρ −
(
ρx s

1−ρ − λE[(B ∧x)2]

2
s2 +o(s2)

)
= 1−ρx

1−ρ s + ρE[(B ∧x)2]

2E[B ]
s2 +o(s2),

so that limρ↑1ψ(xνρ ,ρ, s) = ν−1s +E[B∗]s2 for all ν> 0, and consequently

lim
ρ↑1

ϕ(xνρ ,ρ, q) =
√
ν−2 +4E[B∗]q −ν−1

2E[B∗]
=

√
1+4E[B∗]qν2 −1

2E[B∗]ν
=:ϕ(ν, q). (4.53)

Similarly, one deduces that limρ↑1νl (ρ)ψ(xνl (ρ)
ρ ,ρ, s) = s and

lim
ρ↑1

νl (ρ)−1ϕ(xνl (ρ)
ρ ,ρ, q) = q. (4.54)

We now gathered sufficient tools to analyse the asymptotic behaviour of ÎI(ρ).

Fix ε ∈ (0,1/3). We have already proven the relations (1−ρ)W ρ

xνρ
→ e((νE[B∗])−1)

and (1−ρ)xνρ → 0 as ρ ↑ 1 for all ν ∈ (0,1). Since e(q1) ≤st e(q2) whenever q1 ≥ q2,

relations (4.52) and (4.53) imply

P((1−ρ)2T ρ

FB(xνρ) > e(q)) ≤P(
e((1+ε)ϕ(ν, q)) ≤ e((1−ε)(νE[B∗])−1)+ε)

= e−(1+ε)εϕ(ν,q) (1+ε)ϕ(ν, q)

(1+ε)ϕ(ν, q)+ (1−ε)(νE[B∗])−1 +1−e−ε(1+ε)ϕ(ν,q)

≤
√

1+4E[B∗]qν2 −1√
1+4E[B∗]qν2 +1− 4ε

1+ε
+1−e−ε·

p
1+4E[B∗]qν2−1

E[B∗]ν

for all ρ ≥ ρε, where ρε ∈ (0,1) is fixed sufficiently close to one. Consequently, for all

ρ ≥ ρε,

ÎI(ρ) ≤
∫ νu (ρ)

νl (ρ)

√
1+4E[B∗]qν2 −1√

1+4E[B∗]qν2 +1− 4ε
1+ε

dF
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

+
∫ νu (ρ)

νl (ρ)

(
1−e−ε·

p
1+4E[B∗]qν2−1

E[B∗]ν

)
dF

(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

≤−
 √

1+4E[B∗]qν2 −1√
1+4E[B∗]qν2 +1− 4ε

1+ε

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

νu (ρ)

ν=νl (ρ)

+
∫ νu (ρ)

νl (ρ)

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1− 4ε

1+ε
)2

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν
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−
(

1−e−ε·
p

1+4E[B∗]qν2−1
E[B∗]ν

)
F

(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

νu (ρ)

ν=νl (ρ)

+4q
∫ νu (ρ)

νl (ρ)
ε ·e−ε·

p
1+4E[B∗]qν2−1

E[B∗]ν

F
(
G←

(
1− 1−ρ

ρ
1−ν
ν

))
F (G←(ρ))

dν.

In Section 4.4.2, we deduced that F (G←(1− (·)−1)) is regularly varying with index

−p(H). The Uniform Convergence Theorem hence implies

limsup
ρ↑1

ÎI(ρ) ≤−
[ √

1+4E[B∗]qν2 −1√
1+4E[B∗]qν2 +1− 4ε

1+ε

(
1−ν
ν

)p(H)
]1

ν=0

+
∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1− 4ε

1+ε
)2

(
1−ν
ν

)p(H)

dν

−
[(

1−e−ε·
p

1+4E[B∗]qν2−1
E[B∗]ν

)(
1−ν
ν

)p(H)
]1

ν=0

+4q
∫ 1

0
ε ·e−ε·

p
1+4E[B∗]qν2−1

E[B∗]ν

(
1−ν
ν

)p(H)

dν

=
∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1− 4ε

1+ε
)2

(
1−ν
ν

)p(H)

dν

+4q
∫ 1

0
ε ·e−ε·

p
1+4E[B∗]qν2−1

E[B∗]ν

(
1−ν
ν

)p(H)

dν.

Both these integrals are bounded for all ε ∈ (0,1/3) and all q ≥ 0. Additionally, both

integrands are increasing in ε for all ε sufficiently small. One may thus take the limit

ε ↓ 0 and apply the Dominated Convergence Theorem to find

limsup
ρ↑1

ÎI(ρ) ≤
∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1

)2

(
1−ν
ν

)p(H)

dν. (4.55)

Similarly, one may show that

liminf
ρ↑1

ÎI(ρ) ≥
∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1+ 4ε

1−ε
)2

(
1−ν
ν

)p(H)

dν,

and we conclude

lim
ρ↑1

ÎI(ρ) =
∫ 1

0

8E[B∗]qν√
1+4E[B∗]qν2

(√
1+4E[B∗]qν2 +1

)2

(
1−ν
ν

)p(H)

dν. (4.56)

Second, consider Î(ρ). Define M(ρ) := (1−ρ)−γ̂ for some γ̂ ∈ (
p(H)/2,γ

)
and recall

that (1−ρ)x → 0 and (1−ρ)W ρ
x

d→ 0 (and hence in probability) for all x ≤ xνl (ρ)
ρ . Thus,
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for all x ≤ xνl
ρ and all ρ sufficiently large, we have

Î(ρ) =
∫ νl (ρ)

ν=0
P

(
e(ϕ(xνρ ,ρ, q)) ≤ (1−ρ)Wxνρ + (1−ρ)xνρ

) dF (xνρ)

F (G←(ρ))

≤
P

(
e(ϕ(xνl (ρ)

ρ ,ρ, q)) ≤ 2M(ρ)
)

F (G←(ρ))
+ P((1−ρ)W ρ

x ≥ M(ρ))

F (G←(ρ))
=: Îa(ρ)+ Îb(ρ).

Fix δ ∈ (
0, p(H)−γ− γ̂)

. Potter’s Theorem [24, Theorem 1.5.6] states that F (G←(ρ)) ≥
C (1−ρ)p(H)+δ for some constant C > 0 and all ρ sufficiently close to one. Also, one may

readily deduce from relation (4.54) that e(ϕ(xνl (ρ)
ρ ,ρ, q)) ≥st e(2qνl (ρ)) for all x ≤ xνl (ρ)

ρ

and ρ sufficiently large. Consequently,

limsup
ρ↑1

Îa(ρ) ≤ limsup
ρ↑1

1−e−4qνl (ρ)M(ρ)

F (G←(ρ))
≤ lim

ρ↑1

1−e−4q(1−ρ)γ−γ̂

C (1−ρ)p(H)+δ

= lim
ρ↑1

4q(γ− γ̂)(1−ρ)γ−γ̂−1e−4q(1−ρ)γ−γ̂

C
(
p(H)+δ)

(1−ρ)p(H)−1+δ

= lim
ρ↑1

4q(γ− γ̂)

C
(
p(H)+δ) ·exp

[
−4q(1−ρ)γ−γ̂+ (

γ− γ̂−p(H)−δ)
log(1−ρ)

]
= 0.

For term Îb(ρ), we apply Markov’s inequality and Potter’s Theorem to obtain

limsup
ρ↑1

Îb(ρ) ≤ limsup
ρ↑1

1−ρ
1−ρx

ρxE[(B ∧x)∗]

M(ρ)F (G←(ρ))
≤ lim

ρ↑1
C1

E[B∗]νl (ρ)

M(ρ)(1−ρ)p(H)+δ

= lim
ρ↑1

C1E[B∗](1−ρ)γ+γ̂−p(H)−δ = 0.

Finally, consider term ÎII(ρ). For this term, the claim follows readily from the Uni-

form Convergence Theorem and the property νu(ρ) ↑ 1:

limsup
ρ↑1

ÎII(ρ) ≤ limsup
ρ↑1

F (xνu
ρ )

F (G←(ρ))
= limsup

ρ↑1

F
(
G←

(
1− 1−ρ

ρ
1−νu (ρ)
νu (ρ)

))
F (G←(ρ))

= limsup
ρ↑1

(
1−νu(ρ)

ρνu(ρ)

)p(H)

= 0.

This concludes the proof of Proposition 4.7.2. The chapter is concluded with some

additional Matuszewska theory and the postponed proofs of the lemmas in Section 4.4.1.

4.A Additional Matuszewska theory

This appendix gathers some results on Matuszewska indices. Lemmas 4.4.1 and 4.4.2 are

proven directly from Definition 4.2.1. Then, a generalised version of Potter’s Theorem

allows us to prove Lemmas 4.4.5 and 4.4.6.
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Proof of Lemma 4.4.1. Let α1 >α( f1) and α2 >α( f2). Then, by definition of the upper

Matuszewska index, there exist C1,C2 > 0 such that for all µ ∈ [1,µ∗],µ∗ > 1, and all x

sufficiently large we have f1(µx) ≤C1µ
α1 f1(x) and f2(µx) ≤C2µ

α2 f2(x). Consequently,

we have limsupx→∞
f1(µx) f2(µx)

f1(x) f2(x) ≤C1C2µ
α1+α2 and thus α( f1 · f2) ≤α( f1)+α( f2).

Similarly, if f1 is non-decreasing, we have

f1( f2(µx)) ≤ f1(C2µ
α2 f2(x)) ≤C1Cα1

2 µα1α2 f1( f2(x))

and thus α( f1 ◦ f2) ≤ α( f2) ·α( f2). The results on the lower Matuszewska indices are

proven analogously.

Proof of Lemma 4.4.2. As f is positive, it suffices to show that limsupx→∞ f (x) = 0. For

sake of contradiction, assume that this is false. Then there exists a constant m > 0 and a

sequence (xn)n∈N, xn →∞, such that f (xn) ≥ m for all n ∈N. Now, by definition of the

upper Matuszewska index, there exists C > 0 such that for all µ ∈ [1,µ∗],µ∗ > 1, we have

f (x) ≥Cµ−α( f )/2 f (µx) for all x sufficiently large. As a consequence, for some N ∈Nwe

have f (xN ) ≥C (xn/xN )−α( f )/2 f (xn) ≥C m(xn/xN )−α( f )/2 for any fixed n ≥ N . This is a

contradiction for any xn that satisfies xn > xN (C m/ f (xN ))2/α( f ).

The following result is a generalised version of Potter’s theorem and gives bounds

on the ratio f (y)/ f (x):

Theorem 4.A.1 (Bingham et al. [24], Proposition 2.2.1). Let f be positive.

(i) If α( f ) <∞, then for every α > α( f ) there exist positive constants C and X such

that f (y)/ f (x) ≤C (y/x)α for all y ≥ x ≥ X .

(ii) If β( f ) >−∞, then for every β<β( f ) there exist positive constants D and X such

that f (y)/ f (x) ≥ D(y/x)β for all y ≥ x ≥ X ′.

Theorem 4.A.1 allows us to derive a relation between the Matuszewska indices of f

to those of f ←, which is presented as Lemma 4.A.2:

Lemma 4.A.2. Let f be positive and locally integrable on [X ,∞). If f is strictly increasing,

unbounded above and α( f ) <∞, then β( f ←) = 1/α( f ). If β( f ) > 0, then α( f ←) = 1/β( f ).

Proof. By definition of the upper Matuszewska index, for all α > α( f ) there exists a

constant C > 0 such that for each µ∗ > 1, f (µx)/ f (x) ≤Cµα uniformly in µ ∈ [1,µ∗] as

x →∞. In particular, for all x sufficiently large we have f ((µ/C )1/αx) ≤ µ f (x). As f is

strictly increasing and unbounded above, one can hence see that

lim
x→∞

f ←(µx)

f ←(x)
= lim

y→∞
f ←(µ f (y))

f ←( f (y))
≥ lim

y→∞
f ←( f ((µ/C )1/αy))

y
≥ (C )−1/αµ1/α (4.57)

uniformly for µ ∈ [1,µ∗]. As a consequence, β( f ←) ≥ 1/α( f ).
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On the other hand, if β( f ←) > 1/α( f ),α( f ) > 0, then Theorem 4.A.1(ii) claims that

for some ε> 0 sufficiently small there exists a constant C ′ > 0 such that f ←(y)/ f ←(z) ≥
C ′(y/z)1/α( f )+ε for all y ≥ z sufficiently large. By substitution of y = f (µx) and z = f (x),

we obtain

C ′
(

f (µx)

f (x)

)1/α( f )+ε
≤ f ←( f (µx))

f ←( f (x))
=µ

and hence limx→∞ f (µx)/ f (x) ≤ ((C ′)−1µ)
α( f )

1+εα( f )) . This inequality, however, indicates

that α( f ) was not the infimum over all α satisfying (4.4), which is a contradiction.

The relation α( f ←) = 1/β( f ) is proven similarly.

A more general version of this lemma has been stated in several other works [24, 95];

however, these works refer to an unpublished manuscript by De Haan and Resnick for

the corresponding proof.

Our final results relate the Matuszewska indices of F to those of related functions.

First, Lemma 4.4.5 relates the Matuszewska indices of F to those of G . Its proof is similar

to the proof of Lemma 6 in Lin et al. [95].

Proof of Lemma 4.4.5. Assume xR = ∞. Then by definition of α(F ), we have for all

α>α(F ) that F (µt )/F (t ) ≤C (1+o(1))µα uniformly in µ ∈ [1,µ∗] and hence

E[B ]G(µx) =µ
∫ ∞

x
F (µτ)dτ≤C (1+o(1))µα+1

∫ ∞

x
F (τ)dτ

=C (1+o(1))µα+1E[B ]G(x)

as x →∞. On the other hand, if xR <∞ then

E[B ]G(xR − (µx)−1) =
∫ xR

xR−(µx)−1
F (t )dt =

∫ ∞

x
µ−1τ−2F (xR − (µτ)−1)dτ

≤C (1+o(1))µα−1
∫ ∞

x
τ−2F (xR −τ−1)dτ

=C (1+o(1))µα−1E[B ]G(xR −x−1)

as x →∞. The claims on the lower Matuszewska index can be proven analogously.

Second, Lemma 4.4.6 relates the Matuszewska indices of F to those of G←. It does

so by combining Lemmas 4.4.1, 4.4.5 and 4.A.2.

Proof of Lemma 4.4.6. We only prove the relation between the lower Matuszewska in-

dices, as the relation between the upper Matuszewska indices can be proven similarly.

First, assume xR =∞. Sinceβ(F ) >−∞, it follows from Lemma 4.4.5 thatβ(G) >−∞
and hence, by Lemma 4.4.1, that α(1/G) = −α(G) ≤ −β(G) < ∞. The result follows
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readily from Lemma 4.A.2 through β(G←(1− (·)−1)) =β((1/G)
←

) = 1/α(1/G) =−1/β(G)

and subsequent application of Lemma 4.4.5.

Similarly, if xR <∞ then α(1/G(xR − (·)−1)) <∞ and

1

xR −G←(1−x−1)
= 1

xR − inf{z : G(z) > 1−x−1}
= inf

{
1

xR − z
: G(z) > 1−x−1

}
= inf{y : G(xR − y−1) > 1−x−1} = inf{y : 1/G(xR − y−1) > x}

=
(

1

G
(
xR − 1

·
))←

(x).

The result then follows fromβ
(

1
xR−G←(1−(·)−1)

)
=β

((
1

G(xR−(·)−1)
(·)

)←)
=1/α

(
1

G(xR−(·)−1)

)
=

−1/β(G(xR − (·)−1)) and application of Lemma 4.4.5.



CHAPTER 5

UNIFORM ASYMPTOTICS FOR COMPOUND

POISSON PROCESSES WITH

REGULARLY-VARYING JUMPS AND VANISHING

DRIFT

This chapter addresses heavy-tailed large-deviation estimates for the tail distribution of

functionals of a class of spectrally one-sided Lévy processes. Our contribution is to show

that these estimates remain valid in a near-critical regime. This complements recent

similar results that have been obtained for the all-time supremum of such processes.

Specifically, we consider local asymptotics of the all-time supremum, the supremum

of the process until exiting [0,∞), the maximum jump until that time, and the time it

takes until exiting [0,∞). The proofs rely, among other things, on properties of scale

functions.

The terminology in this chapter transcends the more specified terminology of the

earlier chapters, but its contributions translate to our understanding of M/GI/1 models

in three ways. First, the described all-time supremum is equivalent to the steady-state

waiting time in a M/GI/1/FIFO model. Second, the time until exiting [0,∞) is identical

to the steady-state sojourn time in a M/GI/1/LIFO model. Finally, we provide a local

analogue of Kingman’s heavy-traffic approximation.

Based on Kamphorst and Zwart [S3].
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5.1 Introduction

The analysis of spectrally one-sided Lévy processes is a topic of fundamental interest

in the stochastic processes literature [90] and arises in many applications, such as

queueing [43] and insurance risk theory [9, 11, 51]. More generally, Lévy processes

and various functionals have been studied extensively over the last decades through

fluctuation theory, leading to many interesting and useful results. If the underlying

Lévy measure is heavy-tailed, then exact expressions are harder to obtain and one often

resorts to asymptotic estimates based on heavy-tailed large deviations. The goal of this

chapter is to assess the robustness of several of these approximations in a regime where

the underlying Lévy process has a small drift.

To make this more specific, consider the compound Poisson process with determin-

istic drift

X ρ(t ) := X0 +
Nρ (t )∑

i=1
Bi − t , (5.1)

where Nρ(t ), t ≥ 0, is a Poisson process with a rate that depends on a drift parameter ρ.

With a slight abuse of terminology, we call X ρ a compound Poisson process throughout

this chapter, and investigate the asymptotic behaviour of various functionals of X ρ un-

der the assumption that the i.i.d. nonnegative jump sizes Bi have a regularly-varying tail

with index α> 2. The initial condition X0 is equal in distribution to Bi and independent

of ρ; we present a more detailed model description in Section 5.2. The long-term drift

E[X ρ(1)−X0] of the process is negative, and of order 1−ρ. In the central limit regime,

we let ρ ↑ 1 so that the long-term drift tends to zero.

A functional that has received ample attention in the literature is the all-time su-

premum Mρ
∞ := supt≥0 X ρ(t). For fixed ρ, as x →∞, the following estimate holds [51,

58, 87, 100]:

P(Mρ
∞ > x) ∼ ρ

E[B1](1−ρ)

∫ ∞

x
P(B1 > t )dt . (5.2)

This approximation can be very inaccurate when ρ is not fixed. Specifically, if ρ ↑ 1 and

x = y/(1−ρ) for fixed y , then P(Mρ
∞ > x) will converge to exp[−2(E[B1]/E[B 2

1 ])y] (this is

a heavy-traffic limit, cf. [135, 136]). The contributions of the present chapter all relate to

the validity of heavy-tail approximations like (5.2) when ρ ↑ 1.

Motivated by the contrast between the two regimes, Olvera-Cravioto et al. [107]

derive an explicit threshold,

x̃ρ :=µ(α−2)
1

1−ρ log
1

1−ρ , (5.3)

for some µ > 0 as specified in the next section, where the two regimes connect. In

particular, they show that estimate (5.2) remains valid when ρ ↑ 1 and x ≥ (1+ ε)x̃ρ .

Similar results, including examinations when the heavy-traffic approximation remains
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valid, can be found in the works of Blanchet and Lam [25], Denisov and Kugler [45] and

Kugler and Wachtel [88].

The above-mentioned works all focus on global asymptotics of the all-time su-

premum functional Mρ
∞, and one may wonder how robust the obtained insights are

when other functionals of importance are considered. For example, another well-

studied functional of Lévy processes is the first passage time of zero, τρ , which among

others may characterise a busy-period duration in queueing theory. A third functional

of importance is Mρ
τ := supt<τρ X ρ(t ). A series of prior works [13, 101, 144] obtain useful

asymptotic approximations for τρ , while Mρ
τ has been considered in Asmussen [7]. All

these works focus on (a subclass of) subexponential jump sizes and fixed ρ. Our aim is

to investigate how robust these asymptotic estimates are when also ρ ↑ 1.

We feel that our main achievement is a description of the tail behaviour of P(τρ > x)

as x →∞ while ρ ↑ 1. For fixed ρ, Zwart [144] showed that

P(τρ > x) ∼ 1

1−ρP(B1 > (1−ρ)x) (5.4)

as x →∞. In the current chapter, we show that this large-deviations approximation

remains valid as ρ ↑ 1 for all x above a certain threshold x∗
ρ which turns out to be much

larger than threshold (5.3):

x∗
ρ := 1

(1−ρ)2

(
log

1

1−ρ
)k∗

, (5.5)

where k∗ > 2. We actually show that the asymptotic behaviour of P(τρ > x) coincides

with P(Mρ
τ > (1−ρ)x); intuitively, if the process hits zero after time x, then it is likely

that the process obeyed the long-term drift after reaching level (1−ρ)x early in time.

Uniform heavy-tail approximations for Mρ
τ , which are established in this chapter as

by-product of independent interest, yield the given asymptotic. The gap between x∗
ρ

and x̃ρ/(1−ρ) is required for technical reasons; however, we show that our result does

not hold for k∗ = 0 in (5.5) (i.e. if x∗
ρ is proportional to (1−ρ)−2).

Additional theorems that lead to our main result provide uniform heavy-tail approx-

imations on the “local” tail probability P(Mρ
∞ ∈ [x, x +T )) of the all-time supremum

functional Mρ
∞, and uniform heavy-tail approximations on the tail distribution of the

largest jump Bρ
τ until time τρ . The local asymptotics of Mρ

∞ provide a generalization

of Corollary 2.1(b) in Olvera-Cravioto et al. [107] and are obtained in a similar fashion

via a decomposition of the Pollaczek-Khintchine formula. Furthermore, we derive

asymptotic expressions for the conditional expected time of reaching a high level a,

given that level a is reached before time τρ . The corresponding lemma relies heavily

on fluctuation theory for Lévy processes; specifically, it relies on the theory of scale

functions. A recent review article on and examples of scale functions can be found in

Kuznetsov et al. [89] and Hubalek and Kyprianou [73], respectively.
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The chapter is organised as follows. A precise description of the model and an

introduction to the notation used can be found in Section 5.2. Section 5.3 presents and

discusses our results; in particular, Theorems 5.3.1 and 5.3.5 display our main results.

The four subsequent sections are each devoted to the proof of one theorem. Section 5.8

contains the extensive proof of a crucial lemma, and, finally, Section 5.9 provides the

theoretical support for the discussion presented in Section 5.3.1. Finally, the deferred

proof of a minor lemma is presented in Appendix 5.A.

5.2 Preliminaries

Let {B}∪{Bi }∞i=0 be a sequence of non-negative, independent and identically distributed

(i.i.d.) regularly-varying random variables (cf. [24]) with mean E[B ] > 0 and finite

variance σ2
B . More specifically, their common cumulative distribution function (c.d.f.)

FB :R→ [0,1], FB (0) = 0 is characterised by its tail

F B (x) :=P(B > x) = L(x)x−α, (5.6)

where α> 2, α 6= 3, and L(x) is a slowly varying function: limx→∞ L(ax)/L(x) = 1 for all

a > 0. A key property of such distributions is that E[B p ] <∞ for p <α and E[B p ] =∞
for p > α. The α-th moment can be either finite or infinite. For technical reasons,

this chapter does not address the α= 3 case. It should be noted that regularly-varying

distributions are a subclass of subexponential distributions [64], and as such satisfy

limx→∞P(max{B1, . . . ,Bn} > x)/P(B1 > x) = n.

Define the Poisson process N 1(t ), t ≥ 0, which is independent of the Bi and has rate

1/E[B ]. Then Nρ(t) := N 1(ρt), t ≥ 0, is a Poisson process with rate λρ := ρ/E[B ]. We

consider a family of Lévy processes {X ρ(t )}, indexed by ρ ∈ (0,1), where X ρ : [0,∞) →R

is characterised as

X ρ(t ) := X0 +
Nρ (t )∑

i=1
Bi − t . (5.7)

We say that X ρ is a compound Poisson process with initial value X ρ(0) = X0 := B0

and long-term drift E[X ρ(1)− X ρ(0)] =−(1−ρ) < 0. The process X ρ(t) experiences a

deterministic decrease of −t and has jumps of size Bi . For this reason we refer to FB as

the jump-size distribution.

The first passage time of level x is denoted by σρ(x) := inf{t ≥ 0 : X ρ(t ) ≥ x}, whereas

the first hitting time of level zero is indicated by τρ := inf{t ≥ 0 : X ρ(t ) = 0}. Of primary

interest in this chapter are the supremum Mρ
τ until the first down-crossing of level zero,

i.e. Mρ
τ := sup{X ρ(t) : 0 ≤ t ≤ τρ}, and the all-time supremum Mρ

∞ := sup{X ρ(t) : t ≥ 0}

of the Lévy process. We also derive a result on the largest jump Bρ
τ before time τρ :

Bρ
τ := sup{Bi : 0 ≤ i ≤ Nρ(τρ)}.
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Consider the sequence of i.i.d. random variables {B∗}∪{B∗
i }∞i=1 with c.d.f. FB∗ . FB∗ is

the excess distribution of B and will be referred to as excess jump-size distribution. The

excess jump-size distribution can be characterised by its probability density function

(p.d.f.) fB∗ (x) = 1
E[B ]P(B > x) and has finite mean µ := E[B 2]/(2E[B ]) <∞. It is assumed

that B∗ and B∗
i are independent of Nρ ,B and Bi for all relevant indices.

Since B is regularly varying, Theorem 2.45 in Foss et al. [59] states that the tail

distribution of B∗,

F B∗ (x) = 1

E[B ]

∫ ∞

x
P(B > t )dt ∼ 1

(α−1)E[B ]
L(x)x−α+1, (5.8)

is also regularly varying, where f (z) ∼ g (z) if and only if limz↑z∗ f (z)/g (z) = 1 for some

limiting value z∗ ∈ {1,∞}. In this chapter, the limit of interest is either ρ ↑ 1, x →∞ or

a →∞. The proper limit should be clear from the context. Similarly, f (z) & (.) g (z)

denotes the relation liminfz↑z∗ (limsupz↑z∗ ) f (z)/g (z) ≥ (≤)1. We adopt the common

conventions f (z) =O(g (z)) if and only if limsupz↑z∗ | f (z)/g (z)| <∞ and f (z) = o(g (z))

if and only if limsupz↑z∗ f (z)/g (z) = 0. If both f (z) =O(g (z)) and g (z) =O( f (z)), then

this is denoted by f (z) =Θ(g (z)).

Let T ∈ (0,∞) be any positive constant and define the interval ∆ = [0,T ). In the

remainder of this chapter we will denote the “local” tail probability P(B∗ ∈ [x, x +T ))

by P(B∗ ∈ x +∆). Furthermore, we adopt the well-known conventions of the floor-

function bxc := max{n ∈ N : n ≤ x} and the ceiling-function dxe := min{n ∈ N : n ≥ x},

and denote 1([logical expression]) for the indicator function that assumes value 1 if the

logical expression is true, and value 0 otherwise.

Most variables that have been introduced so far depend on the parameter ρ. Now

that their dependence has been noted, we drop the superscripts ρ for the remainder of

this chapter. Variables that are introduced in later sections and that depend on ρ will

carry a sub- or superscript unless mentioned otherwise.

Finally, we note that many expressions in this chapter involve constants that do

not provide additional insight, and that do not contribute to the global behaviour of

the expressions. For this reason, many constants have been replaced by C : a constant

whose value may change from line to line.

5.3 Main results and discussion

The purpose of this section is to present and discuss our main results. Theorem 5.3.1

presents an exact uniform asymptotic relation between the all-time supremum M∞ and

excess jump size B∗. Theorems 5.3.2 and 5.3.3 and Corollary 5.3.4 display exact uniform

asymptotic relations between the supremum Mτ, the largest jump Bτ and the jump

sizes B . Theorem 5.3.5 shows an exact uniform asymptotic for the relation between the

first hitting time τ and Mτ. The tightness of the results is discussed in Section 5.9.
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Our first theorem relates the local tail probability P(M∞ ∈ x +∆) to the local tail

probability P(B∗ ∈ x +∆):

Theorem 5.3.1. Suppose P(B > x) = L(x)x−α for some α > 2, α 6= 3 and L(x) slowly

varying. Let µ= E[B 2]/(2E[B ]) and define xρ := kµ(α−1) 1
1−ρ log 1

1−ρ for any k > 1. Then

for any fixed interval ∆= [0,T ) the relation

sup
x≥xρ

∣∣∣∣∣ P(M∞ ∈ x +∆)
ρ

1−ρP(B∗ ∈ x +∆)
−1

∣∣∣∣∣→ 0 (5.9)

holds as ρ ↑ 1. Furthermore, (5.9) remains valid for k = 1 if L(x)/(log x)α→∞.

Theorem 5.3.1 extends Corollary 2.3(b) of Olvera-Cravioto et al. [107], who con-

sidered the “global” tail probability ∆= [0,∞). The similarity of the results is also reflec-

ted in the proof of the theorem, which greatly depends on the Pollaczek-Khintchine for-

mula and the power law nature of the jump-size distribution. A key difference between

the proofs is Olvera-Cravioto et al.’s application of the “global” big jump asymptotics as

reported by Borovkov and Borovkov [29] versus our usage of the “local” analogues as

derived by Denisov et al. [46].

The transition point x̃ρ in Olvera-Cravioto et al. [107] (cf. expression (5.3)) differs

from xρ by a factor α−1
α−2 , which is an artefact of our analysis of the local tail probability

(indexα) as opposed to their analysis of the global tail probability (indexα−1). Similarly,

their k = 1 case requires L(x) to asymptotically dominate (log x)α−1 instead of (log x)α.

Our next result relates the tail behavior of Mτ to that of B :

Theorem 5.3.2. Suppose that all conditions in Theorem 5.3.1 hold. Then

sup
x≥xρ

∣∣∣∣∣ P(Mτ > x)
1

1−ρP(B > x)
−1

∣∣∣∣∣→ 0 (5.10)

holds as ρ ↑ 1. Furthermore, (5.10) remains valid for k = 1 if L(x)/(log x)α→∞.

Theorem 5.3.2 is related to a similar result for general random walks, derived for

a larger class of subexponential distributions, see also Theorem 2.1 in Asmussen [7].

Again, the contribution in our setting is the validity of this asymptotic estimate in the

near-critical regime. Also the intuition behind this result, that Mτ is comparable in size

to the largest jump Bτ, remains valid:

Theorem 5.3.3. Suppose P(B > x) = L(x)x−α for some α > 2, α 6= 3 and L(x) slowly

varying. Let x̂ρ satisfy P(B > x̂ρ)/(1−ρ)2 → 0 as ρ ↑ 1. Then the relation

sup
x≥x̂ρ

∣∣∣∣∣ P(Bτ > x)
1

1−ρP(B > x)
−1

∣∣∣∣∣→ 0 (5.11)

holds as ρ ↑ 1. In particular, the above statement holds for x̂ρ ≥ 1/(1−ρ).
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Corollary 5.3.4. Suppose that all conditions in Theorem 5.3.1 hold. Then

sup
x≥xρ

∣∣∣∣P(Mτ > x)

P(Bτ > x)
−1

∣∣∣∣→ 0 (5.12)

holds as ρ ↑ 1. Furthermore, (5.12) remains valid for k = 1 if L(x)/(log x)α→∞.

Here, we note that E[τ] = E[B ]/(1−ρ) and therefore one might guess P (Bτ > x) ≈
P(max{B1, . . . ,B1/(1−ρ)} > x)) ≈ 1

1−ρP(B > x) as a property of subexponential functions.

Theorem 5.3.3 makes this relation explicit.

We are now ready to examine the asymptotic behaviour of the tail probability of the

first hitting time of zero, P(τ> x):

Theorem 5.3.5. Suppose P(B > x) = L(x)x−α for some α > 2, α 6= 3 and L(x) slowly

varying. For any k∗ > 2 define x∗
ρ := 1

(1−ρ)2

(
log 1

1−ρ
)k∗

. Then both

sup
x≥x∗

ρ

∣∣∣P(τ> x | Mτ > (1−ρ)x)−1
∣∣∣→ 0 (5.13)

and

sup
x≥x∗

ρ

∣∣∣P(Mτ > (1−ρ)x | τ> x)−1
∣∣∣→ 0 (5.14)

hold as ρ ↑ 1. In particular, (5.13) and (5.14) imply

sup
x≥x∗

ρ

∣∣∣∣ P(τ> x)

P(Mτ > (1−ρ)x)
−1

∣∣∣∣→ 0 (5.15)

as ρ ↑ 1.

For fixed ρ, related questions have been examined by Durrett [48] for random walks

and Zwart [144] for queues. Their results lead to the insight that a large value of τ is

caused by an ‘early’ big jump, after which the process drifts towards 0 at rate 1−ρ (see

Figure 5.1). This suggests the approximation τ≈ Mτ/(1−ρ), which was made rigorous

by Zwart [144] using a sample-path analysis. The challenge in our setting is to show that

the big jump occurs at a time that does not grow too large as ρ ↑ 1. This is settled by

the crucial technical Lemma 5.7.2 in Section 5.7, which essentially states that it takes

O(1/(1−ρ)) time units until the largest jump. This lemma is proven by providing an

estimate of the time until the big jump in terms of q-scale functions, which in turn need

to be estimated in detail for various specific ranges of parameter values.

5.3.1 Tightness of bounds

It is natural to question the quality of our thresholds xρ and x∗
ρ in the results presented

above. Corollary 5.3.7 and Lemma 5.3.8 show that our choices are close to optimal,
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X (t )

t
0

(1−ρ)x∗
ρ

x∗
ρ

dX
dt =−(1−ρ)

Mτ

O(1/(1−ρ)) τ

Figure 5.1: Illustration of a scenario where X (t ) stays positive for a long time

due to a large jump early in the process. The largest jump of size (1−ρ)x

happens at time O(1/(1−ρ)). The long-term drift of −(1−ρ) suggests that

τ≈ (1+o(1))x.

in the sense that our results are no longer valid if the logarithmic terms in xρ and x∗
ρ

are dropped. Prior to these claims, however, we state a local analogue of Kingman’s

heavy-traffic approximation that is required in the proof of Corollary 5.3.7, but which is

also of independent interest.

First, consider the function xρ = kµ(α−1) 1
1−ρ log 1

1−ρ as presented in Theorem 5.3.1,

Theorem 5.3.2 and Corollary 5.3.4. As stated earlier, Theorem 5.3.1 is the local analogue

of Corollary 2.3(b) in Olvera-Cravioto et al. [107] and the function xρ only differs by a

constant from their function x̃ρ . Additionally, their Corollary 2.3(a) states that the tail

probability P(M∞ > x) asymptotically behaves as an exponential random variable for

x < (1−ε)x̃ρ , ε> 0 sufficiently small. This result suggests that the local tail probability

P(M∞ ∈ x+∆) behaves as the density of an exponential random variable for x sufficiently

small. The next lemma supports this suggestion by presenting a local analogue of

Kingman’s heavy-traffic approximation that appears to be new:

Lemma 5.3.6. Suppose that the jump size p.d.f. fB (x) of B is completely monotone;

i.e. fB (x) and all its derivatives exist and satisfy (−1)n dn

dxn fB (x) ≥ 0 for all x > 0 and

n = 1,2, . . . Fix y > 0. Then the all-time supremum p.d.f. of fM∞ (x) on (0,∞) exists and

satisfies

lim
ρ↑1

1

1−ρ fM∞

(
y

1−ρ
)
= 1

E[B∗]
e−

y
E[B∗] . (5.16)

We hence expectP(M∞ ∈ x+∆) to display exponential decay as ρ ↑ 1 for x sufficiently

smaller than xρ , similar to the results of Olvera-Cravioto et al. [107]. Analysing the local

tail probability P(M∞ ∈ x +∆) for general x ≤ xρ is beyond the scope of this chapter;

however, the corollary below shows that (1−ρ)x(ρ) must diverge to infinity in order for

Theorem 5.3.1 to remain true:
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Corollary 5.3.7. Suppose P(B > x) = L(x)x−α for some α > 2 and L(x) slowly varying,

and assume that the jump size p.d.f. fB (x) of B is completely monotone. Fix y > 0. Then

for yρ = y
1−ρ the limit

lim
ρ↑1

P(M∞ ∈ yρ +∆)
ρ

1−ρP(B∗ ∈ yρ +∆)
(5.17)

diverges to infinity.

The proof of Theorem 5.3.2 derives the estimates

1

λ
P(M∞ ∈ [x, x +1)) .P(Mτ > x) .

1

λ
P(M∞ ∈ [x −1, x)) (5.18)

as x →∞. As such, a similar necessary condition on any function x(ρ) for which The-

orem 5.3.1 holds is also necessary for Theorem 5.3.2. An analogue argument holds for

Corollary 5.3.4.

We next discuss the function x∗
ρ = 1

(1−ρ)2

(
log 1

1−ρ
)k

which is of interest in The-

orem 5.3.5. The proof of Theorem 5.3.5 greatly relies on Theorem 5.3.2 but considers

P(Mτ > (1−ρ)x) instead of P(Mτ > x). We would therefore expect Theorem 5.3.5 to

hold with x(ρ) = xρ/(1−ρ). The current proof, however, requires the higher level x∗
ρ for

technical reasons. In contrast, the following lemma gives a lower bound on x(ρ) if it is

to replace x∗
ρ . In particular, it states that (1−ρ)2x(ρ) needs to diverge to infinity:

Lemma 5.3.8. Suppose P(B > x) = L(x)x−α for some α> 2 and L(x) slowly varying. Fix

y > 0. Then for y∗
ρ = y

(1−ρ)2 the limit

lim
ρ↑1

P(τ> y∗
ρ )

ρ
1−ρP(B > (1−ρ)y∗

ρ )
(5.19)

diverges to infinity.

5.4 Local asymptotics of the all-time supremum

This section contains the proof of Theorem 5.3.1. We consider the all-time supremum

by its Pollaczek-Khintchine infinite-series representation. From this representation, we

distinguish between few jumps and many jumps scenarios (small and large n), where

the threshold is approximately x/E[B∗]. It is shown that under the few jumps scenario,

a large all-time supremum is most probably due to a large value of a single B∗
i . On the

other hand, the many jumps scenario is shown to be negligible compared to the few

jumps scenario.

Define S∗
0 := 0 and S∗

n :=∑n
i=1 B∗

i . By Theorem VIII.5.7 in Asmussen [8],

P(M∞ ∈ x +∆) =
∞∑

n=0
(1−ρ)ρnP(S∗

n ∈ x +∆) (5.20)
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for all x > 0. An equivalent representation of (5.9) is therefore

sup
x≥xρ

∣∣∣∣∣
∑∞

n=1(1−ρ)ρn
[
P(S∗

n ∈ x +∆)−nP(B∗ ∈ x +∆)
]

ρ
1−ρP(B∗ ∈ x +∆)

∣∣∣∣∣→ 0 (5.21)

as ρ ↑ 1. Fix δ such that max{ 1
2 , 1

α−1 } < δ< 1 and define Uδ(x) := b(x −xδ)/µc. Then, the

numerator in (5.21) can be decomposed as∣∣∣∣ ∞∑
n=1

(1−ρ)ρn [
P(S∗

n ∈ x +∆)−nP(B∗ ∈ x +∆)
]∣∣∣∣

≤
Uδ(x)∑
n=1

(1−ρ)ρn
∣∣∣P(S∗

n ∈ x +∆)−nP(B∗ ∈ x − (n −1)µ+∆)
∣∣∣

+
Uδ(x)∑
n=1

(1−ρ)ρnn
∣∣∣P(B∗ ∈ x − (n −1)µ+∆)−P(B∗ ∈ x +∆)

∣∣∣
+

∣∣∣∣∣ ∞∑
n=Uδ(x)+1

(1−ρ)ρn [
P(S∗

n ∈ x +∆)−nP(B∗ ∈ x +∆)
]∣∣∣∣∣ .

(5.22)

Here, the first term corresponds to the few jumps scenario and the third term corres-

ponds to the many jumps scenario. The second term corrects a shift in the argument of

P(B∗ ∈ ·), which is required for application of the following lemma:

Lemma 5.4.1. Suppose ξ is a non-negative regularly-varying random variable whose

c.d.f. has index −αξ <−2,αξ 6= 3; i.e. P(ξ> x) = L(x)x−αξ . Let Fξ∗ be the excess distribu-

tion of ξ with index −αξ+1 <−1 and i.i.d. samples ξ∗,ξ∗1 ,ξ∗2 , . . . For any max
{

1
αξ−1 , 1

2

}
<

Γ< 1 denote UΓ(x) = b x−xΓ

E[ξ∗] c. Then, there exists a non-increasing function φ(x) satisfying

φ(x) ↓ 0 as x →∞ such that

sup
1≤n≤UΓ(x)

∣∣∣∣ P(ξ∗1 + . . .+ξ∗n ∈ x +∆)

nP(ξ∗ ∈ x − (n −1)E[ξ∗]+∆)
−1

∣∣∣∣≤φ(x).

The proof is delayed until the end of this section and relies heavily on the machinery

provided by Denisov et al. [46]. Lemma 5.4.1 is closely related to the subexponential

property limx→∞P(B∗
1 + . . .+B∗

n > x)/P(B∗
1 > x) = n and guarantees that, for some

non-increasing φ(x) ↓ 0 as x →∞, expression (5.22) is dominated by

φ(x)
Uδ(x)∑
n=1

(1−ρ)ρnnP(B∗ ∈ x +∆)

+ (1+φ(x))
Uδ(x)∑
n=1

(1−ρ)ρnn
∣∣∣P(B∗ ∈ x − (n −1)µ+∆)−P(B∗ ∈ x +∆)

∣∣∣
+

∞∑
n=Uδ(x)+1

(1−ρ)ρn [
1+nP(B∗ ∈ x +∆)

]
=:φ(x)I(x,ρ)+ (1+φ(x))II(x,ρ)+ III(x,ρ).
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Term I(x,ρ) is bounded by ρ
1−ρP(B∗ ∈ x +∆), so that xρ →∞ implies

sup
x≥xρ

φ(x)I(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
≤φ(xρ) → 0 (5.23)

as ρ ↑ 1. We are done if terms II and III also vanish uniformly.

Term II is split into two parts. Fix γ such that 0 < γ < δ and define the function

Vγ(x) := b(1−γ)x/µc. For x sufficiently large we have Vγ(x) <Uδ(x), so that II may be

written as

II(x,ρ) =
Vγ(x)∑
n=1

(1−ρ)ρnn
∣∣∣P(B∗ ∈ x − (n −1)µ+∆)−P(B∗ ∈ x +∆)

∣∣∣
+

Uδ(x)∑
n=Vγ(x)+1

(1−ρ)ρnn
∣∣∣P(B∗ ∈ x − (n −1)µ+∆)−P(B∗ ∈ x +∆)

∣∣∣
=: IIa(x,ρ)+ IIb(x,ρ).

For 1 ≤ n ≤Vγ(x), Newton’s generalised binomial Theorem implies that

P(B∗ ∈ x − (n −1)µ+∆)

P(B∗ ∈ x +∆)
≤ P(B > x − (n −1)µ)

P(B > x +T )
∼

(
1− (n −1)µ+T

x +T

)−α
= 1+

∞∑
m=1

α(α+1) · · · (α+m −1)

m!

(
(n −1)µ+T

x +T

)m

≤ 1+α
(

(n −1)µ+T

x +T

)(
1− (n −1)µ+T

x +T

)−α−1

. 1+αγ−α−1 (n −1)µ+T

x +T
,

as x →∞, and therefore

P(B∗ ∈ x − (n −1)µ+∆)

P(B∗ ∈ x +∆)
−1 .C

n −1

x

as x →∞. Substituting this into IIa gives

IIa(x,ρ) .CP(B∗ ∈ x +∆)
1

x

Vγ(x)∑
n=1

(1−ρ)ρnn(n −1)

≤CP(B∗ ∈ x +∆)
2ρ2

(1−ρ)2x

(
1−ρVγ(x) − (1−ρ)Vγ(x)ρVγ(x))

≤ Cρ

(1−ρ)2x
P(B∗ ∈ x +∆).

We hence conclude

sup
x≥xρ

IIa(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
.

C

log 1
1−ρ

→ 0 (5.24)

as ρ ↑ 1.
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Next, consider term IIb. Since P(B∗ ∈ y +∆) is decreasing in y , we find

IIb(x,ρ) ≤C (1−ρ)ρVγ(x)+1x
Uδ(x)∑

n=Vγ(x)+1
P(B∗ ∈ x − (n −1)µ+∆)

≤C (1−ρ)ρ(1−γ)x/µx
∫ x−µVγ(x)

x−µUδ(x)
P(B∗ ∈ t +∆)dt .

Noting that P(B∗ ∈ x +∆) is regularly varying with index −α<−2, Theorem 1.5.11 in

Bingham et al. [24] indicates that

IIb(x,ρ) .C (1−ρ)ρ(1−γ)x/µx(x −µUδ(x))P(B∗ ∈ x −µUδ(x)+∆)

≤C (1−ρ)ρ(1−γ)x/µx1+δP(B∗ ∈ xδ−∆).

It remains to verify that IIb decreases sufficiently fast for x ≥ xρ . To this end, we write

sup
x≥xρ

IIb(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
.C sup

x≥xρ
(1−ρ)2ρ

(1−γ) x
µ−1x1+δP(B∗ ∈ xδ+∆)

P(B∗ ∈ x +∆)

≤C sup
x≥xρ

(1−ρ)2ρ
(1−γ) x

µ−1x1+δ P(B > xδ)

P(B > x +T )

∼C sup
x≥xρ

(1−ρ)2e

(
(1−γ) x

µ−1
)

logρ
x1+δ+(1−δ)α

≤C sup
x≥xρ

(1−ρ)2e
−

(
(1−γ) x

µ−1
)
(1−ρ)

x1+δ+(1−δ)α,

where we exploited the inequality logρ ≤−(1−ρ). Additionally, for ρ sufficiently close

to one, the supremum is achieved in x = xρ and

sup
x≥xρ

IIb(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
.C (1−ρ)2e−(1−γ)(1−ρ)

xρ
µ x1+δ+(1−δ)α

ρ .

Substituting xρ = kµ(α−1) 1
1−ρ log 1

1−ρ now gives

sup
x≥xρ

IIb(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
.C (1−ρ)k(1−γ)(α−1)−(1−δ)(α−1)

(
log

1

1−ρ
)1+δ+(1−δ)α

→ 0 (5.25)

as ρ ↑ 1, since γ< δ. This verifies the convergence of term II to zero.

We continue with the analysis of term III. This term is rewritten into two specified

terms:

III(x,ρ) = ρUδ(x)+1 +
[

(Uδ(x)+1)ρUδ(x)+1 + ρUδ(x)+2

1−ρ
]
P(B∗ ∈ x +∆)

≤ ρ x−xδ
µ +

[(
x −xδ

µ
+1

)
+ ρ

1−ρ

]
P(B∗ ∈ x +∆)ρ

x−xδ
µ

≤ ρ x−xδ
µ +C

(1−ρ)x +1

1−ρ P(B∗ ∈ x +∆)ρ
x−xδ
µ

=: IIIa(x,ρ)+ IIIb(x,ρ).
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We consider terms IIIa and IIIb in order.

For term IIIa, we first assume that k > 1. Potter’s Theorem (e.g. Theorem 1.5.6 in

Bingham et al. [24]) suggests that P(B∗ ∈ x +∆) ≥ TP(B ≥ x +T ) ≥ T C (x +T )−α−ν for

any fixed ν> 0 and x sufficiently large. In particular, for 0 < ν< (k −1)(α−1),

sup
x≥xρ

IIIa(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
≤ sup

x≥xρ
C (1−ρ)(x +T )α+νρ

x−xδ
µ −1.

Again, the supremum is achieved in x = xρ for ρ sufficiently close to one and hence

sup
x≥xρ

IIIa(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
≤C (1−ρ)e

(α+ν) log xρ+
(

xρ−xδρ
µ −1

)
logρ+(α+ν) log

(
1+ T

xρ

)

≤Ce
(α+ν) log xρ−

(
xρ−xδρ

µ −1

)
(1−ρ)−log 1

1−ρ+(α+ν) log
(
1+ T

xρ

)
.

Substitution of xρ = kµ(α−1) 1
1−ρ log 1

1−ρ now yields

sup
x≥xρ

IIIa(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
≤C (1−ρ)e

(α+ν−1)log 1
1−ρ−k(α−1)log 1

1−ρ+o
(
log 1

1−ρ
)
, (5.26)

which tends to zero as ρ ↑ 1.

Second, assume k = 1 and L(x)/(log x)α →∞. Then there exists a non-increasing

function φ(x) ↓ 0 such that L(x) ≥ (logα x)/φ(x). Similar to the preceding analysis we

find

sup
x≥xρ

IIIa(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
≤ sup

x≥xρ

1

L(x +T )
(1−ρ)(x +T )αρ

x−xδ
µ −1

.φ(xρ) sup
x≥xρ

1

logα x
e
α log x+

(
x−xδ
µ −1

)
logρ−log 1

1−ρ

≤φ(xρ)
1

logα xρ
e

(α−1)log 1
1−ρ+α loglog 1

1−ρ−(α−1)
(
1−xδ−1

ρ −x−1
ρ

)
log 1

1−ρ

=Cφ(xρ)
1

logα 1
1−ρ

e
α loglog 1

1−ρ+(α−1)
(
xδ−1
ρ +x−1

ρ

)
log 1

1−ρ

=Cφ(xρ)e
(α−1)

(
xδ−1
ρ +x−1

ρ

)
log 1

1−ρ → 0

as ρ ↑ 1 since (log x)/x1−δ→ 0 for any δ< 1.

Finally, for term IIIb one can see that

sup
x≥xρ

IIIb(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
=C sup

x≥xρ
((1−ρ)x +1)ρ

x−xδ
µ −1.
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As before, the supremum is attained in x = xρ for ρ sufficiently close to one. Thus,

sup
x≥xρ

IIIb(x,ρ)
ρ

1−ρP(B∗ ∈ x +∆)
=C ((1−ρ)xρ +1)e

(
xρ−xδρ

µ −1

)
logρ

≤C log
1

1−ρ e−k(α−1)(1+o(1)) log 1
1−ρ → 0 (5.27)

as ρ ↑ 1. From relations (5.23) – (5.27), we may conclude that (5.21) and equivalently

(5.9) converges to zero. This completes the proof of Theorem 5.3.1.

This section is concluded by the proof of Lemma 5.4.1.

5.4.1 Proof of Lemma 5.4.1

First consider the case −αξ < −3. Then σ2
ξ∗ = Var(ξ∗) = E[ξ3]

3E[ξ] is finite, and therefore

ξ
∗
i = ξ∗i −E[ξ∗]

σξ∗
and S

∗
n = ξ∗1+...+ξ∗n−nE[ξ∗]

σξ∗
are well-defined for all i ≥ 1,n ≥ 1. Since

P(ξ∗1 + . . .+ξ∗n ∈ x +∆)

nP(ξ∗ ∈ x − (n −1)E[ξ∗]+∆)
=
P

(
S
∗
n ∈ x−nE[ξ∗]+∆

σξ∗

)
nP

(
ξ
∗
1 ∈ x−nE[ξ∗]+∆

σξ∗

) , (5.28)

the result follows from Theorem 8.1 in Denisov et al. [46] once we show that the fraction

(x −nE[ξ∗])/
√

(αξ−3)n logn diverges to infinity uniformly for 1 ≤ n ≤UΓ(x) as x →∞.

As Γ> 1
2 , one may see that

x −nE[ξ∗]√
(αξ−3)n logn

≥ x −UΓ(x)E[ξ∗]√
(αξ−3)UΓ(x) logUΓ(x)

∼
√
E[ξ∗]

αξ−3

xΓ−
1
2

log x

indeed tends to infinity as x →∞.

Now assume −3 <−αξ <−2. Let ξ̃∗i = ξ∗i −E[ξ∗] and S̃∗
n = ξ∗1 + . . .+ξ∗n −nE[ξ∗] for all

i ≥ 1,n ≥ 1. Then

P(ξ∗1 + . . .+ξ∗n ∈ x +∆)

nP(ξ∗ ∈ x − (n −1)E[ξ∗]+∆)
= P

(
S̃∗

n ∈ x −nE[ξ∗]+∆)
nP

(
ξ̃∗1 ∈ x −nE[ξ∗]+∆) . (5.29)

Fix Γ∗ such that 1
αξ−1 < Γ∗ < Γ. Theorem 9.1 in Denisov et al. [46] implies that

P(S̃∗
n ∈ x+∆) ∼ nP(ξ̃∗1 ∈ x+∆) uniformly for x ≥ nΓ

∗
. The proof is concluded by showing

that (x −nE[ξ∗])/nΓ
∗ →∞ uniformly for 1 ≤ n ≤UΓ(x), which follows from

x −nE[ξ∗]

nΓ∗
≥ x −UΓ(x)E[ξ∗]

UΓ(x)Γ∗
∼ E[ξ∗]Γ

∗
xΓ−Γ

∗
.

5.5 Asymptotics of the supremum Mτ

This section is dedicated to the proof of Theorem 5.3.2. The proof quickly follows from

Theorem 5.3.1 and the following lemma:
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Lemma 5.5.1. The inequalities

1

λ

P(M∞ ∈ [x, x +1))

P(M∞ < x +1)
≤P(Mτ > x) ≤ 1

λ

P(M∞ ∈ [x −1, x))

P(M∞ < x −1)
(5.30)

are valid for all x > 1.

Lemma 5.5.1 is proven in Appendix 5.A by means of scale functions; a concept that

is introduced in Section 5.8. Lemma 5.5.1 and Theorem 5.3.1 together state that

P(Mτ > x) .
1

λ

1

P(M∞ < x −1)

ρ

1−ρP(B∗ ∈ [x −1, x))

for x ≥ xρ as ρ ↑ 1. Applying the simple bound P(B∗ ∈ [x −1, x)) ≤ 1
E[B ]P(B > x −1) yields

P(Mτ > x) .
1

P(M∞ < x −1)

1

1−ρP(B > x −1),

which, since B is long-tailed, is asymptotically equivalent to

P(Mτ > x) .
1

P(M∞ < x −1)

1

1−ρP(B > x). (5.31)

It follows that P(Mτ > x)/((1−ρ)−1P(B > x)) . 1 for all x ≥ xρ as ρ ↑ 1.

The asymptotic lower bound is proven similarly, thereby completing the proof of

Theorem 5.3.2.

5.6 Asymptotics of the supremum jump size

This section contributes the proof of Theorem 5.3.3. The following equality is an inter-

pretation of expression (3.4) in Boxma [31]:

P(Bτ > x) =P(B > x)+
∫ x

0

[
1−e−λP(Bτ>x)t

]
dP(B ≤ t ). (5.32)

From this equality it follows that

P(B > x)

P(Bτ > x)
= 1−

∫ x

0

[
1−e−λP(Bτ>x)t

P(Bτ > x)

]
dP(B ≤ t )

= 1−λ
∫ x

0
t dP(B ≤ t )+λ

∫ x

0

[
1− 1−e−λP(Bτ>x)t

λP(Bτ > x)t

]
t dP(B ≤ t )

= 1−ρ+λ
∫ ∞

x
t dP(B ≤ t )+λ

∫ x

0

[
1− 1−e−λP(Bτ>x)t

λP(Bτ > x)t

]
t dP(B ≤ t ),

so that

1

1−ρ
P(B > x)

P(Bτ > x)
−1 = λ

1−ρ
∫ ∞

x
t dP(B ≤ t )

+ λ

1−ρ
∫ x

0

[
1− 1−e−λP(Bτ>x)t

λP(Bτ > x)t

]
t dP(B ≤ t ). (5.33)
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Here, we note that the right-hand side of the latter expression is non-negative because

(1−e−y )/y ≤ 1.

The first integral in (5.33) can be upper bounded as

sup
x≥x̂ρ

λ

1−ρ
∫ ∞

x
t dP(B ≤ t ) = sup

x≥x̂ρ

λ

1−ρ E [B 1(B > x)]

= sup
x≥x̂ρ

(
λ

1−ρ E [B −x | B > x]P(B > x)+ λxP(B > x)

1−ρ
)

.C sup
x≥x̂ρ

λxP(B > x)

1−ρ , (5.34)

since E [B −x | B > x] ∼ x
α−1 , as shown in Embrechts et al. [50, p.162]. Clearly, this upper

bound tends to zero for all x ≥ x̂ρ provided that supx≥x̂ρ
xP(B>x)

1−ρ → 0 as ρ ↑ 1.

Sequentially, we consider the second integral in (5.33). The bound e y ≥ 1+ y + y2/2

for y ≥ 0 implies

sup
x≥x̂ρ

λ

1−ρ
∫ x

0

[
1− 1−e−λP(Bτ>x)t

λP(Bτ > x)t

]
t dP(B ≤ t )

≤ sup
x≥x̂ρ

λ

1−ρ
∫ x

0

[
1−

1− 1
1+λP(Bτ>x)t+λ2P(Bτ>x)2t 2/2

λP(Bτ > x)t

]
t dP(B ≤ t )

= sup
x≥x̂ρ

λ

2

1

1−ρ
∫ x

0

λP(Bτ > x)t +λ2P(Bτ > x)2t 2

1+λP(Bτ > x)t +λ2P(Bτ > x)2t 2/2
t dP(B ≤ t )

≤ sup
x≥x̂ρ

λ2

2

P(Bτ > x)

1−ρ
∫ x

0

[
t 2 +λP(Bτ > x)t 3] dP(B ≤ t )

≤ sup
x≥x̂ρ

λ2

2

P(Bτ > x)

1−ρ [1+λP(Bτ > x)x]E[B 2].

From equation (5.33) we know that P(Bτ > x) ≤ P(B>x)
1−ρ , and therefore

sup
x≥x̂ρ

λ

1−ρ
∫ x

0

[
1− 1−e−λP(Bτ>x)t

λP(Bτ > x)t

]
t dP(B ≤ t )

≤ sup
x≥x̂ρ

λ2

2

P(B > x)

(1−ρ)2

[
1+ λxP(B > x)

1−ρ
]
E[B 2]. (5.35)

It follows that the second integral vanishes for all x ≥ x̂ρ if both supx≥x̂ρ
xP(B>x)

1−ρ and

supx≥x̂ρ
P(B>x)
(1−ρ)2 tend to zero as ρ ↑ 1. These conditions are analysed by Potter’s Theorem,

which states that for any 0 < ν<α−2 there exists a constant Cν > 0 such that P(B > x) ≤
Cνx−α+ν for all x sufficiently large. In particular, we find

sup
x≥1/(1−ρ)

xP(B > x)

1−ρ ≤ sup
x≥1/(1−ρ)

Cνx1−α+ν

1−ρ → 0,
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and similarly supx≥1/(1−ρ)
P(B>x)
(1−ρ)2 → 0, implying that the theorem holds for x̂ ≥ 1/(1−ρ).

The proof of the theorem is completed after noting that xP(B>x)
1−ρ ≤ P(B>x)

(1−ρ)2 whenever

x ≤ 1/(1−ρ).

5.7 Asymptotics of the first hitting time of level zero

This section is devoted to the proof of Theorem 5.3.5. We will validate expression (5.13),

which considers the asymptotic behaviour of P(τ > x | Mτ > (1− ρ)x), and expres-

sion (5.15), which considers the asymptotic behaviour of the unconditional probability

P(τ> x) as ρ ↑ 1. Expressions (5.13) and (5.15) together imply expression (5.14) through

the inequality ∣∣∣P(Q | R)−1
∣∣∣≤ ∣∣∣P(R |Q)−1

∣∣∣× ∣∣∣∣P(Q)

P(R)

∣∣∣∣+ ∣∣∣∣P(Q)

P(R)
−1

∣∣∣∣ (5.36)

for two events Q and R of non-zero probability.

Section 5.7.1 validates the asymptotic behaviour of P(τ> x | Mτ > (1−ρ)x). There-

after, Section 5.7.2 proves the asymptotic behaviour of P(τ> x) by means of a sample-

path analysis that makes a distinction based on the supremum Mτ. The resulting events

are then distinguished based on the number of jumps before τ or the first passage time

of a specific level.

5.7.1 Asymptotics of conditional first hitting time

We first prove expression (5.13). Since the relation P(τ> x | Mτ > (1−ρ)x) ≤ 1 is always

true, we only need to show that the relation supx≥x∗
ρ
P(τ> x | Mτ > (1−ρ)x)−1 ≥ 0 holds

as ρ ↑ 1.

Fix p ∈ (1/2+1/k∗,1) and define hu(x,ρ) := (1−ρ)x+g (x,ρ), where g is described by

g (x,ρ) := (1−ρ)2p−1xp . The function hu(x,ρ) is an upper bound for, yet asymptotically

equivalent to, (1−ρ)x. By conditioning on the event {Mτ > hu(x,ρ)}, the long term drift

−(1−ρ) of X (t ) implies that P(τ> x | Mτ > hu(x,ρ)) must tend to one.

To make this precise we follow the proof of Proposition 3.1 of Zwart [144]. Noting

that {σ(y) < τ} = {Mτ > y}, the joint probability P(τ> x; Mτ > (1−ρ)x) is lower bounded

as

P(τ> x; Mτ > (1−ρ)x) ≥P(τ> x; Mτ > hu(x,ρ))

≥P(τ−σ(hu(x,ρ)) > x |σ(hu(x,ρ)) < τ)P(Mτ > hu(x,ρ)),

where the conditional probability on the right-hand side can be represented as an
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integral:

P(τ−σ(hu(x,ρ)) > x |σ(hu(x,ρ)) < τ)

=
∫ ∞

hu (x,ρ)
P(τ−σ(hu(x,ρ)) > x |σ(hu(x,ρ)) < τ; X (σ(hu(x,ρ))) = y)

× dP(X (σ(hu(x,ρ))) ≤ y |σ(hu(x,ρ)) < τ)

≥
∫ ∞

hu (x,ρ)
P(X (t ) > 0;0 ≤ t ≤ x | X (0) = y)dP(X (σ(hu(x,ρ))) ≤ y |σ(hu(x,ρ)) < τ).

As the integrand is increasing in y , we obtain

P(τ> x; Mτ > (1−ρ)x) ≥P(X (t ) > 0;0 ≤ t ≤ x | X (0) = hu(x,ρ))P(Mτ > hu(x,ρ)). (5.37)

Rewriting the first probability on the right-hand side of (5.37) yields

P(X (t ) > 0;0 ≤ t ≤ x | X (0) = hu(x,ρ)) =P
(

inf
t∈[0,x]

{X (t )−X (0)} >−hu(x,ρ)

)
≥P

(
inf

t∈[0,x]

{
−ρt +

N (t )∑
i=1

Bi

}
>−g (x,ρ)

)

= 1−P
(

sup
t∈[0,x]

{
ρt −

N (t )∑
i=1

Bi

}
≥ g (x,ρ)

)
.

From Etemadi’s inequality for Lévy processes [120, Lemma A.4], it then follows that

P(X (t ) > 0;0 ≤ t ≤ x | X (0) = hu(x,ρ)) ≥ 1−3 sup
t∈[0,x]

P

(
ρt −

N (t )∑
i=1

Bi ≥ g (x,ρ)/3

)

≥ 1−3 sup
t∈[0,x]

P

(∣∣∣∣∣ρt −
N (t )∑
i=1

Bi

∣∣∣∣∣≥ g (x,ρ)/3

)
.

The variance of
∑N (t )

i=1 Bi equals λE[B 2]t and is dominated by 2E[B∗]t for all ρ ∈ [0,1].

Therefore, noting that 3 ·32 ·2 = 54, Chebyshev’s inequality implies

P(X (t ) > 0;0 ≤ t ≤ x | X (0) = hu(x,ρ)) ≥ 1− sup
t∈[0,x]

54E[B∗]t

g (x,ρ)2 = 1− 54E[B∗]

((1−ρ)2x)2p−1 → 1

(5.38)

for all x ≥ x∗
ρ as ρ ↑ 1. Let ζ(ρ) := 1−54E[B∗](log 1

1−ρ )−(2p−1)k∗
. By relations (5.37) and

(5.38) and Theorem 5.3.2, one readily finds

sup
x≥x∗

ρ

P(τ> x | Mτ > (1−ρ)x)

≥ sup
x≥x∗

ρ

P(X (t ) > 0;0 ≤ t ≤ x | X (0) = hu(x,ρ))
P(Mτ > hu(x,ρ))

P(Mτ > (1−ρ)x)

& ζ(ρ) sup
x≥x∗

ρ

P(B > hu(x,ρ))

P(B > (1−ρ)x)
∼ ζ(ρ)

(
1+ ((1−ρ)2x∗

ρ )p−1
)−α

,

which tends to one as ρ ↑ 1. This validates expression (5.13) in Theorem 5.3.5.



5.7. Asymptotics of the first hitting time of level zero 117

Large time τ

Small supremum Mτ

Intermediate supremum Mτ

Large supremum Mτ

Many jumps N (τ)

Few jumps N (τ)

Early passage time σ(aρ)

Late passage time σ(aρ)

Figure 5.2: Visualization of proof structure. The event of a large time τ is

analysed under three scenarios, depending on the size of the supremum

Mτ. Two of these scenarios are again considered in more detail, where a

distinction is based on the number of jumps before τ and the passage time

of a high level aρ .

5.7.2 Asymptotics of unconditional first hitting time

This section validates expression (5.15). It follows from expression (5.13) that

lim
ρ↑1

inf
x≥x∗

ρ

P(τ> x)

P(Mτ > (1−ρ)x)
≥ 1. (5.39)

Proving limρ↑1 supx≥x∗
ρ

P(τ>x)
P(Mτ>(1−ρ)x) ≤ 1, however, requires far more work.

As noted at the beginning of this section, the event {τ> x} is analysed by distinguish-

ing various scenarios. First, we specify scenarios {τ> x, Mτ ∈ ·}, where the supremum

Mτ can be in three regions: small, intermediate and large. Then, the small and inter-

mediate regions are shown to be negligible in Sections 5.7.2 through 5.7.2. Finally, the

large Mτ region is shown to be asymptotically equivalent to P(τ> x) in Section 5.7.2.

The structure of the proof is visualised in Figure 5.2.

We now formalise the various scenarios. Fix εγ > 0 and εδ ∈ (0,(p − 1
2 )k∗−1), and

define the functions γρ :=
(
log 1

1−ρ
)−εγ

and δρ :=
(
log 1

1−ρ
)−(1+εδ)

. Similarly as before,

the function hl (x,ρ) := (1−γρ)(1−ρ)x−g (x,ρ), where g (x,ρ) = (1−ρ)2p−1xp , represents

a lower bound for, yet is asymptotically equivalent to, (1−ρ)x. The three regions for Mτ

are now given by

P(τ> x) ≤P(τ> x; Mτ ≤ δρ(1−ρ)x)+P(τ> x; Mτ ∈ (δρ(1−ρ)x,hl (x,ρ)])

+P(Mτ > hl (x,ρ))

=: Î(x,ρ)+ ÎI(x,ρ)+ ÎII(x,ρ).
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The next paragraphs show that terms Î and ÎI both vanish faster thanP(Mτ > (1−ρ)x) for

x ≥ x∗
ρ as ρ ↑ 1. On the other hand, the final paragraph shows that term ÎII asymptotically

behaves as P(Mτ > (1−ρ)x) in the same limiting regime.

Small supremum Mτ: term Î

Term Î is the probability of a large first hitting time τ for which the corresponding

process supremum Mτ is relatively small. First, we show that the number of jumps

before τ is not much higher than the expected number of jumps. Then, we show that it

is highly unlikely for a probable amount of small jumps to incur a large τ.

We let λ∗ := (1+ηρ)λ, where ηρ := (1−ρ)/2, and note that λ∗E[B ] ∈ [0,1) whenever

ρ ∈ [0,1). Also, we introduce the i.i.d. random variables B0,i characterised by their

common c.d.f. P(B0,i ≤ y) :=P(B ≤ y | B ≤ δρ(1−ρ)x).

Recall that N (t) denotes the number of jumps during an interval of length t . In

particular, N (t ) is Poisson distributed with mean λt . Let N0(t ) be the number of jumps

of size at most δρ(1−ρ)x and N1(t ) be the number of jumps of at least that size. Then

N0(t ) is Poisson distributed with mean λtP(B < δρ(1−ρ)x), N1(t ) is Poisson distributed

with mean λtP(B ≥ δρ(1−ρ)x) and N (t ) = N0(t )+N1(t ) for all t ≥ 0.

We observe that if τ> x, then all jumps before time x had a cumulative size of at

least x. That is, if τ> x then it must be that
∑N (x)

i=0 Bi > x. Furthermore, it is easy to see

that Mτ ≥ Bτ. From these two observations we derive

Î(x,ρ) =P
(
τ> x,

N (x)∑
i=0

Bi > x, Mτ ≤ δρ(1−ρ)x

)

≤P
(

N (x)∑
i=0

Bi > x,
N (x)∨
i=0

Bi ≤ δρ(1−ρ)x

)
=P

(
N0(x)∑
i=0

B0,i > x, N1(x) = 0

)

≤P
(

N0(x)∑
i=0

B0,i > x

)
≤P(N0(x) ≥λ∗x)+P

(
λ∗x∑
i=0

B0,i > x

)

=P(N (x) ≥λ∗x)+P
(
λ∗x∑
i=0

Bi > x
∣∣∣ λ∗x∨

i=0
Bi ≤ δρ(1−ρ)x

)
=: Îa(x,ρ)+ Îb(x,ρ).

Here, term Îa corresponds to a system where the number of jumps greatly exceeds

its expectation. Term Îb indicates a likely number of jumps, none of which has a size

exceeding δρ(1−ρ)x.

Many jumps: term Îa

From Markov’s inequality, one can see that for all s ≥ 0 we have

Îa(x,ρ) =P(e sN (x) ≥ e sλ∗x ) ≤ e−sλ∗xE
[
e sN (x)]= exp[−λx((1+ηρ)s −e s +1)].
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Taking the infimum over all s ≥ 0 gives

Îa(x,ρ) ≤ exp[−λx sup
s≥0

((1+ηρ)s −e s +1)] = exp
[−λx

(
(1+ηρ) log(1+ηρ)−ηρ

)]
.

The bound log(1+ηρ) ≥ 2ηρ
2+ηρ for ηρ > 0 then yields Îa(x,ρ) ≤ exp

[
− η2

ρ

2+ηρ λx

]
. Dividing

by P(Mτ > (1−ρ)x), taking the supremum, applying Theorem 5.3.2 and using Potter’s

Theorem with ν> 0 gives

sup
x≥x∗

ρ

Îa(x,ρ)

P(Mτ > (1−ρ)x)
. sup

x≥x∗
ρ

C
1−ρ

ρP(B > (1−ρ)x)
exp

[
−

η2
ρ

2+ηρ
λx

]

≤ sup
x≥x∗

ρ

C
1−ρ
ρ

exp

[
(α+ν) log((1−ρ)x)−

η2
ρ

2+ηρ
λx

]

≤C
1−ρ
ρ

exp

[
(α+ν) log

1

1−ρ − λ

10
logk∗ 1

1−ρ +o

(
log

1

1−ρ
)]

→ 0 (5.40)

as ρ ↑ 1.

Few jumps: term Îb

Now consider term Îb. The corresponding event is a large τ, caused by a probable

amount of small jumps. The following theorem by Prokhorov [113] is used to show that

this scenario is unlikely as ρ tends to 1.

Theorem 5.7.1 (Prokhorov [113], Theorem 1). Suppose that ξi , i = 1, . . . ,n are independ-

ent, zero-mean random variables such that there exists a constant c for which |ξi | ≤ c for

i = 1, . . . ,n, and
∑n

i=1Var{ξi } <∞. Then

P

(
n∑

i=1
ξi > y

)
≤ exp

[
− y

2c
arcsinh

yc

2
∑n

i=1Var{ξi }

]
. (5.41)

Using the bound arcsinh(z) = log(z +
p

1+ z2) ≥ log(2z), Prokhorov’s inequality

implies

P

(
n∑

i=1
ξi > y

)
≤

(
c y∑n

i=1Var{ξi }

)− y
2c

. (5.42)

Define Yi := Bi −E[B ]. Then

Îb(x,ρ) =P
(
λ∗x∑
i=0

Yi > (1−λ∗E[B ])x −E[B ]
∣∣∣ λ∗x∨

i=0
Yi ≤ δρ(1−ρ)x −E[B ]

)
.
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Let σ2
B0

be the variance of B provided B < δρ(1−ρ)x. Then σ2
B0

≤ σ2
B and hence, us-

ing (5.42),

Îb(x,ρ) ≤
(
δρ(1−ρ)x −E[B ]

λ∗x +1

(1−λ∗E[B ])x −E[B ]

σ2
B

)− (1−λ∗E[B ])x−E[B ]
2δρ (1−ρ)x−2E[B ]

= exp

[
−(1+φ(1)

ρ (x))
1−λ∗E[B ]

2δρ(1−ρ)
log

(
1−φ(2)

ρ (x)

λ∗σ2
B

(1−λ∗E[B ])(1−ρ)δρx

)]
,

where the real-valued functions φ(i )
ρ (x) are defined as

φ(1)
ρ (x) :=

1− E[B ]
(1−λ∗E[B ])x

1− E[B ]
δρ (1−ρ)x

−1, φ(2)
ρ (x) := 1−

(
1− E[B ]

δρ (1−ρ)x

)(
1− E[B ]

(1−λ∗E[B ])x

)
1+ 1

λ∗x

,

and satisfy φ(i )
ρ (x) → 0 as ρ ↑ 1 for all x ≥ x∗

ρ . Additionally, the functions φ(i )
ρ are non-

negative and non-increasing for ρ sufficiently close to one. These properties imply that

the inequality

Îb(x,ρ) ≤ exp

[
−1−λ∗E[B ]

2δρ(1−ρ)
log

(
1−φ(2)

ρ (x)

λ∗σ2
B

(1−λ∗E[B ])(1−ρ)δρx

)]

holds for ρ sufficiently close to one and x ≥ x∗
ρ . Substitution of λ∗ = (1+ηρ)λ= 3−ρ

2 λ

subsequently gives

Îb(x,ρ) ≤ exp

[
− 1

4δρ
log

(
1−φ(2)

ρ (x)

3λσ2
B

(1−ρ)2δρx

)]
.

Dividing the upper bound above by P(Mτ > (1−ρ)x) ∼ ρ
1−ρP(B > (1−ρ)x) and applying

Potter’s Theorem with ν> 0 yields

Îb(x,ρ)

P(Mτ > (1−ρ)x)
.C

1−ρ
ρ

exp

[
(α+ν) log((1−ρ)x)− 1

4δρ
log

(
1−φ(2)

ρ (x)

3λσ2
B

(1−ρ)2δρx

)]

=C
1−ρ
ρ

exp

[(
α+ν− 1

4δρ

)
log((1−ρ)x)− 1

4δρ
log

(
1−φ(2)

ρ (x)

3λσ2
B

(1−ρ)δρ

)]
.

The supremum over x ≥ x∗
ρ is attained in x = x∗

ρ for ρ sufficiently close to one. That is,

sup
x≥x∗

ρ

Îb(x,ρ)

P(Mτ > (1−ρ)x)
.C

1−ρ
ρ

exp

[(
α+ν− 1

4δρ

)
log

(
1

1−ρ logk∗ 1

1−ρ
)

− 1

4δρ
log

(
1−φ(2)

ρ (x∗
ρ )

3λσ2
B

(1−ρ)δρ

)]
=C

1−ρ
ρ

exp

[
(α+ν) log

(
1

1−ρ logk∗ 1

1−ρ
)
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− 1

4
log1+εδ

(
1

1−ρ
)

log

(
1−φ(2)

ρ (x∗
ρ )

3λσ2
B

logk∗−1−εδ 1

1−ρ

)]
→ 0 (5.43)

as ρ ↑ 1. Together, (5.40) and (5.43) assure that term Î is dominated by P(Mτ > (1−ρ)x).

Intermediate supremum Mτ: term ÎI

Term ÎI corresponds to the event of a large τ that experience an intermediate supremum

Mτ. Write

sup
x≥x∗

ρ

ÎI(x,ρ)

P(Mτ > (1−ρ)x)
≤ sup

x≥x∗
ρ

P(Mτ > δρ(1−ρ)x)

P(Mτ > (1−ρ)x)

× sup
x≥x∗

ρ

P(τ> x; Mτ ≤ hl (x,ρ) | Mτ > δρ(1−ρ)x)

∼ δ−αρ sup
x≥x∗

ρ

P(τ> x; Mτ ≤ hl (x,ρ) | Mτ > δρ(1−ρ)x). (5.44)

Set κρ :=
(
log 1

1−ρ
)−εκ

for some εκ ≥ εγ, implying γρ −κρ > 0. By considering the time

σ(aρ) when the process X (t ) first exceeds level aρ := δρ(1−ρ)x, we can partition (5.44)

into two events:

P(τ> x; Mτ ≤ hl (x,ρ) | Mτ > δρ(1−ρ)x)

=P(τ> x;σ(aρ) ≤ κρx; Mτ ≤ hl (x,ρ) |σ(aρ) < τ)

+P(τ> x;σ(aρ) > κρx; Mτ ≤ hl (x,ρ) |σ(aρ) < τ)

≤P(τ> (1−κρ)x; Mτ ≤ hl (x,ρ) |σ(aρ) < τ)+P(σ(aρ) > κρx |σ(aρ) < τ)

=: ÎIa(x,ρ)+ ÎIb(x,ρ).

Term ÎIa is associated with sample paths that experiences an intermediate supremum

and that may already hit zero after time (1−κρ)x. Term ÎIb corresponds to a sample

path where the process does not exceed level aρ before time κρx, provided that it will

hit level aρ before it hits zero.

Early passage time: term ÎIa

Term ÎIa is analysed along the lines of Section 5.7.1:

ÎIa(x,ρ) =
∫ hl (x,ρ)

0
P(X (t ) > 0;0 ≤ t ≤ (1−κρ)x; Mτ ≤ hl (x,ρ) |σ(aρ) < τ; X (0) = y)

× dP(X (0) ≤ y |σ(aρ) < τ)

≤
∫ hl (x,ρ)

0
P(X (t ) > 0;0 ≤ t ≤ (1−κρ)x |σ(aρ) < τ; X (0) = y)dP(X (0) ≤ y |σ(aρ) < τ)
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≤P(X (t ) > 0;0 ≤ t ≤ (1−κρ)x | X (0) = hl (x,ρ))

≤P(X ((1−κρ)x)−X (0) >−hl (x,ρ)).

Here, the second inequality holds as the integrand is increasing in y , and aρ ≤ hl (x,ρ)

for x ≥ x∗
ρ and ρ sufficiently close to one.

Define Aρ
0 := 0 and Aρ

i := inf{t ≥ 0 : N (
∑i−1

j=0 Aρ

j + t ) ≥ i } for all i ≥ 1. Then the Aρ

i are

i.i.d. exponentially distributed random variables with mean 1/λ and
∑N (t )

i=1 Aρ

i ≤ t for all

t ≥ 0. We drop the superscript ρ for notational convenience. Now,

ÎIa(x,ρ) ≤P
(
−(1−κρ)x +

N ((1−κρ )x)∑
i=1

Bi >−hl (x,ρ)

)

=P
(
−ρ(1−κρ)x +

N ((1−κρ )x)∑
i=1

Bi > (γρ −κρ)(1−ρ)x + g (x,ρ)

)

≤P
(

N ((1−κρ )x)∑
i=1

[Bi −ρAi ] > (γρ −κρ)(1−ρ)x + g (x,ρ)

)
.

Fix q ∈
(
max

{
2, (1+εδ)α

(p− 1
2 )k∗

}
,α

)
. By Chebyshev’s inequality for general moments and

Theorem 5.1 in Chapter 1 of Gut [68], there exists some constant Cq such that

ÎIa(x,ρ) ≤
E
[(∑N ((1−κρ )x)

i=1 [Bi −ρAi ]
)q]

(
(γρ −κρ)(1−ρ)x + g (x,ρ)

)q ≤ CqE[|B1 −ρA1|q ]E[N ((1−κρ)x)q/2]

g (x,ρ)q

≤ CqE[|B1 −ρA1|q ]E[N ((1−κρ)x)]q/2

g (x,ρ)q ,

where the last derivation is justified by Hölder’s inequality. Subsequently, one may show

from Jensen’s inequality that E[|B − A|q ] ≤ 2q−1(E[|A|q ]+E[|B |q ]) and therefore

ÎIa(x,ρ) ≤ Cq 2q−1(E[B q
1 ]+E[Aq

1 ])(λ(1−κρ)x)q/2

(1−ρ)(2p−1)q xpq
≤C

(
(1−ρ)2x

)−(p− 1
2 )q

for some constant C . By choice of p, q and εδ, we conclude that

δ−αρ sup
x≥x∗

ρ

ÎIa(x,ρ) ≤C

(
log

1

1−ρ
)(1+εδ)α−(p− 1

2 )k∗q

→ 0 (5.45)

as ρ ↑ 1.

Late passage time: term ÎIb

Term ÎIb is analysed with the following crucial lemma, and is proven in Section 5.8:
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Lemma 5.7.2. Suppose P(B > x) = L(x)x−α for some α > 2, α 6= 3, and L(x) slowly

varying. Define a∗
ρ := k∗µ(α−1) 1

1−ρ log 1
1−ρ for some k∗ > 2. Then for any fixed y > 0,

sup
a≥a∗

ρ

E[σ(a) |σ(a) < τ; X0 = y] =O

(
1

1−ρ
)

(5.46)

as ρ ↑ 1. Similarly, without conditioning on the value of X0,

sup
a≥a∗

ρ

E[σ(a) |σ(a) < τ] =O

(
1

1−ρ
)

(5.47)

as ρ ↑ 1.

Applying Markov’s inequality and sequentially Lemma 5.7.2 to term ÎIb yields

δ−αρ sup
x≥x∗

ρ

ÎIb(x,ρ) ≤ sup
x≥x∗

ρ

E[σ(δρ(1−ρ)x) |σ(δρ(1−ρ)x) < τ]

δαρκρx

=O

(
1

1−ρ
)

(1−ρ)2(
log 1

1−ρ
)k∗−(1+εδ)α−εκ → 0 (5.48)

as ρ ↑ 1, thereby immediately completing the analysis of term ÎIb.

Large supremum Mτ: term ÎII

Finally, we show that the probability of a large time τ is asymptotically equivalent to

term ÎII. Using Theorem 5.3.2, it directly follows that

sup
x≥x∗

ρ

ÎII(x,ρ)

P(Mτ > (1−ρ)x)
. sup

x≥x∗
ρ

P(B > hl (x,ρ))

P(B > (1−ρ)x)

∼ sup
x≥x∗

ρ

(
(1−γρ)(1−ρ)x − (1−ρ)2p−1xp

(1−ρ)x

)−α

=
(

1−
(
log

1

1−ρ
)−εγ

−
(
log

1

1−ρ
)−(1−p)k∗)−α

→ 1

as ρ ↑ 1.

The proof of expression (5.15) and consequently the proof of Theorem 5.3.5 is

completed once we validate Lemma 5.7.2, which is the subject of the next section.

5.8 Asymptotics of the conditional expectation of the passage time

of level a

This section is dedicated to the proof of Lemma 5.7.2, which regards the expected first

passage time of level a, σ(a), provided that level a is reached before level 0: σ(a) < τ. In

particular, we consider high levels a ≥ a∗
ρ := k∗µ(α−1) 1

1−ρ log 1
1−ρ for any k∗ > 2.
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The lemma considers two different scenarios. In the first scenario, we condition

on the initial value X (0) = y . In the second scenario, the initial value X (0) is a random

variable with the same distribution as a general jump size B . The analysis for this latter

scenario is based on the following decomposition:

E[σ(a) |σ(a) < τ] =
∫ a

0
E[σ(a) |σ(a) < τ; X (0) = y]dP(B ≤ y). (5.49)

When analysing the integral in expression (5.49), a distinction is made between a

“small” and a “large” random initial value; a precise definition of which is given at the

end of these introductory paragraphs. The analysis of the first scenario of the lemma,

where the initial value is fixed, is implicit in the analysis of a small random initial value.

The proof of the first scenario is concluded at the end of Section 5.8.1.

The derivation of results in this section relies heavily on the theory of spectrally

one-sided Lévy processes and q-scale functions, e.g. as documented by Kyprianou [90].

Our interest in q-scale functions W (q)
ρ originates from the close connection between

the all-time supremum M∞ and the 0-scale function Wρ(x) := W (0)
ρ (x). Of particular

importance is the relation

P(M∞ < x) = (1−ρ)Wρ(x), (5.50)

which can be derived from Corollary IX.3.4 in Asmussen [8] (e.g. as shown in [21]).

Define the Laplace exponent ψ(λ) := 1
t logE(e−λX (t )) of X (t) and its right-inverse

ϕ(q) := sup{λ≥ 0 :ψ(λ) = q}. Then, for every q ≥ 0, the q-scale function W (q)
ρ (x) :R→

[0,∞) corresponding to the spectrally positive Lévy process X (t ) is defined on x < 0 as

W (q)
ρ (x) = 0, and on x ≥ 0 by its Laplace transform:∫ ∞

0
e−βxW (q)

ρ (x)dx = 1

ψ(β)−q
for β>ϕ(q). (5.51)

Additionally, Kyprianou gives a representation of W (q)
ρ (x) in terms of Wρ(x) in his

relation (8.29):

W (q)
ρ (x) = ∑

k≥0
qkW (k+1)~

ρ (x), (5.52)

where the function f 1~(x) is identical to f (x) and f k~(x) := ∫ x
0 f (k−1)~(x − y) f (y)dy

denotes the k-fold convolution of f with itself.

An alternative representation of Wρ(x) is provided by expression (8.22) in Kyprianou

[90], stating that there are a measure nρ(·) on the space of excursions of X (t) from its

previous minimum min{X (s) : 0 ≤ s ≤ t } and a random variable ξρ associated with the

height of an excursion, such that for all b > x ≥ 0 we have

Wρ(x) =Wρ(b)exp

(
−

∫ b

x
nρ(ξρ > t )dt

)
. (5.53)
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This representation will provide a useful property for the all-time supremum p.d.f.

fM∞ (x) := d
dy P(M∞ < y)

∣∣∣
y=x

. Using the Pollaczek-Khintchine formula (cf. relation

(5.20)), we write

fM∞ (x) =
∞∑

n=1
(1−ρ)ρn d

dy
P(B∗

1 + . . .+B∗
n < y)

∣∣∣
y=x

for x > 0. One may show by induction that d
dy P(B∗

1 + . . .+B∗
n < y) is defined everywhere

and is bounded by 1/E[B ] for all n ≥ 1. As such, fM∞ (x) is properly defined and bounded

for all x > 0. Additionally, (5.53) implies that

fM∞ (x)

P(M∞ < x)
= d

dy
logWρ(y)

∣∣∣
y=x

= nρ(ξρ > x) (5.54)

is non-increasing in x.

For the remainder of this section, the subscripts ρ for Wρ(x) and W (q)
ρ (x) are dis-

carded. We also introduce the short-hand notations Ey [·] and Py (·) for the conditional

expectation E[· | X (0) = y] and conditional probability P(· | X (0) = y), respectively.

Let Z (q)(x) := 1+q
∫ x

0 W (q)(y)dy . From (5.52) and the spectrally positive Lévy pro-

cess interpretation of Theorem 8.1 in Kyprianou [90], it follows that the unconditional

expectation Ey [σ(a)1(σ(a) < τ)] satisfies

Ey [σ(a)1(σ(a) < τ)] =− d

dq
Ey [e−qσ(a)

1(σ(a) < τ)]
∣∣∣

q=0

=− d

dq
Z (q)(a − y)+ W (q)(a − y)

W (q)(a)

d

dq
Z (q)(a)

+Z (q)(a)
W (q)(a) d

dq W (q)(a − y)−W (q)(a − y) d
dq W (q)(a)

(W (q)(a))2

∣∣∣
q=0

=−
∫ a−y

0
W (t )dt + W (a − y)

W (a)

∫ a

0
W (t )dt + W (a)W 2~(a − y)−W (a − y)W 2~(a)

(W (a))2

= W (a − y)

W (a)

∫ a
0 (W (a)−W (a − t ))W (t )dt

W (a)
−

∫ a−y
0 (W (a)−W (a − y − t ))W (t )dt

W (a)
.

Now, from relation (8.12) in Kyprianou [90] one may deducePy (σ(a) < τ) = W (a)−W (a−y)
W (a) ,

which gives a representation of the conditional expectation Ey [σ(a) |σ(a) < τ] in terms

of the scale function:

Ey [σ(a) |σ(a) < τ] = W (a − y)

W (a)

∫ a
0 (W (a)−W (a − t ))W (t )dt

W (a)−W (a − y)

−
∫ a−y

0 (W (a)−W (a − y − t ))W (t )dt

W (a)−W (a − y)
.
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Substitute (5.50) into the above expression to obtain

Ey [σ(a) |σ(a) < τ] = P(M∞ < a − y)

P(M∞ < a)

∫ a
0 P(M∞ ∈ [a − t , a))P(M∞ < t )dt

(1−ρ)P(M∞ ∈ [a − y, a))

−
∫ a−y

0 P(M∞ ∈ [a − y − t , a))P(M∞ < t )dt

(1−ρ)P(M∞ ∈ [a − y, a))

≤
∫ a

0 P(M∞ ∈ [a − t , a))P(M∞ < t )dt −∫ a−y
0 P(M∞ ∈ [a − y − t , a))P(M∞ < t )dt

(1−ρ)P(M∞ ∈ [a − y, a))

=:
Knum(y, a)

Kdenom(y, a)
. (5.55)

The analysis of this expression depends on the initial value y . We distinguish two

categories of initial values: small and large values. Fix d such that 0 < d < 1− 2
k∗ < 1.

Small values are of size at most d ·a, all other values are large values.

5.8.1 Small random initial value or fixed initial value

This section considers the process from a small initial value y , i.e. y ≤ d a. For any

y-differentiable function G(y, a), it is known that G(y, a) =G(0, a)+∫ y
0

d
ds G(s, a)

∣∣
s=z dz.

This is now used to obtain an alternative representation of Knum(y, a).

Let M (i )∞ , i = 1,2 be independent copies of M∞. Taking the derivative of Knum(s, a)

with respect to s yields

d

ds
Knum(s, a) =P(M (2)

∞ < a)P(M (1)
∞ < a − s)−

∫ a−s

0
P(M (1)

∞ < t )dP(M (2)
∞ < a − s − t )

=P(M (2)
∞ < a)P(M (1)

∞ < a − s)−P(M (1)
∞ +M (2)

∞ < a − s)

=P(M (1)
∞ < a − s)−P(M (1)

∞ +M (2)
∞ < a − s)−P(M (2)

∞ ≥ a)P(M (1)
∞ < a − s)

=P(M (1)
∞ +M (2)

∞ ≥ a − s; M (1)
∞ < a − s)

−P(M (2)
∞ ≥ a − s)P(M (1)

∞ < a − s)+P(M (2)
∞ ∈ [a − s, a))P(M (1)

∞ < a − s)

=P(M (1)
∞ +M (2)

∞ ≥ a − s; M (1)
∞ < a − s; M (2)

∞ < a − s)

+P(M (2)
∞ ∈ [a − s, a))P(M (1)

∞ < a − s),

so that Knum(0, a) = 0 implies

Ey [σ(a) |σ(a) < τ] ≤ Knum(y, a)

Kdenom(y, a)

=
∫ y

0 P(M (1)∞ +M (2)∞ ≥ a − z; M (1)∞ < a − z; M (2)∞ < a − z)dz

(1−ρ)P(M∞ ∈ [a − y, a))

+
∫ y

0 P(M (2)∞ ∈ [a − z, a))P(M (1)∞ < a − z)dz

(1−ρ)P(M∞ ∈ [a − y, a))

≤
∫ y

0 P(M (1)∞ +M (2)∞ ≥ a − z; M (1)∞ < a − z; M (2)∞ < a − z)dz

(1−ρ)P(M∞ ∈ [a − y, a))
+ y

1−ρ .
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By symmetry, we have

P(M (1)
∞ +M (2)

∞ ≥ u; M (1)
∞ < u; M (2)

∞ < u) ≤ 2P(M (1)
∞ +M (2)

∞ ≥ u;u/2 ≤ M (1)
∞ < u)

≤ 2P(M∞ ∈ [u/2,u))

and hence

Ey [σ(a) |σ(a) < τ] ≤ 2
∫ y

0 P
(
M∞ ∈ [ a−z

2 , a − z
))

dz

(1−ρ)P(M∞ ∈ [a − y, a))
+ y

1−ρ

≤ 2y

1−ρ

(
1+ P

(
M∞ ∈ [ a−y

2 , a
))

P(M∞ ∈ [a − y, a))

)
. (5.56)

Both local probabilities can be represented as a sum of local probabilities over an

interval with fixed length. Subsequently, Theorem 5.3.1 is applied to bound the above

ratio. Fix ymi n > 0 and first consider (5.56) for ymi n ≤ y ≤ d a. For S := ymi n/2, we have

P
(
M∞ ∈ [ a−y

2 , a
2

))
P

(
M∞ ∈ [

a − y, a
)) ≤ ∑d y

2S −1e
i=0 P

(
M∞ ∈ [ a−y

2 + i S, a−y
2 + (i +1)S

))
∑b y

S −1c
i=0 P

(
M∞ ∈ [

a − y + i S, a − y + (i +1)S
)) .

We would now like to utilise Theorem 5.3.1. To this end, consider xρ as defined by

Theorem 5.3.1 with parameter (1−d)k∗/2 > 1. Then for all y ≤ d a, we have a−y
2 ≥

1−d
2 a∗

ρ = xρ . Hence, we observe that there exists a non-increasing function φρ(·) ↓ 0 for

which the inequalities

1−φρ
( a − y

2

)
≤ P

(
M∞ ∈ [ a−y

2 + i S, a−y
2 + (i +1)S

))
ρ

1−ρP
(
B∗ ∈ [ a−y

2 + i S, a−y
2 + (i +1)S

)) ≤ 1+φρ
( a − y

2

)
(5.57)

both hold for all y ≤ d a and i ≥ 0. From a − y ≥ a −d a ≥ a
k∗ one may subsequently

conclude that the ratio of interest is bounded:

P
(
M∞ ∈ [ a−y

2 , a
2

))
P

(
M∞ ∈ [

a − y, a
)) ≤ 1+φρ

( a
2k∗

)
1−φρ

( a
k∗

) ∑d y
2S −1e

i=0 P
(
B∗ ∈ [ a−y

2 + i S, a−y
2 + (i +1)S

))
∑b y

S −1c
i=0 P

(
B∗ ∈ [

a − y + i S, a − y + (i +1)S
))

≤ 1+φρ
( a

2k∗
)

1−φρ
( a

k∗
) y

2S +1
y
S −1

P
(
B > a−y

2

)
P (B > a)

∼
1+ 2S

y

2− 2S
y

( a − y

2a

)−α
≤ 2(2k∗)α.

Second, consider (5.56) for 0 < y < ymi n . Relation (5.54) implies

P
(
M∞ ∈ [ a−y

2 , a
2

))
P

(
M∞ ∈ [

a − y, a
)) ≤ y supz∈(0,y)

fM∞
( a−z

2

)
P
(
M∞< a−z

2

)P(
M∞ < a−z

2

)
2y infz∈(0,y)

fM∞ (a−z)
P(M∞<a−z)P(M∞ < a − z)

≤
fM∞

( a−y
2

)
P
(
M∞< a−y

2

)P(
M∞ < a

2

)
2

fM∞ (a)
P(M∞<a)P(M∞ < a − y)

= fM∞
( a−y

2

)
2 fM∞ (a)

P
(
M∞ < a

2

)
P(M∞ < a)

P
(
M∞ < a−y

2

)
P(M∞ < a − y)

∼ fM∞
( a−y

2

)
2 fM∞ (a)
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as a →∞. We conclude that

Ey [σ(a) |σ(a) < τ] .C
y

1−ρ

(
1+ fM∞

( a−y
2

)
fM∞ (a)

1(y ≤ ymi n)

)
. (5.58)

The above relation explicitly shows the dependence of the asymptotic upper bound

on y . This dependence is crucial in the analysis of the second part of the lemma, where

we will integrate the upper bound over P(B < y). However, before addressing large

initial values it should be noted that (5.58) also proves the first part of the lemma. There,

y is fixed and the lemma follows directly after choosing 0 < ymi n < y .

5.8.2 Large random initial value

Complementary to the previous section, we now consider (5.55) for large initial values,

i.e. d a ≤ y < a.

Let M∗∞ be a random variable with the excess distribution of M∞ as its c.d.f. , that

is, d
dxP(M∗∞ < x) =P(M∞ ≥ t)/E[M∞]. Using the equalities P(M∞ < t) = 1−P(M∞ ≥ t)

and
∫ a

0 P(M∞ ∈ [a − t , a))dt = E[M∞1(M∞ < a)], we find

Knum(y, a) =
∫ a

0
P(M∞ ∈ [a − t , a))P(M∞ < t )dt

−
∫ a−y

0
P(M∞ ∈ [a − y − t , a))P(M∞ < t )dt

= E[M∞1(M∞ < a)]−E[M∞]
∫ a

0
P(M∞ ∈ [a − t , a))dP(M∗

∞ < t )

−E[M∞1(M∞ < a − y)]+E[M∞]
∫ a−y

0
P(M∞ ∈ [a − y − t , a))dP(M∗

∞ < t )

≤ E[M∞1(M∞ ∈ [a − y, a))]+E[M∞]P(M∞ ∈ [a − y −M∗
∞, a); M∗

∞ < a − y)

≤ aP(M∞ ∈ [a − y, a))+E[M∞].

It therefore follows that

Ey [σ(a) |σ(a) < τ]− a

1−ρ ≤ E[M∞]

(1−ρ)P(M∞ ∈ [a − y, a))
≤ E[M∞]

(1−ρ)P(M∞ ∈ [(1−d)a, a))
,

where E[M∞] = ρ
1−ρ

E[B 2]
2E[B ] .

Similar to the analysis of small initial values, Theorem 5.3.1 invokes

Ey [σ(a) |σ(a) < τ] .
a

1−ρ + C

(1−ρ)d aP (B > a)
(5.59)

and consequently completes the analysis of the conditional expectation for large initial

values.



5.8. Asymptotics of the conditional expectation of the passage time 129

5.8.3 Synthesis of small and large random initial value

From relations (5.49), (5.58) and (5.59), one may deduce that

sup
a≥a∗

ρ

E[σ(a) |σ(a) < τ]

≤ sup
a≥a∗

ρ

∫ d a

0
Ey [σ(a) |σ(a) < τ]dP(B < y)+ sup

a≥a∗
ρ

∫ a

d a
Ey [σ(a) |σ(a) < τ]dP(B < y)

.
C

1−ρ sup
a≥a∗

ρ

∫ d a

0
y dP(B < y)+ C

1−ρ sup
a≥a∗

ρ

∫ ymi n

0
y · fM∞

( a−y
2

)
fM∞ (a)

dP(B < y)

+ sup
a≥a∗

ρ

P(B ≥ d a) sup
y∈[d a,a)

Ey [σ(a) |σ(a) < τ]

.
CE[B ]

1−ρ + C ymi n

1−ρ sup
a≥a∗

ρ

∫ ymi n

0

fM∞
( a−y

2

)
fM∞ (a)

dP(B < y)

+ sup
a≥a∗

ρ

a

1−ρP(B ≥ d a)+ sup
a≥a∗

ρ

C

(1−ρ)a

P(B ≥ d a)

P (B ≥ a)
. (5.60)

The third term is dominated by its Markov’s bound E[B ]
(1−ρ)d . Also, the integral in the

second term is ultimately bounded by a constant. This follows from the fact that
fM∞ (x)
P(M∞≤x) is non-increasing and application of Theorem 5.3.1 as before:

∫ ymi n

0

fM∞
( a−y

2

)
fM∞ (a)

dP(B < y) ≤ P(M∞ ≤ a
2 )

fM∞ (a)

∫ ymi n

0

fM∞
( a−y

2

)
P(M∞ ≤ a−y

2 )
dP(B < y)

≤P(B < ymi n)
P(M∞ ≤ a

2 )

P(M∞ ≤ a)

P(M∞ ≤ a)

fM∞ (a)

fM∞
( a−ymi n

2

)
P(M∞ ≤ a−ymi n

2 )

=C
P(M∞ ≤ a

2 )

P(M∞ ≤ a)
inf

y∈(0,ymi n )

P(M∞ ≤ a + y)

fM∞ (a + y)
inf

y∈(0,ymi n )

fM∞

(
a+y−2ymi n

2

)
P(M∞ ≤ a+y−2ymi n

2 )

≤C
P(M∞ ≤ a

2 )

P(M∞ ≤ a)

P(M∞ ≤ a + ymi n)

P(M∞ ≤ a−ymi n
2 )

infy∈(0,ymi n ) fM∞

(
a+y−2ymi n

2

)
supy∈(0,ymi n ) fM∞ (a + y)

.C

∫ ymi n
0 fM∞

(
a+y−2ymi n

2

)
dy∫ ymi n

0 fM∞ (a + y)dy
=C

P
(
M∞ ∈

(
a−2ymi n

2 , a−ymi n
2

))
P(M∞ ∈ (a, a + ymi n))

.C
P

(
B > a−2ymi n

2

)
P(B > a + ymi n)

∼C

(
1− 3ymi n

a + ymi n

)−α
as a →∞. Substituting this into (5.60) gives

sup
a≥a∗

ρ

E[σ(a) |σ(a) < τ] .
C

1−ρ + C ymi n

1−ρ sup
a≥a∗

ρ

(
1− 3ymi n

a + ymi n

)−α
+ sup

a≥a∗
ρ

C

(1−ρ)a
d−α.

(5.61)
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Since all suprema are obtained in a = a∗
ρ as ρ ↑ 1, the above expressions can be written

in terms of 1/(1−ρ):

sup
a≥a∗

ρ

E[σ(a) |σ(a) < τ] .
C

1−ρ + C

log 1
1−ρ

=O

(
1

1−ρ
)

.

This completes the proof of Lemma 5.7.2.

5.9 Tightness of bounds – proofs

This section presents the proofs of Lemma 5.3.6, Corollary 5.3.7 and Lemma 5.3.8,

respectively.

5.9.1 Local Kingman heavy-traffic approximation

Complete monotonicity of the p.d.f. fM∞ (·) follows from Corollary 3.2 in Keilson [78].

As fM∞ (·) is non-increasing, it follows that the random variable V with c.d.f. FV (0) := 0,

FV (x) := 1− fM∞ (x)
fM∞ (0+) , x > 0, is well-defined. Relation (5.16) is now derived by analysing

the Laplace-Stieltjes transform of V .

Let M̃∞(·) and B̃∗(·) denote the Laplace-Stieltjes transforms of M∞ and B∗, respect-

ively. On the one hand, we have [6, relation (7.9)]∫ ∞

0+
e−st fM∞ (t )dt = M̃∞(s)−P(M∞ = 0) = 1−ρ

1−ρB̃∗(s)
−(1−ρ) = ρ(1−ρ)B̃∗(s)

1−ρB̃∗(s)
. (5.62)

On the other hand, integration by parts yields∫ ∞

0+
e−st fM∞ (t )dt = 1

s
fM∞ (0+)+ 1

s

∫ ∞

0+
e−st d fM∞ (t ). (5.63)

Combining (5.62) and (5.63) gives

E[e sV ] =−
∫ ∞

0
e−st d

fM∞ (t )

fM∞ (0+)
= 1− ρ(1−ρ)sB̃∗(s)

fM∞ (0+)(1−ρB̃∗(s))
= 1− E[B ]sB̃∗(s)

1−ρB̃∗(s)
,

since fM∞ (0+) = (1−ρ)λ (cf. relation (5.20)).

From the above, we deduce

E[e(1−ρ)sV ] = 1− E[B ](1−ρ)sB̃∗((1−ρ)s)

1−ρB̃∗((1−ρ)s)
= 1− E[B ](1−ρ)sB̃∗((1−ρ)s)

1−ρ (
1−E[B∗](1−ρ)s +o(1−ρ)

)
→ 1− E[B ]s

1+E[B∗]s

as ρ ↑ 1. Inverting this expression and applying the Continuity Theorem [54, Section

XIII.1, Theorem 2a] gives

P((1−ρ)V ≤ x) → 1− E[B ]

E[B∗]
e−

x
E[B∗] , (5.64)
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provided E[B∗] ≥ E[B ]. Under this assumption, the lemma statement follows from the

definition of FV (x). The proof is therefore concluded once we verify that all completely

monotone densities fB (·) satisfy E[B∗] ≥ E[B ].

Bernstein’s theorem [23] states that any completely monotone function can be

represented as mixture of exponential functions. In particular, there exists a non-

decreasing function µ(·) such that

fB (x) =
∫ ∞

0
e−t x dµ(t ). (5.65)

From this representation, one may derive 1 = ∫ ∞
0

1
t dµ(t ), E[B ] = ∫ ∞

0
1
t 2 dµ(t ) and E[B 2] =∫ ∞

0
2
t 3 dµ(t ). A straightforward computation yields

E[B 2]−2E[B ]2 =
∫ ∞

0

∫ ∞

0

1

st

(
1

s
− 1

t

)2

dµ(s)dµ(t ) ≥ 0.

The claimed property follows from E[B∗]−E[B ] = (E[B 2]−2E[B ]2)/(2E[B ]) ≥ 0.

5.9.2 Lower bound of the function xρ

Since the p.d.f.’s of both M∞ and B∗ are well-defined and non-increasing, one can see

that

P(M∞ ∈ y
1−ρ +∆)

ρ
1−ρP(B∗ ∈ y

1−ρ +∆)
=

∫ y/(1−ρ)+T
y/(1−ρ) fM∞ (t )dt

ρ
1−ρ

∫ y/(1−ρ)+T
y/(1−ρ) P(B > t )/E[B ]dt

≥
fM∞

(
y

1−ρ +T
)

λ
1−ρP

(
B > y

1−ρ
)

≥
1

1−ρ fM∞

(
y+T
1−ρ

)
λ

(1−ρ)2P
(
B > y

1−ρ
) .

Fix 0 < ν<α−2. According to Potter’s Theorem there exists a constant C > 0 such that

P(B > x) ≤C x−α+ν for x sufficiently large. Hence, by Lemma 5.3.6,

lim
ρ↑1

P
(
M∞ ∈ y

1−ρ +∆
)

ρ
1−ρP

(
B∗ ∈ y

1−ρ +∆
) ≥ lim

ρ↑1

1
1−ρ fM∞

(
y+T
1−ρ

)
λC (1−ρ)α−2−νy−α+ν =∞.

5.9.3 Lower bound of the function x∗
ρ

Theorem 1 in Abate and Whitt [5] states that 1
1−ρP

(
τ> t

(1−ρ)2

)
converges to a function

fR(t ) as ρ ↑ 1 for all t > 0. Thus, since FB is regularly varying with index −α<−2, we find

lim
ρ↑1

P(τ> y∗
ρ )

ρ
1−ρP(B > (1−ρ)y∗

ρ )
= lim

ρ↑1

1
1−ρP

(
τ> y

(1−ρ)2

)
ρ

(1−ρ)2P
(
B > y

1−ρ
) = fR (y) lim

ρ↑1

1
ρ

(1−ρ)2P
(
B > y

1−ρ
) =∞.
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5.A Inequalities

This appendix is dedicated to the proof of Lemma 5.5.1. Takács [133, Section 29] and

Cohen [38] have independently shown that

P(Mτ > x) = 1

λ

d

dy
logP(M∞ < y)

∣∣
y=x , (5.66)

of which we analyse the right-hand side by means of scale functions.

The definition and some properties of scale functions were provided in Section 5.8;

for this appendix we recall that P(M∞ < x) = (1−ρ)Wρ(x) and that d
dy logWρ(y) is non-

increasing and positive (cf. relation (5.54)). This latter property implies that logWρ(x) is

concave.

Rewriting (5.66) in terms of the scale function Wρ(x), exploiting its concavity and

using log x ≤ x −1 gives

P(Mτ > x) = 1

λ

d

dy
logWρ(y)

∣∣
y=x ≤ 1

λ

[
logWρ(x)− logWρ(x −1)

]
= 1

λ
log

Wρ(x)

Wρ(x −1)
≤ 1

λ

[
Wρ(x)

Wρ(x −1)
−1

]
= 1

λ

P(M∞ ∈ [x −1, x))

P(M∞ < x −1)

for all x > 1, which concludes the upper bound. Using the inequality log x ≥ 1− 1
x for all

x > 0 and slightly altering the above analysis yields the lower bound.
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Summary

Heavy-traffic behaviour of scheduling policies in queues

This dissertation lies in the intersection of two mathematical areas: queueing theory

and scheduling theory. Queueing theory concerns itself with the analysis and control

of congestion phenomena. It provides a better understanding of the performance

of call centres, data communication networks, hospital emergency departments and

many more applications. Scheduling theory is devoted to the study of decision-making

processes that deal with the allocation of resources to tasks. Its insights are, among

others, utilised in computer operating systems, manufacturing processes and surgery

planning in hospitals.

Both queueing theory and scheduling theory consider a number of customers (tasks)

that all need to be served (processed) by one or more servers (machines). Researchers

from both areas design policies (algorithms) that assign the customers to the servers,

and assess their performance. The fact that many of these policies are applicable in

both communities emphasises their resemblance.

The main differences between the two areas are the characteristics of the customers

and the choice of performance metrics. In queueing models, one assumes that there is

a some degree of uncertainty. In particular, is often unknown when the next customer

arrives or how much service he or she requires, although the corresponding probability

distributions might be available. Additionally, it is assumed that the inflow of customers

never ceases. It is for these reasons that researchers analyse performance metrics like

the expected waiting time of a customer, or the probability that a customer has to wait

for at least five minutes. Scheduling theory, on the other hand, historically focuses on

models where the probability distributions are generally unknown or non-existing. One

instead assumes that there is a limited number of customers, and that these customers

potentially enter the system at the most inconvenient times. Researchers then aim to

give guarantees on the behaviour of policies in these worst-case scenarios.

As illustrated above, some queueing models are closely related to scheduling models

and vice versa. At the same time it seems that researchers of either community are

often unaware of the results and the techniques used in the other area. This dissertation
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contributes in bridging this gap by presenting (1) a novel combination of techniques

from both worlds and (2) several analyses of policies in queueing models. Most of

our results apply to the “heavy-traffic regime”, which is a specification to queueing

models where the amount of requested service approaches the capacity of the server.

This regime reflects the growing demand that we observe in many applications and

simultaneously reduces the complexity of the analyses.

We begin this dissertation with an extended version of the above introduction

into the areas of queueing and scheduling theory, and discuss a selection of relevant

literature. Then, in Chapter 2, we investigate the performance of “blind” scheduling

policies in the GI/GI/1 queueing model. Blind policies do not base their decisions on

the service requirement of a customer, which may pose an advantage if this information

is inaccurate or unavailable. We show that blind policies can not perform as good

as their information-dependent counterparts for general models and derive a lower

bound on this sub-optimality. Subsequently, we show that there exists a blind policy

that actually achieves this lower bound, implying that this is in some sense the best

blind policy possible.

The above results are derived under the assumption that there is only a single server;

however, the techniques that are used seem to be applicable to more general models. In

particular, one may attempt to follow a similar approach to analyse queueing models

with multiple servers. Chapter 3 shows that one such approach is not quite suitable to

obtain the desired extension and discusses alternative approaches.

Chapter 4 focuses on the Foreground-Background policy in the M/GI/1 model.

Several performance metrics of the Foreground-Background policy depend greatly

on the stochastic properties of the service requirements. Among these metrics is the

sojourn time: the time that a customer resides in the system. In this chapter we quantify

the heavy-traffic behaviour of the mean sojourn time and the probability of a long

sojourn time under a broad range of service-requirement distributions.

Our fifth and final chapter also considers the probability that customers experience

a sojourn time of at least x time units in M/GI/1 queueing models. We obtain results

for both the First In First Out and the Last In First Out policy under the assumption that

the service-time distribution is heavy-tailed. More specifically, we show how large x

needs to be in order for these results to remain valid in heavy traffic.



Samenvatting

Gedrag van planningsalgoritmes in zwaar belaste wachtrijen

Dit proefschrift beschouwt het raakvlak tussen twee mathematische disciplines: wacht-

rijtheorie en planningstheorie. Wachtrijtheorie concentreert zich op de analyse en

beïnvloeding van opstoppingsfenomenen. De kennis uit deze discipline wordt benut bij

het effectief beheren van telefooncentrales, datanetwerken, spoedeisende hulpposten

en nog vele andere toepassingen. Planningstheorie richt zich op de beslissingsproces-

sen bij het toewijzen van benodigdheden aan taken. De inzichten uit deze discipline

worden onder andere toegepast op besturingssystemen, fabrieksprocessen en het in-

plannen van operaties in ziekenhuizen.

Zowel wachtrijtheorie als planningstheorie gaat uit van een aantal klanten (taken)

die allemaal bediend (verwerkt) willen worden door één of meerdere medewerkers

(machines). Onderzoekers vanuit beide disciplines ontwerpen hiertoe algoritmes die

de klanten toewijzen aan de medewerkers, en bestuderen vervolgens hoe goed de

algoritmes werken. Het feit dat veel van deze algoritmes toepasbaar zijn in beide

disciplines benadrukt hun gelijkenis.

De grootste verschillen tussen de disciplines zijn de eigenschappen van de klan-

ten en de prestatie indicatoren. In wachtrijmodellen wordt aangenomen dat er een

bepaalde mate van onzekerheid is. Zo is het vaak onbekend wanneer de volgende klant

arriveert of hoelang een klant geholpen moet worden, hoewel men soms beschikt over

de bijbehorende kansverdelingen. Daarnaast wordt aangenomen dat de toestroom van

klanten nooit stopt. Vanwege deze eigenschappen zijn onderzoekers vaak geïnteres-

seerd in de gemiddelde wachttijd van een klant, of de kans dat een klant meer dan vijf

minuten moet wachten. Aan de andere kant richt planningstheorie zich op modellen

waar de kansverdelingen onbekend zijn of niet eens bestaan. In plaats daarvan gaat

men er vanuit dat er een beperkt aantal klanten is, en dat deze klanten mogelijk op de

meest ongunstige tijden arriveren. Onderzoekers tonen vervolgens garanties aan met

betrekking tot de prestatie van algoritmes in deze doemscenario’s.

Zoals hierboven is beschreven zijn sommige wachtrijmodellen nauw verwant aan

planningsmodellen en omgekeerd. Tegelijkertijd lijkt het vaak zo te zijn dat de onderzoe-

145



146 Samenvatting

kers van de ene gemeenschap zich niet bewust zijn van de resultaten en technieken uit

de andere gemeenschap. Dit proefschrift draagt bij aan het overbruggen van deze kloof

door (1) een nieuwe combinatie van technieken uit de twee disciplines te presenteren

en (2) verscheidene algoritmes te analyseren in wachtrijmodellen. De meeste resultaten

zijn gericht op zwaar belaste wachtrijen, waarmee wordt bedoeld dat er dusdanig veel

werk in het model is dat de medewerker het nog net bij kan houden. Deze specifica-

tie reflecteert de groeiende vraag die we in veel toepassingsgebieden waarnemen en

vereenvoudigt tegelijkertijd de doorgaans complexe analyses.

We beginnen dit proefschrift met een uitgebreidere versie van de bovenstaande in-

troductie in de wachtrij- en planningstheorie en bespreken een selectie van de relevante

literatuur. Daarna bestuderen we in Hoofdstuk 2 de prestatie van “blinde” algoritmes in

het GI/GI/1 wachtrijmodel. Blinde algoritmes baseren hun keuzes niet op de benodigde

bedieningsduur per klant, wat een voordeel kan zijn als deze informatie onnauwkeurig

of niet beschikbaar is. We laten zien dat, in algemene wachtrijmodellen, blinde algorit-

mes niet altijd zo goed kunnen presteren als hun informatie-afhankelijke tegenpolen

en leiden een ondergrens af voor deze inefficiëntie. Vervolgens laten we zien dat er een

blind algoritme bestaat dat deze ondergrens daadwerkelijk bereikt, wat impliceert dat

dit in zekere zin het optimale blinde algoritme is.

De bovenstaande resultaten zijn afgeleid onder de aanname dat er slechts één me-

dewerker is. De gebruikte technieken lijken echter ook toepasbaar te zijn in algemenere

modellen. Men zou dus kunnen proberen om wachtrijmodellen met meerdere mede-

werkers volgens een soortgelijke methode te analyseren. In Hoofdstuk 3 laten we van

een specifieke methode zien dat deze ongeschikt is voor de gewenste modeluitbreiding,

waarna we een korte uiteenzetting van alternatieve methodes geven.

Hoofdstuk 4 richt zich op het Foreground-Background algoritme in het M/GI/1

wachtrijmodel. Een aantal prestatie indicatoren hangt sterk af van de stochastische ei-

genschappen van de benodigde bedieningsduur per klant. Tot deze indicatoren behoort

ook de verblijftijd van een klant: de tijdspanne waarin de klant in het systeem is. In dit

hoofdstuk kwantificeren we, voor een brede selectie van bedieningsduurverdelingen, de

groei van de gemiddelde verblijftijd en de kans op een lange verblijftijd als het systeem

zwaar belast is.

Ook ons vijfde en laatste hoofdstuk bestudeert de kans dat een klant een verblijftijd

van minstens x tijdseenheden heeft in een M/GI/1 wachtrijmodel. We presenteren

resultaten voor de First In First Out en Last In First Out algoritmes onder de aanname

dat de bedieningsduurverdelingen zwaarstaartig zijn. Specifiek laten we zien hoe groot

x moet zijn om zeker te weten dat de resultaten geldig blijven als het systeem zwaar

belast raakt.
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